WO2005113666A1 - Composition de caoutchouc a adhesion amelioree vis-a-vis d’un renfort metallique - Google Patents

Composition de caoutchouc a adhesion amelioree vis-a-vis d’un renfort metallique Download PDF

Info

Publication number
WO2005113666A1
WO2005113666A1 PCT/EP2005/004613 EP2005004613W WO2005113666A1 WO 2005113666 A1 WO2005113666 A1 WO 2005113666A1 EP 2005004613 W EP2005004613 W EP 2005004613W WO 2005113666 A1 WO2005113666 A1 WO 2005113666A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
composite
reinforcement
composition according
metal
Prior art date
Application number
PCT/EP2005/004613
Other languages
English (en)
Inventor
Fanny Barbotin
Jean-Luc Cabioch
Marc Greiveldinger
Gérard POUZET
Original Assignee
Societe De Technologie Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe De Technologie Michelin, Michelin Recherche Et Technique S.A. filed Critical Societe De Technologie Michelin
Priority to BRPI0510368-1A priority Critical patent/BRPI0510368A/pt
Priority to US11/579,228 priority patent/US20080026244A1/en
Priority to EP05736921.7A priority patent/EP1749055B1/fr
Priority to JP2007509976A priority patent/JP4959551B2/ja
Priority to CN2005800218886A priority patent/CN1976987B/zh
Publication of WO2005113666A1 publication Critical patent/WO2005113666A1/fr
Priority to KR1020067025275A priority patent/KR101216981B1/ko
Priority to US12/628,935 priority patent/US20100168306A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • B60C2009/0021Coating rubbers for steel cords
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12562Elastomer

