WO2005104181A1 - 質量分析のためのイオン化方法および装置 - Google Patents

質量分析のためのイオン化方法および装置 Download PDF

Info

Publication number
WO2005104181A1
WO2005104181A1 PCT/JP2004/004520 JP2004004520W WO2005104181A1 WO 2005104181 A1 WO2005104181 A1 WO 2005104181A1 JP 2004004520 W JP2004004520 W JP 2004004520W WO 2005104181 A1 WO2005104181 A1 WO 2005104181A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
cavity
ionization
sample
laser light
Prior art date
Application number
PCT/JP2004/004520
Other languages
English (en)
French (fr)
Inventor
Kenzo Hiraoka
Original Assignee
Yamanashi Tlo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamanashi Tlo Co., Ltd. filed Critical Yamanashi Tlo Co., Ltd.
Priority to PCT/JP2004/004520 priority Critical patent/WO2005104181A1/ja
Priority to US10/594,837 priority patent/US7465920B2/en
Priority to JP2006512423A priority patent/JP4366508B2/ja
Priority to EP04724374.6A priority patent/EP1734560B1/en
Publication of WO2005104181A1 publication Critical patent/WO2005104181A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]

Definitions

  • the present invention relates to an ionization method and apparatus for mass spectrometry, and more particularly to a laser spray method and a Matrix-Assisted Laser Desorption Ionization (MAD) method.
  • Background art a Matrix-Assisted Laser Desorption Ionization (MAD) method.
  • sample ionization methods include the electrospray method, the laser spray method, and the MALDI method.
  • the laser spray method is described, for example, in I. Kudaka, T. Kojima, S. Saito and K. Hiraoka A comparative study of laser spray and electrospray Rapid Commun. Mass Spectrom. 14, 1558-1562 (2000) [This is described. .
  • MALDI method f or, K. Dumblew erd "The Desorption Process in MALDI” Chem. Rev. 2003, 103, are described in the 395- 4 25.
  • the laser spray method irradiates laser light to the tip of the cavity into which the liquid sample is introduced to ionize the sample, and is orders of magnitude higher than the electrospray method. It has the feature of having detection sensitivity.
  • the existing electrospray method is difficult to apply to aqueous solution samples, the laser spray method has the advantage of being applicable to aqueous solution samples.
  • the MALDI method is to ionize the sample by irradiating laser light to the sample held by mixing with the matrix.
  • UV nitrogen generally There is a problem that the energy at which the light (wavelength 337 nm) is used and the energy density of the laser light are high, and in the case of a biological sample, it is decomposed.
  • mass spectrometry of DNA molecules, proteins, etc. it is desirable to ionize weakly bound samples with molecular weights in excess of several tens of thousands without breaking them down. Disclosure of the invention
  • the object of the present invention is to further enhance the sensitivity of the laser spray method having the features and advantages described above.
  • the present invention also provides a highly sensitive laser spray ionization method combined with atmospheric pressure ionization.
  • Another object of the present invention is to provide a M A L D I method that can be applied to ionizing biological samples.
  • This explanation of the laser spray method is at least a part of the laser spray method in which the sample is irradiated with laser light at the tip of the cavity (perforated capillary tube) into which the liquid sample has been introduced.
  • the tip of the tip is made of a material that is difficult to absorb the laser light used.
  • the liquid sample at the tip of the cavity is vaporized by laser light irradiation to generate positive or negative ions. Since at least the tip of the cavity is made of a material that is difficult to absorb the laser beam (including not absorbing it), almost all the energy of the laser beam is the temperature of the liquid sample at the tip of the cavity. It is charged for rising and vaporization. There is a possibility that droplets are generated by laser light irradiation, but since the droplets are confined within the pores at the end of the cavity, the liquid sample eventually evaporates almost completely. In this way, positive or negative ions are efficiently generated from the liquid sample.
  • Laser light irradiation has several aspects.
  • Part 1 is the optical axis of the laser beam
  • the laser device should be arranged so that it is almost in line with the axial direction (longitudinal direction) of the coil and the laser light is directed to the tip of the coil in the direction of the axial direction of the coil. It is.
  • the second is to irradiate laser light at the end of the capillary from a direction approximately perpendicular to the axial direction of the capillary. Since the tip of the cover is formed of a material that is difficult to absorb the laser beam to be used, the irradiated laser beam passes through the tip of the cover and is applied to the liquid sample inside it. It will be Laser light may be irradiated to the tip of the cavity from a direction oblique to the axial direction of the cavity. '
  • an infrared laser beam (for example, having a wavelength of 10.6 / x m, 2.94 ⁇ m) is used as the laser beam.
  • Continuous wave, high power infrared laser devices are available. Since the liquid containing water absorbs infrared light, the energy of the laser light is efficiently used to vaporize the liquid sample.
  • Materials that do not absorb or do not absorb infrared laser light easily include diamond, silicon, and germanium. It is possible to form a capillary with these materials, but preferably, a tip having pores formed with these materials at the tip of the insulating cage is preferably used. Install so that the pores communicate with the pores of the cab. For example, attach a diamond tip with a pore that communicates with the pore of the ca- bilility at the tip of the insulating ca- bility.
  • At least the tip of the cavity is placed in a vacuum near the ion inlet of the mass spectrometer.
  • the tip of the capillary may be placed at atmospheric pressure near the mass spectrometer ion inlet.
  • a strong electric field is formed at the tip of the chamber to further promote ionization of the vaporized sample and to prevent neutralization of the ionized sample.
  • the capillary is made of a conductive material, and an electric field is formed near the tip of the cage by applying a positive or negative high voltage to the capillary.
  • the capillary is made of an insulator, a conductive wire (metal wire, preferably platinum wire) is placed in the capillary, and a positive or negative high voltage is applied to the conductive wire.
  • a conductive wire metal wire, preferably platinum wire
  • the conductive wire is preferably inserted into the inner part of the cavity (in the pore) and extends close to the tip of the part.
  • Pulsed laser light may be emitted, or a liquid sample may be continuously flowed in the capillary to emit continuous wave laser light.
  • the ionization method according to the present invention by the highly sensitive laser spray method combined with atmospheric pressure ionization method is at least a laser spray method in which the tip of a capillary introduced with a liquid sample is irradiated with laser light to ionize the sample.
  • the tip of the first part is made of a material that is difficult to absorb the laser beam used, and at least the tip of the first part is placed in a corona discharge gas (including air), and the tip of the first part is A corona discharge electrode is provided in the vicinity, and a positive or negative high voltage is applied to this corona discharge electrode to cause corona discharge.
  • the liquid sample at the tip of the cavity is vaporized by laser light irradiation to generate positive or negative ions.
  • These neutral molecules are protonated or deprotonated by corona discharge to generate positive or negative ions.
  • Ionization in a concentrated state near the tip can increase the ionization efficiency of neutral molecules.
  • a corona discharge electrode can be provided by using the conductive wire inserted in the above-mentioned capillary. That is, the capillary is made of an insulator, a conductive wire is placed in the capillary, and the tip of this conductive wire is slightly projected outward from the tip of the cavity to form a corona discharge electrode.
  • assist gas supply using a cab. That is, a gap is provided between the outer periphery of the cover and the outer surface of the cover, and an assist gas is passed between the outer surface of the cover and the outer cylinder near the tip of the cover.
  • the driving method of the laser and the irradiation method of the laser light can adopt all the modes described above. That is, pulsed laser light is applied, or a liquid sample is continuously flowed through the cavity, and continuous oscillation laser light is applied. Laser light is emitted to the tip of the cavity in the direction substantially axial to the cavity, or laser light is applied to the tip of the cavity from a direction substantially perpendicular to the axial direction of the cavity, or from an oblique direction. .
  • the ionization apparatus is a laser spray apparatus in which a sample is irradiated by irradiating a laser beam to the tip of a cavity for introducing a liquid sample, and at least the tip of the cavity absorbs the laser beam used. It is characterized in that it is made of a difficult material.
  • a more specific ionization device is an ion of a mass spectrometer Outside the inlet, the housing forms an ionization space communicating with the mass spectrometer through the ion inlet, and at least the tip of the cavity for introducing the liquid sample is disposed in the ionization space.
