WO2005113682A1 - Verfahren zur herstellung von flüssigeinstellungen basischer azofarbstoffe - Google Patents

Verfahren zur herstellung von flüssigeinstellungen basischer azofarbstoffe Download PDF

Info

Publication number
WO2005113682A1
WO2005113682A1 PCT/EP2005/005393 EP2005005393W WO2005113682A1 WO 2005113682 A1 WO2005113682 A1 WO 2005113682A1 EP 2005005393 W EP2005005393 W EP 2005005393W WO 2005113682 A1 WO2005113682 A1 WO 2005113682A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
phenylenediamine
azo dyes
diazotization
basic azo
Prior art date
Application number
PCT/EP2005/005393
Other languages
English (en)
French (fr)
Inventor
Michael Schmitt
Jürgen DECKER
Helmut Reichelt
Gerd Rollar
Armin Diefenbacher
Hartwig Voss
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US11/568,996 priority Critical patent/US20070213514A1/en
Priority to MXPA06013154A priority patent/MXPA06013154A/es
Priority to EP05746248A priority patent/EP1756231A1/de
Publication of WO2005113682A1 publication Critical patent/WO2005113682A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0075Preparations with cationic dyes
    • C09B67/0076Preparations of cationic or basic dyes in liquid form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B37/00Azo dyes prepared by coupling the diazotised amine with itself
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0083Solutions of dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0096Purification; Precipitation; Filtration

