WO2005103618A1 - Gyroscope device - Google Patents

Gyroscope device Download PDF

Info

Publication number
WO2005103618A1
WO2005103618A1 PCT/JP2005/007125 JP2005007125W WO2005103618A1 WO 2005103618 A1 WO2005103618 A1 WO 2005103618A1 JP 2005007125 W JP2005007125 W JP 2005007125W WO 2005103618 A1 WO2005103618 A1 WO 2005103618A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
angular velocity
correction signal
output
circuit
Prior art date
Application number
PCT/JP2005/007125
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Mori
Iku Nagai
Kazushige Sawada
Makoto Narita
Original Assignee
Murata Manufacturing Co., Ltd.
Asahi Kasei Microsystems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd., Asahi Kasei Microsystems Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Publication of WO2005103618A1 publication Critical patent/WO2005103618A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Definitions

  • the present invention relates to a gyro device used for detecting an angular velocity and a rotation direction thereof.
  • gyro devices have been used as means for detecting the attitude of a vehicle, detecting the traveling direction of a navigation device, correcting camera shake, performing virtual reality operations, and the like.
  • an angular velocity detecting section including an angular velocity detecting element composed of a vibrator or the like generates an angular velocity detection signal having a voltage level corresponding to the angular velocity. Is output. Then, by determining the magnitude of the DC voltage level of the angular velocity detection signal, the magnitude of the angular velocity and the rotation direction can be detected.
  • the voltage level of the angular velocity detection signal output from the angular velocity detector may change due to factors other than the magnitude of the angular velocity. That is, when the ambient temperature of the gyro device changes, the voltage level during non-rotation fluctuates, that is, a so-called temperature drift may occur. Also, the sensitivity of the angular velocity detecting element and its peripheral circuits may change due to a change in the ambient temperature.
  • a temperature correction value set for each predetermined relatively narrow temperature interval is stored in a memory, and based on the output of the temperature sensor, The temperature correction value corresponding to each temperature is read from
  • a temperature correction value set for each predetermined relatively wide temperature interval is stored in a memory, and stored in the memory.
  • a temperature correction value corresponding to that temperature is obtained by interpolation processing from the temperature correction values existing before and after, and the output level of the angular velocity detection signal is corrected in the same manner as described above by the temperature correction value obtained by this interpolation processing.
  • Patent Document 1 Utility Model Registration No. 2577760
  • Patent Document 2 JP-A-2000-258162
  • the former conventional technique described in Patent Document 1 has the following problems. For example, assume that the angular velocity detection signal has caused a temperature drift as shown in FIG. 12A with respect to a temperature change. At this time, since the temperature correction values corresponding to each temperature stored in the memory are discrete data, when this temperature correction value is analogized by a DZA converter, the temperature is corrected as shown in FIG. 12B. It shows a characteristic that changes stepwise in response to the change.
  • an angular velocity detection signal obtained by correcting an angular velocity detection signal that causes a temperature drift as shown in FIG. 12A with a temperature correction value having a characteristic as shown in FIG. 12B includes, as shown in FIG. 12C,
  • a so-called ripple that changes in a sawtooth waveform with respect to a temperature change is generated.
  • the SZN (Signal / Noise) ratio of the angular velocity detection signal deteriorates, and it becomes difficult to detect a minute angular velocity.
  • the temperature correction value obtained by the interpolation processing is analogized by a DZA converter and added to the angular velocity detection signal, which is the same as the former related art. Therefore, discontinuities in converting discrete digital values to analog values are inevitable. Therefore, as shown in FIG. 12C, ripples still occur in the angular velocity detection signal after the temperature drift is corrected by the temperature correction value converted to analog by the DZA converter, as shown in FIG. 12C.
  • the present invention has been made to solve the above-described problem, and has high accuracy with respect to a temperature drift and a change in detection sensitivity caused by an ambient temperature change of an angular velocity detection signal output from an angular velocity detection element. It is an object of the present invention to provide a gyro device capable of performing temperature compensation by using the gyro apparatus and detecting an angular velocity with higher accuracy than before by preventing a ripple from being generated in the angular velocity detection signal after the temperature compensation.
  • a gyro device includes an angular velocity detection unit, a temperature sensor that detects a temperature and outputs an analog value, and a temperature gradient of a detection output of the temperature sensor.