Definitions

  • the present invention relates to rubber compositions and to metal / rubber composites, in particular to compositions and composites which can be used for the manufacture of ground connection systems for motor vehicles, in particular tires.
  • Metal / rubber composites in particular for tires, are well known, they generally consist of a diene rubber matrix, crosslinkable with sulfur, comprising metallic reinforcing elements (or “reinforcements"), generally in the form of a wire (s). ) or wire assemblies.
  • these composites must in known manner satisfy a large number of technical criteria, sometimes contradictory, such as uniformity, flexibility, endurance in flexion and compression, tensile, wear and corrosion resistance, and maintain these performances at a very high level as long as possible.
  • the traditional method for connecting rubber compositions to carbon steel consists in coating the surface of the steel with brass (copper-zinc alloy), the connection between the steel and the rubber matrix being provided by sulfurization of the brass during vulcanization; in order to improve adhesion, organic salts or cobalt complexes are also frequently used in said rubber compositions as adhesion-promoting additives (see for example the patent documents FR-A- 2,501,700 or US-A-4,549,594; US-A-4,933,385; US-A-5,624,764).
  • a first object of the invention is a rubber composition which can be used for the manufacture of a metal / rubber composite and capable of adhering to a metal reinforcement, comprising at least one diene elastomer, a reinforcing filler, a system of crosslinking and an adhesion promoter, characterized in that said adhesion promoter comprises a lanthanide compound.
  • the invention also relates to the use as an adhesion promoter with respect to a metal reinforcement, in a diene rubber composition, of such a lanthanide compound.
  • the invention also relates in itself to a metal / rubber adhesion promoter system, characterized in that it comprises in combination a lanthanide compound and a cobalt compound.
  • the subject of the invention is also a metal / rubber composite comprising a diene rubber composition according to the invention and at least one metallic reinforcement adhering to said rubber composition.
  • This metal / rubber composite is characterized by an improved metal-rubber adhesive interphase, offering a level of adhesion at least as good in the initial state (directly after curing), compared to the known prior solutions, with in addition markedly improved performance. after thermal type aging, in particular under humidity conditions.
  • the invention also relates to the use of such a composite for the manufacture or reinforcement of ground connection systems of motor vehicles, such as a tire, internal safety support for a tire, wheel, rubber spring, elastomeric articulation, other suspension and anti-vibration element, or even semi-finished rubber products intended for such ground connection systems.
  • motor vehicles such as a tire, internal safety support for a tire, wheel, rubber spring, elastomeric articulation, other suspension and anti-vibration element, or even semi-finished rubber products intended for such ground connection systems.
  • the composite according to the invention is particularly intended for reinforcements of reinforcement of the crown, of the carcass or of the bead zone of tires intended to equip passenger-type motor vehicles, SUVs ("Sport Utility Vehicles"), two wheels (in particular motorcycles), airplanes, such as industrial vehicles chosen from vans, "Heavy vehicles” - that is to say metro, bus, road transport vehicles (trucks, tractors, trailers), off-road vehicles such as agricultural or civil engineering vehicles, other transport or handling vehicles.
  • SUVs Sport Utility Vehicles
  • two wheels in particular motorcycles
  • airplanes such as industrial vehicles chosen from vans, "Heavy vehicles” - that is to say metro, bus, road transport vehicles (trucks, tractors, trailers), off-road vehicles such as agricultural or civil engineering vehicles, other transport or handling vehicles.
  • the invention also relates to the ground bonding systems and the semi-finished rubber products themselves, when they comprise a composite according to the invention.
  • the invention shows in particular all its interest in the carcass reinforcement of tires for heavy goods vehicles which we expect today, thanks to the technical progress of retreading, that they are able to endure more than a million kilometers. , as well as in the crown reinforcement of tires intended both for passenger vehicles and for industrial vehicles. The longevity of tires can thus be significantly improved, in particular that of tires subjected to particularly severe running conditions, in particular in a humid and corrosive atmosphere.
  • the quality of the connection between the metal reinforcement and the rubber matrix is assessed by a test in which the force, called tear-out force, necessary to extract the metal reinforcement from the rubber matrix is measured in the vulcanized state.
  • the metal / rubber composite used in this test is a rubber composition block, consisting of two plates of dimension 300 mm by 150 mm (millimeters) and thickness 3.5 mm, applied one on the other before the cooking; the thickness of the resulting block is then 7 mm. It is during the making of this block that the reinforcements, for example twelve in number, are trapped between the two green plates; only a determined reinforcement length, for example 12.5 mm, is left free to come into contact with the rubber composition to which this reinforcement length will bond during baking; the rest of the length of the reinforcements is isolated from the rubber composition (for example using a plastic or metallic film) to prevent any adhesion outside the determined contact zone. Each reinforcement passes through the rubber block right through, at least one of its free ends being kept of sufficient length (at least 5 cm, for example between 5 and 10 cm) to allow subsequent traction of the reinforcement.
  • the block comprising the twelve reinforcements is then placed in a suitable mold and then baked, unless otherwise indicated, for 40 minutes at 150 ° C, under a pressure of about 11 bars.
  • the rubber blocks are placed in an oven at a temperature of 135 ° C., for 16 hours;
  • the rubber blocks are placed in an oven at a temperature of 105 ° C., for 16 hours and under a relative humidity of 100%.
  • the block is cut into test pieces serving as samples, each containing a reinforcement which is pulled out of the rubber block, using a traction machine; the traction speed is 50 mm / min; adhesion is thus characterized by the force necessary to tear the reinforcement out of the test piece, at a temperature of 20 ° C; the breakout force (denoted Fa) represents the average of the 12 measurements corresponding to the 12 reinforcements of the composite.
  • the metal / rubber composite of the invention which can be used for the manufacture or reinforcement of ground connection systems of motor vehicles such as for example tires, comprises at least one composition or matrix of rubber, itself the subject of the invention, and a metal reinforcement to which it is capable of adhering, both described in detail below.
  • composition of the invention is an elastomeric composition based (i.e., comprising the mixture or the reaction product) of at least one diene elastomer, a reinforcing filler, a crosslinking system and an adhesion promoter.
  • adhesion promoter consists, in whole or in part, of a lanthanide compound.
  • iene elastomer or indistinctly rubber is meant in known manner an elastomer derived at least in part (ie, a homopolymer or a copolymer) from diene monomers (monomers carrying two carbon-carbon double bonds, conjugated or not) .
  • Diene elastomers can be classified in a known manner into two categories: those called “essentially unsaturated” and those called “essentially saturated”.
  • the term “essentially unsaturated” diene elastomer is understood here to mean a diene elastomer derived at least in part from conjugated diene monomers, having a rate of units or units of diene origin (conjugated dienes) which is greater than 15% (% in moles).
  • conjugated diene monomers having a rate of units or units of diene origin (conjugated dienes) which is greater than 15% (% in moles).
  • diene elastomers such as butyl rubbers or copolymers of dienes and alpha-olefins of the EPDM type do not enter into the preceding definition and can be qualified in particular as "essentially saturated diene elastomers”.
  • the diene elastomer is chosen from the group consisting of polybutadienes (BR), natural rubber (NR), synthetic polyisoprenes (IR), the different butadiene copolymers, the different isoprene copolymers, and the mixtures of these elastomers.
  • Such copolymers are more preferably chosen from the group consisting of butadiene-styrene copolymers (SBR), whether the latter are prepared by emulsion polymerization (ESBR) as in solution (S SBR), isoprene-butadiene copolymers ( BIR), isoprene-styrene copolymers (SIR) and isoprene-butadiene-styrene copolymers (SBIR).
  • SBR butadiene-styrene copolymers
  • BIR isoprene-butadiene copolymers
  • SIR isoprene-styrene copolymers
  • SBIR isoprene-butadiene-styrene copolymers
  • polybutadienes in particular those having a content of units -1,2 between 4% and 80% or those having a content of cis-1,4 greater than 80% are suitable.
  • the synthetic polyisoprenes the cis-1,4-polyisoprenes are particularly suitable, preferably those having a rate of cis-1,4 bonds greater than 90%.
  • the butadiene or isoprene copolymers we mean in particular the copolymers obtained by copolymerization of at least one of these two monomers with im or more vinyl-aromatic compounds having from 8 to 20 carbon atoms.
  • Suitable vinyl-aromatic compounds are, for example, styrene, ortho-, meta-, para-methylstyrene, the commercial "vinyl-toluene" mixture, para-tertiobutylstyrene, methoxystyrenes, chlorostyrenes, vinyl mesitylene, divinylbenzene. , vinylnaphthalene.
  • the copolymers may contain between 99% and 20% by weight of diene units and between 1% and 80% by weight of vinyl-aromatic units.
  • the composites in accordance with the invention are preferably intended for tires, in particular for the carcass reinforcement of tires for industrial vehicles such as vans or HGVs, as well as for the crown reinforcement of tires intended for both passenger vehicles and industrial vehicles.
  • At least one isoprene elastomer is used, that is to say, in known manner, an isoprene homopolymer or copolymer, in other words a diene elastomer chosen from the group consisting of rubber. natural (NR), synthetic polyisoprenes (IR), the various isoprene copolymers and mixtures of these elastomers.
  • the isoprene elastomer is preferably natural rubber, or a synthetic polyisoprene of the cis-1,4 type preferably having a rate of cis-1,4 bonds greater than 90%, more preferably still greater than 98%.
  • the rubber compositions can contain diene elastomers other than isoprene, in particular SBR and / or BR elastomers as mentioned above, whether the isoprene elastomer is present in the majority or not all of the diene elastomers used.
  • an SBR copolymer having a Tg glass transition temperature, measured according to ASTM D3418
  • Tg glass transition temperature, measured according to ASTM D3418
  • S SBR emulsion
  • S SBR solution
  • an SSBR is then used.
  • Said SBR may also be associated with a BR preferably having more than 90%> of cis-1,4 bonds, said BR having a Tg preferably between -110 ° C and -50 ° C.
  • the rubber matrix may contain one or more diene elastomers, the latter or these being able to be used in combination with any type of synthetic elastomer other than diene, or even with polymers other than elastomers, for example polymers thermoplastics.
  • reinforcing filler known for its capacity to reinforce a rubber composition which can be used for the manufacture of tires can be used, for example a organic filler such as carbon black, or also a reinforcing inorganic filler such as silica with which a coupling agent is associated in known manner.
  • Carbon black is preferably used.
  • all carbon blacks are suitable, in particular blacks of the HAF, ISAF, SAF type conventionally used in tires (so-called pneumatic grade blacks).
  • the reinforcing carbon blacks of the 100, 200 or 300 series such as, for example, the blacks NI 15, NI 34, N234, N326, N330, N339, N347, N375, or else , depending on the intended applications, the blacks of higher series (for example N660, N683, N772).
  • inorganic filler should be understood here any inorganic or mineral filler, whatever its color and its origin (natural or synthetic), also called “white” filler or sometimes “clear” filler as opposed to carbon black , capable of reinforcing on its own, without other means than an intermediate coupling agent, a rubber composition intended for the manufacture of tires, in other words capable of replacing, in its reinforcement function, a conventional carbon black pneumatic grade; such a charge is generally characterized, in a known manner, by the presence of hydroxyl groups (-OH) on its surface.
  • -OH hydroxyl groups
  • mineral fillers of the siliceous type in particular silica (Si (2), or of the aluminous type, in particular of alumina (AI2O3) are suitable.
  • the silica used can be any reinforcing silica known to those skilled in the art, in particular any precipitated or pyrogenic silica having a BET surface as well as a CTAB specific surface, both less than 450 m 2 / g, preferably from 30 to 400 m 2 / g.
  • HDS highly dispersible precipitated silicas
  • reinforcing aluminas examples include "Baikalox”"A125” or “CR125” aluminas from the company Baikowski, “APA-100RDX” from Condea, “Aluminoxid C” from Degussa or “AKP-G015" from Sumito o Chemicals.
  • an at least bifunctional coupling agent intended to ensure a sufficient connection, of chemical and / or physical nature, between the inorganic filler will be used in a well known manner. (surface of its particles) and the diene elastomer, in particular organosilanes or bifunctional polyorganosiloxanes.
  • the rate of total reinforcing filler is between 20 and 200 phr, more preferably between 30 and 150 phr, the optimum being in known manner different according to the intended applications.
  • the crosslinking system is preferably a vulcanization system, that is to say a system based on sulfur (or a sulfur donor agent) and on a primary vulcanization accelerator.
  • a vulcanization system that is to say a system based on sulfur (or a sulfur donor agent) and on a primary vulcanization accelerator.
  • various secondary accelerators or known vulcanization activators such as zinc oxide , stearic acid or equivalent compounds, guanidine derivatives (in particular diphenylguanidine).
  • Sulfur is used at a preferential rate of between 0.5 and 10 phr, more preferably between 1 and 8 phr, in particular between 1 and 6 phr when the composition of the invention is intended, according to a preferential method of invention, to constitute an internal "rubber" (or rubber composition) of a tire.
  • the primary vulcanization accelerator is used at a preferential rate of between 0.5 and 10 phr, more preferably of between 0.5 and 5.0 phr.
  • accelerators of the thiazole type and their derivatives, accelerators of the thiuram, zinc dithiocarbamate type can be used as accelerator.
  • These primary accelerators are more preferably chosen from the group consisting of 2-mercaptobenzothiazyl disulfide (abbreviated to "MBTS”), N-cyclohexyl-2-benzothiazyl sulfenamide (abbreviated to “CBS”), N, N-dicyclohexyl-2-benzothiazyle sulfenamide (abbreviated “DCBS”), N-ter-butyl-2-benzothiazyle sulfenamide (abbreviated “TBBS”), N-ter-butyl-2-benzothiazyl sulfenimide (abbreviated "TBSI”) and mixtures of these compounds .
  • MBTS 2-mercaptobenzothiazyl disulfide
  • CBS N-cyclohexyl-2-benzothiazyl sulfenamide
  • DCBS N-dicyclohexyl-2-benzothiazyle sulfenamide
  • lanthanide is reserved for metals, called “rare earths”, whose atomic number varies from 57 (lanthanum) to 71 (lutetium).
  • the lanthanide is chosen from the group consisting of lanthanum, cerium, praseodymium, neodymium, samarium, erbium and mixtures of these rare earths. More preferably, cerium or neodymium is used, in particular neodymium.
  • the lanthanide compound can be of the inorganic or organic type.
  • inorganic compounds mention may in particular be made of phosphorus derivatives such as, for example, lanthanide phosphates, in particular those of neodymium.
  • an organic lanthanide or “organolanthanide” compound is used, chosen in particular from the group consisting of organic salts and derivatives, in particular alcoholates or carboxylates, as well as lanthanide complexes.
  • the ligands (or ligands) of such complexes contain from 1 to 20 carbon atoms, they are generally selected from the group consisting of o-hydroxyaldehydes, o-hydroxyphenones, hydroxyesters, ⁇ -diketones, orthodihydric phenols, alkylene glycols , monocarboxylic acids, dicarboxylic acids and alkylated derivatives of dicarboxylic acids.
  • Such organolanthanides are preferably chosen from the group consisting of abietates, acetates, diethylacetates, acetonates, acetylacetonates, benzoates, butanolates, butyrates, cyclohexane-carboxylates, decanolates, ethylhexanoates, ethylhexanolates, formateates, neatheenates, neatheodenates, neatheenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neatheenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neatheodenates, neathe
  • abietates acetates, acetylacetonates, benzoates, butyrates, formiates, linoleates, maleates, oleates, propionates, naphthenates, resinates, stearates, and mixtures (salts, complexes, or others mixed derivatives) of such compounds.
  • Acetylacetonates and naphthenates are the preferred organolanthanides in the majority of cases, more particularly acetylacetonates.
  • the compound level of lanthanide is preferably between 0.1 and 10 phr. Below 0.1 phr, the targeted technical effect is likely to be insufficient, while beyond 10 phr, there is the risk of an increase in costs and the risk of degrading certain mechanical properties of the compositions, the initial state as after aging. For these various reasons, said level of lanthanide compound is more preferably between 0.2 and 5 phr, even more preferably between 0.5 and 2.5 phr.
  • lanthanide compounds for example neodymium salts such as carboxylates
  • catalysts for the polymerization of polymers or elastomers such as dienes see by way of examples US-A-3 803 053, US-A-5 484 897, US-A-5 858 903, US-A-5 914 377, US-B-6 800 705).
  • Other constituents for example neodymium salts such as carboxylates
  • the rubber matrices of the composites in accordance with the invention also comprise all or part of the additives usually used in rubber compositions intended for the manufacture of systems for bonding to the ground of motor vehicles, in particular tires, such as for example agents anti-aging, antioxidants, plasticizers or extension oils, whether these are of aromatic or non-aromatic nature, in particular very weak or non-aromatic oils (eg, naphthenic or paraffinic oils, MES or TDAE oils), agents facilitating the use of the compositions in the raw state, a crosslinking system based either on sulfur or on sulfur and / or peroxide donors, accelerators, activators or retarders of vulcanization, anti-reversion agents such as for example sodium hexathiosulfonate or N, N'-m-phenylene-biscitraconimide, methyl acceptors and donors ene (for example resorcinol, HMT or H3M) or other reinforcing resins, bismaleimides, other systems promoting adh
