WO2005104241A1 - 光源一体型太陽電池モジュールおよびそれを用いた発電発光ユニット - Google Patents

光源一体型太陽電池モジュールおよびそれを用いた発電発光ユニット Download PDF

Info

Publication number
WO2005104241A1
WO2005104241A1 PCT/JP2005/007029 JP2005007029W WO2005104241A1 WO 2005104241 A1 WO2005104241 A1 WO 2005104241A1 JP 2005007029 W JP2005007029 W JP 2005007029W WO 2005104241 A1 WO2005104241 A1 WO 2005104241A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
light source
light
integrated
cell module
Prior art date
Application number
PCT/JP2005/007029
Other languages
English (en)
French (fr)
Inventor
Takashi Ouchida
Hitoshi Sannomiya
Kazuhiko Ashihara
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/578,791 priority Critical patent/US20070251566A1/en
Publication of WO2005104241A1 publication Critical patent/WO2005104241A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S9/00Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
    • F21S9/02Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
    • F21S9/03Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light
    • F21S9/037Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light the solar unit and the lighting unit being located within or on the same housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0468PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising specific means for obtaining partial light transmission through the module, e.g. partially transparent thin film solar modules for windows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a light source-integrated solar cell module and a power generation light emitting unit using the same.
  • the present invention relates to a light source integrated module and a power generation and light emitting unit using the same, and more particularly, to a solar cell module having both a power generation function and a light emission function and a power generation and light emission unit using the same.
  • the surface color of a solar cell module constituting the panel is limited to, for example, black or bluish purple in a crystalline system, brown in an amorphous system, and the like. Has a single color. As a result, the expression of the solar panel is very killer and terrible!
  • a solar cell panel has been proposed in which the front and back surfaces of the solar cell module are colored in an arbitrary color, and a combination of solar cell modules having different colors is used to display a desired character or graphic pattern.
  • a desired character or graphic pattern has been reached. More specifically, for example, the following are generally known.
  • a solar cell module having a desired color on the surface by adjusting the thickness, the number of layers, the refractive index, etc. of the anti-reflection film is used. Etc. (for example, see Patent Document 1).
  • a light-transmitting solar cell module in which a light-transmitting encapsulating material on the back side is colored in a desired color is used, and characters, figures, and patterns are combined by combining a plurality of solar cell modules having different back side colors.
  • Etc. for example, see Patent Document 2.
  • the solar cell controls light incident through the light-transmitting substrate and the light-transmitting light-emitting layer.
  • a light-emitting panel that emits planar light
  • a frame-shaped solar cell that surrounds the light-emitting panel
  • a storage battery that stores power generated by the solar cell
  • charging from the solar cell to the storage battery and light-emitting panel from the storage battery
  • a light-emitting device including a control unit for controlling power supply to a power supply and a casing for accommodating them (for example, see Patent Document 4).
  • a solar cell and a light emitting element are disposed on one surface of a substrate, and an electronic circuit group for causing the light emitting element to emit light is disposed on the other surface.
  • the solar cell, the light emitting element, and the electronic circuit group are formed on the substrate.
  • a light-emitting device electrically connected through a formed through-hole for example, see Patent Document 5).
  • Patent Document 1 JP-A-8-107230
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-237449
  • Patent Document 3 JP-A-59-217991
  • Patent Document 4 JP-A-60-78477
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2001-351418
  • the light-emitting device In a light-emitting device in which a solar cell and a light source such as a light-emitting panel or a light-emitting element are arranged so as not to overlap on the same surface, although the power generation efficiency does not decrease, the light-emitting device is located in a region where the solar cell is arranged. Since light emission cannot be taken out and the entire surface does not emit light, issues remain in recognition and design.
  • An object of the present invention is to provide a light source-integrated solar cell module capable of achieving full-surface light emission while keeping the light emission to a minimum, and a power generation light emitting system using the same.
  • the present invention includes a light-transmitting solar cell having a front surface and a back surface, and a light source provided on the back surface of the solar cell, and the solar cell uses power incident on the front surface side to generate power.
  • the light source emits light using electric power generated by the solar cell, and the light emitted from the light source passes through the solar cell and is emitted toward the front surface of the solar cell. It provides a solar cell module.
  • the light source is provided on the back surface side of the light transmission type solar cell, the loss of incident light due to the light source is eliminated, and the light generated by the light source is transmitted through the solar cell. Since the light is emitted to the front side of the solar cell, it is possible to achieve full light emission.
  • FIG. 1 is a front view showing a schematic configuration of a light source integrated solar cell module according to an embodiment.
  • FIG. 2 is a sectional view taken along line AA of the schematic configuration of the light source-integrated solar cell module shown in FIG. 1.
  • FIG. 3 is an explanatory diagram showing an operation of the light source-integrated solar cell module shown in FIG. 2 during power generation.
  • FIG. 4 is an explanatory view showing an operation at the time of light emission of the light source integrated solar cell module shown in FIG. 2.
  • FIG. 5 is a plan view of an integrated thin-film solar cell constituting a light source integrated solar cell module.
  • FIG. 6 is a cross-sectional view of a main part BB of the integrated thin-film solar cell shown in FIG. 5.
  • FIG. 7 is a cross-sectional view of the CC main part of the integrated thin-film solar cell shown in FIG. 5.
  • FIG. 8 is a perspective view of an LED lighting device.
  • FIG. 9 is a plan view of an LED substrate included in the LED lighting device.
  • FIG. 10 is a process chart showing a manufacturing process of the integrated thin-film solar battery cell.
  • FIG. 11 is a process chart showing a manufacturing process of the integrated thin-film solar battery cell.
  • FIG. 12 is a process diagram showing a manufacturing process of a solar cell module.
  • FIG. 13 is an explanatory diagram showing an assembling process of the light source integrated solar cell module.
  • FIG. 14 is a front view of a power generation light emitting system according to an embodiment.
  • FIG. 15 is a front view of a modified example of the power generation and light emission system shown in FIG. Explanation of symbols
  • the light source-integrated solar cell module includes a light-transmitting solar cell having a front surface and a back surface, and a light source provided on the back surface side of the solar cell, and the solar cell utilizes light incident from the front surface side.
  • the light source emits light using the power generated by the solar cell, and the light emitted from the light source passes through the solar cell and is emitted toward the front side of the solar cell. I do.
  • the solar cell is not particularly limited as long as it is a light-transmitting type, and may be a crystalline solar cell or a thin-film solar cell. ! / ,.
  • the form of the solar cell may be a single solar cell, or a solar cell module in which a plurality of solar cells are electrically connected.
  • the light source can be called a light emitting element, and includes all light sources that emit light by electric power.
  • a device with low power consumption and high luminance is preferred, for example, an LED device, an organic EL device, an inorganic EL device, a cold cathode fluorescent lamp, a hot cathode fluorescent lamp and the like.
  • the light source-integrated solar cell module according to the present invention further includes a reflector that accommodates the light source and is provided so as to cover the back surface side of the solar cell, and the solar cell has a substantially rectangular shape;
  • the light source is disposed along at least one edge of the solar cell, and the light emitted from the light source may be reflected by the reflector and transmitted to the rear surface of the solar cell. According to this, it is possible to efficiently emit light over the entire surface by the action of the reflector while suppressing the power consumption of the light source.
  • the light source is arranged so as to cover the entire back surface of the solar cell, the number of light sources is reduced. However, a large amount of power or a large light source is required, which naturally increases power consumption.However, as described above, the light source is arranged along the edge of the solar cell, and the light emitted from the light source is reflected by the reflector. If the back surface of the solar cell is uniformly illuminated by reflection, the back surface of the solar cell can be uniformly illuminated with a small number of light sources or a small light source. It is possible to obtain full-surface light emission with high luminance.
  • the light sources are provided on both edges of the solar cell, and the reflecting plate reflects the light emitted from each light source for each light source in order to independently emit the emitted light.
  • a partition plate for partitioning the area may be provided.
  • the light sources disposed on both edges of the solar cell emit different colors.
  • the expression as a display of the light source integrated solar cell module is excellent.
  • the solar cell has a photoelectric conversion layer for performing photoelectric conversion, and the photoelectric conversion layer partially emits light emitted from the light source from the back side. An opening for transmitting light to the surface side is formed.
  • a light-transmitting solar cell can be obtained with a simple structure in which an opening is formed in a part of the photoelectric conversion layer.
  • the transmittance of the entire solar cell is determined by the ratio of the opening to the area of the entire solar cell. It is easy to set the overall transmittance.
  • This opening can be easily formed by, for example, a laser camera, and it is preferable to form a large number of openings with a uniform distribution in order to obtain uniform light emission over the entire surface.
  • the solar cell has a tandem structure in which a photoelectric conversion layer having an amorphous silicon force and a photoelectric conversion layer having a microcrystalline silicon force are stacked. You can do it.