  • a memory for storing a correction coefficient to be corrected; and a temperature drift correction signal for adjusting a detection output of the temperature sensor based on the correction coefficient stored in the memory and generating the adjusted detection output as a temperature drift correction signal.
  • the temperature drift correction signal generation circuit uses the correction coefficient read from the memory or the force multiplied by the detection output of the temperature sensor and the correction coefficient read from the memory. Includes a multiplication / division circuit for division.
  • the correction coefficient stored in the memory is set to an individual value for each of the plurality of temperature regions.
  • the gyro device further compares a detection output of the temperature sensor with a reference voltage.
  • a temperature drift correction signal generation circuit that adjusts the detection output of the temperature sensor based on the correction coefficient corresponding to the determined current temperature region, and performs the adjusted detection. An output is generated as a temperature drift correction signal.
  • a gyro device includes an angular velocity detecting unit, a temperature sensor that detects a temperature and outputs an analog value, and a correction coefficient that corrects a temperature gradient of a detection output of the temperature sensor.
  • a memory for storing, a sensitivity temperature correction signal generation circuit for adjusting the detection output of the temperature sensor based on the correction coefficient stored in the memory, and generating the adjusted detection output as a sensitivity temperature correction signal;
  • the angular velocity detection signal output from the angular velocity detection section is multiplied by the sensitivity temperature correction signal generated by the sensitivity temperature correction signal generation circuit, or the angular velocity detection signal output from the angular velocity detection section is multiplied by the sensitivity temperature correction signal generation circuit.
  • a multiplication / division circuit for dividing by the sensitivity temperature correction signal generated in the step (c).
  • the sensitivity correction signal generation circuit divides a force for multiplying a detection output of the temperature sensor by a correction coefficient read from the memory or a detection output of the temperature sensor by a correction coefficient read from the memory. Includes multiplication / division circuit.
  • the correction coefficient stored in the memory is set to an individual value for each of the plurality of temperature regions.
  • the gyro device further includes a comparator for comparing a detection output of the temperature sensor with a reference voltage to determine a current temperature region, and the sensitivity temperature correction signal generation circuit includes The detection output of the temperature sensor is adjusted on the basis of the correction coefficient corresponding to the temperature region, and the adjusted detection output is generated as a sensitivity temperature correction signal.
  • a gyro device includes an angular velocity detection unit, a temperature sensor that detects a temperature and outputs an analog value, and a first sensor that corrects a temperature gradient of a detection output of the temperature sensor.
  • a memory for storing a correction coefficient and a second correction coefficient, and a detection output of the temperature sensor is adjusted based on the first correction coefficient stored in the memory, and the adjusted detection output is generated as a temperature drift correction signal.
  • the temperature drift correction signal generation circuit and the force for adding the temperature drift correction signal generated by the temperature drift correction signal generation circuit to the angular velocity detection signal output from the angular velocity detection unit or the angular velocity detection signal power output Subtract the temperature drift correction signal generated by the temperature drift correction signal generation circuit And a sensitivity temperature correction signal generation circuit that adjusts the detection output of the temperature sensor based on the second correction coefficient stored in the memory and generates the adjusted detection output as a sensitivity temperature correction signal.
  • a temperature drift correction signal is added or Since the influence of the temperature drift is offset by subtraction, temperature compensation can be performed with high accuracy.
  • the temperature drift correction signal used at that time is not an output of the DZA converter, but is basically an analog signal generated by processing the detection output itself of the temperature sensor. The signal changes continuously. For this reason, a ripple does not occur in the angular velocity detection signal after temperature compensation by the temperature drift compensation signal. Therefore, the SZN ratio is improved as compared with the related art, and the angular velocity can be detected with higher accuracy.
  • the temperature drift correction signal generation circuit includes a multiplication / division circuit that multiplies or divides the detection output of the temperature sensor by the correction coefficient read from the memory. With this configuration, an appropriate temperature drift correction signal can be generated.
  • the memory since the memory has the individual correction coefficient set for each of the plurality of temperature regions, when the temperature change of the temperature drift indicates a function value of second order or higher, Appropriate measures can be taken with V ⁇ .