  • the laser device that irradiates the laser beam to the tip of the cavity is placed outside the ionization space, and at least the tip of the cavity is made of a material that does not easily absorb the laser beam used.
  • the ionization space may be evacuated or may contain a corona discharge gas (it may be the atmosphere).
  • a diamond chip is formed of an insulating material, and a perforated diamond chip having pores opened to communicate with the pores of the certificate is attached to the tip of the certificate, in the pores of the certificate, A conductive line is placed where a high voltage is applied.
  • the end of the conductive wire is in the capillary and extends near the end of the ca- bary.
  • a corona discharge electrode is provided near the tip of the cavity.
  • the present invention relating to the MALDI method uses a low molecular weight inorganic matrix containing water in the MALDI method in which the sample is ionized by irradiating the sample with laser light to the sample held in combination with the matrix.
  • the sample mixed with the inorganic matrix is held in the recess of the substrate where the protuberance is formed in at least a part of the periphery, and the sample is irradiated with infrared laser light. It is preferable to use pulsed laser light.
  • infrared laser light is used, and a low molecular weight inorganic matrix containing water absorbs infrared light, so that the sample can be heated and vaporized (vaporized) rapidly and instantaneously. it can.
  • the biological sample containing water also absorbs infrared light well, so the method according to the present invention is suitable for ionization of a biological sample. Since inorganic materials are used as the matrix, even when they are thermally decomposed, they can be less susceptible to noise in mass spectrometry, and the detection sensitivity can be enhanced. Furthermore, since the sample mixed with the inorganic matrix is held in the recess of the substrate, it is contained in the recess, so to say, almost all the energy of infrared laser light is the heating of the sample and the inorganic matrix. It is consumed for vaporization.
  • an electric field is formed around the sample held in the recess of the substrate. For example, a high voltage is applied to the conductive substrate to perform the electric field. Form Since projections are formed around the recess, an electric field with high electric field strength is formed.
  • Porous silicon can be used as a substrate. Since the porous silicon has innumerable nano-sized holes on its surface, this hole can be used as the above-mentioned depression, eliminating the need for microfabrication of the substrate. Also, since there are sharp projections around the hole, the electric field strength is increased.
  • the substrate for holding the biological sample on the substrate it is preferable to cool the substrate for holding the biological sample on the substrate by the inorganic matrix containing water. This can prevent drying of the sample.
  • the ionization apparatus has an ionizing space outside the ion inlet of the mass spectrometer and which is kept in a vacuum in communication with the mass spectrometer through the ion inlet by the housing, and at least a part of the periphery
  • a laser device for irradiating a sample with infrared laser light is disposed.
  • a cooling device is provided for cooling the substrate.
  • FIG. 1 is a block diagram showing an ionizing apparatus according to a first embodiment.
  • Fig. 2 is a cross-sectional view showing the cavity and the tip of the diamond tip.
  • Fig. 3 shows an enlarged view of the internal state of the car.
  • FIG. 4 is a block diagram corresponding to FIG. 1 showing another arrangement example of the laser device.
  • FIG. 5 is a block diagram showing an ionization apparatus according to a second embodiment.
  • Figures 6a and 6b are cross-sectional views showing another example of the configuration of the cab.
  • FIG. 7 is a block diagram showing an ionizing apparatus according to a third embodiment.
  • FIG. 8 is an enlarged cross-sectional view of a part of the substrate.
  • FIG. 1 shows the overall configuration of the ionization apparatus of the first embodiment mounted near the ion inlet of the mass spectrometer.
  • an orifice 11 with a fine hole 11a is attached in the part of the ion inlet of the mass spectrometer 10.
  • the fine holes 11 a are ion inlets.
  • the inside of the mass spectrometer 10 is kept vacuum.
  • the housing 21 of the ionization device 20 is airtightly attached to the wall of the mass spectrometer 10 so as to surround and cover the orifice 11.
  • the space surrounded by the housing 2 1 and the orifice 1 1 is the ionization space 22.
  • the inside of the ionization space 22 is evacuated (for example, 10) by an exhaust system (pump) (not shown). The pressure is maintained at about 3 Torr.
  • Housing 2 1 1 (pertubation) for supplying liquid sample through the wall
  • the distal end of the capillary 23 is in the ionization space 22 (housing 2 1), the proximal end protrudes outward, and is connected to the connecting body 30.
  • a diamond tip 24 is attached to the tip of the capillary 23.
  • An infrared laser device 25 is disposed outside the housing 2 1 and an infrared laser beam having a wavelength of 10. 6 111 is emitted from the laser device 25 and formed by the transparent wall portion of the housing 2 1 or a transparent body. The light enters the housing 21 through the window.
  • the laser device 25 is disposed such that the emitted laser light is projected in the axial direction of the capillary 23 onto the diamond tip 24 at the tip of the capillary 23.
  • a laser device 25 is placed on the side of the cavity 23 and the emitted laser beam is directed to the diamond tip 24 with a canopy. It may be projected from a direction perpendicular to the axial direction of the library 2 3 . Since the diamond chip 24 transmits infrared laser light, the infrared laser light is applied to the liquid sample in the diamond chip 24. The laser beam may be projected from an oblique direction with respect to the axial direction of the cab.
  • Fig. 2 shows the configuration of the capillary 23, the diamond tip 24 attached to its tip, and the connector 30.
  • the capillary 23 is a thin tube made of an electrical insulator such as plastic, silica (glass), etc.
  • a pore 23a is opened in the inside along the length direction.
  • the diamond tip 24 attached to the tip of the cavity 23 has a conical shape, and a pore 24 a is formed at its center.
  • the diamond tip 24 is adhered to the end face of the tip of the capillary 23 so that the pores 24 a of the diamond chip 24 and the pores 23 a of the cavity 23 communicate with each other in a straight line. It is fixed.
  • Diamond Dochippu 2 4 are disposed Kiyabira Li one 23 so as to be located in the vicinity of the hole 1 1 a of the cage Fi scan 1 1 of the mass spectrometer 10.
  • T-shaped passages 35, 36 are formed in the connecting body 30, T-shaped passages 35, 36 are formed.
  • the passage 35 passes through the center of the connector 30 and is open at both ends.
  • a passage 36 is formed vertically in the passage 35 and is in communication with each other.
  • the proximal end of the cavity 23 is connected to the connector 30 via the plug 31 at one end of the passage 35, and the pore 23a is in communication with the passage 35.
  • a plug 33 is also provided at the other end of the passage 35 to keep it watertight.
  • a conductive wire (for example, a platinum wire, which is resistant to corrosion) 26 is inserted from the outside of the plug 33 through the plug 33 into the passage 35, passes through the pores 23 a in the cavity 23 and reaches near the tip thereof. Yes (Diamond chip 24 to 5 to 10 mm ahead).
  • a sample introduction tube 34 is connected to the outer end of the passage 36 via a plug 32.
  • a liquid sample is supplied from the inlet pipe 34 to the capillary 23 through the passages 36, 35.
  • a positive (or negative) high voltage is applied to the conductive wire 26.
  • the liquid sample in the capillary 23 is ionized, the negative ions of which flow to the conductive wire 26, and excess positive ions are generated.
  • the ionized sample is also filled in the pores 24 a in the diamond tip 24.
  • An outer electrode 27 is formed on the outer peripheral surface of the capillary 23 and is grounded.
  • the liquid sample in the pores 24 a of the diamond tip 24 is irradiated with pulsed infrared laser light from the laser device 25.
  • the sample is instantaneously heated by the laser light and vaporized. Since at least water in the liquid sample absorbs infrared light, heating by laser light is performed effectively. Also, since diamond does not absorb infrared light, so-called vaporization is achieved while the sample is confined within the pores 24a.
  • the positive (or negative) ion molecules or molecules thus vaporized.
  • the on atom is introduced into the mass spectrometer 10 from its hole 1 1 a by being pulled down by the negative voltage applied to the orifice 1 1.
  • the liquid sample may be continuously supplied to the diamond tip 24 and irradiated with continuous wave infrared laser light.
  • silicon, germanium, etc. can be used as materials that hardly absorb infrared light.
  • the cabiliary one itself may be formed of silicon or germanium.
  • the conductive wire 26 is unnecessary, and a positive or negative high voltage may be applied to the conductive ca- ble itself.
  • FIG. 5 shows the combination of the ionization method by the laser spray method and the atmospheric pressure ionization method.
  • Fifth the illustrated housing 21 is omitted in the diagram, may be omitted housing itself (Kiyapira Lee 23 under atmospheric pressure, diamond Dochippu 2 4, placing the corona discharge electrode 28), the housing 2 1
  • the internal pressure may be set to atmospheric pressure, or a corona discharge gas (including the atmosphere) may be introduced into the housing 21.
  • the carrier 23 is disposed such that the diamond chip 24 is positioned near the outside of the hole 11 a of the orifice 11 of the mass spectrometer 10.
  • a conductive wire may or may not be inserted into the cage 23.
  • a discharge electrode 28 is provided in the vicinity of the tip of the cavity 23.
  • the diamond tip 24 is irradiated with infrared laser light focused to completely vaporize the aqueous solution sample in the pores 24 a of the diamond tip 24.
  • the ions present in the liquid are directly used as ions. It may be vaporized, but molecules that remain neutral, or neutral molecules resulting from recombination of positive and negative ions, are also generated.
  • a sample gas completely vaporized is ejected from the tip of the diamond tip 24 by the infrared laser light irradiation.
  • a corona discharge electrode 28 is attached in the immediate vicinity of the tip of the spouted diamond tip 24.
  • a high positive or negative voltage is applied to the corona discharge electrode 28 to cause corona discharge.
  • corona discharge occurs when positive voltage is applied, a protonated neutral sample, [M + H], is mainly generated.
  • a negative high voltage is applied, negative ions [M ⁇ H] ⁇ in which neutral sample molecules are deprotonated are mainly generated.
  • sample molecules are ionized in a state of being concentrated near the tip of the diamond tip 24 by corona discharge, the ionization efficiency of neutral molecules can be enhanced, so that the conventional atmospheric pressure ionization method (sample molecules (sample molecules Compared to the method in which the sample gas is ionized in the state where the ion is diffused throughout the ionization chamber, an order of magnitude more detection efficiency of neutral molecules can be obtained.
  • the liquid sample is made into droplets by an ultrasonic wave or a neiplyzer, and then the wall of the vessel is heated to vaporize the liquid sample for ionization at atmospheric pressure.
  • the according to the method of this embodiment there is no need to raise the temperature of the wall of the ionization chamber to promote the vaporization of the liquid sample, so even the easily decomposable biological sample is ionized into soft without decomposition. It can be done.
  • the diamond tip 24 In the infrared laser irradiation to the diamond tip 24, the diamond tip 24 is not heated, and the laser light energy is spent for breaking the hydrogen bond of the solvent and does not lead to the vibrational excitation of the molecule. It has the advantage of being almost completely negligible.
  • Ions generated under atmospheric pressure are sampled in vacuum through holes 11a of orifice 11 and mass analyzed.
  • mass spectrometer 10 an orthogonal time-of-flight mass spectrometer, a quadrupole mass spectrometer, a magnetic field mass spectrometer Etc. can be used.
  • FIG. 6a shows another example of a corona discharge electrode.
  • the tip of the conductive wire 26 may be sharpened to facilitate generation of a discharge plasma.
  • an aqueous solution sample or the like is made to flow through the capillary 23, and the liquid sample flowing out of the diamond tip 24 is irradiated with laser light (infrared laser: ⁇ . ⁇ ⁇ m) to be completely vaporized.
  • laser light infrared laser: ⁇ . ⁇ ⁇ m
  • a high voltage is applied (several hundreds to a few kV) to the conductive wire 26 passing through the center of the capillary 23 to cause corona discharge at the tip of the conductive wire 26.
  • the corona discharge generates ions in the plasma section.
  • the solvent is water in the aqueous solution sample
  • the discharge of the water vapor generates a large amount of protonated hydration clusters.
  • H + (H 2 0) apparentlycluster one ion generation in water vapor plasma
  • H 3 0 + and hydrated cluster ion H 3 0 + (H n undergoes proton transfer reaction with analytical component B in the sample to form H + B.
  • the method of this embodiment is a combination of the complete vaporization of the liquid sample by laser irradiation (laser spray method) and the atmospheric pressure ionization method.
  • the solvent should be water.
  • water vapor is generated by laser light irradiation. Water vapor has the property that discharge plasma is less likely to occur. This problem can be alleviated significantly by mixing a rare gas (such as argon gas) as the atmosphere gas.
  • the outer cylinder 29 is provided with a gap (space) between the outer surface of the capillary 23 and the outer peripheral surface of the capillary 23 where the liquid sample flows out.
  • An assist gas such as argon gas is supplied to the vicinity of the tip of the capillary 23 (diamond tip 24) through the gap between the surface and the outer cylinder 29.
  • the solution sample is instantaneously vaporized by infrared laser light irradiation, and this gas sample is converged (centered without diverging) at the center of the diamond tip. , It causes corona discharge at its center.
  • a reactive ion, H 3 0 + (HO) (when the solvent is water) is formed
  • This reactive ion H 3 0 + (H 2 0) is a gas around the atmosphere under atmospheric pressure. Repeat many collisions with the molecule.
  • Proton transfer reaction (4) always occurs if it collides with the analysis target component molecule even once, so after many collisions, the reaction ion H 3 0 + (HO) n is finally plotted. Most of the ion (H +) is transferred to the analyte component molecule B, and the molecule B is ionized (protonated), and the charge is transferred to the molecule B (protonated B molecule, that is, H + B). .
  • This process can be regarded as a process of concentrating molecule B as ion form (H + B) by using ion-molecule reaction (proton transfer reaction).
  • ppb level analysis can be easily performed (concentration efficiency is equivalent to 10 to the power of 10: 1/10 9 components can be ionized.
  • Reaction ions are at least 10 with surrounding molecules. Make 9 or more collisions).
  • the laser beam in Figure 5 is projected vertically in the diamond chip 24 in the axial direction of the Kiyapirari 2 3, the diamond tip in the axial direction of the 6 a view and a laser beam in a 6 b diagram Kiyabira Lee 23 Projected into 24 It is done.
  • the projection direction of the laser beam may be any of the above.
  • Laser light may be emitted perpendicularly to the axial direction of the cavity 23, as shown by LA in Fig. 6a.
  • FIG. 7 shows the overall configuration of the ionization apparatus of the third embodiment mounted near the ion inlet of the mass spectrometer.
  • a skimmer 41 having a somewhat large opening 41a is attached.
  • the opening 41 a is an ion introduction port.
  • the inside of the mass spectrometer 40 is kept vacuum.
  • a housing 51 of an ionization device 50 is airtightly attached to the wall of the mass spectrometer 40 so as to surround and cover the skimmer 41.
  • a space surrounded by the housing 51 and the skimmer 41 is an ionization space 52.
  • a sample table 53 is provided in the ionizing space 52 in the housing 51 and is supported by an arm of a cryogenic refrigerator 54 disposed outside the housing 51.
  • the refrigerator 54 has an ability of cooling to about 10 K, for example.
  • a Darlid 55 for guiding ions to the opening 41a of the skimmer 41 is provided in the housing 51.
  • the substrate 60 has a large number of sample holding recesses 62 formed on its surface by micromachining a silicon substrate.
  • the recess 62 is surrounded by a cylindrical protrusion (wall) 61 integrally formed with the substrate 60.
  • the sample A to be ionized is stored and held in the recess 62.
  • the sample is, for example, a biological sample (DNA, .. protein molecule, etc.), and is mixed with a low molecular weight inorganic matrix such as water or SF.
  • the substrate is not limited to the shape shown in FIG. 8, but may be, for example, porous silicon. Porous silicon has innumerable nano-sized holes, and sharp projections are formed around these holes.
  • An aqueous solution sample is applied to the porous silicon surface, this is frozen, and then laser irradiation is performed.
  • water and SF 6 thin film may be vacuum-deposited on the upper layer of the applied sample and laser irradiation may be performed (this state is also included in the expression that the sample is mixed in the matrix). .
  • the substrate 60 holding the sample mixed in the matrix is attached to the sample table 53 in the ionization space 52.
  • a high positive or negative voltage is applied to the substrate 60.
  • infrared laser light is obliquely applied to the sample on the substrate 60 in the housing 51 from an infrared laser light source device 56 disposed outside the housing 51.
  • Low-molecular-weight inorganic matrices containing water absorb infrared light with high efficiency and generate shock waves near the surface. The generated shock wave travels to the substrate 60.
  • the matrix and the sample are rapidly heated, the sample is desorbed, and a positive electric field efficiently generated in the gas phase due to the high electric field applied to the protrusions 61 or protrusions of the porous silicon. .
  • These ions are directed in the direction perpendicular to the surface of the base 60 and are introduced into the time-of-flight mass spectrometer 40 from the opening 41 a of the skimmer 41.
  • the matrix is made of a low molecular weight inorganic material, it does not become a large noise component even if these are scattered, ionized and introduced into the mass spectrometer 40.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

質量分析に適用したときに高い検出感度をもつレーザスプレー法をさらに高感度化する。液体試料を導入したキキャピラリーの先端にレーザ光を照射して試料をイオン化するレーザスプレー法において,レーザ光として赤外光レーザを用い,少なくともキャピラリーの先端部を,赤外レーザ光を吸収しにくい物質で形成し,キャピラリーを導電体で形成して高電圧を印加するか,キャピラリーを絶縁体で形成してその細孔内に導電楾を配置しこの導電線に高電圧を印加する。

Description

明 細 書 質量分析のためのィオン化方法および装置 技術分野
この発明は, 質量分析のためのイオン化方法および装置に関し, さら に具体的には, レーザスプレー法および M A L D I (Matrix-Assisted Laser Desorption Ionization : マ 卜 ク ス支援レーザ脱離イ オンィ匕) 法に関する。 背景技術
試料のイオン化法の代表的なものには, エレク トロ スプレー法, レー ザスプレー法, M A L D I 法等がある。 レーザスプレー法は, たとえば I. Kudaka, T. Kojima, S. Saito and K. Hiraoka A comparative study o f laser spray and electrospray Rapid Commun. Mass Spectrom.14, 1558— 1562 (2000)【こ記載されて ヽる。 また, M A L D I 法 fま, K. Dreisew erd "The Desorption Process in MALDI" Chem. Rev. 2003, 103, 395- 425に記載されている。
これらのイオン化方法のうちで, レーザスプレー法は, 液体試料を導 入したキヤビラリ一の先端にレーザ光を照射して, 試料をイオン化する ものであり, エレク トロスプレー法に比べて桁違いに高い検出感度を有 するという特長をもつ。 また, 既存のエレク トロ スプレー法は水溶液試 料への適用が難しいが, レーザスプレー法は水溶液試料に適用できると いう利点をもつ。
他方, M A L D I 法は, マ トリ クスと混ぜて保持された試料に, レー ザ光を照射して試料をイオン化するものである。 一般的に紫外窒素レー ザ光 (波長 337 nm) が用いられる力 , レーザ光のエネルギー密度が高く, 生体試料の場合にはそれが分解するという問題がある。 D N A分子, タ ンパク質などの質量分析においては, 数万を超える分子量をもつ弱い結 合の試料を分解させることなくイオン化することが望まれる。 発明の開示
この発明は, 上述した特長, 利点をもつレーザスプレー法をさ らに高 感度化するこ とを目的とする。
この発明はまた, 大気圧イオン化法と組み合わされた高感度のレーザ スプレー法によるィォン化方法を提供するものである。
この発明はさらに, 生体試料のィオン化に適用できる M A L D I法を 提供することを目的とする。
レーザスプレー法に関するこの癸明は, 液体試料を導入したキヤビラ リー (細孔があけられた細管) の先端にレーザ光を照射して試料をィォ ン化するレーザスプレー法において, 少なく ともキヤビラリ一の先端部 を, 使用するレーザ光を吸収しにくい物質で形成するものである。
キヤビラリ一先端部にある液体試料は, レーザ光照射によつて気化し, 正または負のイオンが生成される。 キヤビラ リ一の少なく とも先端部は レーザ光を吸収しにく い (吸収しないことを含む) 物質で形成されてい るので, レーザ光のエネルギーの殆どすべてがキヤビラ リー先端部の液 体試料の温度上昇, そして気化のために投入される。 レーザ光照射によ つて液滴が生成されている可能性もあるが, この液滴はキヤビラ リー先 端の細孔内に閉じ込められるので, 最終的に液体試料がほぼ完全に気化 する。 このよ うにして, 液体試料から効率的に正または負イオンが生成 される。
レーザ光照射にはいくつかの態様がある。 その 1は, レーザ光の光軸 とキヤピラ リーの軸方向 (長手方向) とがほぼ一直線状になるよ うにレ 一ザ装置を配置し, キヤビラ リ一の先端にレーザ光を, キヤビラ リ一の ほぼ軸方向に向って照射することである。 その 2は, キヤピラリーの先 端にレーザ光を, キヤピラ リーの軸方向にほぼ垂直な方向から照射する ことである。 キヤビラ リ一の先端部は, 使用するレーザ光を吸収しにく い物質で形成されているから, 照射されたレーザ光はキヤビラ リーの先 端部を透過してその内部の液体試料に照射されることになる。 レーザ光 を, キヤビラ リーの軸方向に対して斜めの方向からキヤビラ リー先端に 照射してもよい。 '
好ましい実施態様では, レーザ光と して赤外レーザ光 (たとえば, 波 長 10. 6 /x m , 2. 94 μ m ) が用いられる。 連続発振で高パワーの赤外光レ 一ザ装置が入手可能である。 水を含む液体は赤外光を吸収するので, レ 一ザ光のエネルギーが効率良く液体試料の気化に使用される。
赤外レーザ光を吸収しない, ないしは吸収しにくい材料と しては, ダ ィャモン ド, シリ コ ン, ゲルマニウム等がある。 これらの材料によ りキ ャピラ リーを形成することもできるが, 好ま しく は, 絶縁性キヤビラ リ 一の先端に, これらの材料によ り形成された細孔を有するチップを, チ ップの細孔がキヤビラリ一の細孔と連通するよ うに取付ける。 たとえば, 絶縁性キヤビラリ一の先端に, キヤビラリ一の細孔に連通する細孔があ けられたダイヤモン ドチップを取付ける。
さらに好ましい態様においては, 少なく ともキヤビラリ一の先端部を, 質量分析装置のイオン導入口付近において, 真空中に配置する。 これに よって, キヤビラ リ一先端部近傍で生成された正, または負イオンが真 空の質量分析装置の内部に効率よくサンプリ ングされる。 もちろん, キ ャ ピラリーの先端部を, 質量分析装置イオン導入口付近において, 大気 圧中に配置してもよい。 気化した試料のィオン化を一層促進すると ともに, ィオン化した試料 の中性化を防止するために, キヤビラ リー先端部に強い電場を形成して おく。 たとえば, キヤピラ リーを導電体で形成し, キヤピラ リーに正ま たは負の高電圧を印加することによ り, キヤビラ リ一先端近傍に電場を 形成する。
他の方法では, キヤピラ リーを絶縁体で形成し, キヤピラ リー内に導 電線 (金属線, 好ま しく は白金線) を配置し, この導電線に正または負 の高電圧を印加する。 これによつてキヤビラ リーの細孔内を給送される 液体試料中の正または負イオンが濃縮される。 導電線はキヤビラ リー内 部 (細孔内) に挿通され, その先端部の近く まで延びていることが好ま しい。
パルス状レーザ光を照射してもよいし, 液体試料をキヤピラリー内に 連続的に流し, 連続発振のレーザ光を照射するようにしてもよい。
大気圧イオン化法と組み合わされた高感度のレーザスプレー法による この発明によるイオン化方法は, 液体試料を導入したキヤピラリーの先 端にレーザ光を照射して試料をィオン化するレーザスプレー法において, 少なく ともキヤビラリ一の先端部を, 使用するレーザ光を吸収しにくい 物質で形成し, 少なく ともキヤビラ リ一の先端部をコロナ放電ガス (大 気を含む) 中に配置し, キヤビラ リ一の先端部の近傍にコロナ放電電極 を設け, このコロナ放電電極に正または負の高電圧を印加してコロナ放 電を生起させるものである。
上述のよ うにレーザ光照射によってキヤビラ リ一先端部にある液体試 料が気化され, 正または負のイオンが生成される。 このとき, 中性のま まの分子, または正負イオンが再結合して中性化した中性分子も存在す る。 これらの中性分子がコロナ放電によりプロ ト ン化または脱プロ ト ン 化して正または負イオンが生成される。 このよ うにして, キヤビラ リ一 先端部付近で濃縮された状態でイオン化されるので, 中性分子のィオン 化効率を高めることができる。
上述したキヤピラ リー内に挿入された導電線を利用してコロナ放電電 極を設けることができる。 すなわち, キヤピラ リーを絶縁体で形成し, キヤピラリー内に導電線を配置し, この導電線の先端をキヤビラ リーの 先端部から外方にわずかに突出させてコロナ放電電極とする。
少なく ともキヤビラ リ一の先端部を大気中に配置することによ り, 大 気圧イオン化法との組み合わせが達成される。 この場合に, より好まし く は, キヤビラ リ一の先端部付近にアシス トガスを供給する。 これによ り, コロナ放電を容易に発生させ, また安定に放電プラズマを持続させ ることができる。
キヤビラ リーを利用してアシス トガスを供給する構成とすることもで きる。 すなわち, キヤビラ リ一の外側にキヤビラ リ一の外周面との間に 間隙をあけて外筒を設け, キヤビラ リ一の外周面と外筒との間を通して アシス トガスをキヤビラ リ一の先端部付近に導入する。
レーザの駆動方法, レーザ光の照射方法は上述したすべての態様を採 用することができる。 すなわち, パルス状レーザ光を照射する, または 液体試料をキヤビラ リ一内に連続的に流し, 連続発振のレ一ザ光を照射 する。 キヤビラ リーの先端にレーザ光をキヤビラ リーのほぼ軸方向に向 つて照射する, またはキヤビラリ一の先端にレーザ光をキヤビラ リーの 軸方向にほぼ垂直な方向から, も しくは斜めの方向から照射する。
この発明によるイオン化装置は, 液体試料を導入するキヤビラ リーの 先端にレーザ光を照射して試料をイオン化するレーザスプレー装置にお いて, 少なく ともキヤビラ リ一の先端部が, 使用するレーザ光を吸収し にくい物質で形成されていることを特徴とするものである。
よ り具体的なこの発明によるイオン化装置は, 質量分析装置のイオン 導入口の外側に, ハウジングによ り, イオン導入口を通して質量分析装 置と連通するイオン化空間を形成し, このイオン化空間内に, 液体試料 を導入するキヤビラ リ一の少なく とも先端部を配置し, キヤビラ リ一の 先端にレーザ光を照射するレーザ装置をイオン化空間の外部に配置し, 少なく ともキヤビラ リ一の先端部を, 使用するレーザ光を吸収しにくい 物質で形成するものである。
イオン化空間内を真空にしてもよいし, コロナ放電ガスを入れてもよ い (大気と してもよい)。
一実施態様では, キヤビラ リ一が絶縁性材料で形成され, キヤビラリ 一の細孔に連通する細孔があけられたダイヤモン ドチップがキヤビラリ 一の先端に取付けられ, キヤビラ リ一の細孔内に, 高電圧が印加される 導電線が配置される。
この場合に, 導電線の先端がキヤピラリー内にあり, キヤビラ リ一先 端部の近くまでのびている。
コロナ放電によ り中性分子をイオン化する方法を実現する装置では, キヤビラ リ一の先端部付近にコロナ放電電極が設けられる。 または, キ ャピラ リーに挿通された導電線の先端部をキヤビラ リー先端のダイヤモ ン ドチップから外方にわずかに突出させる。
レーザ装置の駆動方法, レーザ装置の配置 (レーザ光の照射方向) は 上述したすべての態様が採用可能である。
M A L D I法に関するこの発明は, マ ト リ タス と混ぜて保持された試 料に, レーザ光を照射して試料をイオン化する M A L D I 法において, 水を含む低分子量の無機マ ト リ タ スを用い, 周囲の少なく とも一部に突 起が形成された基板の窪み内に, 無機マ ト リ タスと混ぜた試料を保持し, 赤外レーザ光を試料に照射するものである。 パルス状レーザ光の照射が 好ましい。 この発明によると, 赤外レーザ光を使用しており, 水を含む低分子量 の無機マ ト リ タスは赤外光を吸収するので, 試料を急速に瞬間的に加熱 気化 (蒸発) させることができる。 水を含む生体試料も赤外光をよく吸 収するので, この発明による方法は生体試料のイオン化に好適である。 マ ト リ クスと して無機材料を用いているから, これらが加熱分解したと きにも, 質量分析の雑音 (ノイズ) になりにく く , 検出感度を高めるこ とができる。 さらに, 無機マ ト リ クスと混ぜた試料は基板の窪み内に保 持されるから, いわばこの窪み内に閉じ込められ, 赤外レーザ光の殆ど すべてのエネルギーが試料および無機マ ト リ タスの加熱気化のために消 費される。
気化された試料のィオン化の促進と中性化の防止のために, 基板の窪 み内に保持された試料の周囲に電場を形成する, たとえば, 導電性基板 に高電圧を印加して電場を形成する。 窪みの周囲には突起が形成されて いるので, 電界強度の高い電場が形成される。
基板と してポーラスシリ コンを用いることができる。 ポーラスシリ コ ンはその表面に無数のナノサイズの穴があいているので, この穴を上記 の窪みと して利用することができ, 基板の微細加工が不要となる。 また 穴の周囲には鋭い突起があるので, 電界強度が高まる。
水を含む無機マ ト リ クスによる生体試料の基板への保持のために, 基 板を冷却することが好ましい。 これにより, 試料の乾燥を防ぐことがで きる。
この発明によるイオン化装置は, 質量分析装置のイオン導入口の外側 に, ハウジングによ り, イオン導入口を通して質量分析装置と連通する 真空に保たれるイオン化空間を形成し, 周囲の少なく とも一部に突起が 形成された窪みを持つ基板を上記イオン化空間内に配置し, イオン化空 間の外部に, 上記基板の窪みに保持された無機マ ト リ クスと混ぜられた 試料に赤外レーザ光を照射するレーザ装置を配置するものである。
一実施態様では, 上記基板を冷却する冷却装置が設けられる。 図面の簡単な説明
第 1図は, 第 1実施例によるィオン化装置を示す構成図である。
第 2図は, キヤビラリーおよびその先端のダイヤモンドチップを示す断 面図である。
第 3図は, キヤビラリ一の内部状態を拡大して示すものである。
第 4図は, レーザ装置の他の配置例を示す第 1図相当の構成図である。 第 5図は, 第 2実施例によるイオン化装置を示す構成図である。
第 6 a図および第 6 b図は, キヤビラ リ一の他の構成例を示す断面図 である。
第 7図は, 第 3実施例によるィオン化装置を示す構成図である。
第 8図は, 基板の一部を拡大して示す断面図である。 発明を実施するための最良の形態
第 1実施例
第 1図は質量分析装置のイオン導入口付近に取付けられた第 1実施例 のイオン化装置の全体的構成を示すものである。
質量分析装置 1 0のイオン導入口の部分には, 微細な孔 1 1 aがあけられ たオリ フィス 1 1が取付けられている。 微細な孔 1 1 aがイオン導入口であ る。 質量分析装置 10内は真空に保たれる。
質量分析装置 10の器壁に, オリ フィ ス 1 1を囲んでこれを覆うよ うにィ オン化装置 20のハゥジング 21が気密に取付けられている。 ハゥジング 2 1 とオリ フィ ス 1 1によって囲まれた空間がイオン化空間 22である。 イオン 化空間 22内は排気装置 (ポンプ) (図示略) によ り, 真空 (たとえば 10 一3 Torr程度) に保たれる。
. ハウジング 2 1の壁を貫通して液体試料供給用のキヤビラリ一 (細管)
(シリカまたはアルミナ製) 23が設けられる。 キヤピラリー 23の先端部 はイオン化空間 22 (ハウジング 2 1 ) 内にあり, 基端部は外方突出し, 連 結体 30につながっている。 詳細は後述するが, キヤピラリー 23の先端に はダイャモンドチップ 24が取付けられている。 ハウジング 21の外部に赤 外光レーザ装置 25が配置され, この レーザ装置 25から波長 10. 6 111の赤 外レーザ光が出射し, ハウジング 2 1の透明壁部分, または透明体によ り 形成された窓を通して, ハウジング 21内に入射する。 レーザ装置 25は, その出射レーザ光がキヤピラリー 23の先端のダイヤモンドチップ 24にキ ャピラ リー 23の軸方向に投射されるよ うに配置されている。
第 4図に示すように, レーザ装置 25をキヤビラリ一23の側方に配置し, その出射レーザ光を, ダイヤモンドチップ 24に, キヤヒ。ラ リー 23の軸方 向に対して垂直な方向から投射するよ うにしてもよい。 ダイヤモンドチ ップ 24は赤外レーザ光を透過させるので, 赤外レーザ光はダイヤモンド チップ 24内の液体試料に照射される。 レーザ光をキヤビラ リ一 23の軸方 向に対して斜め方向から投射してもよい。
第 2図は, キヤピラ リー 23と, その先端に取付けられたダイヤモンド チップ 24と, 連結体 30の構成を示すものである。
キヤピラ リー 23は, プラスチック, シリカ (ガラス) 等の電気的絶縁 体によ り形成された細管で, 内部にその長さ方向に細孔 23 aがあけられ ている。
キヤビラ リ一 23の先端に取付けられたダイヤモンドチップ 24は, 円錐 形の形状で, その中心に細孔 24 aが形成されている。 ダイヤモンドチッ プ 24の細孔 24 a とキヤビラ リー 23の細孔 23 a とが一直線状に連通するよ うに, ダイヤモン ドチップ 24がキヤピラリー 23の先端の端面に接着, 固 定されている。 ダイヤモン ドチップ 24が質量分析装置 10のオリ フィ ス 1 1 の孔 1 1 aの近傍に位置するようにキヤビラ リ一 23が配置される。
連結体 30には T字形の通路 35, 36が形成されている。 通路 35は連結体 30の中心を通り, 両端が開放されている。 この通路 35に垂直に通路 36が 形成され, 相互に連通している。
連結体 30には, 栓 3 1を介して, その通路 35の一端においてキヤビラリ 一 23の基端部が結合し, その細孔 23 aが通路 35に連通している。 通路 35 の他端にも水密に保っための栓 33が設けられている。 この栓 33の外部か ら栓 33を通して導電線 (たとえば白金線。 腐食に強い。) 26が通路 35内 に挿入され, キヤビラ リー 23内の細孔 23 a内を通ってその先端付近まで 達している (ダイャモンドチップ 24から 5〜 10mm手前まで)。
通路 36の外端には栓 32を介して試料導入管 34が連結されている。 液体 試料が, 導入管 34から通路 36 , 35を経てキヤピラ リー 23に供給される。 導電線 26にはたとえば正の (または負の) 高電圧が印加される。 これ によ り, 第 3図に示すよ うに, キヤピラリー 23内の液体試料がイオン化 され, そのうちの負イオンが導電線 26に流れ, 過剰の正イオンが生成さ れる。 イオン化された試料はダイヤモン ドチップ 24内の細孔 24 a内にも 満たされる。 キヤピラ リー 23の外周面には外側電極 27が形成され, 接地 されている。
この状態で, レ一ザ装置 25からダイヤモンドチップ 24の細孔 24 a内の 液体試料にパルス状の赤外レーザ光を照射する。 レーザ光によつて試料 は瞬間的に加熱され, 気化する。 液体試料中の少なく とも水分は赤外光 を吸収するので, レーザ光による加熱が効果的に行なわれる。 また, ダ ィャモンドは赤外光を吸収しないので, いわば試料は細孔 24 a内に閉じ 込められた状態で気化が達成される。
このよ うにして気化された正の (または負の) イオン分子もしく はィ オン原子はオリ フ ィ ス 1 1に印加された負電圧に引かれてその孔 1 1 aから 質量分析装置 10内に導入される。
質量分析装置がクロマ トグラフィーなどと接合されている場合には, 液体試料をダイヤモンドチップ 24に連続的に供給し, 連続発振の赤外レ 一ザ光を照射すればよい。
ダイヤモンドに代えて, 赤外光を吸収しにくいものと してシリ コン, ゲルマニウム等を用いることができる。 キヤビラ リ一そのものをシリ コ ンゃゲルマニウムにより形成してもよい。
キヤビラ リーを金属等の導電体によ り形成した場合には, 導電線 26は 不要であり, 導電性キヤビラ リーそのものに正または負の高電圧を印加 すればよい。
第 2実施例
第 5図は上述したレーザスプレー法によるイオン化方法に大気圧ィォ ン化法を組み合わせたものである。 第 5図においてハウジング 21の図示 が省略されているが, ハウジングそのものを省略してもよいし (大気圧 下にキヤピラ リー 23 , ダイヤモン ドチップ 24 , コロナ放電電極 28を配置 する), ハウジング 2 1を設けてその内部を大気圧と してもよいし, ハウ ジング 21内にコロナ放電ガス (大気を含む) を導入してもよい。
上記のよ うに, ダイヤモン ドチップ 24が質量分析装置 10のォリ フィ ス 1 1の孔 1 1 aの外側近傍に位置するよ うにキヤピラ リー 23が配置される。 キヤビラ リ一 23内には導電線を挿入しても挿入しなくてもよい。 この実 施例ではキヤビラ リ一 23の先端部の近傍にコ口ナ放電電極 28が設けられ る。
上述したよ うに, ダイヤモンドチップ 24に焦点を絞つた赤外レーザ光 を照射し, ダイヤモンドチップ 24の細孔 24 a内の水溶液試料を完全気化 させる。 この際, 液体中に存在していたイオンがそのままイオンと して 気化する場合もあるが, 中性のままの分子, または正イオンと負イオン が再結合して中性化した中性分子も発生する。
赤外線レーザ光照射によってダイヤモン ドチップ 24の先端から完全気 化した試料ガスが噴出する。 その噴出するダイャモンドチップ 24先端の ごく近傍にコロナ放電電極 28を取り付ける。 このコロナ放電電極 28に正 または負の高電圧を印加してコロナ放電を生起させる。 正電圧印加でコ ロナ放電を起こさせる と, プロ トン化された中性試料, [ M + H ] が 主に生成する。 負の高電圧を印加した場合には, 中性試料分子が脱プロ トン化した負イオン [ M— H ] ― が主に生成する。 コロナ放電によって 試料分子がダイヤモンドチップ 24の先端付近で濃縮された状態でイオン 化されるので, 中性分子のイオン化効率を高めることができ, したがつ て, 従来の大気圧イオン化法 (試料分子がイオン化室全体に拡散した状 態で試料ガスをイオン化させる方法) に比べて, 桁違いの中性分子の検 出効率が得られる。
従来は, 液体試料中の中性分子の分析には, まず液体試料を超音波や ネプライザ一で液滴にして, その後, 器壁を加熱させて液体試料を気化 させて, 大気圧イオン化させていた。 この実施例の方法によると, ィォ ン化室の器壁温度を上昇させて液体試料の気化を促進させる必要がない ので, 熱分解し易い生体試料でも分解させることなく , ソフ トにイオン 化させることができる。 ダイヤモンドチップ 24への赤外レーザ照射では, ダイヤモンドチップ 24は加熱されず, またレーザ光エネルギーは, 溶媒 の水素結合の切断に費やされ, 分子の振動励起にはつながらないので, 試料分子の分解をほぼ完全に無視できるという利点をもつ。
大気圧下で生成したイオンは, オリフィ ス 1 1の孔 1 1 a を通して真空中 にサンプリ ングされ, 質量分析される。 質量分析装置 10と しては, オル ソゴナル飛行時間型質量分析計, 四重極質量分析計, 磁場型質量分析計 などが使用可能である。
第 6 a図はコロナ放電電極の他の例を示している。 キヤビラリ一 23内 に揷通した導電線 (金属線, 白金線) 26の先端をダイヤモン ドチップ 24 の先端からわずかに (数 mm程度) 外方に突出させ, この導電線 26の先端 部をコロナ放電電極とする。 導電線 26の先端は, 放電プラズマを発生し 易くするために鋭く研磨してもよ'い。
上述したよ うに, 水溶液試料などをキヤピラリー 23に流し, ダイヤモ ンドチップ 24から流出する液体試料にレーザ光を照射 (赤外線レーザ : ΙΟ. β β m) して完全に気化させる。 この状態で, キヤピラリー 23の中心 に通した導電線 26に高電圧を印加 (数百ないし数 kV) して, 導電線 26の 先端にコロナ放電を生起させる。 このコロナ放電によって, プラズマ部 にイオンが発生する。 たとえば, 水溶液試料では溶媒が水なので, 水蒸 気の放電で, プロ トンの水和クラスターが多量に発生する。 水蒸気プラズマで H+ (H20)„ クラスタ一イオン発生
H20 + e (electron)→H20+ + 2e (1) 電子イオン化(プラズマ内で生起) H20+ + H20→H30+ + 0H (2) プロ トン移動反応
H30+ + nH20→H30+ (H20)„ (3) ク ラスタ リ ング反応
H 30 +や水和クラスターイオン H 30 + ( H nは, 試料中の分析目 的成分 B とプロ トン移動反応を起こして, H + Bを生成する。
H+ (H20) + B→H + B + nH20 (4)
この反応は, 大気圧中で行われるので, H + ( H O ) „イオンと周囲 のガス分子同士が極めて多数回の衝突を起こす。 このため, 分析目的成 分 Bの濃度が極めて低く ても, 反応(4)が効率よく起こるので, 十分な 感度で成分 Bを検出することができる。 上述の通り, この実施例の方法は, レーザ照射による液体試料の完全 気化 (レーザスプレー法) と大気圧イオン化法を組み合わせたものであ る。 生体試料の場合, 溶媒が水とすることが望ま しい。 水溶液試料の場 合, レーザ光照射によって水蒸気が発生する。 水蒸気は, 放電プラズマ が発生しにくいという性質を有する。 この問題点は, 雰囲気ガスと して 希ガス (アルゴンガスなど) を混ぜることによって大幅に緩和させるこ とができる。
第 6 b図に示すよ うに, 液体試料が流出するキヤビラ リ一23の外側に, キヤピラ リー 23の外周面との間に間隙 (間隔) をあけて外筒 29を設け, キヤピラ リー 23の外周面と外筒 29との間の間隙を通してアルゴンガスな どのアシス トガスをキヤピラ リー 23 (ダイヤモン ドチップ 24) の先端付 近に供給する。 瞬時に気化された液体試料の溶媒蒸気とアルゴンガスを 混合させるこ とで, コロナ放電を容易に発生させ, また安定に放電プラ ズマを持続させることができる。
この方法では, 水分子よ り も大きなプロ ト ン親和力の分子であれば, それらをすベて高感度で検出することができる。 生体関連分子は, 通常 水分子に比べて大きなプロ ト ン親和力を有することが多いので, この方 法は生体試料の分析に極めて有用である。 また, この方法を液体クロマ トグラフィー (L C ) と組み合わせることによって (L Cから出力され る液体試料をキヤビラ リ一 23に供給する), 混合成分をあらかじめ L C で分離させて, 各成分を個別に検出することが可能となる。 一般の L C の検出器 (紫外吸収検出器など) では, 分子の同定が困難である。 これ に比べて, 上記のイオン化法を用いる質量分析法では, 分子 Bが B H + と して質量分析されるので, 分析目的成分の分子量が求められる。 また, 大気圧イオン源からイオンを真空側に取り出して, 衝突誘起解離を起こ させることで, 分子の構造情報をあわせて得ることもできる。 上記のイオン化法は, 赤外レーザ光照射で, 溶液試料を瞬時に気化さ せ, この気体試料をダイヤモンドチップの中心に収束 (つま り発散させ ることなく濃縮させた状態で) させた状態で, その中心にコロナ放電を 起こさせるものである。 これによつて, まず反応イオン, H30+ (H O) „ (溶媒が水の場合) を生成する。 この反応イオン H 30 + (H20) „は, 大気圧下において周囲の気体分子と多数回の衝突を繰り返す。 一 度でも分析目的成分分子と衝突すれば, プロ トン移動反応(4)が必ず起 こ るので, 多数回の衝突を経た後, 最終的に反応イオン H 30 + ( H O) nのプロ ト ン (H+) の大部分は, 分析目的成分分子 Bに移り, 分子 Bをイオン化 (プロ トン化) して, 分子 Bに電荷が移る (プロ トン化し た B分子, すなわち H + B の生成)。 こ の過程は, イ オン—分子反応 (プロ ト ン移動反応) を利用して, 分子 Bをイオンの形 (H + B ) と し て濃縮する過程とみなすこ とができる。 このイオン化法では, ppbレべ ルの分析を容易に行う ことができる (濃縮効率が 10の 9乗に相当 : 109 分の 1の成分をイオン化できる。 反応イオンは周囲の分子と少なく とも 109回以上の衝突を行う)。
試料にプロ トン親和力の異なる分子が複数種類混合している場合, ィ オン一分子反応 (プロ トン移動反応) が逐次的に起こ り, 各成分の定量 分析が困難になるというケースがあり得る。 しかしながら, L Cと組み 合わせることによ り, 混合試料であっても, 液体クロマ トグラフィーに よってあらかじめ分離されてから, ダイヤモンドチップに流出するので, ダイヤモンドチップ先端で, 複数種の試料が混在する可能性は考えなく てもよい。
第 5図においてはレーザ光はキヤピラリー 23の軸方向に垂直にダイヤ モンドチップ 24に投射されており, 第 6 a図および第 6 b図においては レーザ光はキヤビラ リー 23の軸方向にダイヤモンドチップ 24内に投射さ れている。 レーザ光の投射方向は上記のいずれであってもよレ、。 第 6 a 図に L Aで示すよ うに, レーザ光をキヤビラ リー 23の軸方向に垂直に投 射してもよい。
第 3実施例
第 7図は質量分析装置のイオン導入口付近に取付けられた第 3実施例 のイオン化装置の全体的構成を示すものである。
質量分析装置 40のィオン導入口の部分には, やや大きな開口 41 aがあ けられたスキマー 41が取付けられている。 開口 41 aがィオン導入口であ る。 質量分析装置 40内は真空に保たれる。
質量分析装置 40の器壁に, スキマー 41を囲んでこれを覆う よ うにィォ ン化装置 50のハウジング 51が気密に取付けられている。 ハウジング 51と スキマー 41によって囲まれた空間がイオン化空間 52である。 イオン化空 間 52内は排気装置 (ポンプ) (図示略) によ り, 高真空 (たとえば 10一6 〜10— 7 Torr程度) に保たれる。
ハウジング 51内のィオン化空間 52には試料台 53が設けられ, ハウジン グ 51の外に配置された極低温冷凍機 54の腕により支持されている。 この 冷凍機 54はたとえば 10 K程度に冷却する能力を持つ。 また, ハウジング 51内にはイオンをスキマー 41の開口 41 aに導く ダリ ッ ド 55が設けられて いる。
基板 60はたとえば第 8図に示すよ うに, シリ コン基板を微細加工する ことにより, その表面に多数の試料保持用凹所 62が形成されている。 こ の凹所 62は基板 60と一体成形された筒状の突起 (壁) 61によ り囲まれて いる。 この凹所 62内にイオン化すべき試料 Aが収められ, かつ保持され ている。
試料はたとえば生体試料 (D N A ,. タンパク質分子など) であり, 水, S F のような低分子量の無機マ ト リ タスに混ぜられている。 基板と しては, 第 8図に示す形状のものに限らず, たとえばポーラス シリ コンでもよい。 ポーラスシリ コンは無数のナノサイズの穴を有し, それらの穴の周囲に鋭利な突起が形成されている。 ポーラスシリ コン表 面に水溶液試料などを塗布し, これを凍結し, その後レーザ照射を行う。 また, 塗布した試料の上層に水および S F 6 薄膜を真空蒸着してレーザ 照射を行ってもよい (この状態も, 試料がマ ト リ クスに混ぜられている という表現に含まれるものとする)。
このよ うにして, マ ト リ クスに混ぜられた試料を保持した基板 60がィ オン化空間 52内の試料台 53に取付けられる。 基板 60には正または負の高 電圧が印加される。 そして, ハウジング 51の外部に配置した赤外レーザ 光源装置 56から赤外レーザ光をハウジング 51内の基板 60上の試料に斜め に照射する。 水を含む低分子無機マ ト リ クスは高い効率で赤外光を吸収 して, 表面近傍に衝撃波を発生させる。 発生した衝撃波は基板 60に向う。 この過程で, マ ト リ クスおよび試料が急速加熱され, 試料が脱離し, 突 起 61またはポーラスシリ コンの突起に印加された高電場のために効率よ く気相の正または負イオンを発生する。 これらのイオンは基盤 60の面に 垂直な方向に向かいスキマ一 41の開口 41 aから飛行時間型質量分析装置 40内に導かれる。
マ ト リ クスは低分子量の無機材料からなるものであるから, これらが 飛散し, イオン化して質量分析装置 40内に導入されても大きな雑音成分 にはならない。
水を含むマ ト リ クスは赤外光を吸収するので, 試料は急速に加熱され る。 生体試料もまた水分を含み赤外光を吸収するので効率よく加熱され る。
上記実施例では, 試料を凍結しているので, その乾燥を防ぐことがで きる。

Claims

請求の範囲
1 . 液体試料を導入したキヤビラ リ一の先端にレーザ光を照射して試料 をイオン化するレーザスプレー法において,
少なく ともキヤビラ リ一の先端部を, 使用するレーザ光を吸収しにく い物質で形成することを特徴とするイオン化方法。
2 . レーザ光が赤外光であり, レーザ光を吸収しにく い物質がダイヤモ ンド, シリ コ ン, ゲルマニウムのうちのいずれかである, 請求の範囲第 1項に記載のィオン化方法。
3 . 絶縁性キヤビラリ一の先端に, キヤビラ リ一の細孔に連通する細孔 があけられたダイヤモン ドチップを取付ける, 請求の範囲第 1項または 第 2項に記載のイオン化方法。
4 . 少なく ともキヤビラリ一の先端部を, 質量分析装置のイオン導入口 付近において, 真空中に配置する, 請求の範囲第 1項から第 3項のいず れか一項に記載のィオン化方法。
5 . 少なく ともキヤビラ リ一の先端部を, 質量分析装置のイ オン導入口 付近において, 大気圧中に配置する, 請求の範囲第 1項から第 3項のい ずれか一項に記載のイオン化方法。
6 . キヤピラ リーを導電体で形成し, キヤビラリ一に高電圧を印加する ことにより, キヤビラ リ一先端近傍に電場を形成する, 請求の範囲第 1 項に記載のィオン化方法。
7 . キヤピラリーを絶縁体で形成し, キヤピラリー内に導電線を配置し, この導電線に高電圧を印加する, 請求の範囲第 1項に記載のイオン化方 法。
8 . 少なく ともキヤビラリ一の先端部をコロナ放電ガス中に配置し, キ ャビラ リ一の先端部の近傍にコロナ放電電極を設け, このコロナ放電電 極に正または負の高電圧を印加してコロナ放電を生起させる, 請求の範 囲第 1項から第 3項のいずれか一項に記載のイオン化方法。
9 . キヤピラ リーを絶縁体で形成し, キヤピラ リー内に導電線を配置し, この導電線の先端をキヤビラ リ一の先端部から外方にわずかに突出させ てコロナ放電電極とする, 請求の範囲第 8項に記載のイオン化方法。
10. キヤビラ リ一の先端部を大気圧中に配置する, 請求の範囲第 8項ま たは第 9項に記載のイオン化方法。
1 1 . キヤビラ リ一の先端部付近にアシス トガスを供給する, 請求の範囲 第 8項から第 10項のいずれか一項に記載のィオン化方法。
12. キヤビラ リーの外側にキヤビラ リーの外周面との間に間隙をあけて 外筒を設け, キヤビラ リ一の外周面と外筒との間を通してアシス トガス をキヤビラ リーの先端部付近に導入する, 請求の範囲第 1 1項に記載のィ オン化方法。
13. パルス状レーザ光を照射する, 請求の範囲第 1項から第 12項のいず れか一項に記載のイオン化方法。
14. 液体試料をキヤピラ リー内に連続的に流し, 連続発振のレーザ光を 照射する, 請求の範囲第 1項から第 12項のいずか一項に記載のィオン化 方法。
15. キヤビラ リ一の先端にレーザ光をキヤビラリ一のほぼ軸方向に向つ て照射する, 請求の範囲第 1項から第 14項のいずれか一項に記載のィォ ン化方法。
16. キヤビラ リーの先端にレーザ光をキヤピラリーの軸方向にほぼ垂直 な方向から照射する, 請求の範囲第 1項から第 14項のいずれか一項に記 載のィォン化方法。
17. 液体試料を導入するキヤビラ リ一の先端にレーザ光を照射して試料 をイオン化するレーザスプレー装置において, 少なく ともキヤビラ リ一の先端部が, 使用するレーザ光を吸収しにく い物質で形成されていることを特徴とするイオン化装置。
18. キヤビラ リ一が絶縁性材料で形成され, キヤビラ リ一の細孔に連通 する細孔があけられたダイヤモンドチップがキヤビラ リ一の先端に取付 けられ, キヤビラ リ一の細孔内に, 高電圧が印加される導電線が配置さ れている,
請求の範囲第 17項に記載のイオン化装置。
19. キヤビラ リ一の先端部付近にコロナ放電電極が設けられている, 請 求の範囲第 17項または第 18項に記载のィオン化装置。
20. 導電線の先端がキヤピラ リー内にあり, キヤビラ リ一先端部の近く までのびている, 請求の範囲第 18項に記載のイオン化装置。
21 . 導電線の先端部がキヤビラ リー先端のダイヤモンドチップから外方 にわずかに突出している, 請求の範囲第 18項に記載のィオン化装置。
22. 質量分析装置のイオン導入口の外側に, ハウジングによ り, イオン 導入口を通して質量分析装置と連通するイオン化空間を形成し,
イオン化空間内に, 液体試料を導入するキヤビラリ一の少なく とも先 端部を配置し,
キヤビラ リ一の先端にレーザ光を照射するレーザ装置をイオン化空間 の外部に配置し,
少なく ともキヤビラ リ一の先端部を, 使用するレ一ザ光を吸収しにく い物質で形成する,
イオン化装置。 -
23. マ ト リ クスと混ぜて保持された試料に, レーザ光を照射して試料を ィオン化する M A L D I法において,
水を含む低分子量の無機マト リ タスを用い,
周囲の少なく とも一部に突起が形成された基板の窪み内に, 無機マ ト リ クス と混ぜた試料を保持し,
赤外レーザ光を試料に照射する,
イオン化方法。
24. 基板の窪み内に保持された試料の周囲に電場を形成する, 請求の範 囲第 23項に記載のィオン化方法。
25 . 導電性基板に高電圧を印加して電場を形成する, 請求の範囲第 24項 に記載のィオン化方法。
26. 基板がポーラスシリ コンである, 請求の範囲第 23項から第 25項のい ずれか一項に記載のイオン化方法。
27 . 基板を冷却する, 請求の範囲第 23項から第 25項のいずれか一項に記 載のィォン化方法。
28 . 質量分析装置のイオン導入口の外側に, ハウジングによ り, イオン 導入口を通して質量分析装置と連通する真空に保たれるイオン化空間を 形成し,
周囲の少なく とも一部に突起が形成された窪みを持つ基板を上記ィォ ン化空間内に配置し,
イオン化空間の外部に, 上記基板の窪みに保持された無機マ ト リ ク ス と混ぜられた試料に赤外レーザ光を照射するレーザ装置を配置した, イオン化装置。
29 . 上記基板を冷却する冷却装置を備えた, 請求の範囲第 28項に記載の ィオン化装置。
PCT/JP2004/004520 2004-03-30 2004-03-30 質量分析のためのイオン化方法および装置 WO2005104181A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2004/004520 WO2005104181A1 (ja) 2004-03-30 2004-03-30 質量分析のためのイオン化方法および装置
US10/594,837 US7465920B2 (en) 2004-03-30 2004-03-30 Ionization method and apparatus for mass analysis
JP2006512423A JP4366508B2 (ja) 2004-03-30 2004-03-30 質量分析のためのイオン化方法および装置
EP04724374.6A EP1734560B1 (en) 2004-03-30 2004-03-30 Ionizing method and device for mass analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/004520 WO2005104181A1 (ja) 2004-03-30 2004-03-30 質量分析のためのイオン化方法および装置

Publications (1)

Publication Number Publication Date
WO2005104181A1 true WO2005104181A1 (ja) 2005-11-03

Family

ID=35197253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004520 WO2005104181A1 (ja) 2004-03-30 2004-03-30 質量分析のためのイオン化方法および装置

Country Status (4)

Country Link
US (1) US7465920B2 (ja)
EP (1) EP1734560B1 (ja)
JP (1) JP4366508B2 (ja)
WO (1) WO2005104181A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234489A (ja) * 2006-03-03 2007-09-13 Hitachi High-Technologies Corp イオン捕集装置
JP2008147165A (ja) * 2006-10-30 2008-06-26 National Sun Yat-Sen Univ レーザー脱離装置、マススペクトロメーター組立及び環境液体マススペクトロメトリー法
JP2008157895A (ja) * 2006-12-26 2008-07-10 Horiba Ltd 試料導入装置
JP2009054441A (ja) * 2007-08-28 2009-03-12 Shimadzu Corp 大気圧maldi質量分析装置
WO2011071182A1 (ja) * 2009-12-08 2011-06-16 国立大学法人山梨大学 エレクトロスプレーによるイオン化方法および装置,ならびに分析方法および装置
JP2011210734A (ja) * 2011-06-03 2011-10-20 Hitachi High-Technologies Corp イオン捕集装置
US8076639B2 (en) 2006-01-17 2011-12-13 Purdue Research Foundation Method and system for desorption atmospheric pressure chemical ionization
WO2017098600A1 (ja) * 2015-12-09 2017-06-15 株式会社日立製作所 イオン化装置
JP2018048058A (ja) * 2016-04-27 2018-03-29 ブループラズマ パワー, エス.エル.Blueplasma Power, S.L. 燃料の部分酸化のための方法、及びその方法を適用するための装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272852A1 (en) * 2006-01-26 2007-11-29 Sionex Corporation Differential mobility spectrometer analyzer and pre-filter apparatus, methods, and systems
US9103783B2 (en) * 2008-03-17 2015-08-11 Shimadzu Corporation Ionization method and apparatus including applying converged shock waves to a spray
US8153964B2 (en) * 2009-05-29 2012-04-10 Academia Sinica Ultrasound ionization mass spectrometer
JP2012529058A (ja) * 2009-06-03 2012-11-15 ウエイン・ステート・ユニバーシテイ レーザースプレーイオン化を用いる質量分析
JP5854781B2 (ja) * 2011-01-14 2016-02-09 キヤノン株式会社 質量分析方法および装置
US8829426B2 (en) 2011-07-14 2014-09-09 The George Washington University Plume collimation for laser ablation electrospray ionization mass spectrometry
CN102339721B (zh) * 2011-09-28 2014-03-12 厦门大学 近场针尖增强光致电离离子源
US8841607B2 (en) * 2012-09-03 2014-09-23 Bruker Daltonics, Inc. Atmospheric pressure ion source with exhaust system
US9058966B2 (en) 2012-09-07 2015-06-16 Canon Kabushiki Kaisha Ionization device, mass spectrometer including ionization device, image display system including mass spectrometer, and analysis method
US10130450B2 (en) * 2013-05-14 2018-11-20 Ipg Photonics Corporation Method and apparatus for laser induced thermo-acoustical streaming of liquid
EP4257966A3 (en) 2015-09-03 2023-11-29 Hamamatsu Photonics K.K. Mass spectrometry device
CN111684273B (zh) * 2018-02-09 2023-09-05 浜松光子学株式会社 试样支撑体、电离法以及质量分析方法
WO2020223341A1 (en) 2019-04-29 2020-11-05 Ohio State Innovation Foundation Method and apparatus for mass spectrometry
US20230395364A1 (en) * 2020-11-05 2023-12-07 Ohio State Innovation Foundation Method and apparatus for mass spectrometry

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122259A (ja) * 1988-10-31 1990-05-09 Shimadzu Corp Lc−ms結合用インターフェース
JPH02176459A (ja) * 1988-12-27 1990-07-09 Shimadzu Corp 液体クロマトグラフ・質量分析装置
JPH03105841A (ja) * 1989-09-20 1991-05-02 Hitachi Ltd 質量分析方法
JPH03503317A (ja) * 1989-01-17 1991-07-25 エス・アール・アイ・インターナシヨナル 凍結溶液からの脱着による質量分析用試料の調製方法
JPH05256837A (ja) 1992-03-13 1993-10-08 Hitachi Ltd 質量分析計
JPH06508472A (ja) * 1991-06-21 1994-09-22 フィニガン マット リミテッド 質量分析器に用いる試料ホルダ
JPH09304344A (ja) * 1996-05-20 1997-11-28 Hamamatsu Photonics Kk イオン化分析装置
JP2000500915A (ja) * 1996-09-19 2000-01-25 シークエノム・インコーポレーテツド Maldi分析の方法および装置
JP2004184137A (ja) * 2002-11-29 2004-07-02 Nec Corp 質量分析用チップおよびこれを用いたレーザー脱離イオン化飛行時間型質量分析装置、質量分析システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582184A (en) * 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
JP3353561B2 (ja) 1995-09-07 2002-12-03 株式会社日立製作所 溶液の質量分析に関する方法と装置
JP3503317B2 (ja) 1995-12-16 2004-03-02 株式会社浅羽製作所 ケーブル引込み管止水装置
US5917185A (en) * 1997-06-26 1999-06-29 Iowa State University Research Foundation, Inc. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry
AU2003295316A1 (en) * 2002-05-31 2004-04-19 University Of Florida Research Foundation, Inc. Methods and devices for laser desorption chemical ionization

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122259A (ja) * 1988-10-31 1990-05-09 Shimadzu Corp Lc−ms結合用インターフェース
JPH02176459A (ja) * 1988-12-27 1990-07-09 Shimadzu Corp 液体クロマトグラフ・質量分析装置
JPH03503317A (ja) * 1989-01-17 1991-07-25 エス・アール・アイ・インターナシヨナル 凍結溶液からの脱着による質量分析用試料の調製方法
JPH03105841A (ja) * 1989-09-20 1991-05-02 Hitachi Ltd 質量分析方法
JPH06508472A (ja) * 1991-06-21 1994-09-22 フィニガン マット リミテッド 質量分析器に用いる試料ホルダ
JPH05256837A (ja) 1992-03-13 1993-10-08 Hitachi Ltd 質量分析計
JPH09304344A (ja) * 1996-05-20 1997-11-28 Hamamatsu Photonics Kk イオン化分析装置
JP2000500915A (ja) * 1996-09-19 2000-01-25 シークエノム・インコーポレーテツド Maldi分析の方法および装置
JP2004184137A (ja) * 2002-11-29 2004-07-02 Nec Corp 質量分析用チップおよびこれを用いたレーザー脱離イオン化飛行時間型質量分析装置、質量分析システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1734560A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076639B2 (en) 2006-01-17 2011-12-13 Purdue Research Foundation Method and system for desorption atmospheric pressure chemical ionization
JP2007234489A (ja) * 2006-03-03 2007-09-13 Hitachi High-Technologies Corp イオン捕集装置
JP2008147165A (ja) * 2006-10-30 2008-06-26 National Sun Yat-Sen Univ レーザー脱離装置、マススペクトロメーター組立及び環境液体マススペクトロメトリー法
JP2008157895A (ja) * 2006-12-26 2008-07-10 Horiba Ltd 試料導入装置
JP2009054441A (ja) * 2007-08-28 2009-03-12 Shimadzu Corp 大気圧maldi質量分析装置
WO2011071182A1 (ja) * 2009-12-08 2011-06-16 国立大学法人山梨大学 エレクトロスプレーによるイオン化方法および装置,ならびに分析方法および装置
JP5277509B2 (ja) * 2009-12-08 2013-08-28 国立大学法人山梨大学 エレクトロスプレーによるイオン化方法および装置,ならびに分析方法および装置
US9111739B2 (en) 2009-12-08 2015-08-18 University Of Yamanashi Ionization method and apparatus using electrospray, and analyzing method and apparatus
JP2011210734A (ja) * 2011-06-03 2011-10-20 Hitachi High-Technologies Corp イオン捕集装置
WO2017098600A1 (ja) * 2015-12-09 2017-06-15 株式会社日立製作所 イオン化装置
JPWO2017098600A1 (ja) * 2015-12-09 2018-08-16 株式会社日立製作所 イオン化装置
JP2018048058A (ja) * 2016-04-27 2018-03-29 ブループラズマ パワー, エス.エル.Blueplasma Power, S.L. 燃料の部分酸化のための方法、及びその方法を適用するための装置
JP7008426B2 (ja) 2016-04-27 2022-01-25 ブループラズマ パワー,エス.エル. 燃料の部分酸化のための方法、及びその方法を適用するための装置

Also Published As

Publication number Publication date
US20080054176A1 (en) 2008-03-06
US7465920B2 (en) 2008-12-16
JPWO2005104181A1 (ja) 2008-03-13
EP1734560A1 (en) 2006-12-20
EP1734560A4 (en) 2008-07-23
JP4366508B2 (ja) 2009-11-18
EP1734560B1 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
EP1734560B1 (en) Ionizing method and device for mass analysis
US9184037B2 (en) Mass spectrometer and mass analyzing method
US8299444B2 (en) Ion source
Vestal Methods of ion generation
US8338780B2 (en) Ambient pressure matrix-assisted laser desorption ionization (MALDI) apparatus and method of analysis
US7462824B2 (en) Combined ambient desorption and ionization source for mass spectrometry
US8704170B2 (en) Method and apparatus for generating and analyzing ions
US7525105B2 (en) Laser desorption—electrospray ion (ESI) source for mass spectrometers
JP4734628B2 (ja) 衝突誘起によるイオン化方法および装置
EP2562787A2 (en) Mass spectrometer and mass analyzing method
JPH0854370A (ja) キャピラリー電気泳動・質量分析計
US7365315B2 (en) Method and apparatus for ionization via interaction with metastable species
EP1500124B1 (en) Mass spectrometer
JP4378649B2 (ja) 生体高分子の非共有結合等を選択的に切断して分析する方法および装置
RU2414697C1 (ru) Способ детектирования и идентификации химических соединений и устройство для его осуществления
Hiraoka Laser spray: electric field‐assisted matrix‐assisted laser desorption/ionization
US20070023678A1 (en) Method and apparatus for ionization by cluster-ion impact
JP3808482B2 (ja) イオン源、質量分析方法及び質量分析計
RU95845U1 (ru) Устройство детектирования и идентификации химических соединений
JP3578147B2 (ja) 大気圧イオン化質量分析装置
JP2006059809A (ja) 質量分析法および/または電子常磁性共鳴分光法用のイオン化技術間のesi、fi、fd、lifdi、およびmaldi素子およびハイブリッド手段を結合する調整可能なイオン源圧力を有するイオン源
CN114695069B (zh) 一种纳升光电离质谱离子源装置及其操作方法
EP1193730A1 (en) Atmospheric-pressure ionization device and method for analysis of a sample
Ingólfsson et al. Laser desorption electron attachment time-of-flight mass spectrometry: a new approach to detection of involatile compounds
JP2003083938A (ja) 質量分析装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006512423

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10594837

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004724374

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004724374

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10594837

Country of ref document: US