WO2005108404A1 - エチニル基置換縮合ヘテロ環化合物重金属錯体、その製造法、その合成中間体及びその製造法並びに有機エレクトロルミネッセンス素子 - Google Patents

エチニル基置換縮合ヘテロ環化合物重金属錯体、その製造法、その合成中間体及びその製造法並びに有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2005108404A1
WO2005108404A1 PCT/JP2005/008668 JP2005008668W WO2005108404A1 WO 2005108404 A1 WO2005108404 A1 WO 2005108404A1 JP 2005008668 W JP2005008668 W JP 2005008668W WO 2005108404 A1 WO2005108404 A1 WO 2005108404A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
electrode
substituted
formula
heterocyclic compound
Prior art date
Application number
PCT/JP2005/008668
Other languages
English (en)
French (fr)
Inventor
Osamu Fujimura
Kenji Fukunaga
Toshikazu Machida
Takashi Kino
Takafumi Iwasa
Shinji Yasuda
Yasuhiro Tanaka
Hiroshi Sato
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to JP2006513046A priority Critical patent/JP4470940B2/ja
Publication of WO2005108404A1 publication Critical patent/WO2005108404A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D215/14Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/18Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5045Complexes or chelates of phosphines with metallic compounds or metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/60Quinoline or hydrogenated quinoline ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/645Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having two nitrogen atoms as the only ring hetero atoms
    • C07F9/6509Six-membered rings
    • C07F9/650952Six-membered rings having the nitrogen atoms in the positions 1 and 4
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • Heavy metal complex substituted with an ethyl group a method for producing the same, an intermediate for the synthesis thereof, a method for producing the same, and an organic electroluminescent device
  • the present invention relates to a heavy metal complex of an ethynyl group-substituted condensed heterocyclic compound useful for blue and white light-emitting materials for electroluminescent devices (electroluminescent devices), a method for producing the same, a synthetic intermediate thereof, and a method for producing the same And organic luminescent devices using the same.
  • a non-patent document 1 and a non-patent document 2 disclose a ferurethul gold complex, and the ethynyl group-substituted condensed heterocyclic compound heavy metal of the present invention is described.
  • No complex is known, and its use as a light-emitting material for organic electroluminescent devices is also known.
  • L ' represents a monodentate ligand
  • Y' represents an alkyl group, an aryl group, an aralkyl group or a heterocyclic group
  • Non-Patent Document 2 discloses a method for synthesizing a gold complex of an ethur group-substituted compound represented by the following formula: in the presence of a base, a gold halide complex (the following formula (b)) and an ethynyl group-substituted compound (the following formula ( c)) and a synthesis method in which is reacted in ethanol.
  • a halogenated complex (the following formula (b)) can be used, for example, as shown in Non-Patent Document 3 It is known to catalyze the addition reaction of primary alcohols to heavy bonds.
  • the object of the present inventors was to produce 8-quinolylethynyl (tri-o-tolylphosphine) gold (the following formula (e)) which is useful as a light emitting material for an electroluminescent device (electroluminescence device).
  • chloro (tri-tolylphosphine) gold (1) as a gold complex and 8-ethynylquinoline as an ethynyl-substituted conjugate are used in ethanol in the presence of a base.
  • an ethanol-added compound (formula (f)) was formed, and the target compound was not obtained at all.
  • Non-Patent Document 4 describes bis-ferruetur (phenanthroline phosphorus) platinum complex
  • Non-Patent Document 5 describes bis-phenyl (bisdiphenylphospho).
  • (Finoethane) Platinum complex power An ethinyl (biviridine) platinum complex is described. Further, regarding the use of these platinum complexes as light emitting materials for organic electroluminescent devices (organic electroluminescent devices),
  • Non-Patent Document 4 describes that bisphen-ruetul (phenanthroline phosphorus) platinum complex can be used as the light emitting material.
  • the ethynyl group-substituted condensed heterocyclic compound heavy metal complex of the present invention is not known, and its use as a light emitting material for an organic electroluminescent device is also known.
  • a copper catalyst such as copper iodide is used.
  • a synthetic method in which a terminal acetylene compound and a platinum complex are reacted in the presence.
  • a complex containing copper such as the following formulas (h) and (i) as an impurity is used.
  • impurities are often a problem in device-related materials such as electoluminescence devices. There is a need for a manufacturing method that is free of impurities.
  • the reaction described in Non-Patent Document 7 is performed by reacting a condensed heterocyclic compound substituted with an acetyl group with phosphorus pentachloride. Production method is described, but the yield was as low as about 30% at the maximum.
  • the ethynyl group-substituted condensed heterocyclic compound represented by the following formula (4) is a novel compound, and is known to be useful as a light emitting material for electroluminescent devices (organic electroluminescent devices). What,
  • Non-Patent Document 2 Journal of Chemical Society, Dalton Trans., 1986, p. 411
  • Non-Patent Document 3 Journal of the American Chemical Socirty, 2003, 125, p. 11925
  • Non-Patent Document 4 Chemistry European Journal., 2001, Vol. 7, p. 4180
  • Non-Patent Document 5 Journal of Organometallic Chemistry., 2001, Vol. 627, p.
  • Non-Patent Document 6 Inorganic Chemistry., 2000, vol. 39, p. 447
  • Non-Patent Document 7 Chemische Berichte, 1960, 93, p. 593
  • Non-Patent Document 8 edited by The Chemical Society of Japan, “Experimental Chemistry Course”, 4th edition, 18th volume, Maruzen, 1991, p.
  • Non-Patent Document 9 The Chemical Society of Japan, “Experimental Chemistry Course”, 4th edition, 18th volume, Maruzen, 1991, p. 412
  • Non-Patent Document 10 Tetrahedron., 1996, 52nd volume, p. 7547
  • Non-Patent Document 11 Tetrahedron Letter., 1993, 34 volumes, p. 1769
  • Non-Patent Document 12 Journal of the American Chemical Socirty, 1987, 109, p. 5478
  • the present invention provides a blue and white light-emitting material for an organic electroluminescent device, and the like. It is an object of the present invention to provide a method for producing a heavy metal complex of an ethynyl group-substituted condensed heterocyclic compound (formula (1)) useful in a high yield without contaminating metals.
  • the present invention further provides a high-yield ethynyl group-substituted condensed heterocyclic compound represented by the following formula (2) useful as a raw material of a light emitting material for an electroluminescent device (organic electroluminescent device).
  • An object of the present invention is to provide a method and a novel ethynyl group-substituted condensed heterocyclic compound represented by the following formula (4).
  • the present inventors have conducted intensive studies, and as a result, the organic electroluminescent device containing an ethynyl group-substituted condensed metal complex represented by the following formula (1) has a blue and white electric field when a voltage is applied.
  • the present invention was found to be useful as a material for a light-emitting element, and the present invention was completed.
  • the present inventors have made it possible to obtain a ethynyl group-substituted condensed heterocyclic compound heavy metal complex in good yield by reacting an ethynyl group-substituted condensed heterocyclic compound with a heavy metal precursor in the presence of a metal alkoxide. They found that they could be synthesized and completed the present invention.
  • an ethynyl group-substituted condensed heterocyclic compound represented by the following formula (2) which is useful as a material for a light emitting material for an organic electroluminescent device.
  • an ethynyl group-substituted condensed heterocyclic compound (the following formula (4)), which is a novel conjugate useful as a light emitting material for an organic electroluminescent device, and have completed the present invention.
  • the present invention is as follows.
  • the first invention provides the following formula (1):
  • M represents a heavy metal element
  • L represents a monodentate ligand or a bidentate ligand
  • Z represents a halogen atom, an alkyl group, an alkenyl group, an aryl group, an aralkyl group, an alkyl group.
  • n is an integer of 0 to 6
  • a plurality of Zs may be the same or different.
  • alkyl group an aryl group, an aralkyl group, an alkoxy group, an aryloxy group, or a dialkylamino group
  • these two adjacent groups may combine to form a ring.
  • a and B are each CH Or represents N, and when A or B is CH, the hydrogen atom may be substituted with Z or an ethur group.
  • k is an integer of 1 to 4,
  • the present invention relates to a heavy metal complex substituted with a condensed heterocyclic compound represented by the formula:
  • a second invention provides a method for preparing a compound according to the following formula (2), wherein M is gold, in an organic solvent excluding primary and secondary alcohols:
  • X represents a halogen atom
  • k, M and L are as defined above
  • the present invention relates to a method for producing a heavy metal complex substituted with an ethule group-substituted heterocyclic compound represented by the above formula (1), wherein the heavy metal complex is reacted with a heavy metal complex represented by the following formula:
  • a third invention provides the following formula (4):
  • a fourth invention is directed to the following formula (5) in the presence of a zero-valent palladium compound in a basic solvent.
  • a dimethylhydroxymethyl-condensed heterocyclic monoacetylene compound represented by the formula (2) and then reacting the compound with a base. .
  • a fifth invention is an organic electroluminescent device in which a light emitting layer or a plurality of organic compound thin layers including a light emitting layer is formed between a pair of electrodes, wherein at least one organic compound thin layer has the above-mentioned structure.
  • the present invention relates to an electroluminescent device characterized by containing at least one kind of a heavy metal complex substituted by a condensed heterocyclic compound represented by the formula (1).
  • FIG. 1 is a schematic diagram of an electroluminescent device according to Example 51.
  • FIG. 2 is an emission spectrum of the electroluminescent device of Example 51 described in Example 51, and the vertical axis represents emission intensity at each wavelength.
  • FIG. 3 is a schematic view of an electroluminescent device according to Example 52.
  • FIG. 4 is an emission spectrum of the electroluminescent device of Example 52 described in Example 52, and the vertical axis represents emission intensity at each wavelength.
  • the ethynyl group-substituted fused heterocyclic compound heavy metal complex of the first invention is represented by the above formula (1).
  • M represents a heavy metal atom
  • L represents a monodentate ligand or a bidentate ligand
  • Z represents a halogen atom, an alkyl group, an alkenyl group, an aryl group, an aralkyl group, an alkoxy group.
  • n is an integer of 0 to 6, and a plurality of Zs may be the same or different.
  • X and Y represent CH or N, respectively.
  • X or Y is CH, its hydrogen atom may be substituted with Z or an ethynyl group bonded to a heavy metal in the formula.
  • the heavy metal atom represented by M includes Au, Pt, Ta, W, Re, Os and Ir, which are metals of the sixth period of the periodic table.
  • M Au
  • k l
  • L is one to three monodentate ligands
  • Pt, k 2
  • L is one bidentate ligand, Os or Ir
  • k for Ta, 3
  • L is a monodentate or bidentate ligand, monodentate has 2 to 4 ligands, bidentate has 1 to 2 ligands
  • L is a monodentate or bidentate ligand
  • monodentate 2 to 4 ligands
  • bidentate 1 to 2 ligands
  • L is monodentate There are 2 to 4 ligands
  • Examples of the halogen atom in Z include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • an alkyl group having 1 to 20 carbon atoms particularly an alkyl group having 1 to 12 carbon atoms is preferable.
  • Examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a pendecyl group and a dodecyl group.
  • substituents include isomers thereof.
  • the alkenyl group is preferably an alkenyl group having 2 to 20 carbon atoms, particularly 2 to 12 carbon atoms, such as a vinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, Examples include a heptenyl group, an otathenyl group, a nonenyl group, a decenyl group, a pendecenyl group, and a dodecenyl group. These substituents include isomers thereof.
  • the aryl group is preferably an aryl group having 6 to 20 carbon atoms, particularly 6 to 12 carbon atoms.
  • aryl group having 6 to 20 carbon atoms, particularly 6 to 12 carbon atoms.
  • substituents include isomers thereof.
  • an aralkyl group having 7 to 20 carbon atoms is preferable, and examples thereof include a benzyl group, a naphthylmethyl group, an indulmethyl group, and a biphenylmethyl group.
  • an alkoxy group an alkoxy group having 1 to 10 carbon atoms is particularly preferable.For example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a hexanoxy group, a heptanoxy group, an otatanoxy group, a nonanoxy group, Decanoxy group and the like. These substituents also include isomers thereof.
  • aryloxy group examples include a phenoxy group, a trioxy group, a xylyloxy group, a naphthoxy group, and a dimethylnaphthoxy group, which are particularly preferably an aryloxy group having 6 to 14 carbon atoms. These substituents include isomers thereof.
  • dialkylamino group examples include a dimethylamino group, a getylamino group, and a dipropylamino group, which are preferably a dialkylamino group having 2 to 10 carbon atoms. These substituents also include isomers thereof.
  • a ring formed by bonding two adjacent groups includes, for example, And a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, a benzene ring, a naphthalene ring, a tetrahydrofuran ring, a benzopyran ring, an N-methylpyrrolidine ring, an N-methylbiperidine ring and the like. And the like.
  • any hydrogen atom of Z is a halogen atom, an alkyl group, an alkyl group, an aryl group.
  • Groups, alkoxy groups, aryloxy groups, nitro groups, cyano groups and dialkylamino groups may be further substituted with at least one selected substituent.
  • L 1 represents a monodentate ligand.
  • Examples of such L 1 include a monodentate ligand represented by the following general formula (8) or (9).
  • RR 2 and R 3 each represent an alkyl group, a cycloalkyl group or an aryl group which may be the same or different
  • R 4 and R 5 each represent a hydrogen which may be the same or different Represents an atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, an alkoxy group, an aryloxy group, a nitro group, a cyano group, or a dialkylamino group.
  • R 4 and R 5 are an alkyl group, an aryl group, an aryl group, an aralkyl group, an alkoxy group, an aryloxy group, or a dialkylamino group, two adjacent groups are bonded to form a ring. You may.
  • an alkyl group having 1 to 10 carbon atoms is preferable.
  • substitution groups include isomers thereof.
  • a cycloalkyl group having 5 to 8 carbon atoms is particularly preferable.
  • a cyclopentyl group, a cyclohexyl group, a cyclopentyl group, a cyclohexyl group , Cycloheptyl group, cyclooctyl group and the like is particularly preferable.
  • an aryl group having 6 to 12 carbon atoms is preferable, and examples thereof include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and a dimethylnaphthyl group. These substituents include isomers thereof.
  • the halogen atom for R 4 and R 5 a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • an alkyl group having 1 to 10 carbon atoms is preferable.
  • examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. And the like. These substituents include isomers thereof.
  • the cycloalkyl group is preferably a cycloalkyl group having 3 to 7 carbon atoms, for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclopentyl group, cyclohexyl group, cyclohexyl group, And a heptyl group.
  • the alkenyl group is preferably an alkenyl group having 2 to 20, especially 2 to 12 carbon atoms. Examples thereof include a butyl group, a probel group, a butyl group, a pentyl group, and a hexyl group. A benzyl group, a heptenyl group, an otathenyl group, a nonenyl group, a decenyl group, a pendecyl group, a dodecenyl group and the like. These substituents include isomers thereof.
  • aryl group an aryl group having 6 to 12 carbon atoms is preferable.
  • substituents include isomers thereof.
  • an aralkyl group having 7 to 20 carbon atoms is preferable, and examples thereof include a benzyl group, a naphthylmethyl group, an indulmethyl group, and a biphenylmethyl group.
  • an alkoxy group an alkoxy group having 1 to 10 carbon atoms is particularly preferable.For example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, a hexanoxy group, a heptanoxy group, an otatanoxy group, a nonanoxy group, and a decanoxy group And the like.
  • substituents include isomers thereof.
  • aryloxy group an aryloxy group having 6 to 14 carbon atoms is particularly preferable, and a phenoxy group, a troxy group, a xylyloxy group, a naphthoxy group, a dimethylnaphthoxy group and the like are preferable. No. These substituents include isomers thereof.
  • dialkylamino group examples include a dimethylamino group, a acetylamino group, and a dipropylamino group, which are preferably a dialkylamino group having 2 to 10 carbon atoms. These substituents include isomers thereof.
  • R 4 and R 5 are an alkyl group, an aryl group, an aryl group, an aralkyl group, an alkoxy group, an aryloxy group, or a dialkylamino group, a ring formed by bonding two adjacent groups together
  • examples thereof include quinoline, isoquinoline, tetrahydroquinoline, tetrahydroisoquinoline, 2,3 cyclopentenoviridine, 2,3 cycloheptenopyridine, 2,3 cyclododecenoviridine, 7-azaindole, and norharman.
  • R 2 , R 3 , R 4 and R 5 are bonded to their carbon atoms to form a hydrogen atom such as a halogen atom, an alkyl group, an alkyl group or an aryl group. , An alkoxy group, an aryloxy group, a nitro group, a cyano group or a dialkylamino group.
  • monodentate ligand represented by the above formula (8) include bis (pentafluorophenyl) phenolenophosphine, (4bromophenyl) diphenolenophosphine, diarylphenolenorphine, Dicyclohexylphenylphosphine, getylphenolphosphine, 4- (dimethylamino) phenyldiphosphine, dimethylphenylphosphine, diphenyl (2-methoxyphenyl) phosphine, diphenyl (pentafluorof) (Ethyl) phosphine, diphenylpropylphosphine, diphenyl-2-pyridylphosphine, diphenyl (p-tolyl) phosphine, diphenylrubylphosphine, ethyldiphenylphosphine, isopropyldiphenylphosphine, methyl Diphenylpho
  • ligand represented by the above formula (9) include pyridine, picoline, 2-ethylpyridine, 2-propylpyridine, 4-propylpyridine, 4-butylpyridine, 4-isobutylpyridine, lutidine, collidine, and ethyl.
  • these ligands can use a commercial thing.
  • L 2 represents a bidentate ligand.
  • L 2 include bidentate phosphines and bidentate ligands represented by the following general formulas (10) to (12).
  • m represents an integer of 1 to 5
  • R 6 and R 7 represents an alkyl group, a cycloalkyl group, or an Ariru group may be the same or different.
  • Za, Zb, Zc, Zd, and Ze each independently represent a nonmetallic atom group capable of forming a 5- or 6-membered ring. These 5- or 6-membered rings may form a condensed ring.
  • Za, Zb, Zc, Zd and Ze are represented by carbon, hydrogen, nitrogen, oxygen, sulfur, phosphorus and halogen atoms. And an independent 5- or 6-membered ring. These 5- or 6-membered rings may form a condensed ring.
  • Examples of the 5-membered ring include an oxazole ring, a thiazole ring, and an imidazole ring.
  • Examples of the six-membered ring include a benzene ring, a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring and the like.
  • the fused ring formed by these 5- or 6-membered rings includes a quinoline ring, an isoquinoline ring, an indole And an isoindole ring.
  • a naphthalene ring an isoquinoline ring, an oxazole ring and a pyridine ring are preferred.
  • these rings may be the same or different and each may be a halogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, an alkoxy group, an aryloxy group, a nitro group, a cyano group. Or a substituent such as a dialkylamino group.
  • substituents are an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, an alkoxy group, or an aryloxy group and are adjacent to each other.
  • substituents may combine to form a 5- or 6-membered ring.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • an alkyl group having 1 to 10 carbon atoms is preferable.
  • examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. And the like. These substituents include isomers thereof.
  • a cycloalkyl group having 5 to 8 carbon atoms is particularly preferable.
  • a cyclopentyl group, a cyclohexyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like are preferable. Is mentioned.
  • the alkenyl group is preferably an alkenyl group having 2 to 20, particularly 2 to 12 carbon atoms. Examples thereof include a butyl group, a probel group, a butyl group, a pentyl group and a hexyl group. A benzyl group, a heptenyl group, an otathenyl group, a nonenyl group, a decenyl group, a pendecyl group, a dodecenyl group and the like. These substituents include isomers thereof.
  • aryl group an aryl group having 6 to 12 carbon atoms is preferable.
  • substituents include isomers thereof.
  • an aralkyl group having 7 to 20 carbon atoms is preferable, and examples thereof include a benzyl group, a naphthylmethyl group, an indulmethyl group, and a biphenylmethyl group.
  • an alkoxy group having 1 to 10 carbon atoms is particularly preferable.
  • Examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentanoxy group, a hexanoxy group, a heptanoxy group, an otatanoxy group, a nonanoxy group and a decanoloxy group.
  • substituents include isomers thereof.
  • aryloxy group examples include a phenoxy group, a trioxy group, a xylyloxy group, a naphthoxy group, and a dimethylnaphthoxy group, which are particularly preferably an aryloxy group having 6 to 14 carbon atoms. These substituents include isomers thereof.
  • dialkylamino group examples include a dimethylamino group, a dimethylamino group, and a dipropylamino group, which are preferably a dialkylamino group having 2 to 10 carbon atoms. These substituents include isomers thereof.
  • bidentate phosphine examples include bidentate phosphines represented by the following general formulas (13) to (18).
  • R 8 and R 9 represent a hydrogen atom, a halogen atom, an alkyl group, a cycloalkyl group, an alkyl group, an aryl group, an aryl group; Represents an alkyl group, an alkoxy group, an aryloxy group, a nitro group, a cyano group, or a dialkylamino group, and these substituents may be the same or different.
  • substituents are an alkyl group, a cycloalkyl group, an aryl group, an aryl group, an aralkyl group, an alkoxy group, or an aryloxy group and are adjacent to each other, these substituents combine to form a ring. You may.
  • Examples of the bidentate ligand represented by the general formula (13) include bidentate ligands represented by the following general formulas (19) and (20).
  • R 6 , R 7 , R 8 and R 9 are as defined above.
  • the groups may be the same or different.
  • substituents are an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, an alkoxy group, or an aryloxy group and are adjacent to each other, these substituents may combine to form a ring. ,.
  • the bidentate ligand represented by the general formula (14) includes, for example, a bidentate ligand represented by the following general formula (21).
  • Examples of the bidentate ligand represented by the general formula (15) include a bidentate ligand represented by the following general formula (22).
  • R 8 and R 9 have the same meaning as described above.
  • alkyl group in R 6 and R 7 preferably an alkyl group having 1 to 10 carbon atoms instrument such as a methyl group, Echiru group, propyl group, butyl group, alkoxy Le group pentyl to, Heptyl group, octyl group, nonyl group, decyl group and the like. These substituents include isomers thereof.
  • a cycloalkyl group having 5 to 8 carbon atoms is particularly preferable.
  • a cyclopentyl group, a cyclohexyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like are preferable. Is mentioned.
  • an aryl group having 6 to 12 carbon atoms is preferable, and examples thereof include a phenyl group, a tolyl group, a xylyl group, a naphthyl group and a dimethylnaphthyl group. These substituents include isomers thereof.
  • an alkyl group having 1 to 20 carbon atoms, particularly 1 to 12 carbon atoms is preferable.
  • Examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group.
  • a cycloalkyl group having 3 to 7 carbon atoms is particularly preferable.
  • a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclohexyl group examples include a clopentyl group, a cyclohexyl group, a cycloheptyl group, and the like.
  • the alkenyl group is preferably an alkenyl group having 2 to 20, especially 2 to 12 carbon atoms. Examples thereof include a butyl group, a probel group, a butyr group, a pentyl group, and a hexyl group. A benzyl group, a heptenyl group, an otathenyl group, a nonenyl group, a decenyl group, a pendecyl group, a dodecenyl group and the like. These substituents include isomers thereof.
  • aryl group an aryl group having 6 to 20 carbon atoms, particularly 6 to 12 carbon atoms is preferable.
  • examples thereof include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and a dimethylnaphthyl group. It is. These substituents include isomers thereof.
  • an aralkyl group having 7 to 20 carbon atoms is preferable, and examples thereof include a benzyl group, a naphthylmethyl group, an indulmethyl group, and a biphenylmethyl group.
  • the alkoxy group is particularly preferably an alkoxy group having 1 to 10 carbon atoms.
  • substituents include isomers thereof.
  • the aryloxy group is particularly preferably an aryloxy group having 6 to 14 carbon atoms, and examples thereof include a phenoxy group, a troxy group, a xylyloxy group, a naphthoxy group, and a dimethylnaphthoxy group. These substituents include isomers thereof.
  • dialkylamino group examples include a dimethylamino group, a dimethylamino group, and a dipropylamino group, which are preferably a dialkylamino group having 2 to 10 carbon atoms. These substituents include isomers thereof.
  • R 8 , R 9 , R 10 , R 11 and R 12 are an alkyl group, an alkenyl group, an aryl group, an aralkyl group
  • R 6 and R 7 have the same meaning as described above.
  • the substituents represented by R 6 , R 7 , R 8 , R 9 , R 1G , R 11 and R 12 are a hydrogen atom, a halogen atom, an alkyl group bonded to the carbon atom. Alkenyl group, aryl group, alkoxy group, aryloxy group, nitro group, cyano group or dialkylamino group. These substituents include the same substituents as those described above for R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 .
  • bidentate phosphine represented by the general formulas (13) to (18) and the bidentate ligand represented by the general formulas (19) to (22) include the following.
  • bidentate phosphine represented by the above formula (14) include 1,2 bis (diphenylphosphino) propane, 2,3bis (diphenylphosphino) butane, and 2,4bis (diphen). -Ruphosphino) pentane and the like.
  • bidentate phosphine represented by the above formula (15) include 1,2-bis (dimethylphosphino) benzene, 1,2-bis (dicyclohexylphosphino) benzene, and 1,2-bis (Diphenylphosphino) benzene and the like.
  • bidentate phosphine represented by the above formula (16) include 1,1'bis (diphenylphosphino) phenene, 1,1,1bis (diisopropylphosphino) phenene, 1,1, bis (di-t-butylphosphino) phenoctene and the like.
  • bidentate phosphine represented by the above formula (17) include 2,2'bis (diphenylphosphino) -l, l, l-binaphthyl and 2,2, l-bis (dicyclohexane). Xylphosphino)-1,1'-binaphthyl, 2,2'-bis (di (3,5 xylyl) phosphino)-1,1'-biphenyl, 2,2, -bis (di (p-tolyl) phosphino) — 1, 1, and binaphthyl.
  • bidentate phosphine represented by the above formula (18) include 2,2'bis (diphenylphosphino) -l, l, l-biphenyl, 6,6, l-dimethoxy-l-phosphine. 2,2,1-bis (diphenylphosphino) -1,1,1'-biphenyl, 5,5'-dichloro-1,6,6'-dimethoxy-1,2,2'-bis (diphenylphosphino) -1,1, -Biphenyl and the like.
  • R 6, R 7 Hue - in group, with R 1C) is a methyl group, R 8, R 9, Compounds in which R 11 and R 12 are hydrogen atoms (DPMO), R 6 and R 7 are phenolic groups, R 1G and R 11 are methyl groups, and R 8 , R 9 and R 12 are hydrogen atoms Compound (D PDMO), a compound in which R 6 and R 7 are a fuel group, R 10 is an isopropyl group, and R 8 , R 9 , R 11 and R 12 are hydrogen atoms (DPIPO), R 6 , R 7 is a phenyl group, R 1G is an isobutyl group, R 8 , R 9 , R 11 and R 12 are hydrogen atoms (DPIBO), R 6 and R 7 are phenol groups, Compounds in which 1G is a t-butyl group and R 8 , R 9 , R 11 and R 12 are hydrogen atoms (DPIBO), R 6 and R 7 are phenol groups, Compound
  • R 6, R 7 Canvas - Le group, R 1C) is a methyl group
  • R 11 and R 12 are hydrogen
  • m 1 (DPMMO)
  • R 6 and R 7 are a phenyl group
  • R 1C is an isopropyl group
  • R 11 and R 12 are a hydrogen atom
  • m l (DPMIPO )
  • R 6 and R 7 are phenyl groups
  • R 1C) is an isobutyl group
  • R 6 and R 7 are phenyl groups.
  • R 1G is a t-butyl group
  • bidentate ligand represented by the above formula (22) include 2,2'biviridine, 4,4'dimethyl-2,2'biviridine, and 4,4'difuryl 2, 2 'biviridine, 5,5,1-dimethyl-2,2'-biviridine, 5,5, -z-butyl-2,2'-biviridine, 1, 10-phenanthroline, 5-methyl 1,10 phenanthroline Phenyl, 1,10-phenanthral phosphorus, 4,7-diphenyl-1,10-phenanthral phosphorus, 3,4,7,8-tetramethylol 1,10-phenanthral phosphorus.
  • Pt (dmpe) (4QE) Dimethylphosphinoethane platinum
  • pt (dmpe) (3QE) bis (3-quino Liruetur) (bisdimethylphosphinoethane) platinum
  • examples of the ligand include the above-mentioned monodentate ligand and bidentate ligand, and the same as the above depending on the valence thereof. Can take a coordination structure
  • the novel ethynyl group-substituted condensed heterocyclic compound gold complex can be used as a host in the form of benzidine-type triphenylamine (4,4, -bis (caproluvazole-9-yl) biphenyl (hereinafter referred to as CBP). After irradiation with ultraviolet light, a blue light of (0.19, 0.17) also emits white light (0.31, 0.34) in CIE chromaticity coordinates. In addition, when the platinum complex is used for an organic compound layer of an organic electroluminescent device, the platinum complex shows the same color light.
  • the method for producing the heavy metal complex of the ethynyl group-substituted conjugate comprises the ethynyl group-substituted conjugate of the above formula (2) and the above formula (The reaction is carried out by reacting the heavy metal halide complex represented by 3) with an organic solvent (excluding primary and secondary alcohols when M is Au) in the presence of a base.
  • Ethinyl group-substituted compounds (above The use amount of the above formula (2)) is determined by the following formula (3 ′) in which M in the above formula (3) is gold:
  • the amount is preferably 1 to 3 mol, more preferably 1 to 1.5 mol, per 1 mol of the halogenated complex represented by the formula:
  • examples of the halogen atom in X include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the gold halide complex represented by the above formula (b) can be prepared, for example, according to the method described in Non-Patent Document 8, after reducing salicylic acid with phosphine or sulfide, and then adding an appropriate ligand. It can be synthesized by reacting.
  • the solvent used in this reaction is not particularly limited as long as it does not react with a base used other than primary and secondary alcohols, but tertiary alcohols, ethers, halogenated hydrocarbons, Alternatively, a mixture thereof is preferred.
  • examples of the tertiary alcohols include t-butyl alcohol and t-amyl alcohol.
  • ethers examples include getyl ether, tetrahydrofuran, dioxane, dimethoxyethane, and diethoxytan.
  • halogenated hydrocarbons examples include dichloromethane, dichloroethane, dichloropropane, and benzene.
  • the amount of these solvents used is 1 to 30 with respect to 1 mol of the halogenated complex (the above formula (1)).
  • L (liter) is preferred, and more preferably 5 to 20 L.
  • the reaction temperature is preferably 15 to 50 ° C because the reaction progresses at a low temperature, which is possible at or above the melting point of the solvent to 100 ° C.
  • the reaction time varies depending on the type of the above-mentioned terminal acetylene conjugate, the amount of the solvent used, the reaction temperature and the like, but is 2 to 24 hours.
  • Examples of the base used in the present invention include hydroxides and alkoxides of alkali metals.
  • Alkali metal hydroxides include lithium hydroxide, sodium hydroxide, and hydroxide hydroxide. And the like.
  • alkali metal alkoxide examples include lithium methoxide, lithium ethoxide, lithium propoxide, lithium butoxide, sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, potassium methoxide, potassium ethoxide, potassium propoxide, potassium Butoxide. These include its isomers.
  • the amount of the base to be used is 1 to 3 moles, preferably 1 to 1.2 moles per mole of the gold halide complex.
  • This reaction is usually performed in an atmosphere of an inert gas such as argon or nitrogen, or under a stream of these gases.
  • the reaction pressure used is usually normal pressure.
  • the platinum complex (compound in which M is Pt in the above formula (3)) can be prepared, for example, according to the method described in Non-Patent Document 9 with a bidentate ligand (L) and potassium chloroplatinate ( ⁇ ). ) Can be used.
  • the bidentate ligand (L 2 ) is a bidentate phosphine or represented by the above formulas (10) to (12)
  • bidentate phosphine examples include bidentate phosphines represented by the above formulas (13) to (18).
  • Examples of the bidentate ligand represented by the above formula (10) include bidentate ligands represented by the above formulas (19) and (20).
  • the bidentate ligand represented by the above formula (11) includes, for example, a bidentate ligand represented by the above formula (21).
  • Examples of the bidentate ligand represented by the above formula (12) include a bidentate ligand represented by the above formula (22).
  • bidentate ligands [0117] Among these bidentate ligands, commercially available bidentate ligands represented by the above formulas (13) to (19) and (22) can be used.
  • the bidentate ligand represented by the above formula (20) can be synthesized according to the method described in Non-patent document 10, and the bidentate ligand represented by the above formula (21) is described in Non-patent document 11. In the way Therefore, they can be synthesized.
  • the amount of the ethynyl group-substituted compound (formula (2)) used is the following formula (3 ") in which M in the formula (3) is platinum.
  • the amount is preferably 2 to 6 mol, more preferably 2 to 3 mol, per 1 mol of the halogenated platinum complex represented by
  • the base used in the production of the platinum complex of the ethynyl group-substituted condensed heterocyclic compound (the above formula (1 ")) is a metal alkoxide, such as lithium methoxide, lithium ethoxide, lithium propoxide, and lithium butoxide.
  • alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, potassium methoxide, potassium ethoxide, potassium propoxide, potassium butoxide, etc.
  • the above-mentioned alkali metal propoxide and butoxide are mentioned. Also includes isomers of alkoxy groups.
  • the amount of the base to be used is preferably 2.0 to 6.0 equivalents, more preferably 2.0 to 3.0 equivalents, relative to the platinum complex (the above formula (1 ")).
  • Examples of the solvent include aliphatic alcohols having 1 to 5 carbon atoms, such as methanol, ethanol, propanol, and butanol, which are preferably alcohols. These alcohols include isomers thereof.
  • the amount of the solvent to be used is preferably 1 to 50 L (liter), more preferably 15 to 30 L, per 1 mol of the platinum complex represented by the above formula (1 ").
  • the reaction temperature is preferably from 20 to 100 ° C, more preferably from 60 to 90 ° C. If the temperature is lower than 20 ° C, the progress of the reaction may be significantly reduced.
  • the reaction time is a force that varies depending on the platinum complex represented by the above formula (1 "), the ethynyl group-substituted condensed heterocyclic compound, the amount of the solvent used, the reaction temperature, and the like, and is about 9 hours. Is preferred.
  • the method for producing the ethynyl group-substituted condensed heterocyclic compound heavy metal complex represented by the above formula (1) may be, for example, the heavy metal complex 1
  • the target compound can be obtained by reacting preferably 4 to 12 moles, more preferably 4 to 6 moles of the ethul group-substituted conjugate.
  • the ethynyl group-substituted condensed heterocyclic compound heavy metal complex (the above formula (1)) produced according to the above-mentioned production method is subjected to ordinary post-treatments such as extraction, concentration and extraction after completion of the reaction. Depending on the conditions, it can be appropriately purified by known means such as recrystallization, various types of chromatography, and sublimation.
  • the ethynyl group-substituted condensed heterocyclic compound represented by the above formula (4) of the third invention is used as a raw material for producing the heavy metal complex of the ethul group-substituted condensed heterocyclic compound represented by the above formula (1).
  • Examples of the ethynyl group-substituted condensed heterocyclic compound represented by the formula (4) include, for example, 5-fluoro-8-quinolyletine, 5-chloro-8-quinolletine, 5-fluoro-8-quinazolylletin, 5-chloro-8- Examples include quinazolyletine, 5-fluoro-8-quinoxalyletine, and 5-chloro-8-quinoxalyletine.
  • the method for producing the condensed heterocyclic compound substituted with an ethur group represented by the above formula (2), which is the fourth invention, is carried out in a basic solvent in the presence of a zero-valent palladium compound catalyst.
  • the trifluoromethanesulfo-loxy group-substituted condensed heterocyclic compound represented by the formula (6) is reacted with 2-methyl-3-butyn-2ol represented by the above formula (6) to give a dimethylhydroxymethyl condensed heterocyclic acetylene conjugate (described above). After formula (7)), this is reacted with a base.
  • trifluoromethanesulfo-loxy-substituted fused heterocyclic compound represented by the above formula (5) Z, n, A and B are as described above.
  • the trifluoromethanesulfonyloxy-substituted condensed heterocyclic compound (the above formula (5)) can be prepared, for example, according to the synthesis method described in Non-Patent Document 12 in the presence of an organic base such as triethylamine in the presence of methylene chloride or the like.
  • zero-valent palladium compound examples include zero-valent palladium phosphine complex (palladium tetraxtriphenyl-phosphine complex, bisdiphenylphosphinoethane palladium complex, bistricyclohexylphosphine palladium complex, etc.), zero-valent palladium olefin Complexes (trisdibenzylideneacetone dipalladium complex and the like) and the like. Of these compounds, a zero-valent palladium phosphine complex is preferred, and tetrakis (triphenylphosphine) palladium is more preferred.
  • zero-valent palladium phosphine complex palladium tetraxtriphenyl-phosphine complex, bisdiphenylphosphinoethane palladium complex, bistricyclohexylphosphine palladium complex, etc.
  • zero-valent palladium olefin Complexes trisdibenzylid
  • the amount of the zero-valent palladium compound to be used is preferably from 0.1 to: LO mol% based on 1 mol of the trifluoromethanesulfo-loxy substitution heterocyclic compound (the above formula (5)). ingredients further to preferably 0.5 to 5 mol 0/0.
  • the amount of 2-methyl-3-butyn-2-ol used is 1.0 to 2.0 mol per 1 mol of the trifluoromethanesulfo-oxyl-substituted condensed heterocyclic compound (formula (5)). It is preferably, more preferably, 1.0 to 1.2 mol.
  • examples of the basic solvent used include piperidine, pyrrolidine, N-alkylpiperidine and N-alkylpyrrolidine, and at least one selected from these is used.
  • an alkyl group having 1 to 10 carbon atoms is preferable.
  • substituents include isomers thereof.
  • the amount of the basic solvent to be used is preferably 1 to 20 L (liter), more preferably 1 to 20 L (liter), per 1 mol of the trifluoromethanesulfonyloxy group-substituted condensed heterocyclic compound (formula (5)). 1 It is 5-5L.
  • the reaction temperature is preferably 80 to 100 ° C, more preferably 80 to 90 ° C.
  • the reaction time varies depending on the amount of the solvent used, the reaction temperature and the like, but is preferably 1 to 5 hours.
  • This reaction is usually performed in an atmosphere of an inert gas such as argon or nitrogen, or in a stream of these gases.
  • the reaction pressure used is usually normal pressure.
  • the dimethylhydroxymethyl-condensed heterocyclic monoacetylene conjugate (the above formula (7)) obtained by the above reaction may be suitably purified by known means such as distillation, recrystallization, or various types of chromatography, if necessary.
  • the product can be purified and used in the next reaction.
  • a crude product that has been subjected to post-treatments such as stirring and concentration can also be used as it is in the next reaction.
  • the reaction of the dimethylhydroxymethyl-condensed heterocyclic acetylene conjugate (the above formula (7)) with the base is carried out, for example, in an organic solvent using a dimethylhydroxymethyl-condensed heterocyclic-acetylene compound (The heating is performed by heating the above formula (7)) and an alkali metal hydroxide.
  • alkali metal hydroxide examples include sodium hydroxide and potassium hydroxide.
  • the amount of the alkali metal hydroxide used is preferably 1 to 5 moles, more preferably 1 mole to 1 mole of the dimethylhydroxymethyl condensed heterocyclic acetylene conjugate (the above formula (7)). 1-2 moles.
  • organic solvent an aromatic hydrocarbon is used, and toluene and xylene are preferable.
  • the amount of the organic solvent used is dimethylhydroxymethyl-condensed heterocyclic acetylene conjugate (the above formula (7)). 1 to 20 L (liter) is preferable for 1 mol. 2 to 5 L is more preferable.
  • the temperature used in this reaction is preferably from 70 to 120 ° C, more preferably from 90 to 110 ° C.
  • the reaction time varies depending on the temperature, but is 0.1 to 2 hours.
  • This reaction is usually performed in an atmosphere of an inert gas such as argon or nitrogen, or under a stream of these gases.
  • the reaction pressure is usually normal pressure.
  • the ethynyl group-substituted condensed heterocyclic compound (the above formula ( 4))), after completion of the reaction, may be subjected to ordinary post-treatments such as extraction, concentration, filtration and the like, and if necessary, may be appropriately purified by known means such as distillation, recrystallization, and various types of chromatography.
  • Specific embodiments of the above-mentioned ethynyl group-substituted condensed heterocyclic compound include, for example, 8-quinolletine, 7-quinolletine, 6-quinolletine, 5-quinolletine, 4-quinolletine, 3 Quinolluetin, 2 Quinolluletin, 8 Quinazoluletin, 7-Quinazoluletin, 6-Quinazolulutin, 5-Quinazolulutin, 8-Quinoxalluletin, 7-Quinoxalulutin, 6-Quinoxalulutin, 5-Quinoxallutin, 5- Fluoro-8-quinolyletin, 5-chloro-8-quinolluetin, 5-fluoro-8-quinazolylhetin, 5-chloro-8-quinazolylhetin, 5-fluoro-8-quinoxalluletin, 5-chloro-8quinoxalluetin,
  • the fifth invention provides a heavy metal complex substituted with an ethynyl group-substituted condensed heterocyclic compound represented by the above formula (1), which is useful for a blue, bluish-white or white light-emitting material for an organic electroluminescent device (organic electroluminescent device), and
  • the present invention relates to an organic electroluminescent device that emits light.
  • the organic electroluminescent device of the present invention is an organic electroluminescent device having a single or multilayer organic compound layer between a pair of electrodes, wherein at least one of the organic compound layers has the above formula (The ethynyl group-substituted fused heterocyclic compound represented by 1) contains at least one heavy metal complex.
  • the organic compound layer is a light emitting layer, an electron injection layer, or a hole transport layer.
  • the single-layer organic electroluminescent device has a light-emitting layer between an anode and a cathode.
  • the light-emitting layer contains a light-emitting material, and may further contain a hole-injection material or an electron-injection material for transporting positively injected holes or cathodicly injected electrons to the light-emitting material.
  • the multilayer organic electroluminescent device includes, for example, (anode Z hole injection layer Z light emitting layer Z cathode), (anode Z light emitting layer Z electron injection layer Z cathode), (anode Z hole injection layer Z emission And a multilayer structure such as a layer z, an electron injection layer z, and a cathode).
  • a known light emitting material besides the heavy metal complex substituted with the ethule group-substituted condensed heterocyclic compound represented by the above formula (1), a known light emitting material, doping material, hole injection material (phthalocyanine derivative, naphthalocyanine derivative) , Porphyrin derivatives, oxazole, oxaziazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxaziazole, hydrazone, acylshydrazone, polyarylalkane, stilbene, butadiene, benzidine triphenylamine -Type triphenylamine, diamine-type triphenylamine and derivatives thereof, and polymeric materials such as polybutylcarbazole, polysilane, and conductive polymers, etc., and electron injection materials (fluorene)
  • the addition amount of the ethynyl group-substituted condensed heterocyclic compound heavy metal complex represented by the above formula (1) to the organic compound layer is preferably from 0.5 to: LOO% by weight. .
  • This organic electroluminescent device can also be used in combination with a light emitting material, another doping material, a hole injection material, or an electron injection material. Further, each of the hole injection layer, the light emitting layer, and the electron injection layer may be formed with two or more layers. In this case, in the case of a hole injection layer, a layer that injects holes from the electrode is a hole injection layer, and a layer that receives holes from the hole injection layer and transports holes to the light emitting layer is a hole transport layer. Call.
  • an electron injection layer a layer that injects electrons from the electrode is called an electron injection layer, and a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer is called an electron transport layer.
  • electron injection layer a layer that injects electrons from the electrode
  • electron transport layer a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the light-emitting material or host material that can be used in the organic compound layer together with the heavy metal complex substituted with an ethur group-substituted condensed heterocyclic compound represented by the above formula (1) includes condensed polycyclic aromatic (anthracene, naphthalene, phenanthrene, pyrene) , Tetracene, pentacene, coronene, thalicene, fluorescein, perylene, rubrene and their derivatives, etc.), aromatic silicon compounds ( Tetraphenylsilane, etc.), aromatic germanium compounds (tetraphenylgermanium, etc., perylene perylene, naphthalene perylene, perinone, perinophthalone, naphthalene perinone, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, aldazine, bisbetaine Nzoxazoline, bisstyryl
  • a more effective hole injecting material is an aromatic tertiary amine derivative or a phthalocyanine derivative.
  • the aromatic tertiary amine derivative include trifluoramine, tritolylamine, tolyldiphenylamine, N, N, -diphenyl N, N,-(3-methylphenyl) -1,1,1 , Biphenyl-4,4, -diamine (hereinafter referred to as TPD), N, N, ⁇ ', ⁇ , one (4-methylphenyl) one 1, 1, one phenyl 4,4 diamine, ⁇ , ⁇ , ⁇ (4-methylphenyl) 1,1 biphenyl-1,4,1-diamine, ⁇ , ⁇ , 1-diphenyl — ⁇ , ⁇ , zinaphthyl 1,1, -biphenyl 2,4 , Diamine,
  • a specific embodiment of the phthalocyanine (p c ) derivative is H Pc CuPc CoPc NiPc ZnP
  • a more effective known electron injection material is a metal complex compound or a nitrogen-containing five-membered ring derivative.
  • the metal complex compound include tritium 8-hydroxyquinolina and bis (8-hydroxyquinolina tritium).
  • Chinole 8-hydroxyquinolinato) anoremi-pharm tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] quinolinato) beryllium, bis (10-hydroxybenzo [h] (Quinolinato) zinc, bis (2-methyl-8 quinolinate) cloguchi gallium, bis (2-methyl-8 quinolinate) (o cresolate) gallium, bis (2-methyl-8 quinolinate) (1-naphtholate) aluminum, bis (2— Methyl-8 quinolinato) (2 naphtholate) gallium, etc. Powers are not limited to these.
  • the nitrogen-containing five-membered derivative is preferably an oxazole, thiazole, oxadiazole, thiaziazole or triazole derivative.
  • 2,5 bis (1-phenyl) 1,3,4-oxazole, dimethyl POPOP (where POPOP represents 1,4 bis (5 phen-oxazole-2-yl) benzene), 2,5 bis (1 phenol) -1,3,4 thiazole, 2,5 bis (1 phenol) -1,3,4-oxadiazole, 2 (4, tert butyl phenol) -5 — (4 "—Bifel) — 1,3,4-oxaziazol, 2,5 bis (1 naphthyl) -1,3,4oxaziazole, 1,4 bis [2— (5 Azolyl)] benzene, 1,4-bis [2- (5 phenyloxadiazolyl) -4-tert-butylbutylbenzene], 2- (4, -tertbutyl
  • an inorganic compound layer may be provided between the light emitting layer and the electrode for improving the charge injection property.
  • the inorganic compound layer is made of an alkali metal such as LiF, Li0, RaO, SrO, BaF, and SrF.
  • the conductive material used for the anode of the organic electroluminescent device of the present invention those having a work function of more than 4 eV are suitable, such as carbon atoms, aluminum, and vanadium.
  • Metal oxides such as indium and organic conductive resins such as polythiophene and polypyrrol can be used.
  • the conductive material used for the cathode those having a work function of less than 4 eV are suitable, such as magnesium, calcium, tin, lead, titanium, yttrium, lithium, lithium, manganese, and aluminum. And alloys thereof.
  • the alloy includes magnesium Z silver, magnesium Z indium, lithium Z aluminum and the like. The ratio of the alloy is controlled by the temperature, atmosphere, degree of vacuum, and the like of the evaporation source, and is not particularly limited.
  • the anode and the cathode may be formed of two or more layers if necessary.
  • the organic electroluminescent device of the present invention it is preferable that at least one surface is transparent in the emission wavelength region of the device. Further, it is desirable that the substrate is also transparent.
  • the transparent electrode is obtained by using the above-mentioned conductive material and by setting it so as to secure a predetermined translucency by a method such as vapor deposition or sputtering.
  • the electrode on the light emitting surface preferably has a light transmittance of 10% or more.
  • the substrate is not particularly limited as long as it has mechanical and thermal strength and transparency!
  • Examples of the substrate include a glass substrate and a transparent resin film.
  • Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-butyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, and polybutyl butyral , Nylon, polyetheretherketone, polysulfone, polyethersulfone, tetrafluoroethylene perfluoroalkylbutylether copolymer, polybutylfluoride, tetrafluoroethylene ethylene copolymer, tetrafluoroethylene Polyethylene-hexafluoropropylene copolymer, polychlorinated trifluoroethylene, polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide, polyimide, polypropylene, etc.
  • the organic electroluminescent device of the present invention can be provided with a protective layer on the surface of the device, or a silicone oil, a resin, or the like, in order to improve stability against temperature, humidity, atmosphere, and the like. Can also be protected.
  • Each layer of the organic electroluminescent device may be formed by a dry film forming method such as vacuum evaporation, sputtering, plasma, or ion plating, or a wet film forming method such as spin coating, diving, or flow coating. Or can be applied.
  • a dry film forming method such as vacuum evaporation, sputtering, plasma, or ion plating
  • a wet film forming method such as spin coating, diving, or flow coating. Or can be applied.
  • the thickness of the film is not particularly limited, a normal thickness is 5 ⁇ ! To 10 m, more preferably 10 nm to 0.2 m.
  • a heavy metal complex substituted with an ethule group-substituted heterocyclic compound (the above formula (1)) is dissolved or dispersed in a solvent such as ethanol, chloroform, tetrahydrofuran, or dioxane on each layer.
  • a solvent such as ethanol, chloroform, tetrahydrofuran, or dioxane on each layer.
  • the dry film forming method using the preferred tool vacuum deposition apparatus vacuum deposition, the vacuum degree 2 X 10_ 3 Pa or less, the substrate temperature is set to room temperature, Echiniru group substituted fused of the present invention which takes into deposition cell
  • a thin film can be prepared by heating the heterocyclic compound heavy metal complex (formula (1)) and evaporating the material.
  • a thermocouple in contact with the evaporation cell, a non-contact infrared thermometer, or the like is preferably used.
  • an evaporation thickness gauge is preferably used.
  • a quartz oscillator placed opposite to an evaporation source was used, and the weight of the deposited film attached to the surface of the quartz oscillator was measured by measuring the changing force of the oscillation frequency of the oscillator.
  • a type in which the measured weight force film thickness is determined in real time is preferably used.
  • the co-evaporation of a host material such as CBP and a condensed heterocyclic compound heavy metal complex is performed by using an evaporation source and controlling the temperature independently. Can be.
  • any of the organic thin film layers may be formed of polystyrene, polycarbonate, polyatalylate, polyester, polyamide, polyurethane, polysulfone, polymethylmetharylate, etc. to improve film formability and prevent pinholes in the film.
  • Insulating resin such as polymethyl phthalate, cellulose and their copolymers, photoconductive resin such as poly N-vinyl carbazole and polysilane, resin such as conductive resin such as polythiophene and polypyrrole, or acid ⁇
  • Additives such as inhibitors, UV absorbers and plasticizers can be used.
  • the organic electroluminescent device of the present invention may be, for example, a flat light-emitting body such as a flat panel display of a wall-mounted television or a mobile phone, a light source such as a copier, a printer, a backlight of a liquid crystal display, or a gauge, or the like. It can be used for sign lights, etc.
  • a flat light-emitting body such as a flat panel display of a wall-mounted television or a mobile phone
  • a light source such as a copier, a printer, a backlight of a liquid crystal display, or a gauge, or the like. It can be used for sign lights, etc.
  • dmpe represents 1,2-bis (dimethylphosphino) ethane.
  • the obtained organic layer was successively treated with hydrochloric acid having a concentration of lmol / L (125 ml ⁇ 2 times) and water (125 ml ⁇ 1 time). , And then dried over anhydrous magnesium sulfate. After filtration, the filtrate was also distilled off of getyl ether under reduced pressure, and the obtained residue was dissolved in 250 ml of hexane at 70 ° C. After filtering off the insoluble matter, the filtrate was cooled to give a brown white crystal. 12.6 g of the desired compound was obtained. (91% yield)
  • the extract was washed with hydrochloric acid and water at a concentration of 1 mol ZL, and the solvent was distilled off under reduced pressure using an evaporator to obtain a solid as a crude product.
  • This solid was dissolved in 25 ml of warm hexane (70 ° C), and the insoluble matter was removed by suction filtration.
  • the filtrate was cooled to -78 ° C to obtain 0.88 g of the target compound as a white flocculent solid. Obtained.
  • the filtrate was concentrated under reduced pressure using an evaporator, and the obtained residue was completely dissolved in 8 ml of hot hexane (70 ° C).
  • the resulting solution was cooled to 78 ° C to produce a white-brown flocculent solid. An additional 0.40 g of the compound was obtained. (Total yield: 81.6%)
  • reaction solution that turned yellow was poured into water (200 ml), extracted with getyl ether (200 ml ⁇ 1 and 50 ml ⁇ 2 times), and the extract was concentrated in hydrochloric acid (125 ml ⁇ 1 ml). X 2 times) and then with water (200 ml XI times). After washing, anhydrous magnesium sulfate (2 g) was dried by decanting, and after filtration, the filtrate was evaporated using a rotary evaporator to obtain a yellow liquid.
  • the reaction solution which turned almost black, was poured into water (200 ml), extracted with getyl ether (200 ml x 1 times, 50 ml x 2 times), and the extract was concentrated at a concentration of 1M ZL hydrochloric acid (125 ml x 2 times). ), And washed with water (200 ml ⁇ 1 time) in the next step.
  • the extract was dehydrated by adding anhydrous magnesium sulfate (2 g). After filtration, the filtrate was subjected to solvent distillation using a rotary evaporator to obtain a brown liquid. Purify the brown liquid by distillation (26.6 Pa (0.2 torr), 85 ° C) This gave 7.7 g of the desired compound as a pale yellow liquid. (81% yield)
  • a light brown suspension obtained by mixing 7.31 g (50 mmol) of 2-hydroxyquinoxaline, 50 ml of methylene chloride and 9.1 ml (65 mmol) of triethylamine was brought to 0 ° C in an ice bath, and then 9.3 ml of trifluoromethanesulfonic anhydride. (55 mmol) was added dropwise. After the dropwise addition, the reaction solution, which turned brown, was stirred for 1 hour while maintaining the reaction temperature at 0 ° C. After completion of the reaction, OO ml of water and 300 ml of getyl ether were added to the reaction solution, and the mixture was separated.
  • Au (PPh) C1 (0.20 g, 0.40 mmol) was placed in a 25 ml Schlenk tube.
  • This complex was dissolved in a form of chloroform, and the emission intensity was measured when excited with 330 nm excitation light.
  • Example 12 The same procedures as in Example 12 were carried out except for using 4-quinollutine instead of 8-quinollutine, to obtain 0.14 g of the desired compound as a pale yellow powder. (56% yield)
  • Example 25 (8-Quinolylethur) (tris (p-methoxyphenyl) phosphine) gold [Au (P
  • Au (P (i-Pr)) C1 (0.16g, 0.40mmol) was used instead of Au (PCy) C1
  • Au (PPh) C1 (0.20 g, 0.40 mmol) was placed in a 25 ml Schlenk tube.
  • Example 35 (5-chloro- 18 quinolyl etur) (tricyclohexylphosphine) gold [Au
  • a solid thin film was prepared by doping the compound of the present invention with 9% by weight, and the CIE chromaticity coordinate value was measured by irradiating 3 lOnm of ultraviolet light to obtain (0.27, 0.19 ) Blue-white light emission was observed.
  • a CIE chromaticity coordinate value was measured by preparing a solid thin film doped with 9% by weight of the compound of the present invention using CBP as a host and irradiating it with 3 lOnm of ultraviolet light to obtain (0.31, 0.34 ) White emission was observed.
  • a solid thin film doped with 9% by weight of the present conjugate was prepared, and the CIE chromaticity coordinate value was measured by irradiating 3 lOnm of ultraviolet light to obtain a bluish white (0.22, 0.21). Light emission was observed.
  • the present conjugate contains 1.5 equivalents of methylene chloride as a crystallization solvent. (75% yield)
  • the CIE chromaticity coordinate value was measured by irradiating with 310 ⁇ m ultraviolet light, and the blue color of (0.19, 0.17) was Observed.
  • this complex was doped into a 9 wt% -doped solid thin film, and irradiated with 310 ⁇ m ultraviolet light to measure the CIE chromaticity coordinate value. As a result, white emission of (0.31, 0.34) was observed. .
  • this complex was doped into a solid thin film at 9% by weight, and the CIE chromaticity coordinate value was measured by irradiating with 310 nm ultraviolet light. As a result, blue-white light emission of (0.22, 0.21) was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Quinoline Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