  • the present invention since a comparator for judging the current temperature region by comparing the detection output of the temperature sensor with the reference voltage is provided, the present invention has a simple configuration. The current temperature region can be determined.
  • the detection sensitivity of the angular velocity detecting element fluctuates due to the influence of the ambient temperature change
  • the detection sensitivity fluctuation is multiplied or divided by the sensitivity temperature correction signal. Since the effects are offset, temperature compensation can be performed with high accuracy.
  • the sensitivity temperature correction signal used at that time is not an output of the DZA converter but an analog signal generated basically by detecting the output of the temperature sensor itself.
  • the signal changes continuously with the change. Therefore, no ripple occurs when the sensitivity of the angular velocity detection signal is temperature-corrected by the sensitivity temperature correction signal. Therefore, the SZN ratio is higher than before, and it is possible to detect angular velocity with higher accuracy.
  • the sensitivity correction signal generation circuit includes a multiplication / division circuit that multiplies or divides the detection output of the temperature sensor by the correction coefficient read from the memory.
  • a multiplication / division circuit that multiplies or divides the detection output of the temperature sensor by the correction coefficient read from the memory.
  • the memory since the memory has the individual correction coefficient set for each of the plurality of temperature regions, it is suitable even when the temperature change of the sensitivity indicates a function value of second order or higher. Response can be taken.
  • the ninth aspect of the present invention since both the temperature drift correction signal generation circuit and the addition / subtraction circuit, and the sensitivity temperature correction signal generation circuit and the multiplication / division circuit are provided, the temperature with respect to the temperature drift of the angular velocity detection signal is obtained. Since the compensation and the temperature compensation for the fluctuation of the detection sensitivity of the angular velocity detecting element can be performed together, the angular velocity can be detected with higher accuracy.
  • FIG. 1 is a plan view showing a structure of a vibrator of a gyro device according to an embodiment of the present invention.
  • FIG. 2 A part of a state where a vibrator substrate and a protective substrate constituting the gyro device of FIG. 1 are joined together FIG.
  • FIG. 3 is a block diagram showing the overall circuit configuration of the gyro device.
  • FIG. 4 is a circuit diagram illustrating an example of a [4A] CV conversion circuit.
  • FIG. 4 is a circuit diagram illustrating an example of a [4B] CV conversion circuit.
  • FIG. 5 is a block diagram showing details of an output adjustment circuit.
  • [6A] A waveform diagram of a drive signal applied to the drive electrode of the vibrator.
  • FIG. 6B is a waveform diagram of a drive signal applied to the drive electrode of the vibrator.
  • FIG. 7 (a) is an explanatory diagram of a vibration state of a vibrator.
  • (B) is an explanatory diagram of the vibration state of the vibrator.
  • [8] An explanatory diagram showing the relationship between the driving vibration direction of the vibrator and the vibration direction of Coriolis.
  • [9A] is an explanatory diagram of a processing operation when correcting a temperature drift occurring in an angular velocity detection signal with a temperature drift correction signal.
  • FIG. 9 is an explanatory diagram of a processing operation in a case where a temperature drift generated in an angular velocity detection signal is corrected by a temperature drift correction signal.
  • [9C] is an explanatory diagram of a processing operation when correcting a temperature drift generated in the angular velocity detection signal by a temperature drift correction signal.
  • [9D] is an explanatory diagram of a processing operation when correcting a temperature drift generated in an angular velocity detection signal by a temperature drift correction signal.
  • FIG. 10A is an explanatory diagram of a processing operation in the case where a temperature change in sensitivity occurring in an angular velocity detection signal is corrected by a sensitivity temperature correction signal.
  • FIG. 10B is an explanatory diagram of a processing operation in the case where a temperature change in sensitivity occurring in an angular velocity detection signal is corrected by a sensitivity temperature correction signal.
  • [10C] is an explanatory diagram of a processing operation in a case where a temperature change in sensitivity occurring in an angular velocity detection signal is corrected by a sensitivity temperature correction signal.
  • FIG. 10D is an explanatory diagram of a processing operation in the case where a temperature change in sensitivity that occurs in the angular velocity detection signal is corrected using a sensitivity temperature correction signal.
  • FIG. 14 is an explanatory diagram of another processing operation in the case.