Definitions

  • the present invention relates to a new process for the preparation of liquid formulations of basic azo dyes from optionally substituted phenylenediamine by diazotization and coupling in acidic solution.
  • DE-A-37 13 617 teaches the preparation of liquid formulations of basic azo dyes from optionally substituted m-phenylenediamine by reaction with 0.76 to 0.95 mol of nitrite based on 1 mol of m-phenylenediamine and subsequent heating of the reaction mixture. Dyes produced in this way are characterized by good bath exhaustion. However, the problem of storage stability remains unsolved here.
  • DE-A-37 13618 describes the subsequent reaction with 0.1 to 1.2 moles of formic acid and thermal aftertreatment of the reaction mixture of diazotization of m-phenylenediamine with neopentyl glycol dinitrite and coupling onto itself. This procedure leads to dyes which occur during dyeing do not blush with acid in paper. However, the use of an organic nitrite is also problematic here.
  • liquid adjustments of basic azo dyes from a phenylenediamine I which can still be substituted by alkyl or alkoxy, can be advantageously obtained by diazotization and coupling in acidic solution if the phenylenediamine I in the presence of at least two organic acids comprising at least one first Acid (A) with a pk A value of ⁇ 4.0 and at least one second Acid (B) with a pK A value ⁇ 4.1 diazotized with sodium nitrite, and after the end
  • Coupling performs a nanofiltration.
  • the dye solution is desalted and, if necessary, concentrated by the nanofiltration. Surprisingly, it was found that the crude dye solutions obtained according to the invention can be desalted by means of nanofiltration without there being unacceptable losses of dye. In addition, the dyes produced by the process according to the invention are notable for good storage stability.
  • the starting product for the azo dyes is phenylenediamine I, which is optionally substituted by dC-alkyl or dC 4 -alkoxy.
  • Phenylene diamine which is unsubstituted or substituted by a methyl or methoxy group is preferably used.
  • Suitable acids (A) with a pk A value of 4,0 4.0 are methanesulfonic acid and preferably formic acid.
  • Suitable acids (B) with a pK A value 4 4.1 are, for example, C 2 -C -alkanoic acids, which may optionally be substituted appropriately. Propionic acid and especially acetic acid are particularly preferred.
  • the solution medium can also contain water or other water-soluble solvents such as alkanols, glycols, glycol ethers, amides or esters, e.g. B. methanol, ethanol, propanol, isopropanol, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, ethylene glycol monoethyl, propyl or butyl ether, N, N-dimethylformamide, N-methylpyrrolidone or gamma-butyrolactone.
  • water is preferably the only solvent medium.
  • the solvent medium used for the diazotization and coupling advantageously contains about 3 to 30% by weight, preferably 10 to 25% by weight, of organic acid and the balance water.
  • the proportions of the reactants and solvents are expediently chosen so that the basic solutions prepared according to the invention Azo dyes have about 4 to 10% by weight of dye before nanofiltration. After desalting and concentration by means of nanofiltration, liquid formulations with a dye content of approx. 12-25% by weight are usually obtained.
  • the process according to the invention is expediently carried out in such a way that the mixture of the two acids (A) and (B) is initially introduced, or one or all of the acids (A) or (B) are preferably metered in completely or partially. It is possible to present the majority of the stronger acid (A) in order to keep the pH as low as possible at the beginning of the diazotization. According to a preferred variant, at least 80 mol% of acid (A), based on the total amount of acid at the start of the diazotization, is present in the reaction mixture at the start of the diazotization. Also preferred is a variant in which the proportion of acid (A) is 20 to 50 mol% based on the total amount of acid used (A + B).
  • a process is particularly preferred which combines both variants, that is to say one begins with a reaction mixture comprising at least 80 mol% of acid (A) and the acid fraction of acid (A) is from 20 to 50 mol%, based on the total amount of acid used.
  • This acid ratio which changes in the course of the reaction, is achieved by portionwise or continuous metering in of acid (B).
  • the most advantageous acid gradient can be determined by simple experiments by varying the rate of metering.
  • the phenylenediamine I is preferably dissolved in the acid (B) and metered in at the same time with a usually aqueous solution of the diazotizing agent. During the reaction, the pH of the mixture rises, whereby the coupling reaction can finally proceed completely. If necessary, part of the amount of acid (A) or (B) can also be metered in independently of phenylenediamine I.
  • a solution of the optionally substituted phenylenediamine I in acid (B) is preferably metered into the reaction mixture in parallel and thus at the same time as the diazotizing agent, generally with its own feed.
  • the sodium nitrite and the phenylenediamine are added at a temperature in the range from -10 to +25 ° C., preferably at 0 to 15 ° C.
  • the reaction mixture is, according to a preferred variant, stirred at from 30 ° C. to 50 ° C. for a period of from 0.5 to 5 hours and then optionally heated to a temperature from 60 ° C. to the boiling point of the reaction mixture.
  • the dyes produced by the process according to the invention are generally not uniform dyes, but rather mixtures of mono-, Bis and polyazo dyes, since the diamines used as the starting product and their secondary products are not only simple but can also be diazotized and coupled several times.
  • the main components have the following formula:
  • R is hydrogen, C 1 -C 4 -alkyl or dd-alkoxy and X is the counterion of an acid, usually the organic acid serving as solvent.
  • Similar products such as dyes obtained by the process according to the invention, are e.g. known under the trade names Bismarckbraun G and R or Vesuvin or also described in EP-A-36 553. They are used for dyeing paper, especially waste paper, or leather, or for dyeing anionically modified fibers, for example acrylonitrile polymers. By mixing with other basic dyes, other colors, e.g. B. Black can be set.
  • the process according to the invention generally gives a crude dye solution whose dye content is 4 to 10% by weight. Such a solution can be nanofiltered directly. If a concentrated dye solution is present, it can be advantageous to dilute the mixture with water to a 4 to 8% by weight dye solution in order to achieve higher flow rates during filtration and thus to increase the space-time yield.
  • the mixture is desalted and concentrated by separating off the permeate.
  • membranes in the membrane separation unit used according to the invention are used.
  • the transmembrane pressures are 1 to 50 bar at temperatures up to 100 ° C.
  • the separating layers of the membranes that can be used can consist of organic polymers, ceramics, metal, carbon or combinations thereof and must be stable in the reaction medium and at the process temperature. For mechanical reasons, they are Separating layers are generally applied to a single- or multi-layer porous substructure, which consists of the same or at least one different material as the separating layer. Examples are separating layers made of ceramic and substructures made of metal, ceramic or carbon, separating layers made of carbon and substructures made of metal ceramic or carbon, separating layers made of polymers and substructures made of polymer, metal, ceramic or ceramic on metal. Polysulfone, polyether sulfone, polydimethylsiloxane (PDMS), polyether ether ketone, polyamide, polyimide are used as polymeric separating layers, for example.
  • Inorganic membranes in particular membranes with ceramic separation layers, are particularly preferred. In comparison to membranes with polymeric separating layers, these membranes achieve a better salt passage and a higher permeate flow.
  • ⁇ -Al 2 O 3 , ZrO 2 , TiO 2 , SiC or mixed ceramic materials are used as ceramic separating layers.
  • the membranes are usually used in pressure-resistant housings, which allow the separation between retentate (dye-rich residue) and permeate (low-dye filtrate) under the pressure conditions required for the separation.
  • the membranes can be designed in flat, tubular, multi-channel element, capillary or winding geometry, for which the corresponding pressure housing, which allows a separation between retentate and the permeate, is available.
  • a membrane element can contain several channels.
  • several of these elements can be combined into one module in one housing.
  • the overflow speed in the module is between 0.2 and 10 m / s depending on the module geometry. Typical values are 0.2 to 0.4 m / s for a winding geometry and 1 to 6 m / s for a tube geometry.
  • the nanofiltration for desalination is preferably carried out partly as diafiltration.
  • a diafiltration is characterized in that the permeate drawn off is replaced in whole or in part by a suitable diafiltration medium.
  • the permeate is preferably replaced by an aqueous acid solution in order to keep the pH constant.
  • the permeate can be replaced either in portions or continuously.
  • the diafiltration step achieves a total permeate quantity which is 1 to 10 times the quantity circulated Dye solution corresponds to the amount of inorganic Reduce salts to ⁇ 10% by weight based on the 100% dye. After nanofiltration, one usually has 12 to 25% by weight dye solutions.
  • solutions of the basic azo dyes obtained by the process according to the invention can be used directly as a liquid formulation.
  • solubilizing additives are added to the dye solutions.
  • additives are, for example, water-miscible organic solvents such as dC 4 -alkanols, for example methanol, ethanol, propanol, isopropanol, butanol, isobutanol, sec-butanol or tert-butanol, carboxamides, such as N, N-dimethylformamide or N, N -Dimethylacetamide, ketones or keto alcohols, such as acetone, methyl ethyl ketone or 2-methyl-2-hydroxypentan-4-one, ethers, such as tetrahydrofuran or dioxane, mono-, oligo- or polyalkylene glycols or -thioglycols which have C -C 6 -alkylene units , such as ethylene glycol, 1, 2- or 1,3-propylene glycol, 1, 2- or 1, 4-butylene glycol, neopen
  • Suitable solubilizing additives are also lactams, such as caprolactam, pyrrolidin-2-one or N-methylpyrrolidin-2-one, urea, cyclic ureas, such as 1,3-dimethylimidazolidin-2-one or 1,3-dimethylhexahydropyrimid-2-one and , Polyvinylamides, polyvinyl acetates, polyvinyl alcohols, polyvinyl pyrrolidones, polysiloxanes or copolymers of the respective monomers. Likewise, oligomers of ethylene oxide or propylene oxide or derivatives of these oligomers can be used.
  • Preferred solubilizing additives are ureas, mono, di- or triethanolamine, caprolactam, mono-, di- or trialkylene glycols which have C 2 -C 5 -alkylene units and / or oligo- and polyalkylene glycols with ethylene and / or propylene units and their dC 4 -Alkyl ether and dC -alkyl ester.
  • Ethylene glycol, 1, 2- or 1, 3-propylene glycol, neopentyl glycol, butyl diglycol, alkylpolyethylene glycols (MW 200-500), ureas and caprolactam are very particularly preferred.
  • Preferred liquid formulations essentially contain 10 to 30% by weight of basic azo dyes (based on the dye without counterion)
  • liquid formulations which essentially contain 10 to 30% by weight of basic azo dyes and 1 to 30% by weight, preferably 1 to 10% by weight, of solubilizing additives, especially ethylene glycol, 1, 2- or 1,3-propylene glycol, neopentyl glycol , Butyl diglycol, alkyl polyethylene glycols (MW 200 - 600), ureas and / or caprolactam.
  • solubilizing additives especially ethylene glycol, 1, 2- or 1,3-propylene glycol, neopentyl glycol , Butyl diglycol, alkyl polyethylene glycols (MW 200 - 600), ureas and / or caprolactam.
  • the liquid formulations obtained according to the invention are notable for excellent storage stability.
  • the liquid formulations are suitable, inter alia, for dyeing and printing cellulosic fiber materials such as wood-containing and wood-free paper pulps.
  • liquid formulations of basic azo dyes are obtained which enable the direct production of dyebaths by merely diluting them with water.
  • the liquid formulations have a low salt content.
  • the process according to the invention avoids the isolation of solids and enables the production of low-salt, stable liquid formulations.
  • the solution was first diafiltered.
  • the permeate removed was replaced by continuous, level-controlled addition of an aqueous acetic acid solution as the diafiltration medium.
  • a total of 3.9 times the amount of raw dye solution originally used was removed as permeate.
  • the concentration of the dye was 7.1% by weight.
  • the concentration of formate and acetate was 0.6% and 5.0% by weight.
  • the remaining retentate was then concentrated on the same membrane by a factor of 2.2 under identical conditions. After the concentration, the concentration of the dye was 15.5% by weight.
  • the concentration of formate and acetate was 1.1% and 7.2% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Flüssigeinstellungen basischer Azofarbstoffe aus einem Phenylendiamin I, das noch durch Alkyl oder Alkoxy substituiert sein kann, durch Diazotieren und Kuppeln in saurer Lösung, indem man das Phenylendiamin in Gegenwart wenigstens zweier organischer Säuren umfassend wenigstens eine erste Säure (A) mit einem pkA-Wert von ≤ 4,0 und wenigstens eine zweite Säure (B) mit einem pKA-Wert ≥ 4,1 mit Natriumnitrit diazotiert und nach beendeter Kupplung eine Nanofiltration durchführt.

