WO2005107979A1 - Gasspülvorrichtung - Google Patents

Gasspülvorrichtung Download PDF

Info

Publication number
WO2005107979A1
WO2005107979A1 PCT/EP2005/004765 EP2005004765W WO2005107979A1 WO 2005107979 A1 WO2005107979 A1 WO 2005107979A1 EP 2005004765 W EP2005004765 W EP 2005004765W WO 2005107979 A1 WO2005107979 A1 WO 2005107979A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
ceramic body
purging device
inner element
gas purging
Prior art date
Application number
PCT/EP2005/004765
Other languages
English (en)
French (fr)
Inventor
Stefan Munding
Germann Munding
Original Assignee
Stefan Munding
Germann Munding
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34968737&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005107979(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Stefan Munding, Germann Munding filed Critical Stefan Munding
Priority to US11/579,706 priority Critical patent/US7645418B2/en
Priority to EP05745483A priority patent/EP1771265B1/de
Priority to DE200550003224 priority patent/DE502005003224D1/de
Publication of WO2005107979A1 publication Critical patent/WO2005107979A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0402Cleaning, repairing, or assembling
    • Y10T137/0491Valve or valve element assembling, disassembling, or replacing
    • Y10T137/0519Plug valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2278Pressure modulating relays or followers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/2931Diverse fluid containing pressure systems
    • Y10T137/2937Gas pressure discharge of liquids feed traps [e.g., to boiler]

