WO2005120681A1 - Processus d'adsorption par variation de la pression de recyclage complet a deux etages en vue de separer des gaz - Google Patents

Processus d'adsorption par variation de la pression de recyclage complet a deux etages en vue de separer des gaz Download PDF

Info

Publication number
WO2005120681A1
WO2005120681A1 PCT/CN2005/000641 CN2005000641W WO2005120681A1 WO 2005120681 A1 WO2005120681 A1 WO 2005120681A1 CN 2005000641 W CN2005000641 W CN 2005000641W WO 2005120681 A1 WO2005120681 A1 WO 2005120681A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
stage
pressure swing
gas
swing adsorption
Prior art date
Application number
PCT/CN2005/000641
Other languages
English (en)
French (fr)
Inventor
Yuwen Song
Original Assignee
Chengdu Tianli Chemical Engineering Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Tianli Chemical Engineering Technology Co., Ltd. filed Critical Chengdu Tianli Chemical Engineering Technology Co., Ltd.
Priority to DE602005026125T priority Critical patent/DE602005026125D1/de
Priority to EA200700011A priority patent/EA012820B1/ru
Priority to US11/570,312 priority patent/US8545601B2/en
Priority to JP2007526170A priority patent/JP4579983B2/ja
Priority to EP05745102A priority patent/EP1772182B1/en
Priority to AT05745102T priority patent/ATE496676T1/de
Priority to AU2005251848A priority patent/AU2005251848B2/en
Priority to PL05745102T priority patent/PL1772182T3/pl
Publication of WO2005120681A1 publication Critical patent/WO2005120681A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40001Methods relating to additional, e.g. intermediate, treatment of process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40013Pressurization
    • B01D2259/40015Pressurization with two sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40035Equalization
    • B01D2259/40041Equalization with more than three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40075More than ten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/406Further details for adsorption processes and devices using more than four beds
    • B01D2259/4065Further details for adsorption processes and devices using more than four beds using eight beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/406Further details for adsorption processes and devices using more than four beds
    • B01D2259/4068Further details for adsorption processes and devices using more than four beds using more than ten beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • B01D2259/4141Further details for adsorption processes and devices using different types of adsorbents within a single bed
    • B01D2259/4145Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel

Definitions

  • the invention relates to a two-stage full recovery pressure swing adsorption gas separation method, which uses a two-stage pressure swing adsorption gas separation technology, and belongs to the field of pressure swing adsorption gas separation. Background technique
  • the present invention is an improvement of the above-mentioned pressure swing adsorption gas separation technology, with almost no loss of effective gas, and under appropriate adsorption pressure, There is no need to use a complicated process of vacuuming, which not only saves investment, but also does not have power consumption of power equipment. Disclosure of invention
  • the invention is used for separating the easily adsorbed phase and the difficult-adsorbing phase component from the mixed gas, and the product may be an easy-adsorbing phase component or a difficult-adsorbing phase component, and may also be an easily adsorbable phase and a difficult-adsorbing phase component.
  • the easily adsorbed phase and the poorly adsorbed phase are relative rather than absolute, and the same component is an easily adsorbable phase component in a mixed gas, but may be difficult to adsorb in another mixed gas.
  • the phase component even if the same component is in the same mixed gas, may be an easy-adsorbing phase component or a difficult-adsorbing phase component due to the different purposes to be achieved.
  • the fractional and difficult to adsorb phase components may be a single component or a sum of several components.
  • the ammonia conversion gas there are components such as hydrogen sulfide, organic sulfur, gaseous water, carbon dioxide, methane, carbon monoxide, nitrogen, oxygen, argon, and hydrogen.
  • hydrogen sulfide, organic sulfur When the gas is used to produce urea, hydrogen sulfide, organic sulfur,
  • the four components, such as gaseous water, and carbon dioxide, are called easy-adsorbed phases.
  • the six components of formazan, carbon monoxide, nitrogen, oxygen, argon, and hydrogen are called refractory phase components; they are used to produce 99.9%.
  • the product is hydrogen
  • nine components such as hydrogen sulfide, organic sulfur, gaseous water, carbon dioxide, methane, carbon monoxide, nitrogen, oxygen and argon are called components of the easily adsorbable phase
  • hydrogen is called the component of the difficult phase.
  • the nitrogen in the ammonia conversion gas is used to produce urea, and nitrogen is a component that is difficult to adsorb; when used to produce 99.9% of the product hydrogen, nitrogen is an easily adsorbable phase component, formazan, Carbon monoxide and oxygen are the same as nitrogen.
  • the object of the present invention is to provide a two-stage full recovery pressure swing adsorption gas separation method with economical investment and low operating cost, which uses different equipment and adsorbent combinations to solve the above problems in the prior art. It has the advantage of greatly saving operating costs compared with the prior art, and minimizes - Less effective gas loss from the device.
  • the object of the invention is to implement as follows:
  • the invention adopts a two-stage full recovery pressure swing adsorption gas separation method, which is used for separating the easily adsorbed phase and the difficult-adsorbing phase component from the mixed gas, and the product may be an easy-adsorbing phase component or a difficult-adsorbing phase component. It can also be an easy-adsorbing phase and a difficult-adsorbing phase component.
  • This method uses a two-stage pressure swing adsorption device to operate in series. The mixed gas first enters the first stage pressure swing adsorption gas separation device, and the easily adsorbed phase components in the mixed gas.
  • the intermediate mixture obtained from the outlet of the adsorption tower of the first stage of the pressure swing adsorption gas separation device enters the second stage pressure swing adsorption gas separation device, and the easy adsorption phase component in the intermediate mixture gas is introduced into The one-step adsorption, the unadsorbed difficult-adsorbed phase component enters the next stage as a product, and the second-stage pressure swing adsorption gas separation device returns to the first stage except for the difficult-adsorption phase component of the next stage.
  • the pressure swing adsorption gas separation device pressurizes the adsorption tower, and the adsorption tower of the first stage pressure swing adsorption gas separation device sequentially undergoes adsorption in one cycle, and ends Pressure depressurization 2ED', reverse buck BD, two-stage gas boost 2ER, two-stage equalization boost 2ER', final boost FR process step, second stage pressure swing adsorption gas separation device adsorption tower in one cycle
  • the process steps of adsorption 4, forward equalization step-down ED, reverse BD, reverse equalization step-up ER, and final step-up FR are sequentially performed.
  • the adsorption tower of the pressure swing adsorption gas separation device increases the forward pressure equalization step ED step after the adsorption A step, and increases the reverse pressure equalization step ER step after the pressure equalization step 2ER' step.
  • the first stage of the pressure swing adsorption gas separation unit adsorption tower increases the vacuum after the reverse pressure reduction BD step VC or (and) the second stage pressure swing adsorption gas separation unit adsorption tower increases the vacuum VC after the reverse pressure reduction BD step.
  • the second stage of the pressure swing adsorption gas separation device adsorption tower increases the downstream PP step after the forward pressure equalization step ED step, and increases the cleaning P after the second stage pressure swing adsorption gas separation unit adsorption tower process cycle step reverses the BD step.
  • the gas for cleaning the P step is directly from the adsorption tower which is in the step of discharging PP or the buffer tank V from which the gas of the step PP is stored in the storage adsorption tower.
  • the second stage of the pressure swing adsorption gas separation device adsorption tower increases the step of the PP step 1 and the step of discharging the PP2 after the step of the forward pressure equalization step ED, and the adsorption tower of the second stage of the pressure swing adsorption gas separation unit is after the step of the reverse BD
  • the gas in the adsorption tower cleaning step P1 is directly from the adsorption tower which is in the step of discharging PP2 or the buffer tank VI from the step of storing the adsorption step to the PP2 step, and the adsorption tower is cleaned in the P2 step.
  • the gas is directly from the adsorption column that is in the process of the PP1 step or the buffer tank V2 from which the gas in the PP1 step is stored.
  • the second stage of the pressure swing adsorption gas separation device adsorption tower increases the step of the PP step 1 , the step of discharging the PP 2 and the step of discharging the PP 3 after the step of the forward pressure equalization step ED, and the adsorption tower of the second stage pressure swing adsorption gas separation device is After the BD step is reversed, the cleaning P1 step, the cleaning P2 step, and the cleaning P3 step are added.
  • the gas in the adsorption tower cleaning step P1 is directly from the adsorption tower that is in the step of discharging PP3 or the buffer tank from the step of storing the adsorption step in the PP3 step.
  • the gas in the adsorption tower cleaning P2 step comes directly from the positive
  • the adsorption tower in the step of discharging PP2 or the buffer tank V4 from the step of storing the adsorption step of the PP2 step, the gas in the adsorption tower cleaning step P3 is directly from the adsorption tower which is in the step of discharging PP1 or from the storage adsorption tower.
  • Buffer tank V5 for PP1 step gas is directly from the adsorption tower which is in the step of discharging PP1 or from the storage adsorption tower.
  • the average concentration of the components of the easily adsorbable phase is greater than 30% in the mixture of the top 5 of the adsorption tower.
  • the average concentration of the easily adsorbable phase components in the mixture discharged at the top of the adsorption tower is greater than 75%.
  • the average concentration of the components of the easily adsorbed phase in the outlet gas of the first stage of the pressure swing adsorption device is greater than or equal to 2V%.
  • the second stage of the pressure swing adsorption gas separation unit adsorption tower performs the reverse BD step, first placed in the buffer tank V6, and then placed in the buffer tank V7.
  • the pressure equalizing gas below 50% enters the adsorption tower for the pressure equalization from the bottom of the adsorption tower.
  • the invention is used for separating the easily adsorbed phase and the difficult-adsorbing phase component from the mixed gas, and the product may be an easy-adsorbing phase component or a difficult-adsorbing phase component, and may also be an easily adsorbable phase and a difficult-adsorbing phase component.
  • the method uses a two-stage pressure swing adsorption device to operate in series, and the mixed gas first enters the first stage pressure swing adsorption gas separation device, and the components of the easily adsorbed phase in the mixed gas are adsorbed and concentrated into products, from the first Section of the pressure swing adsorption gas 20 separation unit
  • the intermediate mixture obtained at the outlet of the adsorption tower enters the second stage pressure swing adsorption gas separation device, and further adsorbs the easily adsorbed phase components in the intermediate mixture, and the unadsorbed difficult adsorption phase group
  • the product enters the next stage as a product, and the first stage of the pressure swing adsorption gas separation device reverses the pressure drop.
  • the gas of the BD1 step returns to the first stage of the pressure swing adsorption gas separation device to boost the adsorption tower from the bottom, and the second stage pressure swing adsorption The gas separation device returns to the first stage change except for the difficult-adsorbed phase components of the next stage.
  • the pressure-adsorption gas separation device boosts the adsorption tower.
  • the adsorption tower of the first-stage pressure swing adsorption gas separation device undergoes adsorption A, forward pressure equalization and pressure reduction ED, reverse pressure reduction BD1, and reverse down in a cycle.
  • the first stage of the pressure swing adsorption gas separation unit adsorption tower increases the vacuum VC after the reverse pressure reduction two BD2 step or (and) the second stage pressure swing adsorption gas separation unit adsorption tower increases the vacuum VC after the reverse step BD step ;
  • the second stage of the pressure swing adsorption gas separation device adsorption tower increases the step of the PP1 step, the step of displacing the PP2, and the step of displacing the PP3 after the step of the forward pressure equalization step ED, and the second stage of the pressure swing adsorption gas separation device After the reverse BD step, the cleaning P1 step, the cleaning P2 step, and the cleaning P3 step are added.
  • the gas in the adsorption tower cleaning PI step is directly from the adsorption tower which is in the step of discharging PP3 or the buffer tank V3 from the step of storing the PP3 step in the storage adsorption tower, and the gas in the adsorption tower cleaning step P2 is directly from the step of being in the step of discharging PP2.
  • the average concentration of the easily adsorbable phase components in the mixture discharged at the top of the adsorption tower is greater than 40°/. .
  • the average concentration of the easily adsorbable phase components in the mixture discharged at the top of the adsorption tower is greater than 75%.
  • the average concentration of the components of the easily adsorbed phase in the outlet gas of the first stage of the pressure swing adsorption device is greater than or equal to 2%V.
  • the pressure of the raw material mixture is greater than or equal to 1. 8 MPaG.
  • the average concentration of the easily adsorbable phase components in the finally released mixture is greater than 30%.
  • the average concentration of the easily adsorbable phase components in the finally released mixture is greater than 80%.
  • the adsorption tower is filled with activated alumina and fine pore silica gel, the active alumina is packed at the bottom of the adsorption tower, and the fine pore silica gel is packed in the upper part of the adsorption tower.
  • the second stage of the pressure swing adsorption gas separation device is only filled with fine pore silica gel in the adsorption tower.
  • the adsorbent of the first stage of the pressure swing adsorption gas separation device in the adsorption tower from bottom to top is activated alumina and fine pore silica gel or activated alumina and activated carbon or activated alumina, activated carbon and molecular sieve; the second stage pressure swing adsorption In the gas separation device, the adsorbent packed in the adsorption tower is activated carbon and molecular sieve or molecular sieve.
  • the adsorbent in the adsorption tower of the first stage of the pressure swing adsorption gas separation device is activated alumina and molecular sieve in order from the bottom to the top; the adsorbent loaded in the adsorption tower of the second stage pressure swing adsorption gas separation device is a molecular sieve.
  • the adsorbent in the adsorption tower of the first stage of the pressure swing adsorption gas separation device is activated alumina and molecular sieve in order from the bottom to the top; the adsorbent loaded in the adsorption tower of the second stage pressure swing adsorption gas separation device is a molecular sieve.
  • the invention can maximize the recovery rate of the effective gas to 99.9%, and reduce the power consumption by 50 to 90% (increased with the increase of the adsorption pressure). It can be said that the present invention is an existing gas separation method ( Revolutionary changes including wet gas separation technology and pressure swing adsorption gas separation technology have completely solved the problem of effective gas loss and high power consumption of the device.
  • BRIEF DESCRIPTION OF THE DRAWINGS BRIEF DESCRIPTION OF THE DRAWINGS
  • Fig. 1 is a flow chart showing the operation steps of a process step of an adsorption tower of a first stage pressure swing adsorption apparatus according to Embodiment 1 of the present invention.
  • Fig. 2 is a flow chart showing the operation steps of the adsorption step of the second stage pressure swing adsorption device of the first embodiment of the present invention.
  • Figure 3 is a process flow diagram of Embodiment 1 of the present invention. The best way to implement the invention
  • the mixed gas of the invention may be synthetic ammonia conversion gas, synthetic ammonia gas, synthesis gas, water gas, natural gas, semi-water gas, blast furnace gas, gas gas, cracked dry gas, oil field associated gas and oil gas, etc., or any other mixed composition.
  • the invention adopts a two-stage full recovery pressure swing adsorption gas separation method, which is used for separating the easily adsorbed phase and the difficult-adsorbing phase component from the mixed gas, and the product may be an easy-adsorbing phase component or a difficult-adsorbing phase component. It can also be an easy-adsorbing phase and a difficult-adsorbing phase component.
  • This method uses a two-stage pressure swing adsorption device to operate in series. The mixed gas first enters the first stage pressure swing adsorption gas separation device, and the easily adsorbed phase components in the mixed gas.
  • the intermediate mixture obtained from the outlet of the adsorption tower of the first stage of the pressure swing adsorption gas separation device enters the second stage pressure swing adsorption gas separation device, and further extracts the easily adsorbed phase components in the intermediate mixture.
  • Adsorbed, the unadsorbed refractory phase component enters the next stage as a product.
  • the second stage of the pressure swing adsorption gas separation unit returns to the first stage of the pressure change except for the difficult phase of the next stage.
  • the adsorption gas separation device boosts the adsorption tower, and the average concentration of the components of the easily adsorbed phase in the outlet gas of the adsorption tower of the first stage pressure swing adsorption device is generally greater than or equal to 2% (V), the second stage pressure swing adsorption device is used to remove the easily adsorbed phase components in the outlet gas of the first stage pressure swing adsorption device to the level required by the next stage, and each of the two stages of pressure swing adsorption devices
  • the adsorption towers are sequentially subjected to the following steps in one cycle.
  • the first stage pressure swing adsorption device The first stage pressure swing adsorption device:
  • the mixed gas is sent to the adsorption tower inlet of the adsorption step, the adsorbent in the adsorption tower adsorbs a part of the easily adsorbable phase component in the mixed gas, the unadsorbed difficult adsorbed phase component and a part of the easily adsorbable phase component are exported.
  • the end flows out into the adsorption tower of the second stage pressure swing adsorption device in the adsorption step.
  • the total amount of the adsorbent phase adsorbed by the adsorbent increases continuously, and when the adsorbent adsorbs the above components, the adsorption stops. At this point, the adsorption ends.
  • the concentration of the hard-to-adsorbed phase components in the dead space gas in the adsorption tower is relatively high, and this part of the difficult-to-absorb phase components needs to be recycled.
  • the dead space gas is discharged from the outlet of the adsorption tower into the corresponding adsorption tower of the completed evacuation step in this section.
  • the pressure of each gas is equalized once.
  • the concentration of the components is constantly increasing.
  • the number of pressure equalization is determined by the adsorption pressure and the concentration of the easily adsorbable phase at the outlet of the adsorption tower after the end of adsorption. Under normal circumstances, the concentration of the easily adsorbable phase at the top of the adsorption tower should be greater than the end of the final forward pressure equalization ED. 30V%, preferably greater than 75V%.
  • the dead space gas is discharged from both ends of the adsorption tower into the corresponding adsorption tower of the completed regeneration step of this section, and the gas is uniformly pressurized once per row.
  • the outlets at both ends of the adsorption tower The concentration of the easily adsorbable phase components is continuously increased, and at the same time, the phase components which are difficult to adsorb are recycled.
  • the upper and lower ends of the adsorption tower can be simultaneously carried out, or the pressure can be gradually reduced from the top of the adsorption tower first, and simultaneously adsorbed to the same adsorption in the late stage before the forward pressure equalization and pressure reduction balance.
  • the tower performs reverse pressure equalization and depressurization, the purpose is to increase the concentration of the easily adsorbable phase components in the adsorption tower and recover the components of the difficult adsorption phase. It is also possible to carry out the forward pressure equalization and pressure reduction first, and stop the forward pressure equalization before the pressure of the two towers is balanced. The pressure is reduced, and then the reverse pressure equalization is performed. The former case can improve the utilization rate of the adsorbent.
  • the gas released from the bottom should be less than the gas released from the top.
  • the step of equalizing and lowering the pressure at both ends of the adsorption tower of the present invention is different from the step of depressing and lowering the pressure of the conventional adsorption tower.
  • the normal adsorption tower pressure equalization step ED step gas is released from the outlet end of the adsorption tower, that is, the present According to the invention, the forward pressure equalization is reduced, and the pressure equalization and pressure reduction at both ends of the adsorption tower of the present invention is released from the both ends of the inlet and outlet of the adsorption tower.
  • the first several equalization pressures may also adopt the forward pressure equalization step-down ED, and the subsequent several equalization pressures or the last equalization pressure adopts the two-stage equalization pressure reduction 2ED ', after the pressure equalization and pressure reduction is completed.
  • the concentration of the easily adsorbable phase components of the product can still meet the production requirements.
  • the number of pressure equalization is determined by the adsorption pressure and the concentration of the easily adsorbable phase at the outlet of the adsorption tower after the end of adsorption.
  • the concentration of the easily adsorbable phase at the top of the adsorption tower should be More than 30V%, preferably more than 75V%; the concentration of the readily adsorbable phase component at the bottom of the adsorption tower should be greater than 30V%, preferably greater than 80V%.
  • the components of the easily adsorbed phase in the adsorption tower are sent to the next stage until the pressure of the next stage is balanced, and the components are easily adsorbed or used as a product, or as a fuel. Can also be emptied.
  • the difficult-adsorbed phase at the bottom of the adsorption tower is discharged into the buffer tank for storage, and the gas in the buffer tank is used to pressurize the adsorption tower from the bottom of the adsorption tower. Under normal circumstances, the reverse pressure is reduced.
  • the concentration of the readily adsorbable phase component at the bottom of the adsorption column should be greater than 30V%, preferably greater than 80V%. .
  • the components of the adsorption phase in the adsorption tower are sent to the next stage until the pressure of the next stage is balanced, and the components of the phase are easily adsorbed or used as a product, or as a fuel.
  • Vacuuming VC After the reverse buck BD is finished, the components of the easily adsorbed phase adsorbed by the adsorbent are pumped out from the bottom of the adsorption tower by a vacuum pump and sent to the next stage.
  • the purge CP step may be employed, and the gas used for purging is a dry adsorbent phase component product or other dry gas in the system. Use this step when you need to reduce the amount of adsorbent.
  • the gas released by the adsorption tower reverse pressure-reducing BD1 step of the first stage of the pressure swing adsorption gas separation device is returned to the outlet end of the adsorption tower of the first stage of the pressure swing adsorption gas separation device.
  • the buck of the buck 'BD or vacuum pump step is boosted. Increasing this step increases the effective gas recovery of the unit.
  • the second stage of the pressure swing adsorption gas separation device After the reverse buck BD or vacuum VC or a gas boost 2ER1 is completed, the second stage of the pressure swing adsorption gas separation device returns to the first stage of the pressure swing adsorption gas except for the difficult adsorption phase component of the next stage.
  • the separation end of the separation column of the separation device pressurizes the adsorption column that has completed the reverse pressure reduction BD or the vacuum VC step. Increasing this step increases the effective gas recovery of the unit.
  • the gas discharged from the two stages of pressure equalization and pressure reduction 2ED' is used to enter the adsorption tower from the inlet and outlet, so that the adsorption tower gradually increases the pressure, and the pressure equalization at both ends is 2ER'
  • the number of equalization steps 2ED ' at both ends is equal.
  • the step of pressure equalization 2ER' at both ends of the adsorption tower is different from the normal pressure equalization step ER step.
  • the normal adsorption tower pressure equalization step ER step gas enters from the outlet end of the adsorption tower, and this section adsorbs The pressure equalization of the two ends of the tower 2ER' step gas is entered from the inlet and outlet of the adsorption tower.
  • the pressure equalization step-up ER step gas of the adsorption tower enters from the outlet end of the adsorption tower and does not enter from the inlet end.
  • the gas discharged from the forward pressure equalizing step is used to enter the adsorption tower which has completed the reverse BD or vacuum C or the cleaning P step from the outlet end.
  • the adsorption tower is gradually increased in pressure, and the equalization pressure is equal to the number of times of pressure equalization. Each time the pressure-boosted gas comes from the pressure equalizing gas of different adsorption towers
  • the adsorption tower is pressurized from the top end by the adsorption tower outlet gas in the adsorption step until it reaches the adsorption pressure.
  • the adsorption tower outlet gas of the first stage pressure swing adsorption device in the adsorption step is sent to the adsorption tower of the second stage pressure swing adsorption device in the adsorption step, and the adsorbent in the adsorption tower selectively adsorbs the easy adsorption phase group Divided from the exit end into the next section.
  • the total amount of easily adsorbed phase components adsorbed by the adsorbent increases continuously.
  • the adsorbent adsorbs the easily adsorbed phase components, the intake is stopped. At this time, the adsorption ends, and the concentration of the easily adsorbed phase components in the outlet gas is increased. Controlled according to production needs, up to a few ppm.
  • the concentration of the components in the dead space gas in the adsorption tower is relatively high, and this part of the difficult-to-absorb phase components needs to be recycled.
  • the dead space gas is discharged from the outlet of the adsorption tower into the corresponding adsorption tower of the completed evacuation step in this section.
  • the pressure of each gas is equalized once. As the number of equalization times increases, the easily adsorbed phase at the outlet of the adsorption tower
  • the concentration of the components is constantly increasing.
  • the number of pressure equalizations is determined by the adsorption pressure and the concentration of the readily adsorbable phase components at the outlet of the adsorption tower after the end of adsorption.
  • the gas in the adsorption tower is directly placed in another adsorption tower to clean the adsorbent component adsorbed on the adsorbent, or it can be smoothly discharged into the buffer tank, and then buffered.
  • the gas in the tank is placed in another adsorption tower to clean the adsorbable phase components adsorbed on the adsorbent, so that the adsorbent can be regenerated.
  • the PP can be divided into two times, or it can be divided into two or three times, or even many times. The more times the PP is discharged, the better the cleaning effect, the less the amount of adsorbent, but the non-standard equipment, the special program control valve, and the oil pressure.
  • the adsorption-adsorbed phase component and other components adsorbed by the adsorbent are pumped out from the bottom of the adsorption tower into the first stage of the pressure swing adsorption gas separation device to regenerate the adsorbent;
  • the mixed gas adsorbed on the adsorbent is washed by the mixed gas in the PP step, and the mixed gas after the adsorbent is regenerated and washed is placed in the adsorption tower of the first stage pressure swing adsorption gas separation device.
  • the gas discharged from the forward pressure equalization step is used to enter the adsorption tower that has completed the reverse BD or vacuum C or the cleaning P step from the outlet end, so that the adsorption tower is gradually ⁇ raises the pressure, and the equalization pressure boost is equal to the equalization pressure reduction.
  • Each pressure equalization pressure is derived from the pressure equalization gas of different adsorption towers.
  • the adsorption tower is pressurized from the top end by the adsorption tower outlet gas in the adsorption step until it rises to the adsorption pressure.
  • the raw material gas in this example is an ammonia conversion gas, including synthetic ammonia conversion gas using coal, natural gas, oil and others as raw materials.
  • a total of 11 adsorption towers A to K constitute the first stage pressure swing adsorption device, and the adsorbent in the adsorption tower from bottom to top is activated alumina and Fine pore silica gel, running single tower adsorption 9 times pressure equalization program; 8 towers of adsorption tower a ⁇ h form the second stage pressure swing adsorption device, the adsorbent packed in the adsorption tower is fine pore silica gel, and the single tower adsorption is performed six times. Pressure program.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea, and the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that The concentration of carbon dioxide in the hydrogen and nitrogen at the outlet of the adsorption tower of the second stage of the pressure swing adsorption device is less than 0.2% (V) to meet the needs of the next step of ammonia synthesis.
  • the shift gas enters the adsorption tower of the first stage pressure swing adsorption device in the adsorption step, and the adsorbent in the adsorption tower selectively adsorbs the water, organic sulfur, inorganic sulfur and carbon dioxide components in the shift gas, and the unadsorbed part of the carbon dioxide
  • the non-adsorbable carbon monoxide, formazan, nitrogen, hydrogen and other components are discharged from the outlet end into the second stage of the pressure swing adsorption device in the adsorption step, the adsorbent in the adsorption tower selectively adsorbs carbon dioxide, which is not easily adsorbed.
  • Components such as carbon monoxide, methane, nitrogen, hydrogen, etc.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A in one cycle, 2E1D' at both ends, 2E2D' at both ends, 2E3D' at both ends, and 2E4D at both ends.
  • the two ends are reduced by 2E5D', the two ends are reduced by 2E6D', the two ends are reduced by 2E7D', the two ends are reduced by 2E8D', the two ends are reduced by 2E9D', the product carbon dioxide reverse buck BD, two Section gas boost 2ER, 9E rise at both ends 2E9R', 8E rise at both ends 2E8R', 7E rise at both ends 2E7R', 6E rise at both ends 2E6R', 5E rise at both ends 2E5R', both ends 2E4fT, 2E3R' at both ends, 2E2R' at both ends, 2E1R' at both ends, final step-up FR pressure swing adsorption process step, the first stage pressure swing adsorption device in product carbon dioxide pressure reduction
  • the gas obtained in the BD step is the carbon dioxide of the product.
  • the adsorption tower of the second stage pressure swing adsorption device undergoes adsorption A in one cycle, E1 D, E2D, E3D, E4D, E4D. , five average E5D, six average E6D, reverse BD1, reverse BD2, six average E6R, five average E5R, four average E4R, three average E3R, two E2R, one equal E1 R, final boost FR pressure swing adsorption process step
  • the second stage pressure swing adsorption device is in the adsorption step of the adsorption tower outlet to discharge the mixture mainly nitrogen, hydrogen products, which also contain a small amount of carbon monoxide And methane.
  • the second stage of the pressure swing adsorption device adsorption tower reverses the BD step.
  • the gas in the step is all returned to the first stage of the pressure swing adsorption device.
  • the carbon adsorption tower BD adsorption tower is boosted, referred to as the second stage gas boost 2ER.
  • the A tower has completed the final boost FR step, opening the program control valve 1A, 2A, changing the gas through the pipeline
  • G11 enters adsorption tower A.
  • the adsorbent selectively adsorbs water, organic sulfur, inorganic sulfur and carbon dioxide components in the shift gas, unabsorbed part of carbon dioxide and non-adsorbable carbon monoxide, formazan, Nitrogen, hydrogen and other components flow out from the outlet end through the programmed valve 2A into the adsorption tower of the second stage of the pressure swing adsorption device in the adsorption step.
  • the adsorbent adsorbs water, organic sulfur and inorganic sulfur and carbon dioxide. The total amount of the fraction is continuously increased.
  • the program-controlled valves 1A and 2k are closed, and the carbon dioxide concentration in the outlet gas is controlled at 6 to 15 ° /. (V).
  • the program-controlled valves 3A, 3C, 11A and 11C are opened, and the gas in the A tower enters the C-column through the pipes G13 and Gi ll, and the C-column is pressure-boosted at both ends (referred to as 2E1 R'), when A and After the C tower pressure is basically balanced, the program control valves 3A, l lCo are closed.
  • the program-controlled valves 4A, 4D and 11D are opened, and the gas in the A tower enters the D tower through the pipelines G14 and G11, and the two towers are subjected to the second equalizing step-up (referred to as 2E2R').
  • the control gates 4D, 11A and 11D are closed.
  • the program-controlled valves 4E, 12A and 12E are opened, and the gas in the A tower enters the E tower through the pipes G14 and G112, and the E-column is subjected to three equalizing pressure boosting at both ends (referred to as 2E3R'). After the A and E tower pressures are substantially balanced, the program-controlled valves 4A, 4E and 12E are closed.
  • the program-controlled valves 5A, 5F and 12F are opened, and the gas in the A tower enters the F tower through the pipes G15 and G112, and the F-column is subjected to four equalizing pressure boosting at both ends (referred to as 2E4R').
  • the program control valves 5F, 12A and 12F are closed.
  • the program-controlled valves 5G, 13A and 13G are opened, and the gas in the A tower enters the G tower through the pipelines G15 and G113, and the G tower is subjected to five equalizing pressure boosting at both ends (referred to as 2E5R').
  • the program-controlled valves 5A, 5G and 13G are closed.
  • the program-controlled valves 61, 8A and 81 are opened, and the gas in the A tower enters the I tower through the pipelines G16 and G18, and the seven towers are pressure-boosted at both ends (abbreviated as 2E7R').
  • the program-controlled valves 6A, 61 and 81 are closed.
  • the program-controlled valves 7A, 7J and 8J are opened, and the gas in the A tower enters the J tower through the pipes G17 and G18, and the eight-stage equalizing pressure boosting (referred to as 2E8R') is performed on the J tower.
  • the program control valves 7J, 8A and 8J are closed.
  • G17 and G19 enter the K tower and the K tower is subjected to nine equal pressure boosting at both ends (referred to as 2E9R ').
  • the program-controlled valves 7A, 7K and 9K are closed.
  • the concentration of the easily adsorbable phase at the top of the adsorption tower is greater than 70V%; the concentration of the easily adsorbable phase at the bottom of the adsorption tower is greater than 75V%.
  • the program control valve KV-14a is opened first, and the product carbon dioxide in the A tower is depressurized into the product carbon dioxide intermediate buffer tank V9.
  • the program control valve KV14a is closed. Then, open the KV14 of the control cabinet, and reduce the carbon dioxide of the product in the A tower into the carbon dioxide buffer tank V8.
  • the pressure of the A tower is close to the pressure of V8, close the program control valve KV-14.
  • the program control ⁇ 10A is opened, the gas in the buffer tanks V6 and V7 enters the A tower to boost the A tower, and when the pressures of the buffer tanks V6 and V7 and the adsorption tower A are substantially balanced, the program control valve is closed. 10A.
  • the program control valves 7A, 7B, 9A and 9B are opened, and the gas in the B tower enters the A tower through the pipes G19 and G17, and the two ends of the A tower are pressure-boosted (2E9R' for short).
  • the program-controlled valves 7B, 9A and 9B are closed.
  • the fifth step of pressure equalization at both ends referred to as the two ends of the two rises 2E5R'
  • the program-controlled valves 4A, 4H and 12H are opened.
  • the gas in the H tower enters the A tower through the pipelines G14 and G112, and the three-stage equalizing pressure is boosted at both ends (abbreviated as 2E3R').
  • the process control is closed 4H, 12A and 12H.
  • the program-controlled valves 41, 11A and 111 are opened, and the gas in the I tower enters the A tower through the pipelines G14 and G111, and the two-stage equalizing pressure boosting (2E2R') is performed on the A tower.
  • the process valves 4A, 41 and 111 are closed.
  • the a tower has completed the final step-up FR step, the program-controlled valves la, 2a are opened, and the intermediate mixed gas enters the adsorption tower a through the pipe G21, and in the adsorption column, the adsorbent selectively adsorbs the first-stage pressure swing adsorption device.
  • Carbon dioxide and other components in the outlet gas a small amount of carbon dioxide that is not adsorbed, and carbon monoxide that is not easily adsorbed, Methane, nitrogen, hydrogen and other components flow from the outlet end through the programmed valve 2a into the compression section of synthetic ammonia.
  • the total amount of carbon dioxide adsorbed by the adsorbent increases continuously.
  • the adsorbent adsorbs carbon dioxide
  • the carbon dioxide in the outlet gas The concentration is controlled below 0.2% (V)
  • the process control is closed, 2a, stop, and the intake is stopped. At this time, the adsorption is finished, and the process control is closed, 2a.
  • the program-controlled valves 3a, 3c are opened, and the gas in the a tower enters the c-tower through the pipe G23 to uniformly rise the c-tower.
  • the program-controlled valve 3a is closed.
  • the g tower is subjected to five equal rises.
  • the program control valves 5f and 5a are closed.
  • the program-controlled valves 6a, 6b are opened, and the gas in the b tower enters the a tower through the pipe G26 to perform a six-equal rise.
  • the program-controlled valves 6a, 6b are closed.
  • the gas in the d tower enters the a tower pair through the pipeline G25.
  • the a tower is subjected to four equal rises, and when the pressures of the d and a towers are substantially balanced, the program control valves 5a, 5d are closed.
  • the program control valve 4f is opened, and the gas in the f tower enters the a tower through the pipe G24 to perform the second equalization of the a tower.
  • the program control valves 4f, 4a are closed.
  • the first reverse pressure equalization step referred to as a uniform rise E1R
  • the program control valve 3a, 3g is opened, and the gas in the g tower enters the a tower through the pipeline G23.
  • the tower is uniformly raised.
  • the program control valve is closed 3g.
  • the program control valve KV-16 is opened, and the a tower is boosted from the top by the outlet gas of the adsorption tower in the adsorption step.
  • the program control valves KV-16, 3a are closed. .
  • the b ⁇ h adsorption tower is the same as the a-column cycle, except that it is staggered in time, as shown in Figures 2 and 3.
  • V The carbon dioxide, hydrogen, nitrogen and carbon monoxide recovery is greater than 99. 9% (V), the concentration of carbon dioxide in the product hydrogen and nitrogen is less than 0.2% (V) , tons of ammonia power consumption 2 degrees (instrument and lighting power).
  • the specific adsorbent combination of the present invention is employed, under other conditions (the adsorption pressure is
  • Embodiment 2 of the present invention is a diagrammatic representation of Embodiment 2 of the present invention.
  • the conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the embodiment is 1 005MPa ⁇ The pressure of the carbon dioxide is 0. 005MPa.
  • the 12 adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption 10 times pressure equalization program is run.
  • the 8 adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption six equal pressure program is run.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea.
  • the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that The concentration of carbon dioxide in the hydrogen and nitrogen at the outlet of the second stage of the pressure swing adsorption device is less than 0.8% (V), to meet the needs of the next step of ammonia synthesis.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A in one cycle, 2E1D' at both ends, 2E2D' at both ends, 2E3D' at both ends, and 2E4D at both ends.
  • both ends 5 E2D2E, 2E6D' at both ends, 2E7D' at both ends, 2E8D' at both ends, 2E9D' at both ends, 2E10D' at both ends, 2E10D' at both ends
  • Pressure BD two-stage gas boost 2ER, both ends are equal to 2E10R', both ends are equal to 2E9R', both ends are equal to 2E8R', both ends are increased by 2E7R', and both ends are raised by 2E6R', The two ends are equal to 2E5R', the two ends are 2E4R', the two ends are 5 liters 2E3R', the two ends are 2E2R', and both ends are 2E1 R', and the final boost FR pressure swing adsorption process
  • the gas obtained by the first stage pressure swing adsorption device in the product carbon dioxide reverse pressure reduction BD step is the product carbon dioxide, and the adsorption tower of the second stage pressure swing adsorption device