  • a particular embodiment consists in using a bismaleimide compound.
  • This type of compound which can be used without hardening agent, has a kinetics of curing well suited to that of tires, it is capable of activating the kinetics of adhesion and of further improving, in the composites in accordance with the invention, the endurance in wet aging conditions of the adhesive interphases.
  • R is a hydrocarbon, aromatic or aliphatic, cyclic or acyclic radical, substituted or unsubstituted, such a radical possibly comprising a heteroatom chosen from O, N and S; this radical R preferably contains from 2 to 24 carbon atoms.
  • a bismaleimide chosen from the group consisting of N, N'-ethylene-bismaleimides, N, N'-hexamethylene-bismaleimides, N, N '- (m-phenylene) is used.
  • Such bismaleimides are well known to those skilled in the art.
  • a reinforcing resin or a bismaleimide is used, it is present in the composite of the invention at a preferential rate of between 0.1 and 20%, more preferably between 1 and 8% by weight of rubber composition.
  • a preferential rate of between 0.1 and 20%, more preferably between 1 and 8% by weight of rubber composition.
  • the composition comprises, in association with the lanthanide compound, at least one cobalt compound according to a preferential level of between 0.1 and 10 phr. It has been found that a certain synergy can exist between the two compounds, resulting in particular in a greater improvement in the adhesive performance under thermal and wet aging conditions. For the same reasons as those indicated above for the lanthanide compound, the level of cobalt compound is then more preferably between 0.2 and 5 phr, even more preferably between 0.5 and 2.5 phr.
  • the cobalt compound is preferably an organic cobalt compound, chosen more preferentially from the group consisting of abietates, acetates, acetylacetonates, benzoates, butyrates, formiates, linoleates, maleates, oleates, propionates, naphthenates, resinates, stearates, and mixtures (that is to say salts, complexes, or other mixed derivatives) of such compounds, in particular among the abietates, acetylacetonates, naphthenates, resinates and mixtures of such compounds. Acetylacetonates and naphthenates are preferred in the majority of cases.
  • compositions are made in suitable mixers, using two phases of. successive preparations well known to those skilled in the art: a first working phase or thermomechanical kneading (so-called “non-productive” phase) at high temperature, up to a maximum temperature of between 110 ° C. and 190 ° C., preferably between 130 ° C and 180 ° C, followed by a second mechanical working phase (so-called “productive” phase) to a lower temperature, typically below 110 ° C, finishing phase during which is incorporated the crosslinking system.
  • a first working phase or thermomechanical kneading at high temperature, up to a maximum temperature of between 110 ° C. and 190 ° C., preferably between 130 ° C and 180 ° C
  • a second mechanical working phase so-called “productive” phase
  • the non-productive phase is carried out in a single thermomechanical step of a few minutes (for example between 2 and 10 min) during which, in a suitable mixer such as a usual internal mixer, all the necessary basic constituents and other additives, with the exception of the crosslinking or vulcanization system.
  • a suitable mixer such as a usual internal mixer
  • all the necessary basic constituents and other additives with the exception of the crosslinking or vulcanization system.
  • the vulcanization system is then incorporated into an external mixer such as a cylinder mixer, maintained at low temperature (for example between 30 ° C. and 100 ° C.).
  • the whole is then mixed (productive phase) for a few minutes (for example between 5 and 15 min).
  • the final composition thus obtained can then be calendered, for example in the form of a sheet, a plate or even extruded, for example to form a rubber profile used for the manufacture of a composite or of a semi-finished product.
  • -finished such as for example plies, strips, under-layers, other rubber blocks reinforced with metal reinforcements, intended to form for example a part of the structure of a tire.
  • Vulcanization (or baking) can then be carried out in a known manner at a temperature generally between 130 ° C and 200 ° C, preferably under pressure, for a sufficient time which can vary for example between 5 and 90 min depending in particular on the baking temperature, the vulcanization system adopted and the vulcanization kinetics of the composition considered.
  • the invention relates to rubber compositions and composites both in the so-called “raw” state (i.e. before curing) and in the so-called “cooked” or vulcanized state (i.e. after vulcanization).
  • metal reinforcement should be understood any reinforcing element capable of reinforcing the rubber matrix, whether entirely metallic or not, of which at least the surface or external part, intended to come into contact with the rubber, is made of metal.
  • This reinforcement can be in different forms, preferably in the form of a unitary wire (monofilament), a film (for example a strip or a ribbon) or an assembly of wires, whether these wires are twisted together. (for example, in the form of a cable) or essentially parallel to one another (for example in the form of a bundle of wires, a continuous fiber or even a set of short fibers).
  • this reinforcement is more preferably in the form of a unitary wire or an assembly of wires, for example a cable or a strand manufactured with devices and methods wiring or stranding known to those skilled in the art, which are not described here for the simplicity of the description.
  • the metal, or surface metal if necessary, of the metal reinforcement is preferably chosen from Fe, Cu, Zn, Al, Sn, Ni, Co, Cr, Mn, the oxides, hydroxides and alloys of these elements, more preferably from Fe, Cu, Zn, Al, Sn, their oxides, hydroxides and alloys.
  • Use is preferably made of a steel reinforcement, in particular of perlitic (or ferritoperlitic) carbon steel known in a known manner as "carbon steel", or also of stainless steel as described for example in patent applications EP-A -648 891 or WO98 / 41682.
  • a steel reinforcement in particular of perlitic (or ferritoperlitic) carbon steel known in a known manner as "carbon steel”, or also of stainless steel as described for example in patent applications EP-A -648 891 or WO98 / 41682.
  • carbon steel When carbon steel is used, its carbon content is preferably between 0.1% and 1.2%>, especially between 0.5% and 1.1%) (%> by weight of steel ); it is more preferably between 0.6% and 1.0%, such a content representing a good compromise between the mechanical properties required for the tire and the feasibility of the cords.
  • the metal or steel used can be used as it is (so-called "light steel") or be itself coated with an additional metal layer, for example improving the processing properties of the metal reinforcement and / or its constituent elements, or the use properties of the reinforcement and / or the composite themselves.
  • the steel used in particular when it is a carbon steel, is covered with an additional layer of metal chosen from aluminum, zinc, copper and binary alloys or ternary of these metals.
  • aluminum alloys preference is given to those chosen from the binary alloys Al-Mg, Al-Cu, Al- ⁇ i, Al-Zn and the ternary alloys of Al and two of the elements Mg, Cu, Ni, Zn, more particularly an Al-Zn alloy.
  • the zinc alloys those chosen from the binary alloys Zn-Cu, Zn-Al, Zn-Mn, Zn-Co, Zn-Mo, Zn-Fe, Zn-Ni, Zn-Sn and the alloys are preferably used.
  • ternaries of Zn and two of the elements for example Zn-Cu-Ni or also Zn-Cu-Co), more particularly a Zn-Cu (brass) alloy or a Zn-Al alloy as mentioned above.
  • the preferred binary alloys are those of Cu-Zn (aforementioned brass) and Cu-Sn (bronze).
  • any deposition process may be used which is capable of applying, continuously or in discontinuous, a metallic coating on a metallic substrate.
  • the additional metal layer will preferably be deposited on the wires, and not on the final cable.
  • the deposition will advantageously be carried out on a wire of so-called "intermediate" diameter, for example of the order of a millimeter, at the outlet of the last heat treatment (patenting) preceding the step wet final drawing to obtain the fine wire having the final target diameter.
  • the reinforcements used are preferably assemblies (strands or cables) of fine wires made of carbon steel or stainless steel having: a resistance in tension greater than 2000 MPa, more preferably greater than 2500 MPa, in particular greater than 3000 MPa; a person skilled in the art knows how to manufacture fine wires having such a resistance, in particular by adjusting the composition of the steel and the final work hardening rates of these wires; for a good compromise between resistance / flexural strength / feasibility, a diameter ⁇ of between 0.10 and 0.40 mm, more preferably between 0.10 and 0.30 mm approximately when the composite is intended to reinforce a carcass reinforcement, between about 0.20 and 0.40 mm when the composite is intended to reinforce a crown reinforcement.
  • the reinforcements may be in particular in the form of bead wires made up of carbon steel or stainless steel wires, unitary or assembled, these wires having: traction greater than 1500 MPa, more preferably greater than 2000 MPa; a diameter ⁇ (or a characteristic dimension, if it is a wire other than cylindrical) of between 0.5 and 3 mm, more preferably between 0.8 and 2.2 mm. fl-3.
  • bead wires made up of carbon steel or stainless steel wires, unitary or assembled, these wires having: traction greater than 1500 MPa, more preferably greater than 2000 MPa; a diameter ⁇ (or a characteristic dimension, if it is a wire other than cylindrical) of between 0.5 and 3 mm, more preferably between 0.8 and 2.2 mm. fl-3.
  • the rubber composition of the invention and the metal reinforcement previously described can be used for the manufacture of a metal / rubber composite which constitutes another object of the invention, a composite in which adhesion between the metal and the rubber is ensured through the use in said composition of the lanthanide compound.
  • This composite can be in various forms, for example in the form of a sheet, a strip, a strip or a block of rubber in which the metal reinforcement is incorporated, or else a coating of rubber covering the metal reinforcement, the latter being in direct contact with the rubber composition.
  • the final adhesion between the metal and the rubber composition can be obtained at the end of the firing of the finished article comprising the composite; preferably, this cooking is carried out under pressure.
  • the composites according to the invention are preferably intended for tires, in particular for radial tires to form all or part of the crown reinforcement, of the carcass reinforcement or the reinforcement of the bead zone of such tires.
  • the appended figure very schematically represents a radial section of a tire 1 with a radial carcass reinforcement according to the invention, intended for a HGV vehicle as for a passenger vehicle in this general representation.
  • This tire 1 has a crown 2, two sidewalls 3, two beads 4, a carcass reinforcement 7 extending from one bead to the other.
  • the crown 2 surmounted by a tread (not shown in this diagrammatic figure, for simplicity), is in a manner known per se reinforced by a crown reinforcement 6 consisting for example of at least two overlapped crossed crown plies (plies so-called "working top"), possibly covered with at least one protective ply or a zero-degree hoop top ply.
  • the carcass reinforcement 7 is wound around the two rods 5 in each bead 4, the reversal 8 of this reinforcement 7 being for example placed towards the outside of the tire 1 which is here shown mounted on its rim 9.
  • the reinforcement of carcass 7 consists of at least one ply reinforced by so-called “radial” cables, that is to say that these cables are arranged practically parallel to one another and extend from one bead to the other of so as to form an angle between 80 ° and 90 ° with the median circumferential plane (plane perpendicular to the axis of rotation of the tire which is located midway between the two beads 4 and passes through the middle of the crown reinforcement 6).
  • this tire 1 also comprises, in a known manner, a layer of inner rubber or elastomer (commonly called “inner rubber”) which defines the radially internal face of the tire and which is intended to protect the carcass ply from the diffusion of air from the interior of the tire.
  • a tire for a heavy vehicle may further comprise an intermediate elastomeric reinforcing layer which is situated between the carcass ply and the inner layer, intended to reinforce the inner layer and, by Consequently, the carcass ply, also intended to partially relocate the stresses undergone by the carcass reinforcement.
  • the tire according to the invention has the essential characteristic of comprising in its structure at least one metal / rubber composite according to the invention, this composite possibly being, for example, part of the bou ⁇ elet zone 4 comprising the bead wire 5, a crossed crown ply or a protective ply of the crown reinforcement 6, a ply forming all or part of the carcass reinforcement 7.
  • the composite of the invention is advantageously usable in the crown reinforcement of all types of tires, for example for passenger vehicles, vans or heavy goods vehicles.
  • the rubber composition of the invention has, in the vulcanized state (ie, after curing), an E10 module which is greater than 4 MPa, more preferably between 6 and 20 MPa, for example between 6 and 15 MPa.
  • the composite of the invention can have an equally advantageous use in a carcass reinforcement of a tire for an industrial vehicle such as Heavy goods vehicle.
  • the rubber composition of the invention has, in the vulcanized state, a module E10 which is less than 9 MPa, more preferably between 4 and 9 MPa.
  • a diene elastomer (or mixture of diene elastomers) is introduced into an internal mixer, filled to 70% and whose initial tank temperature is approximately 60 ° C. , if applicable), the reinforcing filler and the various other ingredients with the exception of the vulcanization system.
  • a thermomechanical work non-productive phase
  • total duration of mixing equal for example to about 7 min
  • the mixture thus obtained is recovered, it is cooled and then the vulcanization system (sulfur and sulfenamide accelerator) is added on an external mixer (homo-finisher) at 30 ° C, mixing the whole (productive phase) for example for 3 to 10 minutes.
  • vulcanization system sulfur and sulfenamide accelerator
  • compositions thus obtained are then either extradited in the form of plates (thickness of 2 to 3 mm) for the measurement of their physical or mechanical properties, or calendered to produce a metallic cabled fabric constituting a part of the crown reinforcement. of a tire for passenger vehicle.
  • compositions have been reported in Tables 1 and 2 appended. They essentially comprise, in addition to the elastomer and the reinforcing filler, a paraffinic oil, an antioxidant, zinc oxide, stearic acid, sulfur and a sulfenamide accelerator, for some of them ( Ml to M-4) a reinforcing resin (phenolic resin plus methylene donor), finally a metal / rubber adhesion promoter comprising either a cobalt compound alone for the control compositions (Ml and M-5), or a compound of cobalt and a lanthanide compound for the compositions according to the invention (M-2 to M-4, M-6 to M-8).
  • Cables made up of fine carbon steel wires, covered with brass, are used, suitable for reinforcing crown reinforcement of passenger tires.
  • the fine carbon steel wires are prepared starting, for example, from machine wires (diameter 5 to 6 mm) which are first worked cold, by rolling and / or drawing, up to an intermediate diameter close to 1 mm. , or even starting directly from intermediate commercial wires whose diameter is close to 1 mm.
  • the steel used is a known carbon steel, for example of the USA AISI 1069 type, the carbon content of which is approximately 0.8% o, comprising approximately 0.5% of manganese, the remainder consisting of iron and impurities usual unavoidables linked to the steel manufacturing process (for example, silicon contents: 0.25%; phosphorus: 0.01%; sulfur: 0.01%; chromium: 0.11%; nickel: 0.03 %; copper: 0.01%; aluminum: 0.005%; nitrogen: 0.003%>).
  • Intermediate diameter wires then undergo a degreasing and / or pickling treatment, before their further processing.
  • a so-called “final” hardening is carried out on each wire, by cold drawing in a humid environment with a drawing lubricant which is, for example, in the form of an aqueous emulsion or dispersion.
  • Each carbon steel wire is coated with a layer of brass (64%> copper and 36% zinc).
  • the brass coating has a very small thickness, significantly less than a micrometer, which is equivalent to about 0.35 to 0.40 g of brass per 100 g of wire.
  • 8 carbon steel / rubber composites are prepared by calendering, denoted respectively C-1 to C-8, having the form of rubber blocks intended for adhesion test described in paragraph 1-2 above.
  • the composite C-1 is the control comprising a conventional rubber matrix also comprising a reinforcing resin and a cobalt compound as adhesion promoter (matrix M-1).
  • Composites C-2 to C-4, all three in accordance with the invention, are distinguished only by the additional presence of an organolanthanide (neodymium, cerium or samarium) in their rubber matrix (M-2 to M-4) .
  • the composites according to the invention all have an initial adhesion (tearing force Fa) which is slightly greater than that of the control (C-1) characterized however by a starting adhesion level which is very high (of the order of 30 daN) for the composite considered.
  • organolanthanide compound therefore makes it possible to slightly improve the initial adhesion and to considerably increase the adhesive performance after thermal aging.
  • the adhesive performances of the composites C-5 to C-8 are compared in this test, this time subjected to the conditions of "thermal and wet aging".
  • the composite C-5 is the control comprising a conventional rubber matrix containing in particular a cobalt compound as an adhesion promoter and moreover devoid of reinforcing resin (matrix M-5).
  • Matrix M-5 a cobalt compound as an adhesion promoter and moreover devoid of reinforcing resin
  • Composites C-6 to C-8, all three according to the invention are distinguished only by the additional presence of organolanthanide (neodymium, cerium or samarium) in their rubber matrix (M-6 to M-8).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Ropes Or Cables (AREA)