  • FIG. 11B is an explanatory diagram of another processing operation when correcting a temperature drift generated in the angular velocity detection signal using a temperature drift correction signal.
  • FIG. 11C is an explanatory diagram of another processing operation when correcting a temperature drift generated in the angular velocity detection signal using a temperature drift correction signal.
  • FIG. 11D is an explanatory diagram of another processing operation in a case where a temperature drift generated in the angular velocity detection signal is corrected using the temperature drift correction signal.
  • FIG. 12A is an explanatory diagram of a processing operation when a temperature drift generated in an angular velocity detection signal is corrected by a temperature drift correction signal in a conventional technique.
  • FIG. 12B is an explanatory diagram of a processing operation in a case where a temperature drift generated in an angular velocity detection signal is corrected by a temperature drift correction signal in the related art.
  • FIG. 12C is an explanatory diagram of a processing operation when a temperature drift generated in an angular velocity detection signal is corrected by a temperature drift correction signal in the related art.
  • [0036] 1 oscillator, 64 output adjustment circuit, 64A comparator, 64B offset voltage adjustment section, 64C temperature drift correction section, 64D sensitivity temperature correction section, 64E sensitivity adjustment section, 65 temperature sensor, 66 memory, 643 temperature drift correction Signal generation circuit, 645 1st temperature gradient adjustment circuit (multiplication / division circuit), 646 1st addition circuit (addition / subtraction circuit), 647 sensitivity temperature correction signal generation circuit, 649 2nd temperature gradient adjustment circuit (multiplication / division circuit), 650 1st multiplication circuit (multiplication / division circuit), 100 angular velocity detector.
  • FIG. 1 is a plan view showing the structure of a vibrator used in the gyro device according to the present embodiment.
  • FIG. 2 shows a part of a state in which a vibrator substrate and a protection substrate constituting the gyro device are joined.
  • the gyro device includes a vibrator 1 as an angular velocity detecting element.
  • the vibrator 1 is of an electrostatic drive Z-capacitance detection type, for example, a single crystal or a polycrystal.
  • a vibrator substrate 2 made of a low-resistance silicon material that forms a crystal, and a protective substrate 3 made of a high-resistance silicon material, a glass material, or the like provided on the main surface and the back surface of the vibrator substrate 2.
  • the two substrates 2 and 3 are integrally joined by a joining method such as anodic joining, for example, except for a portion where a cavity 4 for securing a movable portion of the vibrator substrate 2 is formed.
  • the cavity 4 is kept in a vacuum state or a low pressure state to reduce vibration damping! / ⁇ ⁇ ⁇ .
  • the vibrator substrate 2 is subjected to fine processing such as etching, so that the first to fourth mass portions 71 to 74, the driving beam 8, the first and second monitor electrodes 91 and 92, The first to fourth drive electrodes 101 to 104, the first to fourth detection electrodes 161 to 164, and the ground electrodes 181 and 182 are formed.
  • fine processing such as etching
  • the first to fourth mass parts 71 to 74 are supported in series along the Y-axis direction by a driving beam 8 partially connected to the ground electrodes 181, 182, whereby the first to fourth mass parts 71 to 74 are supported.
  • Each of the mass parts 71 to 74 of 4 is in a state capable of vibrating along the X-axis direction.
  • first to fourth mass parts 71 to 74 and the drive beam 8 are movable parts, and the first and second monitor electrodes 91 and 92, the first to fourth drive electrodes 101 to 104, and the ground are provided. Electrodes 181, 182 are fixed parts
  • the first mass section 71 is a comb-shaped movable member formed to project right and left so as to face the comb-shaped portions of the first monitor electrode 91 and the first and second drive electrodes 101 and 102. Side electrodes 11 la, 111 b, 111 c are provided.
  • the second mass section 72 is formed by connecting a square first drive frame 121 supported by the drive beam 8 and two squares supported by the upper and lower first detection beams 131 inside the first drive frame 121. And a first detection frame 141 having a rectangular shape. Outside the first drive frame 121, comb-shaped movable electrodes 151a and 151b are provided in proximity to the first mass portion 71 and opposed to the comb-shaped portions of the first and second drive electrodes 101 and 102. Is formed. Further, inside the two quadrangular portions of the first detection frame 141, a comb-shaped movable side electrode 171 is formed to face the first and second comb-shaped detection electrodes 161, 162, respectively.
  • the fourth mass part 74 is a comb-shaped movable member that is formed to project right and left so as to face the comb-shaped part of the second monitor electrode 92 and the third and fourth drive electrodes 103 and 104. Side electrodes 112a, 112b, 112c are provided.
  • the third mass part 73 is formed by connecting a square second drive frame 122 supported by the drive beam 8 and two squares supported by the upper and lower second detection beams 132 inside the second drive frame 122. And a second detection frame 142 in the shape of a circle. Outside the second drive frame 122, comb-shaped movable electrodes 152a and 152b are disposed adjacent to the fourth mass portion 74 and opposed to the comb-shaped portions of the third and fourth drive electrodes 103 and 104. Is formed. Further, inside the quadrangular portion of the second detection frame 142, a comb-shaped movable electrode 172 is formed opposite to the comb-shaped third and fourth detection electrodes 163, 164, respectively. As a result, the second detection frame 142 can be vibrated along the Y-axis direction by the second detection beam 132 together with the movable-side electrode 172.
  • the first and second monitor electrodes 91 and 92, the first to fourth drive electrodes 101 to 104, the first to fourth detection electrodes 161 to 164, and the ground electrodes 181 and 182 are connected to the vibrator substrate. It is formed on the joint with the protective substrate 3 on 2 and is fixed. Each of the electrodes 91, 92, 101-104, 161-164, 181, 182 on the fixed side is individually connected to each electrode node 5 as shown in FIG. Electrical connection to an external electric circuit described later via 5 is enabled.
  • the movable part of the vibrator 1 is mechanically and electrically connected to the ground electrodes 181 and 182 via the driving beam 8, and is kept at the ground potential.
  • FIG. 3 is a block diagram showing the overall circuit configuration of the gyro device.
  • the angular velocity detection unit 100 includes an oscillator 1, an inverting circuit 21, an AGC (Auto Gain Control) circuit 22, a first phase adjusting circuit 23, first and second CV converting circuits 31, 32,
  • the first differential amplification circuit 41, the filter circuit 51, the third and fourth CV conversion circuits 33 and 34, the second differential amplification circuit 42, the filter circuit 52, and the second phase adjustment circuit 60 are synchronized with each other. It includes a detection circuit 61, a smoothing circuit 62, and an amplification circuit 63.
  • the angular velocity detector 100 preferably includes a filter circuit 51, a filter circuit 52, and an amplifier circuit 63, but may have a configuration that does not include these.
  • the first monitor electrode 91 is connected to the first CV conversion circuit 31, and the second monitor electrode 92 is connected to the second CV conversion circuit 32.
  • the first and second CV conversion circuits 31, 32 are both the first differential amplifier
  • the first differential amplifier circuit 41 is connected to the AGC circuit 22 via the filter circuit 51 and the first phase adjustment circuit 23. Further, the first differential amplifier circuit 41 is connected to a second phase adjustment circuit 60 described later via a filter circuit 51.
  • the output section of the AGC circuit 22 is directly connected to the second drive electrode 102 and the third drive electrode 103, and is also connected to the first drive electrode 101 and the fourth drive electrode 104 via the inversion circuit 21. ing.
  • the first detection electrode 161 and the third detection electrode 163 are both connected to the third CV conversion circuit 33, and the second detection electrode 162 and the fourth detection electrode 164 are both connected to the fourth CV conversion circuit 34 Has been done.
  • the third and fourth CV conversion circuits 33 and 34 are both connected to the second differential amplifier circuit 42. Further, the second differential amplifier circuit 42 is connected to a synchronous detection circuit 61 via a filter circuit 52.
  • first to fourth CV conversion circuits 31 to 34 for example, a charge amplification circuit as shown in FIG. 4A or an impedance conversion circuit as shown in FIG. 4B is applied.
  • first and second differential amplifier circuits 41 and 42 for example, an operational amplifier is applied.
  • the second phase adjustment circuit 60 shifts the phase of the monitor signal output from the first differential amplifier circuit 41 via the filter circuit 51 by 90 ° and outputs the same as the detection reference signal S4. Also, the synchronous detection circuit 61 synchronizes the detection reference signal S4 output from the second phase adjustment circuit 60 with the angular velocity detection signal S3 supplied from the second differential amplifier circuit 42 via the filter circuit 52. It performs phase detection.
  • the synchronous detection circuit 61 is connected to an output adjustment circuit 64 via a smoothing circuit 62 and an amplification circuit 63. Further, a temperature sensor 65, a memory 66, and a reference voltage generator 67 are connected to the output adjustment circuit 64, respectively.
  • the temperature sensor 65 detects the temperature of the entire gyro device including the angular velocity detecting element 1 as an analog value, and is, for example, a thermistor.
  • the memory 66 for example, a ROM (Read Only Memory) is used, and a correction coefficient for correcting a temperature gradient of a detection output of the temperature sensor 65 is set and stored individually for each of a plurality of temperature regions. That is, in this example, a correction coefficient used for temperature drift correction (hereinafter referred to as a temperature drift correction coefficient) and a correction coefficient used for sensitivity temperature correction for two regions, a low temperature region and a high temperature region, respectively. (Hereinafter referred to as “sensitivity temperature correction coefficient”) are stored separately. . Further, the memory 66 stores an offset voltage adjustment value and a sensitivity adjustment value in advance.
  • the output adjustment circuit 64 also includes a comparator 64A, an offset voltage adjustment unit 64B, a temperature drift correction unit 64C, a sensitivity temperature correction unit 64D, and a sensitivity adjustment unit 64E.
  • the comparator 64A compares the detection output of the temperature sensor with the reference voltage given from the reference voltage generator 67 to determine the current temperature range. For example, a noisy level signal is output.
  • the offset voltage adjustment unit 64B stores the voltage so that the voltage level of the angular velocity detection signal always becomes a constant offset value (for example, +2.5 V) at normal temperature and when the angular velocity is not applied to the vibrator 1. It is adjusted by the offset voltage adjustment value given from 66 and comprises a DZA converter 641 and a first addition circuit 642.
  • the temperature drift correction unit 64C adjusts the detection output of the temperature sensor 65 based on the temperature drift correction coefficient stored in the memory 66, and generates this as a temperature drift correction signal. 643 and a second addition circuit 646 that adds the temperature drift correction signal generated by the temperature drift correction signal generation circuit 643 to the angular velocity detection signal after the offset voltage adjustment.
  • the temperature drift correction signal generating circuit 643 includes a first selection circuit 644 for selecting a temperature drift correction coefficient given from the memory 66, and a temperature drift correction coefficient selected by the first selection circuit 644. And a first temperature gradient adjusting circuit 645 composed of a multiplying circuit for multiplying the detection output of the temperature sensor 65.
  • the sensitivity temperature correction unit 64D adjusts the detection output of the temperature sensor 65 based on the sensitivity temperature correction coefficient stored in the memory 66 and generates a sensitivity temperature correction signal as a sensitivity temperature correction signal.
  • a correction signal generation circuit 647 and a first multiplication circuit 650 for multiplying the angular velocity detection signal after temperature drift correction by the sensitivity temperature correction signal generated by the sensitivity temperature correction signal generation circuit 647 are provided.
  • the sensitivity correction signal generation circuit 647 includes a second selection circuit 648 that selects a sensitivity temperature correction coefficient given from the memory 66, and a sensitivity temperature correction coefficient selected by the second selection circuit 648 as a temperature. It consists of a multiplication circuit that multiplies the detection output of sensor 65. And a second temperature gradient adjusting circuit 649.
  • the sensitivity adjuster 64E is provided from the memory 66 because the sensitivity of the angular velocity detection signal at room temperature may differ due to variations in characteristics such as detection performance of the vibrator 1 that are not related to the temperature characteristics of the vibrator 1. It is provided to adjust the gain by the sensitivity adjustment value.
  • a DZA converter 651 and a second multiplication circuit 652.
  • the drive signal S12 obtained by inverting the level of the drive signal S11 output from the AGC circuit 22 by the inverting circuit 21 is applied to the first and fourth drive electrodes 101 and 104.
  • the drive signal S11 output from the AGC circuit 22 is directly applied to the second and third drive electrodes 102 and 103.
  • both drive signals Sl 1 and S12 are AC signals whose levels are in an inverting relationship with each other with reference to an offset potential of, for example, +2.5 V with respect to the ground potential.