  • the conversion efficiency is improved by about 1.5 times as compared with the single structure in which the photoelectric conversion layer is made up of only amorphous silicon, and the color of the solar cell becomes a brown color close to black. It becomes more excellent in design as a back color.
  • the solar cell may have a reflective surface formed on its back surface for reflecting light emitted from a light source.
  • the reflector is provided on the back surface side of the solar cell
  • light emitted from the light source also passes through the opening between the reflector and the back surface of the solar cell.
  • the light can be confined until the light is emitted from the surface side, and the light source power can be used more efficiently.
  • the number of light sources can be reduced or the size of the light sources can be reduced, and power consumption can be reduced.
  • the solar cell may be formed such that the ratio of the area occupied by the solar cell to the effective power generation region is in the range of 5 to 30%.
  • the light emitted from the light source can be efficiently transmitted to the front surface of the solar cell while maintaining the balance between the amount of power generated by the solar cell and the power consumption of the light source.
  • the aperture ratio is smaller than 5%, the area for transmitting the light emitted from the light source becomes too small, so that the light cannot be transmitted efficiently, and it is possible to obtain the entire surface with uniform brightness.
  • the aperture ratio is larger than 30%, the area contributing to the photoelectric conversion becomes too small, and the power generation efficiency decreases, so that the power required for light emission cannot be provided.
  • the effective power generation area of the solar cell means an area of the entire area of the solar cell which receives the sunlight and contributes to the actual power generation. It means a region where the photoelectric conversion layer exists.
  • the solar cell is a solar cell module in which a plurality of integrated solar cells are arranged so as to be adjacent to each other. A part of the pair of integrated solar cells may be covered with a film having a transmittance substantially equal to the transmittance of the entire solar cell.
  • a normal integrated solar cell is composed of a non-transparent part where the photoelectric conversion layer is present and a transparent part where the photoelectric conversion layer is not present.
  • the brightness of the part corresponding to the transparent part of the adjacent cell is higher than that of the other part, and it is difficult to obtain uniform light emission over the entire surface.
  • a part of the pair of adjacent integrated solar cells has a transmittance similar to that of the entire solar cell, that is, a part of the adjacent integrated solar cells has a transmittance. Since the solar cell is covered with the film, the transmittance of the entire solar cell can be adjusted to be uniform, and it becomes easy to obtain uniform light emission with uniform brightness.
  • the light source may include an LED lighting device.
  • the LED has an advantage that it is easy to control a blinking operation and the like, and is suitable as a light source of the light source integrated solar cell module of the present invention.
  • Low power consumption means that sufficient luminous intensity can be obtained only by the amount of power generated by the solar cells.Longer life contributes to maintenance-free solar cell modules with integrated light sources, and easy controllability This is advantageous for building more diverse and sophisticated systems.
  • the LED lighting device may include a plurality of LED elements that emit the three primary colors of RGB.
  • LED lighting device power [0027] In the above configuration having a plurality of LED elements that emit three primary colors of GB, the LED lighting device includes a plurality of LED boards on which LED elements are mounted, and each LED board controls the coloring. Equipped with a control circuit for
  • the color development can be controlled independently for each LED substrate, so that the number of display patterns can be increased by increasing the number of LED substrates, thereby enabling a more versatile and sophisticated display.
  • the present invention includes a plurality of light source integrated solar cell modules arranged in a plane or a curved surface, and each light source integrated solar cell module is a light source integrated type solar cell module according to the above-described invention. It also provides a power generation and light emission system consisting of solar cell modules.
  • characters, figures, patterns, and the like can be displayed in the entire system at night using the power generated and stored during the day.
  • the power-generating light-emitting system according to the present invention is particularly useful as a large-area display system, and can suitably function as a signboard of a store or a company.
  • the light source is provided on the back side of each solar cell, there is no danger of lowering the power generation efficiency of the solar cell, and since the surface side force cannot be visually recognized, the appearance is excellent.
  • the above power generation and light emission system according to the present invention may further include an object to be illuminated on the front side of some of the light source integrated solar cell modules.
  • the object to be illuminated is provided on the front of some of the light source integrated solar cell modules, so that it can function as a display even during daytime when the light source does not emit light.
  • the object to be irradiated is illuminated by the light emitted from the surface of the solar cell, so that it functions more effectively as a display.
  • the object to be irradiated may be, for example, a character or a desired figure.
  • the power generation efficiency is reduced by the shadow created by the object to be illuminated and the power generation efficiency of the entire power generation and light emission system is reduced.
  • a dummy light source integrated solar cell module without a power generation function can be used only in the end. It is preferable from the viewpoint of the power generation efficiency of the whole power generation light emitting system.
  • FIG. 1 is a front view illustrating a schematic configuration of a light source integrated solar cell module according to an embodiment
  • FIG. 2 is a cross-sectional view taken along line A-A of the light source integrated solar cell module illustrated in FIG. 3 is an explanatory diagram showing the operation of the light source-integrated solar cell module shown in FIG. 2 during power generation
  • FIG. 4 is an explanatory diagram showing the operation of the light source-integrated solar cell module shown in FIG. 2 during light emission
  • FIG. 6 is a cross-sectional view of the BB main part of the integrated thin-film solar cell shown in FIG. 5, and FIG. 7 is shown in FIG. 8 is a perspective view of the LED lighting device, FIG. 9 is a plan view of the LED substrate constituting the LED lighting device, and FIGS. 10 and 11 are shown in FIG.
  • Process diagram showing the manufacturing process of integrated thin-film solar cells FIG. 13 is an explanatory view showing a process of assembling a solar cell module with an integrated light source, FIG. 14 is a front view of a power generation / light emitting system according to an embodiment, and FIG. 15 is a power generation / light emission shown in FIG. It is a front view of the modification of a system.
  • the light source-integrated solar cell module 60 is provided on a light-transmitting solar cell module 10 having a front surface and a back surface, and on the back surface side of the solar cell module 10.
  • An LED lighting device 50 is provided, and the solar cell module 10 generates electric power by using sunlight 100 incident from the front side, and the LED lighting device 50 uses the electric power generated by the solar cell module 10 to generate LED light 200.
  • the LED light 200 emitted by the LED lighting device 50 is transmitted through the solar cell module 10 and emitted to the surface side of the solar cell module 10.
  • a reflector 40 that accommodates the LED lighting device 50 and covers the back side of the solar cell module 10 is provided on the back side of the solar cell module 10. As shown in FIG. 4, the reflector 40 reflects the LED light 200 emitted from the LED lighting device 50. It has a concave shape so that it can reflect and uniformly irradiate the back surface of solar cell module 10.
  • the reflection plate 40 is used to independently emit the LED light 200 emitted from the LED lighting devices 50 arranged on both edges of the solar cell module 10 from the front side of the solar cell module 10, respectively.
  • a partition plate 41 for partitioning a space defined between the back surface of the device 10 and the reflector 40 for each LED lighting device 50.
  • the LED lights 200 emitted from the LED lighting device 50 are independently emitted from the front surface side of the solar cell module 10 without being mixed with each other.
  • the LED light 200 emitted from the left LED lighting device 50 is emitted from the left half area of the solar cell module 10
  • the LED light 200 emitted from the right LED lighting device 50 is The light is emitted from the right half area of the battery module 10.
  • the solar cell module 10 is composed of two integrated thin-film solar cells 20 of a light transmission type (see-through type). As shown in FIGS. 5 to 7, each integrated thin-film solar cell 20 has a tandem type in which a first photoelectric conversion layer 24 that also has an amorphous silicon force and a second photoelectric conversion layer 25 that also has a microcrystalline silicon force are laminated.
  • the photoelectric conversion layer 26 has a slit shape for transmitting the LED light 200 (see FIG. 4) emitted from the LED lighting device 50 (see FIG. 4) from the back side to the front side. An opening 30 is formed.
  • the area ratio of the opening 30 to the effective power generation area of each integrated thin-film solar cell 20 is about 10%.
  • the light transmittance of each integrated thin-film solar cell 20 as a whole is about 10%.
  • the transparent trimming portion 32 see FIG. 5 where the photoelectric conversion layer 26 does not exist at the edge where the two integrated thin-film solar cells 20 are in contact with each other.
  • a black PET film 14 having light transmittance is provided, and care is taken so that the transmittance of the entire solar cell module 10 is kept uniform.
  • each LED lighting device 50 has a configuration in which four vertically long LED boards 51 are connected in their longitudinal direction.
  • each LED substrate 51 has a plurality of LED elements 52 emitting the three primary colors of RGB, and a lighting and emission floor of each LED element 52.
  • a control circuit (not shown) for controlling the key is provided. The control circuit controls the lighting of the LED element 52 and the gradation of light emission for each half area of the LED substrate 51 as described in detail later. This allows the LED lighting device 50 shown in FIG. 8 to control the emission color for each half area of each LED substrate 51.
  • Step 1 Fabrication of a deprivation type thin-film solar lightning pond cell
  • a glass substrate 21 having a thickness of 1.8 mm was used as an insulating translucent substrate, and a transparent conductive film was formed on the glass substrate 21 (substrate size: 560 mm ⁇ 925 mm).