ェチュル基置換縮合へテロ環化合物重金属錯体、その製造法、その合 成中間体及びその製造法並びに有機エレクト口ルミネッセンス素子
技術分野
[0001] 本発明は電界発光素子 (エレクト口ルミネッセンス素子)用青色及び白色発光材料 などに有用なェチニル基置換縮合へテロ環化合物の重金属錯体、その製造法、そ の合成中間体及びその製造法並びにそれを用いた有機エレクト口ルミネッセンス素 子に関するものである。
背景技術
[0002] ェチニル基を有する化合物の金錯体としては、例えば非特許文献 1及び非特許文 献 2にフエ-ルェチュル金錯体が記載されて ヽるが、本発明のェチニル基置換縮合 ヘテロ環化合物重金属錯体は知られておらず、その有機エレクト口ルミネッセンス素 子の発光材料としての利用も知られて ヽな 、。
[0003] 一方、下記式 (a) :
Υ' = ~ Au L' (a) 式中、 L'は単座配位子を表し、 Y'はアルキル基、ァリール基、ァラルキル基又 はへテロ環基を表す、
で表されるェチュル基置換化合物金錯体の合成法としては、非特許文献 2に、塩基 の存在下にハロゲン化金錯体 (下記式 (b) )とェチニル基置換ィ匕合物(下記式 (c) )と をエタノール中で反応させる合成法が記載されているが、一般的にハロゲンィ匕金錯 体(下記式 (b) )は、例えば、非特許文献 3に示されるように炭素 炭素 3重結合に対 して 1級アルコールの付加反応を触媒することが知られている。
X'— AuL' (b)
γ'—— ^≡ (c) 式中、 X'はハロゲン原子、 L '及び Y,は前記と同義である。 [0004] 従って、非特許文献 3に示されている、溶媒に 1級アルコールであるエタノールを用 いるェチュル基置換ィ匕合物金錯体の合成法の場合には、下記式 (d):
Figure imgf000004_0001
式中、 Y'及び L'は前記と同義である、
で表される化合物を副生することが懸念される。
[0005] 実際に発明者らが、電界発光素子 (エレクト口ルミネッセンス素子)用発光材料とし て有用である 8 -キノリルェチニル(トリ— o—トリルホスフィン)金(下記式 (e) )を製造 する目的で、非特許文献 2の製法に従って、金錯体としてクロ口(トリ—。—トリルホス フィン)金 (1)、ェチニル基置換ィ匕合物として 8—ェチニルキノリンを用いて、エタノー ル中、塩基存在下で反応させたところ、エタノールが付加したィ匕合物(下記式 (f) )が 生成し、 目的化合物は全く得られな力つた。(比較例 1)
また、同様の反応をイソプロパノール中で行うと、イソプロパノールが付加したィ匕合 物下記式 (g)が目的物と等モル量副生した。(比較例 2)
Figure imgf000004_0002
[0006] このため、アルコール付加ィ匕合物を生成しな ヽェチニル基置換化合物金錯体(上 記式 (a) )の製法が求められて 、た。
[0007] また、ェチュル基を有する化合物の白金錯体としては、例えば非特許文献 4にビス フエ-ルェチュル(フエナント口リン)白金錯体が、非特許文献 5にビスフエ-ルェチ- ル(ビスジフエ-ルホスフィノエタン)白金錯体力 また、非特許文献 6にビスフエ-ル ェチニル (ビビリジン)白金錯体が記載されている。更に、これらの白金錯体の有機電 界発光素子 (有機エレクト口ルミネッセンス素子)の発光材料としての利用につ 、ては
、非特許文献 4に、ビスフエ-ルェチュル (フエナント口リン)白金錯体が同発光材料と して利用できることが記載されている。しかし、本発明のェチニル基置換縮合へテロ 環化合物重金属錯体は知られておらず、その有機エレクト口ルミネッセンス素子の発 光材料としての利用も知られて 、な 、。
更に、下記式(1")で示されるェチニル基置換縮合へテロ環化合物白金錯体の合 成法としては、例えば、非特許文献 6に記載されているように、ヨウ化銅等の銅触媒の 存在下に末端アセチレン化合物と白金錯体を反応させる合成法が挙げられるが、こ の方法で末端アセチレンとしてキノリルェチンを用いた場合、不純物として下記式 (h )や (i)のような銅を含む錯体が副生してしまうため、目的の錯体の精製が非常に困 難となる等の問題があった。なお、エレクト口ルミネッセンス素子などデバイス関連材 料において不純物が問題となる場合が多く見られ、不純物の無い製造法が求められ ている。
Figure imgf000005_0001
式中、 Z、 n, L、 A及び Bは、下記で定義するとおりである。
また、下記式(2)で示されるェチュル基置換縮合へテロ環化合物の製造法としては 、例えば、非特許文献 7に、ァセチル基置換縮合へテロ環化合物と五塩化リンとを反 応させることによる製造法が記載されているが、その収率は最大でも 30%程度と低収 率であった。 更に、下記式 (4)で示されるェチニル基置換縮合へテロ環化合物は、新規化合物 であり、電界発光素子 (有機エレクト口ルミネッセンス素子)用発光材料原料として有 用である事は知られて ヽな 、。
[0010] 非特許文献 1 Journal of Organometallic Chemistry. , 1994年, 484卷、 p.
209
非特許文献 2 Journal of Chemical Society, Dalton Trans. , 1986年, p . 411
非特許文献 3 Journal of the American Chemical Socirty, 2003, 125, p . 11925
非特許文献 4: Chemistry European Journal. , 2001年, 7卷, p. 4180 非特許文献 5 Journal of Organometallic Chemistry. , 2001年, 627卷, p.
13
非特許文献 6 : Inorganic Chemistry. , 2000, 39卷, p. 447
非特許文献 7 : Chemische Berichte, 1960, 93, p. 593
非特許文献 8 :日本化学会編、「実験化学講座」,第 4版, 18卷,丸善, 1991年, p.
455
非特許文献 9 :日本化学会編、「実験化学講座」,第 4版, 18卷,丸善, 1991年, p. 412
非特許文献 10 : Tetrahedron. , 1996年, 52卷, p. 7547
非特許文献 11 : Tetrahedron Letter. , 1993年, 34卷, p. 1769
非特許文献 12 Journal of the American Chemical Socirty, 1987, 109, p. 5478
発明の開示
発明が解決しょうとする課題
[0011] 本発明は、電圧印加により青色又は白色の発光を示す有機エレクト口ルミネッセン ス素子及びその有機エレクト口ルミネッセンス素子に有用な化合物を提供することを 課題とする。
[0012] また、本発明は、有機エレクト口ルミネッセンス素子用青色及び白色発光材料など に有用なェチニル基置換縮合へテロ環化合物重金属錯体 (下記式(1) )を夾雑金属 無ぐ収率良く製造する製造方法を提供することを課題とする。
[0013] 本発明は、更に、電界発光素子 (有機エレクト口ルミネッセンス素子)用発光材料の 原料等に有用な下記式(2)で示されるェチニル基置換縮合へテロ環化合物を収率 良く製造する方法及び下記式 (4)で示される新規なェチニル基置換縮合へテロ環化 合物を提供することを課題とする。
課題を解決するための手段
[0014] 本発明者らは鋭意検討した結果、下記式(1)で示されるェチニル基置換縮合へテ 口環化合物重金属錯体を含有する有機エレクト口ルミネッセンス素子が、電圧印加に より青色および白色電界発光素子用材料として有用であることを見出して本発明を 完成するに至った。
[0015] また、本発明者らは、金属アルコキシドの存在下にェチニル基置換縮合へテロ環 化合物と重金属前駆体を反応させることで収率良くェチニル基置換縮合へテロ環化 合物重金属錯体を合成できることを見出し本発明を完成するに至った。
[0016] 更に、本発明者らは、有機エレクト口ルミネッセンス素子用発光材料原料等に有用 な下記式(2)で示されるェチニル基置換縮合へテロ環化合物の収率の良!、製造方 法を見出すと共に、有機エレクト口ルミネッセンス素子用発光材料原料として有用な 新規ィ匕合物であるェチニル基置換縮合へテロ環化合物(下記式 (4) )を見出し、本 発明を完成するに至った。
[0017] 即ち、本発明は以下の通りである。
第 1の発明は、下記式(1) :
Figure imgf000007_0001
式中、 Mは、重金属元素を表し、 Lは、単座配位子または二座配位子を表し、 Z は、ハロゲン原子、アルキル基、ァルケ-ル基、ァリール基、ァラルキル基、アル コキシ基、ァリールォキシ基、ニトロ基、シァノ基、又はジアルキルアミノ基を表 し、 nは 0〜6の整数であり、複数の Zはそれぞれ同一でも異なっていても良ぐ Z力 アルキル基、ァルケ-ル基、ァリール基、ァラルキル基、アルコキシ基、ァ リールォキシ基、又はジアルキルァミノ基の場合、隣接したこれら 2つの基が結 合して環を形成しても良ぐ A及び Bは、それぞれ CH又は Nを表し、 A又は Bが CHの場合、その水素原子は Z又はェチュル基で置換されていても良ぐ kは 1 〜4の整数である、
で示されるェチュル基置換縮合へテロ環化合物重金属錯体に関する。
第 2の発明は、 Mが金である場合、一級及び二級アルコールを除ぐ有機溶媒中、 下記式(2) :
Figure imgf000008_0001
式中、 Z、 n、 A及び Bは前記と同義である、
で示されるェチニル基置換縮合へテロ環化合物と、下記式(3):
X ML (3)
k
式中、 Xはハロゲン原子を表し、 k、 M及び Lは前記と同義である、
で示される重金属錯体とを、塩基存在下に反応させることを特徴とする上記式(1)で 示されるェチュル基置換縮合へテロ環化合物重金属錯体の製造法に関する。 第 3の発明は、下記式 (4):
Figure imgf000008_0002
式中、 X'はフッ素原子又は塩素原子を表し、 A及び Bは前記と同義である、 で示されるェチュル基置換縮合へテロ環化合物に関する。 [0020] 第 4の発明は、 0価パラジウム化合物の存在下、塩基性溶媒中、下記式 (5)
Figure imgf000009_0001
式中、 Z、 n、 A及び Bは、前記と同義である、
で示されるトリフルォロメタンスルホニルォキシ基置換縮合へテロ環化合物と下記式 ( 6) :
Figure imgf000009_0002
で示される 2—メチルー 3—ブチンー2—オールとを反応させて、下記式(7):
Figure imgf000009_0003
式中、 Z、 n、 A及び Bは前記と同義である、
で示されるジメチルヒドロキシメチルー縮合へテロ環一アセチレン化合物とした後、こ れを塩基と反応させることを特徴とする上記式 (2)で示されるェチニル基置換縮合へ テロ環化合物の製造法に関する。
[0021] 第 5の発明は、一対の電極間に発光層もしくは発光層を含む複数の有機化合物薄 層を形成した有機エレクト口ルミネッセンス素子であって、少なくとも 1層の有機化合 物薄層が上記式(1)で示されるェチュル基置換縮合へテロ環化合物重金属錯体の 少なくとも 1種を含有することを特徴とするエレクト口ルミネッセンス素子に関するもの である。
図面の簡単な説明 [0022] [図 1]図 1は、実施例 51記載のエレクト口ルミネッセンス素子概略図である。
[図 2]図 2は、実施例 51記載のエレクト口ルミネッセンス素子の発光スペクトルであり、 縦軸は各波長における発光の強度を表す。
[図 3]図 3は、実施例 52記載のエレクト口ルミネッセンス素子概略図である。
[図 4]図 4は、実施例 52記載のエレクト口ルミネッセンス素子の発光スペクトルであり、 縦軸は各波長における発光の強度を表す。
発明を実施するための最良の形態
[0023] 第 1の発明のェチニル基置換縮合へテロ環化合物重金属錯体は上記式(1)で示さ れる。式(1)中、 Mは重金属原子を表し、 Lは単座配位子又は二座配位子を表し、 Z は、ハロゲン原子、アルキル基、ァルケ-ル基、ァリール基、ァラルキル基、アルコキ シ基、ァリールォキシ基、ニトロ基、シァノ基、又はジアルキルアミノ基を表し、 nは 0〜 6の整数であり、複数の Zはそれぞれ同一でも異なっていても良い。また、 Z力 アル キル基、アルケニル基、ァリール基、ァラルキル基、アルコキシ基、ァリールォキシ基
、又はジアルキルァミノ基の場合、隣接したこれら 2つの基が結合して環を形成しても 良い。 X及び Yは、それぞれ CH又は Nを表す。なお、 X又は Yが CHの場合、その水 素原子が Z又は式中の重金属と結合するェチニル基で置換されても良い。
[0024] Mで示される重金属原子としては、周期律表第 6周期の金属である、 Au, Pt, Ta, W, Re, Os及び Irが挙げられる。 Mが Auである場合、 k= lで、 Lは単座配位子で 1 〜3個であり、 Ptの場合、 k= 2で、 Lは二座配位子で 1個、 Os又は Irの場合、 k= 2 又は 3で、 Lは単座又は二座配位子であり、単座の場合 2〜4個、二座の場合 1〜2 個の配位子を有し、 Taの場合、 k= 3で、 Lは単座又は二座配位子であり、単座の場 合 2〜4個、二座の場合 1〜2個の配位子を有し、 Wの場合、 k= 3又は 4で、 Lは単座 又は二座配位子であり、単座の場合 2〜4個、二座の場合 1〜2個の配位子を有し、 Reの場合、 k= 3で、 Lは単座配位子で 2〜4個である。これらの中でも、 Mは Au又は Ptであることが好ましい。
[0025] Zにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が 挙げられる。
アルキル基としては、炭素数 1〜20、特に炭素数 1〜12のアルキル基が好ましぐ 例えば、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシル基、へ プチル基、ォクチル基、ノニル基、デシル基、ゥンデシル基、ドデシル基等が挙げら れる。なお、これら置換基は、その異性体も含む。
[0026] ァルケ-ル基としては、炭素数 2〜20、特に炭素数 2〜 12のアルケニル基が好まし く、例えば、ビニル基、プロぺニル基、ブテニル基、ペンテニル基、へキセニル基、へ プテニル基、オタテニル基、ノネニル基、デセニル基、ゥンデセニル基、ドデセニル基 等が挙げられる。なお、これら置換基は、その異性体も含む。
ァリール基としては、炭素数 6〜20、特に 6〜12のァリール基が好ましぐ例えば、 フエ-ル基、トリル基、キシリル基、ナフチル基、ジメチルナフチル基、ビフエ-ル基等 が挙げられる。なお、これら置換基は、その異性体も含む。
[0027] ァラルキル基としては、炭素数 7〜20のァラルキル基が好ましぐ例えばべンジル 基、ナフチルメチル基、インデュルメチル基、ビフヱニルメチル基などが挙げられる。 アルコキシ基としては、特に炭素数 1〜10のアルコキシ基が好ましぐ例えば、メトキ シ基、エトキシ基、プロポキシ基、ブトキシ基、ペンタノキシ基、へキサノキシ基、ヘプ タノキシ基、オタタノキシ基、ノナノキシ基、デカノキシ基等が挙げられる。なお、これら 置換基は、その異性体も含む。
[0028] ァリールォキシ基としては、特に炭素数 6〜14のァリールォキシ基が好ましぐフエ ノキシ基、トリロキシ基、キシリロキシ基、ナフトキシ基、ジメチルナフトキシ基等が挙げ られる。なお、これら置換基は、その異性体も含む。
ジアルキルアミノ基としては、特に炭素数 2〜 10のジアルキルアミノ基が好ましぐジ メチルァミノ基、ジェチルァミノ基、ジプロピルアミノ基等が挙げられる。なお、これら 置換基は、その異性体も含む。
[0029] Z力 アルキル基、ァルケ-ル基、ァリール基、ァラルキル基、アルコキシ基、ァリー ルォキシ基、又はジアルキルァミノ基の場合、隣接した 2つの基が結合して形成する 環としては、例えば、シクロペンテン環、シクロへキセン環、シクロヘプテン環、ベンゼ ン環、ナフタレン環、テトラヒドロフラン環、ベンゾピラン環、 N—メチルピロリジン環、 N ーメチルビペリジン環等が挙げられる。等が挙げられる。
なお、 Zの任意の水素原子は、ハロゲン原子、アルキル基、ァルケ-ル基、ァリール 基、アルコキシ基、ァリールォキシ基、ニトロ基、シァノ基及びジアルキルアミノ基カも 選択される少なくとも 1の置換基で更に置換されて 、ても良!、。
本発明において、 Mが金 (Au)である場合、上記式(1)は下記一般式(1 ' ):
Figure imgf000012_0001
式中、 Z, n, A及び Bは前記と同義である、
で示され、 L1は単座配位子を表す。このような L1としては、下記一般式 (8)又は(9) で示される単座配位子が挙げられる。
Figure imgf000012_0002
(8) (9)
[0032] 式中、 R R2及び R3は、それぞれ同一或いは異なっていても良いアルキル 基、シクロアルキル基、又はァリール基を表し、 R4及び R5は、それぞれ同一 或いは異なっていても良い水素原子、ハロゲン原子、アルキル基、シクロアルキ ル基、アルケニル基、ァリール基、ァラルキル基、アルコキシ基、ァリールォキシ 基、ニトロ基、シァノ基、又はジアルキルアミノ基を表す。なお、 R4及び R5が アルキル基、ァルケ-ル基、ァリール基、ァラルキル基、アルコキシ基、ァリール ォキシ基、又はジアルキルァミノ基の場合、隣接した 2つの基が結合して環を形 成しても良い。
[0033] R2及び R3におけるアルキル基としては、炭素原子数 1〜10のアルキル基が好 ましぐ例えば、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシル 基、ヘプチル基、ォクチル基、ノニル基、デシル基等が挙げられる。なお、これらの置 換基は、その異性体を含む。
シクロアルキル基としては、特に炭素原子数 5〜8のシクロアルキル基が好ましぐ 例えば、シクロペンチル基、シクロへキシル基、シクロペンチル基、シクロへキシル基 、シクロへプチル基、シクロォクチル基等が挙げられる。
[0034] ァリール基としては、炭素原子数 6〜12のァリール基が好ましぐ例えば、フエニル 基、トリル基、キシリル基、ナフチル基、ジメチルナフチル基等が挙げられる。なお、こ れらの置換基は、その異性体を含む。
[0035] R4及び R5におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ 素原子が挙げられる。
アルキル基としては、炭素原子数 1〜10のアルキル基が好ましぐ例えば、メチル 基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシル基、ヘプチル基、オタ チル基、ノニル基、デシル基等が挙げられる。なお、これらの置換基は、その異性体 を含む。
[0036] シクロアルキル基としては、炭素数 3〜7のシクロアルキル基が好ましぐ例えば、シ クロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロペンチ ル基、シクロへキシル基、シクロへプチル基等が挙げられる。
[0037] ァルケ-ル基としては、炭素原子数 2〜20、特に 2〜 12のァルケ-ル基が好ましく 、例えば、ビュル基、プロべ-ル基、ブテュル基、ペンテ-ル基、へキセ-ル基、ヘプ テニル基、オタテニル基、ノネニル基、デセニル基、ゥンデセ-ル基、ドデセ二ル基等 が挙げられる。なお、これらの置換基は、その異性体を含む。
ァリール基としては、炭素原子数 6〜12のァリール基が好ましぐ例えば、フエニル 基、トリル基、キシリル基、ナフチル基、ジメチルナフチル基等が挙げられる。なお、こ れらの置換基は、その異性体を含む。
[0038] ァラルキル基としては、炭素数 7〜20のァラルキル基が好ましぐ例えばべンジル 基、ナフチルメチル基、インデュルメチル基、ビフヱニルメチル基などが挙げられる。 アルコキシ基としては、特に炭素原子数 1〜10のアルコキシ基が好ましぐ例えば、 メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンタノキシ基、へキサノキシ基、 ヘプタノキシ基、オタタノキシ基、ノナノキシ基、デカノキシ基等が挙げられる。なお、 これらの置換基は、その異性体を含む。
[0039] ァリールォキシ基としては、特に炭素原子数 6〜 14のァリールォキシ基が好ましぐ フエノキシ基、トリロキシ基、キシリロキシ基、ナフトキシ基、ジメチルナフトキシ基等が 挙げられる。なお、これらの置換基は、その異性体を含む。
ジアルキルアミノ基としては、特に炭素原子数 2〜 10のジアルキルアミノ基が好まし ぐジメチルァミノ基、ジェチルァミノ基、ジプロピルアミノ基等が挙げられる。なお、こ れらの置換基は、その異性体を含む。
[0040] R4及び R5がアルキル基、ァルケ-ル基、ァリール基、ァラルキル基、アルコキシ基、 ァリールォキシ基、又はジアルキルァミノ基の場合、隣接した 2つの基が結合して形 成する環としては、たとえば,キノリン、イソキノリン、テトラヒドロキノリン、テトラヒドロイソ キノリン、 2, 3 シクロペンテノビリジン、 2, 3 シクロへプテノピリジン、 2, 3 シクロ ドデセノビリジン、 7—ァザインドール、ノルハルマンが挙げられる。
[0041] 前記の 、 R2、 R3、 R4及び R5で示される置換基は、その炭素原子に結合して 、る 水素原子が、ハロゲン原子、アルキル基、ァルケ-ル基、ァリール基、アルコキシ基、 ァリールォキシ基、ニトロ基、シァノ基又はジアルキルアミノ基等で更に置換されてい ても良い。これらの置換基は、前記の R4及び R5で示される置換基と同様のものが挙 げられる。
[0042] 上記式(8)で示される単座配位子の具体例としては、ビス(ペンタフルオロフェ-ル )フエ-ノレホスフィン、 (4 ブロモフエ-ル)ジフエ-ノレホスフィン、ジァリルフエ-ノレホ スフイン、ジシクロへキシルフェ-ルホスフィン、ジェチルフエ-ルホスフィン、 4— (ジ メチルァミノ)フエ-ルジフエ-ルホスフィン、ジメチルフエ-ルホスフィン、ジフエ-ル( 2—メトキシフエ-ル)ホスフィン、ジフエ-ル(ペンタフルォロフエ-ル)ホスフィン、ジ フエ-ルプロピルホスフィン、ジフエ-ルー 2—ピリジルホスフィン、ジフエ-ル(p トリ ル)ホスフィン、ジフエ-ルビ-ルホスフィン、ェチルジフエ-ルホスフィン、イソプロピ ルジフエニルホスフィン、メチルジフエニルホスフィン、トリベンジルホスフィン、トリブチ ルホスフィン、トリ一 t—ブチルホスフィン、トリシクロへキシルホスフィン、トリシクロペン チルホスフィン、トリェチルホスフィン、トリー 2—フリルホスフィン、トリイソブチルホスフ イン、トリイソプロピルホスフィン、トリプロピルホスフィン、トリメチルホスフィン、トリオク チルホスフィン、トリフエ-ルホスフィン、トリス(4—クロ口フエ-ル)ホスフィン、トリス(3 —クロ口フエ-ル)ホスフィン、トリス(2, 6 ジメトキシフエ-ル)ホスフィン、トリス(4— フルオロフェ -ル)ホスフィン、トリス(3—フルオロフェ-ルホスフィン)、トリス(4ーメト キシフエ-ル)ホスフィン、トリス(3—メトキシフエ-ル)ホスフィン、トリス(2—メトキシフ ェニル)ホスフィン、トリス(4—トリフルォロメチルフエ-ル)ホスフィン、トリス(ペンタフ ルォロフエ-ル)ホスフィン、トリス(2, 4, 6 トリメトキシフエ-ル)ホスフィン、トリス(2 , 4, 6—トリメチルフエニル)ホスフィン、トリ一 m—トリルホスフィン、トリ一 o トリルホス フィン、トリ一 ρ トリルホスフィン、ベンジルジフエ-ルホスフィン、ビス(2—メトキシフ ェ -ル)フエ-ルホスフィン、ジフエ-ルシクロへキシルホスフィン、 2— (ジ一 t—ブチ ルホスフイノ)ビフエ-ル、 2— (ジシクロへキシルホスフイノ)ビフエ-ル、ネオメンチル ジフエ-ルホスフィン、 p トリルジフエ-ルホスフィン、トリアリルホスフィン、 2, 4, 4— トリメチルペンチルホスフィン、トリ(1 ナフチル)ホスフィン、トリス(ヒドロキシメチル) ホスフィン、トリス(ヒドロキシプロピル)ホスフィンなどが挙げられる。なお、これらは巿 販のものを使用することができる。
[0043] 上記式(9)で示される配位子の具体例としては、ピリジン、ピコリン、 2 ェチルピリ ジン、 2 プロピルピリジン、 4 プロピルピリジン、 4 ブチルピリジン、 4 イソブチ ルピリジン、ルチジン、コリジン、ェチルメチルピリジン、ジェチルピリジン、 2—メチル —5 ブチルピリジン、 4— (5 ノエル)ピリジン、 2, 6 ジプロピルピリジン、 4 ジメ チノレアミノピリジン、 4ーピペリジノピリジン、 4 ピロリジノピリジン、 2 クロ口ピリジン、 2, 6 ジクロロピリジン、キノリン、メチルキノリン、ジメチルキノリン等が挙げられる。な お、これらはその異性体も含む。また、これらの配位子は市販のものを使用することが できる。
[0044] 上記式( 1 ' )で示されるェチニル基置換縮合へテロ環化合物金錯体の具体例を以 下に示す。
Figure imgf000016_0001
[0046] また、本発明において、 Mが白金 (Pt)である場合、上記式(1)は下記一般式(1")
(1":
Figure imgf000017_0001
式中、 Z, n, A及び Bは前記と同義である、
で示され、 L2は二座配位子を表す。このような L2としては、二座ホスフィン及び下記 一般式(10)〜(12)で示される二座配位子が挙げられる。
[0047]
Figure imgf000017_0002
[0048] 式中、 mは 1〜5の整数を表し、 R6及び R7はアルキル基、シクロアルキル基、 又はァリール基を表し、それぞれ同一又は異なっていても良い。また、 Za、 Z b、 Zc、 Zd、 Zeはそれぞれ独立に 5又は 6員環を形成し得る非金属原子群を 表す。なお、これら 5又は 6員環は縮合環を形成しても良い。
[0049] 上記一般式(10)〜(12)で示される二座配位子において、 Za、 Zb、 Zc、 Zd及び Z eとしては、炭素、水素、窒素、酸素、硫黄、燐、ハロゲン原子で構成されるそれぞれ 独立した 5又は 6員環が挙げられる。なお、これら 5又は 6員環は縮合環を形成しても 良い。
[0050] 5員環としては、ォキサゾール環、チアゾール環、イミダゾール環等が挙げられる。
6員環としては、ベンゼン環、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環等 が挙げられる。
[0051] これらの 5又は 6員環が成す縮合環としては、キノリン環、イソキノリン環、インドール 環、イソインドール環等が挙げられる。
これらの 5又は 6員環及び縮合環の内、ナフタレン環、イソキノリン環、ォキサゾール 環、ピリジン環が好ましい。
[0052] また、これらの環は、それぞれ同一又は異なっていても良いハロゲン原子、アルキ ル基、シクロアルキル基、ァルケ-ル基、ァリール基、ァラルキル基、アルコキシ基、 ァリールォキシ基、ニトロ基、シァノ基、又はジアルキルアミノ基等の置換基で置換さ れても良い。なお、これらの置換基がアルキル基、シクロアルキル基、ァルケ-ル基、 ァリール基、ァラルキル基、アルコキシ基、又はァリールォキシ基であり隣接する場合
、これらの置換基が結合して 5又は 6員環を形成しても良い。
[0053] ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙 げられる。
アルキル基としては、炭素原子数 1〜10のアルキル基が好ましぐ例えば、メチル 基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシル基、ヘプチル基、オタ チル基、ノニル基、デシル基等が挙げられる。なお、これらの置換基は、その異性体 を含む。
[0054] シクロアルキル基としては、特に炭素原子数 5〜8のシクロアルキル基が好ましぐ 例えば、シクロペンチル基、シクロへキシル基、シクロペンチル基、シクロへキシル基 、シクロへプチル基、シクロォクチル基等が挙げられる。
[0055] ァルケ-ル基としては、炭素原子数 2〜20、特に 2〜 12のァルケ-ル基が好ましく 、例えば、ビュル基、プロべ-ル基、ブテュル基、ペンテ-ル基、へキセ-ル基、ヘプ テニル基、オタテニル基、ノネニル基、デセニル基、ゥンデセ-ル基、ドデセ二ル基等 が挙げられる。なお、これらの置換基は、その異性体を含む。
[0056] ァリール基としては、炭素原子数 6〜12のァリール基が好ましぐ例えば、フエニル 基、トリル基、キシリル基、ナフチル基、ジメチルナフチル基等が挙げられる。なお、こ れらの置換基は、その異性体を含む。
[0057] ァラルキル基としては、炭素数 7〜20のァラルキル基が好ましぐ例えばべンジル 基、ナフチルメチル基、インデュルメチル基、ビフヱニルメチル基などが挙げられる。
[0058] アルコキシ基としては、特に炭素原子数 1〜10のアルコキシ基が好ましぐ例えば、 メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンタノキシ基、へキサノキシ基、 ヘプタノキシ基、オタタノキシ基、ノナノキシ基、デカノキシ基等が挙げられる。なお、 これらの置換基は、その異性体を含む。
[0059] ァリールォキシ基としては、特に炭素原子数 6〜 14のァリールォキシ基が好ましぐ フエノキシ基、トリロキシ基、キシリロキシ基、ナフトキシ基、ジメチルナフトキシ基等が 挙げられる。なお、これらの置換基は、その異性体を含む。
[0060] ジアルキルアミノ基としては、特に炭素原子数 2〜 10のジアルキルアミノ基が好まし ぐジメチルァミノ基、ジェチルァミノ基、ジプロピルアミノ基等が挙げられる。なお、こ れらの置換基は、その異性体を含む。
[0061] 以下、二座ホスフィン及び下記一般式(10)〜(12)で示される二座配位子 (L2)の 具体的な態様について説明する。
二座ホスフィンとしては、例えば、下記一般式(13)〜(18)で示される二座ホスフィ ンが挙げられる。
[0062]
Figure imgf000019_0001
(17) (18)
[0063] 式中、 m、 R。及び R7は前記と同義である。また、 R8及び R9は、水素原子、 ハロゲン原子、アルキル基、シクロアルキル基、ァルケ-ル基、ァリール基、ァラ ルキル基、アルコキシ基、ァリールォキシ基、ニトロ基、シァノ基、又はジアルキ ルァミノ基を表し、これらの置換基は、それぞれ同一又は異なっていても良い。 なお、これらの置換基がアルキル基、シクロアルキル基、ァルケ-ル基、ァリー ル基、ァラルキル基、アルコキシ基、又はァリールォキシ基であり隣接する場 合、これらの置換基が結合して環を形成しても良い。
前記一般式(13)で示される二座配位子としては、例えば、下記一般式(19)及び ( 20)で示される二座配位子が挙げられる。
Figure imgf000020_0001
(19) (20)
[0066] 式中、 R6、 R7、 R8及び R9は前記と同義である。また、 R10, R11及び R12
は、水素原子、ハロゲン原子、アルキル基、シクロアルキル基、ァルケ-ル 基、ァリール基、ァラルキル基、アルコキシ基、ァリールォキシ基、ニトロ基、シ ァノ基、又はジアルキルアミノ基を表し、これらの置換基は、それぞれ同一又は 異なっていても良い。なお、これらの置換基がアルキル基、シクロアルキル基、 アルケニル基、ァリール基、ァラルキル基、アルコキシ基、又はァリールォキシ基 であり隣接する場合、これらの置換基が結合して環を形成しても良 、。
[0067] 前記一般式(14)で示される二座配位子としては、例えば、下記一般式(21)で示さ れるニ座配位子が挙げられる。
Figure imgf000020_0002
(21) [0069] 式中、 m、 R6、 R7、 R1G、 R11及び R12は前記と同義である。
[0070] 前記一般式(15)で示される二座配位子としては、例えば、下記一般式(22)で示さ れるニ座配位子が挙げられる。
Figure imgf000021_0001
(22)
[0072] 式中、 R8及び R9は前記と同義である。
[0073] ここで R6及び R7におけるアルキル基としては、炭素原子数 1〜10のアルキル基が 好ましぐ例えば、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシ ル基、ヘプチル基、ォクチル基、ノニル基、デシル基等が挙げられる。なお、これらの 置換基は、その異性体を含む。
[0074] シクロアルキル基としては、特に炭素原子数 5〜8のシクロアルキル基が好ましぐ 例えば、シクロペンチル基、シクロへキシル基、シクロペンチル基、シクロへキシル基 、シクロへプチル基、シクロォクチル基等が挙げられる。
[0075] ァリール基としては、炭素原子数 6〜12のァリール基が好ましぐ例えば、フエニル 基、トリル基、キシリル基、ナフチル基、ジメチルナフチル基等が挙げられる。なお、こ れらの置換基は、その異性体を含む。
[0076] R8、 R9、 R10, R11及び R12におけるハロゲン原子としては、フッ素原子、塩素原子、 臭素原子、ヨウ素原子が挙げられる。
[0077] アルキル基としては、炭素原子数 1〜20、特に 1〜12のアルキル基が好ましぐ例 えば、メチル基、ェチル基、プロピル基、ブチル基、ペンチル基、へキシル基、ヘプ チル基、ォクチル基、ノニル基、デシル基、ゥンデシル基、ドデシル基等が挙げられ る。なお、これらの置換基は、その異性体を含む。
[0078] シクロアルキル基としては、特に炭素原子数 3〜7のシクロアルキル基が好ましぐ 例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シ クロペンチル基、シクロへキシル基、シクロへプチル基等が挙げられる。
[0079] ァルケ-ル基としては、炭素原子数 2〜20、特に 2〜 12のァルケ-ル基が好ましく 、例えば、ビュル基、プロべ-ル基、ブテュル基、ペンテ-ル基、へキセ-ル基、ヘプ テニル基、オタテニル基、ノネニル基、デセニル基、ゥンデセ-ル基、ドデセ二ル基等 が挙げられる。なお、これらの置換基は、その異性体を含む。
[0080] ァリール基としては、炭素原子数 6〜20、特に 6〜12のァリール基が好ましぐ例え ば、フエ-ル基、トリル基、キシリル基、ナフチル基、ジメチルナフチル基等が挙げら れる。なお、これらの置換基は、その異性体を含む。
[0081] ァラルキル基としては、炭素数 7〜20のァラルキル基が好ましぐ例えばべンジル 基、ナフチルメチル基、インデュルメチル基、ビフヱニルメチル基などが挙げられる。
[0082] アルコキシ基としては、特に炭素原子数 1〜10のアルコキシ基が好ましぐ例えば、 メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンタノキシ基、へキサノキシ基、 ヘプタノキシ基、オタタノキシ基、ノナノキシ基、デカノキシ基等が挙げられる。なお、 これらの置換基は、その異性体を含む。
[0083] ァリールォキシ基としては、特に炭素原子数 6〜 14のァリールォキシ基が好ましぐ フエノキシ基、トリロキシ基、キシリロキシ基、ナフトキシ基、ジメチルナフトキシ基等が 挙げられる。なお、これらの置換基は、その異性体を含む。
[0084] ジアルキルアミノ基としては、特に炭素原子数 2〜 10のジアルキルアミノ基が好まし ぐジメチルァミノ基、ジェチルァミノ基、ジプロピルアミノ基等が挙げられる。なお、こ れらの置換基は、その異性体を含む。
[0085] R8、 R9、 R10, R11及び R12がアルキル基、ァルケ-ル基、ァリール基、ァラルキル基
、アルコキシ基、又はァリールォキシ基であり隣接するこれら置換基が環を形成した 二座配位子としては、例えば、上記の二座配位子(18)の場合、下記一般式(23)、 (
24)で示される二座配位子が挙げられる。
Figure imgf000023_0001
[0087] 式中、 R6及び R7は前記と同義である。
[0088] 前記の R6、 R7、 R8、 R9、 R1G、 R11及び R12で表される置換基は、その炭素原子に結 合している水素原子力、ハロゲン原子、アルキル基、ァルケ-ル基、ァリール基、ァ ルコキシ基、ァリールォキシ基、ニトロ基、シァノ基又はジアルキルアミノ基等で更に 置換されていても良い。これらの置換基は、前記の R6、 R7、 R8、 R9、 R10, R11及び R12 で表される置換基と同様のものが挙げられる。
[0089] 上記一般式(13)〜(18)で示される二座ホスフィン及び(19)〜(22)で示される二 座配位子の具体的な態様としては、以下のものが挙げられる。