  • E2R, one 10 liters E1R, final boost FR pressure swing adsorption process step the second stage pressure swing adsorption device is in the adsorption step of the adsorption tower outlet A mixed gas of mainly nitrogen and hydrogen product, wherein carbon monoxide and further contains a small amount of methyl embankment.
  • the second stage of the pressure swing adsorption device adsorption tower reverses the BD step gas back to the first stage of the pressure swing adsorption device has completed the product carbon dioxide reverse buck BD adsorption tower for boosting, referred to as the second stage gas boost 2ER.
  • the specific adsorbent combination of the present invention is used in other conditions (adsorption pressure is 1. 8 MPa (G), conversion gas composition and temperature, adsorption cycle time, power plant performance, instrumentation and 0 control function, dedicated In the same case of program-controlled valve and hydraulic system structure and life, the initial decarbonization investment can save 9%.
  • Embodiment 3 of the present invention is a diagrammatic representation of Embodiment 3 of the present invention.
  • the conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the fifth embodiment is 005MPa ⁇ The pressure of the product is 0. 005MPa.
  • the 12 adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption 10 times pressure equalization program is run.
  • the 8 adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption six equal pressure program is run.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea
  • the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that In the second stage of the pressure swing 0, the concentration of carbon dioxide in the hydrogen and nitrogen at the outlet of the adsorption tower is less than 0.2% (V), to meet the needs of the next step of ammonia synthesis.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one average drop - E1D, two average drop E2D, three average drop E3D, four average drop E4D, five average drop E5D, six average drop E6D in one cycle. Seven equals
  • E7D both ends are reduced by 2E8D'
  • both ends are reduced by 2E9D '
  • both ends are reduced by 2E10D'
  • the product is oxidized by 5 carbon reverse buck BD
  • the second stage is boosted by 2ER
  • both ends are increased by 2E10R'
  • two End eight equals 2E8R', seven average E7R, six average E6R, five average E5R, four average E4R, three average E3R, two equal E2R, one equal E1R, final boost FR pressure swing adsorption process
  • the first stage pressure swing adsorption device in the product carbon dioxide reverse buck BD step of the gas obtained is the product carbon dioxide
  • the second stage of the pressure swing adsorption device adsorption tower in a cycle through the adsorption A
  • the second stage pressure swing adsorption device adsorption tower reverses the BD step gas back to the first stage of the pressure swing adsorption device has completed the product carbon dioxide reverse buck BD adsorption tower for boosting, referred to as the second stage gas boost 2ER.
  • the specific adsorbent combination of the present invention is used under other conditions (adsorption pressure is 3. OMPa (G), conversion gas composition and temperature, adsorption cycle time, power plant performance, instrumentation and control functions, dedicated program control Valve and hydraulic system construction and life) Under the same conditions, the initial decarbonization investment can save 7%.
  • Embodiment 4 of the present invention is a diagrammatic representation of Embodiment 4 of the present invention.
  • the conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the embodiment is 1 005MPa ⁇ The pressure of the carbon dioxide is 0. 005MPa.
  • adsorption towers constitute the first stage pressure swing adsorption device, which runs the single tower adsorption 1 1 pressure equalization program
  • 6 adsorption towers constitute the second stage pressure swing adsorption device
  • the single tower adsorption four equal pressure program is run.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea
  • the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that The concentration of carbon dioxide in the hydrogen and nitrogen at the outlet of the adsorption tower of the second stage is less than 0.8% (V), to meet the needs of the next step of ammonia synthesis.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one equal E1D, two average E2D, three average E3D, four average E4D, five average E5D, and six E6D in one cycle.
  • the second stage pressure swing adsorption device is in the adsorption step of the adsorption tower outlet to discharge the mixture mainly nitrogen, hydrogen products, which also contain a small amount of carbon monoxide and formamidine.
  • the second stage pressure swing adsorption device adsorption tower reverses the BD step gas back to the first stage of the pressure swing adsorption device has completed the product carbon dioxide reverse buck BD adsorption tower for boosting, referred to as the second stage gas boost 2ER.
  • V 8% (V ) 'T
  • the product has a carbon dioxide purity of 98% (V), a carbon dioxide, hydrogen, nitrogen and carbon monoxide recovery rate of more than 99. 5% (V) Ammonia consumes 2 degrees (electrical instrumentation and lighting).
  • the specific adsorbent combination of the present invention is employed, under other conditions (the adsorption pressure is
  • Embodiment 5 of the present invention .
  • the conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the embodiment is 0. 005MPa ⁇ The pressure of the carbon dioxide is 0. 005MPa.
  • the 12 adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption 10 times pressure equalization program is run.
  • the 6 adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption three pressure equalization program is operated.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea, and the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that The concentration of carbon dioxide in the hydrogen and nitrogen at the outlet of the adsorption tower of the second stage of the pressure swing adsorption device is less than 0.2% (V) to meet the needs of the next step of ammonia synthesis.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A in one cycle, 2E1D' at both ends, 2E2D' at both ends, 2E3D' at both ends, and 2E4D at both ends.
  • the gas obtained by the first stage pressure swing adsorption device in the product carbon dioxide reverse step BD step and the vacuum VC step is the product carbon dioxide
  • the adsorption tower of the second stage pressure swing adsorption device is in a cycle
  • the adsorption is eight, one is E1 D, the second is E2D, the third is E3D, the reverse is BD, the vacuum is VC, the three is E3R, and the second is E2R, a liter of both E1 R
  • the final boosting FR pressure swing adsorption process step the second segment means is in a pressure swing adsorption gas mixture discharged from the adsorption column outlet of the adsorption step is mainly nitrogen, Hydrogen products, which also contain small amounts of carbon monoxide and methane.
  • the second stage of the pressure swing adsorption device adsorption tower reverse BD step and the vacuum VC step of the gas are all returned to the first stage of the pressure swing adsorption device has been completed and the vacuum VC step of the adsorption tower for boosting, referred to as two-stage gas boost 2ER .
  • the result of this example is that the carbon dioxide purity of the product is 98% (V), the carbon dioxide recovery rate is greater than 99% (V), the recovery of hydrogen, nitrogen and carbon monoxide is greater than 99.9% (V), and the concentration of carbon dioxide in the product hydrogen and nitrogen is less than 0. 2% (V), electricity consumption per ton of ammonia (meter and lighting).
  • the specific adsorbent combination of the present invention is used under other conditions (adsorption pressure is 0.6 MPa (G), conversion gas composition and temperature, adsorption cycle time, power plant performance, instrumentation and control functions, dedicated program control Valve and hydraulic system construction and life) Under the same conditions, the initial decarbonization investment can save 12%.
  • Embodiment 6 of the present invention is a diagrammatic representation of Embodiment 6 of the present invention.
  • the conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the embodiment is 0. 005MPa ⁇ The pressure of the carbon dioxide is 0. 005MPa.
  • adsorption towers constitute the first stage pressure swing adsorption device, which runs the single tower adsorption 1 1 pressure equalization program
  • 6 adsorption towers constitute the second stage pressure swing adsorption device, and runs the single tower adsorption three pressure equalization program.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea
  • the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that In the second stage of the pressure swing adsorption device, the concentration of carbon dioxide in the hydrogen and nitrogen at the outlet of the adsorption tower is less than 0.2% (V), to meet the needs of the next step of ammonia synthesis.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one equal E1D, two average E2D, three average E3D, four average E4D, five average E5D, and six E6D in one cycle.
  • the second stage of the pressure swing adsorption device is in the adsorption step of the adsorption tower outlet to discharge the main gas is mainly nitrogen, hydrogen products, which also contain a small amount of carbon monoxide and methane
  • the second stage of the pressure swing adsorption device adsorption tower reverse BD step and the vacuum VC step of the gas are all returned to the first stage of the pressure swing adsorption device has completed the vacuum VC adsorption tower for boosting, referred to as two-stage gas boost 2ER.
  • the result of this example is that the carbon dioxide purity of the product is 98% (V), carbon dioxide, hydrogen, nitrogen and one.
  • the carbon oxide recovery rate is greater than 99.9% (V)
  • the product carbon dioxide concentration in hydrogen and nitrogen is less than 0.2% (V)
  • the electricity consumption per ton of ammonia is 95 degrees (meter and lighting).
  • the specific adsorbent combination of the present invention is used under other conditions (adsorption pressure is 0.6 MPa (G), conversion gas composition and temperature, adsorption cycle time, power plant performance, instrumentation and control functions, dedicated program control Valve and hydraulic system construction and life) Under the same conditions, the initial decarbonization investment can save 7%.
  • Embodiment 7 of the present invention is a diagrammatic representation of Embodiment 7 of the present invention.
  • the conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the embodiment is 0. 005MPa ⁇ The pressure of the product is 0. 005MPa.
  • adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption process is carried out for 1 1 pressure equalization process.
  • the 7 adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption four pressure equalization program is operated.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea, and the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that The concentration of carbon dioxide in the hydrogen and nitrogen at the outlet of the adsorption tower of the second stage of the pressure swing adsorption device is less than 0.2% (V) to meet the needs of the next step of ammonia synthesis.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one equal E1D, two average E2D, three average E3D, four average E4D, five average E5D, and six E6D in one cycle. Seven average E7D, two ends are reduced by 2E8D', two ends are reduced by 2E9D', both ends are reduced by 2E10D', both ends are reduced by 2E11D', product carbon dioxide is reduced by BD, and two stages are boosted.
  • 2ER, 11E at both ends are 2E1 1R', 2E10R' at both ends, 2E9R' at both ends, 2E8R' at both ends, E7R at E6R, E6R at E6R, E6R at E6R , four equals E4R, three equals E3R, two equals E2R, one equals E1R, and finally boosts FR pressure swing adsorption process steps, the gas obtained by the first stage pressure swing adsorption device in the product carbon dioxide reverse buck BD step
  • the adsorption tower of the second stage pressure swing adsorption device undergoes adsorption A, one equal E1D, two equal E2D, three equal E3D, four equal E4D, reverse BD, vacuum in one cycle.
  • the second stage of the pressure swing adsorption device is in the adsorption step of the adsorption tower outlet to discharge the mixture is mainly nitrogen, hydrogen products, which also contain a small amount of carbon monoxide and methane.
  • the second stage of the pressure swing adsorption device adsorption tower reverse BD step and the vacuum VC step of the gas are all returned to the first stage of the pressure swing adsorption device has completed the product carbon dioxide reverse buck BD adsorption tower for boosting, referred to as two-stage gas boost 2ER.
  • the specific adsorbent combination of the present invention is employed, under other conditions (the adsorption pressure is 0. 8MPa (G), conversion gas composition and temperature, adsorption cycle time, power equipment performance, instrumentation and control functions, special program control valve and hydraulic system structure and life) Under the same circumstances, the decarbonization initial equipment investment can save 7 %.
  • Embodiment 8 of the present invention is a diagrammatic representation of Embodiment 8 of the present invention.
  • the conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the embodiment is 0. 005MPa ⁇ The pressure of the carbon dioxide is 0. 005MPa.
  • adsorption towers are used to form the first stage pressure swing adsorption device, and the single tower adsorption process is carried out for 1 1 pressure equalization process.
  • the adsorption tower is composed of the second stage pressure swing adsorption device, and the single tower adsorption double pressure equalization program is operated.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea, and the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that In the second stage of the pressure swing adsorption device, the concentration of carbon dioxide in the hydrogen and nitrogen at the outlet of the adsorption tower is less than 0.2% (V), to meet the needs of the next step of ammonia synthesis.
  • the adsorption tower of the first stage pressure swing adsorption device undergoes adsorption A, one equal E1 D, two average E2D, three average E3D, four average E4D, five average E5D, and six E6D in one cycle.
  • the second stage pressure swing adsorption device adsorbs the gas in the BD step. All return to the first stage of the pressure swing adsorption device has completed the vacuum pump step of the adsorption tower for boosting, referred to as two-stage gas boost 2ER.
  • the specific adsorbent combination of the present invention is used under other conditions (adsorption pressure is 0.6 MPa (G), conversion gas composition and temperature, adsorption cycle time, power plant performance, instrumentation and control functions, dedicated In the same case of program-controlled valve and hydraulic system structure and life, the investment in decarbonization initial equipment can save 7%.
  • Embodiment 9 of the present invention The conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the embodiment is 0. 005MPa ⁇ The pressure of the carbon dioxide is 0. 005MPa.
  • adsorption towers constitute the first stage pressure swing adsorption device, which runs a single tower adsorption 1 1 pressure equalization program
  • 5 adsorption towers constitute a second stage pressure swing adsorption device, and runs a single tower adsorption two pressure equalization program.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea, and the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that The concentration of carbon dioxide in the hydrogen and nitrogen at the outlet of the adsorption tower of the second stage of the pressure swing adsorption device is less than 0.2% (V) to meet the needs of the next step of ammonia synthesis.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A in one cycle, 2E1D' at both ends, 2E2D' at both ends, 2E3D' at both ends, and 2E4D at both ends.
  • both ends are reduced by 2E5D', the two ends are reduced by 2E6D', the two ends are reduced by 2E7D', the two ends are reduced by 2E8D', the two ends are reduced by 2E9D', and both ends are reduced by 2E10D', Both ends H ⁇ - average 2E11D', product dioxide reverse buck BD, two gas boost 2ER, both ends "one rise 2E11R", both ends rise 2E10F: ', both ends are 2E9R' 2E8R' at both ends, 2E7R' at both ends, 2E6R' at both ends, 2E5R' at both ends, 2E5R' at both ends, 2E4R' at both ends, 2E3R' at both ends, 2 The second phase is 2E2R', the two ends are both raised 2E1R', and the final step-up FR pressure swing adsorption process step, the gas obtained by the first stage pressure swing adsorption device in the product carbon dioxide reverse
  • Reverse BD, cleaning P, two equal E2R, one equal E1R, final boost FR pressure swing adsorption process step the mixture gas discharged in the PP step is directly cleaned by the flow adjustment to the adsorption tower that has completed the reverse BD step
  • the desorbed impurities on the adsorbent are desorbed, and the mixed gas discharged from the outlet of the adsorption tower in the second stage of the pressure swing adsorption device is mainly nitrogen and hydrogen products, which also contains a small amount of carbon monoxide and formamidine.
  • the pressure swing adsorption device of the adsorption tower adsorbs the BD step and the cleaning step P all return to the first stage of the pressure swing adsorption device has completed the product carbon dioxide D step down step of the adsorption tower for boosting, referred to as the second stage gas boost 2ER.
  • the specific adsorbent combination of the present invention is employed, under other conditions (the adsorption pressure is
  • Embodiment 10 of the present invention is a diagrammatic representation of Embodiment 10 of the present invention.
  • the composition of the shift gas, temperature, adsorbent type, power equipment performance, instrumentation and the like in this embodiment 005MPa ⁇
  • the pressure of the product is 0. 005MPa.
  • the pressure of the product is 0. 005MPa.
  • adsorption towers constitute the first stage pressure swing adsorption device, which runs the single tower adsorption 1 1 pressure equalization program
  • 7 adsorption towers constitute the second stage pressure swing adsorption device
  • the single tower adsorption double pressure equalization program is run.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea
  • the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that The concentration of carbon dioxide in the hydrogen and nitrogen at the outlet of the adsorption tower of the second stage of the pressure swing adsorption device is less than 0.2% (V) to meet the needs of the next step of ammonia synthesis.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A in one cycle, 2E1D' at both ends, 2E2D' at both ends, 2E3D' at both ends, and 2E4D at both ends.
  • the mixture gas discharged from the PP2 step is directly cleaned by the flow rate adjustment to complete the cleaning tower of the P1 step.
  • the mixture gas discharged in the PP3 step is directly cleaned by the flow rate adjustment to the adsorption tower which has completed the reverse BD step, and the adsorbed impurities on the adsorbent are desorbed, and the second stage pressure swing adsorption device is in the adsorption step of the adsorption step.
  • the mixture discharged from the outlet is mainly nitrogen and hydrogen products, which also contain a small amount of carbon monoxide and methane.
  • the second stage pressure swing adsorption unit adsorption tower reverses the BD step and the gases for cleaning the P1, P2 and P3 steps all return to the first stage.
  • the pressure adsorption device has completed the adsorption of the product carbon dioxide reverse buck BD step, referred to as the second stage gas boost 2ER.
  • the specific adsorbent combination of the present invention is used under other conditions (adsorption pressure is 0.8 MPa (G), conversion gas composition and temperature, adsorption cycle time, power plant performance, instrumentation and control functions, dedicated program control Valve and hydraulic system structure and life) Under the same conditions, the electricity consumption per ton of ammonia is reduced by 30%, and the investment in initial equipment for decarbonization can be saved by 7%.
  • adsorption pressure is 0.8 MPa (G)
  • conversion gas composition and temperature 0.8 MPa (G)
  • adsorption cycle time power plant performance
  • instrumentation and control functions dedicated program control Valve and hydraulic system structure and life
  • the conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the present embodiment is 005MPa ⁇ The pressure of the product is 0. 005MPa.
  • adsorption towers constitute the first stage of pressure swing adsorption device, running single tower adsorption 1 1 pressure equalization program, 7 adsorption towers constitute the second stage pressure swing adsorption device, running single tower adsorption two pressure equalization program.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea, and the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that 2% ( V), to meet the stability of the hydrogen and nitrogen in the second stage of the pressure swing adsorption device
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one equal E1D, two average E2D, three average E3D, four average E4D, five average E5D, and six E6D in one cycle. Seven averages drop E7D, both ends are reduced by 2E8D', both ends are reduced by 2E9D', both ends are reduced by 2E 10D', both ends are H "" - both fall 2E1 1D', product carbon dioxide reverse buck BD, two Segment gas boost 2ER, both ends eleven rise 2E1 1 R',
  • the gas obtained in the step is the product carbon dioxide.
  • the adsorption tower of the second stage pressure swing adsorption device successively undergoes adsorption A in one cycle, E1D in one drop, E2D in E2D, PP1 in the same direction, and PP2 in the same direction.
  • 0 PP3, reverse BD, cleaning Pl, cleaning P2, cleaning P3, two equalizing E2R, one equalizing E1 R, final boosting FR pressure swing adsorption process step, and the mixture gas discharged by the PP1 step is directly passed through the flow regulation.
  • the mixed gas directly removes the adsorption 5 tower which has completed the reverse BD step by flow regulation, and desorbs the adsorbed impurities on the adsorbent, and the second-stage pressure swing adsorption device is in the adsorption step of the adsorption tower outlet of the adsorption step.
  • a nitrogen and hydrogen product which also contains a small amount of carbon monoxide and
  • the carbon dioxide concentration of the product is less than 0. 2% (V)
  • the carbon dioxide, hydrogen, nitrogen, and carbon monoxide recovery is greater than 99.9% (V).
  • the electricity consumption per ton of ammonia is 2 degrees.
  • the specific adsorbent combination of the present invention is used under other conditions (adsorption pressure is 0.9 MPa (G), conversion gas composition and temperature, adsorption cycle time, power plant performance, instrumentation, and 5 control functions, Special program-controlled valve and hydraulic system structure and life) Under the same conditions, the electricity consumption per ton of ammonia decreases 30%, the initial equipment investment in decarbonization can save 7%.
  • Embodiment 12 of the present invention is a diagrammatic representation of Embodiment 12 of the present invention.
  • the raw material gas in this example is a hydrogen-containing gas mixture, such as light oil gas, synthetic ammonia shift gas, syngas, synthetic ammonia gas, methanol synthesis gas, semi-water gas, water gas, cracked dry gas, etc.
  • a hydrogen-containing gas mixture such as light oil gas, synthetic ammonia shift gas, syngas, synthetic ammonia gas, methanol synthesis gas, semi-water gas, water gas, cracked dry gas, etc.
  • the adsorbent of the first stage of the pressure swing adsorption gas separation device in the adsorption tower from bottom to top is activated alumina and fine pore silica gel or activated alumina and activated carbon or activated alumina, activated carbon and molecular sieve; the second stage pressure swing adsorption In the gas separation device, the adsorbent packed in the adsorption tower is activated carbon and molecular sieve or molecular sieve.
  • the present embodiment is a pressure swing adsorption hydrogen production device.
  • hydrogen is a component which is difficult to adsorb phase, and a component other than hydrogen is an easily adsorbable phase component.
  • the first stage of the pressure swing adsorption gas separation device of the present embodiment adsorbs.
  • the hydrogen outlet of the column is controlled to be above 80% (V), and the component of the easily adsorbable phase is concentrated to 97% (V) or more, so that the hydrogen content is less than 0.6% (V), and the second stage pressure swing adsorption gas separation device
  • the 9% (V) the concentration of the hydrogen in the outlet of the second stage of the pressure swing adsorption gas separation device is greater than 99.9% (V), To meet the needs of the next step.
  • adsorption towers constitute the first stage pressure swing adsorption device, which runs the single tower adsorption 1 1 pressure equalization program, 6 adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption four equal pressure program is run.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A in one cycle, 2E1D' at both ends, 2E2D' at both ends, 2E3D' at both ends, and 2E4D at both ends.
  • both ends are reduced by 2E5D', the two ends are reduced by 2E6D', the two ends are reduced by 2E7D', the two ends are reduced by 2E8D', the two ends are reduced by 2E9D', and both ends are reduced by 2E10D', Both ends H ⁇ - decrease 2E1 1D', reverse buck BD, two-stage gas boost 2ER, both ends H ⁇ - rise 2E1 1R', both ends rise 2E10R', both ends rise 2E9R', Both ends are 8E2R', both ends are 2E7R', 6E are 2E6R' at both ends, 2E5R' at both ends are raised, 2E4R' is raised at both ends, and 2E3R' is raised at both ends.
  • E2R, L are E1R
  • the second segment swing adsorption apparatus are in the product gas discharged from the outlet of the adsorption tower of the adsorption step is mainly hydrogen.
  • the second stage of the pressure swing adsorption device adsorption tower reverses the BD step gas back to the first stage pressure swing adsorption device
  • the adsorption tower of the reverse buck BD is completed to perform boosting, which is referred to as two-stage gas boosting 2ER.
  • the result of this example is that the hydrogen concentration is greater than 99.9% (V) and the hydrogen recovery is greater than 99% (V).
  • Embodiment 13 of the present invention is a diagrammatic representation of Embodiment 13 of the present invention.
  • the conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program control valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the present embodiment is 1. 8MPa (G).
  • adsorption towers constitute the first stage pressure swing adsorption device, which runs the single tower adsorption 1 1 pressure equalization program, 5 adsorption towers constitute the second stage pressure swing adsorption device, and runs the single tower adsorption three equal pressure program.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A in one cycle, 2E1D' at both ends, 2E2D' at both ends, 2E3D' at both ends, and 2E4D at both ends.
  • both ends are reduced by 2E5D', the two ends are reduced by 2E6D', the two ends are reduced by 2E7D', the two ends are reduced by 2E8D', the two ends are reduced by 2E9D', and both ends are reduced by 2E10D',
  • Both ends H "-all decrease 2E1 1D', reverse buck BD, two-stage gas boost 2ER, both ends H"-average 2E11R', both ends are equal to 2E10R', both ends are equal to 2E9R', two 8E rises to 2E8R', 7E rises at both ends, 2E7R', 6E rises at both ends, 2E6R', 5E rises at both ends, 2E5R', both ends rise 2E4R', both ends rise 2E3R', both ends Both rise 2E2R', both ends are raised 2E1 R ', the final step-up FR pressure swing adsorption process step, the first stage pressure swing adsorption process
  • the product gas discharged from the outlet of the adsorption tower at the second stage of the pressure swing adsorption device is mainly hydrogen.
  • the second stage of the pressure swing adsorption device adsorption tower reverses the BD step gas back to the first stage of the pressure swing adsorption device has completed the reverse pressure reduction BD adsorption tower to boost, referred to as the second stage gas boost 2ER.
  • the result of this example is that the hydrogen concentration is greater than 99% (V) and the hydrogen recovery is greater than 98% (V).
  • Embodiment 14 of the present invention is a diagrammatic representation of Embodiment 14 of the present invention.
  • adsorption towers constitute the first stage pressure swing adsorption device, which runs the single tower adsorption 1 1 pressure equalization program, 6 adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption four equal pressure program is run.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one average drop in one cycle
  • the product gas discharged from the outlet of the adsorption tower which is in the adsorption step of the second stage pressure swing adsorption device is mainly hydrogen.
  • the second stage of the pressure swing adsorption device adsorption tower reverses the BD step gas back to the first stage of the pressure swing adsorption device has completed the reverse pressure reduction BD adsorption tower for boosting, referred to as the second stage gas boost 2ER.
  • the result of this example is that the hydrogen concentration is greater than 99.9% (V) and the hydrogen recovery is greater than 99% (V).
  • Embodiment 15 of the present invention is a diagrammatic representation of Embodiment 15 of the present invention.
  • the conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program control valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the present embodiment is 1. 8MPa (G).
  • adsorption towers constitute the first stage pressure swing adsorption device, which runs the single tower adsorption 1 1 pressure equalization program, 5 adsorption towers constitute the second stage pressure swing adsorption device, and runs the single tower adsorption three equal pressure program.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one average drop in one cycle
  • the product gas discharged from the outlet of the adsorption tower which is in the adsorption step of the stage pressure swing adsorption device is mainly hydrogen.
  • the second stage of the pressure swing adsorption device adsorption tower reverses the BD step gas all return to the first stage of the pressure swing adsorption device has completed the reverse pressure reduction BD adsorption tower for boosting, referred to as two-stage gas boost 2ER.
  • the result of this example is that the hydrogen concentration is greater than 99% (V) and the hydrogen recovery is greater than 98% (V).
  • Embodiment 16 of the present invention is a diagrammatic representation of Embodiment 16 of the present invention.
  • the conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the present embodiment is 0. . 5MPa ( G ).
  • the 12 adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption 10 times pressure equalization program is run.
  • the 5 adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption double pressure equalization program is operated.
  • the adsorption tower of the first stage pressure swing adsorption device sequentially undergoes adsorption A in one cycle, and both ends Both are 2E1D', 2E2D' at both ends, 2E3D' at both ends, 2E4D' at both ends, 2E5D' at both ends, 2E6D' at both ends, and 7E at both ends 2E7D ', both ends are reduced by 2E8D ', both ends are reduced by 2E9D', both ends are reduced by 2E10D', reverse buck BD, vacuum VC:, two-stage gas boost 2ER, both ends are equal to 2E10R ', 9E on both ends is 2E9R', 8E on both ends is 2E8R', 7E on both ends is 2E7R', 6E on both ends is 2E6R', 5E on both ends is 2E5R', and both ends are 2E4R'.
  • the two ends are increased by 2E3R', the two ends are both raised by 2E2R', the two ends are both raised by 2E1 R', and the final stepped FR pressure swing adsorption process step is obtained by the first stage pressure swing adsorption device in the reverse step-down BD step.
  • the gas is vented or used.
  • the adsorption tower of the second stage pressure swing adsorption device sequentially undergoes adsorption A, one equal E1D, two equal E2D, reverse BD, vacuum VC, two equal E2R, one cycle in one cycle.
  • the E1 R and the final boost FR pressure swing adsorption process steps, and the product gas discharged from the outlet of the adsorption tower which is in the adsorption step of the second stage pressure swing adsorption device is mainly hydrogen.
  • the second stage of the pressure swing adsorption device adsorption tower reverse BD step and the vacuum VC step of the gas are all returned to the first stage of the pressure swing adsorption device has completed the reverse pressure reduction BD adsorption tower for boosting, referred to as two-stage gas boost 2ER .
  • Example 17 of the present invention is that the hydrogen concentration is greater than 99% (V) and the hydrogen recovery is greater than 99.5% (V) o
  • Example 17 of the present invention is that the hydrogen concentration is greater than 99% (V) and the hydrogen recovery is greater than 99.5% (V) o
  • Example 17 of the present invention is that the hydrogen concentration is greater than 99% (V) and the hydrogen recovery is greater than 99.5% (V) o
  • Example 17 of the present invention is that the hydrogen concentration is greater than 99% (V) and the hydrogen recovery is greater than 99.5% (V) o
  • V 99%
  • the conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the present embodiment is 0. . 5MPa (G).
  • 13 adsorption towers constitute the first stage pressure swing adsorption device, run a single tower adsorption 11 times pressure equalization program, 5 adsorption towers constitute a second stage pressure swing adsorption device, run a single tower adsorption two pressure equalization program
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one equal E1D, two average E2D, three average E3D, four average E4D, five average E5D, and six E6D in one cycle.
  • E7D Seven average E7D, two ends are reduced by 2E8D', two ends are reduced by 2E9D', both ends are reduced by 2E10D', both ends are reduced by 2E11D', reverse buck BD, vacuum VC, two gas Boost 2ER, both ends H ⁇ - 2E1 1 R', 2E10R' at both ends, 2E9R' at both ends, 2E8R' at both ends, E7R at 7E, E6R at 6E, Wujunsheng E5R, Sijunsheng E4R, Sanjunsheng E3R, Erjunsheng E2R, Yijunsheng E1R, final boost FR pressure swing adsorption process step, the first stage pressure swing adsorption device obtained in the reverse buck BD step The gas is vented or used.
  • the adsorption tower of the second stage pressure swing adsorption device sequentially undergoes adsorption A, one equal E1D, two equal E2D, reverse BD, vacuum VC, and two equal E2R in one cycle.
  • a uniform E1 R, final boost FR pressure swing adsorption process step the second stage pressure swing adsorption device is in adsorption Discharged from the adsorption column outlet gas main product quench hydrogen.
  • the second stage of the pressure swing adsorption device adsorption tower reverses the BD step gas all return to the first stage of the pressure swing adsorption device has completed the reverse pressure reduction BD and vacuum VC adsorption tower for boosting, referred to as two-stage gas boost 2ER.
  • the result of the present embodiment is that the hydrogen concentration is greater than 99% (V), and the hydrogen recovery rate is greater than 99.5% (V).
  • Embodiment 18 of the present invention The conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the present embodiment is 0. . 5MPa (G).
  • adsorption towers constitute the first stage pressure swing adsorption device, which runs the single tower adsorption 1 1 pressure equalization program, 7 adsorption towers form the second stage pressure swing adsorption device, and runs the single tower adsorption four times pressure equalization program.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one equal E1D, two average E2D, three average E3D, four average E4D, five average E5D, and six E6D in one cycle.
  • the adsorption tower of the second stage pressure swing adsorption device sequentially undergoes adsorption A, one equal E1D, two equal E2D, three equal E3D, four equal E4D, and reverse BD in one cycle.
  • vacuum pumping VC four average E4R, three average E3R, two equal E2R, one equal E1R, final boost FR change
  • the product gas discharged from the outlet of the adsorption tower which is in the adsorption step of the second stage pressure swing adsorption device is mainly hydrogen gas.
  • the second stage pressure swing adsorption device adsorption tower reverses the BD step gas all back to the first stage pressure swing adsorption •
  • the device has been boosted by an adsorption tower that performs reverse buck BD and vacuum VC steps, referred to as two-stage gas boost 2ER.
  • the result of the present embodiment is that the hydrogen concentration is greater than 99% (V), and the hydrogen recovery rate is greater than 99.5% (V).
  • Embodiment 19 of the present invention is a diagrammatic representation of Embodiment 19 of the present invention.
  • the conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the present embodiment is 0. . 5MPa (G).
  • adsorption towers constitute the first stage pressure swing adsorption device, run single tower adsorption 1 1 pressure equalization program, 4 adsorption towers constitute the second stage pressure swing adsorption device, run single tower adsorption two pressure equalization program
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one equal E1D, two average E2D, three average E3D, four average E4D, five average E5D, and six E6D in one cycle.
  • E7D Seven average E7D, two ends are reduced by 2E8D', two ends are reduced by 2E9D', both ends are reduced by 2E10D', both ends are reduced by 2E1 1D', reverse buck BD, vacuum VC, two Segment gas boost 2ER, both ends H "" - 2E11R', both ends are 2E10R', both ends are 2E9R', both ends are 8E8R', 7E are E7R, 6E are E6R , Wujunsheng E5R, Sijunsheng E4R, Sanjunsheng E3R, Erjunsheng E2R, Yijunsheng E1R, final boost FR pressure swing adsorption process steps, the first stage pressure swing adsorption device obtained in the reverse buck BD step The gas is vented or used.
  • the adsorption tower of the second stage pressure swing adsorption device sequentially undergoes adsorption A, one equal E1D, two equal E2D, reverse BD, two equal E2R, and one E1R in one cycle.
  • final boost FR In the pressure swing adsorption process step, the product gas discharged from the outlet of the adsorption tower which is in the adsorption step of the second stage pressure swing adsorption device is mainly hydrogen.
  • the second stage of the pressure swing adsorption device adsorption tower reverses the BD step gas back to the first stage of the pressure swing adsorption device has completed the reverse pressure reduction BD adsorption tower for boosting, referred to as the second stage gas boost 2ER.
  • the result of the present embodiment is that the hydrogen concentration is greater than 99% (V), and the hydrogen recovery rate is greater than 99.5% (V).
  • Embodiment 20 of the present invention is a diagrammatic representation of Embodiment 20 of the present invention.
  • the conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the present embodiment is 0. 8MPa (G).
  • adsorption towers are composed of the first stage pressure swing adsorption device, and the single tower adsorption U times pressure equalization program is run.
  • the five adsorption towers constitute the second stage pressure swing adsorption unit, and the single tower adsorption double pressure equalization program is operated.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one average drop in one cycle
  • the second section is in the pressure swing adsorption means is discharged in the adsorption column outlet gas of the adsorption step is mainly hydrogen product.
  • the second stage of the pressure swing adsorption unit adsorption tower reverses the BD step gas back to the first stage of the pressure swing adsorption device.
  • the reverse pressure reduction BD and vacuum pumping step of the adsorption tower have been completed, referred to as the second stage gas boost 2ER.
  • Example 21 of the present invention is that the hydrogen concentration is greater than 99.9% (V), and the hydrogen recovery is greater than 99.8% (V) o
  • Example 21 of the present invention is that the hydrogen concentration is greater than 99.9% (V), and the hydrogen recovery is greater than 99.8% (V) o
  • Example 21 of the present invention is that the hydrogen concentration is greater than 99.9% (V), and the hydrogen recovery is greater than 99.8% (V) o
  • Example 21 of the present invention is that the hydrogen concentration is greater than 99.9% (V), and the hydrogen recovery is greater than 99.8% (V) o
  • V hydrogen concentration is greater than 99.9% (V)
  • V hydrogen recovery is greater than 99.8%
  • the conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the present embodiment is 0. ⁇ 8MPa (G).
  • adsorption towers constitute the first stage pressure swing adsorption device, run single tower adsorption 1 1 pressure equalization program, 7 adsorption towers constitute the second stage pressure swing adsorption device, run single tower adsorption two pressure equalization program
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A in one cycle, 2E1 D ' at both ends, 2E2D ' at both ends, 2E3D' at both ends, and 4E at both ends.
  • the tower undergoes adsorption A, E1D, E2D, PP2, PP2, PP3, BD, P1, P2, P2, C6, C3, 2, and 2 in a cycle.
  • E2R one equal E1R
  • final boost FR pressure swing adsorption process step the mixture gas discharged in the PP1 step is directly cleaned by the flow adjustment to clean the adsorption tower that has completed the cleaning P2 step, so that it is sucked
  • the adsorbed impurities on the agent are desorbed, and the mixture gas discharged from the PP2 step is directly cleaned by the flow rate adjustment to the adsorption tower which has completed the cleaning P1 step, and the mixture gas discharged by the PP3 step is directly cleaned by the flow rate adjustment and has been completed.
  • the adsorption tower of the step desorbs the adsorbed impurities on the adsorbent, and the product gas discharged from the outlet of the adsorption tower which is in the adsorption step of the second stage pressure swing adsorption device is mainly hydrogen.
  • the second stage pressure swing adsorption device is reversed by the adsorption tower.
  • the gas in the BD step is all returned to the adsorption tower of the first stage pressure swing adsorption device that has completed the reverse pressure reduction BD and the vacuum VC step, and is referred to as the second stage gas pressure boost 2ER.
  • Embodiment 22 of the present invention is that the hydrogen concentration is greater than 99.9% (V), and the hydrogen recovery rate is greater than 99.8% (V).
  • Embodiment 22 of the present invention is that the hydrogen concentration is greater than 99.9% (V), and the hydrogen recovery rate is greater than 99.8% (V).
  • the conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the present embodiment is 0. . 9MPa (G).
  • adsorption towers constitute the first stage pressure swing adsorption device, run a single tower adsorption 11 times pressure equalization program, 7 adsorption towers constitute a second stage pressure swing adsorption device, run a single tower adsorption two pressure equalization program
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one average drop in one cycle
  • E1D two average E2D, three average E3D, four average E4D, five average E5D, six average E6D, seven average E7D, two ends are reduced by 2E8D', both ends are reduced by 2E9D', both ends Decimal 2E10D', both ends - one down 2E11D', reverse buck BD, two-stage gas boost 2ER, both ends H "" - both rise 2E11R', both ends rise 2E10R', both ends 2E9R', 2E8R' at both ends, 7 E8R, 6 E, E6R, E5R, E4R, E4R, E2R, E2R, E1R, Final boost
  • the gas obtained by the first stage pressure swing adsorption device in the reverse pressure reduction BD step is vented or used, and the adsorption tower of the second stage pressure swing adsorption device sequentially undergoes adsorption A and one time in one cycle.
  • the mixture gas discharged from the PP1 step is directly cleaned by the flow adjustment to clean the adsorption tower that has completed the cleaning P2 step, so that The adsorbed impurities on the adsorbent are desorbed, and the mixture gas discharged by the PP2 step is directly cleaned by the flow rate adjustment to complete the adsorption tower of the P1 step, and the mixture gas discharged by the PP3 step is directly cleaned by the flow rate adjustment.
  • the adsorption tower of the BD step is reversed to desorb the adsorbed impurities on the adsorbent, and the product gas discharged from the outlet of the adsorption tower which is in the adsorption step of the second stage pressure swing adsorption device is mainly hydrogen.
  • the second stage of the pressure swing adsorption device adsorption tower reverses the BD step gas back to the first stage of the pressure swing adsorption device has completed the reverse pressure reduction BD and vacuum VC step of the adsorption tower for boosting, referred to as two-stage gas boost 2ER.
  • Embodiment 23 of the present invention is that the hydrogen concentration is greater than 99. 9 ° /. (V), the hydrogen recovery rate is greater than 99.8% (V).
  • the conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the embodiment is 3 005MPa ⁇ The pressure of the product is 0. 005MPa.
  • the 12 adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption 10 times pressure equalization program is run.
  • the 8 adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption six equal pressure program is run.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to 98.5% (V) or more for synthesizing urea
  • the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device.
  • the concentration of carbon dioxide in the hydrogen and nitrogen in the outlet of the second stage of the pressure swing adsorption device is less than 0.2% (V), to meet the needs of the next step of ammonia synthesis.
  • the adsorption tower of the first stage pressure swing adsorption device undergoes adsorption A, one equal E1 D, two average E2D, three average E3D, four average E4D, five average E5D, and six E6D in one cycle.
  • Reverse gas reduction BD1 step gas return The first stage pressure swing adsorption gas separation device boosts the adsorption tower from the bottom, and the gas obtained by the first stage pressure swing adsorption device in the product carbon dioxide reverse pressure reduction two BD2 step is a product. Carbon dioxide, the adsorption tower of the second stage pressure swing adsorption device undergoes adsorption A, one equal E1 D, two average E2D, three average E3D, four average E4D, five average E5D, and six averages in one cycle.
  • the mixture of the pressure swing adsorption device at the outlet of the adsorption tower which is in the adsorption step is mainly a nitrogen and hydrogen product, which also contains a small amount of carbon monoxide and methane.
  • the second stage of the pressure swing adsorption device adsorption tower reverses the BD step gas back to the first stage of the pressure swing adsorption device has completed the product carbon dioxide reverse pressure drop two BD2 adsorption tower for boosting, referred to as the second stage gas boost 2ER.
  • V The carbon dioxide, hydrogen, nitrogen and carbon monoxide recovery is greater than 99.9% (V), the concentration of carbon dioxide in the product hydrogen and nitrogen is less than 0.2% (V). , tons of ammonia power consumption 2 degrees (instrument and lighting power).
  • the specific adsorbent combination of the present invention is used under other conditions (adsorption pressure is 3. OMPa (G), conversion gas composition and temperature, adsorption cycle time, power plant performance, instrumentation and control functions, dedicated program control Valve and hydraulic system construction and life) Under the same conditions, the initial decarbonization investment can save 7%.
  • Embodiment 24 of the present invention is a diagrammatic representation of Embodiment 24 of the present invention.
  • the conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the embodiment is 0. 005MPa ⁇ The pressure of the carbon dioxide is 0. 005MPa.
  • the 12 adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption 10 times pressure equalization program is run.
  • the 6 adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption three pressure equalization program is operated.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea, and the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that In the second stage of the pressure swing adsorption device, the concentration of carbon dioxide in the hydrogen and nitrogen at the outlet of the adsorption tower is less than 0.2% (V), to meet the needs of the next step of ammonia synthesis.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one average drop in one cycle
  • E1D two average E2D, three average E3D, four average E4D, five average E5D, six average E6D, seven average E7D, eight average E8D, nine average E9D, ten average E10D, reverse buck One BD1, product carbon dioxide reverse pressure reduction two BD2, vacuum V (:, one gas boost 2ER1, two gas boost 2ER, ten average E10R, nine average E9R, eight average E8R, seven average E7R, Six average E6R, five average E5R, four average E4R, three average E3R, two equal E2R, one equal E1R, final boost FR pressure swing adsorption process, after the end of E10D, the adsorption tower
  • concentration of the carbon dioxide component at the top is greater than 70V%; the concentration of carbon dioxide at the bottom of the adsorption tower after the reverse depressurization-BD1 is greater than 75V%, and the gas of the reverse depressurization-BD1 step is returned to the first stage of the pressure swing
  • the adsorption tower of the second stage pressure swing adsorption device undergoes adsorption A, one equal E1 D, two equal E2D, three equal E3D, reverse BD, vacuum VC in one cycle;
  • the E3R, the two-elevation E2R, the one-elevation E1R, and the final step-up FR pressure swing adsorption process step, and the second-stage pressure swing adsorption device is in the adsorption step, and the mixture gas discharged from the adsorption tower outlet is mainly a nitrogen and hydrogen product, wherein It also contains a small amount of carbon monoxide and formazan.
  • the second stage of the pressure swing adsorption device adsorption tower reverse BD step and the vacuum VC step of the gas are all returned to the first stage of the pressure swing adsorption device has been completed and the vacuum VC step of the adsorption tower for the rise Pressure, referred to as the second stage gas boost 2ER.
  • the result of this example is that the carbon dioxide purity of the product is 98% (V), and the carbon dioxide recovery rate is greater than 99%.
  • V hydrogen, nitrogen and carbon monoxide recovery rate is greater than 99.9% (V)
  • product hydrogen nitrogen carbon dioxide concentration is less than 0.2% (V)
  • ton ammonia power consumption is 95 degrees (meter and lighting power).
  • the specific adsorbent combination of the present invention is used under other conditions (adsorption pressure is 5 0.6 MPa (G), conversion gas composition and temperature, adsorption cycle time, power plant performance, instrumentation and control functions, dedicated program control Valve and hydraulic system construction and life) Under the same conditions, the initial decarbonization investment can save 12%.
  • Embodiment 25 of the present invention is a diagrammatic representation of Embodiment 25 of the present invention.
  • the conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the 0 control function, the special program control valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the embodiment is the same.
  • the delivery pressure of the product carbon dioxide is 0.005 MPa.
  • adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption 11 pressure equalization program is run. Seven adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption four equal pressure program is run.
  • the carbon dioxide is purified to 98% (V) or more for synthesizing urea
  • the second stage of the pressure swinging device is to further purify the outlet gas of the first stage pressure swing adsorption device.
  • the concentration of carbon dioxide in hydrogen and nitrogen at the outlet of the upper end of the adsorption tower of the second stage pressure swing adsorption device is less than 0.2°/. (V) to meet the needs of the next step in the synthesis of ammonia.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one equal E1D, two average E2D, three average E3D, four average E4D, five average E5D, and six E6D in one cycle.
  • the pressure swing adsorption gas separation device boosts the adsorption tower from the bottom, and the first stage pressure swing adsorption device is reversed in the product carbon dioxide. Gas obtained by stepping down the second BD2 step That is, the carbon dioxide of the product, the adsorption tower of the second stage pressure swing adsorption device undergoes adsorption A, one equal E1D, two equal E2D, three equal E3D, four equal E4D, reverse BD, pumping in one cycle.
  • Vacuum VC four equals 0 E4R, three equals E3R, two equalized E2R, one equalized E1R, and finally boosted FR pressure swing adsorption process step
  • the second stage pressure swing adsorption device is in the adsorption step of the adsorption tower outlet
  • the mixture gas is mainly nitrogen and hydrogen products, which also contain a small amount of carbon monoxide and methane.
  • the second stage pressure swing adsorption device adsorption tower reverse BD step and vacuum VC step gas all return to the first stage pressure swing adsorption device has been completed Product 2" Carbon oxide reverse buck BD adsorption tower for boosting, referred to as two-stage gas boost 2ER.
  • the result of this example is that the carbon dioxide purity of the product is 98% (V), carbon dioxide, hydrogen, nitrogen and one.
  • the carbon oxide recovery rate is greater than 99.9% (V)
  • the product hydrogen and nitrogen carbon dioxide concentration is less than 0.2% (V)
  • the ammonia power consumption is 65 degrees (meter and lighting power).
  • the specific adsorbent combination of the present invention is used under other conditions (adsorption pressure is 0.8 MPa (G), conversion gas composition and temperature, adsorption cycle time, power plant performance, instrumentation and control functions, dedicated program control ⁇ and hydraulic system structure and life) Under the same circumstances, the initial decarbonization investment can save 7%.
  • Embodiment 26 of the present invention : '
  • the conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program control width, the hydraulic system structure and the service life of the embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the embodiment is 0. 005MPa ⁇ The pressure of the carbon dioxide is 0. 005MPa.
  • adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption process is carried out for 1 1 pressure equalization process.
  • the 4 adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption double pressure equalization program is operated.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea, and the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that The concentration of carbon dioxide in the hydrogen and nitrogen at the outlet of the adsorption tower of the second stage of the pressure swing adsorption device is less than 0.2% (V) to meet the needs of the next step of ammonia synthesis.
  • the adsorption tower of the first stage pressure swing adsorption device undergoes adsorption A, one equal E1 D, two average E2D, three average E3D, four average E4D, five average E5D, and six E6D in one cycle.
  • the concentration of carbon dioxide at the top of the adsorption tower is greater than 70V%;
  • the concentration of carbon dioxide at the bottom of the adsorption tower is greater than 75V%, and the gas of the reverse pressure reduction-BD1 step is returned to the first stage of the pressure swing adsorption gas separation device to boost the adsorption tower from the bottom, and the first stage pressure swing adsorption device
  • the gas obtained in the vacuum VC step is the product carbon dioxide
  • the adsorption tower of the second stage pressure swing adsorption device sequentially undergoes adsorption A, one equal E1D, two equal E2D, reverse BD, and two equal E2R in one cycle.
  • the conditions of the reforming gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the embodiment are completely the same as those of the first embodiment, and the adsorption pressure of the embodiment is 0. 005MPa ⁇ The pressure of the product is 0. 005MPa.
  • adsorption towers constitute the first stage pressure swing adsorption device, running single tower adsorption 1 1 pressure equalization program, ⁇
  • Ten adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption double pressure equalization program is operated.
  • the first stage pressure swing adsorption device of the present embodiment purifies carbon dioxide to above 98% (V) for synthesizing urea
  • the second stage pressure swing adsorption device further purifies the outlet gas of the first stage pressure swing adsorption device, so that The concentration of carbon dioxide in the hydrogen and nitrogen at the outlet of the adsorption tower of the second stage of the pressure swing adsorption device is less than 0.2% (V) to meet the needs of the next step of ammonia synthesis.
  • the adsorption tower of the first stage pressure swing adsorption device undergoes adsorption A, one average drop in one cycle.
  • the gas obtained by the first stage pressure swing adsorption device in the product carbon dioxide reverse pressure reduction two BD2 step is the product dioxon 5 carbon
  • the adsorption tower of the second stage pressure swing adsorption device successively undergoes adsorption A, one equal E1D, two equal E2D, a PP1, a PP2, a PP3, a reverse BD, a cleaning Pl, and a PB in a cycle.
  • the adsorbed impurities on the adsorbent are desorbed, and the mixture gas discharged from the PP2 step is directly cleaned by the flow rate adjustment 0.
  • the adsorption tower that has been cleaned in the P1 step is cleaned, and the mixture gas discharged in the PP3 step is directly passed through the flow adjustment.
  • Cleaning the adsorption tower that has completed the reverse BD step to dissolve the adsorbed impurities on the adsorbent
  • the mixture that is sucked out, the second stage of the pressure swing adsorption device is in the adsorption step of the adsorption tower outlet is mainly nitrogen and hydrogen products, which also contain a small amount of carbon monoxide and formazan.
  • the second stage of the pressure swing adsorption device adsorption tower reverse BD step and the cleaning of the P1, P2 and P3 steps all return to the first stage of the pressure swing adsorption device 5 has completed the product carbon dioxide reverse pressure reduction two BD2 step of the adsorption tower to boost, Abbreviated as two-stage airlift Press 2ER.
  • the specific adsorbent combination of the present invention is used in other conditions (the adsorption pressure is
  • Embodiment 28 of the present invention is a diagrammatic representation of Embodiment 28 of the present invention.
  • the conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the embodiment is 3. 0MPa (G).
  • 12 adsorption towers constitute the first stage pressure swing adsorption device, run a single tower adsorption 10 times pressure equalization program, 8 adsorption towers constitute a second stage pressure swing adsorption device, and run a single tower adsorption six times pressure equalization program
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one average drop in one cycle
  • E1D two average E2D, three average E3D, four average E4D, five average E5D, six average E6D, seven average E7D, eight average E8D, nine average E9D, ten average E10D, reverse buck One BD1, reverse bucking two BD2, one gas boost 2ER1, two gas boost 2ER, ten average E10R, nine average E9R, eight average E8R, seven average E7R, six average E6R, five average E5R, four-elevation E4R, three-elevation E3R, two-elevation E2R, one-elevation E1R, final boost FR pressure swing adsorption process step, after the end of E10D, the concentration of the easily adsorbable phase at the top of the adsorption tower is greater than 70W .
  • the concentration of the easily adsorbable phase at the bottom of the adsorption tower is greater than 75V%, and the gas of the reverse depressurization-BD1 step is returned to the first stage of the pressure swing adsorption gas separation device to boost the adsorption tower from the bottom, and the reverse is lowered.
  • the gas of the second BD2 is vented or used.
  • the adsorption tower of the second stage pressure swing adsorption device successively undergoes adsorption A in one cycle, E1 D, E2D, E3D, E4D, E4D , five average E5D, six average E6D, reverse BD, six average E6R, five average E5R, four average E4R, three average E3R, two average E2R, one equal E1 R, final boost FR
  • the product gas discharged from the outlet of the adsorption tower which is in the adsorption step of the second stage pressure swing adsorption device is mainly hydrogen.
  • the second stage pressure swing adsorption unit adsorption tower reverses the BD step gas back to the first stage.
  • the pressure swing adsorption unit has completed the reverse pressure reduction two BD2 step of the adsorption tower for boosting, referred to as the second stage gas lift pressure 2ER.
  • Embodiment 29 of the present invention is that the hydrogen concentration is greater than 99.9% (V), and the hydrogen recovery rate is greater than 99.8% (V).
  • Embodiment 29 of the present invention is that the hydrogen concentration is greater than 99.9% (V), and the hydrogen recovery rate is greater than 99.8% (V).
  • the conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the present embodiment is 0. 7MPa (G).
  • 12 adsorption towers constitute the first stage pressure swing adsorption device, run a single tower adsorption 10 times pressure equalization program
  • 6 adsorption towers constitute a second stage pressure swing adsorption device, run a single tower adsorption three pressure equalization program
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one equal E1D, two average E2D, three average E3D, four average E4D, five average E5D, and six E6D in one cycle.
  • the gas in the reverse step-down step BD1 is returned to the first stage of the pressure swing adsorption gas separation device to boost the adsorption tower from the bottom, and the gas of the reverse pressure drop two BD2 is vented or used, and the adsorption tower of the second stage pressure swing adsorption device is In a cycle, it goes through the adsorption A, and the average decreases.
  • Embodiment 30 of the present invention is that the hydrogen concentration is greater than 99.9% (V), and the hydrogen recovery rate is greater than 99. 9°/. (V).
  • Embodiment 30 of the present invention is that the hydrogen concentration is greater than 99.9% (V), and the hydrogen recovery rate is greater than 99. 9°/. (V).
  • the conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the present embodiment is 0. 8MPa (G).
  • adsorption towers constitute the first stage pressure swing adsorption device, which runs the single tower adsorption 1 1 pressure equalization program, 7 adsorption towers form the second stage pressure swing adsorption device, and runs the single tower adsorption four times pressure equalization program.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A, one average drop in one cycle
  • E1D two average E2D, three average E3D, four average E4D, five average E5D, six average E6D, seven average E7D, eight average E8D, nine average E9D, ten average E10D, ⁇ "Eallly drop E1 1D, reverse buck one BD1, reverse buck two BD2, one gas boost 2ER1, two gas boost 2ER, H"" one rise E1 1 R, ten average rise E 10R, nine average ⁇ E9R, eight average E8R, seven average E7R, six average E6R, five average E5R, four average E4R, three average E3R, two equal E2R, one equal E1 R, final boost FR transformer
  • the concentration of the easily adsorbable phase at the top of the adsorption tower is greater than 70V%; after the end of the reverse depressurization-BD1, the concentration of the readily adsorbable phase at the bottom of the adsorption tower
  • the gas in the BD1 step is returned to the first stage of the pressure swing adsorption gas separation device to pressurize the adsorption tower from the bottom, reversely depressurize the gas of the second BD2 or use it, and the adsorption tower of the second stage pressure swing adsorption device is in a cycle In turn, it undergoes adsorption A, E1D, E2D, E2D, E3D, E4D, BD, vacuum VC;, four average E4R, three average E3R, two equal E2R, one equal E1 R, final boost FR pressure swing adsorption process step, the second stage pressure swing adsorption device is in the adsorption step of the adsorption tower outlet
  • the product gas is mainly hydrogen.
  • the second stage of the pressure swing adsorption device adsorption tower reverses the BD step gas back to the first stage of the pressure swing adsorption device has completed the reverse pressure reduction two BD2 step of the adsorption tower for boosting, referred to as the second stage gas boost 2ER.
  • Embodiment 31 of the present invention is that the hydrogen concentration is greater than 99.9% (V), and the hydrogen recovery rate is greater than 99.9% (V).
  • the conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program-controlled valve, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the present embodiment is 0. 6MPa (G).
  • adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption process is carried out for 1 1 pressure equalization process.
  • the 4 adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption double pressure equalization program is operated.
  • the adsorption tower of the first stage pressure swing adsorption device undergoes adsorption A, one equal E1 D, two average E2D, three average E3D, four average E4D, five average E5D, and six E6D in one cycle.
  • the concentration of the easily adsorbable phase at the bottom of the adsorption tower is greater than 75V%, and the gas of the reverse depressurization-BD1 step returns to the first stage of the pressure swing adsorption gas separation device to pressurize the adsorption tower from the bottom, reverse
  • the gas of the second step BD2 is vented or used, and the second stage of pressure swing adsorption
  • the adsorption tower sequentially undergoes adsorption A, one equal E1D, two equal E2D, reverse BD, two equal E2R, one equal E1 R, and a final boost FR pressure swing adsorption process step in one cycle.
  • the product gas discharged from the outlet of the adsorption tower which is in the adsorption step of the adsorption pressure swinging device is mainly hydrogen.
  • the second stage of the pressure swing adsorption device is reversed, and the gas in the BD step is returned to the first stage of the pressure swing adsorption device.
  • the adsorption tower of the VC step performs boosting, referred to as the second-stage gas boosting 2ER.
  • Embodiment 32 of the present invention is that the hydrogen concentration is greater than 99.9% (V), and the hydrogen recovery rate is greater than 99.9% (V).
  • the conditions of the raw material gas composition, the temperature, the adsorbent type, the power equipment performance, the instrumentation and the control function, the special program control width, the hydraulic system structure and the service life of the present embodiment are completely the same as those of the embodiment 12, and the adsorption pressure of the present embodiment is 0. 6MPa (G).
  • adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption 1 1 pressure equalization program is run.
  • the 7 adsorption towers form the second stage pressure swing adsorption device, and the single tower adsorption double pressure equalization program is operated.
  • the adsorption tower of the first stage pressure swing adsorption device sequentially undergoes adsorption A and average reduction in one cycle.
  • the stage pressure swing adsorption gas separation device boosts the adsorption tower from the bottom, reversely depressurizes the gas of the second BD2 or uses it, and the adsorption tower of the second stage pressure swing adsorption device sequentially undergoes adsorption A and one average in one cycle.
  • the adsorption tower of the BD step desorbs the adsorbed impurities on the adsorbent, and the product gas discharged from the outlet of the adsorption tower which is in the adsorption step of the second stage pressure swing adsorption device is mainly hydrogen.
  • the second stage pressure swing adsorption device adsorbs the tower reverse
  • the gas in the BD step is returned to the first stage of the pressure swing adsorption device to complete the reverse pressure reduction of the second BD2 step of the adsorption tower for boosting, referred to as the second stage gas boost 2ER.
  • Embodiment 33 of the present invention is that the hydrogen concentration is greater than 99.9% (V), and the hydrogen recovery rate is greater than 99.8% (V).
  • the raw material gas in this case is air.
  • the first stage of the pressure swing adsorption gas separation device, the bottom-up loading adsorbent in the adsorption tower is activated alumina and molecular sieve in turn; the second stage pressure swing adsorption gas separation device, in the adsorption tower
  • the loaded adsorbent is a molecular sieve.
  • This embodiment is a pressure swing adsorption oxygen generator. In the air, oxygen and argon are components of the difficult phase to be adsorbed, and nitrogen and water (steam) are components of the easily adsorbable phase.
  • the first stage of the pressure swing adsorption gas separation in this embodiment The nitrogen adsorption of the outlet of the adsorption tower of the device is controlled at 78% (V) (in actual operation, it can also be adjusted between 30 and 78V%), and the second stage of the pressure swing adsorption gas separation device functions as the first stage pressure swing adsorption gas separation device.
  • the nitrogen in the outlet gas is further purified, so that the oxygen concentration at the outlet of the adsorption tower of the second stage of the pressure swing adsorption gas separation device is greater than 93% (V), up to 95V%, to meet the needs of the next step.
  • Seven adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption four-time pressure equalization program is run.
  • Four adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption one-time pressure equalization program is operated.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A in one cycle, 2E1D' at both ends, 2E2D' at both ends, 2E3D' at both ends, and 2E4D at both ends.
  • the adsorption tower of the second stage pressure swing adsorption device sequentially undergoes adsorption A, one equalization E 1 D, reverse pressure reduction BD, one equalization E1R, and finally boosted FR pressure swing adsorption process in one cycle.
  • the gas in the reverse step-down BD step enters the adsorption tower of the first stage pressure swing adsorption device to boost the adsorption tower that has completed the vacuum pumping, and the second stage pressure swing adsorption device is in the adsorption step of the adsorption tower outlet.
  • the gas is mainly oxygen and a small amount of argon.
  • the result of this example is that the oxygen concentration is greater than 93% (V) and the nitrogen concentration is greater than 99°/. (V), the oxygen recovery is greater than 96.2% (V).
  • Embodiment 34 of the present invention is a diagrammatic representation of Embodiment 34 of the present invention.
  • the raw material gas in this case is air.
  • the first stage of the pressure swing adsorption gas separation device, the bottom-up loading adsorbent in the adsorption tower is activated alumina and molecular sieve in turn; the second stage pressure swing adsorption gas separation device, in the adsorption tower
  • the loaded adsorbent is a molecular sieve.
  • This embodiment is a pressure swing adsorption oxygen generator. In the air, oxygen and argon are components of the difficult phase to be adsorbed, and nitrogen and water (steam) are components of the easily adsorbable phase.
  • the first stage of the pressure swing adsorption gas separation in this embodiment The nitrogen adsorption of the outlet of the adsorption tower of the device is controlled at 78% (V) (in actual operation, it can also be adjusted between 30 and 78V%), and the second stage of the pressure swing adsorption gas separation device functions as the first stage pressure swing adsorption gas separation device.
  • the nitrogen in the outlet gas is further purified, so that the oxygen concentration at the outlet of the adsorption tower of the second stage of the pressure swing adsorption gas separation device is greater than 93% (V), up to 95W. To meet the needs of the next step.
  • Six adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption three-time pressure equalization program is run.
  • the four adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption one-time pressure equalization program is operated.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A in one cycle, 2E1D' at both ends, 2E2D' at both ends, 2E3D' at both ends, reverse BD, vacuum VC, two-stage gas boost 2ER, two ends are 2E3R', two ends are 2E2R', both ends are raised 2E1R', most
  • the final step-up FR pressure swing adsorption process step the adsorption tower of the second stage pressure swing adsorption device sequentially undergoes adsorption A, one equal drop E1D, reverse buck BD, one equal E1 R, and finally boost FR in one cycle.
  • the gas in the reverse step-down BD step enters the adsorption tower of the first stage pressure swing adsorption device to pressurize the adsorption tower that has completed the vacuum VC, and the second stage pressure swing adsorption device is in the adsorption step of the adsorption step.
  • the product gas discharged from the outlet is mainly oxygen and a small amount of argon.
  • the results of this example are that the oxygen concentration is greater than 93% (V), the nitrogen concentration is greater than 99% (V), and the oxygen recovery is greater than 96% (V).
  • Embodiment 35 of the present invention is a diagrammatic representation of Embodiment 35 of the present invention.
  • the raw material gas in this case is air.
  • the first stage of the pressure swing adsorption gas separation device, the bottom-up loading adsorbent in the adsorption tower is activated alumina and molecular sieve in turn; the second stage pressure swing adsorption gas separation device, in the adsorption tower
  • the loaded adsorbent is a molecular sieve.
  • This embodiment is a pressure swing adsorption oxygen generator. In the air, oxygen and argon are components of the difficult phase to be adsorbed, and nitrogen and water (steam) are components of the easily adsorbable phase.
  • the first stage of the pressure swing adsorption gas separation in this embodiment The nitrogen outlet of the adsorption tower of the device is controlled to be above 78% (V).
  • the second stage of the pressure swing adsorption gas separation device is to further purify the nitrogen in the outlet gas of the first stage of the pressure swing adsorption gas separation device to make the second stage pressure swing adsorption.
  • the oxygen concentration of the upper end of the adsorption tower of the gas separation device is greater than 93% (V), up to 95V%, to meet the needs of the next step.
  • Seven adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption four-time pressure equalization program is run.
  • the five adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption two-time pressure equalization program is operated.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A in one cycle, 2E1D' at both ends, 2E2D' at both ends, 2E3D' at both ends, and 2E4D at both ends.
  • the step-up FR pressure swing adsorption process step the adsorption tower of the second stage pressure swing adsorption device sequentially undergoes adsorption in one cycle, and the average adsorption E1 D, the second average E2D, the reverse buck BD, and the second average E2R , an E1 R, a final boost FR pressure swing adsorption process step, the reverse buck BD step gas enters the first stage of the pressure swing adsorption device adsorption tower to boost the adsorption tower that has completed the vacuum VC, the second stage
  • the product gas discharged from the outlet of the adsorption tower which is at the adsorption step of the pressure swing adsorption device is mainly oxygen and a small amount of argon gas
  • Embodiment 36 of the present invention is that the oxygen concentration is greater than 93% (V), and the nitrogen concentration is greater than 99.7% (V), oxygen.
  • the recovery is greater than 99% (V).
  • the raw material gas in this case is air.
  • the adsorbent in the adsorption tower of the first stage of the pressure swing adsorption gas separation device is activated alumina and molecular sieve in order from the bottom to the top; the adsorbent packed in the adsorption tower of the second stage pressure swing adsorption gas separation device is a molecular sieve.
  • This embodiment is a pressure swing adsorption oxygen generator. In the air, oxygen and argon are components of the difficult phase to be adsorbed, and nitrogen and water (steam) are components of the easily adsorbable phase.
  • the first stage of the pressure swing adsorption gas separation in this embodiment The nitrogen adsorption of the outlet of the adsorption tower of the device is controlled at 78% (V) (in actual operation, it can also be adjusted between 20 and 78 W), and the second stage of the pressure swing adsorption gas separation device functions as the first stage pressure swing adsorption gas separation device.
  • the nitrogen in the outlet gas is further purified, so that the oxygen concentration at the outlet of the adsorption tower of the second stage of the pressure swing adsorption gas separation device is greater than 93% (V), up to 95V%, to meet the needs of the next step.
  • Seven adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption four-time pressure equalization program is run.
  • the seven adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption two-time pressure equalization program is operated.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A in one cycle, 2E1D' at both ends, 2E2D' at both ends, 2E3D' at both ends, and 2E4D at both ends.
  • step-up FR pressure swing adsorption process step the adsorption tower of the second stage pressure swing adsorption device sequentially undergoes adsorption in one cycle, and the average adsorption E1 D, the second average drop E2D, the downstream PP1, the downstream PP2 Smooth PP3, reverse BD, cleaning Pl, cleaning P2, cleaning P3, two equalizing E2R, one equalizing E1R, final boosting FR pressure swing adsorption process steps, and the mixture gas discharged by the PP1 step is directly passed through the flow regulation.
  • the adsorption tower of the vacuum VC is boosted, and the product gas discharged from the outlet of the adsorption tower which is in the adsorption step of the second stage pressure swing adsorption device is mainly oxygen and a small amount of argon gas.
  • Example 37 of the present invention is that the oxygen concentration is greater than 93% (V), the nitrogen concentration is greater than 99.7% (V), and the oxygen recovery is greater than 99% (V).
  • Example 37 of the present invention is that the oxygen concentration is greater than 93% (V), the nitrogen concentration is greater than 99.7% (V), and the oxygen recovery is greater than 99% (V).
  • the raw material gas in this case is air.
  • the adsorbent in the adsorption tower of the first stage of the pressure swing adsorption gas separation device is activated alumina and molecular sieve in order from the bottom to the top; the adsorbent packed in the adsorption tower of the second stage pressure swing adsorption gas separation device is a molecular sieve.
  • This embodiment is a pressure swing adsorption oxygen generator. In the air, oxygen and argon are components of the difficult phase to be adsorbed, and nitrogen and water (steam) are components of the easily adsorbable phase.
  • the first stage of the pressure swing adsorption gas separation in this embodiment The nitrogen adsorption at the outlet of the adsorption tower of the device is controlled at 78% (V) (in actual operation, it can also be adjusted between 20 and 78V%), and the second-stage pressure swing adsorption gas separation device functions as the first pressure swing adsorption gas separation device.
  • the nitrogen in the outlet gas is further purified, so that the oxygen concentration at the outlet of the adsorption tower of the second stage of the pressure swing adsorption gas separation device is greater than 93% (V), up to 95V%, to meet the needs of the next step.
  • Seven adsorption towers constitute the first stage pressure swing adsorption device, and the single tower adsorption four-time pressure equalization program is run.
  • the seven adsorption towers constitute the second stage pressure swing adsorption device, and the single tower adsorption two-time pressure equalization program is operated.
  • the adsorption tower of the first stage pressure swing adsorption device successively undergoes adsorption A in one cycle, 2E1D' at both ends, 2E2D' at both ends, 2E3D' at both ends, and 2E4D at both ends.
  • the adsorption tower of the second stage pressure swing adsorption device successively undergoes adsorption A, one equal E1D, two equal E2D, a smooth PP1, a PP2, a PP3, and a reverse phase in one cycle.
  • the mixture of the mixture discharged by the PP step 1 is directly cleaned by flow adjustment, and the cleaning has been completed.
  • the adsorbed impurities on the adsorbent are desorbed, and the mixture gas discharged in the step of discharging the PP2 is directly cleaned by the flow rate to clean the adsorption tower which has been cleaned in the P1 step, and the mixed gas passing through the PP3 step passes through the flow.
  • the adsorption tower that has completed the reverse BD step desorbs the adsorbed impurities on the adsorbent, and the reverse pressure reduction BD step and the cleaning P step gas enter the first stage pressure swing adsorption device adsorption tower to complete the vacuum pumping VC
  • the adsorption tower is boosted, and the product gas discharged from the outlet of the adsorption tower which is in the adsorption step of the second stage pressure swing adsorption device is mainly oxygen and a small amount of argon gas.
  • the result of this example is that the oxygen concentration is greater than 93% (V), the nitrogen concentration is greater than 99.7% (V), and the oxygen recovery is greater than 99% (V) o.
  • the present invention is not limited to the above-mentioned range application, and can be applied to all of the easily adsorbable phase products obtained from the mixed gas or the difficult-adsorbed phase products obtained from the mixed gas, and also applied to all of the easily adsorbable gases from the mixed gas.
  • the easily adsorbable phase and the poorly adsorbed phase of the present invention may be one component or may be one or more components.
  • the invention is applicable to industrial fields such as chemical industry, petrochemical, pharmaceutical, building materials and environmental protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