  • a SnO (tin oxide) film is formed by a thermal CVD method.
  • notching of the transparent conductive film 22 is performed using a fundamental wave of a YAG laser.
  • the transparent conductive film 22 is separated into strips, and a separation line 23 is formed. Thereafter, the obtained glass substrate 21 is ultrasonically cleaned with pure water.
  • the first photoelectric conversion layer 24 is formed by a plasma CVD apparatus.
  • the first photoelectric conversion layer 24 includes an a—Si: Hp layer, an a—Si: Hi layer, and an a—Si: Hn layer, and has a total thickness of about 0.25 ⁇ m.
  • a second photoelectric conversion layer 25 is formed by a plasma CVD apparatus.
  • the second photoelectric conversion layer 25 is composed of a ⁇ c-SirHp layer, a / zc-Si: Hi layer, and a / zc-Si: Hn layer, and has a total thickness of about 1.6 m.
  • a transparent interlayer may be inserted between the first photoelectric conversion layer 24 and the second photoelectric conversion layer 25 for the purpose of improving the characteristics by improving the contact properties.
  • the first photoelectric conversion layer 24 and the second photoelectric conversion layer 25 constitute a tandem-type photoelectric conversion layer 26.
  • the first and second photoelectric conversion layers 24, 25 are patterned using a second harmonic of a YAG laser using a laser.
  • a second harmonic of a YAG laser By irradiating the laser beam from the glass substrate 21 side, the first and second photoelectric conversion layers 24 and 25 are separated into strips, and the transparent conductive film 22 and the back electrode layer 28 to be formed later (FIG. Electrically connected to Contact line 27 is formed.
  • a third harmonic of a YAG laser may be used as a laser, using a second harmonic of a YAG laser.
  • a back electrode layer 28 is formed by sequentially laminating a ZnO (zinc oxide) layer and an Ag layer by a magnetron sputtering apparatus. At this time, the thicknesses of the ZnO layer and the Ag layer are 50 nm and 125 nm, respectively.
  • high translucency such as ITO or SnO
  • the back electrode layer 28 may have a configuration in which a transparent conductive film such as a ZnO layer is omitted. However, in order to obtain high conversion efficiency, it is more preferable to omit it.
  • the back electrode layer 28 is patterned using a laser.
  • the back electrode layer 28 is separated into a strip shape, and a separation line 29 is formed.
  • a second harmonic of a YAG laser having good transparency to the transparent conductive film 22 as the laser to minimize damage to the transparent conductive film 22. It is preferable to select the processing conditions to be minimized.
  • an opening 30 is formed by irradiating the second harmonic of a YAG laser from the glass substrate 21 side using a mask (not shown).
  • the cross-sectional direction in Fig. 11 (h) is the CC cross-sectional direction in Fig. 5, and it is shown in Fig. 11 (g) because the cross-sectional direction on the drawing differs from Fig. 11 (g) by 90 °. Separation line 29 is not shown in the drawing.
  • the laser processing conditions for forming the opening 30 are selected as in the case of forming the separation line 29 of the back electrode layer 28 (see FIG. 11 (g)) without damaging the transparent conductive film 22. Is preferred.
  • the width of the opening 30 is 120 m, and the pitch of the opening 30 is 1.27 mm. By processing in this way, the area ratio of the opening 30 to the effective power generation area is set to about 10%.
  • solder plating bus bars are soldered to the P and N terminals by pulse heating at eight locations each to form the collector electrode 31 (see Fig. 5).
  • the thin-film solar cell 20 is completed.
  • the characteristics of the integrated thin-film solar cell 20 manufactured in this manner and having a substrate size of 560 mm X 925 mm, a 48-stage integration, and an aperture ratio of 10% are measured using a solar simulator AMI. 5 (100 mW Zcm 2 ). The measurement results are: Isc: l. 08A, Voc: 64.8V, FF: 0.6 86, Pmax: 48. OW.
  • the back electrode layer 28 is temporarily sealed with a polyethylene film and stored.
  • Step 2 Production of solar cell module
  • step 2 a solar cell module 10 having a three-layer laminated glass structure (see FIG. 1) is manufactured using two integrated thin-film solar cells 20 manufactured in step 1.
  • a 0.6 mm thick EVA sheet 12 was formed as an adhesive layer on a white board tempered glass having a substrate size of 1120 mm X 983 mm and a thickness of 8 mm to become the surface cover glass 11. Set them on top of each other. On top of that, two integrated thin-film solar cells 20 prepared in step 1 are set side by side.
  • the opposing P-side and N-side current collectors 31 (see Fig. 1) of the two integrated thin-film solar cells 20 are connected in series with a transparent PET-coated bus bar 13 (see Fig. 1).
  • the P-side collector 31 of one cell 20 (see Fig. 1) located at the end and the N-side collector 31 of the other cell 20 (see Fig. 1) serve as a lead-out wire for the transparent PET-coated bus bar 13 (see Fig. 1).
  • an EVA sheet 12 having a thickness of 0.6 mm was set on the integrated thin-film solar cells Senor 20 which were arranged and connected in series, and the set EVA sheet 12 was set.
  • a black PET film 14 with a visible light transmittance of about 10% and a size of 900 mm X 20 mm is placed on top of the transparent thin-film solar cell 20.
  • the EVA sheet 12 is further laminated on the black PET film 14, and finally, a white plate tempered glass having a substrate size of 1120 mm X 983 mm and a thickness of 8 mm is set as the back cover glass 15. I do.
  • the module set as described above is adjusted and controlled in degree of vacuum and temperature by an autoclave method to melt and crosslink EVA.
  • the solar cell module 10 is adjusted and controlled in degree of vacuum and temperature by an autoclave method to melt and crosslink EVA.
  • the unnecessary EVA resin that has protruded is removed by end face treatment, and the terminal box 16 (see Fig. 1) is bonded to the glass end face with silicone resin.
  • the solar cell module 10 shown in FIG. 1 is obtained.
  • the inside of the terminal box 16 is filled with silicone resin for potting in order to prevent short circuit due to water immersion.
  • the characteristics of the solar cell module thus manufactured having a module size of 1180 mm ⁇ 983 mm, two used cells, and an opening ratio of 10% are measured using a solar simulator AMI. 5 (100 mW / cm 2 ). The measurement results are: lsc: 0.972A, Voc: 128V, FF: 0.686, Pmax: 85.3W.
  • Step 3 Production of LED lighting device
  • the LED lighting device 50 shown in FIG. 8 is configured by connecting four vertically long LED substrates 51 in their longitudinal directions.
  • each LED board 51 shown in FIG. 9 a printed wiring epoxy resin board is used, and as the LED element 52, a ⁇ 5 shell-shaped LED element is used.
  • Each LED board 51 has 60 red LED elements, 60 green LED elements, and 60 blue LED elements, and each LED element 52 is connected to a control circuit (not shown).
  • the control unit of the control circuit is 30 red LED elements, 30 green LED elements, and 30 blue LED elements arranged in a half area of each LED board 51.
  • the four LED boards 51 are arranged in the longitudinal direction and housed in a casing 53 having a size of 930 mm ⁇ 65 mm and a thickness of 30 mm.
  • the front surface of the light-emitting portion is made of transparent polycarbonate, and the other portions are made of aluminum, and have good waterproofness and heat dissipation.
  • the LED lighting devices 50 having such a compositional power are arranged vertically one at each of the left and right edges of the solar cell module 10, and one light source integrated solar cell module 60 is provided. Will be used.
  • each of the LED elements 52 has eight gradations of red, green, and blue
  • 512 colors can be expressed by a combination thereof. Different colors can be expressed independently for each half area of the LED substrate 51, which is a control unit, so one LED lighting device 50 can simultaneously display eight colors, and one light source integrated solar cell module 60 can simultaneously display 16 colors. Will be out.
  • Step 4 Integration of solar cell module and LED lighting device
  • the side of the solar cell module 10 manufactured in step 2 is made of aluminum
  • the module frame 18 is mounted, the LED lighting device 50 produced in the step 3 is arranged inside the module frame 18, and the mirror reflector 40 is set behind the solar cell module 10.
  • the reflection plate 40 is provided with a partition plate 41 at the center thereof, which vertically divides a space into two. The installation angle of the LED lighting device 50 is adjusted so that the LED light emitted from the LED lighting device 50 is reflected by the reflector 40 on the back surface, and the front side force of the solar cell module 10 is also emitted to the maximum. Installed with.
  • the light source integrated solar cell module 60 shown in FIGS. 1 and 2 is manufactured.
  • the power generation / light emitting system 70 uses 120 light source-integrated solar cell modules 60 manufactured as described above, eight in the vertical direction, and in the horizontal direction. We have arranged 15 units in an array to construct a large-area, self-luminous, power-emitting system with a size of 8m x 18m.
  • a total of 960 LED boards 51 in the entire power generation / emission system 70, and there are 1920 independently controllable areas, each of which can represent 512 colors by combining RGB gradations.
  • the power generation and light emission system 70 includes a storage battery that stores power generated by each of the light source integrated solar cell modules 60 during the day, a charge to the storage battery from each light source integrated solar cell module 60, and a storage battery power. It has a charging and power supply control unit that controls power supply to the LED lighting device 50 of the light source integrated solar cell module 60.
  • Such a power generation and light emission system 70 can use the power stored during the day to emit light from the entire surface of each of the integrated light source solar cell modules 60 at night.
  • Each light source-integrated solar cell module 60 can simultaneously display 16 colors selected from among 512 colors, and the emission color of each light source-integrated solar cell module 60 can be appropriately set and controlled. Desired characters, figures, patterns, etc. can be displayed by light emission.
  • the power generation light emitting system 70 may have a logo 71 to be illuminated on the front surface thereof.
  • the 120 light source-integrated solar cell modules 60 that make up the power generation and light emission system 70, 22 of them that are hidden behind the logo 71 have a power generation function. If not, it is a dummy module.
  • the logo 71 By arranging the logo 71 on the front of the power generation and light emission system 70, it can function as a display even during the daytime when no light is emitted.At night, the logo 71 is illuminated with LED light, so the logo 71 can be recognized. It can express well and can be used as a large luminous signboard.
  • the light source-integrated solar cell module according to the present invention can be used for various display or lighting purposes, such as various display panels such as signboards of shops and companies, public traffic signs, and home or business lighting devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