Definitions

  • the invention relates to a gas flushing device for a metallurgical melting vessel, with a conically shaped ceramic body, which comes into contact on its upper side with a metal melt located in the melting vessel, the ceramic body comprising a static outer element and an inner element axially movable therein, and with a pneumatic drive , by means of which the inner element can be moved back and forth axially between a closed position and an open position relative to the outer element of the ceramic body, a spring being provided by the spring force of which the inner element is held in the closed position, and with one arranged on the underside of the ceramic body , gas-tight closed volume, which is connected to a gas supply line for introducing purge gas.
  • Such gas purging devices are usually used for introducing purging gas into a molten metal which is located in a metallurgical melting vessel, for example in a steel ladle or in a converter.
  • the purge gas is usually an inert gas that is blown into the vessel under high pressure of, for example, 6-10 bar. Above all, this is intended to achieve thorough mixing of the molten metal present in the melting vessel.
  • a gas purging device is known from DE 196 10 578 C1, in which the disadvantages resulting from the wear problem described above are largely eliminated.
  • the gas purging device previously known from the cited document has a conically shaped ceramic body which, unlike in the case of conventional purging stones, is not porous in order to enable the purging gas to be introduced into the molten metal.
  • the ceramic body in the known gas purging device consists of a static outer element and an inner element axially movable therein. The axial movement of the inner element relative to the outer element opens or closes an annular gap between the inner element and the outer element, through which the purging gas can get into the molten metal, as required.
  • a disadvantage of the known gas purging device is above all that the production of the ceramic body is extremely complex.
  • the outer element of the ceramic body has a conical recess for the movable inner element, the recess opening into a hollow chamber within the ceramic body. It is associated with great technical difficulties to provide a suitable casting mold for the ceramic body of the known gas purging device and in particular to remove this casting mold after the casting process, since projections and undercuts are formed by the hollow chamber mentioned.
  • a special gas supply line must be provided which is guided through the ceramic material of the static outer element so that the flushing gas to be blown into the molten metal can be introduced into the hollow chamber.
  • the axial movement of the inner element relative to the outer element takes place by means of a pneumatic drive.
  • the pressure of the introduced purge gas lifts the inner element out of its seat in the outer element against the hydrostatic pressure of the molten metal, so that the annular gap between the inner element and the outer element opens. Since in the known device the pneumatic drive must work against the hydrostatic pressure of the molten metal, it is disadvantageously necessary to supply the purge gas under a correspondingly high pressure.
  • the present invention is based on the object of providing a gas purging device in which, on the one hand, the high wear which occurs with conventional purging stones is avoided and, on the other hand, which can be operated safely and reliably at moderate purging gas pressures. At the same time, it should be possible to manufacture the device at low cost.
  • this object is achieved in that the pneumatic drive has a deformable membrane connected to the inner element, which acts on the pressure difference between the pressure of the purging gas prevailing in the gas-tight housing and the ambient pressure.
  • the gas purging device according to the invention does entirely without the hollow chamber arranged in the interior of the ceramic body, which is responsible for the complex manufacture of the ceramic body in the known gas purging device described above.
  • the gas purging device according to the invention fulfills a valve function, so that the high wear that is customary with conventional purging stones cannot occur.
  • What is essential in the gas purging device according to the invention is the special design of the pneumatic drive for moving the inner element of the ceramic body between the closed position and the open position.
  • the invention proposes to provide a deformable membrane, which acts on the pressure difference between the pressure of the purge gas and the ambient pressure.
  • the surface of the deformable membrane is sufficient so that sufficient force to move the inner element is applied at a moderate purge gas pressure.
  • a force that is sufficient to move the inner element against the hydrostatic pressure of the molten metal and / or against the spring force of the spring, which is provided for securely holding the inner element in the closed position, can be easily generated by means of the deformable membrane.
  • non-generic gas purging devices are known in which the ceramic body is surrounded on the side and on the underside by a sheet metal jacket.
  • An axially movable inner element in the ceramic body is connected to the bottom of the sheet metal jacket in the known gas purging devices.
  • Purge gas can be introduced through a corresponding opening into the space between the bottom of the sheet metal jacket and the ceramic body. Due to the pressure of the flushing gas, the bottom of the sheet metal shell bulges downward, taking the inner element of the ceramic body with it, so that an annular gap is formed in the ceramic body, through which the flushing gas is introduced into the metal melt.
  • a disadvantage of the gas purging devices known from the aforementioned publications is that the inner element of the ceramic body is kept in the closed position solely on account of the elastic properties of the base plate of the sheet metal jacket if no purging gas is introduced.
  • the base plate In practice, it can be seen that, due to the high temperatures in the vicinity of the molten metal, the base plate very quickly loses its elastic properties, so that the gas purging device no longer closes reliably. The molten metal then escapes from the metallurgical vessel in an uncontrolled manner through the gas flushing device, which can have catastrophic consequences in the steelworks.
  • the deformable membrane used according to the invention does not have to exert the considerable forces that are required to hold the inner element in the closed position.
  • the spring can be designed in terms of material, dimensioning, positioning, etc. in such a way that the high thermal load does not impair the function. An uncontrolled escape of the molten steel through the gas purging device is thus effectively avoided by the invention.
  • the static outer element can advantageously have an axial conical bore which runs from the top to the bottom of the ceramic body and which accommodates the movable inner element.
  • a ceramic body is particularly simple and inexpensive to manufacture.
  • the bore can taper from the bottom to the top of the ceramic body, which comes into contact with the molten metal located in the melting vessel.
  • the bore tapers in reverse from the top of the ceramic body to the bottom. The latter embodiment ensures that the inner element is pressed against the outer element due to the hydrostatic pressure of the molten metal acting on the upper side, which serves as a valve seat to a certain extent.
  • the inner element Due to the hydrostatic pressure of the molten metal, the inner element is thus held in the closed position in which the continuous conical annular gap between the inner element and the outer element is closed. In this position, neither gas is blown into the molten metal, nor can liquid metal run out of the melting vessel through the gas flushing device.
  • the inner element is moved upwards in the direction of the gas flow, so that the conical annular gap between the inner element and the outer element opens and the gas under high pressure can penetrate the liquid metal unhindered. If, on the other hand, the axial conical bore tapers from the bottom to the top, the inner element is reliably held in the closed position by the spring force when the purge gas flows is interrupted.
  • the ceramic inner element is moved downward against the purge gas flow in this embodiment.
  • a gas-tightly closed volume is arranged on the underside of the ceramic body and is connected to a gas feed line for introducing purging gas. Inside the volume there is then the pressure of the introduced purge gas, which is blown into the molten metal from the volume through the continuous conical annular gap between the inner element and the outer element of the ceramic body when the device is open.
  • the gas-tight closed volume is expediently formed by a housing on the underside of the ceramic body, the side wall of the gas-tight housing being conical in such a way that the conical shape of the ceramic body continues in the region of the housing.
  • the side wall can be designed as a conical sheet metal jacket, which laterally surrounds the entire gas purging device consisting of the ceramic body and the gas-tight housing attached to its underside. Due to the overall uniform conical shape of the gas purging device according to the invention, it can be easily installed in place of the conventional purging stones in the existing conical openings which have the usual metallurgical melting vessels in the floor or in the wall area.
  • the side wall of the gas-tight housing can be supported on the inner wall of the opening of the metallurgical melting vessel provided for the gas flushing device, so that it is ensured that the gas-tight housing can withstand the possibly high pressure of the introduced flushing gas.
  • the gas-tight housing of the gas purging device according to the invention is expediently closed on the underside by a base plate which is sealed off from the side wall, the base plate being supported by struts on a fastening plate attached to the underside of the ceramic body.
  • the fastening plate can be fastened to the ceramic body by means of suitable anchoring means. If the Gas flushing device is installed in a metallurgical melting vessel, this is only accessible via the base plate. Therefore, the gas supply line for introducing purge gas into the gas-tight housing should expediently be connected to the base plate.
  • the deformable membrane of the pneumatic drive can seal off the interior of the housing in a gas-tight manner from the environment.
  • This variant is particularly simple and inexpensive to implement.
  • purging gas is introduced into the gas-tight volume, the deformable membrane, which forms the bottom of the housing, bulges downward.
  • the inner element of the ceramic body connected to the membrane is then moved relative to the outer element, so that the annular gap opens for blowing in the purge gas.
  • the pneumatic function actuates the valve function of the gas purging device according to the invention.
  • the pneumatic drive is intended to ensure that, in particular, the pressure of the purge gas, which is also the working medium for the pneumatic drive, is sufficient to move the movable inner element against the force acting from the hydrostatic pressure of the molten metal or the spring from the closed position to the open position to move. Since a linear movement of the inner element relative to the outer element must be carried out to actuate the valve function of the gas purging device according to the invention, it is expedient to provide a push rod in the pneumatic drive, by means of which the deformable membrane is connected to the inner element. According to a particularly advantageous embodiment, this push rod is designed as a tube which at the same time serves as a gas feed line for introducing the purge gas into the gas-tight closed volume.
  • the pneumatic drive of the gas purging device can expediently comprise a membrane cylinder, a vent pipe being led out of the gas-tight housing being connected to the cylinder space of the membrane cylinder.
  • the pressure of the purge gas in the gas-tight housing acts on the piston of the membrane cylinder.
  • the cylinder space of the membrane cylinder is through that on the cylinder jacket clamped deformable membrane sealed, so that a total force acts on the piston of the membrane cylinder, which results from the pressure difference between the pressure in the gas-tight housing and the cylinder space vented to the outside.
  • Appropriate dimensioning of the membrane cylinder can ensure that the pressure of the flushing gas is sufficient in any case to reliably actuate the valve function of the gas flushing device according to the invention.
  • the deformable membrane of the gas purging device can be formed by a sheet metal jacket surrounding the ceramic body on the side and on the underside thereof. This sheet metal jacket then simultaneously encloses the gas-tight closed volume in the area below the shortened inner element of the ceramic body.
  • the gas-tightly closed volume in the area between the outer element of the ceramic body and the deformable membrane has the shape of a narrow gap in this embodiment, so that overall a particularly compact construction results.
  • thermal insulation is arranged between the ceramic body and the spring.
  • This thermal insulation protects the spring from the thermal load which is caused by the molten metal located in the metallurgical melting vessel.
  • the thermal insulation can be arranged in the form of a layer of known insulating material either between the ceramic body and the deformable membrane and / or between the deformable membrane and the spring. Exemplary embodiments of the invention are explained below with reference to the figures. Show it:
  • FIG. 1 sectional side view of a first embodiment of the gas purging device according to the invention
  • FIG. 2 sectional side view of a second embodiment of the gas purging device according to the invention.
  • FIG. 3a shows a sectional side view of a third embodiment of the gas purging device according to the invention.
  • 3b shows a sectional side view of a fourth embodiment of the gas purging device according to the invention. 4 view of the bottom of the gas purging device according to FIG. 2nd
  • the gas purging devices shown in FIGS. 1 and 2 are each installed in a metallurgical melting vessel, a section of a bottom wall 1 of the vessel being shown in the figures.
  • the gas purging devices each have a conically shaped ceramic body, which is designated as a whole in the figures with the reference number 2.
  • the ceramic body 2 which comes into contact with a metal melt 4 located in the melting vessel on its upper side 3, consists of a static outer element 5 and an inner element 6 axially movable therein.
  • FIG. 1 it can be seen that the inner element 6 of the top 3 of the ceramic body 2 is tapered towards the bottom 7 thereof.
  • the static outer element 5 thus forms a conical ring with an axial conical bore for the inner element 6, the tapering directions of the static outer element 5 and the inner element 6 being opposite.
  • the tapering directions of the outer element 5 and the inner element 6 are the same.
  • a continuous conical annular gap 8 is formed between the inner element 6 and the outer element 5, which extends from the top 3 of the ceramic body 2 to the bottom 7 thereof.
  • the gas purging devices shown in the figures are in the closed position, in which the conical annular gap 8 is closed, so that no purging gas can penetrate into the molten metal 4 through the annular gap 8. At the same time, no liquid metal can flow out of the melt 4 through the annular gap 8 in the closed position.
  • the inner element 6 is actuated upward, ie. H. moved to the molten metal 4.
  • the annular gap 8 opens when the inner element 6 is moved downward away from the molten metal 4.
  • a gas-tight volume 9 is arranged on the underside of the ceramic body 2, which is connected to a gas supply line for introducing purging gas.
  • a conical sheet metal jacket 10 forms the side wall of the gas-tight housing 9 in such a way that the conical shape of the ceramic body 2 continues in the region of the housing 9.
  • a base plate n sealed against the side wall 10 of the gas-tight housing 9 is further provided, the base plate n being connected via struts 12 to a fastening plate 13 attached to the underside of the ceramic body 2. Screws 14 anchored in the ceramic body 2 serve as fastening means in the gas purging device shown in FIG. 1.
  • a pneumatic drive 15 is fastened to the fastening plate 13 by means of spacer bolts, not shown in FIG 5 of the ceramic body 2 is axially movable between the closed position and an open position.
  • the pneumatic drive 15 is connected to the axially movable inner element 6 via a push rod 16.
  • the push rod 16 is axially movably guided in a stuffing box 17.
  • the spring 18 arranged by the spring force of the inner element 6 is held in the closed position.
  • the spring 18 is supported on the stuffing box 17 on the one hand and on a pressure plate 19 on the other hand.
  • the pressure plate 19 is movable up and down inside a membrane cylinder 20.
  • the cylinder space of the membrane cylinder 20 is sealed from the inside of the gas-tight housing 9 by means of a deformable membrane 21.
  • a vent pipe 22 led out of the gas-tight housing is connected to the cylinder space of the membrane cylinder 20.
  • the valve function of the gas purging device shown in FIG. 1 is actuated by the pressure difference between the pressure of the purge gas inside the gas-tight housing 9 and the pressure in the cylinder space vented to the outside.
  • the deformable membrane 21 closes the interior of the housing 9 in a gas-tight manner from the outside.
  • the push rod 16 is designed as a tube which has holes in the upper region for introducing purging gas into the gas-tight housing 9. Due to the pressure difference between the pressure of the flushing gas prevailing in the gas-tight housing 9 and the ambient pressure, the membrane 21 deforms and bends downward. The inner element 6 connected to the membrane 21 via the push rod 16 is moved downward, so that the annular gap 8 opens. For this purpose, the force of the spring 18 must be overcome, which holds the inner element 6 reliably in the closed position.
  • the spring 18 is located inside a spring housing 23, into which a prestressing ring 24 is screwed from below for prestressing the spring 18. With the preload ring 24, the preload of the spring 18 can be adjusted as required for the specific application.
  • the spring 18 is supported upwards against a thrust washer 25 screwed to the membrane 21.
  • the thrust washer 25 is screwed through the membrane 21 to a retaining ring 26, which in turn is gas-tightly welded to the push rod 16.
  • the push rod 16 is connected to the inner element 6 of the ceramic body 2 via a joint 27.
  • the joint 27 is formed by a connecting piece 28 which is received by a bearing pot 29.
  • the bearing pot 29 is fastened to the inner element 6 from below by means of threaded bolts 30.
  • the joint 27 can advantageously compensate for a lateral offset and also an angular offset of the push rod 16 relative to the inner element 6. Such an offset can easily occur due to the deformation of the membrane 21, which may not be precisely controllable, or else due to the thermal expansion of the entire device.
  • the joint 27 prevents, above all, damage to the inner element 6, which is made of brittle ceramic material, from occurring when the gas purging device is actuated due to the offset occurring.
  • FIGS. 3a and 3b show exemplary embodiments of the gas purging device according to the invention, which are designed similarly to the exemplary embodiment shown in FIG. 2.
  • the inner element 6 of the ceramic body 2 is shorter than the outer element 5, in such a way that the gas-tight closed volume 9 in the area below the inner element 6 in the Ceramic body extends into it.
  • the deformable membrane 21 is formed by the sheet metal jacket 10 which surrounds the ceramic body 2 laterally and on its underside 7.
  • annular support element in the form of a conical ring 31 is welded to the sheet metal jacket 10, which extends the sheet metal jacket 10 downwards.
  • the ring 31 is in turn welded to struts 30 through which the spring housing 23 is supported.
  • the embodiment shown in FIG. 3a is intended to be installed in a metallurgical melting vessel, similar to that shown in FIGS. 1 and 2, so that the device is flush with the wall of the vessel.
  • a cylindrical ring 32 is welded to the sheet metal jacket 10 and protrudes from the bottom wall or from the side wall of the metallurgical vessel.
  • the exemplary embodiments according to FIGS. 3a and 3b can be selected as required, depending on the available standing space in the vicinity of the metallurgical vessel and depending on the desired thickness of the ceramic body 2.
  • FIG. 4 which shows the gas purging device according to FIG. 2 from below, it can be seen how the spring housing 23 is supported by the struts 30 which are welded to the wall 10.
  • the purging gas is expediently supplied to the gas purging devices according to the invention by a 3-way valve arranged in the gas supply line, which is not shown in the figures.
  • a 3-way valve ensures that the annular gap 8 closes again quickly enough when the valve is shut off.
  • the purge gas supply is shut off, the gas under pressure in the housing 9 is simultaneously released into the environment. The full force of the spring 18 is then available for quickly closing the annular gap 8.
  • more than just one spring 18 can also be provided for holding the inner element 6 of the ceramic body 2 in the closed position. It is possible to have a plurality of springs act on the membrane 21 outside the central axis of the gas purging device in order to further increase the reliability of the gas purging device.
  • thermal insulation arranged between the ceramic body 2 and the spring 18.
  • a suitable layer of thermally insulating material can be accommodated in the exemplary embodiments shown in FIGS. 3a and 3b, for example, in the narrow gap between the outer element 5 of the ceramic body and the membrane 21. Such thermal insulation effectively protects the spring 18 against the high thermal load emanating from the molten metal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Glass Compositions (AREA)
  • Actuator (AREA)