Abstract

Composition de caoutchouc utilisable pour la fabrication de tissus caoutchoutés métalliques et susceptible d'adhérer à un renfort métallique, comportant un élastomère diénique, une charge renforçante, un système de réticulation et un promoteur d'adhésion, ledit promoteur d'adhésion comportant au moins un composé de lanthanide, de préférence un organolanthanide. Composite métal/ caoutchouc comportant une telle composition et son utilisation pour la fabrication ou le renforcement de systèmes de liaison au sol des véhicules automobiles tels que des pneumatiques. Systèmes de liaison au sol et produits semi-finis en caoutchouc, notamment pneumatiques, comportant un tel composite. Le composé de lanthanide confère à la composition et au composite des propriétés adhésives améliorées après un vieillissement thermique, en particulier sous conditions d'humidité. Il peut être utilisé seul ou en combinaison avec un composé de cobalt, notamment dans les armatures de carcasse ou de sommet des pneumatiques pour véhicules tourisme ou Poids-lourd.

Description

COMPOSITION DE CAOUTCHOUC A ADHESION AMELIOREE VIS-A-VIS D'UN RENFORT METALLIQUE
La présente invention est relative aux compositions de caoutchouc et aux composites métal/ caoutchouc, notamment aux compositions et composites utilisables pour la fabrication de systèmes de liaison au sol des véhicules automobiles, en particulier de pneumatiques.
Elle est plus particulièrement relative aux systèmes adhésifs assurant, dans de tels composites, la liaison entre le métal et le caoutchouc.
Les composites métal/ caoutchouc, notamment pour pneumatiques, sont bien connus, ils sont généralement constitués d'une matrice en caoutchouc diénique, réticulable au soufre, comportant des éléments de renforcement (ou "renforts") métalliques, généralement sous forme de fιl(s) ou d'assemblages de fils.
Soumis à des contraintes très importantes lors du roulage des pneumatiques, notamment à des compressions, flexions ou variations de courbure répétées, ces composites doivent de manière connue satisfaire à un grand nombre de critères techniques, parfois contradictoires, tels qu'uniformité, flexibilité, endurance en flexion et en compression, résistance à la traction, à l'usure et à la corrosion, et maintenir ces performances à un niveau très élevé aussi longtemps que possible.
On comprend aisément que rinterphase adhesive entre caoutchouc et métal joue un rôle prépondérant dans la pérennité de ces performances. Pour illustrer ceci, on peut rappeler notamment que le procédé traditionnel pour relier les compositions de caoutchouc à de l'acier au carbone consiste à revêtir la surface de l'acier avec du laiton (alliage cuivre-zinc), la liaison entre l'acier et la matrice de caoutchouc étant assurée par sulfuration du laiton lors de la vulcanisation ; pour améliorer l'adhésion, on utilise en outre fréquemment, dans lesdites compositions de caoutchouc, des sels organiques ou des complexes de cobalt en tant qu'additifs promoteurs d'adhésion (voir à titre d'exemple les documents de brevet FR-A- 2 501 700 ou US-A-4 549 594 ; US-A-4 933 385 ; US-A-5 624 764).
Or, on sait que l'adhésion entre l'acier au carbone et la matrice de caoutchouc est susceptible de s'affaiblir au cours du temps, du fait de l'évolution progressive des sulfures sous l'effet des différentes sollicitations rencontrées, notamment mécaniques et/ou thermiques, le processus de dégradation ci-dessus pouvant être accéléré en présence d'humidité. D'autre part, l'utilisation de composés de cobalt, outre le fait qu'elle augmente signifïcativement le coût des compositions de caoutchouc, augmente la sensibilité de ces dernières à l'oxydation et au vieillissement. Poursuivant leurs recherches, les Demanderesses ont découvert de nouveaux additifs promoteurs d'adhésion, nettement moins coûteux que les composés de cobalt, qui, de manière inattendue, permettent d'améliorer eux aussi la performance adhesive des compositions de caoutchouc vis-à-vis de renforts métalliques, particulièrement après vieillissement thermique, en particulier sous conditions d'humidité. Ils peuvent à ce titre avantageusement remplacer tout ou partie des composés de cobalt précités.
En conséquence, un premier objet de l'invention est une composition de caoutchouc utilisable pour la fabrication d'un composite métal/ caoutchouc et susceptible d'adhérer à un renfort métallique, comportant au moins un élastomère diénique, une charge renforçante, un système de réticulation et un promoteur d'adhésion, caractérisée en ce que ledit promoteur d'adhésion comporte un composé de lanthanide.
L'invention concerne également l'utilisation comme promoteur d'adhésion vis-à-vis d'un renfort métallique, dans une composition de caoutchouc diénique, d'un tel composé de lanthanide.
L'invention concerne également en soi un système promoteur d'adhésion métal/ caoutchouc caractérisé en ce que qu'il comporte en combinaison un composé de lanthanide et un composé de cobalt.
L'invention a également pour objet un composite métal/ caoutchouc comportant une composition de caoutchouc diénique selon l'invention et au moins un renfort métallique adhérent à ladite composition de caoutchouc.
Ce composite métal/ caoutchouc est caractérisé par une interphase adhesive métal-caoutchouc améliorée, offrant un niveau d'adhésion au moins aussi bon à l'état initial (directement après cuisson), comparé aux solutions connues antérieures, avec en outre des performances nettement améliorées après un vieillissement du type thermique, notamment sous conditions d'humidité.
L'invention concerne également l'utilisation d'un tel composite pour la fabrication ou le renforcement de systèmes de liaison au sol des véhicules automobiles, tels que pneumatique, appui interne de sécurité pour pneumatique, roue, ressort en caoutchouc, articulation élastomérique, autre élément de suspension et anti-vibratoire, ou encore de produits semi- finis en caoutchouc destinés à de tels systèmes de liaison au sol.
Le composite selon l'invention est particulièrement destiné aux armatures de renforcement du sommet, de la carcasse ou de la zone bourrelet de pneumatiques destinés à équiper des véhicules à moteur de type tourisme, SUV ("Sport Utility Vehicles"), deux roues (notamment motos), avions, comme des véhicules industriels choisis parmi camionnettes, "Poids-lourd" - c'est-à-dire métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route tels qu'engins agricoles ou de génie civil -, autres véhicules de transport ou de manutention.
L'invention concerne également les systèmes de liaison au sol et les produits semi-finis en caoutchouc eux-mêmes, lorsqu'ils comportent un composite conforme à l'invention. L'invention montre en particulier tout son intérêt dans les armatures de carcasse des pneumatiques pour véhicules Poids-lourd dont on attend aujourd'hui, grâce aux progrès techniques du rechapage, qu'elles soient capables d'endurer plus d'un million de kilomètres, ainsi que dans les armatures de sommet des pneumatiques destinés tant à des véhicules tourisme qu'à des véhicules industriels. La longévité des pneumatiques peut être ainsi sensiblement améliorée, en particulier celle des pneumatiques soumis à des conditions de roulage particulièrement sévères, notamment sous atmosphère humide et corrosive.
L'invention ainsi que ses avantages seront aisément compris à la lumière de la description et des exemples de réalisation qui suivent, ainsi que de la figure schématique relative à ces exemples qui représente une coupe radiale d'un pneumatique à armature de carcasse radiale.
I. MESURES ET TESTS
1-1. Mesures dynamométriques
En ce qui concerne les renforts (fils ou câbles) métalliques, les mesures de force à la rupture notée Fm (charge maximale en N), de résistance à la rupture notée Rm (en MPa) et d'allongement à la rupture noté At (allongement total en %) sont effectuées en traction selon la norme ISO 6892 de 1984. En ce qui concerne les compositions de caoutchouc, les mesures de module sont effectuées en traction, sauf indication expresse différente selon la norme ASTM D 412 de 1998 (éprouvette "C") ; on mesure en seconde élongation (Le., après un cycle d'accommodation) les modules sécants vrais c'est-à-dire ramenés à la section réelle de l'éprouvette à 10% d'allongement, notés E10 et exprimés en MPa (conditions normales de température et d'hygrométrie selon la norme ASTM D 1349 de 1999). 1-2. Test d'adhésion
La qualité de la liaison entre le renfort métallique et la matrice de caoutchouc est appréciée par un test dans lequel on mesure la force, dite force d'arrachement, nécessaire pour extraire le renfort métallique de la matrice de caoutchouc, à l'état vulcanisé.
Le composite métal/ caoutchouc utilisé dans ce test est un bloc de composition de caoutchouc, constitué de deux plaques de dimension 300 mm par 150 mm (millimètres) et d'épaisseur 3,5 mm, appliquées l'une sur l'autre avant la cuisson ; l'épaisseur du bloc résultant est alors de 7 mm. C'est lors de la confection de ce bloc que les renforts, par exemple au nombre de douze, sont emprisonnés entre les deux plaques crues ; seule une longueur de renfort déterminée, par exemple de 12,5 mm, est laissée libre pour venir au contact de la composition de caoutchouc à laquelle cette longueur de renfort se liera pendant la cuisson ; le reste de la longueur des renforts est isolé de la composition de caoutchouc (par exemple à l'aide d'un film plastique ou métallique) pour empêcher toute adhésion en dehors de la zone de contact déterminée. Chaque renfort traverse le bloc de caoutchouc de part en part, au moins une de ses extrémités libres étant conservée de longueur suffisante (au moins 5 cm, par exemple entre 5 et 10 cm) pour permettre le tractionnement ultérieur du renfort.
Le bloc comportant les douze renforts est alors placé dans un moule adapté puis cuit, sauf indication différente, pendant 40 minutes à 150°C, sous une pression d'environ 11 bars.
Après cuisson du composite, on applique, le cas échéant, les conditions de vieillissement accéléré qui suivent, permettant de déterminer la résistance des échantillons à l'action combinée de la chaleur et/ou de l'humidité, selon les cas :
- soit un vieillissement dit "thermique": les blocs de caoutchouc sont placés dans une étuve à une température de 135°C, pendant 16 heures ;
- soit un vieillissement dit "thermique et humide": les blocs de caoutchouc sont placés dans une étuve à une température de 105°C, pendant 16 heures et sous une humidité relative de 100%.
A l'issue de la cuisson et du vieillissement ultérieur éventuel, le bloc est découpé en éprouvettes servant d'échantillons, contenant chacune un renfort que l'on tractionne hors du bloc de caoutchouc, à l'aide d'une machine de traction ; la vitesse de traction est de 50 mm/min ; on caractérise ainsi l'adhérence par la force nécessaire pour arracher le renfort hors de l'éprouvette, à une température de 20°C ; la force d'arrachement (notée Fa) représente la moyenne des 12 mesures correspondant aux 12 renforts du composite. II. DESCRIPTION DETAILLEE DE L'INVENTION
Le composite métal/ caoutchouc de l'invention, utilisable pour la fabrication ou le renforcement de systèmes de liaison au sol des véhicules automobiles tels que par exemple des pneumatiques, comporte au moins une composition ou matrice de caoutchouc, elle-même objet de l'invention, et un renfort métallique auquel elle est susceptible d'adhérer, tous deux décrits en détail ci-après.
Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des % massiques.
II- 1. Composition de caoutchouc
La composition de l'invention est une composition élastomérique à base (i.e., comportant le mélange ou le produit de réaction) d'au moins un élastomère diénique, une charge renforçante, un système de réticulation et un promoteur d'adhésion.
Elle a pour caractéristique nouvelle et essentielle que ledit promoteur d'adhésion est constitué, en tout ou partie, d'un composé de lanthanide.
A) Elastomère diénique
Par élastomère (ou indistinctement caoutchouc) "diénique", on entend de manière connue un élastomère issu au moins en partie (i.e., un homopolymère ou un copolymère) de monomères diènes (monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non).
Les élastomères diéniques peuvent être classés de manière connue en deux catégories : ceux dits "essentiellement insaturés" et ceux dits "essentiellement saturés". De manière générale, on entend ici par élastomère diénique "essentiellement insaturé" un élastomère diénique issu au moins en partie de monomères diènes conjugués, ayant un taux de motifs ou unités d'origine diénique (diènes conjugués) qui est supérieur à 15% (% en moles). C'est ainsi, par exemple, que des élastomères diéniques tels que les caoutchoucs butyle ou les copolymères de diènes et d'alpha-oléfmes type EPDM n'entrent pas dans la définition précédente et peuvent être notamment qualifiés d'élastomères diéniques "essentiellement saturés" (taux de motifs d'origine diénique faible ou très faible, toujours inférieur à 15%). Dans la catégorie des élastomères diéniques "essentiellement insaturés", on entend en particulier par élastomère diénique "fortement insaturé" un élastomère diénique ayant un taux de motifs d'origine diénique (diènes conjugués) qui est supérieur à 50%. Ces définitions étant données, on entend plus particulièrement par élastomère diénique susceptible d'être mis en œuvre dans les compositions conformes à l'invention :
(a) - tout homopolymère obtenu par polymérisation d'un monomère diène conjugué, ayant de préférence de 4 à 12 atomes de carbone ; (b) - tout copolymère obtenu par copolymérisation d'un ou plusieurs diènes conjugués entre eux ou avec un ou plusieurs composés vinyle aromatique ayant de préférence de 8 à 20 atomes de carbone ; (c) - un copolymère ternaire obtenu par copolymérisation d'éthylène, d'une α-oléfine ayant de préférence de 3 à 6 atomes de carbone avec un monomère diène non conjugué ayant de préférence de 6 à 12 atomes de carbone, comme par exemple les élastomères obtenus à partir d'éthylène, de propylène avec un monomère diène non conjugué du type précité tel que notamment l'hexadiène-1,4, l'éthylidène norbornène, le dicyclopentadiène ; (d) un copolymère d'isobutène et d'isoprène (caoutchouc butyle), ainsi que les versions halogénées, en particulier chlorées ou bromées, de ce type de copolymère.
Bien qu'elle s'applique à tout type d'élastomère diénique, l'homme du métier du pneumatique comprendra que la présente invention est en premier lieu mise en œuvre avec des élastomères diéniques essentiellement insaturés, en particulier du type (a) ou (b) ci-dessus.
Plus préférentiellement, l'élastomère diénique est choisi dans le groupe constitué par les polybutadiènes (BR), le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les différents copolymères de butadiène, les différents copolymères d'isoprène, et les mélanges de ces élastomères. De tels copolymères sont plus préférentiellement choisis dans le groupe constitué par les copolymères de butadiène-styrène (SBR), que ces derniers soient préparés par polymérisation en émulsion (ESBR) comme en solution (S SBR), les copolymères d'isoprène-butadiène (BIR), les copolymères d'isoprène-styrène (SIR) et les copolymères d'isoprène-butadiène-styrène (SBIR).
Parmi les polybutadiènes, conviennent en particulier ceux ayant une teneur en unités -1,2 comprise entre 4% et 80% ou ceux ayant une teneur en cis-1,4 supérieure à 80%. Parmi les polyisoprènes de synthèse, conviennent en particulier les cis-l,4-polyisoprènes, de préférence ceux ayant un taux de liaisons cis-1,4 supérieur à 90%. Parmi les copolymères de butadiène ou d'isoprène, on entend en particulier les copolymères obtenus par copolymérisation d'au moins l'un de ces deux monomères avec im ou plusieurs composés vinyle-aromatique ayant de 8 à 20 atomes de carbone. A titre de composés vinyle-aromatiques conviennent par exemple le styrène, l'ortho-, meta-, para-méthylstyrène, le mélange commercial "vinyle- toluène", le para-tertiobutylstyrène, les méthoxystyrènes, les chlorostyrènes, le vinylmésitylène, le divinylbenzène, le vinylnaphtalène. Les copolymères peuvent contenir entre 99% et 20% en poids d'unités diéniques et entre 1% et 80% en poids d'unités vinyle- aromatiques.
Les composites conformes à l'invention sont préférentiellement destinés aux pneumatiques, en particulier aux armatures de carcasse des pneumatiques pour véhicules industriels tels que camionnettes ou Poids-lourd, ainsi qu'aux armatures de sommet des pneumatiques destinés tant à des véhicules tourisme qu'à des véhicules industriels.
On utilise alors, de préférence, au moins un élastomère isoprénique, c'est-à-dire, de manière connue, un homopolymère ou un copolymère d'isoprène, en d'autres termes un élastomère diénique choisi dans le groupe constitué par le caoutchouc naturel (NR), les polyisoprènes de synthèse (IR), les différents copolymères d'isoprène et les mélanges de ces élastomères. L'élastomère isoprénique est de préférence du caoutchouc naturel, ou un polyisoprène de synthèse du type cis-1,4 ayant de préférence un taux de liaisons cis-1,4 supérieur à 90%, plus préférentiellement encore supérieur à 98%.
En coupage avec l'élastomère isoprénique ci-dessus, les compositions de caoutchouc peuvent contenir des élastomères diéniques autres qu'isopréniques, notamment des élastomères SBR et/ou BR tels que précités, que l'élastomère isoprénique soit présent à titre majoritaire ou non parmi l'ensemble des élastomères diéniques utilisés.
Ainsi, selon un mode particulier de réalisation de l'invention, on peut utiliser par exemple, en coupage avec l'élastomère isoprénique, notamment avec du caoutchouc naturel, un copolymère SBR ayant une Tg (température de transition vitreuse, mesurée selon ASTM D3418) comprise de préférence entre -70°C et -10°C, qu'il soit préparé en émulsion (ESBR) ou en solution (S SBR), selon une proportion de 0 à 70 pce (parties en poids pour cent parties d'élastomère), le reste (30 à 100 pce) étant constitué par l'élastomère isoprénique. On utilise alors plus particulièrement un SSBR. Auxdits SBR (SSBR ou ESBR) peut être également associé un BR possédant de préférence plus de 90%> de liaisons cis-1,4, ledit BR ayant une Tg comprise de préférence entre -110°C et -50°C.