光源一体型太陽電池モジュールである。光源一体型太陽電池モジュールは、表面および裏面を有する光透過型の太陽電池と、太陽電池の裏面側に設けられた光源とを備え、太陽電池は表面側から入射する光を利用して電力を発生し、光源は太陽電池で発生した電力を利用して光を発し、光源から発せられた光は太陽電池を透過して太陽電池の表面側へ出射できる。

Description

明 細 書
光源一体型太陽電池モジュールおよびそれを用いた発電発光ユニット 技術分野
[0001] この発明は、光源一体型モジュールおよびそれを用いた発電発光ユニットに関し、 詳しくは、発電機能と発光機能を併せ持つ太陽電池モジュールとそれを用いた発電 発光ユニットに関する。 背景技術
[0002] 一般的な太陽電池パネルは、パネルを構成する太陽電池モジュールの表面色が、 例えば、結晶系の場合は黒や青紫、アモルファス系の場合は茶色等に限定されてお り、パネル面が単一色となっている。その結果、太陽電池パネルの表情力 非常に殺 風景で味気な!/、ものとなって!/ヽる。
そこで、太陽電池モジュールの表面や裏面を任意の色に着色し、色の異なる太陽 電池モジュールを組合せることにより所望の文字や図形等の模様を表示するように 構成された太陽電池パネルが提案されるに至っている。より具体的には、例えば、次 のようなものが一般に知られて 、る。
[0003] 反射防止膜の厚み、積層数、屈折率等を調整することによって表面に所望の色が 与えられた太陽電池モジュールを用い、表面色の異なる複数の太陽電池モジュール を組合せて文字や図形等を表示した太陽電池パネル (例えば、特許文献 1参照)。
[0004] 裏面側の透光性封止材料が所望の色に着色された光透過型の太陽電池モジユー ルを用い、裏面側の色が異なる複数の太陽電池モジュールを組合せて文字、図形、 模様等を表示した太陽電池パネル (例えば、特許文献 2参照)。
[0005] 一方、太陽電池と光源を一体ィ匕し、昼間に蓄えた電力を夜間の照明に利用するも のも提案されている。例えば、次のようなものが知られている。
[0006] 透光性基板と、透光性基板上に積層された透光性発光層と、透光性発光層上に積 層された太陽電池と、太陽電池によって発電された電力を蓄える蓄電池と、太陽電 池から蓄電池への充電と蓄電池から透光性発光層への給電を制御する制御部とを 備え、太陽電池は透光性基板および透光性発光層を介して入射する光を受けて発 電し、透光性発光層から発せられた光は透光性基板を介して外部へ出射される発光 装置 (例えば、特許文献 3参照)。
[0007] 面状発光する発光パネルと、発光パネルの周囲を囲う枠状の太陽電池と、太陽電 池によって発電された電力を蓄える蓄電池と、太陽電池から蓄電池への充電と蓄電 池から発光パネルへの給電を制御する制御部と、これらを収容するケーシングとを備 える発光装置 (例えば、特許文献 4参照)。
[0008] 基板の一方表面に太陽電池と発光素子が配設され、他方表面に発光素子を発光 させるための電子回路群が配設され、太陽電池、発光素子および電子回路群が基 板に形成されたスルーホールを介して電気的に接続されてなる発光装置 (例えば、 特許文献 5参照)。
特許文献 1 :特開平 8— 107230号公報
特許文献 2:特開 2001— 237449号公報
特許文献 3 :特開昭 59— 217991号公報
特許文献 4:特開昭 60 - 78477号公報
特許文献 5:特開 2001 - 351418号公報
発明の開示
発明が解決しょうとする課題
[0009] 太陽電池モジュールの表面や裏面に所望の色を与え、異なる色の太陽電池モジュ ールを組合せて任意の模様を表示した太陽電池パネルの場合、昼間の明るい時間 帯でしか模様の表示効果が得られない。また、表示できる模様は 1種類に限られる。
[0010] 一方、太陽電池と光源を一体化した発光装置にお!ヽて、太陽電池の光入射面上に 透光性発光層が配設されたものでは、透光性発光層による入射光の損失が生じるた め、太陽電池の発電効率が低下する。
また、太陽電池と、発光パネル又は発光素子等の光源が同一面上で重ならないよ うに配設されている発光装置では、発電効率の低下は生じないものの、太陽電池が 配置された領域からは発光を取り出せず、全面発光とならないことから認識性、意匠 性に課題が残る。
[0011] この発明は以上のような事情を考慮してなされたものであり、発電効率の低下を最 小限に留めつつ、全面発光を達成できる光源一体型太陽電池モジュールおよびそ れを用いた発電発光システムを提供するものである。
課題を解決するための手段
[0012] この発明は、表面および裏面を有する光透過型の太陽電池と、太陽電池の裏面側 に設けられた光源とを備え、太陽電池は表面側カゝら入射する光を利用して電力を発 生し、光源は太陽電池で発生した電力を利用して光を発し、光源から発せられた光 は太陽電池を透過して太陽電池の表面側へ出射されることを特徴とする光源一体型 太陽電池モジュールを提供するものである。
発明の効果
[0013] この発明によれば、光透過型太陽電池の裏面側に光源が配設されるので、光源に よる入射光の損失がなぐまた、光源力 発せられた光は太陽電池を透過して太陽電 池の表面側へ出射されるので全面発光を達成できる。
この結果、認識性および意匠性に優れた光源一体型太陽電池モジュールを提供 できる。
図面の簡単な説明
[0014] [図 1]実施例による光源一体型太陽電池モジュールの概略的な構成を示す正面図で ある。
[図 2]図 1に示される光源一体型太陽電池モジュールの概略的な構成を示す A— A 断面図である。
[図 3]図 2に示される光源一体型太陽電池モジュールの発電時の作用を示す説明図 である。
[図 4]図 2に示される光源一体型太陽電池モジュールの発光時の作用を示す説明図 である。
[図 5]光源一体型太陽電池モジュールを構成する集積型薄膜太陽電池セルの平面 図である。
[図 6]図 5に示される集積型薄膜太陽電池セルの B—B要部断面図である。
[図 7]図 5に示される集積型薄膜太陽電池セルの C— C要部断面図である。
[図 8]LED照明装置の斜視図である。 圆 9]LED照明装置を構成する LED基板の平面図である。
圆 10]集積型薄膜太陽電池セルの製造工程を示す工程図である。
圆 11]集積型薄膜太陽電池セルの製造工程を示す工程図である。
[図 12]太陽電池モジュールの製造工程を示す工程図である。
圆 13]光源一体型太陽電池モジュールの組立工程を示す説明図である。
[図 14]実施例による発電発光システムの正面図である。
[図 15]図 14に示される発電発光システムの変形例の正面図である。 符号の説明
lO- '太陽電池モジュール
l l - '表面カバーガラス
12· •EVAシート
13 · '透明 PET被覆バスバー
14· '黒色 PETフィルム
is'裏面カバーガラス
le- •端子ボックス
17· 'ケーブル線
18 · •モジユーノレ枠
20· •集積型薄膜太陽電池セル
21 · 'ガラス基板
22· •透明導電膜
23 · '分離ライン
24· •第 1光電変換層
25 · •第 2光電変換層
26 · •光電変換層
27· •コンタクトライン
28 · •裏面電極層
29 · '分離ライン
30· '開口部 31·· .集電極
32·· 'トリミング部
40·· •反射板
41·· •間仕切り板
50·· •LED照明装置
51·· •LED基板
52·· •LED素子
53·· 'ケーシング
60·· •光源一体型太陽電池モジュール
70·· '発電発光システム
71·· ,ロゴ
100· ··太陽光
200· ••LED光
発明を実施するための最良の形態
この発明による光源一体型太陽電池モジュールは、表面および裏面を有する光透 過型の太陽電池と、太陽電池の裏面側に設けられた光源とを備え、太陽電池は表面 側から入射する光を利用して電力を発生し、光源は太陽電池で発生した電力を利用 して光を発し、光源から発せられた光は太陽電池を透過して太陽電池の表面側へ出 射されることを特徴とする。
この発明による光源一体型太陽電池モジュールにおいて、太陽電池としては、光 透過型であれば特に限定されるものではなぐ結晶系太陽電池又は薄膜系太陽電 池の!/、ずれであっても構わな!/、。
また、太陽電池の形態としては、単一の太陽電池セルであってもよいし、複数の太 陽電池セルが電気的に接続された太陽電池モジュールであってもよい。
また、この発明において光源は、発光素子と換言することもでき、電力で光を発する 全てのものを含む。具体的には、低消費電力で高輝度のものが好ましぐ例えば、 L ED素子、有機 EL素子、無機 EL素子、冷陰極蛍光ランプ、熱陰極蛍光ランプなどが 挙げられる。 [0017] この発明による光源一体型太陽電池モジュールは、光源を収容し、かつ、太陽電 池の裏面側を覆うように設けられる反射板をさらに備え、太陽電池はほぼ方形の形状 を有し、光源は太陽電池の少なくとも 1つの縁に沿うように配設され、光源から発せら れた光は反射板によって反射されて太陽電池の裏面側力 表面側へ透過してもよい このような構成によれば、光源の消費電力を抑えつつ、反射板の作用によって効率 良く全面発光させることができる。
すなわち、均一な輝度の全面発光を得るためには、太陽電池の裏面側を一様に照 らす必要があるが、仮に、太陽電池の裏面側全面を覆うように光源を配すると光源の 数が非常に多くなる力 或いは大型の光源が必要となり、自ずと消費電力も増化する しかし、上述のように太陽電池の縁に沿うように光源を配し、光源より発せられた光 を反射板で反射させて太陽電池の裏面を一様に照らすようにすれば、少な 、数の光 源、或いは小型の光源で太陽電池の裏面を一様に照らすことができ、消費電力を抑 えつつ、均一な輝度の全面発光を得ることができる。
[0018] 反射板を備える上記構成において、光源は太陽電池の両縁にそれぞれ配設され、 反射板は各光源力 発せられた光を独立して太陽電池力 出射させるために光源毎 にその反射領域を仕切る間仕切り板を備えてもよい。
このような構成によれば、各光源力 発せられた光をそれぞれ独立して太陽電池か ら出射させることができるので、太陽電池の両縁に配される光源が互いに異なる色を 発するものである場合には、光源一体型太陽電池モジュールの表示体としての表現 が優れたものとなる。
[0019] この発明による光源一体型太陽電池モジュールにお 、て、太陽電池は光電変換を 行う光電変換層を有し、光電変換層はその一部に光源力 発せられた光を裏面側か ら表面側へ透過させる開口部が形成されて 、てもよ 、。
このような構成によれば、光電変換層の一部に開口部が形成されるという、簡易な 構造で光透過型の太陽電池を得ることができる。この場合、太陽電池全体の透過率 は、太陽電池全体の面積に対する開口部の比率によって決定されるので、太陽電池 全体の透過率の設定も容易になる。この開口部は、例えば、レーザカ卩ェによって容 易に形成でき、均一な輝度の全面発光を得るためには、なるベぐ多数の開口部を 均一な分布で形成することが好まし 、。
[0020] 太陽電池の光電変換層に開口部が形成される上記構成において、太陽電池は、 アモルファスシリコン力 なる光電変換層と、微結晶シリコン力 なる光電変換層が積 層されたタンデム構造を有して 、てもよ 、。
このような構成によれば、光電変換層がアモルファスシリコンのみ力 なるシングル 構造に比べ、変換効率が約 1. 5倍程度向上すると共に、太陽電池の色合いが茶色 力も黒に近い色となり、表示体のバックカラーとしてより意匠性に優れたものとなる。