Abstract

Die Erfindung betrifft eine Gasspülvorrichtung für ein metallurgisches Schmelzgefäß (1), mit einem konisch geformten Keramikkörper (2), der an seiner Oberseite (3) mit einer in dem Schmelzgefäß (1) befindlichen Metallschmelze (4) in Kontakt kommt, wobei der Keramikkörper (2) ein statisches Außenelement (5) und ein darin axial bewegliches Innenelement (6) umfasst, sowie mit einem pneumatischen Antrieb (15), durch den das Innenelement (6) relativ zum dem Außenelement (5) des Keramikkörpers (2) axial zwischen einer Schließstellung und einer Offenstellung hin und her bewegbar ist, wobei eine Feder (18) vorgesehen ist, durch deren Federkraft das Innenelement (6) in der Schließstellung gehalten wird und mit einem an der Unterseite (7) des Keramikkörpers (2) angeordneten, gasdicht abgeschlossenen Volumen (9), welches mit einer Gaszuleitung zum Einleiten von Spülgas verbunden ist. Zur Verbesserung einer derartigen Gasspülvorrichtung schlägt die Erfindung vor, dass der pneumatische Antrieb (15) eine mit dem Innenelement (6) verbundene verformbare Membran (21) aufweist, auf welche die Druckdifferenz zwischen dem in dem gasdicht abgeschlossenen Volumen (9) herrschenden Druck des Spülgases und dem Umgebungsdruck einwirkt.