La matrice de caoutchouc peut contenir un seul ou plusieurs élastomères diéniques, ce dernier ou ces derniers pouvant être utilisé(s) en association avec tout type d'élastomère synthétique autre que diénique, voire avec des polymères autres que des élastomères, par exemple des polymères thermoplastiques.
B) Charge renforçante
On peut utiliser tout type de charge renforçante connue pour ses capacités à renforcer une composition de caoutchouc utilisable pour la fabrication de pneumatiques, par exemple une charge organique telle que du noir de carbone, ou encore une charge inorganique renforçante telle que de la silice à laquelle est associé de manière connue un agent de couplage.
On utilise préférentiellement du noir de carbone. Comme noirs de carbone conviennent tous les noirs de carbone, notamment les noirs du type HAF, ISAF, SAF conventionnellement utilisés dans les pneumatiques (noirs dits de grade pneumatique). Parmi ces derniers, on citera plus particulièrement les noirs de carbone renforçants des séries 100, 200 ou 300 (grades ASTM), comme par exemple les noirs NI 15, NI 34, N234, N326, N330, N339, N347, N375, ou encore, selon les applications visées, les noirs de séries plus élevées (par exemple N660, N683, N772).
Par "charge inorganique renforçante", doit être entendu ici toute charge inorganique ou minérale, quelles que soient sa couleur et son origine (naturelle ou de synthèse), encore appelée charge "blanche" ou parfois charge "claire" par opposition au noir de carbone, capable de renforcer à elle seule, sans autre moyen qu'un agent de couplage intermédiaire, une composition de caoutchouc destinée à la fabrication de pneumatiques, en d'autres termes apte à remplacer, dans sa fonction de renforcement, un noir de carbone conventionnel de grade pneumatique ; une telle charge se caractérise généralement, de manière connue, par la présence de groupes hydroxyle (-OH) à sa surface.
Comme charges inorganiques renforçantes conviennent notamment des charges minérales du type siliceuse, en particulier de la silice (Siθ2), ou du type alumineuse, en particulier de l'alumine (AI2O3). La silice utilisée peut être toute silice renforçante connue de l'homme du métier, notamment toute silice précipitée ou pyrogénée présentant une surface BET ainsi qu'une surface spécifique CTAB toutes deux inférieures à 450 m2/g, de préférence de 30 à 400 m2/g. A titres de silices précipitées hautement dispersibles (dites "HDS"), on citera par exemple les silices Ultrasil 7000 et Ultrasil 7005 de la société Degussa, les silices Zeosil 1165MP, 1135MP et 1115MP de la société Rhodia, la silice Hi-Sil EZ150G de la société PPG, les silices Zeopol 8715, 8745 et 8755 de la Société Huber. Comme exemples d'alumines renforçantes, on peut citer les alumines "Baikalox" "A125" ou "CR125" de la société Baïkowski, "APA-100RDX" de Condea, "Aluminoxid C" de Degussa ou "AKP-G015" de Sumito o Chemicals.
Pour coupler la charge inorganique renforçante à l'élastomère diénique, on utilisera de manière bien connue un agent de couplage (ou agent de liaison) au moins bifonctionnel destiné à assurer une connexion suffisante, de nature chimique et/ou physique, entre la charge inorganique (surface de ses particules) et l'élastomère diénique, en particulier des organosilanes ou des polyorganosiloxanes bifonctionnels. De manière préférentielle, le taux de charge renforçante totale (noir de carbone et/ou charge inorganique renforçante) est compris entre 20 et 200 pce, plus préférentiellement entre 30 et 150 pce, l'optimum étant de manière connue différent selon les applications visées. C) Système de réticulation
Le système de réticulation est préférentiellement un système de vulcanisation, c'est-à-dire un système à base de soufre (ou d'un agent donneur de soufre) et d'un accélérateur primaire de vulcanisation. A ce système de vulcanisation de base viennent s'ajouter, incorporés au cours de la première phase non-productive et/ou au cours de la phase productive telles que décrites ultérieurement, divers accélérateurs secondaires ou activateurs de vulcanisation connus tels qu'oxyde de zinc, acide stéarique ou composés équivalents, dérivés guanidiques (en particulier diphénylguanidine). Le soufre est utilisé à un taux préférentiel compris entre 0,5 et 10 pce, plus préférentiellement compris entre 1 et 8 pce, en particulier entre 1 et 6 pce lorsque la composition de l'invention est destinée, selon un mode préférentiel de l'invention, à constituer une "gomme" (ou composition de caoutchouc) interne d'un pneumatique. L'accélérateur primaire de vulcanisation est utilisé à un taux préférentiel compris entre 0,5 et 10 pce, plus préférentiellement compris entre 0,5 et 5,0 pce.
On peut utiliser comme accélérateur tout composé susceptible d'agir comme accélérateur de vulcanisation des élastomères diéniques en présence de soufre, notamment des accélérateurs du type thiazoles ainsi que leurs dérivés, des accélérateurs de types thiurames, dithiocarbamates de zinc. Ces accélérateurs primaires sont plus préférentiellement choisis dans le groupe constitué par disulfure de 2-mercaptobenzothiazyle (en abrégé "MBTS"), N- cyclohexyl-2-benzothiazyle sulfénamide (en abrégé "CBS"), N,N-dicyclohexyl-2- benzothiazyle sulfénamide (en abrégé "DCBS"), N-ter-butyl-2-benzothiazyle sulfénamide (en abrégé "TBBS"), N-ter-butyl-2-benzothiazyle sulfénimide (en abrégé "TBSI") et les mélanges de ces composés.
D) Composé de lanthanide
On rappelle que le terme de "lanthanide " est réservé aux métaux, dits de "terres rares", dont le numéro atomique varie de 57 (lanthane) à 71 (lutétium).
De préférence, le lanthanide est choisi dans le groupe constitué par lanthane, cérium, praséodyme, néodyme, samarium, erbium et les mélanges de ces terres rares. On utilise plus préférentiellement le cérium ou le néodyme, en particulier le néodyme. - Le composé de lanthanide peut être du type inorganique ou organique.
A titre d'exemples de composé inorganique, on peut citer notamment les dérivés phosphores tels que par exemple des phosphates de lanthanides, en particulier ceux de néodyme.
De préférence, on utilise un composé organique de lanthanide ou « organolanthanide », choisi en particulier dans le groupe constitué par les sels et dérivés organiques, notamment alcoolates ou carboxylates, ainsi que complexes de lanthanides. De préférence, les ligands (ou coordinats) de tels complexes contiennent de 1 à 20 atomes de carbone, ils sont généralement sélectionnés dans le groupe constitué par les o-hydroxyaldéhydes, o-hydroxyphénones, hydroxyesters, β-dicétones, phénols orthodihydriques, alkylènes glycols, acides monocarboxyliques, acides dicarboxyliques et dérivés alkylés des acides dicarboxyliques.
De tels organolanthanides sont préférentiellement choisis dans le groupe constitué par les abiétates, acétates, diéthylacétates, acétonates, acétylacétonates, benzoates, butanolates, butyrates, cyclohexane-carboxylates, décanolates, éthylhexanoates, éthylhexanolates, formiates, linoléates, maléates, naphthénates, néodécanoates, octanoates, oléates, propanolates, propionates, résinâtes, stéarates, tallates, versatates et les mélanges (sels, complexes, ou autres dérivés mixtes) de tels composés.
Plus préférentiellement encore, on utilise ceux choisis dans le groupe constitué par les abiétates, acétates, acétylacétonates, benzoates, butyrates, formiates, linoléates, maléates, oléates, propionates, naphténates, résinâtes, stéarates, et les mélanges (sels, complexes, ou autres dérivés mixtes) de tels composés. Les acétylacétonates et les naphténates sont les organolanthanides préférés dans la majorité des cas, plus particulièrement les acétylacétonates.
Dans la composition conforme à l'invention, le taux composé de lanthanide est de préférence compris entre 0,1 et 10 pce. En dessous de 0,1 pce, l'effet technique visé risque d'être insuffisant, alors qu'au-delà de 10 pce, on s'expose à une augmentation des coûts et au risque de dégrader certaines propriétés mécaniques des compositions, à l'état initial comme après vieillissement. Pour ces différentes raisons, ledit taux de composé de lanthanide est plus préférentiellement compris entre 0,2 et 5 pce, encore plus préférentiellement compris entre 0,5 et 2,5 pce.
On rappelle ici que les composés de lanthanide, par exemple des sels de néodyme tels que des carboxylates, ont été essentiellement utilisés jusqu'ici comme catalyseurs de polymérisation de polymères ou élastomères tels que diènes (voir à titre d'exemples US-A-3 803 053, US-A- 5 484 897, US-A-5 858 903, US-A-5 914 377, US-B-6 800 705). E) Autres constituants
Les matrices de caoutchouc des composites conformes à l'invention comportent également tout ou partie des additifs habituellement utilisés dans les compositions de caoutchouc destinées à la fabrication de systèmes de liaison au sol des véhicules automobiles, en particulier de pneumatiques, tels que par exemple des agents anti-vieillissement, des antioxydants, des plastifiants ou des huiles d'extension que ces derniers soient de nature aromatique ou non-aromatique, notamment des huiles très faiblement ou non aromatiques (e.g., huiles naphténiques ou paraffiniques, huiles MES ou TDAE), des agents facilitant la mise en œuvre des compositions à l'état cru, un système de réticulation à base soit de soufre, soit de donneurs de soufre et/ou de peroxyde, des accélérateurs, des activateurs ou retardateurs de vulcanisation, des agents antiréversion tels que par exemple l'hexathiosulfonate de sodium ou le N,N'-m-phénylène-biscitraconimide, des accepteurs et donneurs de méthylène (par exemple résorcinol, HMT ou H3M) ou autres résines renforçantes, bismaléimides, d'autres systèmes promoteurs d'adhésion vis-à-vis de renforts métalliques notamment laitonnés, comme par exemple ceux du type "RFS" (résorcinol- formaldéhyde-silice) voire encore d'autres sels métalliques comme par exemple des sels organiques de cobalt ou de nickel. L'homme du métier saura ajuster la formulation de la composition en fonction de ses besoins particuliers.
Pour renforcer les performances de la composition et du composite de l'invention, un mode de réalisation particulier consiste à utiliser un composé bismaléimide. Ce type de composé, utilisable sans agent durcisseur, possède une cinétique de cuisson bien adaptée à celle des pneumatiques, il est susceptible d'activer la cinétique d'adhésion et d'améliorer encore, dans les composites conformes à l'invention, l'endurance en conditions de vieillissement humide des interphases adhésives.
On rappelle que les bismaléimides répondent, de manière connue, à la formule suivante:
Figure imgf000013_0001
dans laquelle R est un radical hydrocarboné, aromatique ou aliphatique, cyclique ou acyclique, substitué ou non substitué, un tel radical pouvant comporter un hétéroatome choisi parmi O, N et S ; ce radical R comporte de préférence de 2 à 24 atomes de carbone.
On utilise plus préférentiellement une bismaléimide choisie dans le groupe constitué par les N,N'-éthylène-bismaléimides, N,N'-hexaméthylène-bismaléimides, N,N'-(m-phénylène)- bismaléimides, N,N'-(p-phénylène)-bismaléimides, N,N'-(p-tolylène)-bismaléimides, N,N'- (méthylènedi-p-phénylène)-bismaléimides, les N,N'-(oxydi-p-phénylène)-bismaléimides et les mélanges de ces composés. De telles bismaléimides sont bien connues de l'homme du métier. Dans le cas où une résine renforçante ou une bismaléimide est utilisée, elle est présente dans le composite de l'invention à un taux préférentiel compris entre 0,1 et 20%, plus préférentiellement entre 1 et 8% en poids de composition de caoutchouc. Pour des taux supérieurs aux maxima indiqués, on s'expose à des risques de rigidification excessive des compositions, et donc à une fragilisation des composites ; pour des taux inférieurs aux minima indiqués, l'effet technique visé risque d'être insuffisant.
Selon un mode préférentiel de réalisation de l'invention, la composition comporte, en association avec le composé de lanthanide, au moins un composé de cobalt selon un taux préférentiel compris entre 0,1 et 10 pce. On a constaté qu'une certaine synergie pouvait exister entre les deux composés, se traduisant en particulier par une plus forte amélioration de la performance adhesive en conditions de vieillissement thermique et humide. Pour les mêmes raisons que celles indiquées précédemment pour le composé de lanthanide, le taux de composé de cobalt est alors plus préférentiellement compris entre 0,2 et 5 pce, encore plus préférentiellement compris entre 0,5 et 2,5 pce.
Le composé de cobalt est préférentiellement un composé organique de cobalt, choisi plus préférentiellement dans le groupe constitué par les abiétates, acétates, acétylacétonates, benzoates, butyrates, formiates, linoléates, maléates, oléates, propionates, naphténates, résinâtes, stéarates, et les mélanges (c'est-à-dire sels, complexes, ou autres dérivés mixtes) de tels composés, en particulier parmi les abiétates, acétylacétonates, naphténates, résinâtes et les mélanges de tels composés. Les acétylacétonates et naphténates sont préférés dans la majorité des cas.
F) Préparation des compositions de caoutchouc
Les compositions sont fabriquées dans des mélangeurs appropriés, en utilisant deux phases de . préparation successives bien connues de l'homme du métier : une première phase de travail ou malaxage thermomécanique (phase dite "non-productive") à haute température, jusqu'à une température, maximale comprise entre 110°C et 190°C, de préférence entre 130°C et 180°C, suivie d'une seconde phase de travail mécanique (phase dite "productive") jusqu'à une plus basse température, typiquement inférieure à 110°C, phase de finition au cours de laquelle est incorporé le système de réticulation.
A titre d'exemple, la phase non-productive est conduite en une seule étape thermomécanique de quelques minutes (par exemple entre 2 et 10 min) au cours de laquelle on introduit, dans un mélangeur approprié tel qu'un mélangeur interne usuel, tous les constituants de base nécessaires et autres additifs, à l'exception du système de réticulation ou vulcanisation. Après refroidissement du mélange ainsi obtenu, on incorpore alors dans un mélangeur externe tel qu'un mélangeur à cylindres, maintenu à basse température (par exemple entre 30°C et 100°C), le système de vulcanisation. L'ensemble est alors mélangé (phase productive) pendant quelques minutes (par exemple entre 5 et 15 min).
La composition finale ainsi obtenue peut ensuite être calandrée, par exemple sous la forme d'une feuille, d'une plaque ou encore extrudée, par exemple pour former un profilé de caoutchouc utilisé pour la fabrication d'un composite ou d'un produit semi-fini, tel que par exemple des nappes, bandes, sous-couches, autres blocs de caoutchouc renforcés de renforts métalliques, destinés à former par exemple une partie de la structure d'un pneumatique.
La vulcanisation (ou cuisson) peut ensuite être conduite de manière connue à une température généralement comprise entre 130°C et 200°C, de préférence sous pression, pendant un temps suffisant qui peut varier par exemple entre 5 et 90 min en fonction notamment de la température de cuisson, du système de vulcanisation adopté et de la cinétique de vulcanisation de la composition considérée.
L'invention concerne les compositions et composites de caoutchouc tant à l'état dit "cru" (i.e. avant cuisson) qu'à l'état dit "cuit" ou vulcanisé (i.e. après vulcanisation).
II-2. Renfort métallique
Par "renfort métallique" doit être entendu tout élément de renforcement apte à renforcer la matrice de caoutchouc, qu'il soit entièrement métallique ou pas, dont au moins la surface ou partie externe, destinée à entrer au contact du caoutchouc, est en métal.
Ce renfort peut se présenter sous différentes formes, préférentiellement sous la forme d'un fil unitaire (monofil), d'un film (par exemple un feuillard ou un ruban) ou d'un assemblage de fils, que ces fils soient tordus entre eux (par exemple, sous la forme d'un câble) ou essentiellement parallèles entre eux (par exemple sous la forme d'un paquet de fils, d'une fibre continue ou encore d'un ensemble de fibres courtes).
Dans les composites et pneumatiques de l'invention, ce renfort se présente plus préférentiellement sous la forme d'un fil unitaire ou d'un assemblage de fils, par exemple d'un câble ou d'un toron fabriqué avec des dispositifs et procédés de câblage ou toronnage connus de l'homme du métier, qui ne sont pas décrits ici pour la simplicité de l'exposé. Le métal, ou métal de surface le cas échéant, du renfort métallique est de préférence choisi parmi Fe, Cu, Zn, Al, Sn, Ni, Co, Cr, Mn, les oxydes, hydroxydes et alliages de ces éléments, plus préférentiellement parmi Fe, Cu, Zn, Al, Sn, leurs oxydes, hydroxydes et alliages. On utilise de préférence un renfort en acier, en particulier en acier perlitique (ou ferrito- perlitique) au carbone dénommé de manière connue "acier au carbone", ou encore en acier inoxydable tels que décrits par exemple dans les demandes de brevet EP-A-648 891 ou WO98/41682. Mais il est bien entendu possible d'utiliser d'autres aciers ou d'autres alliages.
Lorsqu'un acier au carbone est utilisé, sa teneur en carbone est de préférence comprise entre 0,l%o et 1,2%>, notamment entre 0,5% et 1,1%) (%> en poids d'acier) ; elle est plus préférentiellement comprise entre 0,6% et 1,0%, une telle teneur représentant un bon compromis entre les propriétés mécaniques requises pour le pneumatique et la faisabilité des fils.
L'homme du métier sait adapter la composition de l'acier en fonction de ses besoins propres particuliers, en utilisant par exemple des aciers au carbone micro-alliés contenant des éléments d'addition spécifiques tels que Cr, Ni, Co, N, ou divers autres éléments connus (voir par exemple Research Disclosure 34984 - "Micro-alloyed steel cord constructions for tyres" - mai 1993 ; Research Disclosure 34054 - "High tensile strength steel cord constructions for tyres "- août 1992).
Comme indiqué précédemment, le métal ou l'acier utilisé, qu'il s'agisse en particulier d'un acier au carbone ou d'un acier inoxydable, peut être utilisé tel quel (acier dit "clair") ou être lui-même revêtu d'une couche métallique supplémentaire améliorant par exemple les propriétés de mise en œuvre du renfort métallique et/ou de ses éléments constitutifs, ou les propriétés d'usage du renfort et/ou du composite eux-mêmes.