Description

Verfahren zur Herstellung von Flüssigeinstellungen basischer Azofarbstoffe
Beschreibung
Die vorliegende Erfindung betrifft ein neues Verfahren zur Herstellung von Flüssigeinstellungen basischer Azofarbstoffe aus gegebenenfalls substituiertem Phenylendiamin durch Diazotieren und Kuppeln in saurer Lösung.
Aus der EP-A-36553 ist bekannt, gegebenenfalls substituiertes m-Phenylendiamin in carbonsaurer Lösung zu diazotieren und kuppeln. Als Diazotierungsreagens wird dabei Natriumnitrit sowie Neopentylglykoldinitrit verwendet. So wird m-Phenylendiamin in Essigsäure vorgelegt und durch Zudosieren von Natriumnitrit diazotiert und gekuppelt. Die so erhaltene Farbstofflösung ist aufgrund des recht hohen Salzgehalts nur eingeschränkt lagerfähig. Ferner wird die Diazotierung mit Neopentylglykoldinitrit in einem Gemisch aus Ameisensäure und Essigsäure beschrieben. Nachteilig hierbei ist der hohe apparative und sicherheitstechnische Aufwand bei der Handhabung von organischen Nitriten.
Die DE-A-37 13 617 lehrt die Herstellung von Flüssigeinstellungen basischer Azofarbstoffe aus gegebenenfalls substituiertem m-Phenylendiamin durch Umsetzung mit 0,76 bis 0,95 Mol Nitrit bezogen auf 1 Mol m-Phenylendiamin und anschließendem Erwärmen des Reaktionsgemisches. So hergestellte Farbstoffe zeichnen sich durch eine gute Baderschöpfung aus. Ungelöst bleibt jedoch auch hier das Problem der Lagerstabilität.
Die DE-A-37 13618 schließlich beschreibt die anschließende Umsetzung mit 0,1 bis 1 ,2 Mol Ameisensäure und thermische Nachbehandlung des Reaktionsgemisches der Diazotierung von m-Phenylendiamin mit Neopentylglykoldinitrit sowie Kupplung auf sich selbst. Diese Vorgehensweise führt zu Farbstoffen, die beim Färben von Papier im Sauren nicht verröten. Problematisch ist jedoch auch hier der Einsatz eines organischen Nitrites.
Daher lag der vorliegenden Erfindung die Entwicklung eines Verfahrens zur Herstellung von Flüssigformulierungen von Azofarbstoffen auf Basis eines Phenylendiamins als Aufgabe zugrunde, das die oben genannten Nachteile vermeidet und trotzdem keine Handhabung von festen Zwischenprodukten erfordert.
Es wurde nun gefunden, dass man Flüssigeinstellungen basischer Azofarbstoffe aus einem Phenylendiamin I, das noch durch Alkyl oder Alkoxy substituiert sein kann, durch Diazotieren und Kuppeln in saurer Lösung vorteilhaft erhält, wenn man das Phenylendiamin I in Gegenwart wenigstens zweier organischer Säuren umfassend wenigstens eine erste Säure (A) mit einem pkA-Wert von ≤ 4,0 und wenigstens eine zweite Säure (B) mit einem pKA-Wert ≥ 4,1 mit Natriumnitrit diazotiert, und nach beendeter
Kupplung eine Nanofiltration durchführt.
Durch die Nanofiltration wird die Farbstofflösung entsalzt und gegebenenfalls aufkonzentriert. Überraschenderweise wurde gefunden, dass sich die erfindungsgemäß erhaltenen Farbstoffrohlösungen mittels einer Nanofiltration entsalzen lassen, ohne dass es zu inakzeptablen Verlusten an Farbstoff kommt. Außerdem zeichnen sich die nach dem erfindungsgemäßen Verfahren hergestellten Farbstoffe durch eine gute Lagerstabilität aus.
Als Ausgangsprodukt für die Azofarbstoffe dient Phenylendiamin I, das gegebenenfalls durch d-C -Alkyl oder d-C4-Alkoxy substituiert ist. Vorzugsweise verwendet man un- substituiertes oder durch eine Methyl- oder Methoxygruppe kernsubstituiertes Phenylendiamin. Insbesondere sind zu nennen m-Phenylendiamin, 1-Methyl-2,4- diaminobenzol, 1-Methyl-2,6-diaminobenzol oder 1-Methoxy-2,4-diaminobenzol. Es ist auch möglich, Gemische verschiedener Phenylendiamine zu verwenden.
In einigen Fällen kann es vorteilhaft sein, bis zu 40 Mol-% des jeweiligen Phenylendi- amins durch Anilin, das gegebenenfalls durch d-d-Alkyl oder Cι-C4-Alkoxy substituiert ist, zu ersetzen. Bei der Mitverwendung dieser Monoamine, insbesondere von un- substituiertem Anilin, wird die Menge an verwendetem Nitrit entsprechend reduziert.
Als Säuren (A) mit einem pkA-Wert von ≤ 4,0 kommen Methansulfonsäure und bevorzugt Ameisensäure in Betracht.
Als Säuren (B) mit einem pKA-Wert ≥ 4,1 kommen beispielsweise C2-C -Alkansäuren in Betracht, die ggf. noch geeignet substituiert sein können. Besonders bevorzugt sind Propionsäure und insbesondere Essigsäure.
Neben den Säuren kann das Lösungsmedium weiterhin Wasser oder andere wasserlösliche Lösungsmittel wie Alkanole, Glykole, Glykolether, Amide oder Ester, z. B. Methanol, Ethanol, Propanol, Isopropanol, Ethylenglykol, Diethylenglykol, Propylenglykol, Dipropylenglykol, Ethylenglykolmonoethyl-, -propyl- oder -butylether, N,N- Dimethylformamid, N-Methylpyrrolidon oder auch gamma -Butyrolacton enthalten. Bevorzugt ist neben den Säuren Wasser das einzige Lösungsmedium.
Vorteilhaft enthält das für die Diazotierung und Kupplung verwendete Lösungsmedium ca. 3 bis 30 Gew.-%, vorzugsweise 10 bis 25 Gew.-% organische Säure und als Rest Wasser.
Die Mengenverhältnisse der Reaktionsteilnehmer und Lösungsmittel werden zweck- mässig so gewählt, dass die erfindungsgemäss hergestellten Lösungen der basischen Azofarbstoffe vor der Nanofiltration ca. 4 bis 10 Gew.-% Farbstoff aufweisen. Nach der Entsalzung und Aufkonzentration mittels Nanofiltration erhält man üblicherweise Flüssigeinstellungen mit einem Farbstoffgehalt von ca. 12 - 25 Gew.-%.