Description

Gasspülvorrichtunα
Die Erfindung betrifft eine Gasspülvorrichtung für ein metallurgisches Schmelzgefäß, mit einem konisch geformten Keramikkörper, der an seiner Oberseite mit einer in dem Schmelzgefäß befindlichen Metallschmelze in Kontakt kommt, wobei der Keramikkörper ein statisches Außenelement und ein darin axial bewegliches Innenelement umfasst, sowie mit einem pneumatischen Antrieb, durch den das Innenelement relativ zu dem Außenelement des Keramikkörpers axial zwischen einer Schließstellung und einer Offenstellung hin und her bewegbar ist, wobei eine Feder vorgesehen ist, durch deren Federkraft das Innenelement in der Schließstellung gehalten wird, und mit einem an der Unterseite des Keramikkörpers angeordneten, gasdicht abgeschlossenen Volumen, welches mit einer Gaszuleitung zum Einleiten von Spülgas verbunden ist.
Solche Gasspülvorrichtungen werden üblicherweise zum Einleiten von Spülgas in eine Metallschmelze genutzt, welche sich in einem metallurgischen Schmelzgefäß, beispielsweise in einer Stahlgießpfanne oder in einem Konverter, befindet. Bei dem Spülgas handelt es sich in der Regel um ein Inertgas, das unter hohem Druck von beispielsweise 6 - 10 bar in das Gefäß eingeblasen wird. Dadurch soll vor allem eine gute Durchmischung der in dem Schmelzgefäß befindlichen Metallschmelze erreicht werden.
In Stahlwerken ist weltweit die Verwendung von Gasspülvorrichtungen verbreitet, die auch als „Spülsteine" bezeichnet werden. Dabei handelt es sich um kegelstumpfförmige poröse Keramikkörper, die für das einzublasende Spülgas durchlässig und für die Metallschmelze undurchlässig sind. Diese Spülsteine sind üblicherweise ganz oder teilweise von einem Blechgehäuse umgeben. Der Keramikkörper besteht dabei aus einem hochfeuerfesten Material auf Aluminiumoxidbasis. Der Hauptnachteil bei solchen herkömmlichen Spülsteinen ist vor allem, dass sich die Poren des Keramikkörpers in dessen oberflächennahen Bereichen relativ schnell zusetzen, da es zu einer Infiltration durch das flüssige Metall kommt. Die infiltrierten Bereiche müssen dann regelmäßig abgetragen werden, damit eine ausreichende Gasdurchlässigkeit erhalten bleibt. Damit ist zwangsläufig ein hoher Verschleiß verbunden, der wiederum hohe Kosten nach sich zieht. Nach einer gewissen Zeit sind die porösen Spülsteine nämlich soweit abgetragen, dass diese vollständig ersetzt werden müssen.
Aus der DE 196 10 578 C1 ist eine Gasspülvorrichtung bekannt, bei welcher die sich aus der zuvor beschriebenen Verschleißproblematik ergebenden Nachteile weitgehend beseitigt sind. Die aus der genannten Druckschrift vorbekannte Gasspülvorrichtung weist einen konisch geformten Keramikkörper auf, welcher nicht, wie bei den üblichen Spülsteinen, porös ist, um die Einleitung des Spülgases in die Metallschmelze zu ermöglichen. Stattdessen besteht der Keramikkörper bei der vorbekannten Gasspülvorrichtung aus einem statischen Außenelement und einem darin axial beweglichen Innenelement. Durch die axiale Bewegung des Innenelementes relativ zu dem Außenelement wird ein Ringspalt zwischen dem Innenelement und dem Außenelement, durch den das Spülgas in die Metallschmelze gelangen kann, nach Bedarf geöffnet oder geschlossen.
Nachteilig ist bei der vorbekannten Gasspülvorrichtung vor allem, dass die Herstellung des Keramikkörpers extrem aufwendig ist. Bei der vorbekannten Vorrichtung weist das Außenelement des Keramikkörpers eine konische Vertiefung für das bewegliche Innenelement auf, wobei die Vertiefung innerhalb des Keramikkörpers in eine Hohlkammer mündet. Es ist mit großen technischen Schwierigkeiten verbunden, eine geeignete Gießform für den Keramikkörper der vorbekannten Gasspülvorrichtung bereitzustellen und insbesondere diese Gießform nach dem Gießvorgang zu entfernen, da durch die erwähnte Hohlkammer Vorsprünge und Hinterschneidungen gebildet werden. Außerdem muss bei der vorbekannten Vorrichtung eine spezielle Gaszuführleitung vorgesehen sein, die durch das keramische Material des statischen Außenelementes hindurchgeführt ist, damit so das in die Metallschmelze einzublasende Spülgas in die Hohlkammer eingeleitet werden kann.
Bei der vorbekannten Gasspülvorrichtung erfolgt die axiale Bewegung des Innenelementes relativ zu dem Außenelement vermittels eines pneumatischen Antriebes. Durch den Druck des eingeleiteten Spülgases wird bei der vorbekannten Vorrichtung das Innenelement gegen den hydrostatischen Druck der Metallschmelze aus seinem Sitz in dem Außenelement herausgehoben, sodass sich der Ringspalt zwischen dem Innenelement und dem Außenelement öffnet. Da bei der vorbekannten Vorrichtung also der pneumatische Antrieb gegen den hydrostatischen Druck der Metallschmelze arbeiten muss, ist nachteiligerweise erforderlich, das Spülgas unter einem entsprechend hohen Druck zuzuführen.
Davon ausgehend liegt der vorliegenden Erfindung die Aufgabe zu Grunde, eine Gasspülvorrichtung bereitzustellen, bei welcher einerseits der bei herkömmlichen Spülsteinen auftretende hohe Verschleiß vermieden wird und welche andererseits sicher und zuverlässig bei moderaten Spülgasdrücken betrieben werden kann. Gleichzeitig soll eine Herstellbarkeit der Vorrichtung zu geringen Kosten möglich sein.
Ausgehend von einer Gasspülvorrichtung der eingangs genannten Art wird diese Aufgabe dadurch gelöst, dass der pneumatische Antrieb eine mit dem Innenelement verbundene verformbare Membran aufweist, auf welche die Druckdifferenz zwischen dem in dem gasdichten Gehäuse herrschenden Druck des Spülgases und dem Umgebungsdruck einwirkt.
Die erfindungsgemäße Gasspülvorrichtung kommt gänzlich ohne die im Inneren des Keramikkörpers angeordnete Hohlkammer aus, die bei der oben beschriebenen vorbekannten Gasspülvorrichtung für die aufwendige Herstellbarkeit des Keramikkörpers verantwortlich ist. Gleichzeitig erfüllt die erfindungsgemäße Gasspülvorrichtung eine Ventilfunktion, sodass der bei den herkömmlichen Spülsteinen übliche hohe Verschleiß nicht auftreten kann. Wesentlich ist bei der erfindungsgemäßen Gasspülvorrichtung die spezielle Ausbildung des pneumatischen Antriebs zum Bewegen des Innenelements des Keramikkörpers zwischen der Schließstellung und der Offenstellung. Die Erfindung schlägt vor, eine verformbare Membran vorzusehen, auf welche die Druckdifferenz zwischen dem Druck des Spülgases und dem Umgebungsdruck einwirkt. Die Fläche der verformbaren Membran reicht aus, damit bei moderatem Spülgasdruck eine ausreichende Kraft zum Bewegen des Innenelements aufgebracht wird. Problemlos kann mittels der verformbaren Membran eine Kraft erzeugt werden, die ausreicht, das Innenelement gegen den hydrostatischen Druck der Metallschmelze und/oder gegen die Federkraft der Feder, die zum sicheren Halten des Innenelementes in der Schließstellung vorgesehen ist, zu bewegen.
Aus den Druckschriften WO 01/08834 A1 und WO 01/83832 A1 sind nicht gattungsgemäße Gasspülvorrichtungen bekannt, bei denen der Keramikkörper seitlich und an der Unterseite von einem Blechmantel umgeben ist. Ein in dem Keramikkörper axial bewegliches Innenelement ist bei den vorbekannten Gasspülvorrichtungen mit dem Boden des Blechmantels verbunden. Durch eine entsprechende Öffnung ist Spülgas in den Zwischenraum zwischen dem Boden des Blechmantels und dem Keramikkörper einleitbar. Aufgrund des Drucks des Spülgases wölbt sich der Boden des Blechmantels nach unten und nimmt dabei das Innenelement des Keramikkörpers mit, sodass sich ein Ringspalt in dem Keramikkörper ausbildet, durch den das Spülgas in die Metallschmelze eingeleitet wird. Nachteilig ist bei den aus den zuvorgenannten Druckschriften vorbekannten Gasspülvorrichtungen, dass das Innenelement des Keramikkörpers ausschließlich aufgrund der elastischen Eigenschaften des Bodenblechs des Blechmantels in der geschlossenen Stellung gehalten wird, wenn kein Spülgas eingeleitet wird. In der Praxis zeigt sich, dass aufgrund der hohen Temperaturen in der Umgebung der Metallschmelze das Bodenblech sehr schnell seine elastischen Eigenschaften verliert, sodass die Gasspülvorrichtung nicht mehr zuverlässig schließt. Es tritt dann die Metallschmelze unkontrolliert durch die Gasspülvorrichtung aus dem metallurgischen Gefäß aus, was katastrophale Folgen im Stahlwerk haben kann. Diese Nachteile der vorbekannten Gasspülvorrichtung werden durch die Erfindung wirksam vermieden, da gemäß der Erfindung das Innenelement des Keramikkörpers durch eine Feder in die geschlossenen Stellung zurück gebracht wird. Die gemäß der Erfindung eingesetzte verformbare Membran muss die erheblichen Kräfte, die erforderlich sind, um das Innenelement in der Schließstellung zu halten, nicht aufbringen. Die Feder kann bei der erfindungsgemäßen Gasspülvorrichtung hinsichtlich Material, Dimensionierung, Positionierung etc. so ausgelegt werden, dass die hohe thermische Belastung die Funktion nicht beeinträchtigt. Ein unkontrolliertes Austreten der Stahlschmelze durch die Gasspülvorrichtung wird also durch die Erfindung wirksam vermieden.