[0021] また、太陽電池の光電変換層に開口部が形成される上記構成において、太陽電池 はその裏面に光源から発せられた光を反射させる反射面が形成されていてもよい。 このような構成によれば、太陽電池の裏面側に反射板が設けられる場合において、 光源力も発せられた光を反射板と太陽電池の裏面との間に、その光が開口部を透過 して表面側から出射されるまで閉じ込めておくことができ、光源力も発せられる光の 利用効率を高めることができる。この結果、光源の数を減らすか、或いは光源の小型 化を図ることができ、消費電力の低減を図ることができる。
[0022] また、太陽電池の光電変換層に開口部が形成される上記構成にお!、て、開口部は
、太陽電池の有効発電領域に占める面積の比率が 5〜30%の範囲内となるように形 成されていてもよい。
このような構成によれば、太陽電池の発電量と、光源の消費電力とのバランスをとり つつ、光源力 発せられた光を効率良く太陽電池の表面側へ透過させることができる 。すなわち、開口率が 5%より小さい場合には、光源から発せられた光を透過させる 面積が小さくなり過ぎ、効率良く光を透過させることがでず、均一な輝度の全面発光 が得られに《なる。一方、開口率が 30%より大きい場合には、光電変換に寄与する 面積が少なくなり過ぎ、発電効率が低下して発光に必要な電力をまかなうことができ なくなる。
なお、この発明において、太陽電池の有効発電領域とは、太陽電池の全体の面積 のうち、太陽光の照射を受けて実際の発電に寄与する領域のことを意味し、通常は 光電変換層が存在する領域のことを意味する。
[0023] また、太陽電池の光電変換層に開口部が形成される上記構成において、太陽電池 は複数の集積型太陽電池セルを互いに隣接するように配列した太陽電池モジユー ルであって、隣接する一対の集積型太陽電池セルはそれらの一部が太陽電池全体 の透過率と同程度の透過率を有するフィルムで覆われて 、てもよ 、。
つまり、通常の集積型太陽電池セルは、光電変換層の存在する非透明部分と光電 変換層の存在しない透明部分とから構成されるので、このような集積型太陽電池セ ルカ なる太陽電池モジュールの背面側を照らすと、隣接するセルの透明部分に対 応する箇所の輝度がその他の部分よりも高くなり、均一な輝度の全面発光が得られ に《なる。
し力しながら、上述のように構成すれば、隣接する一対の集積型太陽電池セルはそ れらの一部、すなわちそれらの透明部分が太陽電池全体の透過率と同程度の透過 率を有するフィルムによって覆われるので、太陽電池全体の透過率を一様に整える ことができ、均一な輝度の全面発光が得られ易くなる。
[0024] この発明による光源一体型太陽電池モジュールにおいて、光源は LED照明装置 からなつていてもよい。
このような構成によれば、光源に LEDを用いることにより、光源の低消費電力化、長 寿命化、薄型軽量ィ匕を図ることができる。
また、 LEDは、上記利点に加えて点滅動作等の制御が行い易いという利点もあり、 この発明の光源一体型太陽電池モジュールの光源として好適である。
低消費電力化は太陽電池による発電量のみで十分な光度が得られることを意味し 、長寿命化は光源一体型太陽電池モジュールのメンテナンスフリー化に寄与し、容 易な制御性は表示体としてより多彩で高度なシステムを構築するうえで有利に作用 する。
[0025] 光源力LED照明装置力もなる上記構成において、 LED照明装置は RGBの 3原色 を発する複数の LED素子を備えて 、てもよ 、。
このような構成によれば、可視光領域のほぼ全域で単一光を発光できるようになる だけでなぐ RGBの 3原色を組合せることによってフルカラーの表示が可能になる。 [0026] LED照明装置力 ¾GBの 3原色を発する複数の LED素子を備える上記構成にぉ ヽ て、 LED照明装置は LED素子を搭載する複数の LED基板を備え、各 LED基板は その発色を制御するための制御回路を備えて 、てもよ 、。
このような構成によれば、 LED基板毎に発色を独立して制御できるので、 LED基 板の数を増やすことによって表示パターンを増やすことができ、より多彩で高度な表 示が可能になる。
[0027] この発明は別の観点力 みると、平面状又は曲面状に配列された複数の光源一体 型太陽電池モジュールを備え、各光源一体型太陽電池モジュールが上述のこの発 明による光源一体型太陽電池モジュールカゝらなる発電発光システムを提供するもの でもある。
このような発電発光システムによれば、昼間に発電し蓄えた電力を利用し、夜間に システム全体で文字、図形、模様等を表示できる。
この発明による発電発光システムは、特に、大面積表示システムとして有用であり、 店舗や企業の看板として好適に機能できる。
光源は各太陽電池の裏面側に設けられるので、太陽電池の発電効率を低下させる 恐れもなぐまた、表面側力もはその存在を視認できないことから外観上の美観にも 優れる。
[0028] この発明による上記発電発光システムは、照らし出すべき被照射物を一部の光源 一体型太陽電池モジュールの表面側にさらに備えていてもよい。
このような構成によれば、照らし出すべき被照射物が一部の光源一体型太陽電池 モジュールの前面に設けられるので、光源が発光しない昼間においても表示体とし て機能できる。もちろん、夜間は太陽電池の表面側力 出射される光によって被照射 物が照らし出されるので、表示体としてより一層効果的に機能する。被照射物として は、例えば、文字や所望の図形等を挙げることができる。
なお、被照射物が前面に配置された光源一体型太陽電池モジュールは、被照射 物によって作り出される影によって発電効率が低下し、発電発光システム全体の発 電効率を低下させてしまうので、被照射物によって発電効率の低下が懸念される部 分にっ 、てのみ、発電機能を備えな 、ダミーの光源一体型太陽電池モジュールとす ることが発電発光システム全体の発電効率の観点から好ましい。
[0029] 以下、図面に示す実施例に基づいてこの発明を詳細に説明する。
実施例
[0030] この発明の実施例による光源一体型太陽電池モジュールとそれを用いた発電発光 システムについて、図 1〜15に基づいて説明する。図 1は実施例による光源一体型 太陽電池モジュールの概略的な構成を示す正面図、図 2は図 1に示される光源一体 型太陽電池モジュールの概略的な構成を示す A— A断面図、図 3は図 2に示される 光源一体型太陽電池モジュールの発電時の作用を示す説明図、図 4は図 2に示され る光源一体型太陽電池モジュールの発光時の作用を示す説明図、図 5は光源一体 型太陽電池モジュールを構成する集積型薄膜太陽電池セルの平面図、図 6は図 5に 示される集積型薄膜太陽電池セルの B— B要部断面図、図 7は図 5に示される集積 型薄膜太陽電池セルの C C要部断面図、図 8は LED照明装置の斜視図、図 9は L ED照明装置を構成する LED基板の平面図、図 10および図 11は図 5に示される集 積型薄膜太陽電池セルの製造工程を示す工程図、図 12は太陽電池モジュールの 製造工程を示す工程図、図 13は光源一体型太陽電池モジュールの組立工程を示 す説明図、図 14は実施例による発電発光システムの正面図、図 15は図 14に示され る発電発光システムの変形例の正面図である。
[0031] 光源一体型太陽雷池モジュール
図 1〜4に示されるように、実施例 1による光源一体型太陽電池モジュール 60は、 表面および裏面を有する光透過型の太陽電池モジュール 10と、太陽電池モジユー ル 10の裏面側に設けられた LED照明装置 50とを備え、太陽電池モジュール 10は 表面側から入射する太陽光 100を利用して電力を発生し、 LED照明装置 50は太陽 電池モジュール 10で発生した電力を利用して LED光 200を発し、 LED照明装置 50 力 発せられた LED光 200は太陽電池モジュール 10を透過して太陽電池モジユー ル 10の表面側へ出射されるように構成されている。
[0032] 図 2に示されるように、太陽電池モジュール 10の裏面側には、 LED照明装置 50を 収容し、かつ、太陽電池モジュール 10の裏面側を覆う反射板 40が設けられている。 図 4に示されるように、反射板 40は LED照明装置 50から発せられた LED光 200を 反射して太陽電池モジュール 10の裏面を一様に照射できるような凹状の形状を有し ている。
反射板 40は、太陽電池モジュール 10の両縁にそれぞれ配置された LED照明装 置 50から発せられた LED光 200をそれぞれ独立して太陽電池モジュール 10の表面 側から出射させるために、太陽電池モジュール 10の裏面と反射板 40との間に規定さ れる空間を LED照明装置 50毎に仕切る間仕切り板 41を備えている。
これにより、 LED照明装置 50から発せられた LED光 200は互いに混じり合うことな ぐ独立して太陽電池モジュール 10の表面側から出射される。この実施例では、左 側の LED照明装置 50から発せられた LED光 200は、太陽電池モジュール 10の左 半分の領域から出射され、右側の LED照明装置 50から発せられた LED光 200は、 太陽電池モジュール 10の右半分の領域から出射される。
[0033] 図 1に示されるように、太陽電池モジュール 10は、光透過型(シースルー型)の 2つ の集積型薄膜太陽電池セル 20から構成されている。図 5〜7に示されるように、各集 積型薄膜太陽電池セル 20はアモルファスシリコン力もなる第 1光電変換層 24と微結 晶シリコン力もなる第 2光電変換層 25が積層されてなるタンデム型の光電変換層 26 を有し、光電変換層 26には LED照明装置 50 (図 4参照)から発せられた LED光 200 (図 4参照)を裏面側から表面側へ透過させるためのスリット状の開口部 30が形成さ れている。
[0034] この実施例において、各集積型薄膜太陽電池セル 20の有効発電領域に占める開 口部 30の面積比率は約 10%である。これは、各集積型薄膜太陽電池セル 20の全 体としての光透過率が約 10%であることを意味している。このため、図 1に示されるよ うに、 2つの集積型薄膜太陽電池セル 20が接する縁において、光電変換層 26が存 在しない透明なトリミング部 32 (図 5参照)には、約 10%の光透過率を有する黒色 PE Tフィルム 14が配され、太陽電池モジュール 10の全体としての透過率が一様に保た れるように配慮されている。
[0035] 図 8に示されるように、各 LED照明装置 50は、 4つの縦長の LED基板 51をそれら の長手方向に繋ぎ合わせた構成を有している。図 9に示されるように、各 LED基板 5 1は RGBの 3原色を発する複数の LED素子 52と、各 LED素子 52の点灯と発光の階 調を制御するための制御回路(図示せず)を備えている。制御回路は、後で詳述する ように LED基板 51の半分の領域毎に LED素子 52の点灯と発光の階調を制御する 。これにより、図 8に示される LED照明装置 50は各 LED基板 51の半分の領域毎に 発光色の制御が可能となって 、る。
以下、実施例による光源一体型太陽電池モジュールの作製方法について説明す る。
[0036] 工程 1:奪穑型薄膜太陽雷池セルの作製
まず、図 10 (a)に示されるように、絶縁性の透光性基板として厚さ 1. 8mmのガラス 基板 21を使用し、ガラス基板 21上 (基板サイズ: 560mmX 925mm)に、透明導電 膜 22として、熱 CVD法で SnO (酸化錫)を成膜する。
2
次に、図 10 (b)に示されるように、 YAGレーザの基本波を用いて透明導電膜 22の ノターニングを行う。レーザ光をガラス基板 21側から入射させることにより、透明導電 膜 22は短冊状に分離されて分離ライン 23が形成される。この後、得られたガラス基 板基板 21を純水で超音波洗浄する。
[0037] 次に、図 10 (c)に示されるように、プラズマ CVD装置により、第 1光電変換層 24を 形成する。第 1光電変換層 24は、 a— Si:H p層、 a— Si:H i層、 a— Si:H n層か らなり、合計の厚みは 0. 25 μ m程度である。