Selon un mode de réalisation préférentiel, l'acier utilisé, notamment lorsqu'il s'agit d'un acier au carbone, est recouvert d'une couche supplémentaire de métal choisi parmi l'aluminium, le zinc, le cuivre et les alliages binaires ou ternaires de ces métaux.
Parmi les alliages d'aluminium, on utilise de préférence ceux choisis parmi les alliages binaires Al-Mg, Al-Cu, Al-Νi, Al-Zn et les alliages ternaires d'Al et de deux des éléments Mg, Cu, Ni, Zn, plus particulièrement un alliage Al-Zn.
Parmi les alliages de zinc, on utilise de préférence ceux choisis parmi les alliages binaires Zn- Cu, Zn-Al, Zn-Mn, Zn-Co, Zn-Mo, Zn-Fe, Zn-Ni, Zn-Sn et les alliages ternaires de Zn et de deux des éléments (par exemple Zn-Cu-Ni ou encore Zn-Cu-Co), plus particulièrement un alliage Zn-Cu (laiton) ou un alliage Zn-Al tel que précité. Parmi les alliages de cuivre, les alliages binaires préférentiels sont ceux de Cu-Zn (laiton précité) et de Cu-Sn (bronze). Lorsqu'une couche métallique supplémentaire est déposée sur le renfort métallique ou sur les éléments individuels constitutifs de ce renfort, notamment lorsqu'il s'agit d'un assemblage, on peut utiliser tout procédé de dépôt susceptible d'appliquer, en continu ou en discontinu, un revêtement métallique sur un substrat métallique. On utilise par exemple une technique simple de trempage au défilé, dans un bain contenant le métal ou l'alliage à l'état liquide, une technique de dépôt par voie électrolytique, ou encore par pulvérisation.
Dans le cas le plus fréquent où le renfort utilisé est un câble constitué de fils fins, la couche métallique supplémentaire sera de préférence déposée sur les fils, et non sur le câble final. Dans un tel cas, notamment pour faciliter les opérations de tréfilage, le dépôt sera réalisé avantageusement sur un fil de diamètre dit "intermédiaire", par exemple de l'ordre du millimètre, en sortie du dernier traitement thermique (patentage) précédant l'étape de tréfilage final humide pour l'obtention du fil fin ayant le diamètre final visé.
Lorsque les composites de l'invention sont utilisés pour renforcer des armatures de carcasse ou de sommet de pneumatiques radiaux, les renforts utilisés sont de préférence des assemblages (torons ou câbles) de fils fins en acier au carbone ou en acier inoxydable ayant : une résistance en traction supérieure à 2000 MPa, plus préférentiellement supérieure à 2500 MPa, en particulier supérieure à 3000 MPa ; l'homme du métier sait comment fabriquer des fils fins présentant une telle résistance, en ajustant notamment la composition de l'acier et les taux d'écrouissage final de ces fils ; pour un bon compromis résistance/tenue en flexion/faisabilité, un diamètre φ compris entre 0,10 et 0,40 mm, plus préférentiellement entre 0,10 et 0,30 mm environ lorsque le composite est destiné à renforcer une armature de carcasse, entre 0,20 et 0,40 mm environ lorsque le composite est destiné à renforcer une armature de sommet.
Lorsque les composites de l'invention sont utilisés pour renforcer des zones bourrelet de pneumatiques, les renforts peuvent se présenter notamment sous forme de tringles constituées de fils en acier au carbone ou en acier inoxydable, unitaires ou assemblés, ces fils ayant : une résistance en traction supérieure à 1500 MPa, plus préférentiellement supérieure à 2000 MPa ; un diamètre φ (ou une dimension caractéristique, s'il s'agit d'un fil autre que cylindrique) compris entre 0,5 et 3 mm, plus préférentiellement entre 0,8 et 2,2 mm. fl-3. Composite et pneumatique de l'invention
La composition de caoutchouc de l'invention et le renfort métallique précédemment décrits sont utilisables pour la fabrication d'un composite métal/caoutchouc qui constitue un autre objet de l'invention, composite dans lequel l'adhésion entre le métal et le caoutchouc est assurée grâce à l'utilisation dans ladite composition du composé de lanthanide.
Ce composite peut se présenter sous des formes variées, par exemple sous la forme d'une nappe, d'une bande, bandelette ou d'un bloc de caoutchouc dans lesquels est incorporé le renfort métallique, ou encore d'une gaine de caoutchouc enrobant le renfort métallique, ce dernier étant au contact direct de la composition de caoutchouc. L'adhésion définitive entre le métal et la composition de caoutchouc peut être obtenue à l'issue de la cuisson de l'article fini comportant le composite ; de préférence, cette cuisson est opérée sous pression.
Les composites selon l'invention sont préférentiellement destinés à des pneumatiques, en particulier à des pneumatiques radiaux pour former tout ou partie de l'armature de sommet, de l'armature de carcasse ou l'armature de la zone bourrelet de tels pneumatiques.
A titre d'exemple, la figure annexée représente de manière très schématique une coupe radiale d'un pneumatique 1 à armature de carcasse radiale conforme à l'invention, destiné à un véhicule Poids-lourd comme à un véhicule tourisme dans cette représentation générale.
Ce pneumatique 1 comporte un sommet 2, deux flancs 3, deux bourrelets 4, une armature de carcasse 7 s'étendant d'un bourrelet à l'autre. Le sommet 2, surmonté d'une bande de roulement (non représentée sur cette figure schématique, pour simplification), est de manière connue en soi renforcé par une armature de sommet 6 constituée par exemple d'au moins deux nappes sommet croisées superposées (nappes sommet dites "de travail"), recouvertes éventuellement d'au moins une nappe de protection ou une nappe sommet de frettage à zéro degré. L'armature de carcasse 7 est enroulée autour des deux tringles 5 dans chaque bourrelet 4, le retournement 8 de cette armature 7 étant par exemple disposé vers l'extérieur du pneumatique 1 qui est ici représenté monté sur sa jante 9. L'armature de carcasse 7 est constituée d'au moins une nappe renforcée par des câbles dits "radiaux", c'est-à-dire que ces câbles sont disposés pratiquement parallèles les uns aux autres et s'étendent d'un bourrelet à l'autre de manière à former un angle compris entre 80° et 90° avec le plan circonférentiel médian (plan perpendiculaire à l'axe de rotation du pneumatique qui est situé à mi-distance des deux bourrelets 4 et passe par le milieu de l'armature de sommet 6). Bien entendu, ce pneumatique 1 comporte en outre de manière connue une couche de gomme ou élastomère intérieure (communément appelée "gomme intérieure") qui définit la face radialement interne du pneumatique et qui est destinée à protéger la nappe de carcasse de la diffusion d'air provenant de l'espace intérieur au pneumatique. Avantageusement, en particulier dans le cas d'un pneumatique pour véhicule Poids-lourd, il peut comporter en outre une couche élastomère intermédiaire de renfort qui est située entre la nappe de carcasse et la couche intérieure, destinée à renforcer la couche intérieure et, par conséquent, la nappe de carcasse, également destinée à délocaliser partiellement les efforts subis par l'armature de carcasse.
Le pneumatique conforme à l'invention a pour caractéristique essentielle de comporter dans sa structure au moins un composite métal/ caoutchouc conforme à l'invention, ce composite pouvant être, par exemple, une partie de la zone bouπelet 4 comportant la tringle 5, une nappe sommet croisée ou une nappe de protection de l'armature de sommet 6, une nappe formant tout ou partie de l'armature de carcasse 7.
Comme indiqué précédemment, le composite de l'invention est avantageusement utilisable dans les armatures de sommet de tous types de pneumatiques, par exemple pour véhicules Tourisme, camionnettes ou Poids-lourd. De préférence, dans un tel cas, la composition de caoutchouc de l'invention présente à l'état vulcanisé (i.e., après cuisson), un module E10 qui est supérieur à 4 MPa, plus préférentiellement compris entre 6 et 20 MPa, par exemple entre 6 et 15 MPa.
Mais le composite de l'invention peut avoir une utilisation tout aussi avantageuse dans une armature carcasse d'un pneumatique pour véhicule industriel tel que Poids-lourd. De préférence, dans un tel cas, la composition de caoutchouc de l'invention présente, à l'état vulcanisé, un module E10 qui est inférieur à 9 MPa, plus préférentiellement compris entre 4 et 9 MPa.
III. EXEMPLES DE REALISATION DE L'INVENTION
III- 1. Préparation des compositions de caoutchouc
On procède pour les essais qui suivent de la manière suivante: on introduit dans un mélangeur interne, rempli à 70% et dont la température initiale de cuve est d'environ 60°C, l'élastomère diénique (ou le mélange d'élastomères diéniques, le cas échéant), la charge renforçante et les divers autres ingrédients à l'exception du système de vulcanisation. On conduit alors un travail thermomécanique (phase non-productive) en une seule étape (durée totale du malaxage égale par exemple à environ 7 min) jusqu'à atteindre une température maximale de "tombée" d'environ 165-170°C. On récupère le mélange ainsi obtenu, on le refroidit puis on ajoute le système de vulcanisation (soufre et accélérateur sulfénamide) sur un mélangeur externe (homo-finisseur) à 30°C, en mélangeant le tout (phase productive) par exemple pendant 3 à 10 min.
Les compositions ainsi obtenues sont ensuite soit extradées sous la forme de plaques (épaisseur de 2 à 3 mm) pour la mesure de leurs propriétés physiques ou mécaniques, soit calandrées pour réalisation d'un tissu câblé métallique constituant une partie de l'armature de sommet d'un pneumatique pour véhicule tourisme.
On utilise dans les essais qui suivent huit compositions ou matrices de caoutchouc différentes, notées M-l à M-8, à base de caoutchouc naturel et de noir de carbone, présentant après cuisson un module E10 compris entre 8 et 12 MPa (environ 11 MPa pour les compositions M-l à M-4 et environ 9 MPa pour les matrices M-5 à M-8).
Les formulations de ces compositions ont été reportées dans les tableaux 1 et 2 annexés. Elles comportent essentiellement, en plus de l'élastomère et de la charge renforçante, une huile paraffinique, un antioxydant, de l'oxyde de zinc, de l'acide stéarique, du soufre et un accélérateur sulfénamide, pour certaines d'entre elles (M-l à M-4) une résine renforçante (résine phénolique plus donneur de méthylène), enfin un promoteur d'adhésion métal/ caoutchouc comportant soit un composé de cobalt seul pour les compositions témoins (M-l et M-5), soit un composé de cobalt et un composé de lanthanide pour les compositions conformes à l'invention (M-2 à M-4, M-6 à M-8).
IH-2. Renforts métalliques
On utilise des câbles constitués de fils fins en acier au carbone, revêtus de laiton, adaptés au renforcement d'armatures de sommet de pneus tourisme.
Les fils fins en acier au carbone sont préparés en partant par exemple de fils machine (diamètre 5 à 6 mm) que l'on écrouit tout d'abord, par laminage et/ou tréfilage, jusqu'à un diamètre intermédiaire voisin de 1 mm, ou encore en partant directement de fils commerciaux intermédiaires dont le diamètre est voisin de 1 mm. L'acier utilisé est un acier au carbone connu, par exemple du type USA AISI 1069 dont la teneur en carbone est de 0,8%o environ, comportant 0,5% de manganèse environ, le reste étant constitué de fer et des impuretés inévitables habituelles liées au procédé de fabrication de l'acier (pour exemple, teneurs en silicium : 0,25% ; phosphore : 0,01% ; soufre : 0,01% ; chrome : 0,11% ; nickel : 0,03% ; cuivre : 0,01% ; aluminium : 0,005 % ; azote : 0,003%>). Les fils de diamètre intermédiaire subissent alors un traitement de dégraissage et/ou décapage, avant leur transformation ultérieure. Après dépôt d'un revêtement de laiton ou zinc sur ces fils intermédiaires, on effectue sur chaque fil un écrouissage dit "final" (i.e., mis en œuvre après le dernier traitement thermique de patentage), par tréfilage à froid en milieu humide avec un lubrifiant de tréfilage qui se présente par exemple sous forme d'une émulsion ou d'une dispersion aqueuses.
Les câbles utilisés sont des câbles de construction connue [1+2], non frettée, formés de 3 fils de diamètre égal à environ 0,26 mm (Fm = 180 N ; Rm = 3200 MPa ; At = 2,3%) ; ces câbles comportent un seul fil d'âme, droit, autour duquel sont enroulés ensemble en hélice (direction S) deux autres fils selon un pas de 12 mm. Chaque fil en acier au carbone est revêtu d'une couche de laiton (64%> de cuivre et 36% de zinc). Le revêtement de laiton a une épaisseur très faible, nettement inférieure au micromètre, ce qui équivaut à environ 0,35 à 0,40 g de laiton pour 100 g de fil. Les propriétés mécaniques de ces câbles sont les suivantes : Fm = 480 N ; Rm = 3000 MPa ; At = 2,7%.
III-3. Composites - Tests d'adhésion
A partir des 8 matrices de caoutchouc M-l à M-8 et des renforts métalliques précédemment décrits, on prépare par calandrage 8 composites acier au carbone/ caoutchouc, notés respectivement C-1 à C-8, ayant la forme des blocs de caoutchouc destinés au test d'adhésion décrit au paragraphe 1-2 précédent.
A) Essai 1
On compare dans ce premier essai les performances adhésives des composites C-1 à C-4 soumis aux conditions de "vieillissement thermique".
Le composite C-1 est le témoin comportant une matrice de caoutchouc conventionnelle comportant par ailleurs une résine renforçante et un composé de cobalt à titre de promoteur d'adhésion (matrice M-l). Les composites C-2 à C-4, tous trois conformes à l'invention, se distinguent seulement par la présence additionnelle d'un organolanthanide (néodyme, cérium ou samarium) dans leur matrice de caoutchouc (M-2 à M-4).
Les résultats obtenus au test d'adhésion sont résumés dans le tableau 3 annexé, en unités relatives ("u.r."), la base 100 étant retenue pour la force d'arrachement initiale (directement après cuisson) enregistrée sur le composite témoin.
On note tout d'abord que les composites selon l'invention présentent tous une adhésion initiale (force d'arrachement Fa) qui est légèrement supérieure à celle du témoin (C-1) caractérisé pourtant par un niveau d'adhésion de départ qui est très élevé (de l'ordre de 30 daN) pour le composite considéré.
Après vieillissement thermique, on observe que la force d'arrachement Fa du composite témoin est diminuée de moitié, alors qu'elle ne subit, de manière inattendue, qu'une faible altération pour les composites de l'invention, ne dépassant pas 25% environ, à la précision de mesure près, par rapport à la valeur de référence. Le meilleur résultat est obtenu ici avec le composé organique de cérium (composite C-3), offrant une adhésion légèrement améliorée à l'état initial (+ 4%>) et pratiquement pas dégradée après vieillissement thermique, ce qui est remarquable comparativement au composite témoin C-1.
L'ajout du composé organolanthanide permet donc d'améliorer légèrement l'adhésion initiale et d'augmenter de manière considérable la performance adhesive après vieillissement thermique.
B) Essai 2
Pour confirmer l'effet bénéfique de l'invention, on compare dans cet essai les performances adhésives des composites C-5 à C-8 soumis cette fois aux conditions de "vieillissement thermique et humide". Le composite C-5 est le témoin comportant une matrice de caoutchouc conventionnelle contenant notamment un composé de cobalt à titre de promoteur d'adhésion et dépourvue par ailleurs de résine renforçante (matrice M-5). Les composites C-6 à C-8, tous trois conformes à l'invention, se distinguent seulement par la présence additionnelle d' organolanthanide (néodyme, cérium ou samarium) dans leur matrice de caoutchouc (M-6 à M-8).
Les résultats obtenus sont résumés dans le tableau 4 annexé, en unités relatives (base 100 pour la force Fa initiale enregistrée sur le composite témoin C-5).
On note que le niveau d'adhésion de départ est toujours très élevé, quel que soit le composite considéré. Après vieillissement, on constate que la force d'arrachement Fa du composite témoin est diminuée de 65%, alors qu'elle ne subit comparativement qu'une très faible altération, ne dépassant pas 25% environ, dans les composites de l'invention, malgré un vieillissement sévère. Le meilleur résultat est observé sur le composite C-7 (cérium), avec une adhésion améliorée de plus de 20% à l'état initial, ce qui est notable, et comme pour l'essai précédent, quasiment pas affectée par rapport au composite témoin (C-5).
Des tests d'adhésion complémentaires, conduits sur les mêmes renforts métalliques et des matrices de caoutchouc similaires, ont révélé par ailleurs que les composites comportant comme seul promoteur d'adhésion le composé de lanthanide (2 ou 4 pce d'acétylacétonate de néodyme ou de samarium) en lieu et place du sel de cobalt, présentaient après vieillissement thermique et humide des forces d'adhésion (arrachement) résiduelles de 1,5 à 2,0 fois supérieures comparativement à l'emploi du sel de cobalt.
En résumé, les essais précédents démontrent clairement que les sels organiques de lanthanide sont des promoteurs très efficaces de l'adhésion entre métal et caoutchouc et permettent une augmentation notable de la durée de vie des composites métal/ caoutchouc, et donc des pneumatiques les comportant, après un vieillissement du type thermique, notamment sous conditions d'humidité.
Figure imgf000024_0001
(1) caoutchouc naturel ; (2) N330 (dénomination selon norme ASTM D- 1765) ; (3) N-(l,3-diméthylbutyl)-N'-phényl-p-phénylènediamine ; ("Santoflex 6-PPD" de la société Flexsys); (4) résorcinol (société Sumitomo); (5) HMT (hexaméthylènetétramine - société Degussa); (6) naphténate de cobalt (Sigma-Aldrich - No. produit 544574) ; (7) C15H21NdO6.xH2O (Sigma-Aldrich - No. produit 460427) ; (8) C15H21CeO6.xH2O (Sigma-Aldrich - No. produit 381403) ; (9) C15H2ιSmO6.xH2O (Sigma-Aldrich - No. produit 517666) ;. (10) N-dicyclohexyl-2-benzothiazol-sulfénamide ("Santocure CBS" de la société Flexsys).
Figure imgf000025_0001
(1) caoutchouc naturel ; (2) N330 (dénomination selon norme ASTM D- 1765) ; (3) N-(l,3-diméthylbutyl)-N'-phényl-p-phénylènediamine ; ("Santoflex 6-PPD" de la société Flexsys); (4) naphténate de cobalt (Sigma-Aldrich - No. produit 544574) (5) C15H21NdO6.xH2O (Sigma-Aldrich - No. produit 460427) ; (6) C15H21CeO6.xH2O (Sigma-Aldrich - No. produit 381403) ; (7) Cι5H21Sm 6.xH2O (Sigma-Aldrich - No. produit 517666) ; (8) N-dicyclohexyI-2-benzothiazol-sulfénamide ("Santocure CBS" de la société Flexsys).
Tableau 3
Figure imgf000026_0001
Tableau 4
Figure imgf000026_0002