上記式(13)で示される二座ホスフィンの具体的な態様としては、 m= lのものとして 、ビス(ジフエ-ルホスフイノ)メタン、ビス(メチルホスフイノ)メタン、ビス(ジシクロへキ シルホスフイノ)メタン、ビス(ジ一 t—ブチルホスフイノ)メタン、 m= 2のものとして、 1, 2 -ビス(ジメチルホスフイノ)ェタン、 1, 2—ビス(ジェチルホスフイノ)ェタン、 1, 2— ビス(ジ一 t—ブチルホスフイノ)ェタン、 1, 2—ビス(ジシクロへキシルホスフイノ)エタ ン、 1, 2—ビス [(2—メトキシフエ-ル)フエ-ルホスフイノ]ェタン、 1, 2—ビス [ジ(ぺ ンタフルオロフェ -ル)ホスフイノ]ェタン、 1, 2—ビス(ジフエ-ルホスフイノ)ェタン、 1 , 2 -ビス (t -ブチルフエ-ルホスフイノ)ェタン、 1 , 2—ビス(ジフエ-ルホスフイノ)ェ タン、 m= 3のものとして 1, 3—ビス(ジメチルホスフイノ)プロパン、 1, 3—ビス(ジェ チルホスフイノ)プロパン、 1, 3—ビス(ジ— t—ブチルホスフイノ)プロパン、 1, 3—ビ ス(ジシクロへキシルホスフイノ)プロパン、 1, 3—ビス(ジフエ-ルホスフイノ)プロパン 、 m=4のものとして、 1, 4—ビス(ジメチルホスフイノ)ブタン、 1, 4—ビス(ジ一 t—ブ チルホスフイノ)ブタン、 1, 4—ビス(ジシクロへキシルホスフイノ)ブタン、 1, 4—ビス( ジフエ-ルホスフイノ)ブタン、 m= 5のものとして、 1, 5—ビス(ジフエ-ルホスフイノ) ペンタン、 m=6のものとして、 1, 6 ビス(ジフエ-ルホスフイノ)へキサン等が挙げら れる。
[0090] 上記式(14)で示される二座ホスフィンの具体的な態様としては、 1, 2 ビス(ジフエ -ルホスフイノ)プロパン、 2, 3 ビス (ジフエ-ルホスフイノ)ブタン、 2, 4 ビス (ジフエ -ルホスフイノ)ペンタン等が挙げられる。
[0091] 上記式(15)で示される二座ホスフィンの具体的な態様としては、 1, 2 ビス(ジメチ ルホスフイノ)ベンゼン、 1, 2—ビス(ジシクロへキシルホスフイノ)ベンゼン、 1, 2—ビ ス(ジフエ-ルホスフイノ)ベンゼン等が挙げられる。
[0092] 上記式(16)で示される二座ホスフィンの具体的な態様としては 1, 1 ' ビス(ジフエ -ルホスフイノ)フエ口セン、 1, 1,一ビス(ジイソプロピルホスフイノ)フエ口セン、 1, 1, ビス(ジ -t-ブチルホスフイノ)フエ口セン等が挙げられる。
[0093] 上記式(17)で示される二座ホスフィンの具体的な態様としては、 2, 2' ビス(ジフ ェ-ルホスフイノ)一 1, 1, 一ビナフチル、 2, 2,一ビス(ジシクロへキシルホスフイノ) - 1, 1 '—ビナフチル、 2, 2'—ビス(ジ(3, 5 キシリル)ホスフイノ)一 1, 1 '—ビフエ- ル、 2, 2,—ビス(ジ (p トリル)ホスフイノ)— 1, 1,—ビナフチル等が挙げられる。
[0094] 上記式(18)で示される二座ホスフィンの具体的な態様としては、 2, 2' ビス(ジフ ェ-ルホスフイノ)一 1, 1, 一ビフエ-ル、 6, 6, 一ジメトキシ一 2, 2, 一ビス(ジフエ-ル ホスフイノ)一 1, 1 '—ビフエニル、 5, 5 '—ジクロロ一 6, 6'—ジメトキシ一 2, 2'—ビス (ジフエ-ルホスフイノ)—1, 1,ービフエ-ル等が挙げられる。
[0095] 上記式(19)で示される二座配位子の具体的な態様としては、 R6、 R7がフ -ル基 であり、 R8、 R9が水素原子である化合物(QUINAP)等が挙げられる。
[0096] 上記式(20)で示される二座配位子の具体的な態様としては、 R6、 R7がフエ-ル基 で、 R1C)がメチル基で、 R8、 R9、 R11及び R12が水素原子である化合物(DPMO)、 R6、 R7がフエ-ル基で、 R1G、 R11がメチル基で、 R8、 R9、 R12が水素原子である化合物(D PDMO)、 R6、 R7がフエ-ル基で、 R10がイソプロピル基で、 R8、 R9、 R11及び R12が水 素原子である化合物(DPIPO)、 R6、 R7がフエ-ル基で、 R1Gがイソブチル基で、 R8、 R9、 R11及び R12が水素原子である化合物(DPIBO)、 R6、 R7がフエ-ル基で、 R1Gが t ブチル基で、 R8、 R9、 R11及び R12が水素原子である化合物(DPTBO)、 R6、 R7 力 Sフエ-ル基で、 R1Gがべンジル基で、 R8、 R9、 R11及び R12が水素原子である化合物 (DPBMO)、 R6、 R R1Gがフエ-ル基で、 R8、 R9、 R11及び R12が水素原子であるィ匕 合物(DPPO)等が挙げられる。
[0097] 上記式(21)で示される二座配位子の具体的な態様としては、 R6、 R7がフ -ル基 で、 R1C)がメチル基、 R11及び R12が水素原子で、 m= 1である化合物(DPMMO)、 R6 、 R7がフエ-ル基で、 R1C)がイソプロピル基、 R11及び R12が水素原子で、 m= lである 化合物(DPMIPO)、 R6、 R7がフエ-ル基で、 R1C)がイソブチル基、 R11及び R12が水 素原子で、 m= 1である化合物(DPMIBO)、 R6、 R7がフエ-ル基で、 R1Gが t-ブチル 基、 R11及び R12が水素原子で、 m= 1である化合物(DPMTBO)、 R6、 R7、 がフ ェ-ル基で、 R11及び R12が水素原子で、 m= 1である化合物(DPMPO)、
Figure imgf000025_0001
が フエニル基で、 R1C)がべンジル基、 R11及び R12が水素原子で、 m= lである化合物(D PMBNO)等が挙げられる。
[0098] 上記式(22)で示される二座配位子の具体的な態様としては、 2, 2' ビビリジン、 4, 4' ジメチルー 2, 2' ビビリジン、 4, 4'ージフ 二ルー 2, 2' ビビリジン、 5, 5 ,一ジメチルー 2, 2'—ビビリジン、 5, 5,ージー t—ブチル -2, 2'—ビビリジン、 1, 10 —フエナント口リン、 5—メチル 1, 10 フエナント口リン、 5 フエニル一 1, 10 フ ェナント口リン、 4, 7 ジフエ-ル— 1, 10 フエナント口リン、 3, 4, 7, 8—テトラメチ ルー 1, 10—フエナント口リンが挙げられる。
[0099] 上記式(1")で示されるェチュル基置換縮合へテロ環化合物白金錯体の具体的な 態様を下記式に示す。
なお、これらの化合物名は、下記上段左より、ビス(8—キノリルェチュル)(ビスジメ チルホスフィノエタン)白金(以下、 pt (dmpe) (8QE) と記載。)、ビス(8—キノリルェ
2
チュル)(ビスジフエ-ルホスフイノエタン)白金(以下、 Pt (dppe) (8QE) と記載。)、
2
ビス(7—キノリルェチュル)(ビスジメチルホスフィノエタン)白金(以下、 Pt (dmpe) (7 QE) と記載。)、ビス(6—キノリルェチュル)(ビスジメチルホスフィノエタン)白金(以
2
下、 Pt (dmpe) (6QE) と記載。)、ビス(5—キノリルェチニル)(ビスジメチルホスフィ
2
ノエタン)白金(以下、 Pt (dmpe) (5QE) と記載。)、ビス (4 キノリルェチュル)(ビ
2
スジメチルホスフィノエタン)白金(以下、 Pt (dmpe) (4QE) と記載。)、ビス(3—キノ リルェチュル)(ビスジメチルホスフィノエタン)白金(以下、 pt (dmpe) (3QE) と記載
2
。;)、ビス(2—キノリルェチュル)(ビスジメチルホスフィノエタン)白金(以下、 Pt (dmp e) (2QE) と記載。)である。
Figure imgf000026_0001
Ptfdmpe)(50E)2 Pt(dmpe)(4QE)2 Pt(dmpe)(3QE)2 Pt(dmpe)(2QE)2
[0101] Mが Ta, W, Re, Os, Irである場合の配位子としては、前記した単座配位子及び 二座配位子が挙げられ、その価数に応じて前記と同様の配位構造をとることができる
[0102] 上記新規ェチニル基置換縮合へテロ環化合物金錯体は、ホストとしてべンジジン 型トリフエ-ルァミン(4, 4,—ビス(力ルバゾール—9—ィル)ビフエ-ル(以下、 CBP と記載する。)を用いた固体薄膜とした後、紫外線照射することにより CIE色度座標値 で (0. 19, 0. 17)の青色力も (0. 31, 0. 34)の白色の発光を示した。また、同白金錯 体は、有機エレクト口ルミネッセンス素子の有機化合物層に使用した場合も同様の発 色光を示す。
[0103] 第 2の発明である、ェチニル基置換ィ匕合物重金属錯体 (上記式(1) )の製造法は、 上記式(2)で示されるェチュル基置換ィ匕合物と上記式(3)で示されるハロゲン化重 金属錯体とを塩基の存在下、有機溶媒 (ただし、 Mが Auである場合、一級及び二級 アルコールを除く。 )中で反応させることによって行われる。
[0104] 本発明において、上記式(1)における Mが金である場合の式(1 ' )で示されるェチ -ル基置換化合物金錯体の製造法につ!ヽて説明する。ェチニル基置換化合物 (上 記式(2) )の使用量は、上記式(3)における Mが金である下記式(3' ):
XAuL1 (3,)
式中、 X及び L1は前記と同義である、
で示されるハロゲンィ匕金錯体 1モルに対して 1〜3モルであることが好ましぐより好ま しくは 1〜1. 5モルである。
ここで、 Xにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素 原子が挙げられる。
[0105] なお、上記式 (b)で示されるハロゲン化金錯体は、例えば、非特許文献 8に記載の 方法に従って、塩ィ匕金酸をホスフィンもしくはスルフイドで還元後、適切な配位子と反 応させること〖こより合成することができる。
[0106] 本反応で用いられる溶媒としては、一級及び二級アルコール以外で使用する塩基 と反応しないものであれば特に制限は無いが、三級アルコール類、エーテル類、ハロ ゲン化炭化水素類、或はこれらの混合物が好ましい。
[0107] ここで三級アルコール類としては、 t—ブチルアルコール、 tーァミルアルコール等が 挙げられる。
エーテル類としては、ジェチルエーテル、テトラヒドロフラン、ジォキサン、ジメトキシ ェタン、ジエトキシェタン等が挙げられる。
ハロゲン化炭化水素類としては、ジクロロメタン、ジクロロエタン、ジクロロプロパン、 クロ口ベンゼン等が挙げられる。
[0108] これらの溶媒の使用量は、ハロゲンィ匕金錯体 (上記式(1) ) 1モルに対して、 1〜30
L (リットル)が好ましぐ更に好ましくは 5〜20Lである。
[0109] また、反応温度は溶媒の融点以上〜 100°Cで可能である力 低温では反応進行が 遅くなるため、好ましくは 15〜50°Cである。
[0110] 反応時間は、前記の末端アセチレンィ匕合物の種類、溶媒の使用量、及び反応温度 等によって変化するが 2〜24時間である。
[0111] 本発明で用いられる塩基としては、アルカリ金属の水酸化物又はアルコキシドが挙 げられる。
アルカリ金属の水酸ィ匕物としては、水酸化リチウム、水酸化ナトリウム、水酸化力リウ ム等が挙げられる。
[0112] アルカリ金属のアルコキシドとしては、リチウムメトキシド、リチウムエトキシド、リチウ ムプロポキシド、リチウムブトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウ ムプロポキシド、ナトリウムブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムプ ロポキシド、カリウムブトキシドが挙げられる。なお、これらはその異性体も含む。
[0113] これらの塩基の使用量は、ハロゲン化金錯体 1モルに対して 1〜3モル、好ましくは 1〜1. 2モノレである。
[0114] この反応は、通常、アルゴン、窒素などの不活性ガス雰囲気、或はこれらガス気流 下で行われる。また、用いられる反応圧は通常、常圧である。
[0115] 次に、本発明において、上記式(1)における Mが白金である場合の式(1")で示さ れるェチニル基置換化合物白金錯体の製造法につ ヽて説明する。
ここで白金錯体 (上記式(3)において Mが Ptである化合物)は、例えば、非特許文 献 9に記載の方法に準じて、 2座配位子 (L)と塩化白金酸カリウム (Π)を反応させて 製造したものを用いることができる。
[0116] ここで 2座配位子(L2)としては、 2座ホスフィン又は上記式(10)〜(12)で示される
2座配位子が挙げられる。
2座ホスフィンとしては、例えば、上記式(13)〜(18)で示される 2座ホスフィンが挙 げられる。
上記式(10)で表される 2座配位子としては、例えば、上記式(19)及び(20)で示さ れる 2座配位子が挙げられる。
上記式(11)で表される 2座配位子としては、例えば、上記式(21)で示される 2座配 位子が挙げられる。
上記式(12)で表される 2座配位子としては、例えば、上記式(22)で示される 2座配 位子が挙げられる。
[0117] これらの 2座配位子の内、上記式(13)〜(19)及び(22)で示される 2座配位子は 市販品を用いることができる。
上記式(20)で示される 2座配位子は非特許文献 10に記載の方法に従って合成す ることが出来、上記式(21)で示される 2座配位子は非特許文献 11に記載の方法に 従って合成することが出来る。
[0118] ェチニル基置換ィ匕合物(上記式(2) )の使用量は、上記式(3)における Mが白金で ある下記式(3"):
X PtL2 (3")
k
式中、 X、 k及び L2は前記と同義である、
で示されるハロゲンィ匕白金錯体 1モルに対して 2〜6モルであることが好ましぐより好 ましくは 2〜3モルである。
[0119] ェチニル基置換縮合へテロ環化合物の白金錯体 (上記式(1") )の製造に用いられ る塩基としては、金属アルコキシドであり、リチウムメトキシド、リチウムエトキシド、リチ ゥムプロポキシド、リチウムブトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリ ゥムプロポキシド、ナトリウムブトキシド、カリウムメトキシド、カリウムエトキシド、カリウム プロポキシド、カリウムブトキシド等のアルカリ金属アルコキシドが挙げられる。なお、 上記のアルカリ金属プロポキシド及びブトキシドについてはアルコキシ基の異性体も 含まれる。
[0120] 塩基の使用量は、白金錯体 (上記式(1") )に対して 2. 0〜6. 0当量が好ましぐ更 に好ましくは 2. 0〜3. 0当量である。
[0121] 溶媒としてはアルコール類が好ましぐメタノール、エタノール、プロパノール、ブタノ ール等の炭素数 1〜5の脂肪族アルコールが挙げられる。なお、これらのアルコール は、その異性体も含む。
[0122] 溶媒の使用量は、上記式(1")で示される白金錯体 1モルに対して、 1〜50L (リット ル)が好ましぐ更に好ましくは 15〜30Lである。
[0123] 反応温度は 20〜100°Cが好ましぐ更に好ましくは 60〜90°Cである。なお、 20°C 以下では反応の進行が著しく低下することがある。
[0124] 反応時間は、上記式(1")で示される白金錯体、ェチニル基置換縮合へテロ環化 合物、溶媒の使用量、及び反応温度等によって変化する力^〜 9時間であることが好 ましい。
[0125] この反応は、通常、アルゴン、窒素等の不活性ガス雰囲気、或はこれらガス気流下 で行われる。また、用いられる反応圧は通常、常圧である。 [0126] Mが金又は白金以外の重金属元素である場合、上記式(1)で示されるェチニル基 置換縮合へテロ環化合物重金属錯体の製造方法は、上記と同様に、例えば、重金 属錯体 1モルに対し、 k= lの場合、ェチニル基置換ィ匕合物を好ましくは 1〜3モル、 更に好ましくは 1〜1. 5モル使用することにより、 k= 2の場合、ェチュル基置換ィ匕合 物を好ましくは 2〜6モル、更に好ましくは 2〜3モル使用することにより、 k= 3の場合 、ェチュル基置換ィ匕合物を好ましくは 3〜9モル、更に好ましくは 3〜4. 5モル使用 することにより、 k=4の場合、ェチュル基置換ィ匕合物を好ましくは 4〜 12モル、更に 好ましくは 4〜6モル使用して反応させることにより目的化合物を得ることができる。
[0127] 上記の製造方法に従って製造されたェチニル基置換縮合へテロ環化合物重金属 錯体 (上記式 (1) )は、反応終了後、抽出、濃縮、口過などの通常の後処理を行い、 必要に応じて再結晶、各種クロマトグラフィー、昇華などの公知の手段で適宣精製す ることがでさる。
[0128] 第 3の発明の上記式 (4)で示されるェチニル基置換縮合へテロ環化合物は、上記 式(1)で示されるェチュル基置換縮合へテロ環化合物重金属錯体の製造原料として 使用される化合物である。
式 (4)において、 Z, n, A及び Bは前記と同義である。
[0129] 式 (4)で示されるェチニル基置換縮合へテロ環化合物としては、例えば、 5 フル オロー 8—キノリルェチン、 5—クロロー 8—キノリルェチン、 5—フルオロー 8—キナゾ リルェチン、 5—クロロー 8—キナゾリルェチン、 5—フルオロー 8—キノキサリルェチン 、 5—クロロー 8—キノキサリルェチンが挙げられる。
[0130] 第 4の発明である上記式 (2)で示されるェチュル基置換縮合へテロ環化合物の製 造法は、塩基性溶媒中、 0価パラジウム化合物触媒存在下に、上記式 (5)で示される トリフルォロメタンスルホ -ルォキシ基置換縮合へテロ環化合物と上記式 (6)で示さ れる 2 メチル 3 ブチン 2 オールとを反応させてジメチルヒドロキシメチル 縮合へテロ環 アセチレンィ匕合物(上記式(7) )とした後、これを塩基と反応させるこ とにより行われるものである。
[0131] 上記式(5)で示されるトリフルォロメタンスルホ-ルォキシ置換縮合へテロ環化合物 において、 Z、 n、 A及び Bは、前記したとおりである。 [0132] トリフルォロメタンスルホニルォキシ置換縮合へテロ環化合物(上記式(5) )は、例え ば、非特許文献 12の記載の合成法に従い、トリェチルァミン等の有機塩基の存在下 、塩化メチレン等の溶媒中にトリフルォロメタンスルホン酸無水物と目的のトリフルォロ メタンスルホニルォキシ置換縮合へテロ環化合物に対応するヒドロキシ基置換縮合 ヘテロ環化合物とを反応させることによって製造することができる。
[0133] 0価パラジウム化合物としては、例えば、 0価パラジウムホスフィン錯体 (パラジウムテ トラキストリフエ-ルホスフィン錯体、ビスジフエ-ルホスフィノエタンパラジウム錯体、 ビストリシクロへキシルホスフィンパラジウム錯体等)、 0価パラジウムォレフィン錯体(ト リスジベンジリデンアセトンジパラジウム錯体等)等が挙げられる。これら化合物の内、 0価パラジウムホスフィン錯体が好ましぐ更には、テトラキス(トリフエニルホスフィン) パラジウムが好ましい。
[0134] これらの 0価パラジウム化合物の使用量は、トリフルォロメタンスルホ -ルォキシ置 換縮合へテロ環化合物(上記式(5) ) 1モルに対して 0. 1〜: LOモル%が好ましぐ更 に好ましくは 0. 5〜5モル0 /0である。
[0135] 上記式(6)で示される 2—メチルー 3 ブチン 2 オールは、市販のものを使用 することができる。
[0136] 2—メチルー 3 ブチン 2 オールの使用量は、トリフルォロメタンスルホ-ルォキ シ置換縮合へテロ環化合物(上記式(5) ) 1モルに対して、 1. 0〜2. 0モルが好まし く、更に好ましくは、 1. 0〜1. 2モルである。
[0137] 本発明の製造法において、使用される塩基性溶媒としては、ピぺリジン、ピロリジン 、 N アルキルピぺリジン及び N アルキルピロリジンが挙げられ、これらから選択さ れる少なくとも 1種が使用される。
N アルキルピぺリジン及び N アルキルピロリジンにおけるアルキル基としては、 炭素数 1〜10のアルキル基が好ましぐ例えば、メチル基、ェチル基、プロピル基、 ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基 等が挙げられる。なお、これらの置換基は、その異性体を含む。
[0138] 塩基性溶媒の使用量は、トリフルォロメタンスルホニルォキシ基置換縮合へテロ環 化合物(上記式(5) ) 1モルに対して、 1〜20L (リットル)が好ましぐ更に好ましくは 1 . 5〜5Lである。
[0139] また、反応温度は 80〜100°Cが好ましぐ更に好ましくは 80〜90°Cである。
[0140] 反応時間は、前記の溶媒の使用量、及び反応温度等によって変化するが 1〜5時 間であることが好ましい。
[0141] この反応は、通常、アルゴン、窒素などの不活性ガス雰囲気、或はこれらガス気流 下で行われる。また、用いられる反応圧は通常、常圧である。
[0142] 上記反応によって得られるジメチルヒドロキシメチルー縮合へテロ環一アセチレンィ匕 合物(上記式(7) )は必要に応じて蒸留、再結晶、各種クロマトグラフィーなどの公知 の手段で適宣精製して次反応に用いることが出来るが、上記反応後、口過、濃縮等 の後処理を施したのみの粗精製物を、そのまま次反応に用いることも出来る。
[0143] ジメチルヒドロキシメチルー縮合へテロ環 アセチレンィ匕合物(上記式(7) )の塩基 との反応は、例えば、有機溶媒中、ジメチルヒドロキシメチル—縮合へテロ環—ァセ チレン化合物(上記式(7) )とアルカリ金属の水酸化物とを加熱することで行われる。
[0144] ここでアルカリ金属の水酸ィ匕物としては、水酸化ナトリウム、水酸ィ匕カリウム等が挙 げられる。
[0145] アルカリ金属の水酸ィ匕物の使用量はジメチルヒドロキシメチル 縮合へテロ環 ァ セチレンィ匕合物(上記式(7) ) 1モルに対して 1〜5モルが好ましぐ更に好ましくは 1 〜 2モルである。
[0146] 有機溶媒としては芳香族系の炭化水素が用いられ、トルエン、キシレンが好ま ヽ 有機溶媒の使用量は、ジメチルヒドロキシメチル -縮合へテロ環 アセチレンィ匕合 物(上記式(7) ) 1モルに対して、 1〜20L (リットル)が好ましぐ 2〜5Lが更に好まし い。
[0147] この反応で使用される温度は、 70〜120°Cが好ましぐ更に好ましくは 90〜110°C である。また、反応時間は、前記の温度によって変化するが 0. 1〜2時間である。
[0148] この反応は、通常、アルゴン、窒素などの不活性ガス雰囲気、或はこれらガス気流 下で行われる。また、反応圧は通常、常圧である。
[0149] 上記の製造法に従って製造されたェチニル基置換縮合へテロ環化合物(上記式( 4) )は、反応終了後、抽出、濃縮、ろ過等の通常の後処理を行い、必要に応じて蒸 留、再結晶、各種クロマトグラフィー等の公知の手段で適宣精製することができる。
[0150] 上記のェチニル基置換縮合へテロ環化合物(上記式 (4) )の具体的な態様としては 、例えば、 8—キノリルェチン、 7—キノリルェチン、 6—キノリルェチン、 5—キノリルェ チン、 4 キノリルェチン、 3 キノリルェチン、 2 キノリルェチン、 8 キナゾリルェ チン、 7—キナゾリルェチン、 6—キナゾリルェチン、 5—キナゾリルェチン、 8—キノキ サリルェチン、 7—キノキサリルェチン、 6—キノキサリルェチン、 5—キノキサリルェチ ン、 5—フルオロー 8—キノリルェチン、 5—クロロー 8—キノリルェチン、 5—フルォロ 8—キナゾリルェチン、 5—クロロー 8—キナゾリルェチン、 5—フルオロー 8—キノキ サリルェチン、 5 クロロー 8 キノキサリルェチン、 2 キノキサリルェチン等が挙げ られる。
[0151] 次に、第 5の発明の有機エレクト口ルミネッセンス素子について、以下に、その実施 形態を示す。
第 5の発明は有機電界発光素子 (有機エレクト口ルミネッセンス素子)用青色、青白 色又は白色発光材料に有用な上記式(1)で示されるェチニル基置換縮合へテロ環 化合物重金属錯体及びそれを含有する有機エレクト口ルミネッセンス素子に関するも のである。
[0152] 本発明の有機エレクト口ルミネッセンス素子は、一対の電極間に単層もしくは多層 の有機化合物層を有する有機エレクト口ルミネッセンス素子であって、この有機化合 物層の少なくとも 1層が上記式(1)で示されるェチニル基置換縮合へテロ環化合物 重金属錯体の内、少なくとも 1種を含有する。ここで有機化合物層は、発光層、電子 注入層、もしくは正孔輸送層である。
[0153] 単層型の有機エレクト口ルミネッセンス素子は、陽極と陰極との間に発光層を有する 。発光層は、発光材料を含有し、更に、陽極力 注入した正孔、もしくは陰極力 注 入した電子を発光材料まで輸送させるための正孔注入材料もしくは電子注入材料を 含有しても良い。
[0154] 多層型の有機エレクト口ルミネッセンス素子は、例えば、(陽極 Z正孔注入層 Z発 光層 Z陰極)、(陽極 Z発光層 Z電子注入層 Z陰極)、(陽極 Z正孔注入層 Z発光 層 z電子注入層 z陰極)等の多層構成で積層したものが挙げられる。
[0155] 発光層には、上記式(1)で示されるェチュル基置換縮合へテロ環化合物重金属錯 体の他に、公知の発光材料、ドーピング材料、正孔注入材料 (フタロシアニン誘導体 、ナフタロシアニン誘導体、ポルフィリン誘導体、ォキサゾール、ォキサジァゾール、ト リアゾール、イミダゾール、イミダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、 テトラヒドロイミダゾール、ォキサゾール、ォキサジァゾール、ヒドラゾン、ァシルヒドラゾ ン、ポリアリールアルカン、スチルベン、ブタジエン、ベンジジン型トリフエニルァミン、 スチリルァミン型トリフエ-ルァミン、ジァミン型トリフエ-ルァミン等及びそれらの誘導 体、およびポリビュルカルバゾール、ポリシラン、導電性高分子等の高分子材料等)、 電子注入材料(フルォレノン、アントラキノジメタン、ジフエノキノン、チォピランジオキ シド、ォキサゾール、ォキサジァゾール、トリァゾール、イミダゾール、ペリレンテトラ力 ルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等及びそれらの誘 導体等)を使用しても良い。
[0156] 上記式(1)で示されるェチニル基置換縮合へテロ環化合物重金属錯体の有機化 合物層への添カ卩量は、 0. 5〜: LOO重量%の濃度であることが好ましい。
[0157] この有機エレクト口ルミネッセンス素子は、発光材料、他のドーピング材料、正孔注 入材料や電子注入材料を組み合わせて使用することもできる。更に、正孔注入層、 発光層、電子注入層は、それぞれ二層以上の層構成により形成されても良い。その 際には、正孔注入層の場合、電極から正孔を注入する層を正孔注入層、正孔注入 層から正孔を受け取り発光層まで正孔を輸送する層を正孔輸送層と呼ぶ。同様に、 電子注入層の場合、電極から電子を注入する層を電子注入層、電子注入層から電 子を受け取り発光層まで電子を輸送する層を電子輸送層と呼ぶ。これらの各層は、 材料のエネルギー準位、耐熱性、有機化合物層もしくは金属電極との密着性等の各 要因により選択されて使用される。
[0158] 上記式(1)で示されるェチュル基置換縮合へテロ環化合物重金属錯体と共に有機 化合物層に使用できる発光材料又はホスト材料としては、縮合多環芳香族 (アントラ セン、ナフタレン、フエナントレン、ピレン、テトラセン、ペンタセン、コロネン、タリセン、 フルォレセイン、ペリレン、ルブレン及びそれらの誘導体等)、芳香族ケィ素化合物( テトラフエ-ルシラン等)、芳香族ゲルマニウム化合物 (テトラフエ-ルゲルマニウム等 フタ口ペリレン、ナフタ口ペリレン、ペリノン、フタ口ペリノン、ナフタ口ペリノン、ジフエ ニルブタジエン、テトラフェニルブタジエン、クマリン、ォキサジァゾール、アルダジン 、ビスべンゾキサゾリン、ビススチリル、ピラジン、シクロペンタジェン、キノリン金属錯 体、ァミノキノリン金属錯体、ベンゾキノリン金属錯体、ィミン、ジフエ-ルエチレン、ビ 二ルアントラセン、ジァミノカルバゾール、ピラン、チォピラン、ポリメチン、メロシアニン 、イミダゾールキレート化ォキシノイド化合物、キナクリドン、ルブレン、スチルベン系 誘導体及び蛍光色素等が挙げられる。
[0159] 本発明の有機エレクト口ルミネッセンス素子において使用できる公知の正孔注入材 料の中で、更に効果的な正孔注入材料は、芳香族三級アミン誘導体もしくはフタロシ ァニン誘導体である。芳香族三級アミン誘導体の具体的な態様は、トリフ -ルァミン 、トリトリルァミン、トリルジフエニルァミン、 N, N,—ジフエ二ルー N, N, - (3—メチル フエ-ル)— 1, 1, ビフエ-ル— 4, 4,—ジァミン(以下、 TPDと記載)、 N, N, Ν' , Ν,一(4—メチルフエ-ル)一 1, 1,一フエ-ルー 4, 4 ジァミン、 Ν, Ν, Ν,, Ν (4 メチルフエニル) 1, 1 ビフエ-ル一 4, 4,一ジァミン、 Ν, Ν,一ジフエ-ル —Ν, Ν,ージナフチルー 1, 1,ービフエ二ルー 4, 4,ージァミン、 Ν, Ν (メチルフ ェ -ル) Ν, Ν, - (4— η—ブチルフエ-ル)一フエナントレン一 9, 10 ジァミン、 Ν , Ν—ビス(4—ジ一 4—トリルァミノフエ-ル) 4—フエ-ル一シクロへキサン等、もし くはこれらの芳香族三級アミン骨格を有したオリゴマーもしくはポリマーである力 これ らに限定されるものではない。
[0160] フタロシアニン (pc)誘導体の具体的な態様は、 H Pc CuPc CoPc NiPc ZnP
2
c PdPc FePc MnPc ClAlPc ClGaPc ClInPc ClSnPc C12 SiPc (HO) AlPc (HO) GaPc VOPc TiOPc MoOPc GaPc— O— GaPc等のフタロシア ニン誘導体およびナフタロシアニン誘導体である力 これらに限定されるものではな い。
[0161] 本発明の有機エレクト口ルミネッセンス素子において、更に効果的な公知の電子注 入材料は、金属錯体化合物もしくは含窒素五員環誘導体である。金属錯体化合物 の具体的な態様は、 8—ヒドロキシキノリナ一トリチウム、ビス(8—ヒドロキシキノリナ一 ト)亜鉛、ビス(8—ヒドロキシキノリナート)銅、ビス(8—ヒドロキシキノリナート)マンガ ン、トリス(8 ヒドロキシキノリナート)アルミニウム(以下、 Alqと記載。)、トリス(2—メ
3
チノレー 8—ヒドロキシキノリナート)ァノレミ-ゥム、トリス(8—ヒドロキシキノリナート)ガリ ゥム、ビス(10—ヒドロキシベンゾ [h]キノリナート)ベリリウム、ビス(10—ヒドロキシべ ンゾ [h]キノリナート)亜鉛、ビス(2—メチルー 8 キノリナート)クロ口ガリウム、ビス(2 ーメチルー 8 キノリナート)(o クレゾラート)ガリウム、ビス(2—メチルー 8 キノリナ ート)(1—ナフトラート)アルミニウム、ビス(2—メチル—8 キノリナート)(2 ナフトラ ート)ガリウム等が挙げられる力 これらに限定されるものではない。
[0162] また、含窒素五員誘導体は、ォキサゾール、チアゾール、ォキサジァゾール、チア ジァゾールもしくはトリァゾール誘導体が好ましい。具体的には、 2, 5 ビス(1—フエ -ル) 1, 3, 4—ォキサゾール、ジメチル POPOP (ここで POPOPは 1, 4 ビス(5 フエ-ルォキサゾールー 2 ィル)ベンゼンを表す。)、 2, 5 ビス(1 フエ-ル) —1, 3, 4 チアゾール、 2, 5 ビス(1—フエ-ル)一 1, 3, 4—ォキサジァゾール、 2— (4, tert ブチルフエ-ル)—5— (4"—ビフエ-ル)— 1, 3, 4—ォキサジァゾ ール、 2, 5 ビス(1 ナフチル)ー1, 3, 4 ォキサジァゾール、 1, 4 ビス [2— (5 フエ-ルォキサジァゾリル)]ベンゼン、 1, 4 ビス [2—(5 フエ-ルォキサジァゾ リル)—4—tert ブチルベンゼン]、 2—(4,—tert ブチルフエ-ル)ー5— (4" ビフエ-ル )ー1, 3, 4ーチアジアゾール、 2, 5 ビス(1 ナフチル)ー1, 3, 4ーチ アジアゾール、 1, 4 ビス [2— (5 フエ-ルチアジァゾリル)]ベンゼン、 2— (4, t ert ブチルフエ-ル)ー5—(4"ービフエ-ル)ー1, 3, 4 トリァゾール、 2, 5 ビス (1—ナフチル) 1, 3, 4 トリァゾール、 1, 4 ビス [2— (5 フエ-ルトリァゾリル) ]ベンゼン等が挙げられる力 これらに限定されるものではない。
[0163] 本発明の有機エレクト口ルミネッセンス素子は、電荷注入性向上のために発光層と 電極との間に無機化合物層を設けることもできる。
[0164] この無機化合物層としては、 LiF、 Li 0、 RaO、 SrO、 BaF、 SrF等の、アルカリ金
2 2 2
属又はアルカリ土類金属のフッ化物、酸ィ匕物等を挙げられる。
[0165] 本発明の有機エレクト口ルミネッセンス素子の陽極に使用される導電性材料として は、 4eVより大きな仕事関数を持つものが適しており、炭素原子、アルミニウム、バナ ジゥム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム及びそれらの 合金、 ITO (酸化インジウムに酸化スズを 5〜 10%添加した物質)基板、 NESA基板 に使用される酸化スズ、酸化インジウム等の酸化金属、更にポリチォフェンやポリピロ ール等の有機導電性榭脂を用いることができる。
[0166] 陰極に使用される導電性物質としては、 4eVより小さな仕事関数を持つものが適し ており、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテ- ゥム、マンガン、アルミニウム等およびそれらの合金を用いられる。ここで合金とは、マ グネシゥム Z銀、マグネシウム Zインジウム、リチウム Zアルミニウム等が挙げられる。 合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、特に限定されな い。
[0167] 陽極および陰極は、必要があれば二層以上の層構成により形成されていても良い
[0168] 本発明の有機エレクト口ルミネッセンス素子は、少なくとも一方の面は素子の発光波 長領域において透明であることが望ましい。また、基板も透明であることが望ましい。
[0169] 透明電極は、前記の導電性材料を使用して、蒸着あるいはスパッタリング等の方法 で所定の透光性が確保するように設定して得られる。
[0170] 発光面の電極は、光透過率を 10%以上にすることが望ましい。
[0171] 基板は、機械的、熱的強度を有し、透明性を有するものであれば特に限定されるも のではな!/ヽが、ガラス基板あるいは透明性榭脂フィルムが挙げられる。
[0172] 透明性榭脂フィルムとしては、ポリエチレン、エチレン 酢酸ビニル共重合体、ェチ レン ビュルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアタリ レート、ポリ塩化ビニル、ポリビュルアルコール、ポリビュルブチラール、ナイロン、ポリ エーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルォロェチ レン パーフルォロアルキルビュルエーテル共重合体、ポリビュルフルオライド、テト ラフルォロエチレン エチレン共重合体、テトラフルォロエチレン一へキサフルォロプ ロピレン共重合体、ポリクロ口トリフルォロエチレン、ポリビ-リデンフルオライド、ポリエ ステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリ プロピレン等が挙げられる。 [0173] 本発明の有機エレクト口ルミネッセンス素子は、温度、湿度、雰囲気等に対する安 定性の向上のために、素子の表面に保護層を設けるカゝ、或いは、シリコンオイル、榭 脂等により素子全体を保護することもできる。
[0174] また、有機エレクト口ルミネッセンス素子の各層の形成は、真空蒸着、スパッタリング 、プラズマ、イオンプレーティング等の乾式成膜法、あるいはスピンコーティング、ディ ッビング、フローコーティング等の湿式成膜法のいずれかを適用することができる。膜 厚は特に限定されるものではないが、通常の膜厚は 5ηπ!〜 10 mの範囲であり、更 には 10nm〜0. 2 mの範囲が好ましい。
[0175] 湿式成膜法の場合、各層上にェチュル基置換縮合へテロ環化合物重金属錯体 ( 上記式(1) )を、エタノール、クロ口ホルム、テトラヒドロフラン、ジォキサン等の溶媒に 溶解又は分散させて薄膜を調製することができる。
[0176] 乾式成膜法としては、真空蒸着が好ましぐ真空蒸着装置を用い、真空度 2 X 10_3 Pa以下、基板温度を室温にして、蒸着セルに入れた本発明のェチニル基置換縮合 ヘテロ環化合物重金属錯体 (上記式(1) )を加熱し、該材料を蒸発させることにより薄 膜を調製することができる。このとき、蒸着源の温度をコントロールするために、蒸着 セルに接触させた熱電対や非接触の赤外線温度計等が好適に用いられる。また蒸 着量をコントロールするために蒸着膜厚計が好適に用いられる。
[0177] 蒸着膜厚計としては、蒸着源に対向して設置された水晶振動子を用い、前記水晶 振動子表面に付着した蒸着膜の重量を該振動子の発振周波数の変化力 計測し、 この計測重量力 膜厚をリアルタイムに求める形式のものが好適に用いられる。
[0178] CBP等のホスト材料とェチュル基置換縮合へテロ環化合物重金属錯体 (上記式(1 ) )の共蒸着は、それぞれに蒸着源を用い、且つ温度をそれぞれ独立に制御すること によって行うことができる。