Das erfindungsgemäße Verfahren wird zweckmäßig so durchgeführt, dass man direkt das Gemisch beider Säuren (A) und (B) vorlegt oder aber bevorzugt eine der Säuren (A) oder (B) komplett oder teilweise zudosiert. Dabei ist es möglich, die Hauptmenge der stärkeren Säure (A) vorzulegen, um zu Beginn der Diazotierung den pH-Wert möglichst niedrig zu halten. Nach einer bevorzugten Variante liegen zu Beginn der Diazotierung im Reaktionsgemisch mindestens 80 Mol-% Säure (A), bezogen auf die Gesamtsäuremenge zu Beginn der Diazotierung vor. Ebenfalls bevorzugt ist eine Variante, bei der der Anteil von Säure (A) 20 bis 50 Mol-% bezogen auf die insgesamt eingesetzte Säuremenge (A+B) beträgt. Besonders bevorzugt wird ein Verfahren, das beide Varianten kombiniert, man also mit einem Reaktionsgemisch enthaltend mindestens 80 Mol-% Säure (A) beginnt und der Säureanteil an Säure (A) von 20 bis 50 Mol-% bezogen auf die insgesamt eingesetzte Säuremenge beträgt. Dieses sich im Verlauf der Umsetzung ändernde Säureverhältnis erreicht man durch portionsweises oder kontinuierliches Zudosieren von Säure (B). Durch Variieren der Geschwindigkeit des Zudosie- rens lässt sich durch einfache Versuche der vorteilhafteste Säuregradient ermitteln.
Das Phenylendiamin I wird bevorzugt in der Säure (B) gelöst und gleichzeitig mit einer üblicherweise wässrigen Lösung des Diazotierungsmittels dosiert. Während der Reaktion steigt der pH-Wert der Mischung an, wodurch die Kupplungsreaktion schließlich vollständig ablaufen kann. Gegebenfalls kann ein Teil der Säuremenge (A) oder (B) auch unabhängig vom Phenylendiamin I dosiert werden.
Es ist vorteilhaft auf 1 Mol Phenylendiamin I 0,50 bis 0,90 Mol Diazotierungsmittel einzusetzen, bevorzugt 0,60 bis 0,80 Mol.
Bevorzugt wird eine Lösung des gegebenenfalls substituierten Phenylendiamins I in Säure (B) parallel und damit zeitgleich zum Diazotierungsmittel, in der Regel mit einem eigenen Zulauf dem Reaktionsgemisch zudosiert.
Die Zugabe des Natriumnitrits und des Phenylendiamins erfolgen bei einer Temperatur im Bereich von -10 bis +25 °C, vorzugsweise bei 0 bis 15 °C. Nach beendeter Zugabe wird das Reaktionsgemisch nach einer bevorzugten Variante bei Temperaturen von 30°C bis 50 °C über einen Zeitraum von 0,5 bis 5 Stunden nachgerührt und anschließend gegebenenfalls auf eine Temperatur von 60 °C bis zur Siedetemperatur des Re- aktionsgemischs erwärmt.
Bei den nach dem erfindungsgemässen Verfahren hergestellten Farbstoffen handelt es sich in der Regel nicht um einheitliche Farbstoffe, sondern um Gemische von Mono-, Bis- und Polyazofarbstoffen, da die als Ausgangsprodukt verwendeten Diamine und deren Folgeprodukte nicht nur einfach sondern auch mehrfach diazotiert werden und kuppeln können. Die Hauptkomponenten weisen dabei folgende Formel auf:
Figure imgf000005_0001
in der R Wasserstoff, C1-C4-Alkyl oder d-d-Alkoxy und X das Gegenion einer Säure, üblicherweise die als Lösungsmittel dienende organische Säure, bedeuten.
Ähnliche Produkte, wie nach dem erfindungsgemäßen Verfahren erhaltene Farbstoffe, sind z.B. unter den Handelsnamen Bismarckbraun G und R oder Vesuvin bekannt oder auch in der EP-A-36 553 beschrieben. Sie dienen zur Färbung von Papier, besonders von Altpapier, oder Leder oder auch zum Färben anionisch modifizierter Fasern, beispielsweise von Acrylnitril-Polymerisaten. Durch Abmischen mit anderen basischen Farbstoffen können auch andere Farbtöne, z. B. Schwarz, eingestellt werden.
Nach dem erfindungsgemäßen Verfahren erhält man in der Regel eine Farbstoffrohlösung deren Farbstoffgehalt 4 bis 10 Gew.-% beträgt. Eine solche Lösung kann direkt nanofiltriert werden. Liegt eine konzentrierte Farbstofflösung vor, kann es vorteilhaft sein, das Gemisch mit Wasser auf eine 4 bis 8 gew.-%ige Farbstofflösung zu verdünnen, um bei der Filtration höhere Flußraten zu erzielen und somit die Raum-Zeit- Ausbeute zu erhöhen. Durch Abtrennen des Permeats wird die Mischung entsalzt und aufkonzentriert.
Als bevorzugte Membranen in der erfindungsgemäß eingesetzten Membrantrenneinheit werden kommerziell verfügbare Nanofiltrationsmembranen mit Trenngrenzen von 200 Dalton bis 2000 Dalton, besonders bevorzugt 200 Dalton bis 1000 Dalton, verwendet. Die Transmembrandrücke betragen 1 bis 50 bar bei Temperaturen bis 100°C.
Höhere Transmembrandrücke führen im allgemeinen zu höheren Permeatflüssen, höhere Temperaturen führen prinzipiell zu höheren Permeatflüssen und sind daher bevorzugt, sofern keine Zersetzung des Produkts eintritt.
Für die Membrantrenneinheit kommen alle Membranen in Betracht, die im jeweiligen System unter den erforderlichen Trennbedingungen stabil sind. Die Trennschichten der einsetzbaren Membranen können aus organischen Polymeren, Keramik, Metall, Kohlenstoff oder Kombinationen daraus bestehen und müssen in dem Reaktionsmedium und bei der Prozesstemperatur stabil sein. Aus mechanischen Gründen sind die Trennschichten in der Regel auf einer ein- oder mehrschichtigen porösen Unterstruktur aufgebracht, die aus dem gleichen oder auch aus mindestens einem unterschiedlichen Material wie die Trennschicht besteht. Beispiele sind Trennschichten aus Keramik und Unterstrukturen aus Metall, Keramik oder Kohlenstoff, Trennschichten aus Kohlenstoff und Unterstrukturen aus Metall Keramik oder Kohlenstoff, Trennschichten aus Polymeren und Unterstrukturen aus Polymer, Metall, Keramik oder Keramik auf Metall. Als polymere Trennschichten werden beispielsweise Polysulfon, Polyethersulfon, Polydi- methylsiloxan (PDMS), Polyetheretherketon, Polyamid, Polyimid eingesetzt.