続いて、図 10 (d)に示されるように、プラズマ CVD装置により第 2光電変換層 25を 形成する。第 2光電変換層 25は、 ^ c-SirH p層、 /z c— Si:H i層、 /z c— Si:H n層からなり、合計の厚みは 1. 6 m程度である。第 1光電変換層 24と第 2光電変換 層 25のコンタクト性向上による特性向上を目的として間に透明中間膜を挿入しても 構わない。
第 1光電変換層 24と第 2光電変換層 25によってタンデム型の光電変換層 26が構 成される。
[0038] 次に、図 10 (e)に示されるように、 YAGレーザの第 2高調波を用いて、第 1および 第 2光電変換層 24, 25をレーザを用いてパターユングする。レーザ光をガラス基板 2 1側から入射させることにより、第 1および第 2光電変換層 24, 25は短冊状に分離さ れ、透明導電膜 22と後に形成する裏面電極層 28 (図 11 (f)参照)とを電気的に接続 するためのコンタクトライン 27が形成される。また、レーザとして YAGレーザの第 2高 調波を用いた力 YAGレーザの第 3高調波を用いても構わない。
[0039] 次に、図 11 (f)に示されるように、マグネトロンスパッタ装置により、 ZnO (酸化亜鉛) 層と Ag層を順に積層し裏面電極層 28を形成する。この際、 ZnO層と Ag層の厚みは それぞれ、 50nm、 125nmとする。 ZnO層の代わりに、 ITOや SnO等の透光性の高
2
い膜を用いてもよい。裏面電極層 28は ZnO層等の透明導電膜を割愛した構成とし ても構わな ヽが、高 、変換効率を得るためには割愛しな 、方が好ま 、。
[0040] 次に、図 11 (g)に示されるように、裏面電極層 28をレーザを用いてパターユングす る。レーザをガラス基板 21側から入射させることにより、裏面電極層 28は短冊状に分 離され、分離ライン 29が形成される。この際、レーザによる透明導電膜 22へのダメー ジを避けるため、レーザには透明導電膜 22に対する透過性の良い YAGレーザの第 2高調波等を使用し、透明導電膜 22へのダメージを最小限に抑える加工条件を選択 することが好ましい。
[0041] 続いて、図 11 (h)に示されるように、マスク(図示せず)を用いてガラス基板 21側より YAGレーザの第 2高調波をレーザ照射することにより開口部 30を作製する。なお、 図 11 (h)の断面方向は、図 5の C C断面方向であり、図 11 (g)と図面上の断面方 向が 90° 異なっているため、図 11 (g)に表れていた分離ライン 29は図面に表れて いない。開口部 30を形成する際のレーザ加工条件は、裏面電極層 28の分離ライン 2 9 (図 11 (g)参照)形成時と同様に、透明導電膜 22にダメージを与えな 、条件を選択 するのが好ましい。なお、開口部 30の幅は 120 m、開口部 30のピッチは 1. 27m mとする。このように加工することにより、有効な発電領域に対する開口部 30の面積 比率を約 10%とする。
最後に P側、 N側の端子部にパルスヒート方式により、はんだメツキバスバーをそれ ぞれ 8箇所はんだ付けして集電極 31 (図 5参照)を形成することにより、図 5に示され る集積型薄膜太陽電池セル 20が完成する。
[0042] このようにして作製された基板サイズ 560mm X 925mm, 48段集積、開口率 10% の集積型薄膜太陽電池セル 20の特性をソーラーシユミレーター AMI. 5 (lOOmW Zcm2)により測定する。その測定結果は、 Isc : l. 08A、Voc : 64. 8V、 F. F. : 0. 6 86、 Pmax:48. OWである。モジュール化までに裏面電極層 28を構成する Ag層の 酸ィ匕による変色を防止するために、ポリエチレンフィルムで裏面電極層 28を一時的 に封止して保存する。
[0043] 工程 2:太陽電池モジュールの作製
この工程 2では、工程 1で作製された集積型薄膜太陽電池セル 20を 2枚用いて 3層 合わせガラス構造の太陽電池モジュール 10 (図 1参照)を作製する。
まず、図 12 (a)に示されるように、表面カバーガラス 11となる基板サイズ 1120mm X 983mm,厚さ 8mmの白板強化ガラスの上に接着層として、厚さ 0. 6mmの EVA シート 12を 2枚重ねてセットする。その上に工程 1で作製した集積型薄膜太陽電池セ ル 20を 2枚並べてセットする。
並べられた 2枚の集積型薄膜太陽電池セル 20の対向する P側および N側の集電 極 31 (図 1参照)を透明 PET被覆バスバー 13 (図 1参照)にて直列結線し、さらに両 端に位置する一方のセル 20の P側の集電極 31 (図 1参照)と他方のセル 20の N側の 集電極 31 (図 1参照)に、端子取り出し線として透明 PET被覆バスバー 13 (図 1参照 )をはんだ付けする。
[0044] 次いで、図 12 (b)に示されるように、並べられ直列結線された集積型薄膜太陽電池 セノレ 20の上に厚さ 0. 6mmの EVAシート 12をセットし、セットした EVAシート 12の上 にサイズ 900mm X 20mmの可視光透過率が 10%程度の黒色 PETフィルム 14を、 集積型薄膜太陽電池セル 20どおしが接する縁における透明なトリミング部 32 (図 5 参照)が遮蔽されるようにセットする。
次いで、図 12 (c)に示されるように、黒色 PETフィルム 14の上にさらに EVAシート 12を重ね、最後に、裏面カバーガラス 15として基板サイズ 1120mm X 983mm、厚 さ 8mmの白板強化ガラスをセットする。
[0045] 続いて、図 12 (d)に示されるように、上記のようにセッティングが完了したモジユー ルをオートクレープ方式により、真空度と温度を調整制御して、 EVAを溶解、架橋さ せて一体化し、太陽電池モジュール 10を完成させる。
その後、はみ出した不要な EVA榭脂を端面処理により除去して、端子ボックス 16 ( 図 1参照)をシリコーン榭脂によりガラス端面に接着し、端子ボックス 16内でセルの端 子取り出し線と外部のケーブル線 17 (図 1参照)をそれぞれはんだ付け結線すること により、図 1に示される状態の太陽電池モジュール 10となる。なお、端子ボックス 16 内は、浸水による短絡防止のため、ポッティング用シリコーン榭脂を充填する。
[0046] このようにして作製されるモジュールサイズ 1180mm X 983mm、使用セル 2枚、開 口率 10%の太陽電池モジュールの特性をソーラーシユミレーター AMI. 5 (100m W/cm2)により測定する。その測定結果は、 lsc : 0. 972A、 Voc : 128V、 F. F. : 0 . 686、Pmax: 85. 3Wである。
[0047] 工程 3 : LED照明装置の作製
上述の通り、図 8に示される LED照明装置 50は、 4つの縦長の LED基板 51をそれ らの長手方向に繋いで構成される。図 9に示される各 LED基板 51としては、プリント 配線エポキシ榭脂基板を用い、 LED素子 52としては φ 5の砲弾型の LED素子を用 いる。各 LED基板 51は、赤色の LED素子を 60個、緑色の LED素子を 60個、青色 の LED素子を 60個搭載し、各 LED素子 52はそれぞれ制御回路(図示せず)に接続 される。制御回路の制御単位は、各 LED基板 51の半分の領域に配置された赤色の LED素子 30個、緑色の LED素子 30個、青色の LED素子 30個とする。
[0048] 図 8に示されるように上記 LED基板 51をその長手方向に 4つ配置して 930mm X 6 5mm、厚み 30mmのケーシング 53に収める。ケーシング 53は、発光部の前面を透 明なポリカーボネートで構成し、その他の部分をアルミで構成し、防水性と放熱性の 良いものとする。図 2に示されるように、このような構成力もなる LED照明装置 50は太 陽電池モジュール 10の左右の両縁に縦置きで 1個ずつ配置され、 1つの光源一体 型太陽電池モジュール 60にっき 2個使用されることとなる。
各 LED素子 52には、赤色、緑色、青色ともに 8段階の階調をもたせるので、それら の組合せにより 512色を表現できることとなる。制御単位である LED基板 51の半分 の領域毎にそれぞれ独立して異なる色を表現できるので、 1つの LED照明装置 50 では同時に 8色、 1つの光源一体型太陽電池モジュール 60では同時に 16色を表現 でさることとなる。
[0049] 工程 4:太陽電池モジュールと LED照明装置の一体化
図 13に示されるように、工程 2で作製した太陽電池モジュール 10の側面にアルミ製 のモジュール枠 18を取り付け、そのモジュール枠 18の内側に工程 3で作製した LED 照明装置 50を配置し、太陽電池モジュール 10の後ろ側に鏡面の反射板 40を設置 する。反射板 40は、その中央部に縦方向に空間を 2分する間仕切り板 41を備えてい る。 LED照明装置 50は、 LED照明装置 50から出射された LED光が裏面の反射板 40によって反射され、太陽電池モジュール 10の表面側力も最大限に出射されるよう にその設置角度が調整されたうえで取り付けられる。
以上の工程 1〜4によって、図 1および図 2に示される光源一体型太陽電池モジュ ール 60が作製される。
[0050] 発電発光システム
図 14に示されるように、この発明の実施例による発電発光システム 70は、上述のよ うにして作製された光源一体型太陽電池モジュール 60を 120台使用し、縦方向に 8 台、横方向に 15台アレイ状に配置し、 8m X 18mの大面積自発光型の発電発光シ ステムを構築している。
発電発光システム 70全体で LED基板 51 (図 9参照)は合計 960枚、独立して制御 できる領域は 1920箇所となり、それぞれ RGBの階調の組合せで 512色を表現する ことができる。
[0051] 図示しないが、発電発光システム 70は、昼間に各光源一体型太陽電池モジュール 60で発電された電力を蓄える蓄電池と、各光源一体型太陽電池モジュール 60から 蓄電池への充電と蓄電池力 各光源一体型太陽電池モジュール 60の LED照明装 置 50への給電を制御する充電,給電用制御部とを備えている。
このような発電発光システム 70は、昼間に蓄えた電力を利用し、夜間に各光源一 体型太陽電池モジュール 60の表面側を全面発光させることができる。各光源一体型 太陽電池モジュール 60は、 512色のな力から選択された 16色を同時に表示すること ができ、各光源一体型太陽電池モジュール 60の発光色を適宜設定制御すること〖こ より、所望の文字、図形、模様等を発光表示できる。
[0052] また、図 15に示されるように、発電発光システム 70はその前面に照らし出されるベ きロゴ 71が配置されてもよい。この場合、発電発光システム 70を構成する 120台の 光源一体型太陽電池モジュール 60のうち、ロゴ 71の影に隠れる 22台は発電機能を 備えな 、ダミーモジュールとする。
発電発光システム 70の前面にロゴ 71を配置することにより、昼間の発光しない時間 帯においても表示体として機能でき、夜間においては、ロゴ 71が LED光で照らし出 されるので、ロゴ 71を認識性よく表現でき、大型の発光看板として使用できる。
産業上の利用可能性
この発明による光源一体型太陽電池モジュールは、店舗や企業の看板、公共の交 通標識などの各種ディスプレイパネル、家庭用又は業務用の照明装置など、様々な 表示又は照明用途に利用できる。

Claims

請求の範囲
[1] 表面および裏面を有する光透過型の太陽電池と、太陽電池の裏面側に設けられた 光源とを備え、太陽電池は表面側カゝら入射する光を利用して電力を発生し、光源は 太陽電池で発生した電力を利用して光を発し、光源力 発せられた光は太陽電池を 透過して太陽電池の表面側へ出射できる光源一体型太陽電池モジュール。
[2] 光源を収容し、かつ、太陽電池の裏面側を覆うように設けられる反射板をさらに備 え、太陽電池はほぼ方形の形状を有し、光源は太陽電池の少なくとも 1つの縁に沿う ように配設され、光源から発せられた光は反射板によって反射されて太陽電池の裏 面側から表面側へ透過する請求項 1に記載の光源一体型太陽電池モジュール。
[3] 光源は太陽電池の両縁にそれぞれ配設され、反射板は各光源から発せられた光 を独立して太陽電池力 出射させるために光源毎にその反射領域を仕切る間仕切り 板を備える請求項 2に記載の光源一体型太陽電池モジュール。
[4] 太陽電池は光電変換を行う光電変換層を有し、光電変換層はその一部に光源力 発せられた光を裏面側から表面側へ透過させる開口部が形成されて!ヽる請求項 1に 記載の光源一体型太陽電池モジュール。
[5] 太陽電池は、アモルファスシリコン力 なる光電変換層と、微結晶シリコン力 なる 光電変換層が積層されたタンデム構造を有する請求項 1に記載の光源一体型太陽 電池モジュール。
[6] 太陽電池はその裏面に光源から発せられた光を反射させる反射面が形成されてい る請求項 1に記載の光源一体型太陽電池モジュール。
[7] 開口部は、太陽電池の有効発電領域に占める面積の比率が 5〜30%の範囲内と なるように形成されて 、る請求項 4に記載の光源一体型太陽電池モジュール。
[8] 太陽電池は複数の集積型太陽電池セルを互いに隣接するように配列した太陽電 池モジュールであって、隣接する一対の集積型太陽電池セルはそれらの一部が太 陽電池全体の透過率と同程度の透過率を有するフィルムで覆われて ヽる請求項 1に 記載の光源一体型太陽電池モジュール。
[9] 光源力LED照明装置力 なる請求項 1に記載の光源一体型太陽電池モジュール
[10] LED照明装置が、 RGBの 3原色を発する複数の LED素子を備える請求項 9に記 載の光源一体型太陽電池モジュール。
[11] LED照明装置は LED素子を搭載する複数の LED基板を備え、各 LED基板はそ の発色を制御するための制御回路を備える請求項 10に記載の光源一体型太陽電 池モジユーノレ。
[12] 平面状又は曲面状に配列された複数の光源一体型太陽電池モジュールを備え、 各光源一体型太陽電池モジュールが請求項 1に記載の光源一体型太陽電池モジュ 一ルカ なる発電発光システム。
[13] 照らし出すべき被照射物を一部の光源一体型太陽電池モジュールの表面側にさら に備える請求項 12に記載の発電発光システム。
PCT/JP2005/007029 2004-04-19 2005-04-11 光源一体型太陽電池モジュールおよびそれを用いた発電発光ユニット WO2005104241A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/578,791 US20070251566A1 (en) 2004-04-19 2005-04-11 Light Source Integrated Photovoltaic Module and Power-Generating Light-Emitting Unit Using Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004122991A JP4448371B2 (ja) 2004-04-19 2004-04-19 光源一体型太陽電池モジュールおよびそれを用いた発電発光ユニット
JP2004-122991 2004-04-19