[0179] ここで、いずれの有機薄膜層も、成膜性向上、膜のピンホール防止等のためポリス チレン、ポリカーボネート、ポリアタリレート、ポリエステル、ポリアミド、ポリウレタン、ポリ スルフォン、ポリメチルメタタリレート、ポリメチルアタリレート、セルロース等の絶縁性 榭脂およびそれらの共重合体、ポリ N—ビニルカルバゾール、ポリシラン等の光導 電性榭脂、ポリチォフェン、ポリピロール等の導電性榭脂などの榭脂、あるいは酸ィ匕 防止剤、紫外線吸収剤、可塑剤等の添加剤を使用することができる。
[0180] 発明の有機エレクト口ルミネッセンス素子は、例えば壁掛けテレビや携帯電話のフラ ットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバ ックライト、又は計器類等の光源、表示板、標識灯等に利用できる。
実施例
[0181] 以下に実施例を挙げて、本発明を具体的に説明する。なお dmpeは 1, 2—ビス (ジ メチルホスフイノ)エタンを示す。
参考例 1 8—トリフルォロメタンスルホ -ルォキシキノリンの合成
8—キノリノ一ノレ 7. 26g (50mmol)、塩ィ匕メチレン 50ml、トリエチノレアミン 9. lml (6 5mmol)を混合した黄色溶液を氷浴で 0°Cにした後、トリフルォロメタンスルホン酸無 水物 9. 3ml(55mmol)を滴下した。滴下後、ほぼ黒色に変化した反応溶液を反応 温度を 0°Cに維持したまま 1時間攪拌した。反応終了後、反応溶液に水 200mlとジェ チルエーテル 250mlをカ卩えて分液し、得られた有機層を濃度 lmol/Lの塩酸(125 ml X 2回)、水( 125ml X 1回)の順で洗浄し、次 、で無水硫酸マグネシウムで乾燥し た。ろ過後、ろ液カもジェチルエーテルを減圧留去し、得られた残滓をへキサン 250 mlに 70°Cで溶解して、不溶物をろ過後、ろ液を冷却することにより茶白色結晶であ る目的化合物を 12. 6g得た。 (収率 91%)
[0182] 'H-NMR (300MHz, CDC1 ) δ : 9. 11— 9. 03 (m、 1Η)、 8. 30— 8. 19 (m、 1
3
Η)、 7. 89- 7. 81 (m、 1Η)
7. 65- 7. 50 (m、 3H)
EI -MS (m/e): 277 (M+)、 CI— MS (m/z): 278 (MH+)
[0183] 参考例 2 5—フルオロー 8—トリフルォロメタンスルホ -ルォキシキノリンの合成
5—フルォロ一 8—キノリノール 3. 91g (24mmol)、塩化メチレン 24mlをカ卩えた。 氷水浴で内温 4°Cにした後、トリェチルァミン 4. 3ml (31mmol)を加えた。内温が 1 °Cまで降下してからトリフルォロメタンスルホン酸無水物 4. 4ml (26. 4mmol)を滴下 した。ほぼ黒色に変化した反応溶液を氷水浴中で 1時間攪拌した。反応終了後、反 応溶液を水に注ぎ、ジェチルエーテルで抽出した。抽出液を濃度 1モル ZL (リットル )の塩酸及び水で洗浄した後、エバポレーターで溶媒を減圧留去して褐色固体を得 た。この固体を温へキサン (70°C)に溶解させ、吸引ろ過を行い不溶物を除いた後、 ろ液を— 78°Cに冷却することで茶白色固体である目的化合物を 6. 21g得た。(収率 87%)
[0184] 'H-NMR OOO MHZ, CDCl ) δ : 7. 20— 7. 28 (m, 1Η) , 7. 55— 7. 63 (m, 2
3
H) , 8. 47 (dd, 1H) , 9. 11 (dd, 1H)
EI -MS (M/e): 295 (M+) , CI— MS (M/e): 296 (MH+)
[0185] 参考例 3 5 クロ口一 8 トリフルォロメタンスルホ -ルォキシキノリンの合成
5 クロ口一 8 ヒドロキシキノリン 0. 90g (5mmol)、塩化メチレン 10mlをカ卩えた。 氷水浴で内温 4°Cにした後、トリェチルァミン 0. 9ml (6. 5mmol)をカ卩えた。内温が 3 °Cまで降下してからトリフルォロメタンスルホン酸無水物 0. 9ml (5. 3mmol)を滴下 した。ほぼ黒色に変化した反応溶液を氷水浴中で 1時間攪拌した。反応終了後、反 応溶液を水に注ぎ、ジェチルエーテルで抽出した。抽出液を濃度 1モル ZLの塩酸 及び水で洗浄しエバポレーターで溶媒を減圧留去して粗生成物である固体を得た。 この固体を温へキサン(70°C) 25mlに溶解させ、吸引ろ過にて不溶物を除いた後、 ろ液を— 78°Cに冷却することで白色綿状固体として目的化合物を 0. 88g得た。 次いで、ろ液をエバポレーターで減圧濃縮し、得られた残渣を温へキサン(70°C) 8 mlで完全に溶解させ、これを 78°Cに冷却することで白茶色綿状固体として目的化 合物を更に 0. 40g得た。(総収率 81. 6%)
[0186] 'H-NMR (300MHz, CDCl ) δ : 7. 57 (d, 1Η) , 7. 64— 7. 68 (m, 1H) , 8. 6
3
2 (dd, 1H) , 9. 11 (dd, 1H)
EI-MS (M/e) : 311 (M+) , CI-MS (M/e) : 312 (MH+)
[0187] 参考例 4 7 トリフルォロメタンスルホ -ルォキシキノリンの合成
滴下ロートを備えた容量 200mlの 2つ口フラスコ内を窒素ガスにて置換し、ジクロロ メタン 50ml、トリフルォロメタンスルホン酸無水物を 2. 6ml (15. 2mmol)をカ卩え、氷 水浴にて内温 2°Cまで冷却した。滴下ロートに 7 ヒドロキシキノリン 2g (13. 8mmol) 、トリェチルァミン 2. 5ml (17. 9mmol)及びジクロロメタン 20mlを加えて茶色の懸濁 液とした。この懸濁液を同温度にてゆっくりと前記トリフルォロメタンスルホン酸無水物 の溶液中に滴下し、滴下終了後、同温度で 2時間攪拌した。反応終了後、ほぼ黒色 に変化した反応溶液を水(200ml)に注ぎ、ジェチルエーテル(200ml X 1回、 50ml X 3回)で抽出し、この抽出液を濃度 1モル ZLの塩酸(125ml X 2回)、次いで水(2 00ml X 1回)で洗浄した。洗浄後、抽出液を無水硫酸マグネシウム(2g)をカ卩えて脱 水し、ろ過後、ろ液をロータリーエバポレーターを用いて溶媒留去した。得られた残 渣をシリカゲルカラムクロマトグラフィー(展開溶媒:へキサン Z酢酸ェチル = 100/0 〜2Zl)によって精製することで黄色液体である目的化合物を 3. 5g得た。(収率 91 %)
[0188] 'H-NMR (400MHz, CDC1 ) δ : 7. 49— 7. 55 (m, 2Η) , 7. 95 (d, 1H) , 8. 0
3
6 (d, 1H) , 8. 27 (dd, 1H) , 9. 02 (dd, 1H)
EI -MS (M/e): 277 (M+)
[0189] 参考例 5 6—トリフルォロメタンスルホ -ルォキシキノリンの合成
滴下ロートを備えた容量 200mlの 2つ口フラスコ内を窒素ガスにて置換し、ジクロロ メタン 50ml、トリフルォロメタンスルホン酸無水物 6. 4ml (37. 9mmol)をカ卩え、氷水 浴にて内温 2°Cまで冷却した。滴下ロートに 6—ヒドロキシキノリン 5g (34. 4mmol)、 トリエチルァミン 6. 3ml (44. 8mmol)及びジクロロメタン 20mlをカ卩えて茶色の懸濁 液とした。この懸濁液を同温度にてゆっくりと前記トリフルォロメタンスルホン酸無水物 の溶液中に滴下し、滴下終了後、同温度で 2時間攪拌した。反応終了後、ほぼ黒色 に変化した反応溶液を水(200ml)に注ぎ、ジェチルエーテル(200ml X 1回、 50ml X 2回)で抽出し、抽出液を濃度 1モル ZLの塩酸(125mlX 2回)、次いで水(200 mi x 1回)で洗浄した。洗浄後、抽出液を無水硫酸マグネシウム(2g)をカ卩えて脱水 し、ろ過後、ろ液をロータリーエバポレーターを用いて溶媒留去した。得られた残渣を シリカゲルカラムクロマトグラフィー(展開溶媒:へキサン Z酢酸ェチル = 100/0-2 Z1)によって精製することで褐色液体である目的化合物を 7. 8g得た。(収率 82%)
[0190] 'H-NMR (400MHz, CDC1 ) δ : 7. 54 (Μ, 1Η) , 7. 63 (dd, 1Η) , 7. 78 (d, 1
3
H) , 8. 24-8. 27 (m, 2H) , 9. 01 (dd, 1H)
EI -MS (M/e): 277 (M+)
[0191] 参考例 6 5—トリフルォロメタンスルホ -ルォキシキノリンの合成
滴下ロートを備えた容量 200mlの 2つ口フラスコ内を窒素ガスにて置換し、ジクロロ メタン 50ml、トリフルォロメタンスルホン酸無水物 6. 4ml (37. 9mmol)をカ卩え、氷水 浴にて内温 2°Cまで冷却した。滴下ロートに 5—ヒドロキシキノリン 5g (34. 4mmol)、 トリエチルァミン 6. 3ml (44. 8mmol)及びジクロロメタン 20mlをカ卩えて茶色の懸濁 液とした。この懸濁液を同温度にてゆっくりと前記トリフルォロメタンスルホン酸無水物 の溶液中に滴下し、滴下終了後、同温度で 2時間攪拌した。反応終了後、ほぼ黒色 に変化した反応溶液を水(200ml)に注ぎ、ジェチルエーテル(200ml X 1回、 50ml X 3回)で抽出し、抽出液を濃度 1モル ZLの塩酸(125ml X 2回)、続いて水(200m I X 1回)で洗浄した。洗浄後、抽出液を無水硫酸マグネシウム(2g)を加えて脱水し、 ろ過後、ろ液をロータリーエバポレーターを用いて溶媒留去した。得られた残渣をシリ 力ゲルカラムクロマトグラフィー(展開溶媒:へキサン Z酢酸ェチル = 100Z0〜2Zl )によって精製することで濃赤色液体である目的化合物を 9. 2g得た。(収率 96%) [0192] 'H -NMR (400MHz, CDC1 ) δ : 7. 54— 7. 59 (m, 2Η) , 7. 73— 7. 77 (Μ, 1
3
Η) , 8. 19 (dd, 1Η) , 8. 42 (dd, 1H) , 9. 02 (dd, 1H)
EI - MS (M/e): 277 (M+)
[0193] 参考例 7 4—トリフルォロメタンスルホ -ルォキシキノリンの合成
滴下ロートを備えた容量 200mlの 2つ口フラスコ内を窒素ガスにて置換し、 4—ヒド 口キシキノリン 5g (34. 4mmol)、ピリジン 50mlをカ卩え、氷水浴にて内温 2°Cまで冷却 した。滴下ロートにトリフルォロメタンスルホン酸無水物 7. Oml (41. 6mmol)をカロえ、 同温度にてゆっくりと前記 4—ヒドロキシキノリン溶液中に滴下した。滴下終了後、同 温度にて 2時間攪拌した。反応終了後、黄色に変化した反応溶液を水(200ml)に注 ぎ、ジェチルエーテル(200ml X 1回、 50ml X 2回)にて抽出し、抽出液を濃度 1モ ル ZLの塩酸(125ml X 2回)、次いで水(200ml X I回)で洗浄した。洗浄後、無水 硫酸マグネシウム(2g)をカ卩えて脱水し、ろ過後、ろ液をロータリーエバポレーターを 用いて溶媒留去して黄色液体を得た。この黄色液体をシリカゲルカラムクロマトグラフ ィー(展開溶媒:へキサン Z酢酸ェチル = 100Z0〜: LZDによって精製することで、 薄黄色液体である目的化合物を 8. 6g得た。(収率 90%)
[0194] 'H -NMR (400MHz, CDC1 ) δ : 7. 42 (d, 1Η) , 7. 68— 7. 72 (m, 1H) , 7. 8
3
2 - 7. 86 (m, 1H) , 8. 08 (dd, 1H) , 8. 2 (dd, 1H) , 8. 97 (d, 1H) EI -MS (M/e): 277 (M+)
[0195] 参考例 8 3—トリフルォロメタンスルホ -ルォキシキノリンの合成
滴下ロートを備えた容量 200mlの 2つ口フラスコ内を窒素ガスにて置換し、ジクロロ メタン 50ml、トリフルォロメタンスルホン酸無水物 6. 4ml (37. 9mmol)をカ卩え、氷水 浴にて内温 2°Cまで冷却した。滴下ロートに 3—ヒドロキシキノリン 5g (34. 4mmol)、 トリエチルァミン 6. 3ml (44. 8mmol)及びジクロロメタン 20mlをカ卩えて茶色の懸濁 液とした。この懸濁液を同温度でゆっくりと前記トリフルォロメタンスルホン酸無水物の 溶液に滴下し、滴下終了後、同温度で 2時間攪拌した。反応終了後、ほぼ黒色に変 化した反応溶液を水 (200ml)に注ぎ、ジェチルエーテル(200ml X 1回、 50ml X 3 回)で抽出し、抽出液を濃度 1モル ZLの塩酸(125mlX 2回)、次いで水(200ml X 1回)で洗浄した。洗浄後、抽出液を無水硫酸マグネシウム(2g)を加えて脱水し、ろ 過後、ろ液をロータリーエバポレーターを用いて溶媒留去した。得られた残渣をシリ 力ゲルカラムクロマトグラフィー(展開溶媒:へキサン Z酢酸ェチル = 100Z0〜2Zl )によって精製することで濃赤色液体である目的化合物を 8. 5g得た。(収率 89%)
[0196] 'H-NMR (400MHz, CDC1 ) δ : 7. 54— 7. 61 (Μ, 1Η) , 7. 70— 7. 82 (m, 2
3
Η) , 8. 10 (dd, 1Η) , 8. 30 (Μ, 1Η) , 8. 95 (d, 1H)
EI -MS (M/e): 277 (M+)
[0197] 参考例 9 2—トリフルォロメタンスルホ -ルォキシキノリンの合成
滴下ロートを備えた容量 200mlの 2つ口フラスコ内を窒素ガスにて置換し、 2—ヒド 口キシキノリン 5g (34. 4mmol)、ジクロロメタン 50mlをカ卩えた。氷水浴にて内温 2°C まで冷却した後、トリェチルァミン 6. 3ml (44. 8mmol)を加えた。同温度で滴下ロー トに加えたトリフルォロメタンスルホン酸無水物 6. 4ml(37. 9mmol)をゆっくりと前記 2—ヒドロキシキノリンの溶液中に滴下した。滴下終了後、同温度で 2時間攪拌した。 反応終了後、ほぼ黒色に変化した反応溶液を水(200ml)に注ぎ、ジェチルエーテ ル(200ml X l回、 50ml X 2回)で抽出し、抽出液を濃度 1モル ZLの塩酸(125ml X 2回)、次 ヽで水(200ml X 1回)で洗浄した。洗浄後、抽出液を無水硫酸マグネシ ゥム(2g)を加えて脱水し、ろ過後、ろ液をロータリーエバポレーターを用いて溶媒留 去して褐色液体を得た。この褐色液体を蒸留精製(26. 6Pa (0. 2torr)、 85°C)する ことによって薄黄色液体である目的化合物を 7. 7g得た。(収率 81%)
[0198] 'H-NMR (400MHz, CDC1 ) δ : 7. 24 (d, 1Η) , 7. 61— 7. 66 (m, 1H) , 7. 7
3
8- 7. 82 (m, 1H) , 7. 89 (dd, 1H) , 8. 04 (dd, 1H) , 8. 33 (d, 1H)
EI -MS (M/e): 277 (M+)
[0199] 参考例 10 2—トリフルォロメタンスルホ-ルキノキサリンの合成
2—ヒドロキシキノキサリン 7. 31g (50mmol)、塩化メチレン 50ml、トリェチルァミン 9. lml(65mmol)を混合した薄茶懸濁液を氷浴で 0°Cにした後、トリフルォロメタン スルホン酸無水物 9. 3ml(55mmol)を滴下した。滴下後、茶褐色に変化した反応 溶液を反応温度を 0°Cに維持したまま 1時間攪拌した。反応終了後、反応溶液に水 2 OOmlとジェチルエーテル 300mlをカ卩えて分液し、得られた有機層を濃度 lmol/L の塩酸 25ml、水(50ml X 3回)の順で洗浄し PH6とし、次!、で硫酸マグネシウムで 乾燥した。ろ過後、ろ液カもジェチルエーテルを減圧留去し、得られた残滓をへキサ ン 50mlに 70°Cで溶解して、不溶物をろ過後、ろ液を冷却することにより茶白色結晶 である目的化合物を得た。 (11. 7g、収率 84%)
— NMR (300MHz、 CDC1 ) δ : 8. 84— 8. 76 (m、 1H)、 8. 25— 8. 19 (m、 1
3
H)、 8. 11 -8. 05 (m、 1H)、 7. 93— 7. 85 (m、 2H)
EI -MS (m/e): 278 (M+)、 CI— MS (m/z): 279 (MH+)
[0200] 実施例 1 8—キノリルェチンの合成
(第 1工程)
25mlシュレンク管内をアルゴンガスにて置換し、 8—トリフルォロメタンスルホ -ルォ キシキノリン 12g (45mmol)、テトラキス(トリフエ-ルホスフィン)パラジウム 500mg ( 0. 44mmol)、ピペリジン 50ml, 2—メチル—3—ブチン— 2—オール 4. 75ml (49 mmol)を加え、 80°Cで 45分間攪拌した。
反応混合物に飽和塩ィ匕アンモ-ゥム水溶液を加えた後、ジェチルエーテルで抽出 、無水硫酸マグネシウムにて乾燥し、ろ過後、ろ液をエバポレーターを用いて溶媒留 去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:へキサン Z酢 酸ェチル = 100ZO〜: LZDによって精製することで黄色油状物である目的化合物( ジメチルヒドロキシメチルー 8—キノリルアセチレン)を 8. 5g得た。(収率 90%) [0201] 'H-NMR (300MHz, CDC1 ) δ :1.73 (s, 6H), 4.64(s、 1H), 7.34— 7.43
3
(m, 1H), 7.44-7.49 (m, 1H), 7.76 (dd, 1H), 7.85 (dd, 1H), 8.11— 8 . 15 (dd, 1H), 9.12-9.14 (dd, 1H)
EI-MS(M/e) :211(M+), CI-MS (M/e) : 212 (MH+)
[0202] (第 2工程)
還流管を備えた 300mlの 2口フラスコに第 1工程で得られたジメチルヒドロキシメチ ルー 8—キノリルアセチレン 8.5g(40mmol)、水酸化ナトリウム 1.8g(45mmol)を 加え、内部をアルゴンガスにて置換した。これにトルエン 200mlをカ卩え、 120°Cで 0. 5時間還流した。反応終了後、室温まで放冷し、反応混合液にジェチルエーテルを 加え、飽和塩ィ匕アンモ-ゥム水溶液にて洗浄して、無水硫酸マグネシウムにて乾燥し た。ろ過後、ろ液をエバポレーターを用いて溶媒留去した。得られた残渣にへキサン (250ml)を加えて 70°Cに加熱し、不溶物をろ過した後、ろ液を— 78°Cに冷却して 生じた沈殿物をろ取し、冷へキサン(-78°C, 100ml)で洗浄したのち、減圧乾燥す ることで黄白色固体である目的化合物(8—キノリルェチン)を 4.9g得た。(収率 80 %)
[0203] 'H-NMR (300MHz, CDC1 ) δ :3.60 (s, 1Η), 7.32— 7.53 (m, 2H), 7.8
3
3(dd, 1H), 7.93 (dd, 1H), 8.17(dd, 1H), 9.06— 9.08 (m, 1H)
EI-MS (M/e): 153 (M+) , CI - MS (M/e): 154 (MH+)
[0204] 実施例 2 8—キノリルェチンの合成
lOOmLの 3つ口フラスコ内をアルゴンガスにて置換し、 8—トリフルォロメタンスルホ -ルォキシキノリン 5.54g (20mmol)、テトラキス(トリフエ-ルホスフィン)パラジウム 239mg(0.2mmol)、ピペリジン 35ml、 2—メチル—3—ブチン— 2—オール 2.9 ml(30mmol)を加え、 80°Cで 1時間攪拌した。反応終了後、反応混合物に飽和塩 化アンモ-ゥム水溶液をカ卩えて、ジェチルエーテルにて抽出し、無水硫酸マグネシゥ ムにて乾燥した。ろ過後、ろ液をエバポレーターを用いて溶媒留去した。得られた残 渣と、水酸ィ匕ナトリウム 829mg(20.3mmol)を還流管を備えた 300mlの 2ロフラス コに入れ、内部をアルゴンガスにて置換した。これにトルエン 145mlを加え, 120°C で 0.5時間還流した。反応終了後、室温まで放冷し、反応混合液にジェチルエーテ ルを加えて、飽和塩化アンモ-ゥム水溶液で洗浄し、無水硫酸マグネシウムで乾燥 した。ろ過後、ろ液をエバポレーターを用いて溶媒留去した。得られた残渣にへキサ ン(250ml)をカ卩えて 70°Cに加熱し、不溶物をろ過した後、ろ液を— 78°Cに冷却して 生じた沈殿物をろ取し、冷へキサン(一 78°C, 100ml)で洗浄した後、減圧乾燥する ことで黄白色固体である目的化合物を 2. 46g得た。(収率 80%)
[0205] 実施例 3 5 フルオロー 8 キノリルェチンの合成
(第 1工程)
25mlのシュレンク管内をアルゴンガスにて置換し、 5 -フルォロ 8 トリフルォロメ タンスルホ -ルォキシキノリン 592mg (2mmol)、テトラキス(トリフエ-ルホスフィン)パ ラジウム 46. 2mg (0. 04mmol)、ピペリジン 6ml、 2—メチル 3 ブチン一 2—ォ 一ノレ 290 l(3mmol)を加え、 80°Cで 1時間半攪拌した。
反応終了後、反応混合物に飽和塩ィ匕アンモ-ゥム水溶液 (60ml)を加えて、塩化メ チレン (40ml)で抽出し、抽出液をエバポレーターを用いて溶媒留去した。得られた 残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:へキサン Z酢酸ェチル = 100 Z0〜: LZ1)によって精製することにより黄色油状物である目的化合物 (ジメチルヒド ロキシメチルー(5 フルオロー 8 キノリル)アセチレン)を 0. 27g得た。(収率 59%) [0206] 'H-NMR (300MHz, CDC1 ) δ : 1. 71 (s, 6Η) , 3. 85 ( [s, 1H] , 7. 14— 7. 1
3
8 (m, 1H) , 7. 44- 7. 49 (m, 1H) , 7. 78— 7. 83 (m, 1H) , 8. 42 (dd, 1H) , 9 . 10- 9. 12 (m, 1H)
EI -MS (M/e): 229 (M+) , CI— MS (M/z): 230 (MH+)
[0207] (第 2工程)
還流管を備えた 50mLの 2口フラスコ内をアルゴンガスにて置換し、第 1工程で得ら れたジメチルヒドロキシメチルー(5 フルオロー 8 キノリル)アセチレン 0. 27g (l. 1
7mmol)、水酸ィ匕ナトリウム 56mg (l. 37mmol)を加えた。ここにトルエン 9mlを加え
、 120°Cで 0. 5時間還流した。反応終了後、室温まで放冷し、反応混合液にジェチ ルエーテル(20ml)を加え、飽和塩化アンモ-ゥム水溶液(40ml)で洗浄して、エバ ポレーターで溶媒を減圧留去することで黄色固体である目的化合物(5 フルオロー
8 キノリルェチン)を 0. 19g得た。(収率 95%) [0208] 'H-NMROOO MHZ, CDCl ) δ :3.55 (s, 1H), 7.17— 7.23 (m, 1H), 7.5
3
1-7.55 (m, 1H), 7.90— 7.95 (m, 1H), 8.44— 8.49 (m, 1H), 9.10— 9 . 12(m, 1H)
EI-MS (M/e): 171 (M+) , CI-MS (M/e) : 172 (MH+)
[0209] 実施例 4 5 クロロー 8 キノリルェチンの合成
(第 1工程)
25mlのシュレンク管内をアルゴンガスにて置換し、 5 クロ口一 8 トリフルォロメタ ンスルホ -ルォキシキノリン 621mg (2mmol)、テトラキス(トリフエ-ルホスフィン)パラ ジゥム 46.7mg(0.04mmol)、ピペリジン 6ml、 2—メチル 3 ブチン一 2—ォー ル 290 l(3mmol)を加え、 80°Cで 4時間半攪拌した。反応終了後、反応混合物に 飽和塩ィ匕アンモ-ゥム水溶液(60ml)をカ卩えた後、塩化メチレン (40ml)にて抽出し 、抽出液をエバポレーターを用いて溶媒留去した。得られた残渣をシリカゲルカラム クロマトグラフィー(展開溶媒:へキサン Z酢酸ェチル = 100ZO〜: LZ1)によって精 製することで、褐色油状物である目的化合物(ジメチルヒドロキシメチルー(5—クロ口 —8—キノリル)アセチレン)を 0.31g得た。 (収率 63%)
[0210] 'H-NMR (300MHz, CDCl ) δ :1.72 (s, 6Η), 3.37(s, 1H), 7.49— 7.59
3
(m, 1H), 7.78 (d, 1H), 8.57— 8.60 (m, 1H), 9.06— 9.08 (m, 1H)
EI-MS (M/e): 245 (M+) , CI-MS (M/e): 246 (MH+)
[0211] (第 2工程)
還流管を備えた 50mlの 2口フラスコ内をアルゴンガスにて置換し、第 1工程で得ら れたジメチルヒドロキシメチル一(5 クロ口一 8 キノリル)アセチレン 0.30g(0.957 mmol)、水酸ィ匕ナトリウム 61.9mg(l.51mmol)を加えた。
これにトルエン 9mlをカ卩え、 120°Cで 0.5時間還流した。反応終了後、室温まで放 冷し、反応混合液にジェチルエーテル(20ml)をカ卩えて、飽和塩ィ匕アンモ-ゥム水 溶液 (40ml)にて洗浄し、エバポレーターを用いて溶媒を減圧留去することで淡黄白 色固体である目的化合物(5 クロ口 8 キノリルェチン)を 0.21g得た。
[0212] 'H-NMR (300MHz, CDCl ) δ :3.63 (s, 1Η), 7.56— 7.62 (m, 2H), 7.8
3
9(d, 1H), 8.62 (dd, 1H), 9.11 (dd, 1H) EI -MS (M/e): 187 (M+) , CI— MS (M/e): 188 (MH+)
[0213] 実施例 5 7—キノリルェチンの合成
(第 1工程)
50mlのフラスコ内を窒素ガスにて置換し、 7—トリフルォロメタンスルホ-ルォキシ キノリン 2. 0g (7. 3mmol)、テトラキス(トリフエ-ルホスフィン)パラジウム 84mg (0. 0 73mmol)、ピペリジン 20ml、 2—メチル—3—ブチン— 2—オール 1. lml (l l. Om mol)を加え、 80°Cで 1時間攪拌した。反応終了後、反応混合物に飽和塩化アンモ -ゥム水溶液(100ml)を加え、ジェチルエーテル(100mlxl、 50mlx3)で抽出した 。抽出液に無水硫酸マグネシウム(2g)を加えて脱水し、ろ過後、ろ液をロータリーェ バポレーターを用いて溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフ ィー(展開溶媒:へキサン Z酢酸ェチル = 100Z0〜2Zl)によって精製することで オレンジ色の油状物として目的化合物(ジメチルヒドロキシメチルー(7—キノリル)ァ セチレン)を 1. 3g得た。(収率 83%)
[0214] 'H-NMR (400MHz, CDC1 ) δ : 1. 69 (s, 6Η) , 3. 54 (s, IH) , 7. 40— 7. 37
3
(m, IH) , 7. 51 (dd, IH) , 7. 72 (d, IH) , 8. 11 (dd, IH) , 8. 26 (d, IH) , 8. 91 (dd, IH)
EI-MS (M/e) : 211 (M+)
[0215] (第 2工程)
還流管を備えた 200mlの 2つ口フラスコ内を窒素ガスにて置換し、第 1工程で得ら れたジメチルヒドロキシメチルー(7—キノリル)アセチレン 1. 3g (6. Ommol)、水酸ィ匕 ナトリウム 267mg (6. 7mmol)を加えた。これにトルエン 50mlを加え、 120。Cで 0. 5 時間還流した。反応終了後、室温まで放冷し、反応混合液にジェチルエーテル(10 Oml)をカ卩え、飽和塩ィ匕アンモ-ゥム水溶液(100ml X 1回)にて洗浄した後、無水硫 酸マグネシウム(2g)をカ卩えて脱水して、ろ過後、ろ液をロータリーエバポレーターを 用いて溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: へキサン Z酢酸ェチル = 100Z0〜2Zl)によって精製することで赤茶色固体であ る目的化合物(7—キノリルェチン)を 0. 8g得た。(収率 85%)
[0216] 'H-NMR (400MHz, CDC1 ) δ : 3. 25 (s, IH) , 7. 42— 7. 39 (m, IH) , 7. 5 9(dd, 1H), 7.76 (d, 1H), 8.14— 8. ll(m, 1H), 8.26 (s, 1H), 8.94 (dd, 1H)
EI -MS (M/e): 153 (M+)
[0217] 実施例 6 6 キノリルェチンの合成
(第 1工程)
100mlのフラスコ内を窒素ガスにて置換し、 6 トリフルォロメタンスルホ-ルォキシ キノリン 2.44g(8.8mmol)、テトラキス(トリフエ-ルホスフィン)パラジウム 102mg(0 .088mmol)、ピペリジン 35ml、 2—メチル 3 ブチン一 2—オール 1.3ml(13.2 mmol)を加え、 80°Cで 1時間攪拌した。反応終了後、反応混合物に飽和塩化アン モ-ゥム水溶液(100ml)をカ卩えた後、ジェチルエーテル(150ml XI回、 50mlX3 回)で抽出し、抽出液に無水硫酸マグネシウム (2g)を加えて脱水し、ろ過後、ろ液を ロータリーエバポレーターを用いて溶媒留去した。得られた残渣をシリカゲルカラムク 口マトグラフィー(展開溶媒:へキサン Z酢酸ェチル = 100ZO〜: LZ1)によって精製 することで黄色オイルである目的化合物(ジメチルヒドロキシメチルー(6—キノリル)ァ セチレン)を 1.5g得た。(収率 81%)
[0218] 'H-NMR (400MHz, CDC1 ) δ :1.67(s, 1Η), 2.47 (s, 1H), 7.39— 7.42
3
(m, 1H), 7.68 (dd, 1H), 7.90 (d, 1H), 8.04 (d, 1H), 8.09 (dd, 1H), 8. 91 (dd, 1H)
EI-MS(M/e) :211(M+)
[0219] (第 2工程)
還流管を備えた 100mlの 2つ口フラスコ内を窒素ガスにて置換し、第 1工程で得ら れたジメチルヒドロキシメチルー(6 キノリル)アセチレン 1.5g(7. lmmol)、水酸化 ナトリウム 352mg(8.8mmol)を加えた。これにトルエン 50mlを加え、 120。Cで 0.5 時間還流した。反応終了後、室温まで放冷し、反応混合液にジェチルエーテル(10 Oml)を加え、飽和塩ィ匕アンモ-ゥム水溶液(100ml)で洗浄した。洗浄後、無水硫酸 マグネシウム(2g)をカ卩えて脱水し、ろ過後、ロータリーエバポレーターを用いて溶媒 留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:へキサン Z 酢酸ェチル = 100Z0〜: LZ1)によって精製することで薄黄色固体である目的化合 物(6—キノリルェチン)を 0.9g得た。(収率 83%)
[0220] 'H-NMR (400MHz, CDC1 ) δ :3. 19 (s, 1Η), 7.44— 7.41 (m, 1H), 7.7
3
6(dd, 2H), 7.99 (d, 1H), 8.05 (d, 1H), 8. 11 (dd, 1H), 8.92 (dd, 1H) EI -MS (M/e): 153 (M+)
[0221] 実施例 7 5—キノリルェチンの合成
(第 1工程)
100mlフラスコ内を窒素ガスにて置換し、 5—トリフルォロメタンスルホ -ルォキシキ ノリン 3.2g(ll.5mmol)、テトラキス(トリフエ-ルホスフィン)パラジウム 133mg(0. 115mmol)、ピペリジン 35ml、 2—メチル— 3—ブチン— 2—オール 1.7ml (17.3 mmol)を加え、 80°Cで 1時間攪拌した。反応終了後、反応混合物に飽和塩化アン モ-ゥム水溶液(100ml)をカ卩えて、ジェチルエーテル(100ml XI回、 50mlX3回) にて抽出し、抽出液に無水硫酸マグネシウムを (2g)加えて脱水し、ろ過後、ろ液を口 一タリーエバポレーターを用いて溶媒留去した。得られた残渣をシリカゲルカラムクロ マトグラフィー(へキサン Z酢酸ェチル = 100ZO〜: LZ1)によって精製することで黄 色オイルである目的化合物(ジメチルヒドロキシメチルー(5—キノリル)アセチレン)を 1.7g得た。(収率 70%)
[0222] 'H-NMR (400MHz, CDC1 ) δ :1.74 (s, 6Η), 3.06 (s, 1H), 7.41— 7.45
3
(m, 1H), 7.59-7.67 (m, 2H), 8.10 (dd, 1H), 8.54 (dd, 1H), 8.92— 8 .94 (m, 1H)
EI-MS(M/e) :211(M+)
[0223] (第 2工程)
還流管を備えた 100mlの 2つ口フラスコ内を窒素ガスにて置換し、第 1工程で得ら れたジメチルヒドロキシメチルー(5—キノリル)アセチレン 1.7g(8. lmmol)、水酸化 ナトリウム 460mg (11.5mmol)を加えた。これにトルエン 50mlを加え、 120。。で0. 5時間還流した。反応終了後、室温まで放冷し、反応混合液にジェチルエーテル(1 00ml)をカ卩え、飽和塩ィ匕アンモ-ゥム水溶液(100ml)で洗浄した。洗浄後、無水硫 酸マグネシウム(2g)をカ卩えて脱水し、ろ過後、ろ液をロータリーエバポレーターを用 いて溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:へ キサン Z酢酸ェチル = 100Z0〜: LZl)によって精製することで薄黄色固体である 目的化合物(5 キノリルェチン)を 1. Og得た。(収率 81%)
[0224] 'H-NMR (400MHz, CDC1 ) δ :3.49 (s, 1Η), 7.51— 7.48 (m, 1H), 7.6
3
8-7.64 (m, 1H), 7.79 (dd, 1H), 8. 13 (d, 1H), 8.67— 8.64 (m, 1H), 8 .96 (dd, 1H)
EI -MS (M/e): 153 (M+)
[0225] 実施例 8 4 キノリルェチンの合成
(第 1工程)
100mlフラスコ内を窒素ガスにて置換し、 4 トリフルォロメタンスルホ -ルォキシキ ノリン 1.9g(7. Ommol)、テトラキス(トリフエ-ルホスフィン)パラジウム 81mg(0.07
Ommol)、 N—メチルピペリジン 20ml、 2—メチルー 3 ブチンー2 オール 1. Oml (
10.5mmol)を加え、 90°Cで 1時間攪拌した。反応終了後、反応混合物に飽和塩化 アンモ-ゥム水溶液(100ml)をカ卩えて、ジェチルエーテル(100ml XI回、 50mlX
2回)で抽出し、抽出液に無水硫酸マグネシウム(2g)を加えて脱水し、ろ過後、ろ液 をロータリーエバポレーターを用いて溶媒留去した。得られた残渣をシリカゲルカラム クロマトグラフィー(展開溶媒:へキサン Z酢酸ェチル = 100Z0〜: LZl)によって精 製することで黄色オイルである目的化合物(ジメチルヒドロキシメチルー(4 キノリル) アセチレン)を 1.4g得た。(収率 97%)
[0226] 'H-NMR (400MHz, CDC1 ) δ :1.74 (s, 6Η), 2.69 (s, 1H), 7.44 (d, 1H
3
), 7.61-7.57 (m, 1H), 7.75— 7.71 (m, 1H), 8.12(d, 1H), 8.20 (dd, 1H), 8.86 (d, 1H)
EI-MS(M/z) :211(M+)
[0227] (第 2工程)
還流管を備えた 200mlの 2つ口フラスコ内を窒素ガスにて置換し、第 1工程で得ら れたジメチルヒドロキシメチルー(4 キノリル)アセチレン 1.4g(6.8mmol)、水酸ィ匕 ナトリウム 303mg(7.6mmol)を加えた。これにトルエン 50mlを加え、 120。。で0.5 時間還流した。反応終了後、室温まで放冷し、反応混合液にジェチルエーテル(10 0ml)をカ卩えて、飽和塩ィ匕アンモ-ゥム水溶液(100ml)で洗浄した。洗浄後、無水硫 酸マグネシウム(2g)をカ卩えて脱水し、ろ過後、ろ液をロータリーエバポレーターを用 いて溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:へ キサン Z酢酸ェチル =100Z0〜2Zl)によって精製することで白色固体である目 的化合物 (4—キノリルェチン)を 0.8g得た。(収率 77%)
[0228] 'H-NMR (400MHz, CDC1 ) δ :3.67(s, 1Η), 7.55 (d, 1H), 7.65— 7.61
3
(m, 1H), 7.78-7.74 (m, 1H), 8.13 (d, 1H), 8.29 (dd, 1H), 8.89 (d, 1 H)
EI -MS (M/e): 153 (M+)
[0229] 実施例 9 3—キノリルェチンの合成
(第 1工程)