Besonders bevorzugt sind anorganische Membranen, insbesondere Membranen mit keramischen Trennschichten. Im Vergleich zu Membranen mit polymeren Trennschichten wird mit diesen Membranen ein besserer Salzdurchgang und ein höherer Per- meatfluss erreicht. Als keramische Trennschichten werden beispielsweise α-AI2O3, ZrO2, TiO2, SiC oder gemischte keramische Werkstoffe eingesetzt.
Die Membranen werden üblicherweise in druckfeste Gehäuse eingesetzt, welche die Trennung zwischen Retentat (farbstoffreicher Rückstand) und Permeat (farbstoffarmes Filtrat) bei den für die Trennung erforderlichen Druckbedingungen erlauben. Die Membranen können in Flach-, Rohr-, Multikanalelement-, Kapillar- oder Wickelgeometrie ausgeführt werden, für die entsprechende Druckgehäuse, die eine Trennung zwischen Retentat und dem Permeat erlauben, verfügbar sind. Je nach Flächenbedarf kann ein Membranelement mehrere Kanäle enthalten. Weiterhin können mehrere dieser Elemente in einem Gehäuse zu einem Modul zusammengefasst werden. Die Überströmgeschwindigkeit in dem Modul beträgt abhängig von der Modulgeometrie zwischen 0,2 und 10 m/s. Typische Werte sind dabei 0,2 bis 0,4 m/s bei einer Wickelgeometrie und 1 bis 6 m/s bei einer Rohrgeometrie.
Bevorzugt wird die Nanofiltration zur Entsalzung teilweise als Diafiltration durchgeführt. Eine Diafiltration ist dadurch gekennzeichnet, dass das abgezogene Permeat ganz oder teilweise durch ein geeignetes Diafiltrationsmedium ersetzt wird. Im erfindungsgemäßen Verfahren wird das Permeat bevorzugt durch eine wässrige Säurelösung ersetzt, um den pH-Wert konstant zu halten. Der Ersatz des Permeats kann dabei sowohl portionsweise als auch kontinuierlich erfolgen. Für das erfindungsgemäße Verfahren im Sinne einer guten Salzabtrennung ist es dabei oft vorteilhaft, zunächst mittels Nanofiltration aufzukonzentrieren und im Anschluss zu diafiltrieren. Gegebenenfalls kann die Sequenz aus Aufkonzentration und Diafiltration wiederholt werden.
Nach einer bevorzugten Variante, bei der die Farbstofflösung im Kreis geführt wird und der pH-Wert durch kontinuierliche Zugabe von Säure (B) konstant gehalten wird, gelingt es im Diafiltrationsschritt, bei einer Gesamtpermeatmenge, die der 1 bis 10 fachen Menge der im Kreis geführten Farbstofflösung entspricht, die Menge an anorganischen Salzen auf <10 Gew.-% bezogen auf den 100 %igen Farbstoff zu reduzieren. Nach der Nanofiltration hat man üblicherweise 12 bis 25 gew.-%ige Farbstofflösungen.
Sollte der in der Regel erwünschte Anteil an Säure B insbesondere Essigsäure der Farbstofflösung zu stark abgesunken sein, so wird er nach einer bevorzugten Variante nach der Nanofiltration auf einen Wert im Bereich von 5 bis 30 Gew.-% ersetzt.
Die nach dem erfindungsgemäßen Verfahren erhaltenen Lösungen der basischen Azofarbstoffe können direkt als Flüssigformulierung weiterverwendet werden.
Sofern erwünscht, werden die Farbstofflösungen mit solubilisierenden Zusätzen versetzt. Solche Zusätze sind beispielsweise mit Wasser mischbare organische Lösungsmittel wie d-C4-Alkanole, z.B. Methanol, Ethanol, Propanol, Isopropanol, Butanol, Iso- butanol, sec-Butanol oder tert-Butanol, Carbonsäureamide, wie N,N-Dimethylformamid oder N,N-Dimethylacetamid, Ketone oder Ketoalkohole, wie Aceton, Methylethylketon oder 2-Methyl-2-hydroxypentan-4-on, Ether, wie Tetrahydrofuran oder Dioxan, Mono-, Oligo- oder Polyalkylenglykole oder-thioglykole, die C -C6-Alkyleneinheiten aufweisen, wie Ethylenglykol, 1 ,2- oder 1,3-Propylenglykol, 1 ,2- oder 1 ,4-Butylenglykol, Neopen- tylglykol, Hexan-1 ,6-diol, Diethylenglykol, Triethylenglykol, Dipropylenglykol, Thiodigly- kol, Polyethylenglykol oder Polypropylenglykol, andere Polyole, wie Glycerin oder He- xan-1 ,2,6-triol, d-C4-Alkylether von mehrwertigen Alkoholen, wie Ethylenglykol- monomethyl- oder -monoethylether, Diethylenglykolmonomethyl- oder - monoethylether, Diethylenglykolmonobutylether (Butyldiglykol) oder Triethylenglykol- monomethyl- oder -monoethylether, d-C4-Alkylester von mehrwertigen Alkoholen, v- Butyrolacton oder Dimethylsulfoxid. Geeignete solubilisierende Zusätze sind femer Lactame, wie Caprolactam, Pyrrolidin-2-on oder N-Methylpyrrolidin-2-on, Harnstoff, cyclische Harnstoffe, wie 1 ,3-Dimethylimidazolidin-2-on oder 1 ,3- Dimethylhexahydropyrimid-2-on sowie , Polyvinylamide, Polyvinylacetate, Polyvinylal- kohole, Polyvinylpyrrolidone, Polysiloxane oder Copolymere der jeweiligen Monomere. Desgleichen können Oligomere des Ethylenoxids oder Propylenoxids oder Derivate dieser Oligomere zur Anwendung kommen.
Bevorzugte solubilisierende Zusätze sind Harnstoffe, Mono, Di- oder Triethanolamin, Caprolactam, Mono-, Di- oder Trialkylenglykole, die C2-C5-Alkyleneinheiten aufweisen und/oder Oligo- und Polyalkylenglykole mit Ethylen- und/oder Propyleneinheiten sowie deren d-C4-Alkylether und d-C -Alkylester. Ganz besonders bevorzugt sind Ethylenglykol, 1 ,2- oder 1 ,3-Propylenglykol, Neopentylglykol, Butyldiglykol, Alkylpolyethy- lenglykole (MW 200 - 500), Harnstoffe und Caprolactam.
Bevorzugte Flüssigformulierungen enthalten im wesentlichen 10 bis 30 Gew.-% basische Azofarbstoffe (bezogen auf den Farbstoff ohne Gegenion)
0 bis 30 Gew.-% solubilisierende Zusätze