Claims

REVENDICATIONS
1. Composition de caoutchouc utilisable pour la fabrication d'un composite métal/ caoutchouc et susceptible d'adhérer à un renfort métallique, comportant au moins un élastomère diénique, une charge renforçante, un système de réticulation et un composé de lanthanide.
2. Composition selon la revendication 1, l'élastomère diénique étant choisi dans le groupe constitué par les polybutadiènes, le caoutchouc naturel, les polyisoprènes de synthèse, les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères.
3. Composition selon la revendication 2, l'élastomère diénique étant choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse, les copolymères d'isoprène et les mélanges de ces élastomères.
4. Composition selon la revendication 3, l'élastomère diénique étant du caoutchouc naturel ou un polyisoprène de synthèse ayant un taux de liaisons cis-1,4 supérieur à 90% (% molaire).
5. Composition selon la revendication 4, l'élastomère diénique étant un polyisoprène de synthèse ayant un taux de liaisons cis-1,4 supérieur à 98%) (% molaire).
6. Composition selon l'une quelconque des revendications 1 à 5, la charge renforçante étant du noir de carbone.
7. Composition selon l'une quelconque des revendications 1 à 5, la charge renforçante étant une charge inorganique renforçante.
8. Composition selon la revendication 7, la charge inorganique renforçante étant de la silice.
9. Composition selon l'une quelconque des revendications 1 à 8, le taux de charge renforçante étant compris entre 20 et 200 pce.
10. Composition selon la revendication 9, le taux de charge renforçante étant compris entre 30 et 150 pce.
11. Composition selon l'une quelconque des revendications 1 à 10, le système de réticulation étant à base de soufre et d'un accélérateur.
12. Composition selon la revendication 11 , l'accélérateur étant un accélérateur sulfénamide.
13. Composition selon la revendication 12, le taux d'accélérateur sulfénamide étant compris entre 0,5 et 10 pce.
14. Composition selon la revendication 13, le taux d'accélérateur sulfénamide étant compris entre 0,5 et 5,0 pce.
15. Composition selon Tune quelconque des revendications 11 à 14, le taux de soufre étant compris entre 0,5 et 10 pce.
16. Composition selon la revendication 15, le taux de soufre étant compris entre 1 et 8 pce.
17. Composition selon l'une quelconque des revendications 1 à 16, le lanthanide étant choisi dans le groupe constitué par lanthane, cérium, praséodyme, néodyme, samarium, erbium et les mélanges de ces terres rares.
18. Composition selon la revendication 17, le lanthanide étant le néodyme.
19. Composition selon l'une quelconque des revendications 1 à 18, le composé de lanthanide étant un organolanthanide.
20. Composition selon la revendication 19, T organolanthanide étant choisi dans le groupe constitué par les abiétates, acétates, acétylacétonates, benzoates, butyrates, formiates, linoléates, maléates, oléates, propionates, naphténates, résinâtes, stéarates, et les mélanges de tels composés, de préférence parmi acétylacétonates et naphténates.
21. Composition selon la revendication 20, T organolanthanide étant T acétylacétonate de néodyme.
22. Composition selon l'une quelconque des revendications 1 à 21, le taux de composé de lanthanide étant compris entre 0,1 et 10 pce.
23. Composition selon la revendication 22, le taux de composé de lanthanide étant compris entre 0,2 et 5 pce, de préférence entre 0,5 et 2,5 pce.
24. Composition selon l'une quelconque des revendications 1 à 23, comportant en outre un composé de cobalt.
25. Composition selon la revendication 24, le composé de cobalt étant choisi parmi les abiétates, acétylacétonates, naphténates, résinâtes et les mélanges de tels composés.
26. Composition selon la revendication 24 ou 25, le taux de composé de cobalt étant compris entre 0,1 et 10 pce.
27. Composition selon la revendication 26, le taux de composé de cobalt étant compris entre 0,2 et 5 pce, de préférence entre 0,5 et 2,5 pce.
28. Utilisation comme promoteur d'adhésion vis-à-vis d'un renfort métallique, dans une composition de caoutchouc diénique, d'un composé de lanthanide.
29. Utilisation selon la revendication 28, le composé de lanthanide étant un organolanthanide.
30. Utilisation selon la revendication 29, l' organolanthanide étant choisi dans le groupe constitué par les abiétates, acétates, acétylacétonates, benzoates, butyrates, formiates, linoléates, maléates, oléates, propionates, naphténates, résinâtes,. stéarates, et les mélanges de tels composés, de préférence parmi acétylacétonates et naphténates.
31. Utilisation selon la revendication 30, l'organolanthanide étant l' acétylacétonate de néodyme.
32. Utilisation selon l'une quelconque des revendications 28 à 31, le composé de lanthanide étant associé à un composé de cobalt.
33. Utilisation selon la revendication 32, le composé de cobalt étant choisi parmi les abiétates, acétylacétonates, naphténates, résinâtes et les mélanges de tels composés.
34. Utilisation selon l'une quelconque des revendications 28 à 33, le métal du renfort métallique étant de l'acier.
35. Utilisation selon la revendication 34, l'acier étant un acier au carbone ou un acier inoxydable.
36. Utilisation selon la revendication 35, le métal du renfort métallique étant lui-même revêtu d'un substrat métallique.
37. Utilisation selon la revendication 36, le métal du renfort métallique étant de l'acier au carbone revêtu d'une couche de laiton comme substrat métallique.
38. Système promoteur d'adhésion métal/ caoutchouc caractérisé en ce que qu'il comporte en combinaison un composé de lanthanide et un composé de cobalt.
39. Système selon la revendication 38, le composé de lanthanide étant un organolanthanide.
40. Système selon la revendication 39, l'organolanthanide étant choisi dans le groupe constitué par les abiétates, acétates, acétylacétonates, benzoates, butyrates, formiates, linoléates, maléates, oléates, propionates, naphténates, résinâtes, stéarates, et les mélanges de tels composés, de préférence parmi acétylacétonates et naphténates.
41. Système selon la revendication 40, l'organolanthanide étant l' acétylacétonate de néodyme.
42. Système selon l'une quelconque des revendications 38 à 41, le composé de cobalt étant choisi parmi les abiétates, acétylacétonates, naphténates, résinâtes et les mélanges de tels composés.
43. Composite métal/ caoutchouc comportant une composition de caoutchouc diénique selon l'une quelconque des revendications 1 à 27 et au moins un renfort métallique adhérent à ladite composition de caoutchouc.
44. Composite selon la revendication 43, le métal du renfort métallique étant de l'acier.
45. Composite selon la revendication 44, l'acier étant un acier au carbone ou un acier inoxydable.
46. Composite selon la revendication 45, l'acier étant un acier au carbone ayant une teneur en carbone comprise entre 0,2% et 1,2%.
47. Composite selon la revendication 46, l'acier étant un acier au carbone ayant une teneur en carbone comprise entre 0,5% et 1,1%, de préférence entre 0,6% et 1,0%.
48. Composite selon l'une quelconque des revendications 44 à 47, l'acier étant revêtu d'une couche de laiton.
49. Utilisation d'un composite selon l'une quelconque des revendications 43 à 48 pour la fabrication ou le renforcement d'un système de liaison au sol de véhicule automobile ou d'un produit semi-fini en caoutchouc destiné à un tel système.
50. Utilisation selon la revendication 49, le système de liaison au sol consistant en un pneumatique.
51. Utilisation selon la revendication 50, pour le renforcement d'une armature de sommet, de carcasse ou de la zone bourrelet d'un pneumatique.
52. Utilisation selon la revendication 51, pour le renforcement d'une armature de sommet de pneumatique pour véhicule tourisme ou Poids-lourd.
53. Utilisation selon la revendication 51, pour le renforcement d'une armature de carcasse de pneumatique pour véhicule Poids-lourd.
54. Système de liaison au sol ou produit semi-fini en caoutchouc incorporant un composite selon l'une quelconque des revendications 43 à 48.
55. Système de liaison au sol selon la revendication 54, consistant en un pneumatique.
56. Pneumatique selon la revendication 55, le composite étant présent dans l'armature de la zone bourrelet du pneumatique.
57. Pneumatique selon la revendication 55, le composite étant présent dans l'armature de carcasse du pneumatique.
58. Pneumatique selon la revendication 57, la composition de caoutchouc du composite présentant, à l'état vulcanisé, un module sécant en extension, à 10%) d'allongement, qui est inférieur à 9 MPa.
59. Pneumatique selon la revendication 58, la composition de caoutchouc du composite présentant, à l'état vulcanisé, un module sécant en extension, à 10%> d'allongement, qui est compris entre 4 et 9 MPa.
60. Pneumatique selon la revendication 55, le composite étant présent dans l'armature de sommet du pneumatique.
61. Pneumatique selon la revendication 60, la composition de caoutchouc du composite présentant, à l'état vulcanisé, un module sécant en extension, à 10%> d'allongement, qui est supérieur à 4 MPa.
62. Pneumatique selon la revendication 61, la composition de caoutchouc du composite présentant, à l'état vulcanisé, un module sécant en extension, à 10% d'allongement, qui est compris entre 4 et 20 MPa.
PCT/EP2005/004613 2004-04-30 2005-04-29 Composition de caoutchouc a adhesion amelioree vis-a-vis d’un renfort metallique WO2005113666A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BRPI0510368-1A BRPI0510368A (pt) 2004-04-30 2005-04-29 composição de borracha utilizável para a fabricação de um compósito metal/borracha e suscetìvel de aderir a um reforço metálico, utilização de um composto de lantanìdeo, sistema promotor de adesão metal/borracha, compósito metal/borracha, utilização de um compósito e sistema de ligação ao solo ou produto semi-acabado em borracha
US11/579,228 US20080026244A1 (en) 2004-04-30 2005-04-29 Rubber Composition Exhibiting Improved Adhesion to a Metal Reinforcement
EP05736921.7A EP1749055B1 (fr) 2004-04-30 2005-04-29 Composition de caoutchouc a adhesion amelioree vis-a-vis d"un renfort metallique
JP2007509976A JP4959551B2 (ja) 2004-04-30 2005-04-29 金属製強化部材に対する改善された接着性を持つゴム組成物
CN2005800218886A CN1976987B (zh) 2004-04-30 2005-04-29 对于金属加强件具有改善的粘附性的橡胶组合物
KR1020067025275A KR101216981B1 (ko) 2004-04-30 2006-11-30 금속 강화재에 대한 접착력이 개선된 고무 조성물
US12/628,935 US20100168306A1 (en) 2004-04-30 2009-12-01 Rubber Composition Exhibiting Improved Adhesion to a Metal Reinforcement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0404603A FR2869618B1 (fr) 2004-04-30 2004-04-30 Composition de caoutchouc a adhesion amelioree vis a vis d'un renfort metallique.
FR04/04603 2004-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/628,935 Continuation US20100168306A1 (en) 2004-04-30 2009-12-01 Rubber Composition Exhibiting Improved Adhesion to a Metal Reinforcement

Publications (1)

Publication Number Publication Date
WO2005113666A1 true WO2005113666A1 (fr) 2005-12-01

Family

ID=34944564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/004613 WO2005113666A1 (fr) 2004-04-30 2005-04-29 Composition de caoutchouc a adhesion amelioree vis-a-vis d’un renfort metallique

Country Status (8)

Country Link
US (2) US20080026244A1 (fr)
EP (1) EP1749055B1 (fr)
JP (1) JP4959551B2 (fr)
KR (1) KR101216981B1 (fr)
CN (1) CN1976987B (fr)
BR (1) BRPI0510368A (fr)
FR (1) FR2869618B1 (fr)
WO (1) WO2005113666A1 (fr)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302865A (ja) * 2006-04-11 2007-11-22 Sumitomo Rubber Ind Ltd ビードエイペックス用ゴム組成物およびそれを用いたビードエイペックスを有するタイヤ
JP2008100675A (ja) * 2006-10-10 2008-05-01 Goodyear Tire & Rubber Co:The サイドウォールインサートを有するタイヤ
WO2008055683A1 (fr) * 2006-11-09 2008-05-15 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique incorporant un nouveau systeme anti-oxydant
WO2010105975A1 (fr) 2009-03-20 2010-09-23 Societe De Technologie Michelin Renfort composite auto-adherent
EP2233521A1 (fr) * 2007-12-27 2010-09-29 Bridgestone Corporation Composition de caoutchouc
WO2010112445A1 (fr) 2009-03-31 2010-10-07 Societe De Technologie Michelin Procede et dispositif de fabrication d' un cable a trois couches
WO2010112444A1 (fr) 2009-03-31 2010-10-07 Societe De Technologie Michelin Procede et dispositif de fabrication d' un cable a trois couches
WO2010136389A1 (fr) 2009-05-25 2010-12-02 Societe De Technologie Michelin Renfort composite auto-adherent, particulierement pour les pneumatiques, et procede de fabrication associe
WO2010149580A1 (fr) 2009-06-24 2010-12-29 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un composé acétylacétonate
WO2011000963A2 (fr) 2009-07-03 2011-01-06 Societe De Technologie Michelin Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ
WO2011000964A2 (fr) 2009-07-03 2011-01-06 Societe De Technologie Michelin Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ
WO2011012521A1 (fr) 2009-07-31 2011-02-03 Societe De Technologie Michelin Renfort composite auto-adherent
WO2011051204A1 (fr) 2009-10-29 2011-05-05 Societe De Technologie Michelin Renfort composite auto-adherent
FR2954332A1 (fr) * 2009-12-22 2011-06-24 Michelin Soc Tech Article notamment pneumatique avec melange de caoutchouc externe comportant un sel de lanthanide
WO2012016757A1 (fr) 2010-08-05 2012-02-09 Societe De Technologie Michelin Renfort composite
WO2012038340A1 (fr) 2010-09-23 2012-03-29 Societe De Technologie Michelin Renfort composite et son procede de fabrication
WO2012038341A1 (fr) 2010-09-23 2012-03-29 Societe De Technologie Michelin Bandage pneumatique comportant un renfort composite auto-adherent
JP2012097280A (ja) * 2006-04-11 2012-05-24 Sumitomo Rubber Ind Ltd ビードエイペックス用ゴム組成物およびそれを用いたビードエイペックスを有するタイヤ
WO2012069346A1 (fr) 2010-11-22 2012-05-31 Societe De Technologie Michelin Renfort composite auto-adherent
WO2012104281A1 (fr) 2011-02-03 2012-08-09 Compagnie Generale Des Etablissements Michelin Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
WO2012104280A1 (fr) 2011-02-03 2012-08-09 Compagnie Generale Des Etablissements Michelin Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
WO2013117474A1 (fr) 2012-02-08 2013-08-15 Compagnie Generale Des Etablissements Michelin Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
WO2013117475A1 (fr) 2012-02-08 2013-08-15 Compagnie Generale Des Etablissements Michelin Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
WO2013127685A1 (fr) 2012-02-29 2013-09-06 Compagnie Generale Des Etablissements Michelin Stratifie multicouche utilisable pour le renforcement d'une ceinture de pneumatique
WO2017162875A1 (fr) 2016-03-24 2017-09-28 Compagnie Generale Des Etablissements Michelin Produit renforcé comprenant un renfort composite auto-adhérent comprenant un copolymère à blocs
WO2017162872A1 (fr) 2016-03-24 2017-09-28 Compagnie Generale Des Etablissements Michelin Elément composite auto-adhérent comprenant un copolymère à blocs
WO2017162873A1 (fr) 2016-03-24 2017-09-28 Compagnie Generale Des Etablissements Michelin Produit renforcé comprenant un renfort composite auto-adhérent comprenant un copolymère à blocs
WO2020058614A1 (fr) 2018-09-21 2020-03-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère époxyde et un composé polyphénolique

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5524522B2 (ja) 2008-08-19 2014-06-18 株式会社ブリヂストン ゴム組成物
JP4588100B1 (ja) * 2009-06-26 2010-11-24 株式会社ブリヂストン ゴム複合体及びゴム組成物
BR112013018629B1 (pt) * 2011-01-19 2020-10-13 Bridgestone Americas Tire Operations, Llc. cinturão têxtil de pneu feito de uma camada de fios revestidos, método para reduzir histerese e método para preparar uma composição de borracha
US20120241066A1 (en) * 2011-03-24 2012-09-27 Paul Harry Sandstrom Tire containing an internal composite comprised of metal cord reinforced rubber layer with auxiliary buffer rubber layer
CN102558633B (zh) * 2011-12-05 2013-04-17 莱芜固可力轮胎有限公司 摩托车胎冠配方
KR101523290B1 (ko) * 2014-04-16 2015-06-01 평화오일씰공업 주식회사 탄소강 기재 상의 고무 접착 방법
TWI662048B (zh) * 2015-07-31 2019-06-11 日商橫浜橡膠股份有限公司 Rubber composition, rubber composition metal laminate, and vulcanized rubber product
JP6657759B2 (ja) * 2015-10-15 2020-03-04 横浜ゴム株式会社 タイヤ用ゴム組成物
FR3043680B1 (fr) * 2015-11-13 2017-12-08 Michelin & Cie Composition de caoutchouc comprenant un polymere dienique fonctionnel
FR3043591A1 (fr) * 2015-11-13 2017-05-19 Michelin & Cie Composite a base de composant metallique et d'une matrice polymere fonctionnelle
FR3058148A1 (fr) * 2016-10-31 2018-05-04 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant une charge renforcante specifique
CN109227035A (zh) * 2018-08-14 2019-01-18 宁国宏泰铸业有限公司 一种颚式破碎机衬板的制造方法
FR3090653A3 (fr) 2018-12-19 2020-06-26 Michelin & Cie Pneumatique comprenant une poudrette de caoutchouc
FR3090648A3 (fr) * 2018-12-19 2020-06-26 Michelin & Cie Pneumatique comprenant une composition de caoutchouc comprenant un pro-oxydant et une poudrette de caoutchouc
JP7397637B2 (ja) * 2019-09-30 2023-12-13 株式会社ブリヂストン 金属-ゴム複合体、コンベヤベルト、ホース、ゴムクローラ及びタイヤ
FR3112714B1 (fr) * 2020-07-24 2022-07-29 Michelin & Cie Traitement thermique d’un élément de renfort

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785033A (en) * 1984-02-27 1988-11-15 The Goodyear Tire & Rubber Company Rubber-metal adhesion promoters
EP0960890A1 (fr) * 1998-05-27 1999-12-01 The Goodyear Tire & Rubber Company Composition de caoutchouc et pneu avec bande de roulement à base de cette composition

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3324100A (en) * 1962-10-29 1967-06-06 Phillips Petroleum Co Masticating polybutadiene
US3681329A (en) * 1970-05-04 1972-08-01 Allied Chem Process for the preparation of cyclic iminoethers
US3903332A (en) * 1973-02-15 1975-09-02 Uniroyal Inc Adhesion of polyester to rubber using an adhesive containing added metal compounds
US4137359A (en) * 1977-10-31 1979-01-30 Mooney Chemicals, Inc. Elastomers with improved metal adhesion
MX158710A (es) * 1980-09-19 1989-03-03 Goodyear Tire & Rubber Mejoras en refuerzo de filamento de alambre revestido con una composicion de caucho
FR2534263B1 (fr) * 1982-10-08 1986-09-19 Rhone Poulenc Spec Chim Procede de stabilisation de polymeres a base de chlorure de vinyle
US4605693A (en) * 1984-02-27 1986-08-12 The Goodyear Tire & Rubber Company Rubber-metal adhesion promoters
JPS61103948A (ja) * 1984-10-26 1986-05-22 Bridgestone Corp ゴム組成物
US5394919A (en) * 1993-06-18 1995-03-07 The Goodyear Tire & Rubber Company Tire with rubber/cord belt laminate
EP0765903B8 (fr) * 1995-09-29 2003-07-02 Bridgestone Corporation Composition de caoutchouc adhérent pour câble d'acier
US6562752B2 (en) * 1998-06-25 2003-05-13 Institut Francais Du Petrole Metallic sulphide catalysts, processes for synthesising said catalysts and use thereof
DE19919870A1 (de) * 1999-04-30 2000-11-02 Bayer Ag Verfahren zur Suspensions-Polymerisation von konjugierten Dienen
JP4038481B2 (ja) * 2001-12-21 2008-01-23 ピレリ・タイヤ・ソチエタ・ペル・アツィオーニ 車輪用タイヤ、トレッドバンド、およびこれらに使用されるエラストマー組成物
WO2004056737A1 (fr) * 2002-12-23 2004-07-08 Council Of Scientific And Industrial Research Procede de preparation d'acetylacetonates de metal
JP2005041927A (ja) * 2003-07-23 2005-02-17 Sumitomo Rubber Ind Ltd タイヤトレッド用ゴム組成物およびそれをトレッドに用いたタイヤ
FR2866028B1 (fr) * 2004-02-11 2006-03-24 Michelin Soc Tech Systeme plastifiant pour composition de caoutchouc

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785033A (en) * 1984-02-27 1988-11-15 The Goodyear Tire & Rubber Company Rubber-metal adhesion promoters
EP0960890A1 (fr) * 1998-05-27 1999-12-01 The Goodyear Tire & Rubber Company Composition de caoutchouc et pneu avec bande de roulement à base de cette composition

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302865A (ja) * 2006-04-11 2007-11-22 Sumitomo Rubber Ind Ltd ビードエイペックス用ゴム組成物およびそれを用いたビードエイペックスを有するタイヤ
JP2012097280A (ja) * 2006-04-11 2012-05-24 Sumitomo Rubber Ind Ltd ビードエイペックス用ゴム組成物およびそれを用いたビードエイペックスを有するタイヤ
JP2008100675A (ja) * 2006-10-10 2008-05-01 Goodyear Tire & Rubber Co:The サイドウォールインサートを有するタイヤ
EA016636B1 (ru) * 2006-11-09 2012-06-29 Сосьете Де Текноложи Мишлен Резиновая смесь для пневматической шины, включающая новую антиоксидантную систему
WO2008055683A1 (fr) * 2006-11-09 2008-05-15 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique incorporant un nouveau systeme anti-oxydant
FR2908416A1 (fr) * 2006-11-09 2008-05-16 Michelin Soc Tech Composition de caoutchouc pour pneumatique incorporant un nouveau systeme anti-oxydant
KR101444077B1 (ko) 2006-11-09 2014-09-26 미쉐린 러쉐르슈 에 떼크니크 에스.에이. 신규한 산화방지제 시스템을 혼입한 타이어용 고무 조성물
EP2233521A1 (fr) * 2007-12-27 2010-09-29 Bridgestone Corporation Composition de caoutchouc
EP2233521A4 (fr) * 2007-12-27 2012-01-25 Bridgestone Corp Composition de caoutchouc
US8609252B2 (en) 2007-12-27 2013-12-17 Bridgestone Corporation Rubber composition
WO2010105975A1 (fr) 2009-03-20 2010-09-23 Societe De Technologie Michelin Renfort composite auto-adherent
WO2010112445A1 (fr) 2009-03-31 2010-10-07 Societe De Technologie Michelin Procede et dispositif de fabrication d' un cable a trois couches
WO2010112444A1 (fr) 2009-03-31 2010-10-07 Societe De Technologie Michelin Procede et dispositif de fabrication d' un cable a trois couches
WO2010136389A1 (fr) 2009-05-25 2010-12-02 Societe De Technologie Michelin Renfort composite auto-adherent, particulierement pour les pneumatiques, et procede de fabrication associe
WO2010149580A1 (fr) 2009-06-24 2010-12-29 Societe De Technologie Michelin Composition de caoutchouc pour pneumatique comportant un composé acétylacétonate
WO2011000963A2 (fr) 2009-07-03 2011-01-06 Societe De Technologie Michelin Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ
WO2011000964A2 (fr) 2009-07-03 2011-01-06 Societe De Technologie Michelin Cable multitorons dont les torons elementaires sont des cables a deux couches gommes in situ
WO2011012521A1 (fr) 2009-07-31 2011-02-03 Societe De Technologie Michelin Renfort composite auto-adherent
WO2011051204A1 (fr) 2009-10-29 2011-05-05 Societe De Technologie Michelin Renfort composite auto-adherent
WO2011076619A1 (fr) 2009-12-22 2011-06-30 Societe De Technologie Michelin Article notamment pneumatique avec melange de caoutchouc externe comportant un sel de lanthanide
FR2954332A1 (fr) * 2009-12-22 2011-06-24 Michelin Soc Tech Article notamment pneumatique avec melange de caoutchouc externe comportant un sel de lanthanide
EA022744B1 (ru) * 2009-12-22 2016-02-29 Компани Женераль Дез Этаблиссман Мишлен Изделие, в частности шина, с наружной резиновой смесью, содержащей соль лантаноида
WO2012016757A1 (fr) 2010-08-05 2012-02-09 Societe De Technologie Michelin Renfort composite
WO2012038340A1 (fr) 2010-09-23 2012-03-29 Societe De Technologie Michelin Renfort composite et son procede de fabrication
WO2012038341A1 (fr) 2010-09-23 2012-03-29 Societe De Technologie Michelin Bandage pneumatique comportant un renfort composite auto-adherent
WO2012069346A1 (fr) 2010-11-22 2012-05-31 Societe De Technologie Michelin Renfort composite auto-adherent
US9821606B2 (en) 2011-02-03 2017-11-21 Compagnie Generale Des Etablissements Michelin Composite reinforcer sheathed with a layer of polymer that is self-adhesive to rubber
WO2012104280A1 (fr) 2011-02-03 2012-08-09 Compagnie Generale Des Etablissements Michelin Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
WO2012104281A1 (fr) 2011-02-03 2012-08-09 Compagnie Generale Des Etablissements Michelin Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
WO2013117474A1 (fr) 2012-02-08 2013-08-15 Compagnie Generale Des Etablissements Michelin Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
WO2013117475A1 (fr) 2012-02-08 2013-08-15 Compagnie Generale Des Etablissements Michelin Renfort composite gaine d'une couche de polymere auto-adherente au caoutchouc
WO2013127685A1 (fr) 2012-02-29 2013-09-06 Compagnie Generale Des Etablissements Michelin Stratifie multicouche utilisable pour le renforcement d'une ceinture de pneumatique
US9751364B2 (en) 2012-02-29 2017-09-05 Compagnie Generale Des Etablissements Michelin Multilayer laminate which can be used for the reinforcement of a tyre belt
WO2017162875A1 (fr) 2016-03-24 2017-09-28 Compagnie Generale Des Etablissements Michelin Produit renforcé comprenant un renfort composite auto-adhérent comprenant un copolymère à blocs
WO2017162872A1 (fr) 2016-03-24 2017-09-28 Compagnie Generale Des Etablissements Michelin Elément composite auto-adhérent comprenant un copolymère à blocs
WO2017162873A1 (fr) 2016-03-24 2017-09-28 Compagnie Generale Des Etablissements Michelin Produit renforcé comprenant un renfort composite auto-adhérent comprenant un copolymère à blocs
US11318792B2 (en) 2016-03-24 2022-05-03 Compagnie Generale Des Etablissment Michelin Reinforced product comprising a self-adhesive composite reinforcement containing a block copolymer
WO2020058614A1 (fr) 2018-09-21 2020-03-26 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un élastomère époxyde et un composé polyphénolique
FR3086296A1 (fr) 2018-09-21 2020-03-27 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un elastomere epoxyde et un compose polyphenolique

Also Published As

Publication number Publication date
CN1976987A (zh) 2007-06-06
KR101216981B1 (ko) 2013-01-02
EP1749055A1 (fr) 2007-02-07
FR2869618A1 (fr) 2005-11-04
US20100168306A1 (en) 2010-07-01
EP1749055B1 (fr) 2016-08-31
JP2007535598A (ja) 2007-12-06
US20080026244A1 (en) 2008-01-31
KR20070006934A (ko) 2007-01-11
FR2869618B1 (fr) 2008-10-10
BRPI0510368A (pt) 2007-11-06
CN1976987B (zh) 2012-04-25
JP4959551B2 (ja) 2012-06-27

Similar Documents

Publication Publication Date Title
EP1749055B1 (fr) Composition de caoutchouc a adhesion amelioree vis-a-vis d"un renfort metallique
EP1311591B1 (fr) Composite (metal/caoutchouc) pour pneumatique
EP3102406B1 (fr) Composite de caoutchouc renforcé d'au moins un élément de renfort en acier adhérisé par une composition adhésive à base d'aldéhyde aromatique et de polyphénol
EP2900863B1 (fr) Cable gomme in situ comprenant une composition comprenant un polysulfure organique
EP1756356B1 (fr) Pneumatique comprenant un cable metallique
EP3206890B1 (fr) Produit renforce comprenant une composition a faible taux de soufre et pneumatique comprenant ledit produit renforce
EP2432826B1 (fr) Composition de caoutchouc pour pneumatique comportant un compose acetylacetonate
EP2576894B1 (fr) Renfort filaire composite pour pneumatique, enrobe d'un caoutchouc a propriete de barriere a l'eau amelioree
EP3532306B1 (fr) Composition de caoutchouc comprenant une charge renforcante specifique
FR3031746A1 (fr) Composition de caoutchouc a haute rigidite
EP3206891B1 (fr) Produit renforce comprenant une composition comprenant un accelerateur de vulcanisation rapide et pneumatique comprenant ledit produit renforce
EP2104704A1 (fr) Composition de caoutchouc a tres faible taux de zinc
EP2914444B1 (fr) Câble gommé in situ comprenant une composition comprenant un copolymère de styrène-butadiène
WO2010149580A1 (fr) Composition de caoutchouc pour pneumatique comportant un composé acétylacétonate
EP2999741B1 (fr) Melange interne pour pneumatique a resistance a la fissuration amelioree
WO2004090023A1 (fr) Composite metal/ caoutchouc pour pneumatique
EP3898788B1 (fr) Produit renforce comprenant une composition comportant un compose polysulfuré
EP4076985A1 (fr) Produit renforce a base d'au moins un element de renfort metallique et d'une composition de caoutchouc
WO2020128261A1 (fr) Produit renforce comprenant une composition comportant un compose polysulfuré
FR3102181A1 (fr) Composite comprenant des fibres courtes
FR3041633A1 (fr) Compose esterifie pour eviter la reticulation precoce d'une resine phenol aldehyde

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2005736921

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005736921

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11579228

Country of ref document: US

Ref document number: 2007509976

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067025275

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580021888.6

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067025275

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005736921

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0510368

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 11579228

Country of ref document: US