100mlフラスコ内を窒素ガスにて置換し、 3—トリフルォロメタンスルホ -ルォキシキ ノリン 4.0g(14.4mmol)、テトラキス(トリフエ-ルホスフィン)パラジウム 166mg(0. 144mmol)、ピペリジン 20ml、 2—メチル—3—ブチン— 2—オール 2. lml(21.6 mmol)を加え、 80°Cで 3時間攪拌した。反応終了後、反応混合物に飽和塩化アン モ-ゥム水溶液(100ml)をカ卩えて、ジェチルエーテル(100ml XI回、 50mlX2回) で抽出し、抽出液に無水硫酸マグネシウム(2g)を加えて脱水し、ろ過後、ろ液をロー タリーエバポレーターを用いて溶媒留去した。得られた残渣をシリカゲルカラムクロマ トグラフィー(展開溶媒:へキサン Z酢酸ェチル = 100ZO〜: LZDによって精製する ことで黄色固体である目的化合物(ジメチルヒドロキシメチルー(3—キノリル)ァセチ レン)を 2.3g得た。(収率 76%)
[0230] 'H-NMR (400MHz, CDC1 ) δ :1.68 (s, 6Η), 3.74 (s, 1H), 7.54— 7.58
3
(m, 1H), 7.69-7.73 (m, 1H), 7.77 (dd, 1H), 8.10 (dd, 1H), 8.21 (dd , 1H), 9.00 (d, 1H)
EI-MS(M/e) :211(M+)
[0231] (第 2工程)
還流管を備えた 100mlの 2つ口フラスコ内を窒素ガスにて置換し、第 1工程で得ら れたジメチルヒドロキシメチルー(3—キノリル)アセチレン 2.3g(10.9mmol)、水酸 ィ匕ナトリウム 576mg(14.4mmol)をカロえた。これにトノレェン 5 Omlをカロえ、 120。Cで 0 . 5時間還流した。反応終了後、室温まで放冷し、反応混合液にジェチルエーテル( 100ml)をカ卩え、飽和塩ィ匕アンモ-ゥム水溶液(100ml)で洗浄した。洗浄後、無水 硫酸マグネシウム(2g)をカ卩えて脱水し、ろ過後、ろ液をロータリーエバポレーターを 用いて溶媒留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒: へキサン Z酢酸ェチル = 100Z0〜: LZ1)によって精製することで薄茶色固体であ る目的化合物(3—キノリルェチン)を 1. lg得た。(収率 66%)
[0232] 'H-NMR (400MHz, CDC1 ) δ : 3. 28 (s, 1Η) , 7. 59— 7. 55 (m, 1H) , 7. 7
3
9- 7. 72 (m, 2H) , 8. 10 (dd, 1H) , 8. 29 (d, 1H) , 8. 95 (d, 1H)
EI -MS (M/e): 153 (M+)
[0233] 実施例 10 2—キノリルェチンの合成
(第 1工程)
100mlフラスコ内を窒素ガスにて置換し、 2—トリフルォロメタンスルホ -ルォキシキ ノリン 2. lg (7. 6mmol)、テトラキス(トリフエ-ルホスフィン)パラジウム 88mg (0. 07
6mmol)、 N—メチルピペリジン 10ml、 2—メチルー 3—ブチンー2—オール 1. lml (
11. 4mmol)を加え、 80°Cで 1時間攪拌した。反応終了後、反応混合物に飽和塩化 アンモ-ゥム水溶液(100ml)をカ卩えて、ジェチルエーテル(100ml X I回、 50mlX
2回)で抽出し、抽出液に無水硫酸マグネシウム(2g)を加えて脱水し、ろ過後、ろ液 をロータリーエバポレーターを用いて溶媒留去した。得られた残渣をシリカゲルカラム クロマトグラフィー(展開溶媒:へキサン Z酢酸ェチル = 100Z0〜: LZ1)によって精 製することで黄色オイルである目的化合物(ジメチルヒドロキシメチルー(2—キノリル) アセチレン)を 1. 2g得た。(収率 75%)
[0234] 'H-NMR (400MHz, CDC1 ) δ : 1. 69 (s, 6Η) , 2. 40 (s, 1H) , 7. 49 (d, 1H
3
) , 7. 52- 7. 56 (m, 1H) , 7. 70— 7. 74 (m, 1H) , 7. 79 (dd, 1H) , 8. 09— 8. 12 (m, 2H)
EI-MS (M/e) : 211 (M+)
[0235] (第 2工程)
還流管を備えた 100mlの 2つ口フラスコ内を窒素ガスにて置換し、第 1工程で得ら れたジメチルヒドロキシメチルー(2—キノリル)アセチレン 1. 2g (5. 7mmol)、水酸化 ナトリウム 300mg(7.5mmol)を加えた。これにトルエン 50mlを加え、 120。。で0.5 時間還流した。室温まで放冷し、反応混合液にジェチルエーテル(100ml)をカロえ、 飽和塩ィ匕アンモ-ゥム水溶液(100ml)で洗浄した。洗浄後、無水硫酸マグネシウム (2g)をカ卩えて脱水し、ろ過後、ろ液をロータリーエバポレーターを用いて溶媒留去し た。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:へキサン Z酢酸ェ チル = 100Z0〜: LZ1)によって精製することで茶色固体である目的化合物(2—キ ノリルェチン)を 0.7g得た。(収率 80%)
[0236] 'H-NMR (400MHz, CDC1 ) δ :3.25 (s, 1Η),
3
7.58-7.53 (m, 2H), 7.76— 7.71 (m, 1H),
7.81-7.79 (dd, 1H), 8.12(t, 2H)
EI -MS (M/e): 153 (M+)
[0237] 実施例 11 2—キノキサリルェチンの合成
(第 1工程)
50ml三口フラスコを Ar置換し、 2—トリフルォロメタンスルホ-ルキノキサリン 4.2g( 15mmol)、テトラキス(トリフエ-ルホスフィン)パラジウム 173mg(0.15mmol)、 1— メチルピペリジン 15ml、 2-メチル -3-ブチン- 2-オール 1.6ml(16.5mmol)をカロえ 、 80°Cで 1時間攪拌した。
反応混合物に飽和塩ィ匕アンモニゥム水溶液 150mlをカ卩えた後、ジェチルエーテル 250で抽出、水 100mlで洗浄後、硫酸マグネシウムで乾燥ろ過後、エバポレーター で溶媒を減圧留去した。反応粗生成物をシリカゲルをもち 、たカラムクロマトグラフィ ― (Hexane/AcOEt= 10/1→5/1)によって精製することで、ジメチルヒドロキシ メチルー 2—キノキサリルアセチレンを黄色固体として得た。収量 0.55g (収率 17.3 %)
'H-NMR (300MHz, CDC1 ) δ :1.71 (s, 6Η), 2.81 (s, 1H), 7.74— 7.82
3
(m, 2H), 8.05-8.12 (m, 2H), 8.89(s, 1H)
EI - MS(mZz) :212(M+ - 1), Cl(m/z) :213(MH+)
(第 2工程)
還流管を備えた 50ml2口フラスコにジメチルヒドロキシメチル— 2—キノキサリルァ セチレン 550mg(2.6mmol)、 NaOH (キシダイ匕学、 0.7mm粒状、 98%)109mg( 2.7mmol)を入れ、内部を Ar置換した。ここにトルエン 13mLをカ卩え、 120°Cで 15分 還流した。反応混合液にジェチルエーテルをカ卩え、飽和塩化アンモ-ゥム水溶液で 洗浄し、硫酸マグネシウムで乾燥、エバポレーターで溶媒を減圧留去した。残滓にへ キサン(15ml)をカ卩えて 70°Cに加熱し、不溶物を濾過した 0°Cに冷却することで、沈 殿する目的化合物を濾過、冷へキサン(一 78°C、 15ml)で洗浄したのち、減圧乾燥 することで黄褐色固体として得た。(308mg、収率 77%)
'H-NMR (300MHz, CDC1 ) δ :3.45 (s, 1Η), 7.74— 7.84 (m, 2H), 8.0
3
6-8.14 (m, 2H), 8.92(s, 1H)
EI— MS(mZz) :154(M+— 1), Cl(m/z) : 155(MH+)
[0238] 実施例 12 (8 キノリルェチュル)(トリフエ-ルホスフィン)金 [Au(PPh ) (8QE)]
3 の合成
アルゴン雰囲気下、 25mlシュレンク管に Au(PPh )C1(0.20g, 0.40mmol)、 8
3
キノリルェチン (92mg, 0.60mmol)、エタノール(8ml)をカ卩えた後、ナトリウムエト キシド(165/zl, 0.42mmol:濃度 2.55molZL (リットル)のエタノール溶液)を滴 下し、室温で 17時間攪拌した。反応後得られた白色沈殿をろ過し、エタノール(5ml X3回),水(5ml X 4回)、及びエタノール(5ml X 3)で順次洗浄し、真空乾燥するこ とにより薄黄色粉末として目的化合物を 0.23g得た。(収率 96%)
本錯体をクロ口ホルムに溶解し、励起光 330nmで励起したときの発光強度を測定 し、励起光 330nmで励起したときの蛍光量子収率 Φが既知(Φ=0.55)である濃度 0.05モル ZL (リットル)の硫酸水溶液中の硫酸キニーネとの比較から、本錯体の発 光の相対量子収率 Φを測定したところ Φ =0.21であった。
[0239] 'H-NMR (400MHz, CDC1 ) δ :9.07 (dd, 1Η), 8.12 (dd, 1H), 7.99 (dd
3
, 1H), 7.68 (dd, 1H), 7.62〜7.36 (m, 17H)
[0240] 31P-NMR (160MHz, CDC1 ) :42.8
3
(FAB -MS) (M/z) :612(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm): 380,
3
526, 567 (EA)観測値 C:57.06, H:3.45, N:2.33,
理論値 C:56.97, H:3.46, N:2.29
[0241] 実施例 13 (7—キノリルェチュル)(トリフエ-ルホスフィン)金 [Au(PPh ) (7QE)]
3 の合成
8 -キノリルェチンに替えて 7 -キノリルェチンを用 、る他は実施例 12と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.18g得た。(収率 74%)
[0242] 'H-NMR (400MHz, CDCl ) δ :8.89 (dd, IH), 8.25 (s, IH), 8.10— 8.0
3
5(m, IH), 7.71-7.44 (m, 17H), 7.31 (dd, IH)
31P— NMR (160MHz, CDCl ) :42.9
3
(FAB -MS) (M/z) :612(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :488,
3
526
(EA)観測値 C:57.07, H:3.48, N:2.41
理論値 C:56.97, H:3.46, N:2.29
[0243] 実施例 14 (6—キノリルェチュル)(トリフエ-ルホスフィン)金 [Au(PPh ) (6QE)]
3 の合成
8 -キノリルェチンに替えて 6 -キノリルェチンを用いる他は実施例 12と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.22g得た。(収率 92%)
[0244] 'H-NMR (400MHz, CDCl ) δ :8.85— 8.83 (m, IH),
3
8.06 (dd, IH), 7.99— 7.96 (m, 2H), 7.81 (dd, IH),
7.61-7.44 (m, 15H), 7.35 (dd, IH)
[0245] 31P— NMR (160MHz, CDCl ) :42.9
3
(FAB -MS) (M/z) :612(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :495,
3
533
(EA)観測値 C:57.23, H:3.44, N:2.31
理論値 C:56.97, H:3.46, N:2.29
[0246] 実施例 15 (5—キノリルェチュル)(トリフエ-ルホスフィン)金 [Au(PPh ) (5QE)] の合成
8 -キノリルェチンに替えて 5 -キノリルェチンを用 、る他は実施例 12と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.22g得た。(収率 92%)
[0247] 'H-NMR (400MHz, CDCl ) δ :8.96— 8.93 (m, IH), 8.90 (dd, IH), 7.
3
99-7.96 (m, IH), 7.76 (dd, IH), 7.63— 7.42 (m, 17H)
[0248] 31P-NMR (160MHz, CDCl ) :42.8
3
(FAB -MS) (M/z) :612(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm): 380,
3
527, 568
(EA)観測値 C:57.03, H:3.50, N:2.32
理論値 C:56.97, H:3.46, N:2.29
[0249] 実施例 16 (4—キノリルェチュル)(トリフエ-ルホスフィン)金 [Au[PPh ][4QE]の
3 合成
8 -キノリルェチンに替えて 4 -キノリルェチンを用いる他は実施例 12と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.14g得た。(収率 56%)
[0250] 'H-NMR (400MHz, CDCl ) δ :8.80 (d, IH), 8.58— 8.55 (m, IH), 8.0
3
7-8.04 (m, IH), 7.72— 7.66 (m, IH), 7.63— 7.46 (m, 17H)
31P— NMR (160MHz, CDCl ) :42.7
3
(FAB -MS) (M/z) :612(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :508, 547
3
(EA)観測値 C:57.07, H:3.43, N:2.47
理論値 C:56.97, H:3.46, N:2.29
[0251] 実施例 17 (3—キノリルェチュル)(トリフエ-ルホスフィン)金 [Au(PPh ) (3QE)]の
3 合成
8 -キノリルェチンに替えて 3 -キノリルェチンを用 、る他は実施例 12と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.22g得た。(収率 88%)
[0252] 'H-NMR (400MHz, CDCl ) δ :9.01 (d, IH), 8.23 (d, IH), 8.04 (d, IH
3
), 7.75-7.71 (m, IH), 7.67— 7.44 (m, 17H) P-NMR (160MHz, CDCl ) :42.8
3
(FAB -MS) (M/z) :612(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :508, 547
3
(EA)観測値 C:57.04, H:3.43, N:2.39
理論値 C:56.97, H:3.46, N:2.29
[0253] 実施例 18 (2 キノリルェチュル)(トリフエ-ルホスフィン)金 [Au(PPh ) (2QE)]の
3
合成
8 -キノリルェチンに替えて 2 -キノリルェチンを用 、る他は実施例 12と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.20g得た。(収率 82%)
[0254] 'H-NMR (400MHz, CDCl ) δ :8.07 (d, IH), 8.02 (d, IH), 7.74— 7.7
3
2(m, IH), 7.68-7.43 (m, 18H)
31P— NMR (160MHz, CDCl ) :42.7
3
(FAB -MS) (M/z) :612(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :508, 547
3
(EA)観測値 C:57.07, H:3.43, N:2.47
理論値 C:56.97, H:3.46, N:2.29
[0255] 実施例 19 (5 フルオロー 8 キノリルェチュル)(トリフエ-ルホスフィン)金 [Au(P Ph ) (5F— 8QE)]の合成
3
8 -キノリルェチンに替えて 5 -フルォロ 8 キノリルェチンを用 、る他は実施例 1 2と同様に反応操作を行い、薄黄色粉末として目的化合物を 0.22g得た。(収率 88 %)
[0256] 'H-NMR (400MHz, CDCl ) δ :9. 11 (dd, IH), 8.40 (dd, IH), 7.91 (dd
3
, IH), 7.62-7.42 (m, 16H), 7.13 (dd, IH)
31P— NMR (160MHz, CDCl ) :42.8
3
(FAB -MS) (M/z) :630(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :392, 534
3
(EA)観測値 C:55.26, H:3.34, N:2.31
理論値 C:55.34, H:3.20, N:2.23 [0257] 実施例 20 (8 キノリルェチュル)(トリ一 o トリルホスフィン)金 [Au(P(o— Tol) )
3
(8QE)]の合成
アルゴン雰囲気下、 25mlシュレンク管に Au(P(o—Tol) C1(0.22g, 0.40mmo
3
1)、 8 キノリルェチン(92mg, 0.60mmol)、ナトリウム一 t—ブトキシド(40mg, 0. 42mmol)をカ卩えた後、 t—ァミルアルコール(8ml)を滴下し、室温で 19時間攪拌し た。反応後得られる白色沈殿をろ過し、 tーァミルアルコール(5mmlX 3回),温水 (4 0°C, 5ml X 3回)、およびエタノール(5ml X 2回)で順次洗浄し、真空乾燥すること により薄黄色粉末として目的化合物を 0.17g得た。(収率 64%)
[0258] 'H-NMR (400MHz, CDC1 ) δ :9.04 (dd, 1Η),
3
8. 10 (dd, 1H), 7.95 (dd, 1H), 7.65 (dd, 1H),
7.50-7.16 (m, 11H), 7.02— 6.91 (m, 3H),
2.73 (s, 9H)
31P-NMR (160MHz, CDC1 ) :25.0
3
(FAB -MS) (M/z) :654(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :382, 525, 566
3
(EA)観測値 C:58.06, H:4.00, N:2.20
理論値 C:58.81, H:4.16, N:2.14
[0259] 実施例 21 2 キノキサリルェチュル)(トリフエ-ルホスフィン)金 [Au(PPh ) (2Qx
3
E)]の合成
アルゴン雰囲気下、 25mlシュレンク管に Au(PPh )C1(0.20g, 0.40mmol)、 2
3
キノキサリルェチン (93mg, 0.60mmol)、エタノール(8ml)をカ卩えた後、ナトリウム エトキシド(165 1, 0.42mmol:濃度 2.55molZL (リットル)のエタノール溶液)を 滴下し、室温で 17時間攪拌した。反応後得られた白色沈殿をろ過し、エタノール (5 ml X 2回),水(5ml X 4回)、及びエタノール:水 = 1: 1 (5ml X 2)で順次洗浄し、真 空乾燥することにより薄茶色粉末として目的化合物を 0.21g得た。(収率 87%) 'H-NMR (300MHz, CDC1 ) δ :8.90 (s, 1Η), 8.05〜8.01 (m, 2H), 7.7
3
4〜7.66 (m, 2H), 7.60〜7.44 (m, 15H)
31P-NMR (160MHz, CDC1 ) :42.5 (FAB -MS) (M/z) :613(M + H)
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :518
3
(EA)観測値 C:53.30, H:3.12,N:4.32
理論値 C:54.91, H:3.29,N:4.57
[0260] 比較例 1
反応溶媒をエタノールとする他は実施例 20と同様に反応操作を行い薄黄白色粉 末として下記式 (f)で示される生成物が 0.24g得られ (収率 87%)、目的の(8—キノ リルェチュル)(トリ—o—トリルホスフィン)金は得られなかった。
Figure imgf000060_0001
[0262] H—NMR (400MHz, CDC1 ) δ :7.47— 7.35 (m, 6H), 7.22— 7.16 (m, 4
3
H), 7.00-6.90 (m, 6H), 6.59 (d, 1H), 6.46 (d, 1H), 5.86 (dd, 1H), 3 .25 (dq, 1H), 2.84 (s, 9H), 2.50 (dq, 1H) , 0.91 (t, 3H) .
31P-NMR (160MHz, CDC1 ) δ :25.0
3
FAB -MS (M/z) :699 (M + H) +
(EA)観測値 C:57.99, H:4.68, N:2.01
理論値 C:58.37, H:4.75, N:2.00
[0263] 比較例 2
反応溶媒をイソプロパノールとするほかは実施例 20と同様に反応操作を行い薄黄 白色粉末として下記式 (g)で示される生成物と目的の(8—キノリルェチニル)(トリ— o —トリルホスフィン)金がモル比 1:1である混合物として 0.23g得られた (収率:目的 物 44%、化合物(下記式 (g) ) 44%)。
Figure imgf000061_0001
[0265] 式 gの化合物の分析値
'H-NMR (400MHz, CDC1 ) δ : 7. 70— 6. 98 (m, 16H) , 7. 00— 6. 54 (m,
3
3H), 6. 68 (d, 1H) , 6. 54 (d, 1H) , 5. 92 (dd, 1H) , 3. 85 (dq, 1H) , 1. 04 ( d, 3H) , 0. 81 (d, 3H) .
[0266] 実施例 22 Au (P (o—Tol) ) (8QE) ( (8 キノリルェチュル)(トリー o トリルホス
3
フィン)金)の合成
アルゴン雰囲気下、 25mンュレンク管にクロ口(トリ— o トリルホスフィン)金 [Au (P (o-Tol) ) C1] (0. 22g, 0. 40mmol)、 8 キノリルェチン(92mg, 0. 60mmol)、
3
ナトリウム— t—ブトキシド(40mg, 0. 42mmol)を加えた後、 t—ブタノール(8ml)を 滴下し、 30°Cにて 6時間攪拌した。反応終了後、生成した白色沈殿をろ取し、温水( 40°C, 5mlX 3回),次いでエタノール(5ml X 2回)で洗浄し、真空乾燥して薄黄色 粉末である目的化合物を 0. 15g得た。(収率 58%)
[0267] 実施例 23 Au (P (o— Tol) ) (8QE) ( (8 キノリルェチュル)(トリー o トリルホス
3
フィン)金)の合成
アルゴン雰囲気下、 25mンュレンク管にクロ口(トリ— o トリルホスフィン)金 [Au (P (o-Tol) ) C1] (0. 22g, 0. 40mmol)、 8 キノリルェチン(92mg, 0. 60mmol)、
3
ナトリウム t—ブトキシド(40mg, 0. 42mmol)をカ卩えた後、テトラヒドロフラン(8ml) を滴下し、室温にて 19時間攪拌した。反応終了後、反応混合液を塩化メチレン (15 ml)で希釈した後、水 (40ml)〖こ加えて分液した。有機層を分取した後、水層を塩ィ匕 メチレン (10ml X 2回)にて抽出した。得られた抽出液を前記有機層と併せて無水硫 酸マグネシウム(2g)を加えて乾燥し、濾過、濃縮後、塩化メチレンージェチルエーテ ルにより再結晶を行った。生成した結晶をジェチルエーテル(10ml)にて洗浄し、真 空乾燥して白色粉末である目的化合物を 0. 10g得た。(収率 41%)
[0268] 実施例 24 Au (P (o— Tol) ) (8QE) ( (8—キノリルェチュル)(トリ— o—トリルホスフ
3
イン)金)の合成
アルゴン雰囲気下、 25mlシュレンク管にクロ口(トリ一 o—トリルホスフィン)金 [Au (P (o-Tol) ) C1] (0. 22g, 0. 40mmol)、 8—キノリルェチン(92mg, 0. 60mmol)、
3
ナトリウム— t—ブトキシド(40mg, 0. 42mmol)をカ卩えた後、塩化メチレン(8ml)を 滴下し、室温にて 19時間攪拌した。反応終了後、反応混合液を塩化メチレン (15ml) で希釈した後、水 (40ml)に加えて分液した。有機層を分取した後、水層を塩化メチ レン(10ml X 2回)にて抽出した。得られた抽出物を前記有機層と併せて無水硫酸 マグネシウム(2g)を加えて乾燥し、濾過、濃縮後、塩化メチレン—ジェチルエーテル により再結晶を行った。生成した結晶をジェチルエーテル(10ml)にて洗浄し、真空 乾燥して白色粉末である目的化合物を 0. 09g得た。(収率 34%)
[0269] 実施例 25 (8—キノリルェチュル)(トリス(p—メトキシフエ-ル)ホスフィン)金 [Au (P
(p-MeOC H ) ) ] (8QE) ]の合成
6 4 3
アルゴン雰囲気下、 25mlシュレンク管に Au(P (p— MeOC H ) ) C1 (0. 23g, 0.
6 4 3
40mmol)、 8—キノリルェチン(92mg, 0. 60mmol)、ナトリウム一 t—ブトキシド(40 mg, 0. 42mmol)を加えた後、 t-ァミルアルコール(8ml)を滴下し、室温で 19時間 攪拌した。反応後、塩化メチレン(15ml)で希釈した後、水 (40ml)に加えて分液した 。塩化メチレン層を分離した後、水層より塩化メチレン(10mlX 2回)で抽出操作を行 V、、塩化メチレン抽出物を塩化メチレン層に合わせて無水硫酸マグネシウム(2g)を 加えて乾燥し、濾過、濃縮後、塩化メチレン—ジェチルエーテルより再結晶を行った 。生成した結晶をジェチルエーテル(10ml)を洗浄し、真空乾燥することにより青白 色粉末として目的化合物を 0. l lg得た。(収率 41%)
[0270] 'H-NMR (400MHz, CDC1 ) δ : 9. 06 (dd, 1Η) , 8. 11 (dd, 1H) , 7. 98 (dd
3
, 1H) , 7. 67 (dd, 1H) , 7. 53— 7. 36 (m, 8H) , 6. 97— 6. 91 (m, 6H) , 3. 84 (s, 9H)
31P-NMR (160MHz, CDC1 ) : 39. 2 (FAB -MS) (M/z) :702(M + H)
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :381, 525, 566
3
(EA)観測値 C:54.80, H:3.88, N:2.06
理論値 C:54.79, H:3.88, N:2.00
[0271] 実施例 26 (8—キノリルェチュル)(トリメシチルホスフィン)金 [Au(P(Mes) ) (8QE
3
)]の合成
Au(P(o-Tol) )C1に替えて Au(P(Mes) )C1(0.25g, 0.40mmol)を用いた
3 3
ほかは実施例 20と同様の反応操作を行い、薄緑白色粉末として目的化合物を 0.1 9g得た。(収率 64%)
[0272] -NMR (400MHz, DMSO— d ) δ :8.93— 8.89 (m, 1H), 8.31— 8.27 (dd
6
, 1H), 7.74-7.65 (m, 2H), 7.52— 7.42 (m, 2H), 7.00— 6.60 (m, 6H) , 2.50(s(BR), 9H), 2.21(s(BR), 9H), 1.96(s(BR), 9H)
31P— NMR (160MHz, CDC1 ) :11.2
3
(FAB -MS) (M/z) :738(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :498, 538
3
(EA)観測値 C:61.06, H:5.35, N:2.00
理論値 C:61.87, H:5.33, N:l.90
[0273] 実施例 27 (8—キノリルェチュル)(トリシクロへキシルホスフィン)金 [Au(PCy ) (8
3
QE)]の合成
アルゴン雰囲気下、 25mlシュレンク管に Au(PCy )C1(0.20g, 0.40mmol) , 8
3
—キノリルェチン(92mg, 0.60mmol) ,ナトリウム一 t—ブトキシド(40mg, 0.42m mol)を加えた後、 t—ァミルアルコール (8ml)を滴下し、室温で 18時間攪拌した。反 応後得られる白色沈殿をろ過し、 t—ァミルアルコール(5mlX3回),温水(40°C, 5m 1 X 3回)、およびエタノール:水(50:50 (体積比), 5mlX2回)で洗浄し、真空乾燥 することにより薄黄白色粉末として目的化合物を 0.18g得た。(収率 71%)
[0274] 'H-NMR (400MHz, CDC1 ) δ :9.05 (dd, 1Η), 8.11 (dd, 1H), 7.97 (dd
3
, 1H), 7.65 (dd, 1H), 7.44— 7.35 (m, 2H), 2.03— 1.20 (m, 33H) 31P— NMR (160MHz, CDC1 ) :56.6 (FAB -MS) (M/z) :630(M + H)
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :378, 525, 567
3
(EA)観測値 C:55.06, H:6.10, N:2.34
理論値 C:55.33, H:6.24, N:2.22
[0275] 実施例 28 (8 キノリルェチュル)(トリイソプロピルホスフィン)金 [Au(P(i— Pr) ) (
3
8QE)]の合成
Au(PCy )C1に替えて Au(P(i— Pr) )C1(0.16g, 0.40mmol)を用いたほかは
3 3
実施例 27と同様の反応操作を行い、白色粉末として目的化合物を 0.14g得た。 (収 率 70%)
[0276] 'H-NMR (400MHz, CDC1 ) δ :9.05 (dd, 1Η), 8.11 (dd, 1H), 7.97 (dd
3
, 1H), 7.66 (dd, 1H), 7.45— 7.35 (m, 2H), 2.36— 2.24 (m, 3H), 1.35
(d, 9H), 1.30 (d, 9H).
31P-NMR (160MHz, CDC1 ) :67.5
3
(FAB -MS) (M/z) :510(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :379, 525, 565
3
(EA)観測値 C:46.34, H:5.21, N:2.90
理論値 C:47.16, H:5.34, N:2.75
[0277] 実施例 29 Au(PPh ) (8QE) ( (8 キノリルェチュル)(トリフエ-ルホスフィン)金)
3
の合成
アルゴン雰囲気下、 25mlシュレンク管に Au(PPh )C1(0.20g, 0.40mmol)、 8
3
キノリルェチン(92mg, 0.60mmol)、ナトリウム t—ブトキシド(40mg, 0.42m mol)を加えた後、 t—ァミルアルコール (8ml)を滴下し、室温で 18時間攪拌した。反 応後得られる白色沈殿をろ過し、 tーァミルアルコール(5mlX3回)、温水(40°C, 5 ml X 3回)、次 、でエタノール(5ml X 2回)で洗浄し、真空乾燥して白黄色粉末であ る目的化合物を 0.20g得た。 (収率 82%)
[0278] 'H-NMR (400MHz, CDC1 ) δ :9.07 (dd, 1Η), 8.12 (dd, 1H), 7.99 (dd
3
, 1H), 7.68 (dd, 1H), 7.62— 7.36 (m, 17H)
31P-NMR (160MHz, CDC1 ) :42.8 FAB— MS(MZz) :612(M + H)
(Emission) (CHC1 , 77K, Ex250nm) λ (nm): 380, 526, 567
3
(EA)観測値 C:57.06, H:3.45, N:2.33
理論値 C:56.97, H:3.46, N:2.29
[0279] 実施例 30 Au(PPh ) (PE) ((フエ-ルェチュル)(トリフエ-ルホスフィン)金)の合
3
アルゴン雰囲気下、 25mlシュレンク管にクロ口(トリフエ-ルホスフィン)金 [Au(PPh )C1] (0.20g, 0.40mmol)、フエ-ルアセチレン(61mg, 0.60mmol)、ナトリウ
3
ム— t—ブトキシド(40mg, 0.42mmol)をカ卩えた後、 t—ァミルアルコール(8ml)を 滴下し、室温にて 18時間攪拌した。反応終了後、溶媒を減圧留去し、得られた残滓 を塩化メチレン(20ml)にて抽出した。得られた抽出物を減圧下に溶媒留去した後、 得られた白色沈殿を塩化メチレン一へキサンにて再結晶して、白黄色粉末である目 的化合物を 0.19g得た。(収率 85%)
[0280] 'H-NMR (400MHz, CDC1 ) δ :7.60— 7.42 (m, 15H), 7.28— 7.20 (m,
3
5H)
FAB -MS (M/z): 561 (M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :415, 435, 444、 455
3
(EA)観測値 C:55.27, H:3.60
理論値 C:55.73, H:3.60
[0281] 実施例 31 (5 フルォロ 8 キノリルェチュル)(トリ— o トリルホスフィン)金 [Au
(P(o-Tol) ) (5F—8QE)]の合成
3
8 -キノリルェチンに替えて 5 -フルォロ 8—キノリルェチンを用 、た他は実施例 20と同様に反応操作を行い、薄黄色粉末として目的化合物を 0.21g得た。(収率 7 9%)
[0282] 'H-NMR (400MHz, CDC1 ) δ :9.07 (dd, 1Η), 8.38 (dd, 1H), 7.87 (dd
3
, 1H), 7.47-7.32 (m, 7H), 7.21— 6.94 (m, 7H), 2.73 (s, 9H)
[0283] 31P-NMR (160MHz, CDC1 ):25.0
3
(FAB -MS) (m/z):672(m+H) + (Emission) (CHC1 , 77K, Ex250nm) λ (nm) :394
3
(EA)観測値 C:57.00, H:3.79, N:2.00
理論値 C:57.24, H:3.90, N:2.09
[0284] 実施例 32 5 フルオロー 8 キノリルェチュル)(トリシクロへキシルホスフィン)金 [A u(PCy ) (5F— 8QE)]の合成
3
8 -キノリルェチンに替えて 5 -フルォロ 8—キノリルェチンを用 、た他は実施例 27と同様に反応操作を行い、薄黄色粉末として目的化合物を 0.18g得た。(収率 7 0%)
[0285] 'H-NMR (400MHz, CDCl ) δ :9.09 (dd, IH), 8.39 (dd, IH), 7.89 (dd
3
, IH), 7.42 (dd, IH), 7.10 (dd, 17H), 2.03— 1.17(m, 33H)
[0286] 31P— NMR (160MHz, CDCl ) :56.6
3
(FAB -MS) (m/z) :648(m+H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm):395
3
(EA)観測値 C:52.68, H:5.80, N:2.16
理論値 C:53.79, H:5.91, N:2.16
[0287] 実施例 33 (5 クロ口一 8 キノリルェチュル)(トリフエ-ルホスフィン)金 [Au(PPh
) (5C1— 8QE)]の合成
3
8 -キノリルェチンに替えて 5—クロ口一 8 キノリルェチンを用 V、た他は実施例 12 と同様に反応操作を行い、薄黄色粉末として目的化合物を 0.24g得た。(収率 92% )
[0288] 'H-NMR (400MHz, CDCl ) δ :9. 10 (dd, IH), 8.55 (dd, IH), 7.89 (d,
3
IH), 7.62-7.22 (m, 17H)
[0289] 31P— NMR (160MHz, CDCl ) :41.8
3
(FAB -MS) (m/z) :646(m+H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :390
3
(EA)観測値 C:53.82, H:3.08, N:2.26
理論値 C:53.93, H:3.12, N:2.17
[0290] 実施例 34 (5 クロ口 8 キノリルェチュル)(トリ— o トリルホスフィン)金 [Au(P (o-Tol) ) (5C1— 8QE)]の合成
3
8 -キノリルェチンに替えて 5—クロ口一 8 キノリルェチンを用 Vヽた他は実施例 20 と同様に反応操作を行い、薄黄色粉末として目的化合物を 0.18g得た。(収率 67% )
[0291] 'H-NMR (400MHz, CDCl ) δ :9.07 (dd, IH), 8.53 (dd, IH), 7.85 (d,
3
IH), 7.68 (dd, IH), 7.61— 6.91 (m, 14H), 2.73 (s, 9H)
[0292] 31P— NMR (160MHz, CDCl ) :23.8
3