bezogen auf die Gesamtmenge der wässrigen Flüssigformulierung. Besonders bevorzugt werden Flüssigeinstellungen, die im wesentlichen 10 bis 30 Gew.-% basische Azofarbstoffe und 1 bis 30 Gew.-% bevorzugt 1 bis 10 Gew.-% solubilisierende Zusätze speziell Ethylenglykol, 1 ,2- oder 1,3-Propylenglykol, Neopentylglykol, Butyldiglykol, Alkylpolyethylenglykole (MW 200 - 600), Harnstoffe und/oder Caprolactam enthalten.
Die erfindungsgemäß erhaltenen Flüssigformulierungen zeichnen sich durch eine hervorragende Lagerstabilität aus. Die Flüssigformulierungen eignen sich unter anderem zum Färben und Bedrucken cellulosischer Fasermaterialien wie holzhaltige und holzfreie Papiermassen.
Mithilfe des erfindungsgemäßen Verfahrens erhält man verkaufsfertige Flüssigformulierungen von basischen Azofarbstoffen, die die direkte Herstellung von Färbebädern durch ledigliches Verdünnen mit Wasser ermöglichen. Die Flüssigformulierungen weisen einen geringen Salzgehalt auf. Das erfindungsgemäße Verfahren vermeidet die Isolierung von Feststoffen und ermöglicht die Herstellung von salzarmen, stabilen Flüssigformulierungen.
Die nachfolgenden Beispiele sollen die Erfindung näher erläutern. Bei den Angaben in Teilen handelt es sich um Gewichtsteile sofern nicht anders erwähnt.
Beispiel
Zu einer Mischung von 74 Teilen Ameisensäure (> 99 gew.-%ig) und 160 Teilen Wasser gab man 577 Teile Eis, so dass die Temperatur ca. 0 - 5 °C betrug. Anschließend dosiert man gleichzeitig innerhalb von 120 min einerseits eine Lösung von 219,6 Teilen m-Phenylendiamin (m-PDA) in 400 Teilen Wasser und 192,2 Teilen Essigsäure (> 99 gew.-%ig) und andererseits 459,5 Teile einer wässrigen Natriumnitritlösung (23 Vol.-%ig). Das Reaktionsgemisch wurde während der Zugabe stark gerührt und durch Zugabe von insgesamt 1154 Teilen Eis bei einer Temperatur zwischen 10 und 15 °C gehalten. Nach vollständiger Zugabe ließ man das Gemisch auf 40 °C erwärmen und rührte für 3 h bei 40 °C. Nach einer Klarfiltration (Filtrationsrückstand < 0,3 Gew.-%) erhielt man 3230 Teile einer Farbstoffrohlösung, die als Ausgangsmaterial für die Membranfiltration diente.
In der Membranfiltration wurde ein keramisches Mehrkanalelement (19 Kanäle, 3,5 mm Innendurchmesser) einer keramischen Nanofiltrationsmembran eingesetzt (0,9 nm TiO2, Fa. Inocermic). Bei einem Transmembrandruck von 25 bar, einer Temperatur von 40°C und einer Strömungsgeschwindigkeit von ca. 1,4 m/s in den Kanälen wurde die Lösung zunächst diafiltriert. Hierbei wurde entnommenes Permeat durch kontinuierliche, standgeregelte Zugabe einer wässrigen Essigsäurelösung als Diafiltrationsmedium ersetzt. Insgesamt wurde die 3,9-fache Menge der ursprünglich eingesetzten Masse an Farbstoffrohlösung als Permeat entnommen. Nach der Diafiltration betrug die Konzentration des Farbstoff 7,1 Gew-%. Die Konzentration an Formiat bzw. Acetat betrug 0,6 Gew-% bzw. 5,0 Gew-%. Im Anschluß wurde das verbleibende Retentat an der selben Membran unter identischen Bedingungen um den Faktor 2,2 aufkonzentriert. Nach der Aufkonzentration betrug die Konzentration des Farbstoff 15,5 Gew-%. Die Konzentration an Formiat bzw. Acetat betrug 1,1 Gew-% bzw. 7,2 Gew-%.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Flüssigeinstellungen basischer Azofarbstoffe aus einem Phenylendiamin I, das noch durch Alkyl oder Alkoxy substituiert sein kann, durch Diazotieren und Kuppeln in saurer Lösung, dadurch gekennzeichnet, dass man das Phenylendiamin in Gegenwart wenigstens zweier organischer Säuren umfassend wenigstens eine erste Säure (A) mit einem pkA-Wert von ≤ 4,0 und wenigstens eine zweite Säure (B) mit einem pKA-Wert ≥ 4,1 mit Natriumnitrit dia- zotiert und nach beendeter Kupplung eine Nanofiltration durchführt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Säure (A) Ameisensäure oder Methansulfonsäure ist.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Säure (B) eine gegebenenfalls substituierte C2-C4-Alkansäure ist.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Säure (B) Essigsäure ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zu Beginn der Diazotierung im Reaktionsgemisch mindestens 80 Mol-% Säure (A), bezogen auf die Gesamtsäuremenge, vorliegen.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Anteil von Säure (A) 20 bis 50 Mol-% bezogen auf die insgesamt eingesetzte Säuremenge (A+B) beträgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Säure (B) zusammen mit dem Phenylendiamin I parallel zum Diazotierungsmittel dem Reaktionsgemisch zudosiert wird.
8. Verwendung der Flüssigeinstellung basischer Azofarbstoffe gemäß den Ansprüchen 1 bis 7 zum Färben von Papier, Leder oder anionisch modifizierten Fasern.
PCT/EP2005/005393 2004-05-19 2005-05-18 Verfahren zur herstellung von flüssigeinstellungen basischer azofarbstoffe WO2005113682A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/568,996 US20070213514A1 (en) 2004-05-19 2005-05-18 Method for producing liquid adjustments of basic azo dyes
MXPA06013154A MXPA06013154A (es) 2004-05-19 2005-05-18 Metodo para producir ajustes de liquidos de colorantes azo basicos.
EP05746248A EP1756231A1 (de) 2004-05-19 2005-05-18 Verfahren zur herstellung von flüssigeinstellungen basischer azofarbstoffe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004025444A DE102004025444A1 (de) 2004-05-19 2004-05-19 Verfahren zur Herstellung von Flüssigeinstellungen basischer Azofarbstoffe
DE102004025444.3 2004-05-19