Vorteilhafterweise kann bei dem Keramikkörper der erfindungsgemäßen Gasspülvorrichtung das statische Außenelement eine von der Oberseite bis zur Unterseite des Keramikkörpers durchgehende axiale konische Bohrung aufweisen, weiche das bewegliche Innenelement aufnimmt. Ein derartiger Keramikkörper ist besonders einfach und kostengünstig herstellbar. Gemäß einer Ausführungsform kann sich die Bohrung von der Unterseite zur Oberseite des Keramikkörpers hin, die mit der in dem Schmelzgefäß befindlichen Metallschmelze in Kontakt kommt, verjüngen. Gemäß einer anderen Ausführungsform verjüngt sich die Bohrung umgekehrt von der Oberseite des Keramikkörpers zur Unterseite hin. Durch die letztere Ausführungsform wird erreicht, dass das Innenelement aufgrund des auf der Oberseite einwirkenden hydrostatischen Druckes der Metallschmelze gegen das Außenelement gepresst wird, welches gewissermaßen als Ventilsitz dient. Durch den hydrostatischen Druck der Metallschmelze wird das Innenelement also in der Schließstellung gehalten, in welcher der durchgehende konische Ringspalt zwischen dem Innenelement und dem Außenelement geschlossen ist. In dieser Stellung wird weder Gas in die Metallschmelze eingeblasen noch kann flüssiges Metall aus dem Schmelzgefäß durch die Gasspülvorrichtung auslaufen. Zum Einblasen von Spülgas in die Metallschmelze wird das Innenelement in Richtung des Gasstromes nach oben bewegt, sodass sich der konische Ringspalt zwischen dem Innenelement und dem Außenelement öffnet und das unter hohem Druck stehende Gas ungehindert in das flüssige Metall eindringen kann. Wenn sich hingegen die axiale konische Bohrung von der Unterseite zur Oberseite hin verjüngt, so wird das Innenelement durch die Federkraft der Feder zuverlässig in der Schließstellung gehalten, wenn der Spülgaszufluss unterbrochen ist. Zum Einleiten des Spülgases wird bei dieser Ausführungsform das keramische Innenelement nach unten gegen den Spülgasstrom bewegt.
Bei der erfindungsgemäßen Gasspülvorrichtung ist an der Unterseite des Keramikkörpers ein gasdicht abgeschlossenes Volumen angeordnet, welches mit einer Gaszuleitung zum Einleiten von Spülgas verbunden ist. Im Inneren des Volumens herrscht dann der Druck des eingeleiteten Spülgases, welches aus dem Volumen durch den durchgehenden konischen Ringspalt zwischen dem Innenelement und dem Außenelement des Keramikkörpers im geöffneten Zustand der Vorrichtung in die Metallschmelze eingeblasen wird.
Zweckmäßigerweise wird das gasdicht abgeschlossene Volumen bei der erfindungsgemäßen Gasspülvorrichtung von einem Gehäuse an der Unterseite des Keramikkörpers gebildet, wobei die Seitenwandung des gasdichten Gehäuses konisch ausgebildet ist, derart, dass sich die konische Formgebung des Keramikkörpers im Bereich des Gehäuses fortsetzt. Dabei kann die Seitenwandung als konische Blechummantelung ausgebildet sein, die die gesamte Gasspülvorrichtung bestehend aus dem Keramikkörper und dem an dessen Unterseite angebrachten gasdichten Gehäuse seitlich umgibt. Auf Grund der sich insgesamt ergebenden einheitlichen konischen Formgebung der erfindungsgemäßen Gasspülvorrichtung kann diese problemlos an Stelle der herkömmlichen Spülsteine in die vorhandenen konischen Öffnungen eingebaut werden, welche die üblichen metallurgischen Schmelzgefäße im Boden oder im Wandbereich aufweisen. Vorteilhaft ist dabei auch, dass sich die Seitenwandung des gasdichten Gehäuses an der Innenwandung der für die Gasspülvorrichtung vorgesehenen Öffnung des metallurgischen Schmelzgefäßes abstützen kann, sodass sichergestellt ist, dass das gasdichte Gehäuse dem ggf. hohen Druck des eingeleiteten Spülgases standhält.
Sinnvollerweise ist das gasdichte Gehäuse bei der erfindungsgemäßen Gasspülvorrichtung an der Unterseite durch eine gegen die Seitenwandung abgedichtete Bodenplatte abgeschlossen, wobei sich die Bodenplatte über Streben an einer an der Unterseite des Keramikkörpers angebrachten Befestigungsplatte abstützt. Die Befestigungsplatte kann über geeignete Verankerungsmittel an dem Keramikkörper befestigt sein. Wenn die Gasspülvorrichtung in ein metallurgisches Schmelzgefäß eingebaut ist, ist diese ausschließlich über die Bodenplatte zugänglich. Daher sollte zweckmäßigerweise die Gaszuleitung zum Einleiten von Spülgas in das gasdichte Gehäuse an der Bodenplatte angeschlossen sein.
Alternativ kann die verformbare Membran des pneumatischen Antriebs das Innere des Gehäuses nach unten gegen die Umgebung gasdicht abschließen. Diese Variante ist besonders einfach und kostengünstig realisierbar. Bei Einleiten von Spülgas in das gasdicht abgeschlossene Volumen wölbt sich die verformbare Membran, die gleichsam den Boden des Gehäuses bildet, nach unten. Dadurch wird dann das mit der Membran verbundene Innenelement des Keramikkörpers relativ zu dem Außenelement bewegt, sodass sich der Ringspalt zum Einblasen des Spülgases öffnet.
Durch den pneumatischen Antrieb wird, wie oben skizziert, die Ventilfunktion der erfindungsgemäßen Gasspülvorrichtung betätigt. Dabei soll der pneumatische Antrieb sicherstellen, dass insbesondere der Druck des Spülgases, das gleichzeitig das Arbeitsmedium für den pneumatischen Antrieb ist, ausreicht, um das bewegliche Innenelement gegen die durch den hydrostatischen Druck der Metallschmelze bzw. die Feder wirkende Kraft aus der Schließstellung in die Offenstellung zu bewegen. Da zur Betätigung der Ventilfunktion der erfindungsgemäßen Gasspülvorrichtung eine lineare Bewegung des Innenelementes relativ zu dem Außenelement ausgeführt werden muss, ist es zweckmäßig, bei dem pneumatischen Antrieb eine Schubstange vorzusehen, über welche die verformbare Membran mit dem Innenelement verbunden ist. Gemäß einer besonders vorteilhaften Ausführungsform ist diese Schubstange als Rohr ausgebildet, die gleichzeitig als Gaszuleitung zum Einleiten des Spülgases in das gasdicht abgeschlossene Volumen dient.
Der pneumatische Antrieb der erfindungsgemäßen Gasspülvorrichtung kann sinnvollerweise einen Membranzylinder umfassen, wobei an den Zylinderraum des Membranzylinders ein aus dem gasdichten Gehäuse herausgeführtes Entlüftungsrohr angeschlossen ist. Auf den Kolben des Membranzylinders wirkt dabei der in dem gasdichten Gehäuse herrschende Druck des Spülgases ein. Der Zylinderraum des Membranzylinders ist durch die am Zylindermantel eingespannte verformbare Membran abgedichtet, sodass auf den Kolben des Membranzylinders insgesamt eine Kraft einwirkt, die sich aus der Druckdifferenz zwischen dem Druck in dem gasdichten Gehäuse und dem nach außen entlüfteten Zylinderraum ergibt. Durch entsprechende Dimensionierung des Membranzylinders kann sichergestellt werden, dass der Druck des Spülgases auf jeden Fall ausreicht, um die Ventilfunktion der erfindungsgemäßen Gasspülvorrichtung zuverlässig zu betätigen.
Eine besonders praktische und kostengünstige Realisierung der erfindungsgemäßen Gasspülvorrichtung ergibt sich dadurch, dass das Innenelement des Keramikkörpers kürzer ausgebildet wird als das Außenelement, und zwar derart, dass sich das gasdicht abgeschlossene Volumen im Bereich unterhalb des Innenelementes in den Keramikkörper hinein erstreckt. Bei dieser Variante kann die verformbare Membran der Gasspülvorrichtung von einem den Keramikkörper seitlich und an dessen Unterseite umgebenden Blechmantel gebildet werden. Dieser Blechmantel umschließt dann zugleich das gasdicht abgeschlossene Volumen im Bereich unterhalb des verkürzten Innenelementes des Keramikkörpers. An der Unterseite des Keramikkörpers hat das gasdicht abgeschlossene Volumen in dem Bereich zwischen dem Außenelement des Keramikkörpers und der verformbaren Membran bei dieser Ausführungsform die Form eines schmalen Spalts, sodass sich insgesamt eine besonders kompakte Bauweise ergibt. Daraus resultiert der Vorteil, dass die erfindungsgemäße Gasspülvorrichtung selbst bei beengten Platzverhältnissen, beispielsweise an der Unterseite eines metallurgischen Schmelzgefäßes, problemlos als Ersatz für herkömmliche Gasspülsteine eingesetzt werden kann.
Gemäß einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Gasspülvorrichtung ist zwischen dem Keramikkörper und der Feder eine thermische Isolierung angeordnet. Durch diese thermische Isolierung wird die Feder vor der thermischen Belastung, die von der in dem metallurgischen Schmelzgefäß befindlichen Metallschmelze ausgeht, geschützt. Die thermische Isolierung kann in Form einer Schicht aus bekanntem Isoliermaterial entweder zwischen dem Keramikkörper und der verformbaren Membran und/oder zwischen der verformbaren Membran und der Feder angeordnet sein. Ausführungsbeispiele der Erfindung werden im Folgenden anhand der Figuren erläutert. Es zeigen:
Fig. 1 geschnittene Seitenansicht einer ersten Ausführungsform der erfindungsgemäßen Gasspülvorrichtung;
Fig. 2 geschnittene Seitenansicht einer zweiten Ausführungsform der erfindungsgemäßen Gasspü Ivorrichtu ng ;
Fig. 3a geschnittene Seitenansicht einer dritten Ausführungsform der erfindungsgemäßen Gasspülvorrichtung;
Fig. 3b geschnittene Seitenansicht einer vierten Ausführungsform der erfindungsgemäßen Gasspülvorrichtung; Fig. 4 Ansicht des Bodens der Gasspülvorrichtung gemäß Fig. 2.