(FAB -MS) (m/z) :688(m+H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :393
3
(EA)観測値 C:54.87, H:3.70, N:2.01
理論値 C:55.87, H:3.81, N:2.04
[0293] 実施例 35 (5 クロ口一 8 キノリルェチュル)(トリシクロへキシルホスフィン)金 [Au
(PCy ) (5C1—8QE)]の合成
3
8 -キノリルェチンに替えて 5 -クロ口 8 キノリルェチンを用いた他は実施例 27 と同様に反応操作を行い、薄黄色粉末として目的化合物を 0.21g得た。(収率 78% )
[0294] 'H-NMR (400MHz, CDCl ) δ :9.09 (dd, IH), 8.54 (dd, IH), 7.87 (d,
3
IH), 7.52-7.46 (m, 2H), 2.07—1.20 (m, 33H)
31P— NMR (160MHz, CDCl ) :55.6
3
(FAB -MS) (m/z) :664(m+l) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :392
3
(EA)観測値 C:50.86, H:5.60, N:2.05
理論値 C:52.46, H:5.77, N:2.11
[0295] 実施例 36 ビス(8 キノリルェチュル)(ビスジメチルホスフィノエタン)白金(Pt (dm pe) (8QE) )の合成
2
アルゴン雰囲気下、 25mlシュレンク管に Pt(dmpe)Cl (0. 10g, 0.24mmol)、
2
8 キノリノレエチン(0.29g, 1.9mmol)、ヨウィ匕銅(I) (llmg, 0.055mmol)、 N, N ジメチルホルムアミドとジェチルァミンの混合液(N, N ジメチルホルムアミド:ジ ェチルァミン =3:2)を lOmmlカ卩え、 50°Cで 9時間攪拌した。反応終了後、不溶物を ろ過し、得られたろ液にジクロロメタン(40ml)をカ卩え、水洗して(50ml X 4回)、無水 硫酸マグネシウムで乾燥した後、溶媒を減圧下留去した。得られた残渣に過剰量の ジェチルエーテルをカ卩えて析出した固体をろ取し、得られた固体をジェチルエーテ ルで洗浄して、真空乾燥することにより薄黄色粉末として目的化合物を 0.10g得た。 (収率 64%)
ホストとして 4, 4,—ビス(力ルバゾール—9—ィル)ビフエ-ル(CBP)を用いて、本 化合物を 9重量%ドープした固体薄膜を調製した後、 310nmの紫外線照射すること により CIE色度座標値を測定したところ、 (0. 19, 0.17)の青色発光が観測された。
[0296] 'H-NMR (400MHz, CDC1 ) δ :8.89 (d, 2Η), 8.06 (d, 2H), 7.94 (d, 2H
3
), 7.58 (m, 2H), 7.41 (m, 2H), 7.30 (m, 2H), 1.96 (m, 16H)
FAB - MS(MZz) :650(M + H) +
(Emission) (CHC1 , 77K, Ex 250nm) λ (nm) :541
3
(EA (元素分析))観測値 C:51.7, H:4.22, N:4.30
理論値 C:51.8, H:4.34, N:4.31
[0297] 実施例 37 ビス(8 キノリルェチュル)(ビスジフエ-ルホスフィノエタン)白金(Pt(d ppe) (8QE) )の合成
2
アルゴン雰囲気下、 25mlシュレンク管に Pt(dppe)Cl (0. 16g, 0.24mmol)、 8
2
キノリノレエチン(0.29g, 1.9mmol)、ヨウィ匕銅(I) (llmg, 0.055mmol)、 N, N ジメチルホルムアミドとジェチルァミンの混合溶液(N, N ジメチルホルムアミド:ジ ェチルァミン =3 :2)を 10ml加え、 50°Cで 9時間攪拌した。反応終了後、不溶物をろ 過し、得られたろ液にジクロロメタン (40ml)を加え、水洗し(50mlX4回)、硫酸マグ ネシゥムで脱水した後、溶媒を減圧下濃縮した。得られた残渣に過剰量のジェチル エーテルを加えて析出した固体をろ取して、得られた固体をジェチルエーテルで洗 浄し、真空乾燥することにより薄黄色粉末として目的化合物を 0.13g得た。(収率 59 %)
ホストとして CBPを用いて、本ィ匕合物を 9重量%ドープした固体薄膜を調製した後 3 lOnmの紫外線照射することにより CIE色度座標値を測定したところ、 (0.27, 0. 19 )の青白色発光が観測された。
[0298] 'H-NMR (400MHz, CDC1 ) δ :8.78 (d, 2Η), 8.15 (m, 6H), 8. 10 (d, 2
3
H), 7.70 (m, 2H), 7.62 (d, 2H), 7.49 (d, 2H), 7.40— 7.20 (m, 16H),
2.52-2.40 (m, 4H)
FAB - MS(MZz) :898(M+H) +
(Emission) (CHC1 , 77K, Ex 250nm) λ (nm) :536
3
(EA)観測値 C:61.47, H:3.94, N:3.35
理論値 C:64.21, H:4.04, N:3.12
[0299] 実施例 38 ビス(7—キノリルェチュル)(ビスジメチルホスフィノエタン)白金(Pt (dm pe) (7-QE) )の合成
2
8—キノリルェチンに替えて 7—キノリルェチンを用いる他は実施例 36と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.08g得た。(収率 54%)
ホストとして CBPを用いて、本ィ匕合物を 9重量%ドープした固体薄膜を調製した後 3 lOnmの紫外線照射することにより CIE色度座標値を測定したところ、 (0.31, 0.44 )の白色発光が観測された。
[0300] 'H-NMR (400MHz, CDC1 ) δ :8.83 (dd, 2Η), 8.08 (s, 2H), 8.06— 8.
3
03 (m, 2H), 7.64— 7.60 (m, 4H), 7.28— 7.25 (m, 2H),
1.90-1.71 (m, 16H)
(EA):観測値 C:51.4, H:4.3, N:4.3
理論値 C:51.8, H:4.3, N:4.3
FAB - MS(MZz) :650(M + H) +
(Emission) (CHC1 , 77K, Ex 250nm) λ (nm) :498 (max), 538, 577
3
[0301] 実施例 39 ビス(6—キノリルェチュル)(ビスジメチルホスフィノエタン)白金(Pt (dm pe) (6QE) )の合成
2
8—キノリルェチンに替えて 6—キノリルェチンを用いる他は実施例 36と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.12g得た。(収率 77%)
ホストとして CBPを用いて、本ィ匕合物を 9重量%ドープした固体薄膜を調製した後 3 lOnmの紫外線照射することにより CIE色度座標値を測定したところ、 (0.31, 0.34 )の白色発光が観測された。
[0302] 'H-NMR (400MHz, CDC1 ) δ :8.78 (d, 2Η), 8.03 (d, 2H), 7.92 (d, 2H
3
), 7.84 (s, 2H), 7.75 (dd, 2H), 7.33— 7.30 (m, 2H), 1.88— 1.73 (m, 1 6H)
FAB - MS(MZz) :650(M + H) +
(Emission) (CHC1 , 77K, Ex 250nm) λ (nm) :511
3
(EA)観測値 C:51.1, H:4.50, N:4.70
理論値 C:51.8, H:4.34, N:4.31
[0303] 実施例 40 ビス(5 キノリルェチュル)(ビスジメチルホスフィノエタン)白金(Pt (dm pe) (5QE) )の合成
2
8 キノリルェチンに替えて 5 キノリルェチンを用いる他は実施例 36と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.14g得た。(収率 88%)
ホストとして CBPを用いて、本ィ匕合物を 9重量%ドープした固体薄膜を調製した後 3 lOnmの紫外線照射することにより CIE色度座標値を測定したところ、 (0.22, 0.21 )の青白色発光が観測された。
[0304] 'H-NMR (400MHz, CDC1 ) δ :9.07 (dd, 2Η), 8.82 (dd, 2H), 7.90 (d,
3
2H), 7.64 (dd, 2H), 7.60— 7.56 (m, 2H), 7.22— 7.19 (m, 2H), 1.89
-1.76 (m, 16H)
FAB - MS(MZz) :650(M + H) +
(Emission) (CHC1 , 77K, Ex 250nm) λ (nm): 540
3
(EA)観測値 C:51.5, H:4.50, N:4.50
理論値 C:51.8, H:4.34, N:4.31
[0305] 実施例 41 ビス(4 キノリルェチュル)(ビスジメチルホスフィノエタン)白金(Pt (dm pe) (4-QE) の合成
2
8 キノリルェチンに替えて 4 キノリルェチンを用いる他は実施例 36と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.08g得た。(収率 50%)
ホストとして CBPを用いて、本錯体を 9重量%ドープした固体薄膜を調製した後 31 Onmの紫外線照射することにより CIE色度座標値を測定したところ、 (0.36, 0.45) の白色発光が観測された。
[0306] 'H-NMR (400MHz, CDC1 ) δ :8.75 (d, 2Η), 8.62 (dd, 2H), 8.02 (d, 2
3
H), 7.65-7.61 (m, 2H), 7.43— 7.39 (m, 4H), 1.92—1.74 (m, 16h)
(EA)観測値 C:51.8, H:4.5、N:4.2
理論値 C:51.8, H:4.3、 N:4.3
FAB - MS(M/z) :650(M + h) +
(Emission) (CHC1 , 77K, Ex 250nm) λ (nm) :510
3
(max) , 548, 592
[0307] 実施例 42 ビス(3—キノリルェチュル)(ビスジメチルホスフィノエタン)白金(Pt (dm pe) (3QE) )の合成
2
8—キノリルェチンに替えて 3—キノリルェチンを用いる他は実施例 36と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.13g得た。(収率 86%)
ホストとして CBPを用いて、本錯体を 9重量%ドープした固体薄膜を調製した後 31 Onmの紫外線照射することにより CIE色度座標値を測定したところ、 (0.28, 0.42) の白色発光が観測された。
[0308] 'H-NMR (400MHz, CDC1 ) δ :8.93 (d, 2Η), 8.12 (d, 2H), 8.00 (d, 2H
3
), 7.70 (d, 2H), 7.61-7.57 (m, 2H), 7.49— 7.45 (m, 2H), 1.92—1. 74 (m, 16H)
FAB - MS(M/z) :650(M + h) +
(Emission) (CHC1 , 77K, Ex 250nm) λ (nm): 506
3
(EA)観測値 C:50.5, H:4.40, N:4.20
理論値 C:51.8, H:4.34, N:4.31
[0309] 実施例 43 ビス(2—キノリルェチュル)(ビスジメチルホスフィノエタン)白金(Pt (dm pe) (2QE) )の合成
2
8—キノリルェチンに替えて 2—キノリルェチンを用いる他は実施例 36と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.13g得た。(収率 86%)
ホストとして CBPを用いて、本錯体を 9重量%ドープした固体薄膜を調製した後 31 Onmの紫外線照射することにより CIE色度座標値を測定したところ、 (0.27, 0.31) の白色発色が観測された。
[0310] 'H-NMR (400MHz, CDC1 ) δ :7.99 (d, 2Η), 7.93 (d, 2H), 7.68 (dd, 2
3
H), 7.62-7.57 (m, 2H), 7.51 (d, 2H), 7.41— 7.37 (m, 2H), 1.89— 1 .76 (m, 16H)
FAB - MS(MZz) :650(M + H) +
(Emission) (CHC1 , 77K, Ex 250nm) λ (nm) :482 (max), 518
3
(EA)観測値 C:50.7, H:4.50, N:4.30
理論値 C:51.8, H:4.34, N:4.31
[0311] 実施例 44 ビス(8—キノリルェチュル)(ビスジメチルホスフィノエタン)白金 [Pt (dm pe) (8QE) ]の合成
2
アルゴン雰囲気下、 25mlシュレンク管に Pt(dmpe)Clに(0.17g, 0.40mmol)
2
、 8—キノリルェチン(0.14g, 0.88mmol)、エタノール(10ml)を加えた後、ナトリウ ムエトキシド(濃度 2.55モル ZL (リットル)のエタノール溶液、 300 L、 0.84mmol )を滴下する。反応混合物を攪拌しつつ 4時間加熱還流を行った。不溶物をろ過後、 反応液にジクロロメタン (40ml)を加え、水洗する(50ml X 4回),硫酸マグネシウム で脱水した後、溶媒を減圧下濃縮した。この濃縮液に過剰量のジェチルエーテルを 加えて目的化合物を析出させて濾過し、得られた固体をジェチルエーテルで洗浄し 、真空乾燥することにより薄灰色粉末として目的化合物を 0.22g得た。なお、本ィ匕合 物は結晶溶媒として塩化メチレンを 1.5当量含む。(収率 75%)
ホストとして CBPを用い、本ィ匕合物を 9重量%ドープした固体薄膜とした後、 310η mの紫外線照射して CIE色度座標値を測定したところ、 (0.19, 0. 17)の青色が観 測された。
[0312] 'H-NMR (400MHz, DMSO— d6) δ :8.89 (d, 2H), 8.06 (d, 2H), 7.94 ( d, 2H), 7.58 (m, 2H), 7.41 (m, 2H), 7.30 (m, 2H), 1.96 (m, 16H) FAB - MS(MZz) :650(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :541
3
(E. A. ):理論値 C:42.78, H:4.21, N:3.78
観測値 C:43.42, H:4.22, N:3.81 [0313] 実施例 45 ビス(7—キノリルェチュル)(ビスジメチルホスフィノエタン)白金 [Pt (dm pe) (7QE) ]の合成
2
8 -キノリルェチンに替えて 7 -キノリルェチンを用いる他は実施例 44と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.19g得た。(収率 73%)
ホストとして CBPを用いて、本ィ匕合物を 9重量%ドープした固体薄膜を調製した後 3 lOnmの紫外線照射して CIE色度座標値を測定したところ、 (0.31, 0.44)の白色 発光が観測された。
[0314] 'H-NMR (400MHz, CDC1 ) δ :8.83 (dd, 2Η), 8.08 (s, 2H), 8.06— 8.0
3
3(m, 2H), 7.64-7.60 (m, 4H), 7.28— 7.25 (m, 2H), 1.90—1.71 (m, 16H)
(E. A. ):理論値 C:51.8, H:4.34, N:4.31
観測値 C:51.2, H:4.51, N:4.40
FAB - MS(MZz) :650(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :498 (max), 538, 577
3
[0315] 実施例 46 ビス(6—キノリルェチュル)(ビスジメチルホスフィノエタン)白金 [Pt (dm pe) (6QE) ]の合成
2
8 -キノリルェチンに替えて 6 -キノリルェチンを用いる他は実施例 44と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.18g得た。(収率 68%)
ホストとして CBPを用い、本錯体を 9重量%をドープした固体薄膜とした後、 310η mの紫外線照射して CIE色度座標値を測定したところ、 (0.31, 0.34)の白色発光 が観測された。
[0316] 'H-NMR (400MHz, CDC1 ) δ :8.78 (d, 2Η), 8.03 (d, 2H), 7.92 (d, 2H
3
), 7.84 (s, 2H), 7.75 (dd, 2H), 7.33— 7.30 (m, 2H), 1.88— 1.73 (m, 1 6H)
FAB - MS(MZz) :650(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :511
3
(E. A. )理論値 C:51.8, H:4.34, N:4.31
観測値 C:51.2, H:4.51, N:4.40 [0317] 実施例 47 ビス(5 キノリルェチュル)(ビスジメチルホスフィノエタン)白金 [Pt (dm pe) (5QE) ]の合成
2
8 -キノリルェチンに替えて 5 -キノリルェチンを用いる他は実施例 44と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.20g得た。(収率 77%)
ホストとして CBPを用い、本錯体を 9重量%ドープした固体薄膜とした後、 310nm の紫外線照射して CIE色度座標値を測定したところ、 (0.22, 0.21)の青白色発光 が観測された。
[0318] 'H-NMR (400MHz, CDC1 ) δ :9.07 (dd, 2Η), 8.82 (dd, 2H), 7.90 (d, 2
3
H), 7.64 (dd, 2H), 7.60-7.56 (m, 2H), 7.22-7.19 (m, 2H), 1.89— 1.76 (m, 16H)
FAB - MS(MZz) :650(M + H) +
(Emission) (CHC1 , 77K、 Ex250nm) λ (nm): 540
3
(E. A. )理論値 C:51.8, H:4.34, N:4.31
観測値 C:51.5, H:4.40, N:4.30
[0319] 実施例 48 ビス(4 キノリルェチュル)(ビスジメチルホスフィノエタン)白金 [Pt (dm pe) (4QE) ]の合成
2
8 -キノリルェチンに替えて 4 -キノリルェチンを用いる他は実施例 44と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.20g得た。(収率 77%)
ホストとして CBPを用いて、本錯体を 9重量%ドープした固体薄膜を調製した後 31 Onmの紫外線照射することにより CIE色度座標値を測定したところ、 (0.36, 0.45) の白色発光が観測された。
[0320] 'H-NMR (400MHz, CDC1 ): 68.75 (d, 2H), 8.62 (dd, 2H), 8.02 (d, 2
3
H), 7.65-7.61 (m, 2H), 7.43— 7.39 (m, 4H), 1.92—1.74 (m, 16H) (E. A. ):理論値 C:51.8, H:4.34, N:4.31
観測値 C:51.8, H:4.50, N:4.20
FAB - MS(MZz) :650(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :510 (max), 548, 592
3
[0321] 実施例 49 ビス(3 キノリルェチュル)(ビスジメチルホスフィノエタン)白金 [Pt (dm pe) (3QE) ]の合成
2
8 -キノリルェチンに替えて 3 -キノリルェチンを用いる他は実施例 44と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.19g得た。(収率 72%)
ホストとして CBPを用い、本錯体を 9重量%ドープした固体薄膜とした後、 310nm の紫外線照射して CIE色度座標値を測定したところ、 (0.28, 0.42)の白色発光が 観測された。
[0322] 'H-NMR (400MHz, CDC1 ) δ :8.93 (d, 2Η), 8.12 (d, 2H), 8.00 (d, 2H
3
), 7.70 (d, 2H), 7.61-7.57 (m, 2H), 7.49— 7.45 (m, 2H), 1.92—1. 74 (m, 16H)
FAB - MS(M/z) :650[M + H] +
(Emission) (CHC1 , 77K, Ex250nm) λ [nm]: 506
3
(E. A. )理論値 C:51.8, H:4.34, N:4.31
観測値 C:50.9, H:4.33, N:4.31
[0323] 実施例 50 ビス(2—キノリルェチュル)(ビスジメチルホスフィノエタン)白金 [Pt (dm pe) (2QE) ]の合成
2
8 -キノリルェチンに替えて 2 -キノリルェチンを用いる他は実施例 44と同様に反 応操作を行い、薄黄色粉末として目的化合物を 0.19g得た。(収率 75%)
ホストとして CBPを用い、本錯体を 9重量%ドープした固体薄膜とした後、 310nm の紫外線照射して CIE色度座標値を測定したところ、 (0.27, 0.31)の白色発光が 観測された。
[0324] 'H-NMR (400MHz, CDC1 ) δ :7.99 (d, 2Η), 7.93 (d, 2H), 7.68 (dd, 2
3
H), 7.62-7.57 (m, 2H), 7.51 (d, 2H), 7.41— 7.37 (m, 2H), 1.89— 1 .76 (m, 16H)
FAB - MS(MZz) :650(M + H) +
(Emission) (CHC1 , 77K, Ex250nm) λ (nm) :482 (max), 518
3
(E. A. )理論値 C:51.8, H:4.34, N:4.31
観測値 C:51.7, H:4.51, N:4.34
[0325] 実施例 51 Au(PPh ) (8QE)を有機発光層に含むエレクト口ルミネッセンス素子の 作製
ィーエッチシー製インジウム錫酸ィ匕物(以下、 ITOと記載する。)被膜付きガラスを 透明電極基板として用い、アルバック機工製真空蒸着装置を使用して、同基板上に
2 X 10_3Pa以下の真空度で、 N, N,—ビス(3—メチルフエ-ル)— N, N,—ビス—( フエニル)—ベンジジン (以下、 TPDと記載する。)からなるホール輸送層(3)を膜厚 40nm、 CBP中に Au(PPh ) (8QE)を 9重量0 /0含む発光層(4)を膜厚 30nm、 3— (
3
4—ビフエ-ルイル)— 4—フエ-ルー 5—ターシヤリブチルフエ-ルー 1, 2, 4ートリア ゾール(以下、 TAZと記載する。 )からなるホールブロック層(5)を 30nm、電極(6)と してアルミニウム (A1)を膜厚 100nm、順次真空蒸着させてエレクト口ルミネッセンス 素子を作製した。 (図 1参照)
[0326] なお、真空蒸着は、基板に対向して置かれたアルミナ製坩堝に原料を仕込み、坩 堝ごと原料をタングステンフィラメントを用いて加熱することによって行った。このとき 坩堝に接触させた熱電対によって坩堝の温度を測定し、 Au (PPh ) (8QE)を仕込
3
んだ坩堝の温度は、概略 330°Cを超えな 、範囲に制御した。
[0327] 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 11V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 18 Vにおいて 16cdZm2で青色発光した。このとき発光に係る電流の効率を以下の 式で求めた。
[0328] 電流効率 = (単位面積当りの発光輝度) Z (単位面積当りの電流密度)
[0329] このようにして求めた電流効率は 0. 03cdZAであった。
[0330] 前記素子の発光スペクトルを日本分光 (株)製分光蛍光光度計 FP— 6300を用い て測定した。結果を図 2に示す。この素子の発光スペクトルは 405nm付近にピークを 有しており、 CIE色度座標値を求めたところ(0. 17, 0. 08)であった。
[0331] 実施例 52 Au (PPh ) (8QE)を有機発光層に含むエレクト口ルミネッセンス素子の
3
作製 (2)
ホールブロック層(5)と A1電極(6)の間にトリスー(8—ヒドロキシキノリン)アルミニゥ ム(以下 Alqと記載する。 )からなる電子輸送層 (7)を膜厚 30nmで挿入した以外は実 施例 51と同様にしてエレクト口ルミネッセンス素子を作製した。(図 3参照) [0332] 前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げていく と、 + 1 IV付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 21Vにお いて 63cdZm2で青色発光した。この素子の最大電流効率は + 13Vにおける 0. 23 cdZAであった。
[0333] 前記素子の発光スペクトルを実施例 50と同様にして測定した。結果を図 4に示す。
この素子の発光スペクトルは 400nm付近にピークを有しており、 CIE色度座標値を 求めると(0. 24, 0. 24)であった。
[0334] 実施例 53 Au (PPh ) (8QE)を有機発光層に含むエレクト口ルミネッセンス素子の
3
作製 (3)
発光層(4)中の Au (PPh ) (8QE)の量を 6重量%とした以外は実施例 52と同様に
3
してエレクト口ルミネッセンス素子を作製した。
[0335] 前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げていく と、 + 12V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 22Vにお いて 40cdZm2で青色発光した。この素子の最大電流効率は + 14Vにおける 0. 32 cdZAであった。
[0336] 実施例 54 Au (PPh ) (8QE)を有機発光層に含むエレクト口ルミネッセンス素子の
3
作製 (4)
発光層(4)中の Au (PPh ) (8QE)の量を 21重量%とした以外は実施例 52と同様
3
にしてエレクト口ルミネッセンス素子を作製した。
[0337] 前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げていく と、 + 12V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 21Vにお いて 45cdZm2で青色発光した。この素子の最大電流効率は + 14Vにおける 0. 26 cdZAであった。
[0338] 実施例 55 Au (PPh ) (5QE)を有機発光層に含むエレクト口ルミネッセンス素子の
3
作製
発光層(4)中の錯体を Au (PPh ) (5QE)とした以外は実施例 52と同様にしてエレ
3
タトロルミネッセンス素子を作製した。
[0339] 前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げていく と、 + 17V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 25Vにお いて 23cdZm2で青色発光した。このときの電流効率は 0. 14cdZAであった。
[0340] 実施例 56 Au (PPh ) (5F— 8QE)錯体を有機発光層に含む有機エレクトロルミネ
3
ッセンス素子の作製
ITO被膜付きガラスを透明電極基板として用い、アルバック機工製真空蒸着装置を 使用して、同基板上に 2 X 10_3Pa以下の真空度で、 TPD力もなるホール輸送層(3) を膜厚 40nm、 4, 4, 一ビス(カルバゾールー 9 ィル)ビフエ-ル(以下 CBPと略す) 中に Au (PPh ) (5F— 8QE)錯体を 9重量%含む発光層(4)を膜厚 30nm、 TAZか
3
らなるホールブロック層(5)を 30nm、電極(6)としてアルミニウム(A1)を 100nm、順 次真空蒸着させてエレクト口ルミネッセンス素子を作製した。
なお、真空蒸着は、基板に対向して置かれた坩堝に原料を仕込み、坩堝ごと原料 を加熱することによって行った。また 5F8QEの坩堝外部のヒーター温度は 230°Cを 超えないように制御した。
[0341] 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 11V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 24Vにおいて 67cdZm2で発光した。この素子の最大電流効率は + 14Vで 0. 15cd Z Aであった。
[0342] 実施例 57 Au (PPh ) (5F— 8QE)錯体を有機発光層に含む有機エレクトロルミネ
3
ッセンス素子の作製(2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 56と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 15V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 28Vにおいて 30cdZm2で発光した。この素子の最大電流効率は + 17Vで 0. 23cd Z Aであった。
[0343] 実施例 58 Au (PPh ) (5F— 8QE)錯体を有機発光層に含む有機エレクトロルミネ
3
ッセンス素子の作製(3)
発光層(4)の厚みを 20nmとした以外は、実施例 57と同様にしてエレクト口ルミネッ センス素子を作製した。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 11V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 23Vにおいて 52cdZm2で発光した。この素子の最大電流効率は + 15Vで 0. 23cd Z Aであった。
[0344] 実施例 59 Au (PPh ) (5F— 8QE)錯体を有機発光層に含む有機エレクトロルミネ
3
ッセンス素子の作製 (4)
発光層として 1, 3—ビスカルバゾリルベンゼン(以下 mCP)中に Au (PPh ) (5F—
3
8QE)錯体を 9重量%含んだものを用いた以外は、実施例 56と同様にしてエレクト口 ルミネッセンス素子を作製した。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 9V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 2 2Vにおいて 66cdZm2で発光した。この素子の最大電流効率は + 1 IVで 0. 43cd Z Aであった。
また、同素子の発光スペクトルを実施例 50と同様にして測定した。この素子の発光 スペクトルは 400nm付近にピークを有しており、 CIE色度座標値を求めると(0. 16, 0. 08)であった。
[0345] 実施例 60 Au (PPh ) (5F— 8QE)錯体を有機発光層に含む有機エレクトロルミネ
3
ッセンス素子の作製(5)
発光層として mCP中に Au (PPh ) (5F—8QE)錯体を 9重量%含んだものを用い
3
た以外は、実施例 57と同様にしてエレクト口ルミネッセンス素子を作製した。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 13V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 24Vにおいて 31cdZm2で発光した。この素子の最大電流効率は + 15Vで 0. 21cd Z Aであった。
[0346] 実施例 61 Au (PPh ) (5Cl—8QE)錯体を有機発光層に含む有機エレクトロルミネ
3
ッセンス素子の作製
ITO被膜付きガラスを透明電極基板として用い、アルバック機工製真空蒸着装置を 使用して、同基板上に 2 X 10_3Pa以下の真空度で、 TPD力もなるホール輸送層(3) を膜厚 40nm、 mCP中に Au (PPh ) (5C1— 8QE)錯体を 9重量%含む発光層(4)
3
を膜厚 20nm、 TAZからなるホールブロック層(5)を 30nm、 A1電極(6)を 100nm、 順次真空蒸着させてエレクト口ルミネッセンス素子を作製した。
なお、真空蒸着は、基板に対向して置かれた坩堝に原料を仕込み、坩堝ごと原料 を加熱することによって行った。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 11V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 19Vにおいて 37cdZm2で発光した。このときの最大電流効率は 0. 042cdZAであ つた o
[0347] 実施例 62 Au (PPh ) (5Cl—8QE)錯体を有機発光層に含む有機エレクトロルミネ
3
ッセンス素子の作製(2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 61と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 11V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 20Vにおいて 34cdZm2で発光した。この素子の最大電流効率は + 16Vで 0. 12cd Z Aであった。
[0348] 実施例 63 Au[P (o— Tol) ] (5F—8QE)錯体を有機発光層に含む有機エレクト口
3
ルミネッセンス素子の作製
ITO被膜付きガラスを透明電極基板として用い、アルバック機工製真空蒸着装置を 使用して、同基板上に 2 X 10_3Pa以下の真空度で、 TPD力もなるホール輸送層(3) を膜厚 40nm、 mCP中に Au[P (o—Tol) ] (5F—8QE)錯体を 9重量%含む発光
3
層(4)を膜厚 20nm、 TAZからなるホールブロック層(5)を 30nm、 A1電極(6)を 100 nm、順次真空蒸着させてエレクト口ルミネッセンス素子を作製した。
なお、真空蒸着は、基板に対向して置かれた坩堝に原料を仕込み、坩堝ごと原料 を加熱することによって行った。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 13V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 17Vにおいて 5. 3cdZm2で発光した。この素子の最大電流効率は + 16Vで 0. 01 lcdZAであった。
[0349] 実施例 64 Au[P (o— Tol) ] (5F—8QE)錯体を有機発光層に含む有機エレクト口
3
ルミネッセンス素子の作製(2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 63と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 10V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 22Vにおいて 39cdZm2で発光した。この素子の最大電流効率は + 14Vで 0. 12cd Z Aであった。
[0350] 実施例 65 Au (PCy ) (5F—8QE)錯体を有機発光層に含む有機エレクトロルミネ
3
ッセンス素子の作製
ITO被膜付きガラスを透明電極基板として用い、アルバック機工製真空蒸着装置を 使用して、同基板上に 2 X 10_3Pa以下の真空度で、 TPD力もなるホール輸送層(3) を膜厚 40nm、 mCP中に Au (PCy ) (5F— 8QE)錯体を 9重量%含む発光層(4)を
3
膜厚 20nm、 TAZからなるホールブロック層(5)を 30nm、 A1電極(6)を 100nm、順 次真空蒸着させてエレクト口ルミネッセンス素子を作製した。
なお、真空蒸着は、基板に対向して置かれた坩堝に原料を仕込み、坩堝ごと原料 を加熱することによって行った。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 10V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 21¥にぉぃて40じ(171112で発光した。この素子の最大電流効率は + 19Vで 0. 055c dZAであった。
[0351] 実施例 66 Au (PCy ) (5F—8QE)錯体を有機発光層に含む有機エレクトロルミネ