Publications (1)

Publication Number Publication Date
WO2005104241A1 true WO2005104241A1 (ja) 2005-11-03

Family

ID=35197276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007029 WO2005104241A1 (ja) 2004-04-19 2005-04-11 光源一体型太陽電池モジュールおよびそれを用いた発電発光ユニット

Country Status (3)

Country Link
US (1) US20070251566A1 (ja)
JP (1) JP4448371B2 (ja)
WO (1) WO2005104241A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173723A (ja) * 2005-12-26 2007-07-05 Sharp Corp 太陽電池モジュール
JP2010040703A (ja) * 2008-08-04 2010-02-18 Sharp Corp 薄膜太陽電池モジュール

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4564513B2 (ja) * 2007-04-24 2010-10-20 株式会社三協電機 照明装置
DE102010001439A1 (de) 2009-02-03 2010-08-05 Ledon Lighting Jennersdorf Gmbh LED-Solarkette
JP2010277860A (ja) * 2009-05-28 2010-12-09 Abel Systems Inc 照明装置
KR101072073B1 (ko) * 2009-06-30 2011-10-10 엘지이노텍 주식회사 태양광 발전장치
CN102630347B (zh) * 2009-11-05 2016-03-02 三菱电机株式会社 薄膜太阳能电池模块及其制造方法
ES2363354B1 (es) * 2010-01-19 2012-06-13 Consejo Superior De Investigaciones Científicas (Csic) Dispositivo luminoso de doble aprovechamiento energético diurno y nocturno.
EP2545595B1 (en) * 2010-03-10 2014-09-03 Dow Global Technologies LLC Flexible solar cell interconnection systems and methods
US9941435B2 (en) * 2011-07-01 2018-04-10 Sunpower Corporation Photovoltaic module and laminate
FR2997226B1 (fr) 2012-10-23 2016-01-01 Crosslux Procede de fabrication d’un dispositif photovoltaique a couches minces, notamment pour vitrage solaire
FR2997227B1 (fr) * 2012-10-23 2015-12-11 Crosslux Dispositif photovoltaique a couches minces, notamment pour vitrage solaire
CN104425637A (zh) * 2013-08-30 2015-03-18 中国建材国际工程集团有限公司 部分透明的薄层太阳能模块
KR101643236B1 (ko) * 2015-02-27 2016-07-29 주식회사 무한 박막형 태양전지를 이용한 구조물
CN105119567A (zh) * 2015-07-24 2015-12-02 江苏锴博材料科技有限公司 透光太阳能组件及透光太阳能顶棚
JP6202414B1 (ja) * 2016-08-17 2017-09-27 兵治 新山 透明太陽電池による自家発電照明器具。
JP2018078705A (ja) * 2016-11-09 2018-05-17 バイオニクス株式会社 発電装置
TWM545367U (zh) * 2017-02-24 2017-07-11 Nano Bit Tech Co Ltd 光伏電池裝置、光伏電池及其光伏模組
USD913561S1 (en) * 2018-09-28 2021-03-16 Shenzhen Baiju New Energy Technology Co., Ltd. Solar wall lamp
WO2020247759A1 (en) * 2019-06-06 2020-12-10 Grouphug, Inc. Window-mounted interior solar panel
EP3783659B1 (en) * 2019-08-23 2023-06-07 Saule Spolka Akcyjna A photovoltaic device and a method for preparation thereof
EP3783658B1 (en) * 2019-08-23 2022-05-11 Saule Spolka Akcyjna A translucent photovoltaic device and a method for manufacturing thereof
KR20210057299A (ko) 2019-11-12 2021-05-21 삼성전자주식회사 반도체 발광 소자 및 반도체 발광 소자 패키지
CN111863997A (zh) * 2020-08-28 2020-10-30 蚌埠明微光电玻璃科技有限公司 一种光伏与led发光组件
CN114135806A (zh) * 2021-12-03 2022-03-04 蚌埠明微光电玻璃科技有限公司 一种可剪切的led发光膜的线路构造

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100464A (ja) * 1981-12-11 1983-06-15 Yoshiro Odaka 照明器具の余剰光エネルギ−採出方法とその採出装置
US4795500A (en) * 1985-07-02 1989-01-03 Sanyo Electric Co., Ltd. Photovoltaic device
JPH01149685U (ja) * 1988-04-05 1989-10-17
JPH03116500U (ja) * 1990-03-10 1991-12-03
JPH0457890U (ja) * 1990-09-25 1992-05-18
JPH0517826U (ja) * 1991-08-20 1993-03-05 スタンレー電気株式会社 コードレス光トレイ
JP2000231803A (ja) * 1999-02-09 2000-08-22 Nobuyuki Higuchi 太陽光発電を利用した照明装置
JP2001229703A (ja) * 1999-12-09 2001-08-24 Matsushita Electric Works Ltd 光照射装置
JP2003100107A (ja) * 2001-09-26 2003-04-04 Shigemasa Kitajima 埋込型発光装置
JP2003197930A (ja) * 2001-12-21 2003-07-11 Mitsubishi Heavy Ind Ltd タンデム型太陽電池の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105179A (en) * 1990-06-28 1992-04-14 Smith J Wise Electronic display license plate
US5485354A (en) * 1993-09-09 1996-01-16 Precision Lamp, Inc. Flat panel display lighting system
US6452088B1 (en) * 2001-04-16 2002-09-17 Airify Communications, Inc. Power generating display

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100464A (ja) * 1981-12-11 1983-06-15 Yoshiro Odaka 照明器具の余剰光エネルギ−採出方法とその採出装置
US4795500A (en) * 1985-07-02 1989-01-03 Sanyo Electric Co., Ltd. Photovoltaic device
JPH01149685U (ja) * 1988-04-05 1989-10-17
JPH03116500U (ja) * 1990-03-10 1991-12-03
JPH0457890U (ja) * 1990-09-25 1992-05-18
JPH0517826U (ja) * 1991-08-20 1993-03-05 スタンレー電気株式会社 コードレス光トレイ
JP2000231803A (ja) * 1999-02-09 2000-08-22 Nobuyuki Higuchi 太陽光発電を利用した照明装置
JP2001229703A (ja) * 1999-12-09 2001-08-24 Matsushita Electric Works Ltd 光照射装置
JP2003100107A (ja) * 2001-09-26 2003-04-04 Shigemasa Kitajima 埋込型発光装置
JP2003197930A (ja) * 2001-12-21 2003-07-11 Mitsubishi Heavy Ind Ltd タンデム型太陽電池の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173723A (ja) * 2005-12-26 2007-07-05 Sharp Corp 太陽電池モジュール
JP2010040703A (ja) * 2008-08-04 2010-02-18 Sharp Corp 薄膜太陽電池モジュール

Also Published As

Publication number Publication date
JP2005310896A (ja) 2005-11-04
JP4448371B2 (ja) 2010-04-07
US20070251566A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
WO2005104241A1 (ja) 光源一体型太陽電池モジュールおよびそれを用いた発電発光ユニット
EP2548232B1 (en) Photovoltaic cell device with switchable lighting
US7641357B2 (en) Light-emitting module and light-emitting system
US20070209254A1 (en) Modular system for luminous signals, particularly for road signals
WO2009016581A2 (en) Light output device
KR100858475B1 (ko) 이중 접합 유리 사이에서 디자인처리된 포장체를 갖는 태양전지모듈
JP2006041289A (ja) 発光モジュールおよび発光システム
KR102322143B1 (ko) 태양광 발전 및 표시를 위한 패널
CN111200032A (zh) 一种太阳能电池组件及bipv幕墙
JP2006066619A (ja) 光源一体型太陽電池モジュールおよびそれを用いた発電発光ユニット
CN212613436U (zh) 一种pv-led建筑采光顶
CN214043659U (zh) 一种可发电的显示设备
KR102192194B1 (ko) 광 반사층을 구비하는 태양광 발전 발광 패널
JP4819971B1 (ja) ソーラー一体型表示パネルシステム、ソーラー一体型表示パネルおよびその製造方法
TWM351425U (en) Optoelectronic billboard
JP2007173723A (ja) 太陽電池モジュール
JP2006041291A (ja) 発光モジュールおよび発光システム
CN204066672U (zh) 一种自持式发光交通标识牌
KR102238984B1 (ko) 옥외 간판 led-태양전지 모듈
JP2005079169A (ja) 太陽光発電装置
KR20110007859A (ko) 유리기판에 설치되어 다용도로 사용이 가능한 직하형 조명장치
JP2005101209A (ja) 太陽光発電装置
JP2006221965A (ja) 太陽電池付き表示装置
JP2005136111A (ja) 太陽光発電装置および太陽光発電システム
JP2005072396A (ja) 太陽光発電装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11578791

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11578791

Country of ref document: US