Die in den Fig. 1 und 2 dargestellten Gasspülvorrichtungen sind jeweils in ein metallurgisches Schmelzgefäß eingebaut, wobei in den Figuren ein Ausschnitt aus einer bodenseitigen Wandung 1 des Gefäßes zu sehen ist. Die Gasspülvorrichtungen weisen jeweils einen konisch geformten Keramikkörper auf, der in den Figuren als Ganzes mit der Bezugsziffer 2 bezeichnet ist. Der Keramikkörper 2, der an seiner Oberseite 3 jeweils mit einer in dem Schmelzgefäß befindlichen Metallschmelze 4 in Kontakt kommt, besteht aus einem statischen Außenelement 5 und einem darin axial beweglichen Innenelement 6. In der Fig. 1 ist zu erkennen, dass das Innenelement 6 von der Oberseite 3 des Keramikkörpers 2 zu dessen Unterseite 7 hin sich verjüngend ausgebildet ist. Bei diesem Ausführungsbeispiel bildet also das statische Außenelement 5 einen konischen Ring mit einer axialen konischen Bohrung für das Innenelement 6, wobei die Verjüngungsrichtungen des statischen Außenelementes 5 und des Innenelementes 6 entgegengesetzt sind. Bei dem Ausführungsbeispiel gemäß Fig. 2 sind hingegen die Verjüngungsrichtungen des Außenelementes 5 und des Innenelementes 6 gleich. Bei beiden Ausführungsbeispielen ist zwischen dem Innenelement 6 und dem Außenelement 5 ein durchgehender konischer Ringspalt 8 ausgebildet, der sich jeweils von der Oberseite 3 des Keramikkörpers 2 bis zu dessen Unterseite 7 hin erstreckt.
Die in den Figuren gezeigten Gasspülvorrichtungen befinden sich in der Schließstellung, in welcher der konische Ringspalt 8 geschlossen ist, sodass kein Spülgas durch den Ringspalt 8 in die Metallschmelze 4 eindringen kann. Gleichzeitig kann in der Schließstellung kein flüssiges Metall aus der Schmelze 4 durch den Ringspalt 8 auslaufen. Zur Betätigung der Ventilfunktion wird bei dem Ausführungsbeispiel gemäß Fig. 1 das Innenelement 6 nach oben, d. h. zur Metallschmelze 4 hinbewegt. Bei dem Ausführungsbeispiel gemäß Fig. 2 öffnet sich der Ringspalt 8, wenn das Innenelement 6 von der Metallschmelze 4 weg nach unten bewegt wird.
An der Unterseite des Keramikkörpers 2 ist bei den in den Figuren gezeigten Gasspülvorrichtungen jeweils ein gasdicht abgeschlossenes Volumen 9 angeordnet, welches mit einer Gaszuleitung zum Einleiten von Spülgas verbunden ist. Ein konischer Blechmantel 10 bildet die Seitenwandung des gasdichten Gehäuses 9, und zwar derart, dass sich die konische Formgebung des Keramikkörpers 2 im Bereich des Gehäuses 9 fortsetzt.
Bei dem in der Fig. 1 dargestellten Ausführungsbeispiel ist ferner eine gegen die Seitenwandung 10 des gasdichten Gehäuses 9 abgedichtete Bodenplatte n vorgesehen, wobei die Bodenplatte n über Streben 12 mit einer an der Unterseite des Keramikkörpers 2 angebrachten Befestigungsplatte 13 verbunden ist. Als Befestigungsmittel dienen bei der in der Fig. 1 dargestellten Gasspülvorrichtung in dem Keramikkörper 2 verankerte Schrauben 14. An der Befestigungsplatte 13 ist über in der Fig. 1 nicht näher dargestellte Distanzbolzen ein pneumatischer Antrieb 15 befestigt, durch welchen das Innenelement 6 relativ zu dem Außenelement 5 des Keramikkörpers 2 axial zwischen der Schließstellung und einer Offenstellung hin und her bewegbar ist. Der pneumatische Antrieb 15 ist über eine Schubstange 16 mit dem axial beweglichen Innenelement 6 verbunden. Dabei ist die Schubstange 16 in einer Stopfbuchse 17 axial beweglich geführt. Im Inneren der Stopfbuchse 17 ist eine Feder 18 angeordnet, durch deren Federkraft das Innenelement 6 in der Schließstellung gehalten wird. Die Feder 18 stützt sich an der Stopfbuchse 17 einerseits und an einer Druckplatte 19 andererseits ab. Die Druckplatte 19 ist im Inneren eines Membranzylinders 20 auf und ab beweglich. Der Zylinderraum des Membranzylinders 20 ist gegenüber dem Inneren des gasdichten Gehäuses 9 über eine verformbare Membran 21 abgedichtet. An den Zylinderraum des Membranzylinders 20 ist ein aus dem gasdichten Gehäuse herausgeführtes Entlüftungsrohr 22 angeschlossen. Durch die Druckdifferenz zwischen dem im Inneren des gasdichten Gehäuses 9 herrschenden Druck des Spülgases und dem in dem nach außen entlüfteten Zylinderraum herrschenden Druck wird die Ventilfunktion der in der Fig. 1 dargestellten Gasspülvorrichtung betätigt.
Bei dem in der Fig. 2 dargestellten Ausführungsbeispiel der erfindungsgemäßen Gasspülvorrichtung schließt die verformbare Membran 21 das Innere des Gehäuses 9 nach unten gegen die Umgebung gasdicht ab. Die Schubstange 16 ist bei diesem Ausführungsbeispiel als Rohr ausgebildet, das im oberen Bereich Löcher zum Einleiten von Spülgas in das gasdichte Gehäuse 9 aufweist. Durch die Druckdifferenz zwischen dem in dem gasdichten Gehäuse 9 herrschenden Druck des Spülgases und dem Umgebungsdruck verformt sich die Membran 21 und biegt sich nach unten durch. Dabei wird das über die Schubstange 16 mit der Membran 21 verbundene Innenelement 6 nach unten bewegt, sodass sich der Ringspalt 8 öffnet. Hierzu muss die Kraft der Feder 18 überwunden werden, die das Innenelement 6 zuverlässig in der Schließstellung hält. Die Feder 18 befindet sich im Inneren eines Federgehäuses 23, in welches von unten ein Vorspannring 24 zum Vorspannen der Feder 18 eingeschraubt ist. Mit dem Vorspannring 24 kann die Vorspannung der Feder 18 so eingestellt werden, wie es für den konkreten Anwendungsfall erforderlich ist. Die Feder 18 stützt sich nach oben gegen eine mit der Membran 21 verschraubte Druckscheibe 25 ab. Die Druckscheibe 25 ist durch die Membran 21 hindurch mit einem Halterungsring 26 verschraubt, der wiederum gasdicht mit der Schubstange 16 verschweißt ist. Bei dem in der Fig. 2 gezeigten Ausführungsbeispiel ist die Schubstange 16 über ein Gelenk 27 mit dem Innenelement 6 des Keramikkörpers 2 verbunden. Das Gelenk 27 wird durch ein Verbindungsstück 28 gebildet, das von einem Lagertopf 29 aufgenommen wird. Der Lagertopf 29 ist von unten mittels Gewindebolzen 30 an dem Innenelement 6 befestigt. Durch das Gelenk 27 können mit Vorteil ein seitlicher Versatz sowie auch ein Winkelversatz der Schubstange 16 relativ zu dem Innenelement 6 ausgeglichen werden. Zu einem solchen Versatz kann es aufgrund der unter Umständen nicht präzise kontrollierbaren Verformung der Membran 21 oder auch aufgrund thermischer Ausdehnung der gesamten Vorrichtung ohne weiteres kommen. Durch das Gelenk 27 wird vor allem verhindert, dass durch den auftretenden Versatz eine Beschädigung des aus sprödem Keramikmaterial bestehenden Innenelementes 6 bei der Betätigung der Gasspülvorrichtung auftritt.
Die Fig. 3a und 3b zeigen Ausführungsbeispiele der erfindungsgemäßen Gasspülvorrichtung, die ähnlich dem in der Fig. 2 dargestellten Ausführungsbeispiel ausgebildet sind. Der Hauptunterschied besteht darin, dass bei den in den Fig. 3a und 3b dargestellten Ausführungsbeispielen das Innenelement 6 des Keramikkörpers 2 kürzer ausgebildet ist als das Außenelement 5, und zwar derart, dass sich das gasdicht abgeschlossene Volumen 9 im Bereich unterhalb des Innenelementes 6 in den Keramikkörper hinein erstreckt. Hierdurch ergibt sich eine besonders kompakte Bauform, was in den Fig. 3a und 3b gut zu erkennen ist. Die verformbare Membran 21 wird bei den Ausführungsbeispielen gemäß den Fig. 3a und 3b von dem den Keramikkörper 2 seitlich und an dessen Unterseite 7 umgebenden Blechmantel 10 gebildet. In Fig. 3a ist an den Blechmantel 10 ein ringförmiges Halterungselement in Form eines konischen Rings 31 angeschweißt, der den Blechmantel 10 nach unten verlängert. Der Ring 31 ist wiederum mit Streben 30 verschweißt, durch die das Federgehäuse 23 abgestützt wird. Die in der Fig. 3a dargestellte Ausführungsform ist dazu bestimmt, ähnlich wie in den Fig. 1 und 2 dargestellt, in ein metallurgisches Schmelzgefäß eingebaut zu werden, sodass die Vorrichtung insgesamt bündig mit der Wandung des Gefäßes abschließt. Bei dem in der Fig. 3b dargestellten Ausführungsbeispiel ist demgegenüber an dem Blechmantel 10 ein zylindrischer Ring 32 angeschweißt, der aus der Bodenwandung bzw. aus der Seitenwandung des metallurgischen Gefäßes herausragt. Die Ausführungsbeispiele gemäß den Fig. 3a und 3b können je nach Bedarf gewählt werden, und zwar in Abhängigkeit vom zur Verfügung stehenden Platz in der Umgebung des metallurgischen Gefäßes und in Abhängigkeit von der gewünschten Dicke des Keramikkörpers 2.
In der Fig. 4, die die Gasspülvorrichtung gemäß Fig. 2 von unten zeigt, ist zu erkennen, wie das Federgehäuse 23 durch die Streben 30, die mit der Wandung 10 verschweißt sind, abgestützt wird.
Den erfindungsgemäßen Gasspülvorrichtungen wird das Spülgas sinnvollerweise durch ein in der Gaszuleitung angeordnetes 3-Wege-Ventil zugeführt, das in den Figuren nicht näher dargestellt ist. Durch ein solches 3-Wege-Ventil ist gewährleistet, dass sich der Ringspalt 8 beim Absperren des Ventils ausreichend schnell wieder schließt. Mittels des 3-Wege-Ventils wird beim Absperren der Spülgaszufuhr gleichzeitig das in dem Gehäuse 9 unter Druck stehende Gas in die Umgebung abgelassen. Es steht dann die volle Kraft der Feder 18 für ein schnelles Schließen des Ringspalts 8 zur Verfügung.
Bei der erfindungsgemäßen Gasspülvorrichtung können zum Halten des Innenelementes 6 des Keramikkörpers 2 in der Schließstellung auch mehr als nur eine Feder 18 vorgesehen sein. Es besteht die Möglichkeit, mehrere Federn außerhalb der Mittelachse der Gasspülvorrichtung auf die Membran 21 einwirken zu lassen, um die Zuverlässigkeit der Gasspülvorrichtung dadurch weiter zu erhöhen.
Weiterhin ist es sinnvoll, eine zwischen dem Keramikkörper 2 und der Feder 18 angeordnete thermische Isolierung vorzusehen. Eine geeignete Schicht aus thermisch isolierendem Material kann bei den in den Fig. 3a und 3b dargestellten Ausführungsbeispielen beispielsweise in dem schmalem Spalt zwischen dem Außenelement 5 des Keramikkörpers und der Membran 21 untergebracht werden. Durch eine solche thermische Isolierung wird die Feder 18 gegen die von der Metallschmelze ausgehende hohe thermische Belastung wirksam geschützt.
- Ansprüche -