3
ッセンス素子の作製(2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 65と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 11V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 23Vにおいて 37cdZm2で発光した。この素子の最大電流効率は + 15Vで 0. 17cd Z Aであった。
[0352] 実施例 67 Au[P (o— Tol) ] (5C1—8QE)錯体を有機発光層に含む有機エレクト
3
口ルミネッセンス素子の作製
ITO被膜付きガラスを透明電極基板として用い、アルバック機工製真空蒸着装置を 使用して、同基板上に 2 X 10_3Pa以下の真空度で、 TPD力もなるホール輸送層(3) を膜厚 40nm、 mCP中に Au[P (o— Tol) ] (5C1— 8QE)錯体を 9重量%含む発光
3
層(4)を膜厚 20nm、 TAZからなるホールブロック層(5)を 30nm、 Alqからなる電子 輸送層 (7)を 30nm、 A1電極(6)を 100nm、順次真空蒸着させてエレクト口ルミネッ センス素子を作製した。
なお、真空蒸着は、基板に対向して置かれた坩堝に原料を仕込み、坩堝ごと原料 を加熱することによって行った。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 11V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 22Vにおいて 38cdZm2で発光した。この素子の最大電流効率は + 15Vで 0. 18cd Z Aであった。
[0353] 実施例 68 Au (PCy ) (5C1—8QE)錯体を有機発光層に含む有機エレクトロルミネ
3
ッセンス素子の作製
ITO被膜付きガラスを透明電極基板として用い、アルバック機工製真空蒸着装置を 使用して、同基板上に 2 X 10_3Pa以下の真空度で、 TPD力もなるホール輸送層(3) を膜厚 40nm、 mCP中に Au (PCy ) (5C1— 8QE)錯体を 9重量%含む発光層(4)
3
を膜厚 20nm、 TAZからなるホールブロック層(5)を 30nm、 A1電極(6)を 100nm、 順次真空蒸着させてエレクト口ルミネッセンス素子を作製した。
なお、真空蒸着は、基板に対向して置かれた坩堝に原料を仕込み、坩堝ごと原料 を加熱することによって行った。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 12V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 18Vにおいて 13cdZm2で発光した。このときの最大電流効率は 0. 025cdZAであ つた o
[0354] 実施例 69 Au (PCy ) (5C1—8QE)錯体を有機発光層に含む有機エレクトロルミネ
3
ッセンス素子の作製(2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 68と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 11V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 23Vにおいて 32cdZm2で発光した。この素子の最大電流効率は + 16Vで 0. 16cd Z Aであった。
[0355] 実施例 70 Au (PPh ) (6QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製
ITO被膜付きガラスを透明電極基板として用い、アルバック機工製真空蒸着装置を 使用して、同基板上に 2 X 10_3Pa以下の真空度で、 TPD力もなるホール輸送層(3) を膜厚 40nm、 CBP中に Au (PPh ) (6QE)錯体を 9重量%含む発光層(4)を膜厚 3
3
Onm、 TAZからなるホーノレブロック層(5)を 30nm、電極(6)としてァノレミニゥム(A1) を 100nm、順次真空蒸着させてエレクト口ルミネッセンス素子を作製した。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 11V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 23Vにおいて 18cdZm2で発光した。この素子の最大電流効率は + 14Vにおける 0 . 13cdZAであった。
[0356] 実施例 71 Au (PPh ) (6QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製 (2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 70と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 14V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 27Vにおいて 19cdZm2で発光した。この素子の最大電流効率は + 18Vにおける 0 . l lcdZAであった。
[0357] 実施例 72 Au (PPh ) (5QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製 (2)
ITO被膜付きガラスを透明電極基板として用い、同基板上に 2 X 10_3Pa以下の真 空度で、 TPDからなるホール輸送層(3)を膜厚 40nm、 mCP中に Au(PPh ) (5QE
3
)錯体を 9重量%含む発光層(4)を膜厚 30nm、 TAZからなるホールブロック層(5) を 30nm、電極(6)としてアルミニウム (A1)を 100nm、順次真空蒸着させてエレクト口 ルミネッセンス素子を作製した。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 12V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 20Vにおいて 15cdZm2で発光した。この素子の最大電流効率は + 18Vにおける 0 . 018cdZAであった。
[0358] 実施例 73 Au (PPh ) (5QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製 (3)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 72と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 11V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 23Vにおいて 5. 9cdZm2で発光した。この素子の最大電流効率は + 17Vにおける 0. 027cdZAであった。
[0359] 実施例 74 Au (PPh ) (6QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製 (3)
ITO被膜付きガラスを透明電極基板として用い、同基板上に 2 X 10_3Pa以下の真 空度で、 TPDからなるホール輸送層(3)を膜厚 40nm、 mCP中に Au(PPh ) (6QE
3
)錯体を 9重量%含む発光層(4)を膜厚 30nm、 TAZからなるホールブロック層(5) を 30nm、電極(6)としてアルミニウム (A1)を 100nm、順次真空蒸着させてエレクト口 ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 12V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 20Vにおいて 29cdZm2で発光した。この素子の最大電流効率は + 15Vにおける 0 . 076cdZAであった。
[0360] 実施例 75 Au (PPh ) (6QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製 (4)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 74と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 12V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 23Vにおいて 39cdZm2で発光した。この素子の最大電流効率は + 17Vにおける 0 . 21cdZAであった。
[0361] 実施例 76 Au (PPh ) (2QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製
ITO被膜付きガラスを透明電極基板として用い、同基板上に 2 X 10_3Pa以下の真 空度で、 TPDからなるホール輸送層(3)を膜厚 40nm、 mCP中に Au(PPh ) (2QE
3
)錯体を 9重量%含む発光層(4)を膜厚 30nm、 TAZからなるホールブロック層(5) を 30nm、電極(6)としてアルミニウム (A1)を 100nm、順次真空蒸着させてエレクト口 ルミネッセンス素子を作製した。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 9V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 2 3Vにおいて 41cdZm2で発光した。この素子の最大電流効率は + 21Vにおける 0. 064cdZAであった。
[0362] 実施例 77 Au (PPh ) (2QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製 (2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 76と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 9V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 2 5Vにおいて 25cdZm2で発光した。この素子の最大電流効率は + 15Vにおける 0. 16cdZAであった。
[0363] 実施例 78 Au (PPh ) (7QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製
ITO被膜付きガラスを透明電極基板として用い、同基板上に 2 X 10_3Pa以下の真 空度で、 TPDからなるホール輸送層(3)を膜厚 40nm、 mCP中に Au(PPh ) (7QE
3
)錯体を 9重量%含む発光層(4)を膜厚 30nm、 TAZからなるホールブロック層(5) を 30nm、電極(6)としてアルミニウム (A1)を 100nm、順次真空蒸着させてエレクト口 ルミネッセンス素子を作製した。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 +8V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 1 9Vにおいて 65cdZm2で発光した。この素子の最大電流効率は + 12Vにおける 0. 20cdZAであった。
また同素子の発光スペクトルを実施例 51と同様にして測定した。この素子の発光ス ベクトルは 400nm付近にピークを有しており、 CIE色度座標値を求めると(0. 16, 0 . 12)であった。
[0364] 実施例 79 Au (PPh ) (7QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製 (2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 78と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 11V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 21Vにおいて 42cdZm2で発光した。この素子の最大電流効率は + 16Vにおける 0 . 17cdZAであった。
[0365] 実施例 80 Au (PPh ) (4QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製
ITO被膜付きガラスを透明電極基板として用い、同基板上に 2 X 10_3Pa以下の真 空度で、 TPDからなるホール輸送層(3)を膜厚 40nm、 mCP中に Au(PPh ) (4QE
3
)錯体を 9重量%含む発光層(4)を膜厚 30nm、 TAZからなるホールブロック層(5) を 30nm、電極(6)としてアルミニウム (A1)を 100nm、順次真空蒸着させてエレクト口 ルミネッセンス素子を作製した。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 9V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 2 IVにおいて 44cdZm2で発光した。この素子の最大電流効率は + 13Vにおける 0. 21cdZAであった。
[0366] 実施例 81 Au (PPh ) (4QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製 (2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 80と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 10V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 24Vにおいて 33cdZm2で発光した。この素子の最大電流効率は + 15Vにおける 0 . 17cdZAであった。
[0367] 実施例 82 Au[P (i— Pr) ] (8QE)錯体を有機発光層に含む有機エレクト口ルミネッ
3
センス素子の作製
ITO被膜付きガラスを透明電極基板として用い、同基板上に 2 X 10_3Pa以下の真 空度で、 TPDからなるホール輸送層(3)を膜厚 40nm、 CBP中に Au[P (i—Pr) ] (
3
8QE)錯体を 9重量%含む発光層(4)を膜厚 30nm、 TAZからなるホールブロック層 (5)を 30nm、電極(6)としてアルミニウム (A1)を 100nm、順次真空蒸着させてエレ タトロルミネッセンス素子を作製した。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 10V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 23Vにお!/、て 56cdZm2で発光した。この素子の最大電流効率は + 14Vにおける 0 . 15cdZAであった。
[0368] 実施例 83 Au[P (i— Pr) ] (8QE)錯体を有機発光層に含む有機エレクト口ルミネッ センス素子の作製(2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 82と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 12V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 25Vにおいて 34cdZm2で発光した。この素子の最大電流効率は + 19Vにおける 0 . 099cdZAであった。
[0369] 実施例 84 Au (PCy ) (8QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製
ITO被膜付きガラスを透明電極基板として用い、同基板上に 2 X 10_3Pa以下の真 空度で、 TPDからなるホール輸送層(3)を膜厚 40nm、 CBP中に Au(PCy ) (8QE
3
)錯体を 9重量%含む発光層(4)を膜厚 30nm、 TAZからなるホールブロック層(5) を 30nm、電極(6)としてアルミニウム (A1)を 100nm、順次真空蒸着させてエレクト口 ルミネッセンス素子を作製した。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 +8V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 2 2Vにお!/、て 68cdZm2で発光した。この素子の最大電流効率は + 1 IVにおける 0. 14cdZAであった。
[0370] 実施例 85 Au (PCy ) (8QE)錯体を有機発光層に含む有機エレクト口ルミネッセン
3
ス素子の作製 (2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 84と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 10V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 21Vにおいて 50cdZm2で発光した。この素子の最大電流効率は + 18Vにおける 0 . 20cdZAであった。
[0371] 実施例 86 Au (P (Mes) ) (8QE)錯体を有機発光層に含む有機エレクト口ルミネッ
3
センス素子の作製 ITO被膜付きガラスを透明電極基板として用い、同基板上に 2 Χ 10_3Pa以下の真 空度で、 TPDからなるホール輸送層(3)を膜厚 40nm、 CBP中に Au(P (Mes) ) (8
3
QE)錯体を 9重量%含む発光層(4)を膜厚 30nm、 TAZからなるホールブロック層( 5)を 30nm、電極(6)としてアルミニウム (A1)を 100nm、順次真空蒸着させてエレク トロルミネッセンス素子を作製した。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 10V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 21Vにおいて 61cdZm2で発光した。この素子の最大電流効率は + 14Vにおける 0 . 12cdZAであった。
[0372] 実施例 87 Au (P (Mes) ) (8QE)錯体を有機発光層に含む有機エレクト口ルミネッ
3
センス素子の作製(2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 86と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 10V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 23Vにおいて 52cdZm2で発光した。この素子の最大電流効率は + 16Vにおける 0 . 16cdZAであった。
[0373] 実施例 88 Au (P (p— MeOC H ) ) ] (8QE)錯体を有機発光層に含む有機エレク
6 4 3
トロルミネッセンス素子の作製
ITO被膜付きガラスを透明電極基板として用い、同基板上に 2 X 10_3Pa以下の真 空度で、 TPDからなるホール輸送層(3)を膜厚 40nm、 CBP中に Au(P (p— MeOC H ) ) ] (8QE)錯体を 9重量%含む発光層(4)を膜厚 30nm、TAZ力もなるホール
6 4 3
ブロック層 (5)を 30nm、電極 (6)としてアルミニウム (A1)を 100nm、順次真空蒸着さ せてエレクト口ルミネッセンス素子を作製した。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 9V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 2 2Vにおいて 68cdZm2で発光した。この素子の最大電流効率は + 14Vにおける 0. 18cdZAであった。 [0374] 実施例 89 Au (P (p— MeOC H ) ) ] (8QE)錯体を有機発光層に含む有機エレク
6 4 3
トロルミネッセンス素子の作製(2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 88と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 12V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 24Vにおいて 39cdZm2で発光した。この素子の最大電流効率は + 17Vにおける 0 . 17cdZAであった。
[0375] 実施例 90 Au (P (o— Tol) ) (8QE)錯体を有機発光層に含む有機エレクトロルミネ
3
ッセンス素子の作製
ITO被膜付きガラスを透明電極基板として用い、同基板上に 2 X 10_3Pa以下の真 空度で、 TPDからなるホール輸送層(3)を膜厚 40nm、 CBP中に Au(P (o—Tol) )
3
(8QE)錯体を 9重量%含む発光層(4)を膜厚 30nm、 TAZからなるホールブロック 層(5)を 30nm、電極(6)としてアルミニウム (A1)を 100nm、順次真空蒸着させてェ レクト口ルミネッセンス素子を作製した。
前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 9V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 2 3Vにおいて 108cdZm2で発光した。この素子の最大電流効率は + 14Vにおける 0 . 31cdZAであった。
[0376] 実施例 91 Au (P (o— Tol) ) (8QE)錯体を有機発光層に含む有機エレクトロルミネ
3
ッセンス素子の作製(2)
ホールブロック層(5)と電極(6)の間に、 Alqからなる電子輸送層 (7)を 30nm、真 空蒸着した以外は実施例 90と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 12V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 24Vにおいて 38cdZm2で発光した。この素子の最大電流効率は + 18Vにおける 0 . 15cdZAであった。
[0377] 実施例 92 Pt (dmpe) (8QE) を有機発光層に含む有機エレクト口ルミネッセンス素 子の作製
ITO被膜付きガラスを透明電極基板として用い、アルバック機工製真空蒸着装置を 使用して、同基板上に 2 Χ 10_3Pa以下の真空度で、 TPD力もなるホール輸送層(3) を膜厚 40nm、 CBP中に Pt (dmpe) (8QE) を 9重量%含む発光層(4)を膜厚 20η
2
m、 TAZからなるホールブロック層(5)を 20nm、電極(6)としてアルミニウム(A1)を 膜厚 100nm、順次真空蒸着させて図 1に示すエレクト口ルミネッセンス素子を作製し た。
[0378] なお、真空蒸着は、基板に対向して置かれたアルミナ製坩堝に原料を仕込み、坩 堝ごと原料をタングステンフィラメントを用いて加熱することによって行った。このとき 坩堝に接触させた熱電対によって坩堝の温度を測定し、 Pt (dmpe) (8QE) を仕込
2 んだ坩堝の温度は、 280°Cを超えな 、範囲に制御した。
[0379] 前記素子の ITO電極 (2)を正極、 A1電極(6)を負極として通電し電極間電圧を上 げていくと、 + 16V付近から素子は肉眼ではっきりと分力る程度の青白色の発光を開 始し、 + 21Vにおいて 8cdZm2で発光した。このとき発光に係る電流効率を前記の 式で求めたところ 0. 09cdZAであった。
[0380] 実施例 93 Pt (dmpe) (8QE) を有機発光層に含む有機エレクト口ルミネッセンス素
2
子の作製
発光層(4)の膜厚を 30nm、ホールブロック層(5)の膜厚を 30nmとした以外は実 施例 92と同様にしてエレクト口ルミネッセンス素子を作製した。
前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 12V付近から素子は肉眼ではっきりと分力る程度の青白色発光を開始し、 + 2 0Vにおいて 33cdZm2で発光した。このとき電流効率は 0. 37cdZAであった。
[0381] 実施例 94 Pt (dmpe) (8QE) を有機発光層に含む有機エレクト口ルミネッセンス素
2
子の作製
ホールブロック層(5)と A1電極(6)の間に Alqからなる電子輸送層(7)を膜厚 30nm で挿入した以外は実施例 93と同様にしてエレクト口ルミネッセンス素子を作製した。 ( 図 2参照)
前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 16V付近から素子は肉眼ではっきりと分力る程度の青白色発光を開始し、 + 3 2Vにおいて 203cdZm2で発光した。このとき電流効率は 6. 3cdZAであった。
[0382] 実施例 95 Pt (dppe) (8QE) を有機発光層に含む有機エレクト口ルミネッセンス素
2
子の作製
ITO被膜付きガラスを透明電極基板として用い、アルバック機工製真空蒸着装置を 使用して、同基板上に 2 X 10_3Pa以下の真空度で、 TPD力もなるホール輸送層(3) を膜厚 40nm、 CBP中に Pt (dppe) (8QE) を 9重量%含む発光層(4)を膜厚 30nm
2
、 TAZからなるホールブロック層(5)を 30nm、電極(6)としてアルミニウム(A1)を膜 厚 100nm、順次真空蒸着させてエレクト口ルミネッセンス素子を作製した。(図 2参照 )
前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 20V付近から素子は肉眼ではっきりと分力る程度の青白色発光を開始し、 + 2 5Vにおいて 14cdZm2で発光した。このとき電流効率は 0. 34cdZAであった。
[0383] 実施例 96 Pt (dppe) (8QE) を有機発光層に含む有機エレクト口ルミネッセンス素
2
子の作製
ホールブロック層(5)と A1電極(6)の間に Alqからなる電子輸送層(7)を膜厚 30nm で挿入した以外は実施例 95と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 24V付近から素子は肉眼ではっきりと分力る程度の青白色発光を開始し、 + 3 IVにおいて 36cdZm2で発光した。このとき電流効率は 0. lcdZAであった。
[0384] 実施例 97 Pt (dmpe) (7QE) を有機発光層に含む有機エレクト口ルミネッセンス素
2
子の作製
CBP中に Pt (dmpe) (7QE) を 10重量%含む発光層(4)を用いた以外は実施例
2
93と同様にしてエレクト口ルミネッセンス素子を作製した。
前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 11V付近から素子は肉眼ではっきりと分力る程度の白色発光を開始し、 + 22V において 5. 4cdZm2で発光した。この素子の最大電流効率は + 14Vにおける 0. 0 7cdZAであった。 [0385] 実施例 98 Pt (dmpe) (7QE) を有機発光層に含む有機エレクト口ルミネッセンス素
2
子の作製
ホールブロック層(5)と A1電極(6)の間に Alqからなる電子輸送層(7)を膜厚 30nm で挿入した以外は実施例 97と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 16V付近から素子は肉眼ではっきりと分力る程度の発光を開始し、 + 27Vにお いて 22cdZm2で発光した。この素子の最大電流効率は + 20Vにおける 0. 16cd/ Aであった。
[0386] 実施例 99 Pt (dmpe) (6QE) を有機発光層に含む有機エレクト口ルミネッセンス素
2
子の作製
CBP中に Pt (dmpe) (6QE) を 9重量%含む発光層(4)を用いた以外は実施例 9
2
3と同様にしてエレクト口ルミネッセンス素子を作製した。
前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 12V付近から素子は肉眼ではっきりと分力る程度の白色発光を開始し、 + 27V において lOcdZm2で発光した。この素子の最大電流効率は + 14Vにおける 0. 07 cdZAであった。
[0387] 実施例 100 Pt (dmpe) (6QE) を有機発光層に含む有機エレクト口ルミネッセンス
2
素子の作製
ホールブロック層(5)と A1電極(6)の間に Alqからなる電子輸送層(7)を膜厚 30nm で挿入した以外は実施例 98と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 19V付近から素子は肉眼ではっきりと分力る程度の白色発光を開始し、 + 30V において 28cdZm2で発光した。この素子の最大電流効率は + 22Vにおける 0. 13 cdZAであった。
[0388] 実施例 101 Pt (dmpe) (5QE) を有機発光層に含む有機エレクト口ルミネッセンス
2
素子の作製
CBP中に Pt (dmpe) (5QE) を 9重量%含む発光層(4)を用いた以外は実施例 9
2
2と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 10V付近から素子は肉眼ではっきりと分力る程度の青白色発光を開始し、 + 2 IVにおいて 92cdZm2で発光した。このとき電流効率は 0. 09cdZAであった。
[0389] 実施例 102 Pt (dmpe) (5QE) を有機発光層に含む有機エレクト口ルミネッセンス
2
素子の作製
発光層(4)の膜厚を 30nm、ホールブロック層(5)の膜厚を 30nmとした以外は実 施例 100と同様にしてエレクト口ルミネッセンス素子を作製した。
前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 12V付近から素子は肉眼ではっきりと分力る程度の青白色発光を開始し、 + 2 4Vにおいて 66cdZm2で発光した。このとき電流効率は 0. 71cdZAを示した。
[0390] 実施例 103 Pt (dmpe) (5QE) を有機発光層に含む有機エレクト口ルミネッセンス
2
素子の作製
ホールブロック層(5)と A1電極(6)の間に Alqからなる電子輸送層(7)を膜厚 30nm で挿入した以外は実施例 102と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 16V付近から素子は肉眼ではっきりと分力る程度の青白色発光を開始し、 + 2 9Vにおいて 51cdZm2で発光した。このとき電流効率は 0. 59cdZAであった。
[0391] 実施例 104 Pt (dmpe) (4QE) を有機発光層に含む有機エレクト口ルミネッセンス
2
素子の作製
CBP中に Pt (dmpe) (4QE) を 9重量%含む発光層(4)を用いた以外は実施例 9
2
3と同様にしてエレクト口ルミネッセンス素子を作製した。
前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 10V付近から素子は肉眼ではっきりと分力る程度の白色発光を開始し、 + 18V において 57cdZm2で発光した。この時の最大電流効率は 0. 075cdZAであった。
[0392] 実施例 105 Pt (dmpe) (4QE) を有機発光層に含む有機エレクト口ルミネッセンス
2
素子の作製
ホールブロック層(5)と A1電極(6)の間に Alqからなる電子輸送層(7)を膜厚 30nm で挿入した以外は実施例 93と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 14V付近から素子は肉眼ではっきりと分力る程度の白色発光を開始し、 + 25V において 22cdZm2で発光した。この素子の最大電流効率は + 19Vにおける 0. 21 cdZAであった。
[0393] 実施例 106 Pt (dmpe) (3QE) を有機発光層に含む有機エレクト口ルミネッセンス
2
素子の作製
CBP中に Pt (dmpe) (3QE) を 9重量%含む発光層(4)を用いた以外は実施例 9
2
3と同様にしてエレクト口ルミネッセンス素子を作製した。
前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 13V付近から素子は肉眼ではっきりと分力る程度の白色発光を開始し、 + 23V において 14cdZm2で発光した。この素子の最大電流効率は + 14Vにおける 0. 14 cdZAであった。
[0394] 実施例 107 Pt (dmpe) (3QE) を有機発光層に含む有機エレクト口ルミネッセンス
2
素子の作製
ホールブロック層(5)と A1電極(6)の間に Alqからなる電子輸送層(7)を膜厚 30nm で挿入した以外は実施例 106と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 19V付近から素子は肉眼ではっきりと分力る程度の白色発光を開始し、 + 30V において 38cdZm2で発光した。この素子の最大電流効率は + 21Vにおける 0. 16 cdZAであった。
[0395] 実施例 108 Pt (dmpe) (2QE) を有機発光層に含む有機エレクト口ルミネッセンス
2
素子の作製
CBP中に Pt (dmpe) (2QE) を 9重量%含む発光層(4)を用いた以外は実施例 9
2
3と同様にしてエレクト口ルミネッセンス素子を作製した。
前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 12V付近から素子は肉眼ではっきりと分力る程度の白色発光を開始し、 + 22V において 9cdZm2で発光した。この素子の最大電流効率は + 17Vにおける 0. 11c dZAであった。 [0396] 実施例 109 Pt (dmpe) (2QE) を有機発光層に含む有機エレクト口ルミネッセンス
2
素子の作製
ホールブロック層(5)と A1電極(6)の間に Alqからなる電子輸送層(7)を膜厚 30nm で挿入した以外は実施例 108と同様にしてエレクト口ルミネッセンス素子を作製した。 前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 19V付近から素子は肉眼ではっきりと分力る程度の白色発光を開始し、 + 26V において 22cdZm2で発光した。この素子の最大電流効率は + 21Vにおける 0. 13 cdZAであった。
[0397] 実施例 110 Pt (dmpe) (8QE) を有機発光層に含む有機エレクト口ルミネッセンス
2
素子の作製
ITO被膜付きガラスを透明電極基板として用い、アルバック機工製真空蒸着装置を 使用して、同基板上に 2 X 10_3Pa以下の真空度で、 TPD力もなるホール輸送層(3) を膜厚 40nm、 CBP中に Pt (dmpe) (8QE) を 9重量%含む発光層(4)を膜厚 30η
2
m、 TAZからなるホールブロック層(5)を 30nm、 Alqからなる電子輸送層 (7)を膜厚 30nm、電極(6)としてアルミニウム (A1)を膜厚 100nm、順次真空蒸着させてエレク トロルミネッセンス素子を作製した。
前記素子の ITO電極を正極、 A1電極を負極として通電し電極間電圧を上げて!/、く と、 + 16V付近から素子は肉眼ではっきりと分力る程度の青色発光を開始し、 + 32V において 203cdZm2で発光した。このとき電流効率は 6. 3cdZAであった。
産業上の利用可能性
[0398] 本発明は、有機エレクト口ルミネッセンス素子用の青色又は白色発光材料に有用な 上記式(1)で示されるェチュル基置換縮合へテロ環化合物重金属錯体及び同錯体 を有機化合物薄層の内、少なくとも 1つに含む有機エレクト口ルミネッセンス素子を提 供することができる。この有機エレクト口ルミネッセンス素子は電圧印加により青色又 は白色の発光を示す。
本発明によれば、また、副生成物を殆ど生成することなぐ収率良く上記式(1)で示 されるェチニル基置換縮合へテロ環化合物重金属錯体を製造する方法を提供する ことができる。 本発明は、更に、有機エレクト口ルミネッセンス素子用材料の原料として有用である ェチュル基置換縮合へテロ環化合物 (上記式 (2) )を収率良く製造する方法を提供 すると共に、有機エレクト口ルミネッセンス素子用材料の原料として有用な新規のェチ -ル基置換縮合へテロ環化合物 (上記式 (4) )を提供することができる。