Publications (1)

Publication Number Publication Date
WO2005113682A1 true WO2005113682A1 (de) 2005-12-01

Family

ID=34969533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005393 WO2005113682A1 (de) 2004-05-19 2005-05-18 Verfahren zur herstellung von flüssigeinstellungen basischer azofarbstoffe

Country Status (6)

Country Link
US (1) US20070213514A1 (de)
EP (1) EP1756231A1 (de)
CN (1) CN1957044A (de)
DE (1) DE102004025444A1 (de)
MX (1) MXPA06013154A (de)
WO (1) WO2005113682A1 (de)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1359898A (en) * 1971-02-02 1974-07-17 Ciba Geigy Process for the manufacture of concentrated liquid dyeing prepa rations of low salt content
EP0036553A1 (de) * 1980-03-22 1981-09-30 BASF Aktiengesellschaft Verfahren zur Herstellung von Flüssigeinstellungen basischer Azofarbstoffe
EP0045840A1 (de) * 1980-07-05 1982-02-17 Bayer Ag Verfahren zur Herstellung von Lösungen kationischer Polyazofarbstoffe
DE3222965A1 (de) * 1982-06-19 1983-12-22 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von farbstoff-loesungen
US4502862A (en) * 1983-02-03 1985-03-05 Bayer Aktiengesellschaft Cationic polyazo dyestuffs, their stable solutions, their preparation, and their use
DE3713617C1 (en) * 1987-04-23 1988-09-15 Basf Ag Process for the preparation of liquid formulations of basic azo dyes
DE3713618C1 (en) * 1987-04-23 1988-09-15 Basf Ag Process for the preparation of colour-stable solutions of azo dyes
EP0514336A1 (de) * 1991-05-17 1992-11-19 Ciba-Geigy Ag Verfahren zur Herstellung hochkonzentrierter wässriger Lösungen von kationischen Azofarbstoffen
WO2001032786A1 (en) * 1999-10-29 2001-05-10 Ciba Specialty Chemicals Holding Inc. Process for the preparation of solutions of anionic organic compounds
US6533826B1 (en) * 1998-08-08 2003-03-18 Basf Aktiengesellschaft Method for producing aqueous solutions of cationic diarylmethane colorants and triarylmethane colorants

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2573362A (en) * 1947-06-06 1951-10-30 Ardie A Rouse Shotgun projectile
US3094934A (en) * 1960-07-29 1963-06-25 William E Anthony Practice mortar shell and fuse assembly
NL291072A (de) * 1962-04-16 Energa
US3776137A (en) * 1971-09-24 1973-12-04 Aai Corp Projectile and cartridge arrangement
US3952662A (en) * 1974-05-29 1976-04-27 Greenlees William D Non-lethal projectile for riot control
US4150656A (en) * 1977-02-04 1979-04-24 Bangor Punta Operations, Inc. Gas fired gun with gas cartridge puncture device
US5353779A (en) * 1993-03-23 1994-10-11 The United States Of Americas As Represented By The Secretary Of The Army Self-contained cartridge for launching a low speed projectile
US5743246A (en) * 1993-09-10 1998-04-28 Earth Resources Corporation Cannon for disarming an explosive device
US5460154A (en) * 1993-09-10 1995-10-24 Earth Resources Corporation Method for pneumatically propelling a projectile substance
US5715803A (en) * 1993-04-30 1998-02-10 Earth Resources Corporation System for removing hazardous contents from compressed gas cylinders
US5762057A (en) * 1996-12-30 1998-06-09 The United States Of America As Represented By The United States Department Of Energy Light gas gun with reduced timing jitter
GB9700596D0 (en) * 1997-01-14 1997-03-05 Clariant Int Ltd Organic compounds
DE19846098A1 (de) * 1998-10-07 2000-04-13 Bayer Ag Disazofarbstoffe
US20020129806A1 (en) * 2001-03-13 2002-09-19 Kim Hak-Ryang Ribbon discharger where gas cartrige and charged gas are interchangeable
AUPR865901A0 (en) * 2001-11-02 2002-01-24 Poly Systems Pty Ltd Projectile firing device
US7291184B2 (en) * 2001-11-08 2007-11-06 Ciba Specialty Chemicals Corporation Method of reducing the organic carbon content of production waste water in the course of the preparation of concentrated solutions of anionic organic compounds
EP1352928A1 (de) * 2002-04-11 2003-10-15 Basf Aktiengesellschaft Verfahren zur Herstellung von Flüssigformulierungen von basischen Azofarbstoffen
DE102004025443A1 (de) * 2004-05-19 2005-12-08 Basf Ag Verfahren zur Herstellung einer Flüssigformulierung von Salzen sulfonsaurer Azofarbstoffe