Claims

Patentansprüche
1. Gasspülvorrichtung für ein metallurgisches Schmelzgefäß (1 ), mit einem konisch geformten Keramikkörper (2), der an seiner Oberseite (3) mit einer in dem Schmelzgefäß (1) befindlichen Metallschmelze (4) in Kontakt kommt, wobei der Keramikkörper (2) ein statisches Außenelement (5) und ein darin axial bewegliches Innenelement (6) umfasst, sowie mit einem pneumatischen Antrieb (15), durch den das Innenelement (6) relativ zu dem Außenelement (5) des Keramikkörpers (2) axial zwischen einer Schließstellung und einer Offenstellung hin und her bewegbar ist, wobei eine Feder (18) vorgesehen ist, durch deren Federkraft das Innenelement (6) in der Schließstellung gehalten wird, und mit einem an der Unterseite (7) des Keramikkörpers (2) angeordneten, gasdicht abgeschlossenen Volumen (9), welches mit einer Gaszuleitung zum Einleiten von Spülgas verbunden ist, d a d u r c h g e k e n n z e i c h n e t , dass der pneumatische Antrieb (15) eine mit dem Innenelement (6) verbundene verformbare Membran (21) aufweist, auf welche die Druckdifferenz zwischen dem in dem gasdicht abgeschlossenen Volumen (9) herrschenden Druck des Spülgases und dem Umgebungsdruck einwirkt.
2. Gasspülvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass zwischen dem Innenelement (6) und dem Außenelement (5) ein durchgehender konischer Ringspalt (8) ausgebildet ist, der sich von der Oberseite (3) des Keramikkörpers (2) bis zu dessen Unterseite (7) erstreckt.
3. Gasspülvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das gasdicht abgeschlossene Volumen (9) von einem
Gehäuse an der Unterseite des Keramikkörpers gebildet wird, wobei die Seitenwandung (10) des gasdichten Gehäuses (9) konisch ausgebildet ist, derart, dass sich die konische Formgebung des Keramikkörpers (2) im Bereich des Gehäuses (9) fortsetzt.
4. Gasspülvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der pneumatische Antrieb (15) eine Schubstange (16) umfasst, über welche die verformbare Membran (21) mit dem Innenelement (6) verbunden ist.
5. ' Gasspülvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Schubstange (16) als Rohr ausgebildet ist, die als Gaszuleitung zum Einleiten des Spülgases in das gasdicht abgeschlossene Volumen bzw. in das Gehäuse (9) dient.
6. Gasspülvorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Schubstange (16) über ein Gelenk (27) mit dem Innenelement (6) verbunden ist.
7. Gasspülvorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass der pneumatische Antrieb (15) einen Membranzylinder (20) umfasst, wobei an den Zylinderraum des Membranzylinders (20) ein aus dem gasdichten Gehäuse (9) heraus geführtes Entlüftungsrohr (22) angeschlossen ist.
8. Gasspülvorrichtung nach Anspruch 7, gekennzeichnet durch eine gegen die Seitenwandung (10) des gasdichten Gehäuses (9) abgedichtete Bodenplatte (11), wobei die Bodenplatte (11) über Streben (12) mit einer an der Unterseite (7) des Keramikkörpers (2) angebrachten Befestigungsplatte (13) verbunden ist.
9. Gasspülvorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die verformbare Membran (21 ) das Innere des Volumens (9) nach unten gegen die Umgebung gasdicht abschließt.
10. Gasspülvorrichtung nach einem der Ansprüche 1 bis 9, gekennzeichnet durch ein in der Gaszuleitung angeordnetes 3-Wege-Ventil.
11. Gasspülvorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Innenelement (6) des Keramikkörpers kürzer ausgebildet ist als das Außenelement (5), und zwar derart, dass sich das gasdicht abgeschlossene Volumen (9) im Bereich unterhalb des Innenelementes (6) in den Keramikkörper (2) hinein erstreckt.
12. Gasspülvorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die verformbare Membran (21) von einem den Keramikkörper (2) seitlich und an dessen Unterseite (7) umgebenden Blechmantel (10) gebildet wird.
13. Gasspülvorrichtung nach einem der Ansprüche 1 bis 12, gekennzeichnet, durch eine zwischen dem Keramikkörper (2) und der Feder (18) angeordnete thermische Isolierung.
14. Gasspülvorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass sich die Feder (18) an der Unterseite (7) des Keramikkörpers (2) innerhalb eines Federgehäuses (23) befindet, wobei sich die Feder (18) einerseits an der Membran (21) und andererseits an einem in das Federgehäuse (23) einschraubbaren Vorspannring (24) abstützt, mittels welchem die Vorspannung der Feder (18) einstellbar ist.
15. Gasspülvorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass das Federgehäuse (23) über Streben (30) entweder mit dem Blechmantel (10) des Keramikkörpers (2) oder mit einem ringförmigen Halterungselement (31 , 32), das seinerseits mit dem Blechmantel (10) verbunden ist, verschweißt ist. - Zusammenfassung -
PCT/EP2005/004765 2004-05-05 2005-05-03 Gasspülvorrichtung WO2005107979A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/579,706 US7645418B2 (en) 2004-05-05 2005-05-03 Gas washing device
EP05745483A EP1771265B1 (de) 2004-05-05 2005-05-03 Gasspülvorrichtung
DE200550003224 DE502005003224D1 (de) 2004-05-05 2005-05-03 Gasspülvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004022129.4 2004-05-05
DE200410022129 DE102004022129A1 (de) 2004-05-05 2004-05-05 Gasspülvorrichtung