一种两段全回收变压吸附气体分离方法 技术领域
本发明涉及一种两段全回收变压吸附气体分离方法, 釆用两段变压吸附气 体分离技术,属于变压吸附气体分离领域。 背景技术
我们知道, 在以前的变压吸附气体分离技术中,无论是易吸附相得产品(如 变压吸附制纯二氧化碳)还是难吸附相得产品(如变压吸附制氢技术)或是既需 要从易吸附相获得产品又需要从难吸附相获得产品(如变压吸附从合成氨变换 气中脱碳用于尿素生产),其有效气体的损失很大,运行费用很高,增加了生产的 成本。 这类技术如中国专利公开 CN1235862A , CN1248482A , CN1357404A , CN1347747A、 CN1342509A、 CN1334135A , CN1334136A等, 本发明是对上述变压 吸附气体分离技术的改进,有效气体几乎没有损失,而且在适当的吸附压力下, 不需要采用抽真空的复杂流程,这不仅节约了投资,而且还没有动力设备电耗。 发明的公开
本发明用于从混合气中分离易吸附相和难吸附相组分,产品可以是易吸附 相组分,也可以是难吸附相组分,还可以同时是易吸附相和难吸附相组分。 在本 发明中, 易吸附相和难吸附相是相对的,而不是绝对的,同一种组分在某种混合 气体中是易吸附相组分,但是在另外一种混合气体中可能是难吸附相组分,即使 同一种组分在同一种混合气体中,由于要达到的目的不同,可能是易吸附相组分, 也有可能是难吸附相组分,另外,这里所说的易吸附相组分和难吸附相组分可能 是单一组分,也可能是几个组分的总和。 例如, 在合成氨变换气中, 有硫化氢、 有机硫、 气态水、 二氧化碳、 甲烷、 一氧化碳、 氮气、 氧气、 氩气及氢气等组 分,该气体用于生产尿素时, 硫化氢、 有机硫、 气态水、 和二氧化碳等四个组分 称为易吸附相, 甲垸、 一氧化碳、 氮气、 氧气、 氩气及氢气等六个组分称为难 吸附相组分;用于生产 99. 9^%的产品氢气时, 硫化氢、 有机硫、 气态水、 二氧 化碳、 甲烷、 一氧化碳、 氮气、 氧气及氩气等九个组分称为易吸附相组分, 而 氢气称为难吸附相组分。 在这里, 合成氨变换气中的氮气,当用于生产尿素时, 氮气是难吸附相组分; 当用于生产 99. 9^%的产品氢气时,氮气是易吸附相组分, 甲垸、 一氧化碳和氧气与氮气也是一样的。
本发明的目的是提供一种投资经济合理, 运行费用很低的两段全回收变压 吸附气体分离方法, 采用不同的设备及吸附剂组合以解决现有技术中存在的上 述问题。 使之具有与现有技术相比大幅度节省操作费用的优点, 最大限度地减 - 少装置的有效气体损失。
本发明的目的是这样来实施的:
本发明采用两段全回收变压吸附气体分离方法, 此方法用于从混合气中分 离易吸附相和难吸附相组分,产品可以是易吸附相组分,也可以是难吸附相组分, 还可以同时是易吸附相和难吸附相组分, 此方法采用两段变压吸附装置串联操 作, 混合气首先进入第一段变压吸附气体分离装置, 混合气中的易吸附相组分 被吸附,并提浓为产品,从第一段变压吸附气体分离装置吸附塔出口得到的中间 混合气进入第二段变压吸附气体分离装置, 将中间混合气中的易吸附相组分进 , 一步吸附下来, 未被吸附的难吸附相组分作为产品进入下一工段, 第二段变压 吸附气体分离装置除进入下一工段的难吸附相组分外,其它气体全部返回第一 段变压吸附气体分离装置对吸附塔进行升压, 第一段变压吸附气体分离装置吸 附塔在一个循环周期中依次经历吸附八、 两端均压降压 2ED'、 逆向降压 BD、 二 段气升压 2ER、 两端均压升压 2ER'、 最终升压 FR工艺步骤, 第二段变压吸附气 体分离装置吸附塔在一个循环周期中依次经历吸附4、 顺向均压降压 ED、 逆放 BD、 逆向均压升压 ER、 最终升压 FR工艺步骤。
第一段变压吸附气体分离装置吸附塔在吸附 A步骤之后增加顺向均压降压 ED歩骤,同时在两端均压升压 2ER'步骤之后增加逆向均压升压 ER步骤。
第一段变压吸附气体分离装置吸附塔在逆向降压 BD 步骤之后增加抽真空 VC或 (和)第二段变压吸附气体分离装置吸附塔在逆向降压 BD步骤之后增加抽 真空 VC。
第二段变压吸附气体分离装置吸附塔在顺向均压降压 ED 步骤之后增加顺 放 PP步骤, 同时在第二段变压吸附气体分离装置吸附塔工艺循环步骤逆放 BD 之后增加清洗 P步骤, 清洗 P步骤的气体直接来自正处于顺放 PP步骤的吸附塔 或来自于储存吸附塔顺放 PP步骤气体的缓冲罐 V。
第二段变压吸附气体分离装置吸附塔在顺向均压降压 ED 步骤之后增加顺 放 PP 1步骤和顺放 PP2步骤, 同时第二段变压吸附气体分离装置吸附塔在逆放 BD步骤之后增加清洗 P1步骤和清洗 P2步骤, 吸附塔清洗 P 1步骤的气体直接 来自正处于顺放 PP2步骤的吸附塔或来自于储存吸附塔顺放 PP2步骤气体的缓 冲罐 VI, 吸附塔清洗 P2步骤的气体直接来自正处于顺放 PP1步骤的吸附塔或 来自于储存吸附塔顺放 PP1步骤气体的缓冲罐 V2。
第二段变压吸附气体分离装置吸附塔在顺向均压降压 ED 步骤之后增加顺 放 PP 1步骤、 顺放 PP2步骤和顺放 PP3步骤, 同时第二段变压吸附气体分离装 置吸附塔在逆放 BD步骤之后增加清洗 P1步骤、 清洗 P2步骤和清洗 P3步骤, 吸附塔清洗 P1步骤的气体直接来自正处于顺放 PP3步骤的吸附塔或来自于储存 吸附塔顺放 PP3步骤气体的缓冲罐 V3, 吸附塔清洗 P2步骤的气体直接来自正 处于顺放 PP2步骤的吸附塔或来自于储存吸附塔顺放 PP2步骤气体的缓冲罐 V4, 吸附塔清洗 P3步骤的气体直接来自正处于顺放 PP1步骤的吸附塔或来自于储存 吸附塔顺放 PP1步骤气体的缓冲罐 V5。
第一段变压吸附气体分离装置吸附塔在完成两端均压降 2ER '后, 吸附塔顶 5 部最后放出的混合气中,易吸附相组分的平均浓度大于 30%。
第一段变压吸附气体分离装置吸附塔在完成两端均压降 2ER '后, 吸附塔顶 部最后放出的混合气中,易吸附相组分的平均浓度大于 75%。
第一段变压吸附装置吸附步骤出口气中易吸附相组分的平均浓度大于或等 于 2V%。
ίθ 第二段变压吸附气体分离装置吸附塔执行逆放 BD步骤时,先放入缓冲罐 V6, 然后再放入缓冲罐 V7。
第一段变压吸附气体分离装置吸附塔在进行两端均压降时, 50%以下的均压 降气体从吸附塔的底部进入另一个进行均压升的吸附塔。
第一段变压吸附气体分离装置吸附塔在进行两端均压降时, 17〜25%的均压 15 降气体从吸附塔的底部进入另一个进行均压升的吸附塔。
本发明用于从混合气中分离易吸附相和难吸附相组分,产品可以是易吸附 相组分,也可以是难吸附相组分,还可以同时是易吸附相和难吸附相组分, 此方 ■ 法采用两段变压吸附装置串联操作, 混合气首先进入第一段变压吸附气体分离 装置, 混合气中的易吸附相组分被吸附,并提浓为产品,从第一段变压吸附气体 20 分离装置吸附塔出口得到的中间混合气进入第二段变压吸附气体分离装置, 将 中间混合气中的易吸附相组分进一步吸附下来, 未被吸附的难吸附相组分作为 产品进入下一工段, 第一段变压吸附气体分离装置逆向降压一 BD1步骤的气体 返回第一段变压吸附气体分离装置从底部对吸附塔进行升压,第二段变压吸附 . 气体分离装置除进入下一工段的难吸附相组分外,其它气体全部返回第一段变
25 压吸附气体分离装置对吸附塔进行升压, 第一段变压吸附气体分离装置吸附塔 在一个循环周期中依次经历吸附 A、 顺向均压降压 ED、 逆向降压一 BD1、 逆向 降压二 BD2、 一段气升压 2ER1、 二段气升压 2ER、 逆向均压升压 ER、 最终升压 FR工艺步骤,第二段变压吸附气体分离装置吸附塔在一个循环周期中依次经历 吸附 A、 顺向均压降压 ED、 逆放 BD、 逆向均压升压 ER、 最终升压 FR工艺步骤。
30 第一段变压吸附气体分离装置吸附塔在逆向降压二 BD2步骤之后增加抽真 空 VC或 (和)第二段变压吸附气体分离装置吸附塔在逆向降压 BD步骤之后增加 抽真空 VC;。
第二段变压吸附气体分离装置吸附塔在顺向均压降压 ED 步骤之后增加顺 放 PP1步骤、 顺放 PP2步骤和顺放 PP3步骤, 同时第二段变压吸附气体分离装 35 置吸附塔在逆放 BD步骤之后增加清洗 P1步骤、 清洗 P2步骤和清洗 P3步骤, 吸附塔清洗 PI步骤的气体直接来自正处于顺放 PP3步骤的吸附塔或来自于储存 吸附塔顺放 PP3步骤气体的缓冲罐 V3, 吸附塔清洗 P2步骤的气体直接来自正 处于顺放 PP2步骤的吸附塔或来自于储存吸附塔顺放 PP2步骤气体的缓冲罐 V4, 吸附塔清洗 P3步骤的气体直接来自正处于顺放 PP1步骤的吸附塔或来自于储存 吸附塔顺放 PP1步骤气体的缓冲罐 V5。
第一段变压吸附气体分离装置吸附塔在完成两端均压降 2ER'后, 吸附塔顶 部最后放出的混合气中,易吸附相组分的平均浓度大于 40°/。。
第一段变压吸附气体分离装置吸附塔在完成两端均压降 2ER'后, 吸附塔顶 部最后放出的混合气中,易吸附相组分的平均浓度大于 75%。
第一段变压吸附装置吸附步骤出口气中易吸附相组分的平均浓度大于或等 于 2%V。
原料混合气的压力大于或等于 1. 8MPaG。
第一段变压吸附气体分离装置吸附塔在逆向降压一 BD1 步骤完成后,最后 放出的混合气中,易吸附相组分的平均浓度大于 30%。
第一段变压吸附气体分离装置吸附塔在逆向降压一 BD1 步骤完成后,最后 放出的混合气中,易吸附相组分的平均浓度大于 80%。
第一段变压吸附气体分离装置吸附塔内装填有活性氧化铝和细孔硅胶, 活 性氧化铝装填在吸附塔底部, 细孔硅胶装填在吸附塔上部。 第二段变压吸附气 体分离装置吸附塔内只装填有细孔硅胶。
第一段变压吸附气体分离装置吸附塔内由下到上装填的吸附剂依次为活性 氧化铝及细孔硅胶或活性氧化铝及活性炭或活性氧化铝、 活性炭及分子筛; 第 二段变压吸附气体分离装置, 吸附塔内装填的吸附剂为活性炭及分子筛或分子 筛。
第一段变压吸附气体分离装置吸附塔内由下到上装填的吸附剂依次为活性 氧化铝及分子筛; 第二段变压吸附气体分离装置吸附塔内装填的吸附剂为分子 筛。
第一段变压吸附气体分离装置吸附塔内由下到上装填的吸附剂依次为活性 氧化铝及分子筛; 第二段变压吸附气体分离装置吸附塔内装填的吸附剂为分子 筛。
本发明可把有效气体的回收率最高提到 99. 9%,电耗降低 50〜90% (随吸附 压力的升高而升高),可以这样说, 本发明是对现有气体分离方法(包括湿法气 体分离技术和变压吸附气体分离技术)的革命性变革,彻底解决了装置有效气体 损失和电耗高的问题。 附图的简要说明 图 1是本发明实施例 1第一段变压吸附装置吸附塔的工艺步骤运行程序表。 图 2是本发明实施例 1第二段变压吸附装置吸附塔的工艺步骤运行程序表。 图 3是本发明实施例 1的工艺流程图。 实现本发明的最佳方式
本发明混合气可以是合成氨变换气、 合成氨驰放气、 合成气、 水煤气、 天 然气、 半水煤气、 高炉气、 瓦斯气、 裂化干气、 油田伴生气及油造气等, 也可 以是其它任一混合气体。
本发明采用两段全回收变压吸附气体分离方法, 此方法用于从混合气中分 离易吸附相和难吸附相组分,产品可以是易吸附相组分,也可以是难吸附相组分, 还可以同时是易吸附相和难吸附相组分, 此方法采用两段变压吸附装置串联操 作, 混合气首先进入第一段变压吸附气体分离装置, 混合气中的易吸附相组分 被吸附,并提浓为产品,从第一段变压吸附气体分离装置吸附塔出口得到的中间 混合气进入第二段变压吸附气体分离装置, 将中间混合气中的易吸附相组分进 一步吸附下来, 未被吸附的难吸附相组分作为产品进入下一工段, 第二段变压 吸附气体分离装置除进入下一工段的难吸附相组分外,其它气体全部返回第一 段变压吸附气体分离装置对吸附塔进行升压,第一段变压吸附装置吸附塔出口 气中易吸附相组分的平均浓度一般为大于或等于 2% ( V ) , 第二段变压吸附装置 用于将第一段变压吸附装置出口气中的易吸附相组分脱除到下一工段需要的水 平, 两段变压吸附装置的每个吸附塔在一个循环中依次经历如下步骤。
第一段变压吸附装置:
( 1 ) 吸附 A
将混合气送入处于吸附步骤的吸附塔进料口, 吸附塔中的吸附剂吸附混合 气中的部分易吸附相组分, 未吸附的难吸附相组分和部分易吸附相组分从出口 端流出进入第二段变压吸附装置处于吸附步骤的吸附塔, 随着时间的推移, 吸 附剂吸附的易吸附相组分的总量不断增加, 当吸附剂吸附上述组分饱和时, 停 止进气, 此时吸附结束。
(2)顺向均压降压 ED
吸附结束后, 吸附塔内死空间气体中难吸附相组分浓度较高, 这部分难吸 附相组分需回收利用。 死空间气体分次从吸附塔出口排出进入本段已完成抽空 步骤的相应吸附塔升压, 每排一次气体, 就均压一次, 随着均压次数的增加, 吸附塔出口处的易吸附相组分浓度不断增高。 均压次数由吸附压力和吸附结束 后吸附塔出口处的易吸附相组分浓度决定,一般情况下,最后一次顺向均压降压 ED结束后,吸附塔顶部易吸附相组分浓度应大于 30V%,最好大于 75V%。
(3)两端均压降压 2ED ' 吸附 A结束后, 吸附塔内死空间气体中难吸附相组分浓度较高和易吸附相 组分浓度较低, 一方面这部分难吸附相组分需回收利用, 另一方面吸附塔内易 吸附相组分浓度需要提高, 为此, 必须把吸附塔内的气体放出进行降压解吸。 死空间气体分次从吸附塔两端排出进入本段已完成再生步骤的相应吸附塔升 压, 每排一次气体, 就均压一次, 随着均压次数的增加, 吸附塔两端出口处的 易吸附相组分浓度不断增高, 同时难吸附相组分得到回收利用。 在每次进行上 述均压降压时,吸附塔上下两端可以同时进行,也可以先从吸附塔顶部顺向均压 降压,在顺向均压降压平衡前的后期同时向同一个吸附塔进行逆向均压降压,目 的是提高吸附塔内易吸附相组分浓度和回收难吸附相组分,还可以先进行顺向 均压降压,两塔压力平衡前,停止顺向均压降压,然后再进行逆向均压降压, 前 一种情况可提高吸附剂利用率。在进行两端均压降压时,从底部放出的气体应少 于从顶部放出的气体。 本发明吸附塔两端均压降压 2ED '步骤与通常的吸附塔 均压降压 ED步骤有所不同, 通常的吸附塔均压降压 ED步骤气体是从吸附塔的 出口端放出,即本发明所说的顺向均压降压,而本发明吸附塔两端均压降压 2ED '气体是从吸附塔的进出口两端放出。
吸附塔完成吸附 A步骤后, 前几次均压也可以采用顺向均压降压 ED,而后 几次均压或最后一次均压采用两端均压降压 2ED ',均压降压结束后,产品易吸 附相组分浓度仍然能满足生产要求。
均压次数由吸附压力和吸附结束后吸附塔出口处的易吸附相组分浓度决定, 一般情况下,最后一次两端均压降压 2ED '结束后,吸附塔顶部易吸附相组分浓 度应大于 30V%,最好大于 75V%;吸附塔底部易吸附相组分浓度应大于 30V%,最好 大于 80V%。
(4)逆向降压 BD
当两端均压降压 2ED '结束后,将吸附塔内易吸附相组分送入下一工段,直 到与下一工段的压力平衡为止, 易吸附相组分或作为产品,或作为燃料,也可以 放空。
(5)逆向降压一 BD1
顺向均压降压 ED结束后,将吸附塔内底部的难吸附相放出进入缓冲罐储存, 再利用缓冲罐中的气体从吸附塔底部对吸附塔升压, 一般情况下, 逆向降压一 BD1步骤完成后,吸附塔底部易吸附相组分浓度应大于 30V%,最好大于 80V%。。
(6)逆向降压二 BD2
当逆向降压一 BD1结束后,将吸附塔内易吸附相组分送入下一工段,直到与 下一工段的压力平衡为止, 易吸附相组分或作为产品,或作为燃料,也可以放 (7)抽真空 VC 逆向降压 BD结束后,从吸附塔底部用真空泵将吸附剂吸附的易吸附相组分 抽出来送入下一工段。逆向降压 BD结束后,若不采用抽真空 VC步骤,可采用吹 扫 CP步骤,吹扫采用的气体为干燥的易吸附相组分产品或系统内其它的干燥气 体。 当需要减少吸附剂用量时,采用此步骤。
(8)—段气升压 2ER1
逆向降压 BD或抽真空 VC结束后, 第一段变压吸附气体分离装置吸附塔逆 向降压一 BD1步骤放出的气体全部返回第一段变压吸附气体分离装置吸附塔出 口端对已完成逆向降压' BD或抽真空 VC步骤的吸附塔升压。 增加这一步骤可提 高装置的有效气体回收率。
(9)二段气升压 2ER
逆向降压 BD或抽真空 VC或一段气升压 2ER1结束后,第二段变压吸附气体 分离装置除进入下一工段的难吸附相组分外,其它气体全部返回第一段变压吸 附气体分离装置吸附塔出口端对已完成逆向降压 BD或抽真空 VC步骤的吸附塔 升压。 增加这一步骤可提高装置的有效气体回收率。
( )两端均压升压 2ER'
二段气升压 2ER结束后, 利用本段两端均压降压 2ED '步骤排出的气体, 从进出口端进入吸附塔, 使吸附塔逐步升高压力, 两端均压升压 2ER '与两端均 压降压 2ED '的次数相等。 每次两端均压升压 2ER'的气体来自不同吸附塔的两 端均压降压 2ED '气体。 本段吸附塔两端均压升压 2ER'步骤与通常的均压升压 ER步骤有所不同, 通常的吸附塔均压升压 ER步骤气体是从吸附塔的出口端进 入,而本段吸附塔两端均压升压 2ER'步骤气体是从吸附塔的进出口两端进入。
当吸附塔完成吸附 Α步骤后,前几次均压采用顺向均压降压 ED时, 吸附塔 的均压升压 ER步骤气体则从吸附塔的出口端进入,不从进口端进入。
(11)逆向均压升压 ER
二段气升压 2ER或两端均压升压 2ER'结束后,利用顺向均压降压步骤排出 的气体, 从出口端进入己完成逆放 BD或抽真空 C或清洗 P步骤的吸附塔,使吸 附塔逐步升高压力, 均压升压与均压降压的次数相等。 每次均压升压的气体来 自不同吸附塔的均压降压气体
(12)最终升压 FR
两端均压升压 2ER'步骤结束后,利用处于吸附步骤的吸附塔出口气从顶端 对吸附塔进行升压, 直至升到吸附压力。
第二段变压吸附装置
(1) 吸附 A
将第一段变压吸附装置处于吸附步骤的吸附塔出口气送入第二段变压 吸附装置处于吸附步骤的吸附塔, 吸附塔中的吸附剂选择性地吸附易吸附相组 分,从出口端排出进入下一工段。随着时间的推移, 吸附剂吸附的易吸附相组分 总量不断增加, 当吸附剂吸附易吸附相组分饱和时, 停止进气, 此时吸附结束, 出口气中易吸附相组分浓度根据生产需要来控制, 最低可到几个 ppm。
(2) 顺向均压降压 ED
5 吸附结束后, 吸附塔内死空间气体中难吸附相组分浓度较高, 这部分难吸 附相组分需回收利用。 死空间气体分次从吸附塔出口排出进入本段已完成抽空 步骤的相应吸附塔升压, 每排一次气体, 就均压一次, 随着均压次数的增加, 吸附塔出口处的易吸附相组分浓度不断增高。 均压次数由吸附压力和吸附结束 后吸附塔出口处的易吸附相组分浓度决定。
10 ( 3 ) 顺放 PP
顺向均压降压 ED结束后,把吸附塔内气体顺向直接放入另一个吸附塔去清 洗吸附剂上吸附的易吸附相组分,也可以先顺放进入缓冲罐,此后再将缓冲罐的 气体放入另一个吸附塔去清洗吸附剂上吸附的易吸附相组分, 使吸附剂获得再 ' 生。 顺放 PP可分一次,也可以分两次和三次,甚至很多次, 顺放 PP 次数越多, 15 清洗效果越好,吸附剂的用量越少,但非标设备、 专用程控阀、 油压系统、 控制 系统和仪器仪表的投资越大,而且随着顺放 PP 次数的增多,吸附剂减少的数量 越来越有限,而非标设备、专用程控阀、 油压系统、控制系统和仪器仪表的投资 越来越大, 所以顺放 PP次数不宜过多。
(4) 逆放 BD
20 顺向均压降压 ED或顺放 PP结束后, 逆着吸附方向将气体放入第一段变压 吸附气体分离装置。
( 5 ) 抽真空 VC或清洗 P
逆放 BD结束后,从吸附塔底部用真空泵将吸附剂吸附的易吸附相组分及其 它组分抽出来放入第一段变压吸附气体分离装置,使吸附剂得到再生;也可以用 25 顺放 PP步骤的混合气体清洗吸附剂上吸附的易吸附相组分,使吸附剂得到再生 清洗吸附剂之后的混合气体放入第一段变压吸附气体分离装置的吸附塔。
( 6 ) 逆向均压升压 ER
逆放 BD或抽真空 C或清洗 P结束后, 利用顺向均压降压步骤排出的气体, 从出口端进入已完成逆放 BD或抽真空 C或清洗 P步骤的吸附塔,使吸附塔逐步 θ 升高压力, 均压升压与均压降压的次数相等。 每次均压升压的气体来自不同吸 附塔的均压降压气体
( 7 ) 最终升压 FR
均压升压结束后, 利用处于吸附步骤的吸附塔出口气从顶端对吸附塔进行 升压, 直至升到吸附压力。
35 本发明的实施例 1 : 本例原料气是合成氨变换气, 包括以煤、 天然气、 油及其它为原料的合成 氨变换气。
本实施例的合成氨变换气组成如下:
Figure imgf000011_0001
40°C
压力: 3. 0 MPa ( G ) 如图 3所示, 吸附塔 A〜K共 1 1台组成第一段变压吸附装置, 吸附塔内由 下到上装填的吸附剂依次为活性氧化铝及细孔硅胶, 运行单塔吸附 9次均压程 序; 吸附塔 a〜h共 8台组成第二段变压吸附装置, 吸附塔内装填的吸附剂为细 孔硅胶, 运行单塔吸附六次均压程序。 本实施例第一段变压吸附装置把二氧化 碳提纯到 98% ( V ) 以上, 用于合成尿素, 第二段变压吸附装置作用是把第一段 变压吸附装置的出口气进一步净化, 使第二段变压吸附装置吸附塔上端出口的 氢、 氮气中二氧化碳浓度小于 0. 2% (V ) , 以满足合成氨下一步工序的需要。
变换气进入第一段变压吸附装置处于吸附步骤的吸附塔, 吸附塔中的吸附 剂选择性地依次吸附变换气中的水、 有机硫、 无机硫及二氧化碳等组分, 未吸 附的部分二氧化碳和不易吸附的一氧化碳、 甲垸、 氮、 氢气等组分从出口端排 出进入第二段变压吸附装置处于吸附步骤的^附塔, 吸附塔中的吸附剂选择性 地吸附二氧化碳, 不易吸附的一氧化碳、 甲烷、 氮、 氢气等组分从出口端排出 进入压缩工段。 第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、两端一均降 2E1D'、两端二均降 2E2D'、两端三均降 2E3D'、两端四均降 2E4D'、 两端五均降 2E5D'、 两端六均降 2E6D'、两端七均降 2E7D'、 两端八均降 2E8D'、 两端九均降 2E9D'、 产品二氧化碳逆向降压 BD、 二段气升压 2ER、 两端九均升 2E9R'、 两端八均升 2E8R'、 两端七均升 2E7R'、 两端六均升 2E6R'、 两端五均 升 2E5R '、 两端四均升 2E4fT、 两端三均升 2E3R'、 两端二均升 2E2R'、 两端一 均升 2E1 R'、 最终升压 FR变压吸附工艺步骤, 第一段变压吸附装置在产品二氧 化碳降压 BD步骤获得的气体即为产品二氧化碳,第二段变压吸附装置的吸附塔 在一个循环周期中依次经历吸附 A、 一均降 E1 D、 二均降 E2D、 三均降 E3D、 四 均降 E4D、 五均降 E5D、 六均降 E6D、 逆放 BD1、 逆放 BD2、 六均升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1 R、 最终升压 FR变压吸 附工艺步骤, 第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的混合气 主要为氮、 氢气产品, 其中还含有少量的一氧化碳和甲烷。 第二段变压吸附装 置吸附塔逆放 BD 步骤的气体全部返回第一段变压吸附装置已经完成产品二氧 化碳降压 BD的吸附塔进行升压,简称二段气升压 2ER。现以 A塔为例,对照图 1 和图 2, 说明本实施例第一段变压吸附装置吸附塔在一个循环过程中的工艺步 骤:
(1) 吸附 A
此时, A塔已完成最终升压 FR步骤, 打开程控阀 1A、 2A, 变换气经管道
G11进入吸附塔 A, 在吸附塔 A中, 吸附剂选择性地依次吸附变换气中的水、有 机硫、 无机硫及二氧化碳等组分, 未吸附的部分二氧化碳和不易吸附的一氧化 碳、 甲垸、氮、氢气等组分从出口端经程控阀 2A流出进入第二段变压吸附装置 处于吸附步骤的吸附塔, 随着时间的推移, 吸附剂吸附的水、 有机硫和无机硫 及二氧化碳等组分的总量不断增加, 当吸附剂吸附上述组分饱和时, 停止进气, 此时吸附结束, 关闭程控阀 1A、 2k, 出口气中二氧化碳浓度控制在 6〜15°/。(V)。
(2) 第一次两端均压降步骤, 简称两端一均降 2E1D'
吸附结束后, 打开程控阀 3A、 3C、 11A和 11C, A塔内的气体经管道 G13 和 Gi l l进入 C塔对 C塔进行两端一次均压升压(简称 2E1 R' ), 当 A和 C塔压力 基本平衡后, 关闭程控阀 3A、 l lCo
(3) 第二次两端均压降步骤, 简称两端二均降 2E2D'
两端一均降 2E1D'结束后, 打开程控阀 4A、 4D和 11D, A塔内的气体经管 道 G14和 Gl 11进入 D塔对 D塔进行两端二次均压升压(简称 2E2R' ), 当 A和 D 塔压力基本平衡后, 关闭程控岡 4D、 11A和 11D。
(4) 第三次两端均压降步骤, 简称两端三均降 2E3D'
两端二均降 2E2D'结束后, 打开程控阀 4E、 12A和 12E, A塔内的气体经管 道 G14和 G112进入 E塔对 E塔进行两端三次均压升压(简称 2E3R' ), 当 A和 E 塔压力基本平衡后, 关闭程控阀 4A、 4E和 12E。
(5) 第四次两端均压降步骤, 简称两端四均降 2E4D'
两端三均降 2E3D'结束后, 打开程控阀 5A、 5F和 12F, A塔内的气体经管 道 G15和 G112进入 F塔对 F塔进行两端四次均压升压(简称 2E4R' ), 当 A和 F 塔压力基本平衡后, 关闭程控阀 5F、 12A和 12F。
(6)第五次两端均压降步骤, 简称两端五均降 2E5D'
两端四均降 2E4D'结束后, 打开程控阀 5G、 13A和 13G, A塔内的气体经管 道 G15和 G113进入 G塔对 G塔进行两端五次均压升压(简称 2E5R' ), 当 A和 G 塔压力基本平衡后, 关闭程控阀 5A、 5G和 13G。
(7)第六次两端均压降步骤, 简称两端六均降 2E6D'
两端五均降 2E5D'结束后, 打开程控阀 6A、 6H和 13H, A塔内的气体经管 道 G16和 G113进入 H塔对 H塔进行两端六次均压升压(简称 2E6R' ), 当 A和 H 塔压力基本平衡后, 关闭程控阀 6H、 13A和 13H。 (8)第七次两端均压降步骤, 简称两端七均降 2E7D'
两端六均降 2E6D'结束后, 打开程控阀 61、 8A和 81, A塔内的气体经管道 G16和 G18进入 I塔对 I塔进行两端七次均压升压(简称 2E7R' ),当 A和 I塔压 力基本平衡后, 关闭程控阀 6A、 61和 81。
(9 ) 第八次两端均压降步骤, 简称两端八均降 2E8D '
两端七均降 2E7D'结束后, 打开程控阀 7A、 7J和 8J, A塔内的气体经管道 G17和 G18进入 J塔对 J塔进行两端八次均压升压(简称 2E8R' ),当 A和 J塔压 力基本平衡后, 关闭程控阀 7J、 8A和 8J。
( 10 ) 第九次两端均压降步骤, 简称两端九均降 2E9D'
两端八均降 2E8D'结束后, 打开程控阀 7K、 9Α和 9Κ, Α塔内的气体经管道
G17和 G19进入 K塔对 K塔进行两端九次均压升压(简称 2E9R ' ),当 A和 K塔压 力基本平衡后, 关闭程控阀 7A、 7K和 9K。
两端九均降 2E9D'结束后,吸附塔顶部易吸附相组分浓度大于 70V% ;吸附塔 底部易吸附相组分浓度大于 75V%。
( 11 ) 产品二氧化碳逆向降压 BD
两端九均降 2E9D'结束后, 先打开程控阀 KV-14a, 将 A塔内的产品二氧化 碳降压放入产品二氧化碳中间缓冲罐 V9, 当 A塔的压力接近 V9压力时, 关闭 程控阀 KV14a,再打开程控阁 KV14, 将 A塔内的产品二氧化碳降压放入产品二氧 化碳缓冲罐 V8 , 当 A塔的压力接近 V8压力时, 关闭程控阀 KV-14。
(12)二段气升压 2ER
产品二氧化碳降压 BD结束后, 打开程控闽 10A, 缓冲罐 V6和 V7内的气体 进入 A塔对 A塔进行升压, 当缓冲罐 V6和 V7与吸附塔 A的压力基本平衡后, 关闭程控阀 10A。
(1 第九次两端均压升步骤, 简称两端九均升 2E9R'
二段气升压 2ER结束后, 打开程控阀 7A、 7B、 9A和 9B, B塔内的气体经管 道 G19和 G17进入 A塔对 A塔进行两端九次均压升压(简称 2E9R' ), 当 A和 B 塔压力基本平衡后, 关闭程控阀 7B、 9A和 9B。
(14)第八次两端均压升步骤, 简称两端八均升 2E8R'
两端九均升 2E9R'结束后, 打开程控阀 7A、 7C、 8A和 8C, C塔内的气体经 管道 G17和 G18进入 A塔对 A塔进行两端八次均压升压(简称 2E8R ' ),当 A和 C 塔压力基本平衡后, 关闭程控阀 7A、、 7C和 8C。
(15)第七次两端均压升步骤, 简称两端七均升 2E7R'
两端八均升 2E8R'结束后, 打开程控阀 6A、 6D和 8D, D塔内的气体经管道 G16和 G18进入 A塔对 A塔进行两端七次均压升压(简称 2E7R ' ),当 A和 D塔压 力基本平衡后, 关闭程控阀 6D、 8A和 8D。 (16)第六次两端均压升步骤, 简称两端六均升 2E6R'
' 两端七均升 2E7R'结束后, 打开程控阀 6E、 13A和 13E, E塔内的气体经管 道 G16和 G113进入 A塔对 A塔进行两端六次均压升压(简称 2E6R' ), 当 A和 E 塔压力基本平衡后, 关闭程控阀 6A、 6E和 13E。
第五次两端均压升步骤, 简称两端五均升 2E5R'
两端六均升 2E6R'结束后, 打开程控阔 5A、 5F和 13F, F塔内的气体经管 道 G15和 GU3进入 A塔对 A塔进行两端五次均压升压(简称 2E5R' ), 当 A和 F 塔压力基本平衡后, 关闭程控阀 5F、 13A和 13F。
(18)第四次两端均压升步骤, 简称两端四均升 2E4R'
两端五均升 2E5R'结束后, 打开程控阀 5G、 12A和 12G, G塔内的气体经管 道 G15和 G112进入 A塔对 A塔进行两端四次均压升压(简称 2E4R' ) , 当 A和 G 塔压力基本平衡后, 关闭程控阀 5A、 5G和 12G。
(19)第三次两端均压升步骤, 简称两端三均升 2E3R'
两端四均升 2E4R'结束后, 打开程控阀 4A、 4H和 12H, H塔内的气体经管 道 G14和 G112进入 A塔对 A塔进行两端三次均压升压(简称 2E3R' ), 当 A和 H 塔压力基本平衡后, 关闭程控阔 4H、 12A和 12H。
(20)第二次两端均压升步骤, 简称两端二均升 2E2R'
两端三均升 2E3R'结束后, 打开程控阀 41、 11A和 111 , I塔内的气体经管 道 G14和 G111进入 A塔对 A塔进行两端二次均压升压(简称 2E2R' ), 当 A和 I 塔压力基本平衡后, 关闭程控阀 4A、 41和 111。
(21) 第一次两端均压升步骤, 简称两端一均升 2E1R'
两端二均升 2E2R'结束后, 打开程控阀 3A、 3J和 1 U, J塔内的气体经管 道 G13和 G111进入 A塔对 A塔进行两端一次均压升压(简称 2E1R' ), 当 A和 J 塔压力基本平衡后, 关闭程控阀 3J、 11A和 11J。
(22) 最终升压 FR
两端一均升 2E1R'结束后,打开程控阀 KV- 12,利用处于吸附步骤的吸附塔 出口气从顶端对 A塔进行升压, 当 A塔压力升至接近吸附压力时, 关闭程控阀 KV-12、 3A o 至此, A塔完成了一个循环, 又可进入下一个循环。 B〜!(吸附塔与 A塔的循环步骤一样, 只是时间上是相互错开的, 见图 1和图 3。
现以 a塔为例, 对照图 2和图 3, 说明本实施例第二段变压吸附装置吸附 塔在一个循环过程中的工艺步骤:
(1) 吸附 A
此时, a塔已完成最终升压 FR步骤, 打开程控阀 la、 2a, 中间混合气经管 道 G21进入吸附塔 a, 在 a吸附塔中, 吸附剂选择性地吸附第一段变压吸附装 置出口气中的二氧化碳等组分,未吸附的少量二氧化碳和不易吸附的一氧化碳、 甲烷、氮、氢气等组分从出口端经程控阀 2a流出进入合成氨的压缩工段, 随着 时间的推移, 吸附剂吸附的二氧化碳总量不断增加, 当吸附剂吸附二氧化碳饱 和时, 出口气中二氧化碳浓度控制在 0. 2% (V ) 以下, 关闭程控阔 la、 2a, 停' 止进气, 此时吸附结束, 关闭程控阔 la、 2a。
(2) 第一次顺向均压降步骤, 简称一均降 E1D
吸附 A结束后, 打开程控阀 3a、 3c , a塔内的气体经管道 G23进入 c塔对 c塔进行一均升, 当 a和 c塔压力基本平衡后, 关闭程控阀 3a。
(3)第二次顺向均压降步骤, 简称二均降 E2D
一均降 E1D结束后, 打开程控阀 4a、 4d, a塔内的气体经管道 G24进入 d 塔对 d塔进行二均升, 当 a和 d塔压力基本平衡后, 关闭程控阀 4d。
(4)第三次顺向均压降步骤, 简称三均降 E3D
二均降 E2D结束后, 打开程控阔 4e, a塔内的气体经管道 G24进入 e塔对 e塔进行三均升, 当 a和 e塔压力基本平衡后, 关闭程控阀 4a和 4e。
(5)第四次顺向均压降步骤, 简称四均降 E4D
三均降 E3D结束后, 打开程控阔 5a、 5f, a塔内的气体经管道 G25进入 f 塔对 f塔进行四均升, 当 a和 f塔压力基本平衡后, 关闭程控阀 5f。
( 6 ) 第五次顺向均压降步骤, 简称五均降 E5D
四均降 E4D结束后, 打开程控阀 5g, a塔内的气体经管道 G25进入 g塔对
, g塔进行五均升, 当 a和 f塔压力基本平衡后, 关闭程控阀 5f 和 5a。
( 7 ) 第六次顺向均压降步骤, 简称六均降 E6D
五均降 E5D结束后, 打开程控阀 6a、 6h, a塔内的气体经管道 G26进入 h 塔对 h塔进行六均升, 当 a和 h塔压力基本平衡后, 关闭程控阀 6h。
(8)逆放 BD
六均降 E6D结束后,打开程控阀 8a、 KV-15a,将 a塔内的气体先逆向(BD1 ) 放入缓冲罐 V6, 压力平衡后, ^闭程控阀 KV- 15a, 再打开程控阀 KV- 17a, 将 气体逆向 (BD2 ) 放入缓冲罐 V7, 压力平衡后, 逆放 BD结束, 关闭程控阔 8a、 KV-17a。
(9)第六次逆向均压升步骤, 简称六均升 E6R
逆放 BD结束后, 打开程控阀 6a、 6b, b塔内的气体经管道 G26进入 a塔对 a塔进行六均升, 当 b和 a塔压力基本平衡后, 关闭程控阀 6a、 6b。
(10)第五次逆向均压升步骤, 简称五均升 E5R
六均升 E6R结束后, 打开程控阀 5a、 5c , c塔内的气体经管道 G25进入 a 塔对 a塔进行五均升, 当 c和 a塔压力基本平衡后, 关闭程控阀 5c。
(11)第四次逆向均压升步骤, 简称四均升 E4R
五均升 E5R结束后, 打开程控阀 5d, d塔内的气体经管道 G25进入 a塔对 a塔进行四均升, 当 d和 a塔压力基本平衡后, 关闭程控阀 5a、 5d。
(12)第三次逆向均压升步骤, 简称三均升 E3R
四均升 E4R结束后, 打开程控闽 4a、 4e , e塔内的气体经管道 G24进入 a 塔对 a塔进行三均升, 当 e和 a塔压力基本平衡后, 关闭程控阀 4e。
(13)第二次逆向均压升步骤, 简称二均升 E2R
三均升 E3R结束后, 打开程控阀 4f, f塔内的气体经管道 G24进入 a塔对 a塔进行二均升, 当 f 和 a塔压力基本平衡后, 关闭程控阀 4f、 4a。
(14)第一次逆向均压升步骤, 简称一均升 E1R
二均升 E2R结束后, 打开程控阀 3a、 3g, g塔内的气体经管道 G23进入 a 塔对 a塔进行一均升, 当 g和 a塔压力基本平衡后, 关闭程控阀 3g。
(15)最终升压 FR
一均升 E1R结束后, 打开程控阀 KV-16 , 利用处于吸附步骤的吸附塔出口 气从顶端对 a塔进行升压, 当 a塔压力升至吸附压力时, 关闭程控阀 KV-16、 3a。
至此, a塔完成了一个循环, 又可进入下一个循环。 b〜h吸附塔与 a塔的 循环步骤一样, 只是时间上是相互错开的, 见图 2和图 3。
本实施例结果为产品二氧化碳纯度为 98. 5% (V ) , 二氧化碳、 氢、 氮气和 一氧化碳回收率大于 99. 9% ( V) , 产品氢、氮气中二氧化碳浓度小于 0. 2% ( V ), 吨氨电耗 2度(仪表和照明用电)。
对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为
3. OMPa (G)、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 脱碳初始设备 投资可节约 8%。
本发明的实施例 2 :
本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 1. 8 MPa (G ) ,产品二氧化碳的输送压力为 0. 005MPa。
12 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 10 次均压程序, 8 台吸附塔组成第二段变压吸附装置, 运行单塔吸附六次均压程序。 本实施例第 一段变压吸附装置把二氧化碳提纯到 98% ( V ) 以上, 用于合成尿素. 第二段变 压吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压 吸附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 8% ( V), 以满足合 成氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 两端一 均降 2E1D'、 两端二均降 2E2D'、 两端三均降 2E3D'、 两端四均降 2E4D'、 两端 五均降 2E5D'、 两端六均降 2E6D'、 两端七均降 2E7D'、 两端八均降 2E8D '、 两 端九均降 2E9D'、 两端十均降 2E10D'、 产品二氧化碳逆向降压 BD、 二段气升压 2ER、 两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R'、 两端七均升 2E7R'、 两端六均升 2E6R'、 两端五均升 2E5R'、 两端四均升 2E4R'、 两端三均 5 升 2E3R'、 两端二均升 2E2R '、 两端一均升 2E1 R'、 最终升压 FR变压吸附工艺 步骤,第一段变压吸附装置在产品二氧化碳逆向降压 BD步骤获得的气体即为产 品二氧化碳,第二段变压吸附装置'的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 逆放 BD、 六均升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一 10 均升 E1R、 最终升压 FR变压吸附工艺步骤, 第二段变压吸附装置正处于吸附步 骤的吸附塔出口排出的混合气主要为氮、 氢气产品, 其中还含有少量的一氧化 碳和甲垸。第二段变压吸附装置吸附塔逆放 BD步骤的气体全部返回第一段变压 吸附装置已经完成产品二氧化碳逆向降压 BD的吸附塔进行升压,简称二段气升 压 2ER。
15 本实施例结果为产品二氧化碳纯度为 98% ( V), 二氧化碳、 氢、 氮气和一 氧化碳回收率大于 99. 8 % ( V ) , 产品氢、 氮气中二氧化碳浓度小于 0. 8% ( V ) , ' 吨氨电耗 2度 (仪表和照明用电)。
对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为 1. 8MPa ( G)、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 0 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 脱碳初始设备 投资可节约 9%。
本发明的实施例 3 :
本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 5 实施例的吸附压力为 3. 0 MPa ( G ) ,产品二氧化碳的输送压力为 0. 005MPa。
12 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 10 次均压程序, 8 台吸附塔组成第二段变压吸附装置, 运行单塔吸附六次均压程序。 本实施例第 一段变压吸附装置把二氧化碳提纯到 98% ( V ) 以上, 用于合成尿素, 第二段变 压吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压 0 吸附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 2% ( V), 以满足合 成氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 - E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降
E7D、 两端八均降 2E8D'、 两端九均降 2E9D '、 两端十均降 2E10D'、 产品二氧化 5 碳逆向降压 BD、 二段气升压 2ER、 两端十均升 2E10R'、 两端九均升 2E9R'、 两 端八均升 2E8R'、 七均升 E7R、 六均升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 第一段变压吸 附装置在产品二氧化碳逆向降压 BD步骤获得的气体即为产品二氧化碳,第二段 变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、一均降 E1D、二均降 E2D、三均降 E3D、 四均降 E4D、 五均降 E5D、六均降 E6D、逆放 BD、六均升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR 变压吸附工艺步骤, 第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的 混合气主要为氮、 氢气产品, 其中还含有少量的一氧化碳和甲垸。 第二段变压 吸附装置吸附塔逆放 BD 步骤的气体全部返回第一段变压吸附装置已经完成产 品二氧化碳逆向降压 BD的吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为产品二氧化碳纯度为 98% (V ) , 二氧化碳、 氢、 氮气和一 氧化碳回收率大于 99. 9% ( V ) ,产品氢、氮气中二氧化碳浓度小于 0. 2% ( V ) , 吨 氨电耗 2度(仪表和照明用电)。
对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为 3. OMPa ( G)、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 脱碳初始设备 投资可节约 7%。
本发明的实施例 4 :
本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 1. 8 MPa ( G) ,产品二氧化碳的输送压力为 0. 005MPa。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, 6 台吸附塔组成第二段变压吸附装置, 运行单塔吸附四次均压程序。 本实施例第 一段变压吸附装置把二氧化碳提纯到 98% ( V ) 以上, 用于合成尿素, 第二段变 压吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压 吸附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 8% ( V ), 以满足合 成氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 两端八均降 2E8D'、 两端九均降 2E9D'、 两端十均降 2E10D'、 两端十一均 降 2E1 1D'、产品二氧化碳逆向降压 BD、二段气升压 2ER、两端十一均升 2E 1 1 R '、 两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R '、 七均升 E7R、 六均 升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1 R、 最终 升压 FR变压吸附工艺步骤, 第一段变压吸附装置在产品二氧化碳逆向降压 BD 步骤获得的气体即为产品二氧化碳, 第二段变压吸附装置的吸附塔在一个循环 周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 逆放 BD、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR变 压吸附工艺步骤, 第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的混 合气主要为氮、 氢气产品, 其中还含有少量的一氧化碳和甲垸。 第二段变压吸 附装置吸附塔逆放 BD 步骤的气体全部返回第一段变压吸附装置已经完成产品 二氧化碳逆向降压 BD的吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为产品二氧化碳纯度为 98% ( V ) , 二氧化碳、 氢、 氮气和一 氧化碳回收率大于 99. 5% ( V ) , 产品氢、氮气中二氧化碳浓度小于 0. 8% ( V ) ' 吨 氨电耗 2度(仪表和照明用电)。
对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为
1- 8MPa ( G)、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 脱碳初始设备 投资可节约 7%。
本发明的实施例 5 : .
本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 0. 6 MPa ( G ) ,产品二氧化碳的输送压力为 0. 005MPa。
12台吸附塔组成第一段变压吸附装置, 运行单塔吸附 10次均压程序, 6台 吸附塔组成第二段变压吸附装置, 运行单塔吸附三次均压程序。 本实施例第一 段变压吸附装置把二氧化碳提纯到 98% ( V ) 以上, 用于合成尿素, 第二段变压 吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压吸 附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 2% ( V ) , 以满足合成 氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 两端一 均降 2E1D'、 两端二均降 2E2D'、 两端三均降 2E3D'、 两端四均降 2E4D'、 两端 五均降 2E5D'、 两端六均降 2E6D'、 两端七均降 2E7D'、 两端八均降 2E8D '、 两 端九均降 2E9D'、 两端十均降 2E10D'、 产品二氧化碳逆向降压 BD、 抽真空 VC、 二段气升压 2ER、 两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R '、 两端七均升 2E7IT、两端六均升 2E6R'、两端五均升 2E5R'、 两端四均升 2E4R'、 两端三均升 2E3R'、 两端二均升 2E2R'、 两端一均升 2E1 R'、 最终升压 FR变压 吸附工艺步骤,第一段变压吸附装置在产品二氧化碳逆向降压 BD步骤和抽真空 VC步骤获得的气体即为产品二氧化碳,第二段变压吸附装置的吸附塔在一个循 环周期中依次经历吸附八、 一均降 E1 D、 二均降 E2D、 三均降 E3D、 逆放 BD、 抽 真空 VC、 三均升 E3R、 二均升 E2R、 一均升 E1 R、 最终升压 FR变压吸附工艺步 骤,第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的混合气主要为氮、 氢气产品, 其中还含有少量的一氧化碳和甲烷。 第二段变压吸附装置吸附塔逆 放 BD步骤和抽真空 VC步骤的气体全部返回第一段变压吸附装置已经完成和抽 真空 VC步骤的吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为产品二氧化碳纯度为 98% ( V ) , 二氧化碳回收率大于 99% ( V ) , 氢、 氮气和一氧化碳回收率大于 99. 9% (V ) , 产品氢、 氮气中二氧化碳 浓度小于 0. 2% ( V) , 吨氨电耗 95度(仪表和照明用电)。
对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为 0. 6MPa (G)、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 脱碳初始设备 投资可节约 12%。
本发明的实施例 6 :
本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 0. 6 MPa ( G ) ,产品二氧化碳的输送压力为 0. 005MPa。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, 6 台吸附塔组成第二段变压吸附装置, 运行单塔吸附三次均压程序。 本实施例第 一段变压吸附装置把二氧化碳提纯到 98% ( V ) 以上, 用于合成尿素, 第二段变 压吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压 吸附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 2% ( V ), 以满足合 成氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 两端八均降 2E8D'、 两端九均降 2E9D'、 两端十均降 2E10D'、 两端 i ^一均 降 2E1 1D'、 产品二氧化碳逆向降压 BD、 抽真空 VC、 二段气升压 2ER、 两端十一 均升 2E1 1R'、 两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R '、 七 均升 E7R、 六均升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 - 均升 E1R、 最终升压 FR变压吸附工艺步骤, 第一段变压吸附装置在产品二氧化 碳逆向降压 BD步骤和抽真空 VC步骤获得的气体即为产品二氧化碳, 第二段变 压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1 D、 二均降 E2D、 三均降 E3D、 逆放 BD、 抽真空 V (:、 三均升 E3R、 二均升 E2R、 一均升 E1 R、 最终升压 FR变压吸附工艺步骤,第二段变压吸附装置正处于吸附步骤的吸附塔 出口排出的混合气主要为氮、 氢气产品, 其中还含有少量的一氧化碳和甲烷。 第二段变压吸附装置吸附塔逆放 BD步骤和抽真空 VC步骤的气体全部返回第一 段变压吸附装置已经完成抽真空 VC的吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为产品二氧化碳纯度为 98% ( V ) , 二氧化碳、 氢、 氮气和一 氧化碳回收率大于 99. 9% ( V),产品氢、氮气中二氧化碳浓度小于 0. 2% ( V ), 吨 氨电耗 95度(仪表和照明用电)。
对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为 0. 6MPa ( G)、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 脱碳初始设备 投资可节约 7%。
本发明的实施例 7 :
本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 0. 8MPa ( G ) ,产品二氧化碳的输送压力为 0. 005MPa。
13台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1次均压程序, 7台 吸附塔组成第二段变压吸附装置, 运行单塔吸附四次均压程序。 本实施例第一 段变压吸附装置把二氧化碳提纯到 98% ( V ) 以上, 用于合成尿素, 第二段变压 吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压吸 附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 2% ( V ) , 以满足合成 氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 两端八均降 2E8D'、 两端九均降 2E9D'、 两端十均降 2E10D'、 两端 H ^—均 降 2E11D'、 产品二氧化碳降压 BD、 二段气升压 2ER、 两端十一均升 2E1 1R'、 两 端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R'、 七均升 E7R、 六均升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升 压 FR变压吸附工艺步骤, 第一段变压吸附装置在产品二氧化碳逆向降压 BD步 骤获得的气体即为产品二氧化碳, 第二段变压吸附装置的吸附塔在一个循环周 期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 逆 放 BD、 抽真空 VC、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1 R、 最终升 压 FR变压吸附工艺步骤,第二段变压吸附装置正处于吸附步骤的吸附塔出口排 出的混合气主要为氮、 氢气产品, 其中还含有少量的一氧化碳和甲烷。 第二段 变压吸附装置吸附塔逆放 BD步骤和抽真空 VC步骤的气体全部返回第一段变压 吸附装置已经完成产品二氧化碳逆向降压 BD的吸附塔进行升压,简称二段气升 压 2ER。
本实施例结果为产品二氧化碳纯度为 98% ( V ) , 二氧化碳、 氫、 氮气和一 氧化碳回收率大于 99. 9% ( V ) , 产品氢、氮气中二氧化碳浓度小于 0. 2% ( V ) , 吨 氨电耗 65度(仪表和照明用电)。
对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为 0. 8MPa ( G )、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 脱碳初始设备 投资可节约 7%。
本发明的实施例 8 :
本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 0. 6MPa ( G ) ,产品二氧化碳的输送压力为 0. 005MPa。
13台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1次均压程序, 台 吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序。 本实施例第一 段变压吸附装置把二氧化碳提纯到 98% ( V ) 以上, 用于合成尿素, 第二段变压 吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压吸 附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 2% ( V ), 以满足合成 氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1 D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 两端八均降 2E8D'、 两端九均降 2E9D'、 两端十均降 2E10D '、 两端" 1 -一均 降 2E11D'、 产品二氧化碳降压 BD、 抽真空 VC:、 二段气升压 2ER、 两端十一均升 2E11R'、 两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R'、 七均升 E7R、 六均升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1 R、 最终升压 FR变压吸附工艺步骤, 第一段变压吸附装置在产品二氧化碳逆 向降压 BD步骤和抽真空 VC获得的气体即为产品二氧化碳, 第二段变压吸附装 置的吸附塔在一个循环周期中依次经历吸附八、 一均降 E1 D、 二均降 E2D、 逆放 BD、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 第二段变压吸 附装置正处于吸附步骤的吸附塔出口排出的混合气主要为氮、 氢气产品, 其中 还含有少量的一氧化碳和甲垸。第二段变压吸附装置吸附塔逆放 BD步骤的气体 全部返回第一段变压吸附装置已经完成抽真空 VC步骤的吸附塔进行升压,简称 二段气升压 2ER。
本实施例结果为产品二氧化碳纯度为 98% ( V ) , 二氧化碳、 氢、 氮气和一 氧化碳回收率大于 99. 9% ( V ) ,产品氢、氮气中二氧化碳浓度小于 0. 8% ( V ), 吨 氨电耗 52度。
对于本实施例, 釆用本发明的特定吸附剂组合,在其它条件 (吸附压力为 0. 6MPa ( G)、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 脱碳初始设备 投资可节约 7%。
本发明的实施例 9 : 本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 0. 8 MPa (G ) ,产品二氧化碳的输送压力为 0. 005MPa。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, 5 台吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序。 本实施例第 一段变压吸附装置把二氧化碳提纯到 98% ( V ) 以上, 用于合成尿素, 第二段变 压吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压 吸附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 2% (V ) , 以满足合 成氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 两端一 均降 2E1D'、 两端二均降 2E2D'、 两端三均降 2E3D'、 两端四均降 2E4D'、 两端 五均降 2E5D'、 两端六均降 2E6D'、 两端七均降 2E7D'、 两端八均降 2E8D'、 两 端九均降 2E9D'、 两端十均降 2E10D'、 两端 H ^—均降 2E11D'、 产品二氧化逆向 降压 BD、 二段气升压 2ER、 两端 "一均升 2E11R'、 两端十均升 2E10F:'、 两端九 均升 2E9R'、 两端八均升 2E8R'、 两端七均升 2E7R'、 两端六均升 2E6R'、 两端 五均升 2E5R'、 两端四均升 2E4R'、 两端三均升 2E3R'、 两端二均升 2E2R '、 两 端一均升 2E1R'、 最终升压 FR变压吸附工艺步骤, 第一段变压吸附装置在产品 二氧化碳逆向降压 BD步骤获得的气体即为产品二氧化碳,第二段变压吸附装置 的吸附塔在一个循环周期中依次经历吸附 A、一均降 E1D、二均降 E2D、顺放 PP、 逆放 BD、 清洗 P、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 顺放 PP步骤放出的混合气通过流量调节直接去清洗已经完成逆放 BD步骤的吸 附塔,使其吸附剂上吸附的杂质解吸出来,第二段变压吸附装置正处于吸附步骤 的吸附塔出口排出的混合气主要为氮、 氢气产品, 其中还含有少量的一氧化碳 和甲垸。第二段变压吸附装置吸附塔逆放 BD步骤和清洗 P步骤的气体全部返回 第一段变压吸附装置已经完成产品二氧化碳 D 降压步骤的吸附塔进行升压,简 称二段气升压 2ER。
本实施例结果为产品二氧化碳纯度为 98% (V ) , 二氧化碳、 氢、 氮气和一 氧化碳回收率大于 99. 9% (V ) ,产品氢、氮气中二氧化碳浓度小于 0. 8% ( V ) , 吨 氨电耗 3度。
对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为
0. 8MPa (G)、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 吨氨电耗下降 30%,脱碳初始设备投资可节约 7%。
本发明的实施例 10 :
本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 0. 8MPa (G ) ,产品二氧化碳的输送压力为 0. 005MPa。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, 7 台吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序。 本实施例第 一段变压吸附装置把二氧化碳提纯到 98% ( V) 以上, 用于合成尿素, 第二段变 压吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压 吸附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 2% ( V ) , 以满足合 成氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 两端一 均降 2E1D'、 两端二均降 2E2D'、 两端三均降 2E3D'、 两端四均降 2E4D '、 两端 五均降 2E5D'、 两端六均降 2E6D'、 两端七均降 2E7D'、 两端八均降 2E8D'、 两 端九均降 2E9D'、 两端十均降 2E10D'、 两端" | -一均降 2E1 1D'、 产品二氧化碳逆 向降压 BD、 二段气升压 2ER、 两端 H ^—均升 2E9R'、 两端十均升 2E10R'、 两端 九均升 2E9R'、 两端八均升 2E8R'、 两端七均升 2E7R'、 两端六均升 2E6R'、 两 端五均升 2E5R'、 两端四均升 2E4R'、 两端三均升 2E3R'、 两端二均升 2E2R '、 两端一均升 2E1R'、 最终升压 FR变压吸附工艺步骤, 第一段变压吸附装置在产 品二氧化碳逆向降压 BD步骤获得的气体即为产品二氧化碳,第二段变压吸附装 置的吸附塔在一个循环周期中依次经历吸附八、 一均降 E1D、 二均降 E2D、 顺放 PP1、 顺放 PP2、 顺放 PP3、 逆放 BD、 清洗 Pl、 清洗 P2、 清洗 P3、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 顺放 PP1步骤放出的混合气通过 流量调节直接去清洗已经完成清洗 P2步骤的吸附塔,使其吸附剂上吸附的杂质 解吸出来, 顺放 PP2步骤放出的混合气通过流量调节直接去清洗己经完成清洗 P1步骤的吸附塔, 顺放 PP3步骤放出的混合气通过流量调节直接去清洗已经完 成逆放 BD 步骤的吸附塔,使其吸附剂上吸附的杂质解吸出来,第二段变压吸附 装置正处于吸附步骤的吸附塔出口排出的混合气主要为氮、 氢气产品, 其中还 含有少量的一氧化碳和甲烷。 第二段变压吸附装置吸附塔逆放 BD 步骤和清洗 Pl、 P2和 P3步骤的气体全部返回第一段变压吸附装置已经完成产品二氧化碳 逆向降压 BD步骤的吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为产品二氧化碳纯度为 98% ( V ) , 二氧化碳、 氢、 氮气和一 氧化碳回收率大于 99. 9% (V ) ,产品氢、氮气中二氧化碳浓度小于 0. 2% ( V ), 吨 氨电耗 2度。
对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为 0. 8MPa (G)、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 吨氨电耗下降 30%,脱碳初始设备投资可节约 7%。 本发明的实施例 11 :
' 本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 0. 9MPa ( G) ,产品二氧化碳的输送压力为 0. 005MPa。
5 13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, 7 台吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序。 本实施例第 一段变压吸附装置把二氧化碳提纯到 98% ( V ) 以上, 用于合成尿素, 第二段变 压吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压 吸附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 2% ( V), 以满足合
10 成氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 两端八均降 2E8D'、 两端九均降 2E9D'、 两端十均降 2E 10D'、 两端 H ""—均 降 2E1 1D'、产品二氧化碳逆向降压 BD、二段气升压 2ER、两端十一均升 2E1 1 R'、
15 两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R '、 七均升 E7R、 六均 升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E 1 R、 最终 升压 FR变压吸附工艺步骤, 第一段变压吸附装置在产品二氧化碳逆向降压 BD
, 步骤获得的气体即为产品二氧化碳,第二段变压吸附装置的吸附塔在一个循环 周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 顺放 PP1、 顺放 PP2、 顺放 0 PP3、 逆放 BD、 清洗 Pl、 清洗 P2、 清洗 P3、 二均升 E2R、 一均升 E1 R、 最终升 压 FR变压吸附工艺步骤,顺放 PP1步骤放出的混合气通过流量调节直接去清洗 已经完成清洗 P2步骤的吸附塔,使其吸附剂上吸附的杂质解吸出来, 顺放 PP2 步骤放出的混合气通过流量调节直接去清洗已经完成清洗 P1步骤的吸附塔, 顺 放 PP3步骤放出的混合气通过流量调节直接去清洗已经完成逆放 BD步骤的吸附 5 塔,使其吸附剂上吸附的杂质解吸出来,第二段变压吸附装置正处于吸附步骤的 吸附塔出口排出的混合气主要为氮、 氢气产品, 其中还含有少量的一氧化碳和
' 甲烷。第二段变压吸附装置吸附塔逆放 BD步骤和清洗 P l、 P2和 P3步骤的气体 全部返回第一段变压吸附装置已经完成产品二氧化碳 BD 降压步骤的吸附塔进 行升压,简称二段气升压 2ER。
0 本实施例结果为产品二氧化碳纯度为 98% (V ), 二氧化碳、 氢、 氮气和一 氧化碳回收率大于 99. 9% (V ) ,产品氢、氮气中二氧化碳浓度小于 0. 2% ( V ), 吨 氨电耗 2度。 、 对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为 0. 9MPa ( G)、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 5 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 吨氨电耗下降 30%,脱碳初始设备投资可节约 7%。
本发明的实施例 12 :
本例原料气是含氢混合气,如轻油造气、合成氨变换气、 合成气、合成氨弛 放气、 甲醇合成弛放气、 半水煤气、 水煤气及裂化干气等
本实施例的轻油造气组成如下:
Figure imgf000026_0002
40°C
Figure imgf000026_0001
第一段变压吸附气体分离装置吸附塔内由下到上装填的吸附剂依次为活性 氧化铝及细孔硅胶或活性氧化铝及活性炭或活性氧化铝、 活性炭及分子筛; 第 二段变压吸附气体分离装置, 吸附塔内装填的吸附剂为活性炭及分子筛或分子 筛。 本实施例是变压吸附制氢装置, 含氢混合气中,氢气是难吸附相组分,氢气 以外的组分为易吸附相组分,本实施例第一段变压吸附气体分离装置吸附塔出 口氢气控制在 80% ( V ) 以上, 并把易吸附相组分浓缩至 97% ( V ) 以上,使其氢 气含量小于 0. 6% ( V ) ,第二段变压吸附气体分离装置作用是把第一段变压吸附 气体分离装置出口气中的易吸附相组分进一步净化, 使第二段变压吸附气体分 离装置吸附塔上端出口的氢气浓度大于 99. 9% ( V ) , 以满足下一步工序的需要。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, 6 台吸附塔组成第二段变压吸附装置, 运行单塔吸附四次均压程序。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 两端一 均降 2E1D'、 两端二均降 2E2D'、 两端三均降 2E3D '、 两端四均降 2E4D'、 两端 五均降 2E5D '、 两端六均降 2E6D'、 两端七均降 2E7D '、 两端八均降 2E8D'、 两 端九均降 2E9D'、 两端十均降 2E10D'、 两端 H ^—均降 2E1 1D'、 逆向降压 BD、 二 段气升压 2ER、两端 H ^—均升 2E1 1R'、两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R'、两端七均升 2E7R'、两端六均升 2E6R '、 两端五均升 2E5R'、 两端四均升 2E4R '、两端三均升 2E3R'、 两端二均升 2E2R '、 两端一均升 2E1 R '、 最终升压 FR变压吸附工艺步骤, 第一段变压吸附装置在逆向降压 BD步骤的气 体放空或它用, 第二段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 逆放 BD、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 第二 段变压吸附装置正处于吸附步骤的吸附塔出口排出的产品气主要为氢气。 第二 段变压吸附装置吸附塔逆放 BD 步骤的气体全部返回第一段变压吸附装置已经 完成逆向降压 BD的吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为氢气浓度大于 99. 9% (V ) ,氢气回收率大于 99% ( V )。
本发明的实施例 13 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 1. 8MPa ( G)。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, 5 台吸附塔组成第二段变压吸附装置, 运行单塔吸附三次均压程序。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 两端一 均降 2E1D'、 两端二均降 2E2D'、 两端三均降 2E3D '、 两端四均降 2E4D '、 两端 五均降 2E5D'、 两端六均降 2E6D'、 两端七均降 2E7D '、 两端八均降 2E8D '、 两 端九均降 2E9D'、 两端十均降 2E10D'、 两端 H "—均降 2E1 1D'、 逆向降压 BD、 二 段气升压 2ER、 两端 H "—均升 2E11R'、两端十均升 2E10R '、 两端九均升 2E9R'、 两端八均升 2E8R'、两端七均升 2E7R'、两端六均升 2E6R'、 两端五均升 2E5R'、 两端四均升 2E4R'、两端三均升 2E3R'、两端二均升 2E2R'、 两端一均升 2E1 R '、 最终升压 FR变压吸附工艺步骤, 第一段变压吸附装置在逆向降压 BD步骤的气 体放空或它用, 第二段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 逆放 BD、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 第二段变压吸附装置正处于吸附 步骤的吸附塔出口排出的产品气主要为氢气。 第二段变压吸附装置吸附塔逆放 BD步骤的气体全部返回第一段变压吸附装置已经完成逆向降压 BD的吸附塔进 行升压,简称二段气升压 2ER。
本实施例结果为氢气浓度大于 99% ( V ) ,氢气回收率大于 98% ( V)。
本发明的实施例 14 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 3. OMPa ( G)。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, 6 台吸附塔组成第二段变压吸附装置, 运行单塔吸附四次均压程序。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降
E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 两端八均降 2E8D '、 两端九均降 2E9D'、 两端十均降 2E10D'、 两端 H "―均 降 2E1 1D '、 逆向降压 BD、 二段气升压 2ER、 两端 H ^—均升 2E1 1 R '、 两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R'、 七均升 E7R、 六均升 E6R、 五 均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1 R、 最终升压 FR变 压吸附工艺步骤,第一段变压吸附装置在逆向降压 BD步骤获得的气体放空或它 用, 第二段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 逆放 BD、 四均升 E4R、三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 第二段变压吸附装 置正处于吸附步骤的吸附塔出口排出的产品气主要为氢气。 第二段变压吸附装 置吸附塔逆放 BD 步骤的气体全部返回第一段变压吸附装置已经完成逆向降压 BD的吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为氢气浓度大于 99. 9% ( V ) ,氢气回收率大于 99% ( V )。
本发明的实施例 15 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 1. 8MPa ( G)。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, 5 台吸附塔组成第二段变压吸附装置, 运行单塔吸附三次均压程序。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降
E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 两端八均降 2E8D'、 两端九均降 2E9D'、 两端十均降 2E10D'、 两端 H ^—均 降 2E1 1D '、 逆向降压 BD、 二段气升压 2ER、 两端十一均升 2E1 1 R'、 两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R'、 七均升 E7R、 六均升 E6R、 五 均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E 1 R、 最终升压 FR变 压吸附工艺步骤,第一段变压吸附装置在逆向降压 BD步骤获得的气体放空或它 用, 第二段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1 D、 二均降 E2D、三均降 E3D、逆放 BD、 三均升 E3R、 二均升 E2R、 一均升 E1 R、 最终升压 FR变压吸附工艺步骤,第二段变压吸附装置正处于吸附步骤的吸附塔 出口排出的产品气主要为氢气。第二段变压吸附装置吸附塔逆放 BD步骤的气体 全部返回第一段变压吸附装置已经完成逆向降压 BD的吸附塔进行升压,简称二 段气升压 2ER。
本实施例结果为氢气浓度大于 99% ( V ) ,氢气回收率大于 98% ( V)。
本发明的实施例 16 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 0. 5MPa ( G )。
12 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 10 次均压程序, 5 台吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 两端一 均降 2E1D'、 两端二均降 2E2D'、 两端三均降 2E3D'、 两端四均降 2E4D '、 两端 五均降 2E5D'、 两端六均降 2E6D'、 两端七均降 2E7D '、 两端八均降 2E8D '、 两 端九均降 2E9D'、 两端十均降 2E10D'、 逆向降压 BD、 抽真空 VC:、 二段气升压 2ER、 两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R'、 两端七均升 2E7R'、 两端六均升 2E6R'、 两端五均升 2E5R'、 两端四均升 2E4R '、 两端三均 升 2E3R'、 两端二均升 2E2R'、 两端一均升 2E1 R'、 最终升压 FR变压吸附工艺 步骤,第一段变压吸附装置在逆向降压 BD步骤获得的气体放空或它用,第二段 变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、一均降 E1D、二均降 E2D、 逆放 BD、 抽真空 VC、 二均升 E2R、 一均升 E1 R、 最终升压 FR变压吸附工 艺步骤, 第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的产品气主要 为氢气。 第二段变压吸附装置吸附塔逆放 BD步骤和抽真空 VC步骤的气体全部 返回第一段变压吸附装置己经完成逆向降压 BD的吸附塔进行升压,简称二段气 升压 2ER。
本实施例结果为氢气浓度大于 99% (V) ,氢气回收率大于 99. 5% (V)o 本发明的实施例 17 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 0. 5MPa (G)。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 11 次均压程序, 5 台吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 两端八均降 2E8D'、 两端九均降 2E9D'、 两端十均降 2E10D'、 两端十一均 降 2E11D'、 逆向降压 BD、 抽真空 VC、 二段气升压 2ER、 两端 H ~—均升 2E1 1 R'、 两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R '、 七均升 E7R、 六均 升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1 R、 最终 升压 FR变压吸附工艺步骤, 第一段变压吸附装置在逆向降压 BD步骤获得的气 体放空或它用, 第二段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 逆放 BD、 抽真空 VC、 二均升 E2R、 一均升 E1 R、 最终升压 FR变压吸附工艺步骤,第二段变压吸附装置正处于吸附步骤的吸附塔 出口排出的产品气主要为氢气。第二段变压吸附装置吸附塔逆放 BD步骤的气体 全部返回第一段变压吸附装置已经完成逆向降压 BD和抽真空 VC的吸附塔进行 升压,简称二段气升压 2ER。
本实施例结果为氢气浓度大于 99% ( V ) ,氢气回收率大于 99. 5% ( V)。
本发明的实施例 18 : 本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 0. 5MPa (G)。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, 7 台吸附塔组成第二段变压吸附装置, 运行单塔吸附四次均压程序
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 两端八均降 2E8D'、 两端九均降 2E9D'、 两端十均降 2E10D'、 两端 H ""—均 降 2E11D'、 逆向降压 BD、 抽真空 VC、 二段气升压 2ER、 两端 H "—均升 2E11 R'、 两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R'、 七均升 E7R、 六均 升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终 升压 FR变压吸附工艺步骤, 第一段变压吸附装置在逆向降压 BD步骤获得的气 体放空或它用, 第二段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 逆放 BD、 抽真空 VC、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺 步骤, 第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的产品气主要为 氢气。第二段变压吸附装置吸附塔逆放 BD步骤的气体全部返回第一段变压吸附 • 装置己经完成逆向降压 BD和抽真空 VC步骤的吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为氢气浓度大于 99% (V) ,氢气回收率大于 99. 5% ( V )。
本发明的实施例 19 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 0. 5MPa (G)。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, 4 台吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 两端八均降 2E8D'、 两端九均降 2E9D'、 两端十均降 2E10D'、 两端 H ^—均 降 2E1 1D'、 逆向降压 BD、 抽真空 VC、 二段气升压 2ER、 两端 H ""—均升 2E11R'、 两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R'、 七均升 E7R、 六均 升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终 升压 FR变压吸附工艺步骤, 第一段变压吸附装置在逆向降压 BD步骤获得的气 体放空或它用, 第二段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 逆放 BD、 二均升 E2R、 一均升 E1R、 最终升压 FR 变压吸附工艺步骤, 第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的 产品气主要为氢气。第二段变压吸附装置吸附塔逆放 BD步骤的气体全部返回第 一段变压吸附装置已经完成逆向降压 BD 的吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为氢气浓度大于 99% (V) ,氢气回收率大于 99. 5% ( V )。
本发明的实施例 20 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 0. 8MPa ( G)。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 U 次均压程序, 5 台吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降
E1E 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 两端八均降 2E8D'、 两端九均降 2E9D'、 两端十均降 2E10D'、 两端十一均 降 2E1 1D'、 逆向降压 BD、 抽真空 VC、 二段气升压 2ER、 两端 ""一均升 2E1 1 R'、 两端十均升 2E10R '、 两端九均升 2E9R'、 两端八均升 2E8R '、 七均升 E7R、 六均 升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终 升压 FR变压吸附工艺步骤, 第一段变压吸附装置在逆向降压 BD步骤获得的气 体放空或它用, 第二段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1 D、 二均降 E2D、 顺放 PP、 逆放 BD、 清洗 P、 二均升 E2R、 一均升 E1 R、最终升压 FR变压吸附工艺步骤,顺放 PP歩骤放出的混合气通过流量调节 直接去清洗已经完成逆放 BD步骤的吸附塔,使其吸附剂上吸附的杂质解吸出来, 第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的产品气主要为氢气。 第二段变压吸附装置吸附塔逆放 BD 步骤的气体全部返回第一段变压吸附装置 已经完成逆向降压 BD 和抽真空 VC 步骤的吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为氢气浓度大于 99. 9% ( V ) ,氢气回收率大于 99. 8% ( V ) o 本发明的实施例 21 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 0· 8MPa ( G )。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, 7 台吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 两端一 均降 2E1 D '、 两端二均降 2E2D '、 两端三均降 2E3D'、 两端四均降 2E4D'、 两端 五均降 2E5D'、 两端六均降 2E6D'、 两端七均降 2E7D'、 两端八均降 2E8D'、 两 端九均降 2E9D'、两端十均降 2E10D'、两端 H ^—均降 2E1 1D'、产品逆向降压 BD、 二段气升压 2ER、两端 "一均升 2E9R'、两端十均升 2E10R'、两端九均升 2E9R'、 两端八均升 2E8R'、 两端七均升 2E7R'、两端六均升 2E6R'、 两端五均升 2E5R'、 两端四均升 2E4R'、 两端三均升 2E3R'、两端二均升 2E2R'、 两端一均升 2E1 R'、 最终升压 FR变压吸附工艺步骤, 第一段变压吸附装置在逆向降压 BD步骤获得 的气体放空或它用,第二段变压吸附装置的吸附塔在一个循环周期中依次经历 吸附 A、 一均降 E1D、 二均降 E2D、 顺放 PP1、 顺放 PP2、 顺放 PP3、 逆放 BD、 清洗 Pl、 清洗 P2、 清洗 · Ρ3、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附 工艺步骤, 顺放 PP1步骤放出的混合气通过流量调节直接去清洗已经完成清洗 P2步骤的吸附塔,使其吸附剂上吸附的杂质解吸出来, 顺放 PP2步骤放出的混 合气通过流量调节直接去清洗已经完成清洗 P1步骤的吸附塔, 顺放 PP3步骤放 出的混合气通过流量调节直接去清洗已经完成逆放 BD步骤的吸附塔,使其吸附 剂上吸附的杂质解吸出来,第二段变压吸附装置正处于吸附步骤的吸附塔出口 排出的产品气主要为氢气。第二段变压吸附装置吸附塔逆放 BD步骤的气体全部 返回第一段变压吸附装置己经完成逆向降压 BD和抽真空 VC步骤的吸附塔进行 升压,简称二段气升压 2ER。
本实施例结果为氢气浓度大于 99. 9% (V ) ,氢气回收率大于 99. 8% ( V )。 本发明的实施例 22 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 0. 9MPa (G)。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 11 次均压程序, 7 台吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降
E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 两端八均降 2E8D'、 两端九均降 2E9D'、 两端十均降 2E10D'、 两端 -一均 降 2E11D'、 逆向降压 BD、 二段气升压 2ER、 两端 H ""—均升 2E11R'、 两端十均升 2E10R'、 两端九均升 2E9R'、 两端八均升 2E8R'、 七均升 E7R、 六均升 E6R、 五 均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR变 压吸附工艺步骤,第一段变压吸附装置在逆向降压 BD步骤获得的气体放空或它 用, 第二段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 顺放 PP1、 顺放 PP2、 顺放 PP3、 逆放 BD、 清洗 Pl、 清洗 P2、 清洗 P3、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 顺放 PP1 步骤放出的混合气通过流量调节直接去清洗已经完成清洗 P2步骤的吸附塔,使 其吸附剂上吸附的杂质解吸出来, 顺放 PP2步骤放出的混合气通过流量调节直 接去清洗己经完成清洗 P1步骤的吸附塔, 顺放 PP3步骤放出的混合气通过流量 调节直接去清洗已经完成逆放 BD步骤的吸附塔,使其吸附剂上吸附的杂质解吸 出来,第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的产品气主要为 氢气。第二段变压吸附装置吸附塔逆放 BD步骤的气体全部返回第一段变压吸附 装置已经完成逆向降压 BD和抽真空 VC步骤的吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为氢气浓度大于 99. 9°/。 ( V ) ,氢气回收率大于 99. 8% ( V )。 本发明的实施例 23 :
本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 3. 0 MPa ( G ) ,产品二氧化^的输送压力为 0. 005MPa。
12 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 10 次均压程序, 8 台吸附塔组成第二段变压吸附装置, 运行单塔吸附六次均压程序。 本实施例第 一段变压吸附装置把二氧化碳提纯到 98. 5% ( V ) 以上, 用于合成尿素, 第二段 变压吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变 压吸附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 2% ( V), 以满足 合成氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1 D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 八均降 E8D、 九均降 E9D、 十均降 E10D、 逆向降压一 BD1、 产品二氧化碳 逆向降压二 BD2、一段气升压 2ER1、二段气升压 2ER、十均升 E10R、九均升 E9R、 八均升 E8R、 七均升 E7R、 六均升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、一均升 E1R、最终升压 FR变压吸附工艺步骤,十均降 E10D结束后, 吸附塔顶部二氧化碳组分浓度大于 70V%;逆向降压一 BD1 结束后吸附塔底部二 氧化碳组分浓度大于 75W。,逆向降压一 BD1步骤的气体返回第一段变压吸附气 体分离装置从底部对吸附塔进行升压,第一段变压吸附装置在产品二氧化碳逆 向降压二 BD2步骤获得的气体即为产品二氧化碳, 第二段变压吸附装置的吸附 塔在一个循环周期中依次经历吸附 A、 一均降 E1 D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 逆放 BD、 六均升 E6R、 五均升 E5R、 四 均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步 骤,第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的混合气主要为氮、 氢气产品, 其中还含有少量的一氧化碳和甲烷。 第二段变压吸附装置吸附塔逆 放 BD 步骤的气体全部返回第一段变压吸附装置已经完成产品二氧化碳逆向降 压二 BD2的吸附塔进行升压,简称二段气升压 2ER。 本实施例结果为产品二氧化碳纯度为 98. 5% ( V ) , 二氧化碳、 氢、 氮气和 一氧化碳回收率大于 99. 9% ( V ) , 产品氢、氮气中二氧化碳浓度小于 0. 2% ( V ) , 吨氨电耗 2度(仪表和照明用电)。
对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为 3. OMPa (G)、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 脱碳初始设备 投资可节约 7%。
本发明的实施例 24 :
本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 0. 7 MPa ( G ) ,产品二氧化碳的输送压力为 0. 005MPa。
12台吸附塔组成第一段变压吸附装置, 运行单塔吸附 10次均压程序, 6台 吸附塔组成第二段变压吸附装置, 运行单塔吸附三次均压程序。 本实施例第一 段变压吸附装置把二氧化碳提纯到 98% ( V ) 以上, 用于合成尿素, 第二段变压 吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压吸 附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 2% ( V ), 以满足合成 氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降
E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 八均降 E8D、 九均降 E9D、 十均降 E10D、 逆向降压一 BD1、 产品二氧化碳 逆向降压二 BD2、抽真空 V (:、一段气升压 2ER1、二段气升压 2ER、十均升 E10R、 九均升 E9R、 八均升 E8R、 七均升 E7R、 六均升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺歩骤, 十均 降 E10D结束后,吸附塔顶部二氧化碳组分浓度大于 70V%;逆向降压一 BD1结束 后吸附塔底部二氧化碳组分浓度大于 75V%,逆向降压一 BD1步骤的气体返回第 一段变压吸附气体分离装置从底部对吸附塔进行升压,第一段变压吸附装置在 产品二氧化碳逆向降压二 BD2和抽真空 VC步骤获得的气体即为产品二氧化碳, 第一段变压吸附装置在产品二氧化碳逆向降压二 BD2步骤和抽真空 VC步骤获得 的气体即为产品二氧化碳, 第二段变压吸附装置的吸附塔在一个循环周期中依 次经历吸附 A、 一均降 E1 D、 二均降 E2D、 三均降 E3D、 逆放 BD、 抽真空 VC;、 三 均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 第二段 变压吸附装置正处于吸附步骤的吸附塔出口排出的混合气主要为氮、氢气产品, 其中还含有少量的一氧化碳和甲垸。第二段变压吸附装置吸附塔逆放 BD步骤和 抽真空 VC步骤的气体全部返回第一段变压吸附装置已经完成和抽真空 VC步骤 的吸附塔进行升压,简称二段气升压 2ER。 ' 本实施例结果为产品二氧化碳纯度为 98% (V), 二氧化碳回收率大于 99%
(V), 氫、 氮气和一氧化碳回收率大于 99.9% (V), 产品氢、 氮气中二氧化碳 浓度小于 0.2% (V) , 吨氨电耗 95度(仪表和照明用电)。
对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为 5 0.6MPa (G)、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 脱碳初始设备 投资可节约 12%。
本发明的实施例 25:
本实施例的变换气组成、 温度,、 吸附剂种类、 动力设备性能、 仪器仪表及 0 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 0.8MPa (G) ,产品二氧化碳的输送压力为 0.005MPa。
13台吸附塔组成第一段变压吸附装置, 运行单塔吸附 11次均压程序, 7台 吸附塔组成第二段变压吸附装置, 运行单塔吸附四次均压程序。 本实施例第一 段变压吸附装置把二氧化碳提纯到 98% (V) 以上, 用于合成尿素, 第二段变压 5 吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压吸 附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0.2°/。(V), 以满足合成 氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 0 E7D、 八均降 E8D、'九均降 E9D、 十均降 E10D、 H "一均降 E11D、 逆向降压一 ·Βϋ1、 产品二氧化碳逆向降压二 BD2、 一段气升压 2ER1、 二段气升压 2ER、 H ^一均升 E11R、 十均升 E10R、 九均升 E9R、 八均升 E8R、 七均升 E7R、 六均升 E6R、 五均 升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR变压 吸附工艺步骤,十一均降 E11D结束后,吸附塔顶部二氧化碳组分浓度大于 70V%; 5 逆向降压一 BD1结束后吸附塔底部二氧化碳组分浓度大于 75V%,逆向降压一 BD1 步骤的气体返回第一段变压吸附气体分离装置从底部对吸附塔进行升压,第一 段变压吸附装置在产品二氧化碳逆向降压二 BD2步骤获得的气体即为产品二氧 化碳, 第二段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均 降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 逆放 BD、 抽真空 VC、 四均升 0 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的混合气主要为氮、 氢 气产品, 其中还含有少量的一氧化碳和甲烷。 第二段变压吸附装置吸附塔逆放 BD步骤和抽真空 VC步骤的气体全部返回第一段变压吸附装置已经完成产品二 " 氧化碳逆向降压 BD的吸附塔进行升压,简称二段气升压 2ER。
5 本实施例结果为产品二氧化碳纯度为 98% (V), 二氧化碳、 氢、 氮气和一 氧化碳回收率大于 99. 9% (V),产品氢、氮气中二氧化碳浓度小于 0. 2% ( V ) , 吨 氨电耗 65度(仪表和照明用电)。
对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为 0. 8MPa ( G )、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控闽及液压系统结构和寿命) 相同的情况下, 脱碳初始设备 投资可节约 7%。
本发明的实施例 26 : '
本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阔及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 0. 6MPa ( G ) ,产品二氧化碳的输送压力为 0. 005MPa。
13台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1次均压程序, 4台 吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序。 本实施例第一 段变压吸附装置把二氧化碳提纯到 98% ( V ) 以上, 用于合成尿素, 第二段变压 吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压吸 附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 2% ( V ) , 以满足合成 氨下一步工序的需要。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1 D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 八均降 E8D、 九均降 E9D、 十均降 E10D、 H ^一均降 E1 1 D、 逆向降压一 BD1、 产品二氧化碳逆向降压二 BD2、抽真空 VC、 一段气升压 2ER1、 二段气升压 2ER、 -\ ^一均升 E1 1R、 十均升 E10R、 九均升 E9R、 八均升 E8R、 七均升 E7R、 六均升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升 压 FR变压吸附工艺步骤,十均降 E10D结束后,吸附塔顶部二氧化碳组分浓度大 于 70V%;逆向降压一 BD1结束后吸附塔底部二氧化碳组分浓度大于 75V%,逆向降 压一 BD1步骤的气体返回第一段变压吸附气体分离装置从底部对吸附塔进行升 压,第一段变压吸附装置在产品二氧化碳逆向降压二 BD2步骤和抽真空 VC步骤 获得的气体即为产品二氧化碳, 第二段变压吸附装置的吸附塔在一个循环周期 中依次经历吸附 A、一均降 E1D、二均降 E2D、逆放 BD、二均升 E2R、一均升 E 1 R、 最终升压 变压吸附工艺步骤,第二段变压吸附装置正处于吸附步骤的吸附塔 出口排出的混合气主要为氮、 氢气产品, 其中还含有少量的一氧化碳和甲烷。 第二段变压吸附装置吸附塔逆放 BD 步骤的气体全部返回第一段变压吸附装置 己经完成抽真空 VC步骤的吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为产品二氧化碳纯度为 98% ( V ), 二氧化碳、 氢、 氮气和一 氧化碳回收率大于 99. 9% ( V), 产品氢、氮气中二氧化碳浓度小于 0. 8% ( V ) , 吨 氨电耗 52度。 对于本实施例, 采用本发明的特定吸附剂组合,在其它条件 (吸附压力为
0. 6MPa ( G )、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 脱碳初始设备 投资可节约 7%。
5 本发明的实施例 27 :
本实施例的变换气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命等条件与实施例 1完全一致, 本 实施例的吸附压力为 0. 9MPa ( G ) ,产品二氧化碳的输送压力为 0. 005MPa。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, Ί
10 台吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序。 本实施例第 一段变压吸附装置把二氧化碳提纯到 98% ( V ) 以上, 用于合成尿素, 第二段变 压吸附装置作用是把第一段变压吸附装置的出口气进一步净化, 使第二段变压 吸附装置吸附塔上端出口的氢、 氮气中二氧化碳浓度小于 0. 2% ( V ) , 以满足合 成氨下一步工序的需要。
15 第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降
E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 八均降 E8D、 九均降 E9D、 十均降 E10D、 -| "-一均降 E11D、 逆向降压一 BD1、 产品二氧化碳逆向降压二 BD2、 一段气升压 2ER1、 二段气升压 2ER、 十一均升 E1 1R、 十均升 E10R、 九均升 E9R、 八均升 E8R、 七均升 E7R、 六均升 E6R、 五均 0 升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1 R、 最终升压 FR变压 吸附工艺步骤,十一均降 E1 1D结束后,吸附塔顶部二氧化碳组分浓度大于 70V% ; 逆向降压一 BD1结束后吸附塔底部二氧化碳组分浓度大于 75V%,逆向降压一 BD 1
- 步骤的气体返回第一段变压吸附气体分离装置从底部对吸附塔进行升压,第一 段变压吸附装置在产品二氧化碳逆向降压二 BD2步骤获得的气体即为产品二氧 5 化碳, 第二段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均 降 E1D、 二均降 E2D、 顺放 PP1、 顺放 PP2、 顺放 PP3、 逆放 BD、 清洗 Pl、 清洗 P2、 清洗 P3、 二均升 E2R、 一均升 E1 R、 最终升压 FR变压吸附工艺步骤, 顺放 PP1步骤放出的混合气通过流量调节直接去清洗已经完成清洗 P2步骤的吸附塔, 使其吸附剂上吸附的杂质解吸出来, 顺放 PP2步骤放出的混合气通过流量调节 0 直接去清洗己经完成清洗 P 1步骤的吸附塔, 顺放 PP3步骤放出的混合气通过流 量调节直接去清洗已经完成逆放 BD步骤的吸附塔,使其吸附剂上吸附的杂质解
' 吸出来,第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的混合气主要 为氮、 氢气产品, 其中还含有少量的一氧化碳和甲垸。 第二段变压吸附装置吸 附塔逆放 BD步骤和清洗 P1、P2和 P3步骤的气体全部返回第一段变压吸附装置 5 已经完成产品二氧化碳逆向降压二 BD2 步骤的吸附塔进行升压,简称二段气升 压 2ER。
本实施例结果为产品二氧化碳纯度为 98% ( V ) , 二氧化碳、 氢、 氮气和一 氧化碳回收率大于 99. 9% ( V ) ,产品氢、氮气中二氧化碳浓度小于 0. 2% ( V ), 吨 氨电耗 2度。
对于本实施例, 釆用本发明的特定吸附剂组合,在其它条件 (吸附压力为
0. 9MPa (G)、 变换气组成及温度、 吸附循环时间、 动力设备性能、 仪器仪表及 控制功能、 专用程控阀及液压系统结构和寿命) 相同的情况下, 吨氨电耗下降 30%,脱碳初始设备投资可节约 7%。
本发明的实施例 28 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 3. 0MPa ( G)。
12 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 10 次均压程序, 8 台吸附塔组成第二段变压吸附装置, 运行单塔吸附六次均压程序
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降
E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、八均降 E8D、九均降 E9D、十均降 E10D、逆向降压一 BD1、逆向降压二 BD2、 一段气升压 2ER1、 二段气升压 2ER、 十均升 E10R、 九均升 E9R、 八均升 E8R、 七均升 E7R、 六均升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 十均降 E10D结束后,吸附塔顶部 易吸附相组分浓度大于 70W。;逆向降压一 BD1 结束后吸附塔底部易吸附相组分 浓度大于 75V%,逆向降压一 BD1步骤的气体返回第一段变压吸附气体分离装置 从底部对吸附塔进行升压, 逆向降压二 BD2的气体放空或它用,第二段变压吸附 装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1 D、 二均降 E2D、 三 均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 逆放 BD、 六均升 E6R、 五均 升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1 R、 最终升压 FR变压 吸附工艺步骤, 第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的产品 气主要为氢气。第二段变压吸附装置吸附塔逆放 BD步骤的气体全部返回第一段 变压吸附装置己经完成逆向降压二 BD2 步骤的吸附塔进行升压,简称二段气升 压 2ER。
本实施例结果为氢气浓度大于 99. 9% ( V ) ,氢气回收率大于 99. 8% ( V )。 本发明的实施例 29 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 0. 7MPa ( G)。 12 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 10 次均压程序, 6 台吸附塔组成第二段变压吸附装置, 运行单塔吸附三次均压程序
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、八均降 E8D、九均降 E9D、十均降 E10D、逆向降压一 BD1、逆向降压二 BD2、 抽真空 VC、 一段气升压 2ER1、 二段气升压 2ER、 十均升 E10R、 九均升 E9R、 八 均升 E8R、 七均升 E7R、 六均升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二 均升 E2R、一均升 E1 R、最终升压 FR变压吸附工艺步骤,十均降 E10D结束后, 吸 附塔顶部易吸附相组分浓度大于 70V%;逆向降压一 BD1结束后吸附塔底部易吸 附相组分浓度大于 75V%,逆向降压一 BD1步骤的气体返回第一段变压吸附气体 分离装置从底部对吸附塔进行升压, 逆向降压二 BD2的气体放空或它用,第二段 变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、一均降 E1D、二均降 E2D、 三均降 E3D、 逆放 BD、 抽真空 VC、 三均升 E3R、 二均升 E2R、 一均升 E 1 R、 最终升压 FR变压吸附工艺步骤,第二段变压吸附装置正处于吸附步骤的吸附塔 出口排出的产品气主要为氢气。第二段变压吸附装置吸附塔逆放 BD步骤的气体 全部返回第一段变压吸附装置已经完成抽真空 VC步骤的吸附塔进行升压,简称 二段气升压 2ER。
本实施例结果为氢气浓度大于 99. 9% ( V ) ,氢气回收率大于 99. 9°/。 (V)。 本发明的实施例 30 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 0. 8MPa ( G)。
13 台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1 次均压程序, 7 台吸附塔组成第二段变压吸附装置, 运行单塔吸附四次均压程序
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降
E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 八均降 E8D、 九均降 E9D、 十均降 E10D、 ~\ ""一均降 E1 1D、 逆向降压一 BD1、 逆向降压二 BD2、 一段气升压 2ER1、 二段气升压 2ER、 H ""一均升 E1 1 R、 十均升 E 10R、 九均升 E9R、 八均升 E8R、 七均升 E7R、 六均升 E6R、 五均升 E5R、 四均 升 E4R、三均升 E3R、二均升 E2R、一均升 E1 R、最终升压 FR变压吸附工艺步骤, 十一均降 E1 1D 结束后, 吸附塔顶部易吸附相组分浓度大于 70V%;逆向降压一 BD1结束后吸附塔底部易吸附相组分浓度大于 75V%,逆向降压一 BD1步骤的气体 返回第一段变压吸附气体分离装置从底部对吸附塔进行升压, 逆向降压二 BD2 的气体放空或它用,第二段变压吸附装置的吸附塔在一个循环周期中依次经历 吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 逆放 BD、 抽真空 VC;、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1 R、 最终升压 FR变压吸附 工艺步骤, 第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的产品气主 要为氢气。第二段变压吸附装置吸附塔逆放 BD步骤的气体全部返回第一段变压 吸附装置己经完成逆向降压二 BD2 步骤的吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为氢气浓度大于 99. 9% ( V ) ,氢气回收率大于 99. 9% ( V )。 本发明的实施例 31 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阀及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 0. 6MPa ( G)。
13台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1次均压程序, 4台 吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1 D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、八均降 E8D、 九均降 E9D、 十均降 E10D、 H -一均降 E1 1 D、 逆向降压一 BD1、 产品二氧化碳逆向降压二 BD2、 抽真空 VC、 一段气升压 2ER1、 二段气升压 2ER、 H "一均升 E11 R、 十均升 E10R、 九均升 E9R、 八均升 E8R、 七均升 E7R、 六均升 E6R、 五均升 E5R、 四均升 E4R、 三均升 E3R、 二均升 E2R、 一均升 E1 R、 最终升 压 FR变压吸附工艺步骤, 十一均降 E1 1D结束后, 吸附塔顶部易吸附相组分浓 度大于 70V%;逆向降压一 BD1 结束后吸附塔底部易吸附相组分浓度大于 75V%, 逆向降压一 BD1步骤的气体返回第一段变压吸附气体分离装置从底部对吸附塔 进行升压, 逆向降压二 BD2的气体放空或它用,第二段变压吸附装置的吸附塔在 一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 逆放 BD、 二均升 E2R、 一均升 E1 R、 最终升压 FR变压吸附工艺步骤, 第二段变压吸附装置正处 于吸附步骤的吸附塔出口排出的产品气主要为氢气。 第二段变压吸附装置吸附 塔逆放 BD步骤的气体全部返回第一段变压吸附装置己经完成抽真空 VC步骤的 吸附塔进行升压,简称二段气升压 2ER。
本实施例结果为氢气浓度大于 99. 9% ( V ) ,氢气回收率大于 99. 9% ( V )。 本发明的实施例 32 :
本实施例的原料气组成、 温度、 吸附剂种类、 动力设备性能、 仪器仪表及 控制功能、专用程控阔及液压系统结构和寿命等条件与实施例 12完全一致,本 实施例的吸附压力为 0. 6MPa ( G)。
13台吸附塔组成第一段变压吸附装置, 运行单塔吸附 1 1次均压程序, 7台 吸附塔组成第二段变压吸附装置, 运行单塔吸附两次均压程序。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 三均降 E3D、 四均降 E4D、 五均降 E5D、 六均降 E6D、 七均降 E7D、 八均降 E8D、 九均降 E9D、 十均降 E10D、 -\ "一均降 E11D、 逆向降压一 ' BD1、 逆向降压二 BD2、 一段气升压 2ER1、 二段气升压 2ER、 i ^一均升 E11R、 十均升 E10R、 九均升 E9R、 八均升 E8R、 七均升 E7R、 六均升 E6R、 五均升 E5R、 四均 升 E4R、三均升 E3R、二均升 E2R、一均升 E1R、最终升压 FR变压吸附工艺步骤, 十一均降 E11D 结束后, 吸附塔顶部易吸附相组分浓度大于 70V%;逆向降压一 BD1结束后吸附塔底部易吸附相组分浓度大于 75V%,逆向降压一 BD1步骤的气体 返回第一段变压吸附气体分离装置从底部对吸附塔进行升压, 逆向降压二 BD2 的气体放空或它用,第二段变压吸附装置的吸附塔在一个循环周期中依次经历 吸附 A、 一均降 E1D、 二均降 E2D、 顺放 PP1、 顺放 PP2、 顺放 PP3、 逆放 BD、 清洗 Pl、 清洗 P2、 清洗 P3、 二均升 E2R、 一均升 E 1R、 最终升压 FR变压吸附 工艺步骤, 顺放 PP1步骤放出的混合气通过流量调节直接去清洗已经完成清洗 P2步骤的吸附塔,使其吸附剂上吸附的杂质解吸出来, 顺放 PP2步骤放出的混 合气通过流量调节直接去清洗己经完成清洗 P1步骤的吸附塔, 顺放 PP3步骤放 出的混合气通过流量调节直接去清洗己经完成逆放 BD步骤的吸附塔,使其吸附 剂上吸附的杂质解吸出来, 第二段变压吸附装置正处于吸附步骤的吸附塔出口 排出的产品气主要为氢气。第二段变压吸附装置吸附塔逆放 BD步骤的气体全部 返回第一段变压吸附装置已经完成逆向降压二 BD2 步骤的吸附塔进行升压,简 称二段气升压 2ER。
本实施例结果为氢气浓度大于 99. 9% ( V) ,氢气回收率大于 99. 8% ( V )。 本发明的实施例 33 :
本例原料气是空气。
本实施例的空气组成如下:
Figure imgf000041_0001
温度: 40°C
压力: 0. 15MPa (G) 第一段变压吸附气体分离装置吸附塔内由下到上装填的吸附剂依次为活性 氧化铝及及分子筛; 第二段变压吸附气体分离装置, 吸附塔内装填的吸附剂为 分子筛。本实施例是变压吸附制氧装置, 在空气中,氧气和氩气是难吸附相组分, 氮气和水(汽)为易吸附相组分,本实施例第一段变压吸附气体分离装置吸附塔 出口氮气控制在 78% ( V ) (实际操作中,也可在 30〜78V%之间调节), 第二段变 压吸附气体分离装置作用是把第一段变压吸附气体分离装置出口气中的氮气进 一步净化, 使第二段变压吸附气体分离装置吸附塔上端出口的氧气浓度大于 93% ( V), 最高可到 95V%,以满足下一步工序的需要。
7台吸附塔组成第一段变压吸附装置,运行单塔吸附 4次均压程序, 4台吸 附塔组成第二段变压吸附装置, 运行单塔吸附 1次均压程序。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 两端一 均降 2E1D'、 两端二均降 2E2D'、 两端三均降 2E3D '、 两端四均降 2E4D '、 抽真 空 VC、 二段气升压 2ER、 两端四均升 2E4R'、 两端三均升 2E3R '、 两端二均升 2E2R'、 两端一均升 2E1R'、 最终升压 FR变压吸附工艺步骤, 第二段变压吸附 装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E 1 D、 逆向降压 BD、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 逆向降压 BD步骤的气体进入第 一段变压吸附装置吸附塔对已经完成抽真空 VC的吸附塔进行升压,第二段变压 吸附装置正处于吸附步骤的吸附塔出口排出的产品气主要为氧气和少量的氩 气。
本实施例结果为氧气浓度大于 93% ( V ) , 氮气浓度大于 99°/。 ( V ) ,氧气回 收率大于 96. 2% ( V)。
本发明的实施例 34 :
本例原料气是空气。
本实施例的空气组成如下:
Figure imgf000042_0001
温度: 40 °C
压力: 0. 15MPa ( G ) 第一段变压吸附气体分离装置吸附塔内由下到上装填的吸附剂依次为活性 氧化铝及及分子筛; 第二段变压吸附气体分离装置, 吸附塔内装填的吸附剂为 分子筛。本实施例是变压吸附制氧装置, 在空气中,氧气和氩气是难吸附相组分, 氮气和水(汽)为易吸附相组分,本实施例第一段变压吸附气体分离装置吸附塔 出口氮气控制在 78% ( V ) (实际操作中,也可在 30〜78V%之间调节), 第二段变 压吸附气体分离装置作用是把第一段变压吸附气体分离装置出口气中的氮气进 一步净化, 使第二段变压吸附气体分离装置吸附塔上端出口的氧气浓度大于 93% ( V ), 最高可到 95W。,以满足下一步工序的需要。
6台吸附塔组成第一段变压吸附装置,运行单塔吸附 3次均压程序, 4台吸 附塔组成第二段变压吸附装置, 运行单塔吸附 1次均压程序。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 两端一 均降 2E1D'、 两端二均降 2E2D '、 两端三均降 2E3D'、 逆放 BD、 抽真空 VC、 二 段气升压 2ER、 两端三均升 2E3R'、 两端二均升 2E2R'、 两端一均升 2E1R'、 最 终升压 FR变压吸附工艺步骤,第二段变压吸附装置的吸附塔在一个循环周期中 依次经历吸附 A、 一均降 E1D、 逆向降压 BD、 一均升 E1 R、 最终升压 FR变压吸 附工艺步骤,逆向降压 BD步骤的气体进入第一段变压吸附装置吸附塔对已经完 成抽真空 VC的吸附塔进行升压,第二段变压吸附装置正处于吸附步骤的吸附塔 出口排出的产品气主要为氧气和少量的氩气。
本实施例结果为氧气浓度大于 93% ( V ) , 氮气浓度大于 99% ( V ) ,氧气回 收率大于 96% ( V)。
本发明的实施例 35 :
本例原料气是空气。
本实施例的空气组成如下:
Figure imgf000043_0001
温度: 40°C
压力: 0. 3MPa ( G ) 第一段变压吸附气体分离装置吸附塔内由下到上装填的吸附剂依次为活性 氧化铝及及分子筛; 第二段变压吸附气体分离装置, 吸附塔内装填的吸附剂为 分子筛。本实施例是变压吸附制氧装置, 在空气中,氧气和氩气是难吸附相组分, 氮气和水 (汽)为易吸附相组分,本实施例第一段变压吸附气体分离装置吸附塔 出口氮气控制在 78% ( V ) 以上, 第二段变压吸附气体分离装置作用是把第一段 变压吸附气体分离装置出口气中的氮气进一步净化, 使第二段变压吸附气体分 离装置吸附塔上端出口的氧气浓度大于 93% ( V ) ,最高可到 95V%,以满足下一步 工序的需要。
7台吸附塔组成第一段变压吸附装置,运行单塔吸附 4次均压程序, 5台吸 附塔组成第二段变压吸附装置, 运行单塔吸附 2次均压程序。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 两端一 均降 2E1D'、 两端二均降 2E2D'、 两端三均降 2E3D'、 两端四均降 2E4D'、 逆向 降压 BD、 抽真空 VC、 二段气升压 2ER、 两端四均升 2E4R'、 两端三均升 2E3R '、 两端二均升 2E2R'、 两端一均升 2E1R'、 最终升压 FR变压吸附工艺步骤, 第二 段变压吸附装置的吸附塔在一个循环周期中依次经历吸附八、一均降 E1 D、二均 降 E2D、 逆向降压 BD、 二均升 E2R、 一均升 E1 R、 最终升压 FR变压吸附工艺步 骤,逆向降压 BD步骤的气体进入第一段变压吸附装置吸附塔对已经完成抽真空 VC 的吸附塔进行升压,第二段变压吸附装置正处于吸附步骤的吸附塔出口排出 的产品气主要为氧气和少量的氩气。
本实施例结果为氧气浓度大于 93% ( V ) , 氮气浓度大于 99. 7% ( V ) ,氧气 回收率大于 99% ( V )。 本发明的实施例 36 :
本例原料气是空气。
本实施例的空气组成如下:
Figure imgf000044_0001
温度: 4(TC
压力: 0. 3MPa (G )
第一段变压吸附气体分离装置吸附塔内由下到上装填的吸附剂依次为活性 氧化铝及及分子筛; 第二段变压吸附气体分离装置吸附塔内装填的吸附剂为分 子筛。 本实施例是变压吸附制氧装置, 在空气中,氧气和氩气是难吸附相组分, 氮气和水(汽)为易吸附相组分,本实施例第一段变压吸附气体分离装置吸附塔 出口氮气控制在 78% ( V ) (实际操作中,也可在 20〜78W。之间调节), 第二段变 压吸附气体分离装置作用是把第一段变压吸附气体分离装置出口气中的氮气进 一步净化, 使第二段变压吸附气体分离装置吸附塔上端出口的氧气浓度大于 93% (V), 最高可到 95V%,以满足下一步工序的需要。
7台吸附塔组成第一段变压吸附装置,运行单塔吸附 4次均压程序, 7台吸 附塔组成第二段变压吸附装置, 运行单塔吸附 2次均压程序。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 两端一 均降 2E1D'、 两端二均降 2E2D'、 两端三均降 2E3D'、 两端四均降 2E4D'、 逆向 降压 BD、 抽真空 VC:、 二段气升压 2ER、 两端四均升 2E4R'、 两端三均升 2E3R'、 两端二均升 2E2R'、 两端一均升 2E1R'、 最终升压 FR变压吸附工艺步骤, 第二 段变压吸附装置的吸附塔在一个循环周期中依次经历吸附八、一均降 E1 D、二均 降 E2D、 顺放 PP1、 顺放 PP2、 顺放 PP3、 逆放 BD、 清洗 Pl、 清洗 P2、 清洗 P3、 二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 顺放 PP1步骤放出 的混合气通过流量调节直接去清洗已经完成清洗 P2步骤的吸附塔,使其吸附剂 上吸附的杂质解吸出来, 顺放 PP2步骤放出的混合气通过流量调节直接去清洗 已经完成清洗 P1步骤的吸附塔, 顺放 PP3步骤放出的混合气通过流量调节直接 去清洗已经完成逆放 BD 步骤的吸附塔,使其吸附剂上吸附的杂质解吸出来,逆 向降压 BD步骤和清洗 P步骤的气体进入第一段变压吸附装置吸附塔对已经完成 抽真空 VC的吸附塔进行升压,第二段变压吸附装置正处于吸附步骤的吸附塔出 口排出的产品气主要为氧气和少量的氩气。
本实施例结果为氧气浓度大于 93% ( V ) , 氮气浓度大于 99. 7% (V ) ,氧气 回收率大于 99% ( V)。 本发明的实施例 37 :
本例原料气是空气。
本实施例的空气组成如下:
Figure imgf000045_0001
温度: 40°C
压力: 0. 3MPa (G)
第一段变压吸附气体分离装置吸附塔内由下到上装填的吸附剂依次为活性 氧化铝及及分子筛; 第二段变压吸附气体分离装置吸附塔内装填的吸附剂为分 子筛。 本实施例是变压吸附制氧装置, 在空气中,氧气和氩气是难吸附相组分, 氮气和水(汽)为易吸附相组分,本实施例第一段变压吸附气体分离装置吸附塔 出口氮气控制在 78% (V ) (实际操作中,也可在 20〜78V%之间调节), 第二段变 压吸附气体分离装置作用是把第一段变压吸附气体分离装置出口气中的氮气进 一步净化, 使第二段变压吸附气体分离装置吸附塔上端出口的氧气浓度大于 93% (V), 最高可到 95V%,以满足下一步工序的需要。
7台吸附塔组成第一段变压吸附装置,运行单塔吸附 4次均压程序, 7台吸 附塔组成第二段变压吸附装置, 运行单塔吸附 2次均压程序。
第一段变压吸附装置的吸附塔在一个循环周期中依次经历吸附 A、 两端一 均降 2E1D'、 两端二均降 2E2D'、 两端三均降 2E3D'、 两端四均降 2E4D'、 逆向 降压 BD、 二段气升压 2ER、 两端四均升 2E4R '、 两端三均升 2E3R '、 两端二均升 2E2R'、 两端一均升 2E1R'、 最终升压 FR变压吸附工艺步骤, 第二段变压吸附 装置的吸附塔在一个循环周期中依次经历吸附 A、 一均降 E1D、 二均降 E2D、 顺 放 PP1、顺放 PP2、顺放 PP3、逆放 BD、清洗 Pl、清洗 P2、清洗 P3、二均升 E2R、 一均升 E1R、 最终升压 FR变压吸附工艺步骤, 顺放 PP 1步骤放出的混合气通过 流量调节直接去清洗已经完成清洗 P2步骤的吸附塔,使其吸附剂上吸附的杂质 解吸出来, 顺放 PP2步骤放出的混合气通过流量调节直接去清洗己经完成清洗 P1步骤的吸附塔, 顺放 PP3步骤放出的混合气通过流量调节直接去清洗己经完 成逆放 BD步骤的吸附塔,使其吸附剂上吸附的杂质解吸出来,逆向降压 BD步骤 和清洗 P步骤的气体进入第一段变压吸附装置吸附塔对已经完成抽真空 VC的吸 附塔进行升压,第二段变压吸附装置正处于吸附步骤的吸附塔出口排出的产品 气主要为氧气和少量的氩气。
本实施例结果为氧气浓度大于 93% ( V ) , 氮气浓度大于 99. 7% ( V ) ,氧气 回收率大于 99% ( V) o
本发明不限于上述范围应用,可应用于所有从混合气中获得易吸附相产品 或从混合气中获得难吸附相产品,还应用于所有的从混合气中同时获得易吸附 相产品和难吸附相产品。本发明的易吸附相和难吸附相可以是一个组分,也可以 是一个以上的组分。 工业应用性
本发明适用于化工、 石化、 制药、 建材、 环保等工业领域。