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1359898A (en) * 1971-02-02 1974-07-17 Ciba Geigy Process for the manufacture of concentrated liquid dyeing prepa rations of low salt content
EP0036553A1 (de) * 1980-03-22 1981-09-30 BASF Aktiengesellschaft Verfahren zur Herstellung von Flüssigeinstellungen basischer Azofarbstoffe
EP0045840A1 (de) * 1980-07-05 1982-02-17 Bayer Ag Verfahren zur Herstellung von Lösungen kationischer Polyazofarbstoffe
DE3222965A1 (de) * 1982-06-19 1983-12-22 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von farbstoff-loesungen
US4502862A (en) * 1983-02-03 1985-03-05 Bayer Aktiengesellschaft Cationic polyazo dyestuffs, their stable solutions, their preparation, and their use
DE3713617C1 (en) * 1987-04-23 1988-09-15 Basf Ag Process for the preparation of liquid formulations of basic azo dyes
DE3713618C1 (en) * 1987-04-23 1988-09-15 Basf Ag Process for the preparation of colour-stable solutions of azo dyes
EP0514336A1 (de) * 1991-05-17 1992-11-19 Ciba-Geigy Ag Verfahren zur Herstellung hochkonzentrierter wässriger Lösungen von kationischen Azofarbstoffen
US6533826B1 (en) * 1998-08-08 2003-03-18 Basf Aktiengesellschaft Method for producing aqueous solutions of cationic diarylmethane colorants and triarylmethane colorants
WO2001032786A1 (en) * 1999-10-29 2001-05-10 Ciba Specialty Chemicals Holding Inc. Process for the preparation of solutions of anionic organic compounds

Also Published As

Publication number Publication date
MXPA06013154A (es) 2007-02-14
CN1957044A (zh) 2007-05-02
EP1756231A1 (de) 2007-02-28
DE102004025444A1 (de) 2005-12-15
US20070213514A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
DE69916055T2 (de) Verwendung von lithiumsalzen anionischer farbstoffe zur verbesserung ihrer lichtechtheit
EP0036553B1 (de) Verfahren zur Herstellung von Flüssigeinstellungen basischer Azofarbstoffe
EP1951820B1 (de) Flüssigformulierungen von direktfarbstoffen
EP0263791B1 (de) Abtrennung und Reinigung von Pigmentsuspensionen und Pigmentzwischenproduktsuspensionen mit Hilfe der Membrantechnik
EP1756230B1 (de) Verfahren zur herstellung einer flüssigformulierung von salzen sulfonsaurer azofarbstoffe
EP0649881B1 (de) Neue Kupferphthalocyanin-Farbstoffe und deren Verwendung
WO2005113682A1 (de) Verfahren zur herstellung von flüssigeinstellungen basischer azofarbstoffe
DE2743451A1 (de) Polymere farbstoffe und verfahren zu ihrer herstellung
CH689833A5 (de) Cu-Phthalocyaninfarbstoffmischungen, ihre Herstellung und Verwendung zum Faerben oder Bedrucken von cellulosehaltigem Material oder als Tintenstrahldruckfluessigkeit.
DE2200112C3 (de) Carbostyril-Monoazoverbindungen, Verfahren zu ihrer Herstellung und ihre Verwendung als Pigmente
DE3001266A1 (de) Alpha -hydrazono- alpha -phenyl- acetonitrile, verfahren zu ihrer herstellung und ihre verwendung als dispersionsfarbstoffe zum faerben von kuenstlichen oder synthetischen materialien
DE3713617C1 (en) Process for the preparation of liquid formulations of basic azo dyes
EP0712903A1 (de) Wasserlösliche Polyazofarbstoffe
DE2144907C3 (de) Neue wasserunlösliche Mono- und Disazoverbindungen, Verfahren zu ihrer Herstellung und ihre Verwendung als Pigmente
EP0802240A2 (de) Verfahren zur Herstellung salzarmer, flüssiger Farbstoffpräparationen
WO2003052000A1 (de) Verfahren zur herstellung feinteiliger azofabrmittelpräparationen für den ink-jet-druck
DE3329340A1 (de) Verlackungsmittel enthaltende farbstoffzubereitungen basischer farbstoffe
EP0055218A2 (de) Herstellung von Azoverbindungen
DE2058299A1 (de) Verfahren zur Herstellung von Azoverbindungen
DE19511228A1 (de) Disazofarbstoffe
DE69306824T2 (de) Neuer Trisazofarbstoff sowie diesen enthaltende Farbstoffkomposition
EP0341325B1 (de) Verfahren zur Herstellung von Flüssigeinstellungen basischer Azofarbstoffe
DE1245032B (de) Verfahren zur Herstellung gefaerbter Gebilde
DE3713618C1 (en) Process for the preparation of colour-stable solutions of azo dyes
EP0341324B1 (de) Verfahren zur Herstellung farbstabiler Lösungen von Azofarbstoffen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/013154

Country of ref document: MX

Ref document number: 11568996

Country of ref document: US

Ref document number: 2007213514

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005746248

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580016186.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005746248

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2005746248

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11568996

Country of ref document: US