Publications (1)

Publication Number Publication Date
WO2005107979A1 true WO2005107979A1 (de) 2005-11-17

Family

ID=34968737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/004765 WO2005107979A1 (de) 2004-05-05 2005-05-03 Gasspülvorrichtung

Country Status (7)

Country Link
US (1) US7645418B2 (de)
EP (1) EP1771265B1 (de)
AT (1) ATE388775T1 (de)
DE (2) DE102004022129A1 (de)
ES (1) ES2306150T3 (de)
RU (1) RU2372165C2 (de)
WO (1) WO2005107979A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2703761A1 (de) * 2012-08-27 2014-03-05 Refractory Intellectual Property GmbH & Co. KG Gasspül-Element und zugehörige Gaszuführ-Leitung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3003603A4 (de) * 2013-06-07 2017-02-22 Vesuvius Crucible Company Bleiaufnehmender entlüftungsstecker

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19610578C1 (de) * 1996-03-18 1997-04-24 Veitsch Radex Ag Gasspüleinrichtung
WO2001008834A1 (en) * 1999-08-03 2001-02-08 Sahlin Gjutteknik Ab Purge plug
WO2001083831A1 (en) * 2000-05-02 2001-11-08 Sahlin Gjutteknik Ab Purge plug
WO2001083832A1 (en) * 2000-05-02 2001-11-08 Sahlin Gjutteknik Ab Purge plug

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370969A (en) * 1981-03-27 1983-02-01 Neal Zarrelli Propane automotive feed system
US4470582A (en) * 1982-02-15 1984-09-11 Zirconal Processes Limited Introduction of substances into molten metal
DE3441223A1 (de) * 1984-11-10 1986-05-15 Lichtenberg Feuerfest GmbH, 5200 Siegburg Spueleinsatz
JP2000017323A (ja) * 1998-06-30 2000-01-18 Shinagawa Refract Co Ltd 溶融金属容器内へのガス吹込み用プラグ支持装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19610578C1 (de) * 1996-03-18 1997-04-24 Veitsch Radex Ag Gasspüleinrichtung
WO2001008834A1 (en) * 1999-08-03 2001-02-08 Sahlin Gjutteknik Ab Purge plug
WO2001083831A1 (en) * 2000-05-02 2001-11-08 Sahlin Gjutteknik Ab Purge plug
WO2001083832A1 (en) * 2000-05-02 2001-11-08 Sahlin Gjutteknik Ab Purge plug

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2703761A1 (de) * 2012-08-27 2014-03-05 Refractory Intellectual Property GmbH & Co. KG Gasspül-Element und zugehörige Gaszuführ-Leitung
WO2014032923A3 (de) * 2012-08-27 2014-06-26 Refractory Intellectual Property Gmbh & Co. Kg Gasspül-element und zugehörige gaszuführ-leitung
CN104412058A (zh) * 2012-08-27 2015-03-11 里弗雷克特里知识产权两合公司 吹气元件和相关的气体输送管路
CN104412058B (zh) * 2012-08-27 2016-08-17 里弗雷克特里知识产权两合公司 吹气元件和相关的气体输送管路
EP3106813A1 (de) * 2012-08-27 2016-12-21 Refractory Intellectual Property GmbH & Co. KG Gasspül-element und zugehörige gaszuführ-leitung
US9683272B2 (en) 2012-08-27 2017-06-20 Refractory Intellectual Property Gmbh & Co. Kg Gas purging element and associated gas feed line
EA029105B1 (ru) * 2012-08-27 2018-02-28 Рифрэктори Интеллектчуал Проперти Гмбх Унд Ко. Кг Газопродувочное устройство для металлургических применений

Also Published As

Publication number Publication date
ATE388775T1 (de) 2008-03-15
ES2306150T3 (es) 2008-11-01
EP1771265A1 (de) 2007-04-11
RU2372165C2 (ru) 2009-11-10
US7645418B2 (en) 2010-01-12
EP1771265B1 (de) 2008-03-12
US20080122145A1 (en) 2008-05-29
DE502005003224D1 (de) 2008-04-24
RU2006142858A (ru) 2008-06-10
DE102004022129A1 (de) 2005-12-01

Similar Documents

Publication Publication Date Title
EP1748237A1 (de) Sicherheitsventil für einen Druckgasbehälter
EP0589967B1 (de) Kipplager für schwere lasten
DE102006058285B4 (de) Druckkammer und Verfahren zu deren optischer Überwachung
EP1771265B1 (de) Gasspülvorrichtung
EP2245347B1 (de) Kartusche
AU2006238721B2 (en) Stopper rod
DE3014068A1 (de) Verfahren zur herstellung feuerfester steine
DE19610578C1 (de) Gasspüleinrichtung
DE102011078878A1 (de) Vorrichtung zur druckminderung in hohlkörpern in medien bei höheren temperaturen
DE2703657C2 (de) Steigrohr zum Gießen von Metallen unter Gasdruck
DE60016254T2 (de) Gasspülstein für metallurgische schmelzegefässe
EP0696238B1 (de) Anordnung zur verbindung einer stopfenstange für ein metallurgisches gefäss mit ihrer hebevorrichtung und für die anordnung geeignete stopfenstange sowie verfahren zur herstellung der anordnung
DE4324768C1 (de) Anordnung zur Verbindung einer Stopfenstange für ein metallurgisches Gefäß mit ihrer Hebevorrichtung und für die Anordnung geeignete Stopfenstange sowie Verfahren zur Herstellung der Anordnung
EP1711292B1 (de) Schieberplatte für einen Schieberverschluss an metallurgischen Schmelzgefässen sowie Verfahren zur deren Herstellung
DE102007004958B4 (de) Stopfen zur Verwendung in metallurgischen Einrichtungen
DE2206827A1 (de) Regelventil mit doppeltem Sitz
DE602004004645T2 (de) Langgestreckte Stopfenstange
DE102007024104B4 (de) Verstelleinrichtung
DE1550299A1 (de) Hochvakuumventil,insbesondere Ultrahochvakuumventil
EP2666711B1 (de) Unterseeboot
WO2023215927A1 (de) Schmelzetransportvorrichtung
DE4419811C1 (de) Gasspülstein mit Verschleißanzeige
EP3023173B9 (de) Befestigungsvorrichtung für einen zylinderförmigen keramischen Hohlkörper und feuerfester keramischer Gasspülstein mit einer solchen Befestigungsvorrichtung
DE1950916U (de) Hochvakuumventil, insbesondere ultrahochvakuumventil.
DE19641661A1 (de) Schnellschaltbares Druckkissen für Pressen zum Warmschmieden, insbesondere für Kurbel- und Exzenterpressen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005745483

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11579706

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006142858

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005745483

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2005745483

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11579706

Country of ref document: US