Claims

权 利 要 求
1、 一种两段全回收变压吸附气体分离方法, 其特征在于此方法用于从混合 气中分离易吸附相和难吸附相组分,产品可以是易吸附相组分,也可以是 难吸附相组分,还可以同时是易吸附相和难吸附相组分,此方法采用两段 变压吸附装置串联操作,混合气首先进入第一段变压吸附气体分离装置, 混合气中的易吸附相组分被吸附,并提浓为产品,从第一段变压吸附气体 分离装置吸附塔出口得到的中间混合气进入第二段变压吸附气体分离装 置, 将中间混合气中的易吸附相组分进一步吸附下来, 未被吸附的难吸 附相组分作为产品进入下一工段, 第二段变压吸附气体分离装置除进入 下一工段的难吸附相组分外,其它气体全部返回第一段变压吸附气体分 离装置对吸附塔进行升压, 第一段变压吸附气体分离装置吸附塔在一个 循环周期中依次经历吸附 A、 两端均压降压 2ED'、 逆向降压 BD、 二段气 升压 2ER、 两端均压升压 2ER'、 最终升压 FR工艺步骤, 第二段变压吸附 气体分离装置吸附塔在一个循环周期中依次经历吸附 A、 顺向均压降压
ED、 逆放 BD、 逆向均压升压 ER、 最终升压 FR工艺步骤。
2、 根据权利要求 1 所述的一种两段全回收变压吸附气体分离方法, 其特征 在于第一段变压吸附气体分离装置吸附塔在吸附 A步骤之后增加顺向均 压降压 ED步骤,同时在两端均压升压 2ER'步骤之后增加逆向均压升压 ER 步骤。
3、 根据权利要求 1 或 2所述的一种两段全回收变压吸附气体分离方法, 其 特征在于第一段变压吸附气体分离装置吸附塔在逆向降压 BD 步骤之后 增加抽真空 VC或 (和) 第二段变压吸附气体分离装置吸附塔在逆向降压
BD步骤之后增加抽真空 VC。
4、 根据权利要求 1 或 2所述的一种两段全回收变压吸附气体分离方法, 其 特征在于第二段变压吸附气体分离装置吸附塔在顺向均压降压 ED 步骤 之后增加顺放 PP步骤,同时在第二段变压吸附气体分离装置吸附塔工艺 循环步骤逆放 BD之后增加清洗 P步骤, 清洗 P步骤的气体直接来自正处 于顺放 PP步骤的吸附塔或来自于储存吸附塔顺放 PP步骤气体的缓冲罐 V。 5、 根据权利要求 3 所述的一种两段全回收变压吸附气体分离方法, 其特征 在于在第二段变压吸附气体分离装置吸附塔在顺向均压降压 ED 步骤之 后增加顺放 PP步骤,同时在第二段变压吸附气体分离装置吸附塔工艺循 环步骤逆放 BD之后增加清洗 P步骤, 清洗 P步骤的气体直接来自正处于 顺放 PP步骤的吸附塔或来自于储存吸附塔顺放 PP步骤气体的缓冲罐 V。
6、 根据权利要求 1 或 2所述的一种两段全回收变压吸附气体分离方法, 其 特征在于第二段变压吸附气体分离装置吸附塔在顺向均压降压 ED 步骤 之后增加顺放 PP1步骤和顺放 PP2步骤, 同时第二段变压吸附气体分离 装置吸附塔在逆放 BD步骤之后增加清洗 P1步骤和清洗 P2步骤,吸附塔 清洗 P1步骤的气体直接来自正处于顺放 PP2步骤的吸附塔或来自于储存 吸附塔顺放 PP2步骤气体的缓冲罐 VI, 吸附塔清洗 P2步骤的气体直接 来自正处于顺放 PP1步骤的吸附塔或来自于储存吸附塔顺放 PP1步骤气 体的缓冲罐 V2。 7、 根据权利要求 3 所述的一种两段全回收变压吸附气体分离方法, 其特征 在于第二段变压吸附气体分离装置吸附塔在顺向均压降压 ED 步骤之后 增加顺放 PP1步骤和顺放 PP2步骤, 同时第二段变压吸附气体分离装置 吸附塔在逆放 BD步骤之后增加清洗 P1步骤和清洗 P2步骤,吸附塔清洗 P1步骤的气体直接来自正处于顺放 PP2步骤的吸附塔或来自于储存吸附 塔顺放 PP2步骤气体的缓冲罐 VI, 吸附塔清洗 P2步骤的气体直接来自 正处于顺放 PP1步骤的吸附塔或来自于储存吸附塔顺放 PP1步骤气体的 缓冲罐 V2。
8、 根据权利要求 1 或 2所述的一种两段全回收变压吸附气体分离方法, 其 特征在于第二段变压吸附气体分离装置吸附塔在顺向均压降压 ED 步骤 之后增加顺放 PP1步骤、 顺放 PP2步骤和顺放 PP3步骤, 同时第二段变 压吸附气体分离装置吸附塔在逆放 BD步骤之后增加清洗 P1步骤、 清洗 P2步骤和清洗 P3步骤, 吸附塔清洗 P1步骤的气体直接来自正处于顺放 PP3步骤的吸附塔或来自于储存吸附塔顺放 PP3步骤气体的缓冲罐 V3, 吸附塔清洗 P2步骤的气体直接来自正处于顺放 PP2步骤的吸附塔或来自 于储存吸附塔顺放 PP2步骤气体的缓冲罐 V4, 吸附塔清洗 P3步骤的气 体直接来自正处于顺放 PP1步骤的吸附塔或来自于储存吸附塔顺放 PP1 步骤气体的缓冲罐 V5。 9、 根据权利要求 3 所述的一种两段全回收变压吸附气体分离方法, 其特征 在于第二段变压吸附气体分离装置吸附塔在顺向均压降压 ED 步骤之后 增加顺放 PP1步骤、 顺放 PP2步骤和顺放 PP3步骤, 同时第二段变压吸 附气体分离装置吸附塔在逆放 BD步骤之后增加清洗 P1 步骤、 清洗 P2 步骤和清洗 P3步骤,吸附塔清洗 P1步骤的气体直接来自正处于顺放 PP3 步骤的吸附塔或来自于储存吸附塔顺放 PP3步骤气体的缓冲罐 V3, 吸附 塔清洗 P2步骤的气体直接来自正处于顺放 PP2步骤的吸附塔或来自于储 存吸附塔顺放 PP2步骤气体的缓冲罐 V4, 吸附塔清洗 P3步骤的气体直 接来自正处于顺放 PP1步骤的吸附塔或来自于储存吸附塔顺放 PP1步骤 气体的缓冲罐 V5。
10、 根据权利要求 1或 2所述的一种两段全回收变压吸附气体分离方法, 其特征在于第一段变压吸附气体分离装置吸附塔在完成两端均压降 2ER'后, 吸附塔顶部最后放出的混合气中,易吸附相组分的平均浓度大 于 30%。
11、 根据权利要求 10 所述的一种两段全回收变压吸附气体分离方法, 其 特征在于第一段变压吸附气体分离装置吸附塔在完成两端均压降 2ER ' 后, 吸附塔顶部最后放出的混合气中,易吸附相组分的平均浓度大于 75%。
12、 根据权利要求 1或 2所述的一种两段全回收变压吸附气体分离方法, 其特征在于第二段变压吸附气体分离装置吸附塔执行逆放 BD步骤时,先 放入缓冲罐 V6,然后再放入缓冲罐 V7。 13、 根据权利要求 3所述的一种两段全回收变压吸附气体分离方法, 其特 征在于第二段变压吸附气体分离装置吸附塔执行逆放 BD步骤时,先放入 缓冲罐 V6,然后再放入缓冲罐 V7。
14、 根据权利要求 1或 2所述的一种两段全回收变压吸附气体分离方法, 其特征在于第一段变压吸附装置吸附步骤出口气中易吸附相组分的平均 浓度大于或等于 2%V。
15、 根据权利要求 1或 2所述的一种两段全回收变压吸附气体分离方法, 其特征在于原料混合气的压力大于或等于 1. 8 PaG0 、 根据权利要求 1或 1所述的一种两段全回收变压吸附气体分离方法, 其特征在于第一段变压吸附气体分离装置吸附塔在进行两端均压降 时, 50%以下的均压降气体从吸附塔的底部进入另一个进行均压升的吸附 塔。 、 根据权利要求 16 所述的一种两段全回收变压吸附气体分离方法, 其 特征在于第一段变压吸附气体分离装置吸附塔在进行两端均压降 时, 17〜25%的均压降气体从吸附塔的底部进入另一个进行均压升的吸附 塔。 、 一种两段全回收变压吸附气体分离方法, 其特征在于此方法用于从混 合气中分离易吸附相和难吸附相组分,产品可以是易吸附相组分,也可以 是难吸附相组分,还可以同时是易吸附相和难吸附相组分,此方法采用两 段变压吸附装置串联操作, 混合气首先进入第一段变压吸附气体分离装 置, 混合气中的易吸附相组分被吸附,并提浓为产品,从第一段变压吸附 气体分离装置吸附塔出口得到的中间混合气进入第二段变压吸附气体分 离装置, 将中间混合气中的易吸附相组分进一步吸附下来, 未被吸附的 难吸附相组分作为产品进入下一工段, 第一段变压吸附气体分离装置逆 向降压一 BD1步骤的气体返回第一段变压吸附气体分离装置从底部对吸 附塔进行升压,第二段变压吸附气体分离装置除进入下一工段的难吸附 相组分外,其它气体全部返回第一段变压吸附气体分离装置对吸附塔进 行升压, 第一段变压吸附气体分离装置吸附塔在一个循环周期中依次经 历吸附 A、 顺向均压降压 ED、 逆向降压一 BD1、 逆向降压二 BD2、 一段气 升压 2ER1、 二段气升压 2ER、 逆向均压升压 ER、 最终升压 FR工艺步骤, 第二段变压吸附气体分离装置吸附塔在一个循环周期中依次经历吸附
A、 顺向均压降压 ED、 逆放 BD、 逆向均压升压 ER、 最终升压 FR工艺步 骤。 、 根据权利要求 18 所述的一种两段全回收变压吸附气体分离方法, 其 特征在于第一段变压吸附气体分离装置吸附塔在逆向降压二 BD2步骤之 后增加抽真空 VC或(和) 第二段变压吸附气体分离装置吸附塔在逆向降 压 BD步骤之后增加抽真空 VC。 、 根据权利要求 18 或 19 所述的一种两段全回收变压吸附气体分离方 法,其特征在于第二段变压吸附气体分离装置吸附塔在顺向均压降压 ED 步骤之后增加顺放 PP1步骤、 顺放 PP2步骤和顺放 PP3步骤, 同时第二 段变压吸附气体分离装置吸附塔在逆放 BD步骤之后增加清洗 P1步骤、 清洗 P2步骤和清洗 P3步骤,吸附塔清洗 P1步骤的气体直接来自正处于 顺放 PP3步骤的吸附塔或来自于储存吸附塔顺放 PP3步骤气体的缓冲罐 V3, 吸附塔清洗 P2步骤的气体直接来自正处于顺放 PP2步骤的吸附塔或 来自于储存吸附塔顺放 PP2步骤气体的缓冲罐 V4, 吸附塔清洗 P3步骤 的气体直接来自正处于顺放 PP1步骤的吸附塔或来自于储存吸附塔顺放 PP1步骤气体的缓冲罐 V5。 21、 根据权利要求 18 或 19 所述的一种两段全回收变压吸附气体分离方 法, 其特征在于第一段变压吸附装置吸附步骤出口气中易吸附相组分的 平均浓度大于或等于 2%V。
22、 根据权利要求 18 或 19 所述的一种两段全回收变压吸附气体分离方 法, 其特征在于原料混合气的压力大于或等于 1. 8MPaG。
23、 根据权利要求 18 或 19 所述的一种两段全回收变压吸附气体分离方 法, 其特征在于第一段变压吸附气体分离装置吸附塔在逆向降压一 BD1 步骤完成后,最后放出的混合气中,易吸附相组分的平均浓度大于 30%。
24、 根据权利要求 23 所述的一种两段全回收变压吸附气体分离方法, 其 特征在于第一段变压吸附气体分离装置吸附塔在逆向降压一 BD1步骤完 成后,最后放出的混合气中,易吸附相组分的平均浓度大于 80%。 25、 根据权利要求 1、 2或 18所述的一种两段全回收变压吸附气体分离方 法, 其特征在于第一段变压吸附气体分离装置吸附塔内装填有活性氧化 铝和细孔硅胶, 活性氧化铝装填在吸附塔底部, 细孔硅胶装填在吸附塔 上部。 第二段变压吸附气体分离装置吸附塔内只装填有细孔硅胶。 26、 根据权利要求 1、 2或 18所述的一种两段全回收变压吸附气体分离方 法, 其特征在于第一段变压吸附气体分离装置吸附塔内由下到上装填的 吸附剂依次为活性氧化铝及细孔硅胶或活性氧化铝及活性炭或活性氧化 铝、 活性炭及分子筛; 第二段变压吸附气体分离装置, 吸附塔内装填的 吸附剂为活性炭及分子筛或分子筛。 、 根据权利要求 1、 2或 18所述的一种两段全回收变压吸附气体分离方 法, 其特征在于第一段变压吸附气体分离装置吸附塔内由下到上装填的 吸附剂依次为活性氧化铝及分子筛; 第二段变压吸附气体分离装置吸附 塔内装填的吸附剂为分子筛。 、 根据权利要求 1、 2或 18所述的一种两段全回收变压吸附气体分离方 法, 其特征在于第一段变压吸附气体分离装置吸附塔内由下到上装填的 吸附剂依次为活性氧化铝及分子筛; 第二段变压吸附气体分离装置吸附 塔内装填的吸附剂为分子筛。
PCT/CN2005/000641 2004-06-11 2005-05-09 Processus d'adsorption par variation de la pression de recyclage complet a deux etages en vue de separer des gaz WO2005120681A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE602005026125T DE602005026125D1 (de) 2004-06-11 2005-05-09 Lständiger rezyklierung für die gastrennung
EA200700011A EA012820B1 (ru) 2004-06-11 2005-05-09 Способ разделения газов
US11/570,312 US8545601B2 (en) 2004-06-11 2005-05-09 Two-stage complete recycle pressure-swing adsorption process for gas separation
JP2007526170A JP4579983B2 (ja) 2004-06-11 2005-05-09 二段全回収変圧吸着によるガス分離方法
EP05745102A EP1772182B1 (en) 2004-06-11 2005-05-09 A two-stage complete recycle pressure-swing adsorption process for gas seperation
AT05745102T ATE496676T1 (de) 2004-06-11 2005-05-09 Zweistufiges druckwechseladsorptionssystem mit vollständiger rezyklierung für die gastrennung
AU2005251848A AU2005251848B2 (en) 2004-06-11 2005-05-09 A two-stage complete recycle pressure-swing adsorption process for gas seperation
PL05745102T PL1772182T3 (pl) 2004-06-11 2005-05-09 Oparty na adsorpcji pod zmiennym ciśnieniem dwuetapowy sposób rozdzielania gazu z pełnym zawracaniem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200410046598.4 2004-06-11
CNB2004100465984A CN1250321C (zh) 2004-06-11 2004-06-11 一种两段全回收变压吸附气体分离方法

Publications (1)

Publication Number Publication Date
WO2005120681A1 true WO2005120681A1 (fr) 2005-12-22

Family

ID=34602013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000641 WO2005120681A1 (fr) 2004-06-11 2005-05-09 Processus d'adsorption par variation de la pression de recyclage complet a deux etages en vue de separer des gaz

Country Status (11)

Country Link
US (1) US8545601B2 (zh)
EP (1) EP1772182B1 (zh)
JP (1) JP4579983B2 (zh)
CN (1) CN1250321C (zh)
AT (1) ATE496676T1 (zh)
AU (1) AU2005251848B2 (zh)
DE (1) DE602005026125D1 (zh)
EA (1) EA012820B1 (zh)
ES (1) ES2360346T3 (zh)
PL (1) PL1772182T3 (zh)
WO (1) WO2005120681A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1287886C (zh) * 2004-06-11 2006-12-06 成都天立化工科技有限公司 一种改进的两段变压吸附制富氧方法
CA2667467C (en) * 2006-10-27 2015-03-24 Questair Technologies Inc. Compact pressure swing reformer
CN102080000B (zh) * 2010-12-13 2013-05-22 甘肃银光聚银化工有限公司 一种利用变压吸附法从水煤气中分离并提纯co的方法
CN102078740B (zh) * 2010-12-13 2013-02-27 甘肃银光聚银化工有限公司 一种利用变压吸附法从水煤气中分离并提纯氢气的方法
US8496733B2 (en) * 2011-01-11 2013-07-30 Praxair Technology, Inc. Large scale pressure swing adsorption systems having process cycles operating in normal and turndown modes
JP5968252B2 (ja) 2013-03-04 2016-08-10 大阪瓦斯株式会社 メタンガス濃縮方法
CN103223288B (zh) * 2013-04-08 2015-01-21 河南心连心化肥有限公司 变压吸附脱碳装置及工艺
US9381460B2 (en) 2014-09-11 2016-07-05 Air Products And Chemicals, Inc. Pressure swing adsorption process
EP2823872A3 (en) 2014-09-11 2015-05-06 Air Products And Chemicals, Inc. Pressure swing adsorption process
CN105097633A (zh) 2015-06-24 2015-11-25 合肥京东方光电科技有限公司 一种用于离线真空吸附基板的承载机构和基板传送方法
KR102346019B1 (ko) * 2016-03-31 2021-12-30 스반테 인코포레이티드 재생을 위해 증기를 사용하는 흡착식 가스 분리
CN106943842A (zh) * 2017-04-19 2017-07-14 成都赛普瑞兴科技有限公司 一种变压吸附气体分离方法
US10632414B2 (en) * 2018-01-25 2020-04-28 Uop Llc Integration of pressure swing adsorption and hydroprocessing for improved hydrogen utilization
CN108329962B (zh) * 2018-03-01 2021-05-14 中国石油化工股份有限公司 天然气中氮气脱除的方法和装置
CN110574572A (zh) * 2019-10-18 2019-12-17 福建省莆田市三月三农业科技有限公司 一种增氧系统及带有增氧系统的植物工厂
US11994061B2 (en) 2021-05-14 2024-05-28 Amogy Inc. Methods for reforming ammonia
KR20240006564A (ko) * 2021-05-14 2024-01-15 아모지 인크. 암모니아를 처리하기 위한 시스템 및 방법
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
KR20240020274A (ko) 2021-06-11 2024-02-14 아모지 인크. 암모니아의 가공처리를 위한 시스템 및 방법
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
CN114748971B (zh) * 2022-03-16 2023-03-03 四川天采科技有限责任公司 一种旋转分配器用于合成气提纯h2与co的方法
CN115354307B (zh) * 2022-09-23 2023-08-18 拓荆科技股份有限公司 一种真空加热衬底设备
US11912574B1 (en) 2022-10-06 2024-02-27 Amogy Inc. Methods for reforming ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2183832A1 (en) * 1995-08-21 1997-02-22 Glenn C. Stoner Enhanced helium recovery
CN1215627A (zh) * 1997-10-24 1999-05-05 化学工业部西南化工研究设计院 从含一氧化碳混合气中提纯一氧化碳的变压吸附法
US5993517A (en) * 1998-03-17 1999-11-30 The Boc Group, Inc. Two stage pressure swing adsorption process
US6102985A (en) * 1998-11-25 2000-08-15 Air Products And Chemicals, Inc. Pressure swing adsorption process and system with dual product storage tanks
CN1347747A (zh) * 2001-07-31 2002-05-08 成都天立化工科技有限公司 尿素生产中氢氮气高回收率两段变压吸附脱碳工艺方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3046267A1 (de) * 1980-12-09 1982-07-15 Linde Ag, 6200 Wiesbaden Adsorptionsverfahren
DE3205505A1 (de) * 1982-02-16 1983-08-25 Linde Ag, 6200 Wiesbaden Verfahren zum betrieb einer zyklisch arbeitenden druckwechsel-adsorptionsanlage
JPS59207803A (ja) * 1983-02-10 1984-11-26 Nippon Kagaku Gijutsu Kk 二段圧力スイング吸着法による水素精製方法
JPS607920A (ja) * 1983-06-29 1985-01-16 Hitachi Ltd 非凝縮性混合ガスの分離方法
DE3543468A1 (de) * 1985-12-09 1987-06-11 Linde Ag Druckwechseladsorptionsverfahren
EP0380723B1 (en) * 1989-02-01 1994-04-06 Kuraray Chemical Co., Ltd. Process for separating nitrogen gas by pressure swing adsorption system
KR970008347B1 (ko) * 1994-04-12 1997-05-23 한국에너지기술연구소 암모니아 퍼지가스에서 아르곤 및 수소를 고농도로 분리하는 흡착분리방법과 그 장치
US5520720A (en) * 1994-11-30 1996-05-28 The Boc Group, Inc. Pressure swing adsorption process
US5914455A (en) * 1997-09-30 1999-06-22 The Boc Group, Inc. Air purification process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2183832A1 (en) * 1995-08-21 1997-02-22 Glenn C. Stoner Enhanced helium recovery
CN1215627A (zh) * 1997-10-24 1999-05-05 化学工业部西南化工研究设计院 从含一氧化碳混合气中提纯一氧化碳的变压吸附法
US5993517A (en) * 1998-03-17 1999-11-30 The Boc Group, Inc. Two stage pressure swing adsorption process
US6102985A (en) * 1998-11-25 2000-08-15 Air Products And Chemicals, Inc. Pressure swing adsorption process and system with dual product storage tanks
CN1347747A (zh) * 2001-07-31 2002-05-08 成都天立化工科技有限公司 尿素生产中氢氮气高回收率两段变压吸附脱碳工艺方法

Also Published As

Publication number Publication date
US20070221060A1 (en) 2007-09-27
EP1772182A4 (en) 2008-12-31
EP1772182B1 (en) 2011-01-26
JP4579983B2 (ja) 2010-11-10
AU2005251848A1 (en) 2005-12-22
US8545601B2 (en) 2013-10-01
EA200700011A1 (ru) 2007-08-31
CN1583221A (zh) 2005-02-23
CN1250321C (zh) 2006-04-12
EA012820B1 (ru) 2009-12-30
JP2008501514A (ja) 2008-01-24
PL1772182T3 (pl) 2011-06-30
ATE496676T1 (de) 2011-02-15
DE602005026125D1 (de) 2011-03-10
AU2005251848B2 (en) 2008-09-11
ES2360346T3 (es) 2011-06-03
EP1772182A1 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
WO2005120681A1 (fr) Processus d'adsorption par variation de la pression de recyclage complet a deux etages en vue de separer des gaz
KR100300939B1 (ko) 진공 압력 순환 흡착 방법
CA2189232C (en) Method of recovering oxygen-rich gas
CA2160046C (en) Improved pressure swing adsorption process
WO2005120680A1 (fr) Processus d'adsorption modulee en pression a deux etages ameliore de production d'oxygene enrichi
US4375363A (en) Selective adsorption process for production of ammonia synthesis gas mixtures
WO2018108066A1 (zh) 一种炼厂干气的分离回收工艺
KR20080066973A (ko) 산소 생산을 위한 압력 스윙 흡착 방법
JP5184885B2 (ja) 三段変圧吸着装置による酸素の生産方法
US6048384A (en) PSA process and system using simultaneous top and bottom evacuation of absorbent bed
JP2000354726A (ja) 圧力スゥイング吸着プロセス及び装置
CN101249370B (zh) 循环有价值气体的变压吸附方法
CN103585856A (zh) 一种多回流的变压吸附方法
KR20050100690A (ko) 오프 가스 공급 방법, 및 목적 가스 정제 시스템
WO2022068165A1 (zh) 一种高效的vpsa制氧工艺及其系统
US20140069275A1 (en) Low energy cyclic psa process
CN100490939C (zh) 采用变压吸附技术从变换气中脱除二氧化碳的方法
JPH11239709A (ja) 可変製造速度で吸着により気体分離する方法
WO2023064977A1 (en) A process and plant of vacuum pressure swing adsorption for producing pure carbon dioxide from industrial off-gas containing co2
CN116390797A (zh) 用于从低品级氢气生产超高纯氢气的工艺和设备
JPH10225609A (ja) パラメトリックガスクロマトグラフィーによる気体のバルク分離方法
JP7388731B2 (ja) 圧力スイング吸着装置、および、ガス生成方法
JP3694343B2 (ja) 低濃度酸素用psa
CN100434139C (zh) 一种改进的一段变压吸附气体分离方法
JP7398108B2 (ja) 圧力スイング吸着装置、および、圧力スイング吸着装置の制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526170

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005745102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3814/KOLNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005251848

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200700011

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2005251848

Country of ref document: AU

Date of ref document: 20050509

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005251848

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005745102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007221060

Country of ref document: US

Ref document number: 11570312

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11570312

Country of ref document: US