Claims

請求の範囲
[1] 下記式(1)
Figure imgf000098_0001
式中、 Mは、重金属元素を表し、 Lは、単座配位子または二座配位子を表し、 Z は、ハロゲン原子、アルキル基、ァルケ-ル基、ァリール基、ァラルキル基、アル コキシ基、ァリールォキシ基、ニトロ基、シァノ基、又はジアルキルアミノ基を表 し、 nは 0〜6の整数であり、複数の Zはそれぞれ同一でも異なっていても良ぐ Z力 アルキル基、ァルケ-ル基、ァリール基、ァラルキル基、アルコキシ基、ァ リールォキシ基、又はジアルキルァミノ基の場合、隣接したこれら 2つの基が結 合して環を形成しても良ぐ A及び Bは、それぞれ CH又は Nを表し、 A又は Bが CHの場合、その水素原子は Z又はェチュル基で置換されていても良ぐ kは 1 〜4の整数である、
で示されるェチュル基置換縮合へテロ環化合物重金属錯体。
[2] M力 Au, Pt, Ta, W, Re, Os及び Ir力 なる群より選択される周期律表第 6周期 の重金属元素である請求項 1記載のェチニル基置換縮合へテロ環化合物重金属錯 体。
[3] M力 金であり、 kが 1である請求項 1記載のェチニル基置換縮合へテロ環化合物
[4] Lが、下記一般式 (8)又は(9)
Figure imgf000098_0002
(8) (9) 式中、 R R2及び R3は、それぞれ同一或いは異なっていても良いアルキル 基、シクロアルキル基、又はァリール基を表し、 R4及び R5は、それぞれ同一 或いは異なっていても良い水素原子、ハロゲン原子、アルキル基、シクロアルキ ル基、アルケニル基、ァリール基、ァラルキル基、アルコキシ基、ァリールォキシ 基、ニトロ基、シァノ基、又はジアルキルアミノ基を表す、なお、 R4及び R5が アルキル基、ァルケ-ル基、ァリール基、ァラルキル基、アルコキシ基、ァリール ォキシ基、又はジアルキルァミノ基の場合、隣接した 2つの基が結合して環を形 成しても良い、
からなる群より選択された単座配位子である請求項 3記載のェチニル基置換縮合へ テロ環化合物重金属錯体。
[5] Mが、白金であり、 kが 2である請求項 1記載のェチュル基置換縮合へテロ環化合
[6] が、二座ホスフィン及び下記一般式( 10)〜( 12)で示される二座配位子カゝらなる 群より選ばれる二座配位子である請求項 5記載のェチュル基置換縮合へテロ環化合
Figure imgf000099_0001
式中、 mは 1〜5の整数を表し、 R6及び R7はアルキル基、シクロアルキル基 、又はァリール基を表し、それぞれ同一又は異なっていても良い。また、 Za、 Z b、 Zc、 Zd、 Zeはそれぞれ独立に 5又は 6員環を形成し得る非金属原子群を 表す。なお、これら 5又は 6員環は縮合環を形成しても良い。
[7] Lが、下記一般式(13)〜(22)で示される二座配位子カゝらなる群より選ばれる二座 配位子である請求項 5記載のェチニル基置換縮合へテロ環化合物重金属錯体。
Figure imgf000100_0001
(13)
( 14)
Figure imgf000100_0002
(17) ( 18)
Figure imgf000100_0003
式中、 m、 R6、 R7は前記と同義であり、
Figure imgf000100_0004
R9、 R10, R11及び R12は、 水素原子、ハロゲン原子、アルキル基、シクロアルキル基、ァルケ-ル基、ァリー ル基、ァラルキル基、アルコキシ基、ァリールォキシ基、ニトロ基、シァノ基、又 はジアルキルアミノ基を表し、これらの置換基は、それぞれ同一又は異なっても 良ぐこれらの置換基がアルキル基、シクロアルキル基、ァルケ-ル基、ァリ ール基、ァラルキル基、アルコキシ基、又はァリールォキシ基であり隣接する場 合、これらの置換基が結合して環を形成しても良い。
Mが金である場合、一級及び二級アルコールを除ぐ有機溶媒中、下記式(2):
Figure imgf000101_0001
式中、 Z、 n、 A及び Bは請求項 1と同義である、
で示されるェチニル基置換縮合へテロ環化合物と、下記式(3):
X ML (3)
k
式中、 Xはハロゲン原子を表し、 k、 M及び Lは請求項 1と同義である、 で示される重金属錯体とを、塩基存在下に反応させることを特徴とする請求項 1記載 の式(1)で示されるェチニル基置換縮合へテロ環化合物重金属錯体の製造法。
[9] 塩基がアルカリ金属アルコキシドである請求項 8記載のェチニル基置換縮合へテロ 環化合物重金属錯体の製造法。
[10] Mが Auであり、有機溶媒が三級アルコール、エーテル類、ハロゲン化炭化水素及 びこれらの混合物力 なる群より選ばれる溶媒である請求項 8記載のェチュル基置 換縮合へテロ環化合物重金属錯体の製造法。
[11] Mが Ptであり、有機溶媒がアルコール類である請求項 8載のェチュル基置換縮合 ヘテロ環化合物重金属錯体の製造法。
[12] 下記式 (4) :
Figure imgf000101_0002
式中、 X'はフッ素原子又は塩素原子を表し、 A及び Bは請求項 1と同義である、 で示されるェチュル基置換縮合へテロ環化合物。
式(4)で示される化合物が、 5—フルオロー 8—キノリルェチン、 5—クロロー 8—キノ リルェチン、 5—フルオロー 8—キナゾリルェチン、 5—クロロー 8—キナゾリルェチン、 5 フルォロ 8—キノキサリルェチン及び 5—クロロー 8—キノキサリルェチンからな る群より選択される少なくとも 1種である請求項 12記載の化合物。
0価パラジウム化合物の存在下、塩基性溶媒中、下記式 (5):
Figure imgf000102_0001
式中、 Z、 n、 A及び Bは、請求項 1と同義である、
で示されるトリフルォロメタンスルホニルォキシ基置換縮合へテロ環化合物と下記式 ( 6) :
Figure imgf000102_0002
で示される 2—メチルー 3 ブチンー2 オールとを反応させて、下記式(7):
Figure imgf000102_0003
式中、 Z、 n、 A及び Bは前記と同義である、
で示されるジメチルヒドロキシメチルー縮合へテロ環一アセチレン化合物とした後、こ れを塩基と反応させることを特徴とする請求項 8記載の式(2)で示されるェチニル基 置換縮合へテロ環化合物の製造法。
[15] 0価パラジウム化合物力 0価パラジウムホスフィン錯体又は 0価パラジウムォレフィ ン錯体であることを特徴とする請求項 14記載のェチニル基置換縮合へテロ環化合物 の製造法。
[161 塩基性溶媒がピぺリジン、ピロリジン、 N—アルキルピぺリジンもしくは N—アルキル ピロリジンであることを特徴とする請求項 14記載のェチニル基置換縮合へテロ環化 合物の製造法。
一対の電極間に発光層もしくは発光層を含む複数の有機化合物薄層を形成した 有機エレクト口ルミネッセンス素子であって、少なくとも 1層の有機化合物薄層が請求 項 1記載の式(1)で示されるェチニル基置換縮合へテロ環化合物重金属錯体の少 なくとも 1種を含有することを特徴とする有機エレクト口ルミネッセンス素子。
PCT/JP2005/008668 2004-05-12 2005-05-12 エチニル基置換縮合ヘテロ環化合物重金属錯体、その製造法、その合成中間体及びその製造法並びに有機エレクトロルミネッセンス素子 WO2005108404A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006513046A JP4470940B2 (ja) 2004-05-12 2005-05-12 エチニル基置換縮合ヘテロ環化合物重金属錯体、その製造法、その合成中間体及びその製造法並びに有機エレクトロルミネッセンス素子

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2004141989 2004-05-12
JP2004-141989 2004-05-12
JP2004150360 2004-05-20
JP2004-150360 2004-05-20
JP2004156679 2004-05-26
JP2004156678 2004-05-26
JP2004-156678 2004-05-26
JP2004-156679 2004-05-26
JP2004163179 2004-06-01
JP2004-163179 2004-06-01
JP2004-167938 2004-06-07
JP2004167938 2004-06-07
JP2004309863 2004-10-25
JP2004-309863 2004-10-25

Publications (1)

Publication Number Publication Date
WO2005108404A1 true WO2005108404A1 (ja) 2005-11-17

Family

ID=35320179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008668 WO2005108404A1 (ja) 2004-05-12 2005-05-12 エチニル基置換縮合ヘテロ環化合物重金属錯体、その製造法、その合成中間体及びその製造法並びに有機エレクトロルミネッセンス素子

Country Status (3)

Country Link
JP (1) JP4470940B2 (ja)
TW (1) TW200602292A (ja)
WO (1) WO2005108404A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173552A (ja) * 2004-11-17 2006-06-29 Ube Ind Ltd 有機エレクトロルミネッセンス素子
JPWO2008153088A1 (ja) * 2007-06-13 2010-08-26 宇部興産株式会社 有機エレクトロルミネッセンス素子及び素子用材料
JP2011233912A (ja) * 2004-11-17 2011-11-17 Ube Ind Ltd 有機エレクトロルミネッセンス素子
WO2017093544A1 (en) * 2015-12-02 2017-06-08 Auspherix Limited Alkynyl phosphine gold complexes for treating bacterial infections

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514361A (ja) * 1995-10-16 1999-12-07 藤沢薬品工業株式会社 H+−ATPaseとしての複素環式化合物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11514361A (ja) * 1995-10-16 1999-12-07 藤沢薬品工業株式会社 H+−ATPaseとしての複素環式化合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOHLER A ET AL: "The singlet-triplet energy gap in organic and Pt-containing phenylene ethynylene polymers and monomers.", JOURNAL OF CHEMICAL PHYSICS., vol. 116, no. 21, 2002, pages 9457 - 9463 *
YAMAMOTO Y ET AL: "The first luminescent anionic bis (ethynylphenanthroline) gold (I) complex.", CHEMISTRY LETTERS., vol. 33, no. 3, 2004, pages 210 - 211 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173552A (ja) * 2004-11-17 2006-06-29 Ube Ind Ltd 有機エレクトロルミネッセンス素子
JP2011233912A (ja) * 2004-11-17 2011-11-17 Ube Ind Ltd 有機エレクトロルミネッセンス素子
JPWO2008153088A1 (ja) * 2007-06-13 2010-08-26 宇部興産株式会社 有機エレクトロルミネッセンス素子及び素子用材料
WO2017093544A1 (en) * 2015-12-02 2017-06-08 Auspherix Limited Alkynyl phosphine gold complexes for treating bacterial infections

Also Published As

Publication number Publication date
TW200602292A (en) 2006-01-16
JPWO2005108404A1 (ja) 2008-03-21
JP4470940B2 (ja) 2010-06-02

Similar Documents

Publication Publication Date Title
JP5984689B2 (ja) 有機金属錯体及びこれを用いた有機発光素子
JP2023126333A (ja) 発光材料、発光素子、および蒸着用材料
TWI475004B (zh) Organic electroluminescent elements
TWI485228B (zh) Organic electroluminescent elements
TWI471406B (zh) A phosphorescent element, and an organic electroluminescent device using the same
TWI523840B (zh) Light-emitting element materials and light-emitting elements
KR101313730B1 (ko) 유기 전계 발광 소자
TWI466980B (zh) Organic electroluminescent elements
JP4784600B2 (ja) 置換エチニル金−含窒素ヘテロ環カルベン錯体及びそれを用いた有機エレクトロルミネッセンス素子
JP5807637B2 (ja) 電子輸送材料およびこれを用いた有機電界発光素子
TW200946636A (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
TW201315728A (zh) 含氮雜芳香族環化合物
TW201202195A (en) Organic electroluminescent element
KR20080052573A (ko) 전자 수송 재료 및 이것을 이용한 유기 전계발광 소자
TWI503397B (zh) 發光元件材料及發光元件
TW201036937A (en) Organic electroluminescent element
KR20120031684A (ko) 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
KR20150043572A (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
TWI521044B (zh) 發光元件材料及發光元件
WO2005108404A1 (ja) エチニル基置換縮合ヘテロ環化合物重金属錯体、その製造法、その合成中間体及びその製造法並びに有機エレクトロルミネッセンス素子
WO2005003095A1 (ja) 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2014005223A (ja) イリジウム錯体及びそれを用いた有機エレクトロルミネッセンス素子
KR101865051B1 (ko) 신규한 유기발광화합물 및 이를 포함하는 유기 발광 소자
KR20070088986A (ko) 적색 발광 화합물 및 이를 발광재료로서 채용하고 있는발광소자
TWI656118B (zh) 氰基吡啶化合物、電子輸送材料及有機電場發光元件

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006513046

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase