WO2005115054A1 - 超音波トランスデューサとその製造方法 - Google Patents

超音波トランスデューサとその製造方法 Download PDF

Info

Publication number
WO2005115054A1
WO2005115054A1 PCT/JP2005/009475 JP2005009475W WO2005115054A1 WO 2005115054 A1 WO2005115054 A1 WO 2005115054A1 JP 2005009475 W JP2005009475 W JP 2005009475W WO 2005115054 A1 WO2005115054 A1 WO 2005115054A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic transducer
transducer according
acoustic
acoustic lens
film layer
Prior art date
Application number
PCT/JP2005/009475
Other languages
English (en)
French (fr)
Inventor
Hideo Adachi
Noriaki Ideta
Kazuhisa Onozuka
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to EP05743816A priority Critical patent/EP1755359B1/en
Publication of WO2005115054A1 publication Critical patent/WO2005115054A1/ja
Priority to US11/601,245 priority patent/US20070063616A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/004Mounting transducers, e.g. provided with mechanical moving or orienting device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to an array-type ultrasonic transducer used for an electronic scanning ultrasonic diagnostic apparatus.
  • an ultrasonic diagnostic method of diagnosing an internal state by imaging an echo signal obtained by irradiating an ultrasonic wave into a body cavity using an ultrasonic endoscope has been widely spread. You. In order to acquire an image of the inside of a body cavity using ultrasonic diagnostics, an insertion section with an ultrasonic transducer attached to the tip for generating ultrasonic waves and receiving ultrasonic waves reflected inside the body cavity is inserted into the body cavity. Must be inserted into the.
  • FIG. 1A is a cross-sectional view of a conventional array-type ultrasonic probe.
  • FIG. 1B is a side sectional view in which the array type ultrasonic probe of FIG. 1A is cut in a right angle direction and a part thereof is enlarged.
  • the array type ultrasonic transducer 101 includes a piezoelectric element 102, electrodes 103a and 103b, a flexible substrate 104, matching layers 105 and 106, an acoustic lens 107, an insulating layer 108, and a damping section (layer). ) 109, flexible leads 110a and 110b, an adhesive 111, and a cavity 112.
  • the array-type piezoelectric element 102 is a thin plate of a piezoelectric element plate such as PZT, which can be polarized in the thickness direction, is thinly cut from the vertical direction of the plate and is aligned in parallel so as to be slightly separated from an adjacent one. It is configured by doing. Electrodes 103a and 103b are formed on both surfaces of the piezoelectric element 102 in the thickness direction by evaporating silver or the like. The surface of the electrode 103a, which is the electrode on the side where ultrasonic waves are transmitted and received, is a ground electrode. Each electrode 103a is kept conductive by the plate-shaped conductive flexible substrate 104.
  • a first acoustic matching layer 105 and a second acoustic matching layer 106 which are formed in the same shape as each of the piezoelectric elements 102 and which are elongated, are attached and laminated. It is formed.
  • an acoustic lens 7 is formed on the upper surface of the second acoustic matching layer 106 in which the center of each piezoelectric element 102 in the longitudinal direction is convex.
  • an insulating layer 108 using an insulating member is formed on the surface of the positive electrode 103b of each of the piezoelectric elements 102. The insulating layer 108 is fixed to the damping portion (layer) 109. Thus, each ultrasonic transducer element is formed.
  • the positive electrode 103b is pulled out from both sides of the damping portion 109 to the back side by flexible leads 110b. Also, the ground side electrode 103a is drawn out to the back side of the damping portion 109 by the flexible lead 11 Oa.
  • an insulating layer 108 is fixed with a damping layer 109 using an epoxy-based adhesive 111 or the like.
  • the first acoustic matching layer 105 and the second acoustic matching layer 106 are set to an intermediate value of the acoustic impedance between the piezoelectric element 102 and the inner wall of the body cavity.
  • the ultrasonic wave transmitted (and received) from the piezoelectric element 2 can be efficiently transmitted (with less reflection) to the inner wall of the body cavity with which the front surface (upper surface) of the acoustic lens 107 contacts.
  • the acoustic impedance can be more smoothly matched by using the two acoustic matching layers 105 and 106.
  • Each piezoelectric element 102 is excited by a high-frequency pulse applied to both electrodes 103a and 103b, and an ultrasonic wave is transmitted.
  • the damping layer 109 promptly damps the ultrasonic waves transmitted to the rear surface side, thereby preventing the ultrasonic waves reflected on the rear surface of the damping layer 109 from being received and degrading the resolution. It is for.
  • the damping layer 109 When used in a body cavity, the damping layer 109 can be made thick to have a sufficient damping function. However, when used in a body cavity, the damping layer 109 is the bulkiest member, so that a thinner one is required.
  • a material of the damping layer 109 a material in which tungsten powder is dispersed in epoxy resin, silicone resin, Shiridani Bul resin, or the like is used. At this time, an almost satisfactory attenuation can be realized by dispersing the tungsten powder in the resin so that the dispersion amount is about 95% by weight.
  • the damping layer 109 made of the above material When the damping layer 109 made of the above material is used, its electric resistance is low. Therefore, for safety measures against the human body, the ultrasonic transmitting / receiving surface side is set as a ground electrode and the damping layer 109 side is set as a positive electrode. Therefore, when the damping layer 109 comes into direct contact with the positive electrode, Due to the low resistance (impedance) of the members forming 109, there is a disadvantage that the respective ultrasonic transducer elements divided into an array are conducted. Therefore, the damping layer 109 and the positive electrode 103b are insulated by the insulating layer 108.
  • a gap can be provided between adjacent elements in order to prevent crosstalk between the elements. Further, by forming the air gap 112 over three layers including the first acoustic matching layer 105 and the second acoustic matching layer 106, which not only provide the air gap between the elements, the crossing can be performed more reliably. Talk can be prevented.
  • the ultrasonic vibrator separated by the gap 112 is formed as follows.
  • a piezoelectric element plate having electrodes formed on both surfaces fixed to the insulating layer 108 and first and second acoustic matching plates superposed on the piezoelectric element plate are integrated.
  • a part of the insulating layer 108 is cut and cut with a diamond cutter so that the positive electrode 103b is separated.
  • the flexible substrate 104 is formed so as to be in contact with the ground electrode 103a after the cutting.
  • the adjacent piezoelectric elements 102 are separated by the gap 112 including the matching layers 105 and 106, so that the crosstalk is prevented. Is sufficiently prevented.
  • each element is arranged in a thin and narrow state, and the elongated side parts are not held, there is a disadvantage that the elements are very weak mechanically.
  • moisture may penetrate into the gap 112 due to moisture or the like, and the moisture may remain in the gap 112 for a long time.
  • the silver of the electrodes 103a and 103b applied to both surfaces of each piezoelectric element 102 migrates, and the function of transmitting and receiving ultrasonic waves is reduced, and in the worst case, a short circuit occurs. There was a risk that it could also happen.
  • Patent Document 1 in order to improve such a drawback, in Patent Document 1, as shown in FIG. 1C, crosstalk is performed by packing a hollow member 122 of a glass sphere having a hollow in a space between elements. To prevent moisture from entering.
  • Patent Document 1 JP-A-60-89199
  • the piezoelectric vibrator according to the present invention that vibrates to emit ultrasonic waves and one or more acoustic modulators
  • an ultrasonic transducer including a transducer element including a laminated layer and an acoustic lens
  • a gap between adjacent transducer elements is filled with the same constituent material as the constituent material of the acoustic lens.
  • the outer surface is coated with the same constituent material as the constituent material of the acoustic lens.
  • a constituent material of the acoustic lens is an inclined material.
  • the gradient material is a material in which inorganic fine powder is dispersed in silicone resin, and the vibration generation of the piezoelectric vibrator is performed.
  • Surface force A material whose packing density of the inorganic fine powder decreases toward the interface between the acoustic lens and the acoustic matching layer.
  • the inorganic fine powder contains at least one of tungsten, tungsten oxide, aluminum oxide, and zirconium oxide.
  • particles having a specific gravity smaller than that of the silicone resin and having a hollow structure are dispersed in the silicone resin, and the piezoelectric vibration
  • the packing density of the particles decreases from the vibration generation surface of the element toward the interface between the acoustic lens and the acoustic matching layer.
  • the particles are made of a glass material.
  • the particles are made of a polymer material.
  • the surface where the material forming the acoustic lens and filling the space between the vibrator elements and the vibrator element are in contact with each other has corrosion resistance or moisture resistance. Having a thin film layer.
  • the thin film layer includes a nano-coating film containing an inorganic compound component.
  • the inorganic compound component consists at least one of silicon, titanium, and zirconium.
  • the coating surface of the ultrasonic transducer coated with the same constituent material as the constituent material of the acoustic lens may be provided.
  • the thin film layer includes a nanocoating film containing an inorganic compound component.
  • the nanocoating film is at least one of silicon, titanium, and zirconium oxide.
  • a silver nanocoating film is formed on a surface of the thin film layer.
  • the method for manufacturing an array type ultrasonic transducer according to the present invention includes a bonding step of bonding the electrode surface of the flexible substrate to the piezoelectric vibrator so as to connect the electrode of the piezoelectric vibrator to the electrode surface of the flexible substrate.
  • a backing material part bonding step of bonding on the backing material part to be held, a dicing step of dicing the laminate, and a ground potential of the piezoelectric vibrator element formed by the dicing processing are set to a common potential.
  • a nanocoating film layer is formed after the primer treatment step, where a nanocoating film layer is formed on the primer-treated portion.
  • a forming step is performed.
  • a nanocoating is applied to the surface of the cured resin precursor. Performing a nano-coating film layer forming step of forming a metal film layer.
  • the resin precursor solution includes a silicone rubber precursor solution and a diluent.
  • a vibration forming a vibrator element including a piezoelectric vibrator for emitting ultrasonic waves and one or more acoustic matching layers is provided.
  • a resin precursor liquid curing step of contacting the precursor liquid and curing the resin precursor liquid.
  • the array type ultrasonic transducer according to the present invention is mounted on an ultrasonic endoscope apparatus.
  • the array type ultrasonic transducer manufactured by the above manufacturing method according to the present invention is mounted on an ultrasonic endoscope apparatus.
  • FIG. 1A is a cross-sectional view of a conventional array-type ultrasonic probe.
  • FIG. 1B is a side sectional view in which the array-type ultrasonic probe of FIG. 1A is cut at a right angle and a part thereof is enlarged.
  • FIG. 1C shows a state in which a hollow member of a glass sphere having a hollow is packed in a gap between elements of a conventional array type ultrasonic probe.
  • FIG. 2A is a diagram showing an appearance (oblique side view) of an array type ultrasonic transducer 1 according to the first embodiment.
  • FIG. 2B is a diagram showing an appearance (longitudinal side surface) of the array type ultrasonic transducer 1 according to the first embodiment.
  • FIG. 2C is a diagram showing an appearance (lateral side surface) of the array type ultrasonic transducer 1 according to the first embodiment.
  • FIG. 3A is a diagram observed from the side of the array-type ultrasonic transducer 1 according to the first embodiment.
  • FIG. 3B is a cross-sectional view observed from a direction perpendicular to FIG. 3A.
  • FIG. 3C is a cross-sectional view of FIG. 3A observed from above.
  • FIG. 2B is a diagram (longitudinal cross-sectional side view) illustrating an internal configuration of the array-type ultrasonic transducer 1 according to the first embodiment.
  • FIG. 4B is a diagram (a part of a side cross section in a lateral direction) showing an internal configuration of the array-type ultrasonic transducer 1 in the first embodiment.
  • FIG. 5A is a diagram (longitudinal side sectional view) showing an array-type ultrasonic transducer according to a second embodiment.
  • FIG. 5B is a diagram (a part of a lateral cross section in a lateral direction) showing an array type ultrasonic transducer according to the second embodiment.
  • ⁇ 6 ⁇ is a view showing the configuration of a protective film in the second embodiment.
  • FIG. 7A is a diagram (longitudinal side sectional view) showing an array-type ultrasonic transducer according to a third embodiment.
  • FIG. 7B is a diagram (a part of a lateral cross section in a lateral direction) illustrating an array-type ultrasonic transducer according to a third embodiment.
  • FIG. 8 is a diagram showing an array-type ultrasonic transducer according to a fourth embodiment.
  • FIG. 9 is a diagram showing an array type ultrasonic transducer according to a fifth embodiment.
  • 10A is a diagram (longitudinal side sectional view) showing an array type ultrasonic transducer according to the sixth embodiment.
  • FIG. 10B is a diagram (a part of a lateral cross-section in a lateral direction) showing an array-type ultrasonic transducer according to a sixth embodiment.
  • FIG. 11A is a view showing a state (part 1) of a manufacturing process in the seventh embodiment.
  • FIG. 11B is a view showing a state (No. 2) of the manufacturing process in the seventh embodiment.
  • FIG. 11C is a view showing a state (No. 3) of the manufacturing process in the seventh embodiment.
  • FIG. 11D is a view illustrating a state of the manufacturing process (part 4) in the seventh embodiment.
  • FIG. 11E is a view showing a state (part 5) of the manufacturing process in the seventh embodiment.
  • the acoustic lens was bonded to the matching layer using an adhesive.
  • the minute amount flows into the void portion 112.
  • the amount of the adhesive flowing in varies in each of the gaps 112, and this variation causes variations in ultrasonic characteristics.
  • an ultrasonic transducer in which an acoustic lens material and a groove filling material are integrally formed of the same material will be described.
  • FIG. 2A to FIG. 2C show the appearance of the array type ultrasonic transducer 1 in the present embodiment.
  • FIG. 2A is an oblique side appearance view of the array type ultrasonic transducer 1 in the present embodiment.
  • FIG. 2B is a lateral side external view of the array type ultrasonic transducer 1 in the present embodiment in the longitudinal direction.
  • FIG. 2C is a lateral side external view of the array type ultrasonic transducer 1 in the present embodiment.
  • the upper portion of the knocking member 4 is covered with the acoustic lens / external covering 2.
  • the flexible printed circuit board (FPC) 3 is provided so that the lateral force of the knocking member 4 is also applied to the bottom.
  • FPC flexible printed circuit board
  • Reference numeral 201 denotes a portion of the acoustic lens / outer coating 2 that forms the acoustic lens.
  • Reference numeral 202 denotes a portion forming an outer coating portion (or a side resin film portion).
  • FIGS. 3A to 3C show diagrams of the array type ultrasonic transducer 1 according to the present embodiment, as observed from each direction.
  • FIG. 3A is a diagram in which a side force is also observed.
  • FIG. 3B is a cross-sectional view observed from a direction perpendicular to FIG. 3A.
  • FIG. 3C is a cross-sectional view of FIG. 3A in which an upward force is also observed, and corresponds to a cut surface indicated by a broken line X in FIG. 3B.
  • the vibrator element (or simply element) is composed of a piezoelectric vibrator (piezoelectric element) 5, a first acoustic matching layer 6, and a second acoustic matching layer 7.
  • the piezoelectric vibrator 5 When receiving the voltage signal, the piezoelectric vibrator 5 generates vibration and generates ultrasonic waves.
  • ultrasonic waves are directly emitted into the air, water, or a living body, there is a difference in acoustic impedance between the piezoelectric vibrator and the air, water, or a living body, so the ultrasonic waves bounce off the interface and are not efficiently emitted. . Therefore, by providing the first acoustic matching layer 6 and the second acoustic matching layer 7, it is possible to suppress the reflection and attenuation of the ultrasonic wave at the interface, and to efficiently emit the ultrasonic wave.
  • the knocking member 4 is used to hold (back) the piezoelectric vibrator 5 on the back side.
  • the knocking member 4 is used to attenuate the ultrasonic vibration to obtain a broadband ultrasonic pulse. As a result, the sensitivity is reduced while the broadband is performed.
  • a common ground wire 12 is provided above the left and right ends of the piezoelectric vibrator 5, and is provided between the elements.
  • 3B and 3C have a force with a broken line Y.
  • the drawings below are sectional views cut along the broken line Y.
  • FIG. 4A and FIG. 4B show an internal configuration of the array type ultrasonic transducer 1 in the present embodiment.
  • FIG. 4A is a longitudinal side sectional view.
  • FIG. 4B is a diagram showing a part of a lateral cross section in the lateral direction.
  • a wiring electrode 10 is provided on a lower surface of the piezoelectric vibrator 5.
  • the wiring on the substrate 9 and the wiring electrode 10 on the lower surface of the piezoelectric vibrator 5 are bonded to each other, and are bonded and fixed with an adhesive 11.
  • a plurality of elements are provided on the knocking material section 4, and the acoustic lens / external covering section 2 is provided so as to cover these elements.
  • the acoustic lens / external coating 2 mainly includes portions 201, 202, and 203.
  • 201 forms an acoustic lens part.
  • Reference numeral 202 denotes an outer coating portion (or a side resin film portion).
  • Reference numeral 203 denotes a groove filling portion that fills a groove between the elements.
  • 201, 202 and 203 are all made of resin of the same material. It is necessary to select such a material that has a large ultrasonic wave attenuation effect. It is also necessary to consider the sound speed inherent to the material. In the present embodiment, in consideration of these, a silicone resin (trade name “Elastosil” manufactured by Asahi Kasei Ecker Chemicals) is used.
  • the reason why the element is fixed with the silicone resin up to the outer covering portion 202 that is not formed only by the groove portion 203 is to increase the mechanical strength of the element.
  • By integrally forming the acoustic lens material and the groove filling material with the same material it is not necessary to use an additional adhesive. For this reason, it is possible to prevent variations in the characteristics of the ultrasonic waves caused by the uneven flow of the excess adhesive between the elements.
  • the protective film 13 is further added to the array-type transducer of the first embodiment. Will be described. Note that this protective film is a film coating film composed of nanometer-sized particles.
  • FIG. 5A and FIG. 5B show an array type ultrasonic transducer 1 in the present embodiment.
  • FIG. 5A is a side sectional view in the longitudinal direction.
  • FIG. 5B is a diagram showing a part of a lateral cross section in the lateral direction.
  • the element, the adhesive layer 11, and the common ground wire 12 are covered with a protective film 13, and the upper force is also covered with the acoustic lens and external coating.
  • the array type ultrasonic transducer 1 is a part of a medical device used in an ultrasonic endoscope, it is necessary to clean and disinfect the ultrasonic endoscope before or after use.
  • the disinfectant used here permeates the silicone resin that forms the acoustic lens and external coating 2. Therefore, the permeated disinfectant may permeate to the bottom of the silicone resin layer where the piezoelectric vibrator 5 is located. Also, there is a possibility that water vapor may penetrate under a pressurized condition.
  • FIG. 6 shows a protective film (product name: x—protect DS, manufactured by NANO-X) in this embodiment.
  • the protective film 13 is composed of inorganic components of silicon (Si), zirconium (Zr), titanium (Ti), oxygen (O), and other organic components (polymer compounds). It has a mesh structure. This structure can be obtained by hydrolyzing a metal alkoxide conjugate such as silicon (Si), zirconium (Zr), or titanium (Ti).
  • the organic component of the base material is present so as to be entangled with the network structure of the inorganic component.
  • this structure is formed in a network shape over the entire film, a region in which the organic component is not entangled is also formed by the manufacturing method in the network structure of the inorganic component. Since the organic component is not entangled, the organic component exists as a nanoparticle having a free network structure. Therefore, Whether a nanoparticle (which also has a network structure) or a network structure in which organic components spread throughout the film are entangled, can be determined by, for example, differences in heating conditions, hydrolysis, pH adjustment, etc. The structure of the nanocoating film can be controlled by assigning the manufacturing conditions.
  • the nanometer-sized inorganic compound component may be one or more of silicon, titanium, and zirconium. In addition, any one or more of silicon oxide, titanium oxide, and zirconium oxide may be used.
  • the protective film containing these inorganic compounds as components has corrosion resistance and Z or moisture resistance.
  • a silver nanocoating film may be formed on the surface of the thin film layer formed as described above.
  • a silver nanocoating film may be formed at the interface between the protective film 13 and the silicone resin.
  • Silver has an antibacterial effect as a characteristic. This is because the cells of microbes have a negative (one) charge, and if they touch positive (+) silver ions, the cells are destroyed and the microorganisms die.
  • nanometer-sized silver particles are dispersed in, for example, an imide resin, and the imide resin is entangled in a network of nanometer-sized silver particles having a network structure. Make up the entire membrane!
  • an array type ultrasonic transducer having corrosion resistance and moisture resistance can be realized by using a nanocoating film containing silicon, titanium, and zirconium as constituent components. Further, by forming a silver nano-coating film, an array type ultrasonic transducer having an antibacterial effect can be realized. Thereby, the ultrasonic endoscope can be used more safely in the body cavity.
  • a protective film layer was formed on the interface between the silicone resin and the element.
  • the disinfectant or water vapor is prevented from penetrating into the silicone resin by covering the surface of the silicone resin, that is, the acoustic lens / external coating 2 with a protective film.
  • FIG. 7A and FIG. 7B show an array type ultrasonic transducer according to the present embodiment.
  • FIG. 7A is a longitudinal side sectional view.
  • Figure 7B shows a part of the lateral cross section in the lateral direction.
  • FIG. 7A In this array type ultrasonic transducer, the surface (outer surface) of the array type ultrasonic transducer in contact with the outside of the acoustic lens / external coating portion 2 of the array type ultrasonic transducer was covered with the protective film 14 described in the second embodiment. Things.
  • the protective film (thin film layer) 14 having both corrosion resistance and moisture resistance also has a nanoparticle power, which is also an inorganic compound component power.
  • the constituent component of the nanoparticle composed of the inorganic compound component may be any one of silicon, titanium, and zirconium, or a plurality of components.
  • any one or more of silicon oxide, titanium oxide, and zirconium oxide may be used.
  • a silver nanocoating film may be formed on the surface of the thin film layer.
  • a protective film layer is provided between the acoustic lens / external coating 2 and the element and on the surface of the acoustic lens / external coating 2 which is in contact with the outside. By forming, the corrosion and moisture resistance effects can be further enhanced.
  • a gradient material (a material exhibiting a new function by a gradient composition distribution of components and a microstructure) is used as the material of the acoustic lens / external coating 2.
  • FIG. 8 shows an array type ultrasonic transducer according to the present embodiment.
  • FIG. 8 shows a case where the inorganic fine powder 15 having a hollow structure is used between the elements of the array type ultrasonic transducer of FIG.
  • the inorganic fine powder also has a component power containing at least one of tungsten, tungsten oxide, aluminum oxide, and zirconium oxide.
  • the inorganic fine powder has a hollow structure.
  • This inorganic fine powder may be, for example, a hollow glass material or a hollow polymer material.
  • hollow particles those having a specific gravity smaller than that of silicone resin are used. Because it is necessary to make the hollow particles buoyant in the silicone resin by the buoyancy of the hollow particles. It is. As a result, the hollow particles can be dispersed between the elements filled with the silicone resin with an inclined dispersion density.
  • the hollow particles have a structure in which the dispersion density increases as the ultrasonic radiation surface force of the piezoelectric vibrator increases, ie, the filling rate of the hollow particles decreases.
  • the dispersion density of the hollow particles increases as the ultrasonic radiation surface force of the piezoelectric vibrator increases, ie, the filling rate of the hollow particles decreases.
  • the hollow particles are dispersed between the elements, and the dispersion density increases toward the upper part of the element (the filling rate of the hollow particles decreases toward the upper part of the element).
  • this dispersion should be kept between the elements. That is, the hollow particles are prevented from protruding from between the elements to reach the portion 201 forming the acoustic lens. This is because if the hollow particles are dispersed to the acoustic lens portion 201 by controlling the mixing ratio of the hollow particles, the ultrasonic characteristics are deteriorated.
  • the hollow particles are gently inclined to disperse toward the upper direction of the lower force of the element, so that the dispersion density does not suddenly change. This is because if the dispersion density changes abruptly, that part becomes an interface that reflects ultrasonic waves.
  • the size of the hollow particles depends on the dimensions of the groove width and the depth. However, the present invention is not limited to this.
  • hollow particles having a small specific gravity and hollow particles having a large specific gravity can be mixed and used.
  • hollow particles having a low specific gravity are distributed first in a deep portion of the groove, and hollow particles having a high specific gravity are distributed in a shallow portion of the groove. be able to. As a result, crosstalk can be reduced.
  • This embodiment is a modification of the fourth embodiment.
  • hollow particles are used, but in the present embodiment, solid particles, that is, particles filled with contents are used.
  • FIG. 9 shows an array type ultrasonic transducer according to the present embodiment.
  • FIG. 9 uses hollow particles 16 instead of the hollow particles 15 of FIG. By doing so, the same effect as in the fourth embodiment can be obtained.
  • crosstalk between adjacent elements can be effectively prevented, and the mechanical strength can be improved.
  • FIGS. 10A and 10B show an array type ultrasonic transducer according to the present embodiment.
  • FIG. 10A is a side cross-sectional view in the longitudinal direction.
  • FIG. 10B is a diagram showing a part of a side cross section in the lateral direction.
  • FIGS. 10A and 10B show that the lower part 51 of the piezoelectric vibrator 5 is larger than the upper part 52 as compared with FIGS. 4A and 4B, and there is a bottom groove filling part 8 between the lower parts 51 of adjacent piezoelectric vibrators. .
  • the piezoelectric element 5, the first acoustic matching layer 6, and the second acoustic matching layer 7 are joined to form a joined body, and then the surface on the piezoelectric element 5 side is danced.
  • a bottom groove (a portion corresponding to the bottom groove filling portion 8) is formed, and then the surface on the second acoustic matching layer 7 side is danced to form an upper groove (corresponding to the top filling portion) having a width larger than the bottom dancing width. Part).
  • the width on the bottom side is increased, so that the vibrator element may fall down and the mechanical strength may be improved.
  • the element having the shape used in this embodiment can be applied to any of the first to fifth embodiments.
  • FIG. 11A to FIG. 11E show a state of a manufacturing process of the array-type ultrasonic transducer according to the present embodiment.
  • a description will be given of a manufacturing process of an array type ultrasonic transducer which is effective in the present invention.
  • the figures corresponding to the steps S1 to S3 among the following steps are shown.
  • the electrode 10 of the piezoelectric vibrator 5 is bonded to the electrode surface of the flexible printed circuit board 9 so that the electrode 10 is connected (the bonded body is hereinafter referred to as a bonded body).
  • the dicing groove 17 is subjected to a primer treatment in order to improve the adhesion to the resin precursor solution to be adhered in a step described later.
  • the primer treatment may be performed, for example, by dipping the above-mentioned diced bonded laminate in a primer treatment liquid and then blowing it off with a spray gun or the like, or using other known methods. As a result, the surface of the diced conjugate is covered with the primer-treated film 18 (see FIG. 11B).
  • a protective film (manufactured by NANO—X, product name: X—protect DS 3010) may be formed with the nanocoating film 19 (FIG. 11C). reference).
  • the protective film 19 may be formed by immersing the danced laminated body and then blowing it off with a spray gun or the like, as in the case of forming the primer-treated film 18 by the primer treatment, or by using another known method. May be. After the formation of the protective film 19, the primer treatment is performed again so that the surface of the diced bonded laminate is covered with the primer treatment film 18.
  • the bonded laminate subjected to the primer treatment is fixed to the mold 21. Then the sound Inject the resin precursor solution that will be the acoustic lens, fill the groove, and cover the outer surface, and cure the resin precursor solution ( Figure 11D, Figure 11E).
  • the resin precursor solution also becomes a diluent fluid with the silicone rubber precursor solution.
  • silicone rubber silicone rubber
  • the diluent the product name “ISOPAR E” (released by ExxonMosentani) was used.
  • the acoustic lens / external coating 2 is formed.
  • the resin precursor liquid is cured in 2 hours under the condition of 55 ° C.
  • a diluent an aromatic solvent such as xylene
  • this diluent is used, there is a residual odor after curing.
  • a post-curing treatment at 85 ° C for 36 hours is effective.
  • a silicone resin as a gradient material may be formed.
  • the mold 21 is turned upside down (as shown in FIG. 11D), and the hollow particles are formed deep in the groove due to gravity. Floating.
  • a nano-coating film layer is further formed on the surface of the acoustic lens / outer cover portion 2 as in the third embodiment.
  • the array-type ultrasonic transducer according to the present invention can be manufactured by covering the structure configured as described above with the acoustic lens / external covering portion 2.
  • the first to sixth embodiments can be combined in any manner according to the application. Further, in the first to seventh embodiments, the force using two of the first acoustic matching layer and the second acoustic matching layer is not limited to this.
  • the number of acoustic matching layers may be one, or two or more. May be
  • the acoustic lens material and the groove filling material are integrally formed of the same material, so that no separate adhesive is used. For this reason, it is possible to prevent variations in the characteristics of the ultrasonic waves due to the non-uniform flow of the excess adhesive between the elements. Further, the mechanical strength for preventing crosstalk and preventing the element from falling down can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • Gynecology & Obstetrics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

 超音波を放射させるために振動する圧電振動子と1以上の音響整合層とを含む振動子エレメントと、音響レンズとを備える超音波トランスデューサであって、隣接する該振動子エレメント間の間隙部は、前記音響レンズの構成材料と同一の構成材料により充填されていることを特徴とする超音波トランスデューサ。

Description

明 細 書
超音波トランスデューサとその製造方法
技術分野
[0001] 本発明は、電子走査式超音波診断装置に用いられるアレイ型超音波トランスデュ ーサに関する。 背景技術
[0002] 近年、超音波内視鏡を用いて体腔内に超音波を照射することにより得られたエコー 信号を画像ィ匕して体内の状態を診断する超音波診断法が広く普及して 、る。超音波 診断法を用いて体腔内の画像を取得するためには、超音波を発生させたり、体腔内 で反射した超音波を受信したりする超音波トランスデューサを先端に取り付けた挿入 部を体腔内に挿入しなければならな 、。
[0003] 図 1Aは、従来のアレイ型超音波探触子の断面図である。図 1Bは、図 1 Aのアレイ 型超音波探触子を直角方向で切断しその一部分を拡大した側面断面図である。
[0004] 図 1A及び図 1Bにおいて、アレイ型超音波トランスデューサ 101は、圧電素子 102 、電極 103a, 103b,フレキシブル基板 104、整合層 105, 106、音響レンズ 107、絶 縁層 108、ダンピング部(層) 109、フレキシブルリード 110a, 110b,接着剤 111、空 隙部 112から主に構成されて 、る。
[0005] アレイ型圧電素子 102は、板状の厚み方向に分極可能な PZT等の圧電素子板を 板の垂直方向から細い幅で薄く切断し、隣接するものとわずかに離間するよう平行に 整列されることにより、構成される。圧電素子 102の厚み方向の両面には、銀等を蒸 着等することにより電極 103a, 103bが形成されている。超音波が送受波される側の 電極である電極 103a面は、アース側電極とされている。そして、板状で伝導性のフレ キシブル基板 104により、各電極 103aは導通保持される。
[0006] さらにフレキシブル基板 104の上には、各圧電素子 102と同形状で細長に形成さ れた第 1の音響整合層 105及び第 2の音響整合層 106が貼着等されて積層状に形 成されている。上記第 2の音響整合層 106の上面には、各圧電素子 102の長手方向 の中央が凸となる音響レンズ 7が形成されて 、る。 [0007] 一方、上記各圧電素子 102の正極側電極 103b面には、絶縁性部材を用いた絶縁 層 108が形成されている。そして、絶縁層 108は、ダンピング部 (層) 109に固着され ている。このようにして、各超音波振動子エレメントが形成されている。
[0008] 上記正極側電極 103bは、フレキシブルリード 110bによってダンピング部 109の両 側から裏面側に引き出されている。また、アース側電極 103aもフレキシブルリード 11 Oaでダンピング部 109の裏面側に引き出されて!/、る。
[0009] 上記絶縁層 108の両側の隙間には、エポキシ系等の接着剤 111を用いて絶縁層 1 08をダンピング層 109〖こ固着してある。
[0010] 上記第 1の音響整合層 105及び第 2の音響整合層 106は、圧電素子 102と体腔内 壁との音響インピーダンスの中間の値に設定されている。これにより、音響レンズ 107 の前面 (上面)が接触する体腔内壁に対して、圧電素子 2から送波 (及び受波)される 超音波を (反射を少なくして)能率よく伝達することができる。さらに、 2層の音響整合 層 105, 106にすることによって、音響インピーダンスがより円滑に整合できるようにし てある。
[0011] 両電極 103a, 103bに印加された高周波パルスによって各圧電素子 102が励振さ れて超音波が送出される。ここで、上記ダンピング層 109は、裏面側に送出された超 音波を速やかにダンピングさせて、ダンピング層 109の裏面で反射された超音波が 受波されて分解能を悪ィ匕するのを防止するためのものである。
[0012] このダンピング層 109は、体腔内での使用においてはその厚みを大きくして充分な 減衰機能を有するようにできる。しかし、体腔内で使用する場合、ダンピング層 109は 最も嵩ばる部材となるので、厚みの少ないものが要求される。
[0013] そこで、ダンピング層 109の材質として、タングステン粉末をエポキシ榭脂、シリコー ン榭脂、塩ィ匕ビュル榭脂等に分散したものを用いる。このとき、該タングステン粉末の 分散量が重量比で 95%前後となるように、その樹脂に分散させることによりほぼ満足 できる減衰量を実現できる。
[0014] 上記材質のダンピング層 109を用いる場合、その電気抵抗が低いので、人体に対 する安全対策上、超音波送受面側をアース電極とし、ダンピング層 109側を正極に 設定する。そのため、ダンピング層 109が直接正極側に接触すると、該ダンピング層 109を形成する部材の低 、抵抗 (インピーダンス)によってアレイ状に分割された各 超音波振動子エレメントが導通してしまう不都合が生じる。そのため、ダンピング層 10 9と正極側電極 103bとは、上記絶縁層 108によって絶縁されて 、る。
[0015] ところで、各超音波振動子は、各エレメント間のクロストークを防ぐために、隣接する 各エレメント間に空隙部を設けることができる。さらに、各エレメント間に空隙部を設け るだけでなぐ第 1の音響整合層 105,第 2の音響整合層 106を含めた 3層に渡って 空隙部 112を形成することによって、より確実にクロストークを防止できる。
[0016] なお、上記空隙部 112で分離された超音波振動子は、次のようにして形成される。
まず、例えば、絶縁層 108に固着した両面に電極が形成された圧電素子板と、該圧 電素子板に重ねた第 1及び第 2の音響整合板とを一体化させる。次に、絶縁層 108 の一部にまで切り込んで正極側電極 103bを分離させるように、ダイヤモンドカッター で切断する。この場合、フレキシブル基板 104は、その切断後にアース電極 103aに 接するように形成される。
[0017] このようにして構成された従来の超音波振動子においては、上記隣接する圧電素 子 102間が、整合層 105, 106も含めて空隙部 112で分離されているため、クロスト ークが充分防止されている。し力しながら、各エレメントは幅の薄い細長の状態で配 列され、かつ細長となる両側部が保持されていないため、機械的に非常に弱いという 欠点があった。
[0018] また、空隙部 112に湿気等で水分が浸透し、水分が空隙部 112に長く残ってしまう ことがあった。そうすると、各圧電素子 102の両面に施された電極 103a, 103bの銀 がマイグレーションを起こし、超音波の送受波する機能が低下したり、さらに酷い場合 にはショートしてしまう状態に陥ってしまうことも起こり得るという危険性があった。
[0019] そこで、このような欠点を改善するために、特許文献 1では、図 1Cに示すように、ェ レメント間の空隙部に中空を有するガラス球の中空部材 122を詰め込むことで、クロ ストークを防止し、さらに湿気が入り込むのを防止している。
特許文献 1:特開昭 60— 89199号公報
発明の開示
[0020] 本発明にかかる超音波を放射させるために振動する圧電振動子と 1以上の音響整 合層とを含む振動子エレメントと、音響レンズとを備える超音波トランスデューサは、 隣接する該振動子エレメント間の間隙部は、前記音響レンズの構成材料と同一の構 成材料により充填されている。
[0021] また、本発明にかかる上記超音波トランスデューサにおいて、その外部表面は、前 記音響レンズの構成材料と同一の構成材料で被覆される。
[0022] また、本発明にかかる上記超音波トランスデューサにおいて、前記音響レンズの構 成材料は、傾斜材料である。
[0023] また、本発明に力かる上記超音波トランスデューサにお 、て、前記傾斜材料は、シ リコーン榭脂に無機微粉末が分散している材質であって、前記圧電振動子の振動発 生面力 前記音響レンズと前記音響整合層との界面方向へ向かうにしたがって該無 機微粉末の充填密度が小さくなる材質である。
[0024] また、本発明にかかる上記超音波トランスデューサにおいて、前記無機微粉末が、 タングステン、酸化タングステン、酸化アルミニウム、及び酸化ジルコニウムのうち少な くとも 、ずれか 1つを含んで!/、る。
[0025] また、本発明にかかる上記超音波トランスデューサにおいて、前記傾斜材料には、 シリコーン榭脂に該シリコーン榭脂より小さな比重を有し中空構造を有する粒子が分 散しており、前記圧電振動子の振動発生面から前記音響レンズと前記音響整合層と の界面方向へ向かうにしたがって該粒子の充填密度が小さくなる。
[0026] また、本発明に力かる上記超音波トランスデューサにおいて、前記粒子は、ガラス 材料からなる。
[0027] また、本発明にかかる上記超音波トランスデューサにおいて、前記粒子は、高分子 材料からなる。
[0028] また、本発明にかかる上記超音波トランスデューサにおいて、前記音響レンズを形 成して前記振動子エレメント間を充填させた材料と前記振動子エレメントとが接する 面に、耐蝕性または耐湿性を有する薄膜層を介在させる。
[0029] また、本発明にかかる上記超音波トランスデューサにおいて、前記薄膜層は、無機 化合物成分を含むナノコーティング膜を含んで 、る。
[0030] また、本発明にかかる上記超音波トランスデューサにおいて、前記無機化合物成分 は、シリコン、チタン、及びジルコニウムのうち少なくともいずれ力 1つを含んでいる。
[0031] また、本発明にかかる上記超音波トランスデューサにおいて、前記音響レンズの構 成材料と同一の構成材料で被覆された前記超音波トランスデューサの該被覆表面に
、耐蝕性または耐湿性を有する薄膜層を介在させる。
[0032] また、本発明にかかる上記超音波トランスデューサにおいて、前記薄膜層は、無機 化合物成分を含むナノコーティング膜を含んで 、る。
[0033] また、本発明に力かる上記超音波トランスデューサにおいて、前記ナノコーティング 膜は、シリコン、チタン、及びジルコニウムの酸化物のうち少なくともいずれ力 1つであ る。
[0034] また、本発明にかかる上記超音波トランスデューサにおいて、前記薄膜層の表面に 、銀のナノコーティング膜を形成する。
[0035] 本発明にかかるアレイ型超音波トランスデューサの製造方法は、フレキシブル基板 の電極面に圧電振動子の電極を接続するように、該フレキシブル基板の電極面と該 圧電振動子を接合する接合工程と、前記接合工程により接合された接合体に、 1以 上の音響整合層とを接合する音響整合層接合工程と、前記音響整合層接合工程に より生成された積層体を、該積層体を保持するバッキング材部の上に接合するバツキ ング材部接合工程と、前記積層体にダイシング加工を施すダイシング工程と、前記ダ イシング加工によって形成された圧電振動子エレメントの接地側を共通電位とする共 通接地線を接続する接地線接続工程と、前記ダイシング加工により形成された溝部 にプライマー処理を施すプライマー処理工程と、所定の成型型に前記プライマー処 理工程を経て得られた前記積層体を固定し、前記プライマー処理を施した部分に対 して、音響レンズ、前記溝部の充填材、及び該積層体外側の被覆部となる榭脂前駆 液を接触させ、該榭脂前駆液を硬化させる榭脂前駆液硬化工程とを行う。
[0036] また、本発明に力かる上記アレイ型超音波トランスデューサの製造方法にぉ 、て、 前記プライマー処理工程後に、該プライマー処理が施された部分にナノコーティング 膜層を形成するナノコーティング膜層形成工程を行う。
[0037] また、本発明に力かる上記アレイ型超音波トランスデューサの製造方法にぉ 、て、 前記榭脂前駆液硬化工程後に、前記硬化した榭脂前駆体の表面にナノコーティン グ膜層を形成するナノコーティング膜層形成工程を行う。
[0038] また、本発明に力かる上記アレイ型超音波トランスデューサの製造方法にぉ 、て、 前記榭脂前駆液は、シリコーンゴム前駆液と希釈液とを含む。
[0039] また、本発明に力かる上記アレイ型超音波トランスデューサの製造方法にぉ 、て、 超音波を放射する圧電振動子と 1以上の音響整合層とを含む振動子エレメントを形 成する振動子エレメント形成工程と、所定の成型型に前記振動子エレメント形成工程 により得られた積層体に、音響レンズ、前記振動子エレメント間の充填材、及び該積 層体外側の被覆部となる榭脂前駆液を接触させ、該榭脂前駆液を硬化させる榭脂 前駆液硬化工程とを行う。
[0040] 本発明にかかる上記アレイ型超音波トランスデューサを超音波内視鏡装置に搭載 する。
[0041] 本発明にかかる上記製造方法によって製造されたアレイ型超音波トランスデューサ を超音波内視鏡装置に搭載する。
図面の簡単な説明
[0042] [図 1A]従来のアレイ型超音波探触子の断面図である。
[図 1B]図 1Aのアレイ型超音波探触子を直角方向で切断しその一部分を拡大した側 面断面図である。
[図 1C]従来のアレイ型超音波探触子のエレメント間の空隙部に中空を有するガラス 球の中空部材を詰め込んだ様子を示す。
[図 2A]第 1の実施形態におけるアレイ型超音波トランスデューサ 1の外観 (斜め側面) を示す図である。
[図 2B]第 1の実施形態におけるアレイ型超音波トランスデューサ 1の外観 (長手方向 の側面)を示す図である。
[図 2C]第 1の実施形態におけるアレイ型超音波トランスデューサ 1の外観 (短手方向 の側面)を示す図である。
[図 3A]第 1の実施形態におけるアレイ型超音波トランスデューサ 1の側面方向から観 察した図である。
[図 3B]図 3Aの直角方向から観察した断面図である。 圆 3C]図 3Aを上方から観察した断面図である。
圆 4A]第 1の実施形態におけるアレイ型超音波トランスデューサ 1の内部構成を示す 図(長手方向の側面断面図)である。
圆 4B]第 1の実施形態におけるアレイ型超音波トランスデューサ 1の内部構成を示す 図(短手方向の側面断面の一部)である。
[図 5A]第 2の実施形態におけるアレイ型超音波トランスデューサを示す図 (長手方向 の側面断面図)である。
圆 5B]第 2の実施形態におけるアレイ型超音波トランスデューサを示す図(短手方向 の側面断面の一部)である。
圆 6]第 2の実施形態における保護膜の構成を示す図である。
[図 7A]第 3の実施形態におけるアレイ型超音波トランスデューサを示す図 (長手方向 の側面断面図)である。
圆 7B]第 3の実施形態におけるアレイ型超音波トランスデューサを示す図(短手方向 の側面断面の一部)である。
圆 8]第 4の実施形態におけるアレイ型超音波トランスデューサを示す図である。 圆 9]第 5の実施形態におけるアレイ型超音波トランスデューサを示す図である。 圆 10A]第 6の実施形態におけるアレイ型超音波トランスデューサを示す図 (長手方 向の側面断面図)である。
圆 10B]第 6の実施形態におけるアレイ型超音波トランスデューサを示す図(短手方 向の側面断面の一部)である。
圆 11A]第 7の実施形態における製造工程の様子 (その 1)を示す図である。
圆 11B]第 7の実施形態における製造工程の様子 (その 2)を示す図である。
圆 11C]第 7の実施形態における製造工程の様子 (その 3)を示す図である。
圆 11D]第 7の実施形態における製造工程の様子 (その 4)を示す図である。
圆 11E]第 7の実施形態における製造工程の様子 (その 5)を示す図である。
発明を実施するための最良の形態
<第 1の実施形態 >
従来においては、音響レンズを整合層に接着剤を用いて接着していたが、その余 分が空隙部 112に流れ込んで 、た。この接着剤の流れ込む量には各空隙部 112で ばらつきがあり、このばらつきのために超音波の特性のばらつきが生じていた。
[0044] 本実施形態では、音響レンズ材と溝埋め材を同じ材料で一体的に形成した超音波 トランスデューサについて説明する。
[0045] 図 2A—図 2Cは、本実施形態におけるアレイ型超音波トランスデューサ 1の外観を 示す。図 2Aは、本実施形態におけるアレイ型超音波トランスデューサ 1の斜め側面 外観図である。図 2Bは、本実施形態におけるアレイ型超音波トランスデューサ 1の長 手方向の側面外観図である。図 2Cは、本実施形態におけるアレイ型超音波トランス デューサ 1の短手方向の側面外観図である。
[0046] 図 2A—図 2Cにおいて、ノ ッキング材部 4の上部が音響レンズ兼外部被覆部 2によ り被覆されて 、る。ノ ッキング材部 4の側面力も底部にかけてフレキシブルプリント基 板 (FPC) 3が配設されている。なお、 FPC3の表面には本来信号を送受信するため のケーブルが配設されているが、同図では省略している。 201は、音響レンズ兼外部 被覆部 2のうちの音響レンズを形成している部分である。 202は、外部被覆部(または 側面榭脂膜部)を形成して 、る部分である。
[0047] 図 3A—図 3Cは、本実施形態におけるアレイ型超音波トランスデューサ 1の各方向 から観察した図を示す。図 3Aは、側面力も観察した図である。図 3Bは、図 3Aの直 角方向から観察した断面図である。図 3Cは、図 3Aを上方力も観察した断面図であ つて図 3Bの破線 Xによる切断面に対応するものである。
[0048] 本実施形態にぉ 、て、振動子エレメント (または単にエレメントとも 、う)は、圧電振 動子 (圧電素子) 5、第一音響整合層 6、第二音響整合層 7から構成される。圧電振 動子 5は、電圧信号を受信すると振動を起こして、超音波を発生させる。超音波を空 気中や水や生体等にそのまま放出する場合、圧電振動子と空気中や水や生体等の 間では音響インピーダンス差があるので、その界面で超音波が跳ね返って効率よく 放出されない。そこで、第一音響整合層 6、第二音響整合層 7を設けることにより、超 音波がその界面で反射したり減衰したりすることを抑制して、超音波を効率よく放出 することができる。
[0049] ノ ッキング材部 4は、圧電振動子 5を背面保持 (バッキング)するために用いられる。 また、ノ ッキング材部 4は、超音波振動を減衰させて、広帯域の超音波パルスを得る ために用いられる。これにより、広帯域ィ匕の反面、感度は低下する。
[0050] バッキング材部 4の上部には、複数のエレメントが配設されている。圧電振動子 5の 左右両端の上部には共通接地ワイヤ 12が設けられており、エレメント間に渡って設け られている。なお、図 3B及び図 3Cに破線 Yがある力 以下の図面は、この破線 Yで 切断した断面図とする。
[0051] 図 4A及び図 4Bは、本実施形態におけるアレイ型超音波トランスデューサ 1の内部 構成を示す。図 4Aは、長手方向の側面断面図である。図 4Bは、短手方向の側面断 面の一部を示す図である。圧電振動子 5の下部表面には、配線電極 10が設けられ ている。また、バッキング材部 4の上部表面には、ストライプ状に配線されたフレキシ ブルプリント基板 9が配設されている。この基板 9上の配線と圧電振動子 5の下部表 面の配線電極 10とが接着した構造になっており、接着剤 11で接着固定されている。 上記したように、ノ ッキング材部 4上にエレメントが複数配設され、これらのエレメント を覆うようにして、音響レンズ兼外部被覆部 2がある。
[0052] 音響レンズ兼外部被覆部 2については、主に 201, 202, 203の部分がある。 201 は音響レンズ部分を形成して ヽる。 202は外部被覆部 (または側面榭脂膜部)を形成 している。 203はエレメント間にある溝部を充填している溝充填部となっている。 201 , 202, 203は、すべて同一の材質の榭脂から構成させる。このような材質は、超音 波の減衰効果の大きいものを選択する必要がある。また、材料固有の音速も考慮す る必要がある。本実施形態では、これらを考慮して、シリコーン榭脂 (旭化成ヮッカー ケミカルズ社製、品名「エラストジル」)を用いることにする。
[0053] また、溝部 203だけでなぐ外部被覆部 202までシリコーン榭脂で固定するのは、 エレメントの機械的強度を上げるためである。音響レンズ材と溝埋め材を同じ材料で 一体的に形成することで、別途接着剤を用いる必要がない。そのため、余分な接着 剤のエレメント間への不均一な流入により生じる超音波の特性のばらつきを防止する ことができる。
[0054] <第 2の実施形態 >
本実施形態では、第 1の実施形態のアレイ型トランスデューサに、さらに保護膜 13 を用いたものについて説明する。なお、この保護膜は、ナノメートルサイズの粒子から 構成された膜けノコ一ティング膜)である。
[0055] 図 5A及び図 5Bは、本実施形態におけるアレイ型超音波トランスデューサ 1を示す 。図 5Aは、長手方向の側面断面図である。図 5Bは、短手方向の側面断面の一部を 示す図である。同図では、エレメント、接着層 11、共通接地ワイヤ 12は、保護膜 13で 被覆されて、その上力も音響レンズ兼外部被膜部で覆ったものである。
[0056] アレイ型超音波トランスデューサ 1は、超音波内視鏡で使用される医療器具の一部 であるので、超音波内視鏡の使用前または使用後に洗浄、消毒する必要がある。し かし、ここで用いられる消毒剤は、音響レンズ兼外部被膜部 2を形成するシリコーン 榭脂に浸透する。そのため、浸透した消毒剤が圧電振動子 5のあるシリコーン榭脂層 の最下部まで浸透する場合がある。また、加圧状態下において、水蒸気が浸透する 可能性もある。
[0057] これらの場合には、浸透した消毒剤または水蒸気により圧電振動子がショートしたり 、腐食したりする可能性がある。また、正常な診断画像が得られないということも考え られる。
[0058] そこで、シリコーン榭脂とエレメントの間(界面)に耐蝕性、及び Zまたは耐湿性を有 する薄膜層 (保護膜)をおくことで、シリコーン榭脂に浸透した消毒剤や水蒸気力も圧 電振動子を保護するができる。本実施形態では、コーティング薄膜層を用いた。これ について図 6で説明する。
[0059] 図 6は、本実施形態における保護膜 (NANO—X社製、製品名: x—protect DS
3010)の構成を示す。同図に示すように、この保護膜 13は、シリコン (Si)、ジルコ ニゥム (Zr)、チタン (Ti)の無機成分、酸素 (O)、及び、その他の有機成分 (高分子 化合物)から構成され、網目構造となっている。この構造は、シリコン (Si)、ジルコ-ゥ ム (Zr)、チタン (Ti)等の金属アルコキシドィ匕合物を加水分解することで得られる。
[0060] この図 6に示すように、無機成分の網目構造に絡む様に、基材の有機成分が存在 している。この構造は膜全体に網目状に形成されているが、無機成分の網目構造に 、有機成分が絡まない領域も製法上形成される。有機成分が絡んでいないので、そ の有機成分は、網目構造力も遊離したナノ粒子として存在することになる。従って、 ナノ粒子 (これも網目構造をもっている)になるか、膜全体に広がる有機成分が絡ん だ網目状構造になるかは、例えば、加熱条件の違いや、加水分解のしかた、 PH調 整、等の製造条件を振り分けることにより、ナノコーティング膜の構造を制御すること ができる。なお、ナノメータサイズの無機化合物成分は、シリコン、チタン、ジルコユウ ムのいずれ力 1つ、または複数の成分であってもよい。また、シリコンの酸化物、チタ ンの酸化物、ジルコニウムの酸化物のいずれ力 1つ、または複数の成分であってもよ い。これらの無機化合物を成分とする保護膜は、耐蝕性、及び Zまたは耐湿性を有 している。
[0061] また、上記で形成した薄膜層の表面に、銀のナノコーティング膜を形成してもよ 、。
すなわち、図 5A及び図 5Bにおいて、保護膜 13とシリコーン榭脂との界面に銀のナ ノコ一ティング膜を形成しても良い。銀の特性として、抗菌効果がある。なぜなら、微 生物の細胞はマイナス(一)の電荷を帯びている力 これにプラス(+ )の銀イオンが 触れると、その細胞が破壊され、微生物は死滅するためである。
[0062] この銀のナノコーティング膜は、ナノメートルサイズの銀粒子を、例えばイミド榭脂化 合物に分散させ、網目構造を持ったナノメートルサイズの銀粒子の網目にイミド榭脂 が絡んで膜全体を構成して!/、る。
[0063] 以上より、シリコン、チタン、ジルコニウムを構成成分とするナノコーティング膜を用 いることで、耐蝕性、耐湿性を有するアレイ型超音波トランスデューサを実現すること ができる。さらに、銀のナノコーティング膜も形成することで、抗菌効果を有するアレイ 型超音波トランスデューサを実現することができる。これにより、体腔内に対して超音 波内視鏡をより安全に使用することができる。
[0064] <第 3の実施形態 >
第 2の実施形態ではシリコーン榭脂とエレメントの界面に保護膜の層を形成した。し 力しながら、本実施形態ではシリコーン榭脂の表面、すなわち音響レンズ兼外部被 膜部 2を保護膜で覆うことにより、消毒剤または水蒸気がシリコーン榭脂に浸透する のを防止する。
[0065] 図 7A及び図 7Bは、本実施形態におけるアレイ型超音波トランスデューサを示す。
図 7Aは、長手方向の側面断面図である。図 7Bは、短手方向の側面断面の一部を 示す図である。このアレイ型超音波トランスデューサは、図 4のアレイ型超音波トラン スデューサの音響レンズ兼外部被膜部 2の外界と接する表面 (外側表面)を、第 2の 実施形態で説明した保護膜 14で覆ったものである。
[0066] 本実施形態では、第 2の実施形態と同様に、耐蝕性、耐湿性を兼ね備えた保護膜 ( 薄膜層) 14が無機化合物成分力もなるナノ粒子力も構成されている。また、第 2の実 施形態と同様に、無機化合物成分からなるナノ粒子の構成成分は、シリコン、チタン 、ジルコニウムのいずれか 1つ、または複数の成分であってもよい。また、シリコンの酸 化物、チタンの酸化物、ジルコニウムの酸化物のいずれ力 1つ、または複数の成分で あってもよい。また、第 2の実施形態と同様に、薄膜層の表面に、銀のナノコーティン グ膜を形成してもよい。
[0067] このようにすることにより、消毒剤または水蒸気が音響レンズ兼外部被膜部 2を構成 するシリコーン榭脂に浸透することがない。そのため、圧電振動子がショートしたり、 腐食したりすることを防止することができる。なお、第 2の実施形態と第 3の実施形態 を組み合わせて、音響レンズ兼外部被膜部 2とエレメントの間、及び音響レンズ兼外 部被膜部 2の外部と接する表面にそれぞれ保護膜の層を形成することで、より耐蝕 · 耐湿効果を高めることができる。
[0068] <第 4の実施形態 >
本実施形態では、音響レンズ兼外部被膜部 2の材料に傾斜材料 (材料内部の成分 組成及び微視組織の傾斜分布化によって、新 ヽ機能を発現させる材料)を用いる 場合について説明する。
[0069] 図 8は、本実施形態におけるアレイ型超音波トランスデューサを示す。図 8は、図 4 のアレイ型超音波トランスデューサの各エレメント間に中空構造の無機微粉末 15を 用いる場合を示している。無機微粉末は、タングステン、酸化タングステン、酸化アル ミニゥム、酸ィ匕ジルコニウムのうちの少なくともいずれか一種を含む成分力もなる。無 機微粉末は、中空構造をとつている。この無機微粉末は、例えば、中空のガラス材料 であってもよいし、中空の高分子材料であってもよい。
[0070] また、このような中空粒子は、シリコーン榭脂より比重が小さいものを用いる。なぜな ら、中空粒子の浮力によって中空粒子をシリコーン榭脂中に浮力せる必要があるから である。その結果、シリコーン榭脂で満たされたエレメント間に、中空粒子を分散密度 に傾斜をつけて分散させることができる。
[0071] また、中空粒子は、圧電振動子の超音波放射面力 遠ざ力るにしたがってその分 散密度が大きくなる (すなわち、中空粒子の充填率が低くなる)ような構造をとつてい る。すなわち、中空粒子が圧電振動子に接近するほど、中空粒子の分散密度は小さ くなる(中空粒子の充填率が高い)。また、中空粒子が圧電振動子力も離れるほど (ェ レメントの上方へ行くほど)、中空粒子の分散密度は大きくなる(中空粒子の充填率が 低い)なっている。エレメント相互間において、エレメント下方の圧電振動子同士の間 が最もクロストークが起こり易い。そのため、このように圧電振動子付近で中空粒子の 充填率を高くすることにより、そのクロストークを効果的に抑制することができる。
[0072] 中空粒子は、エレメント間に分散させ、エレメント上方部へ行くほど分散密度を大き くする(エレメント上方部へ行くほど中空粒子の充填率を低くする)。しかしながら、こ の分散は、エレメント間に留めるようにする。つまり、中空粒子がエレメント間からはみ だして音響レンズを形成している部分 201まで到達しないようにする。なぜなら、中空 粒子の混合率の制御により音響レンズ部分 201にまで中空粒子が分散してしまうと、 超音波特性を低下させるからである。
[0073] また、エレメントの下部力 上部方向にかけて、中空粒子を緩やかに傾斜をつけて 分散させるようにし、急激に分散密度が変化することのないようにする。なぜならば、 分散密度が急激に変化すると、その部分は超音波を反射する界面となってしまうから である。
[0074] なお、中空粒子の大きさは、溝幅や深さの寸法にもよるが、例えば数/ z m力も数十ミ クロンの間のものを使用する。し力しながら、これに限定されない。
[0075] また、比重の小さい中空粒子と大きい中空粒子とを混合して用いることもできる。こ の場合には、後述する図 11A—図 11Eの製造工程を用いれば、比重の小さい中空 粒子が先に溝の深い所に分布させ、比重の大きい中空粒子が溝の浅部に分布させ ることができる。これ〖こより、クロストークを低減することができる。
[0076] 以上より、隣接するエレメント間のクロストークを効果的に防止し、さらに、機械的強 度を向上させることができる。 [0077] <第 5の実施形態 >
本実施形態は、第 4の実施形態の変形例である。第 4の実施形態では、中空粒子 を用いたが、本実施形態では、中空でない粒子、すなわち中身が充填されている粒 子を用いる。
[0078] 図 9は、本実施形態におけるアレイ型超音波トランスデューサを示す。図 9は、図 8 の中空粒子 15の代わりに中身が充填された粒子 16を用いる。このようにすることで、 第 4の実施形態と同様の効果を得ることができる。
[0079] 以上より、隣接するエレメント間のクロストークを効果的に防止し、さらに、機械的強 度を向上させることができる。
[0080] <第 6の実施形態 >
本実施形態では、エレメントを表面と裏面それぞれの面力 ダイシングを行ったァレ ィ型超音波トランスデューサを用いる場合にっ 、て説明する。
[0081] 図 10A及び図 10Bは、本実施形態におけるアレイ型超音波トランスデューサを示 す。図 10Aは、長手方向の側面断面図である。図 10Bは、短手方向の側面断面の 一部を示す図である。図 10A及び図 10Bは、図 4A及び図 4Bに比べて、圧電振動 子 5の下部 51が上部 52より大きくなつており、隣接する圧電振動子の下部 51間には 底部溝充填部 8がある。なお、この底部溝充填部 8に対して、エレメント上部間の溝充 填部を上部充填部という。
[0082] 同図は、製造工程において、まず圧電素子 5と第一音響整合層 6と第二音響整合 層 7を接合して接合体を構成した後、圧電素子 5側の面をダンシングして底部溝 (底 部溝充填部 8に相当する部分)を形成し、その後、第二音響整合層 7側の面をダンシ ングして底部のダンシング幅より大きい幅で上部溝 (上部充填部に相当する部分)を 形成する。
[0083] このように設計することにより、底部側の方の幅を太くするので、振動子エレメントが 倒れに《なり、機械的強度を向上させることができる。なお、本実施形態で用いた形 状のエレメントは、第 1〜第 5の実施形態のうちのいずれにおいても適用することがで きる。
[0084] <第 7の実施形態 > 本実施形態では、上記の実施形態で説明したアレイ型超音波トランスデューサの 製造方法について説明する。
[0085] 図 11A—図 11Eは、本実施形態におけるアレイ型超音波トランスデューサの製造 工程の様子を示す。次に、これらの図を参照しながら、本発明に力かるアレイ型超音 波トランスデューサの製造工程を説明する。なお、以下の工程のうち S1〜S3の工程 に対応する図は示して ヽな ヽ。
[0086] S1:まず、フレキシブルプリント基板 9の電極面に、圧電振動子 5の電極 10が接続 するように接合する (接合したものを以下では接合体と ヽぅ)。
[0087] S2 :次に、この接合体に第一音響整合層 6と、第二音響整合層 7とを接合する。こ のようにして得られる積層体をバッキング材部の上に接合して配置させる。
[0088] S3 :次に、フレキシブルプリント基板 9と、圧電振動子 5と、第一音響整合層 6と、第 二音響整合層 7とからなる接合積層体の全層にわたつてダイシング加工を施す。ダイ シンダカ卩ェの結果、複数のエレメントが形成され、エレメント間にはダイシンダカ卩ェに よって生じた溝部 17が形成される。
[0089] S4:次に、ダイシングによって形成された圧電振動子エレメントの接地電極を共通 電位とする為の共通接地線 12の接続を行う(図 11A参照)。
[0090] S5 :ダイシング溝部 17について、後述する工程で接着させる榭脂前駆液との密着 性を改善するためにプライマー処理を行う。プライマー処理は、例えばプライマー処 理液に、上記のダンシングされた接合積層体を浸漬後、スプレーガン等で吹き飛ば してもよいし、その他の公知の手法を使用してもよい。これにより、ダイシングされた接 合体表面はプライマー処理膜 18で覆われる(図 11B参照)。
[0091] S6 :次に、第 2の実施形態の場合には、ナノコーティング膜 19で保護膜 (NANO— X社製、製品名: X— protect DS 3010)を形成しても良い(図 11C参照)。保護膜 19の形成は、プライマー処理でプライマー処理膜 18を形成したのと同様に、ダンシ ングされた接合積層体を浸漬後、スプレーガン等で吹き飛ばしてもよいし、その他の 公知の手法を使用してもよい。保護膜 19を形成した後には、再度プライマー処理を 行 ヽ、ダイシングされた接合積層体表面をプライマー処理膜 18で覆うようにする。
[0092] S7 :次に、成型型 21にプライマー処理された接合積層体を固定する。それから、音 響レンズ、溝埋め、および外側面の被覆部となる榭脂前駆液を注入し、その榭脂前 駆液を硬化させる(図 11D,図 11E)。榭脂前駆液は、シリコーンゴム前駆液と希釈 液力もなる。シリコーンゴム (シリコーン榭脂)は、旭化成ヮッカーケミカルズ社製の品 名「エラストジル」を用いた。希釈剤には、品名「ァイソパー E (ISOPAR E)」(発売 元:ェクソンモービルィ匕学)を用いた。これにより、音響レンズ兼外部被覆部 2が形成 される。
[0093] また、ここで、榭脂前駆液は 55°Cの条件下にお 、て 2時間で硬化する。このとき、 硬化した榭脂が程よい粘性を有するようにする為に希釈剤 (キシレン等の芳香族系 の溶剤)を加える。しかしながら、この希釈剤を用いると、硬化後に残臭がある。これを なくす為に、更に 85°Cで 36時間の後硬化処理が有効である。
[0094] なお、 S7において、第 4の実施形態で説明したように、傾斜材料のシリコーン榭脂 を形成するようにしてもよい。この場合、シリコーン榭脂に中空粒子を分散した音響レ ンズ前駆液を注入後に、この成型型 21ごと逆さにする(図 11Dの状態にする)と重力 の関係で溝の深部に、中空粒子が浮いてくる。
[0095] また、第 3の実施形態を実現するために、 S7の後に、さらに、音響レンズ兼外部被 覆部 2の表面にナノコーティング膜層を形成して、第 3の実施形態のようにしてもよい
[0096] このようにして、上記で構成した構造体を音響レンズ兼外部被覆部 2で覆うことで、 本発明にかかるアレイ型超音波トランスデューサを製造することができる。
[0097] なお、第 1〜第 6の実施形態を用途に応じてどのようにも組み合わせることができる 。また、第 1〜第 7の実施形態では、第一音響整合層と第二音響整合層の 2つを用い た力 これに限定されず、音響整合層は例えば 1つでもよいし、または 2以上でもよい
[0098] 以上より、本発明を用いることにより、音響レンズ材と溝埋め材を同じ材料で一体的 に形成することで、別途接着剤を用いることがない。そのため、余分な接着剤のエレ メント間への不均一な流入による超音波の特性のばらつきを防止することができる。 また、クロストークを防止し、また、エレメントの倒れ掛けを防止するための機械的強 度を向上させることができる。

Claims

請求の範囲
[1] 超音波を放射させるために振動する圧電振動子と 1以上の音響整合層とを含む振 動子エレメントと、音響レンズとを備える超音波トランスデューサであって、
隣接する該振動子エレメント間の間隙部は、前記音響レンズの構成材料と同一の 構成材料により充填されていることを特徴とする超音波トランスデューサ。
[2] 前記超音波トランスデューサの外部表面は、前記音響レンズの構成材料と同一の 構成材料で被覆されることを特徴とする請求項 1に記載の超音波トランスデューサ。
[3] 前記音響レンズの構成材料は、傾斜材料であることを特徴とする請求項 1に記載の 超音波トランスデューサ。
[4] 前記傾斜材料は、シリコーン榭脂に無機微粉末が分散している材質であって、前 記圧電振動子の振動発生面から前記音響レンズと前記音響整合層との界面方向へ 向かうにしたがって該無機微粉末の充填密度が小さくなる材質であることを特徴とす る請求項 3に記載の超音波トランスデューサ。
[5] 前記無機微粉末が、タングステン、酸化タングステン、酸ィ匕アルミニウム、及び酸ィ匕 ジルコニウムのうち少なくともいずれ力 1つを含んでいることを特徴とする請求項 4に 記載の超音波トランスデューサ。
[6] 前記傾斜材料には、シリコーン榭脂に該シリコーン榭脂より小さな比重を有し中空 構造を有する粒子が分散しており、前記圧電振動子の振動発生面力 前記音響レン ズと前記音響整合層との界面方向へ向かうにしたがって該粒子の充填密度が小さく なることを特徴とする請求項 3に記載の超音波トランスデューサ。
[7] 前記粒子は、ガラス材料力もなることを特徴とする請求項 6に記載の超音波トランス テューサ0
[8] 前記粒子は、高分子材料力もなることを特徴とする請求項 6に記載の超音波トラン スデューサ。
[9] 前記音響レンズを形成して前記振動子エレメント間を充填させた材料と前記振動子 エレメントとが接する面に、耐蝕性または耐湿性を有する薄膜層を介在させることを 特徴とする請求項 2に記載の超音波トランスデューサ。
[10] 前記薄膜層は、無機化合物成分を含むナノコーティング膜を含んでいることを特徴 とする請求項 9に記載の超音波トランスデューサ。
[11] 前記無機化合物成分は、シリコン、チタン、及びジルコニウムのうち少なくともいず れカ 1つを含んでいることを特徴とした請求項 10に記載の超音波トランスデューサ。
[12] 前記音響レンズの構成材料と同一の構成材料で被覆された前記超音波トランスデ ユーサの該被覆表面に、耐蝕性または耐湿性を有する薄膜層を介在させることを特 徴とする請求項 2に記載の超音波トランスデューサ。
[13] 前記薄膜層は、無機化合物成分を含むナノコーティング膜を含んでいることを特徴 とする請求項 12に記載の超音波トランスデューサ。
[14] 前記ナノコーティング膜は、シリコン、チタン、及びジルコニウムの酸化物のうち少な くともいずれ力 1つであることを特徴とした請求項 13に記載の超音波トランスデューサ
[15] 前記薄膜層の表面に、銀のナノコーティング膜を形成することを特徴とした請求項 1
4に記載の超音波トランスデューサ。
[16] フレキシブル基板の電極面に圧電振動子の電極を接続するように、該フレキシブル 基板の電極面と該圧電振動子を接合する接合工程と、
前記接合工程により接合された接合体に、 1以上の音響整合層とを接合する音響 整合層接合工程と、
前記音響整合層接合工程により生成された積層体を、該積層体を保持するバツキ ング材部の上に接合するバッキング材部接合工程と、
前記積層体にダイシング加工を施すダイシング工程と、
前記ダイシング加工によって形成された圧電振動子エレメントの接地側を共通電位 とする共通接地線を接続する接地線接続工程と、
前記ダイシング加工により形成された溝部にプライマー処理を施すプライマー処理 工程と、
所定の成型型に前記プライマー処理工程を経て得られた前記積層体を固定し、前 記プライマー処理を施した部分に対して、音響レンズ、前記溝部の充填材、及び該 積層体外側の被覆部となる榭脂前駆液を接触させ、該榭脂前駆液を硬化させる榭 脂前駆液硬化工程と、 を行うことを特徴とするアレイ型超音波トランスデューサの製造方法。
[17] 前記プライマー処理工程後に、該プライマー処理が施された部分にナノコーティン グ膜層を形成するナノコーティング膜層形成工程を行うことを特徴とする請求項 16に 記載の超音波トランスデューサの製造方法。
[18] 前記榭脂前駆液硬化工程後に、前記硬化した榭脂前駆体の表面にナノコーティン グ膜層を形成するナノコーティング膜層形成工程を行うことを特徴とする請求項 16に 記載の超音波トランスデューサの製造方法。
[19] 前記榭脂前駆液は、シリコーンゴム前駆液と希釈液とを含むことを特徴とする請求 項 16に記載の超音波トランスデューサの製造方法。
[20] 超音波を放射する圧電振動子と 1以上の音響整合層とを含む振動子エレメントを形 成する振動子エレメント形成工程と、
所定の成型型に前記振動子エレメント形成工程により得られた積層体に、音響レン ズ、前記振動子エレメント間の充填材、及び該積層体外側の被覆部となる榭脂前駆 液を接触させ、該榭脂前駆液を硬化させる榭脂前駆液硬化工程と、
を行うことを特徴とするアレイ型超音波トランスデューサの製造方法。
[21] 請求項 1に記載のアレイ型超音波トランスデューサを備える超音波内視鏡装置。
[22] 請求項 16に記載の製造方法によって製造されたアレイ型超音波トランスデューサ を備える超音波内視鏡装置。
PCT/JP2005/009475 2004-05-24 2005-05-24 超音波トランスデューサとその製造方法 WO2005115054A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05743816A EP1755359B1 (en) 2004-05-24 2005-05-24 Supersonic transducer and manufacturing method thereof
US11/601,245 US20070063616A1 (en) 2004-05-24 2006-11-17 Ultrasonic transducer and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004153048A JP2005340903A (ja) 2004-05-24 2004-05-24 超音波トランスデューサとその製造方法
JP2004-153048 2004-05-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/601,245 Continuation US20070063616A1 (en) 2004-05-24 2006-11-17 Ultrasonic transducer and its production method

Publications (1)

Publication Number Publication Date
WO2005115054A1 true WO2005115054A1 (ja) 2005-12-01

Family

ID=35428701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009475 WO2005115054A1 (ja) 2004-05-24 2005-05-24 超音波トランスデューサとその製造方法

Country Status (4)

Country Link
US (1) US20070063616A1 (ja)
EP (1) EP1755359B1 (ja)
JP (1) JP2005340903A (ja)
WO (1) WO2005115054A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185811A1 (ja) * 2015-05-20 2016-11-24 富士フイルム株式会社 超音波診断用の塗布型接触媒体

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309948B2 (en) * 2001-12-05 2007-12-18 Fujifilm Corporation Ultrasonic transducer and method of manufacturing the same
US7798970B2 (en) * 2004-11-17 2010-09-21 Salutron, Inc Ultrasonic monitor for measuring blood flow and pulse rates
US8456957B2 (en) * 2008-01-29 2013-06-04 Schneider Electric USA, Inc. Ultrasonic transducer for a proximity sensor
US7804742B2 (en) * 2008-01-29 2010-09-28 Hyde Park Electronics Llc Ultrasonic transducer for a proximity sensor
JP5230248B2 (ja) * 2008-04-24 2013-07-10 株式会社東芝 超音波探触子、超音波探触子の製造方法、および超音波検査装置
JP5746082B2 (ja) * 2012-03-30 2015-07-08 富士フイルム株式会社 超音波探触子および信号線の接続方法
JP6200246B2 (ja) * 2013-09-08 2017-09-20 キヤノン株式会社 探触子
JP6331396B2 (ja) * 2014-01-06 2018-05-30 セイコーエプソン株式会社 超音波デバイス、超音波プローブ、電子機器および超音波デバイスの製造方法
JP6326833B2 (ja) * 2014-01-31 2018-05-23 セイコーエプソン株式会社 超音波デバイス、超音波デバイスの製造方法、プローブ、電子機器、超音波画像装置
EP4219026A1 (en) 2015-09-03 2023-08-02 Fujifilm Sonosite, Inc. Ultrasound transducer assembly
JP6448055B2 (ja) * 2015-11-09 2019-01-09 富士フイルム株式会社 超音波内視鏡及び超音波内視鏡の製造方法
CN109804643B (zh) * 2016-10-13 2021-02-19 富士胶片株式会社 超声波探头及超声波探头的制造方法
KR102694163B1 (ko) * 2016-12-14 2024-08-13 삼성메디슨 주식회사 초음파 프로브
JP6672134B2 (ja) 2016-12-22 2020-03-25 オリンパス株式会社 超音波内視鏡用音響レンズおよび超音波内視鏡装置
JP2020005027A (ja) * 2018-06-25 2020-01-09 パナソニックIpマネジメント株式会社 超音波センサー
DE102018122557A1 (de) * 2018-09-14 2020-03-19 Echovista Gmbh Vorrichtung zur Beseitigung von Ablagerungen und/oder Niederschlag auf einem Substrat
US10951992B2 (en) 2018-12-31 2021-03-16 Lg Display Co., Ltd. Vibration generating device and display apparatus including the same
US20240023936A1 (en) * 2022-07-20 2024-01-25 Olympus Medical Systems Corp. Ultrasound endoscope

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686397A (ja) * 1991-03-27 1994-03-25 Yasuhiro Koike 超音波プロ―ブ
JPH0750898A (ja) * 1993-08-06 1995-02-21 Toshiba Corp 超音波プローブ
JP2002124712A (ja) * 2000-10-16 2002-04-26 Seiko Epson Corp 圧電体膜及びこれを備えた圧電体素子
JP2002135895A (ja) * 2000-10-27 2002-05-10 Matsushita Electric Ind Co Ltd 超音波送受信器
JP2003310608A (ja) * 2002-04-24 2003-11-05 Olympus Optical Co Ltd アレイ型超音波トランスデューサ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0190948B1 (en) * 1985-02-08 1992-01-22 Matsushita Electric Industrial Co., Ltd. Ultrasonic probe
KR100695504B1 (ko) * 1999-07-02 2007-03-15 주식회사 프로소닉 초음파 직선 또는 곡선 변환기 및 그 접속 방법
US7288069B2 (en) * 2000-02-07 2007-10-30 Kabushiki Kaisha Toshiba Ultrasonic probe and method of manufacturing the same
US7109642B2 (en) * 2003-11-29 2006-09-19 Walter Guy Scott Composite piezoelectric apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686397A (ja) * 1991-03-27 1994-03-25 Yasuhiro Koike 超音波プロ―ブ
JPH0750898A (ja) * 1993-08-06 1995-02-21 Toshiba Corp 超音波プローブ
JP2002124712A (ja) * 2000-10-16 2002-04-26 Seiko Epson Corp 圧電体膜及びこれを備えた圧電体素子
JP2002135895A (ja) * 2000-10-27 2002-05-10 Matsushita Electric Ind Co Ltd 超音波送受信器
JP2003310608A (ja) * 2002-04-24 2003-11-05 Olympus Optical Co Ltd アレイ型超音波トランスデューサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1755359A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185811A1 (ja) * 2015-05-20 2016-11-24 富士フイルム株式会社 超音波診断用の塗布型接触媒体
JPWO2016185811A1 (ja) * 2015-05-20 2018-02-22 富士フイルム株式会社 超音波診断用の塗布型接触媒体

Also Published As

Publication number Publication date
US20070063616A1 (en) 2007-03-22
JP2005340903A (ja) 2005-12-08
EP1755359B1 (en) 2013-01-16
EP1755359A4 (en) 2012-04-25
EP1755359A1 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
WO2005115054A1 (ja) 超音波トランスデューサとその製造方法
US9812634B2 (en) Method of making thick film transducer arrays
US6758094B2 (en) Ultrasonic transducer wafer having variable acoustic impedance
US5644085A (en) High density integrated ultrasonic phased array transducer and a method for making
RU2419388C2 (ru) Ультразвуковой зонд
JP4373982B2 (ja) アレイ式超音波プローブおよび超音波診断装置
JP5384678B2 (ja) 超音波探触子及びこれを用いた超音波診断装置
US20110257532A1 (en) Ultrasonic probe and method of preparing ultrasonic probe
CN103356231B (zh) 探头和使用该探头的被检体信息获取装置
US5559388A (en) High density interconnect for an ultrasonic phased array and method for making
JP2015221214A (ja) 超音波探触子
JP6528504B2 (ja) 超音波振動子およびその製造方法ならびに超音波探触子
JPH09238399A (ja) 超音波探触子及びその製造方法
JP6641723B2 (ja) 超音波振動子およびその製造方法、超音波探触子ならびに超音波撮像装置
JP4688484B2 (ja) 小型素子超音波トランスデューサ・アレイ用の音響裏当て材
CN108734051A (zh) 超声波传感器及电子装置
JP4528606B2 (ja) 超音波プローブ及び超音波診断装置
JP6277899B2 (ja) 超音波振動子、超音波探触子および超音波撮像装置
JP2009072349A (ja) 超音波トランスデューサ及びその製造方法、並びに、超音波探触子
JP6264220B2 (ja) 超音波振動子、超音波探触子および超音波撮像装置
JP6582370B2 (ja) 圧電体の製造方法、超音波トランスデューサーおよび超音波撮像装置
KR102432777B1 (ko) 초음파 센서 및 그 제조 방법
JP2006174991A (ja) 超音波探触子
JP5322419B2 (ja) 超音波探触子及び圧電振動子
WO2015145402A1 (en) Thermally conductive backing materials for ultrasound probes and systems

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11601245

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005743816

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005743816

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11601245

Country of ref document: US