  • the capacitance between the movable electrode 11lc and the first monitor electrode 91 provided on the first mass portion 71 and the movable electrode provided on the fourth mass portion 74 are provided.
  • the capacitance between 112c and the second monitor electrode 92 changes.
  • the capacitance change at the first and second monitor electrodes 91 and 92 for monitoring the driving vibration state of the vibrator 1 in the X-axis direction corresponds to each capacitance change by the first and second CV conversion circuits 31 and 32. It is converted into monitor signals S21 and S22 having the obtained voltage levels. In this case, since both monitor signals S21 and S22 are signals having phases opposite to each other, they are amplified and converted into one monitor signal S2 by the first differential amplifier circuit 41 in the next stage. [0066]
  • the monitor signal S2 is input to the AGC circuit 22 after unnecessary noise components are removed by the filter circuit 51 and the first phase adjustment circuit 23 performs phase adjustment required for self-excited oscillation. It is.
  • the AGC circuit 22 automatically adjusts the amplification factor so that the input signal amplitude becomes constant. Therefore, the first to fourth driving electrodes 101 to 104 are always supplied with the driving signals Sll and S12 having appropriate amplitudes.
  • the drive signals Sll and S12 are generated from the monitor signals S2 obtained at the first and second monitor electrodes 91 and 92, respectively, and the respective drive signals Sll and S12 are converted to the first to fourth signals.
  • a voltage to the drive electrodes By applying a voltage to the drive electrodes, a closed-loop self-excited oscillation circuit is formed, and the vibrator 1 continues to vibrate at the same resonance frequency as the drive signals Sl1, S12.
  • Coriolis F generated when an angular velocity is applied is given by the following equation.
  • M is the mass of the entire first to fourth mass parts 71 to 74
  • is the angular velocity
  • V is the driving vibration velocity of the entire first to fourth mass parts 71 to 74.
  • the structural resonance frequency of the vibrator 1 in the ⁇ -axis direction is sufficiently different from the vibration frequency when driven in the X-axis direction by the drive signals Sl l and S12. Therefore, there is a 90 ° phase difference between the ⁇ -axis vibration caused by Coriolis and the X-axis drive vibration driven by the drive signals Sl 1 and S12. For this reason, if vibration occurs in the ⁇ -axis direction while driving vibration occurs in the X-axis direction, the first to fourth mass portions 71 to 74 perform elliptical motion as shown in FIG.
  • the capacitance change generated in the first and third detection electrodes 161 and 163 due to the vibration by Coriolis is converted by the third CV conversion circuit 33 into an angular velocity detection signal S 31 having a voltage level corresponding to the capacitance change.
  • the capacitance change generated in the second and fourth detection electrodes 162 and 164 due to the vibration by Coriolis is converted by the fourth CV conversion circuit 34 into an angular velocity detection signal S32 having a voltage level corresponding to the capacitance change. .
  • the angular velocity detection signals S31 and S32 output from the third and fourth CV conversion circuits 33 and 34 are signals having phases opposite to each other with respect to the components that depend on Coriolis, the second difference in the next stage is used.
  • the dynamic amplification circuit 42 amplifies and converts the signal into one angular velocity detection signal S3.
  • the angular velocity detection signal S3 is input to a synchronous detection circuit 61 after unnecessary noise components are removed by a filter circuit 52.
  • the monitor signal S 2 output from the first differential amplifier circuit 41 is input to the second phase adjustment circuit 60 after unnecessary noise components are removed by the filter circuit 51.
  • the filter circuits 51 and 52 are designed in advance so that the phase rotation amounts are the same.
  • the second phase adjustment circuit 60 shifts the phase of the output signal of the filter circuit 51 by 90 ° and outputs the result as the detection reference signal S4.
  • the monitor signal S2 and the angular velocity detection signal S3 are originally output with a phase difference of 90 °.
  • the phase rotation of the filter circuit 51 and the phase rotation of the filter circuit 52 are designed to be the same. Therefore, the detection reference signal S4 output from the second phase adjustment circuit 60 has the same phase (or opposite phase) as the Coriolis component of the signal output from the filter circuit 52, and this detection reference signal S4 is used as the synchronous detection circuit 6. Entered into 1.
  • the synchronous detection circuit 61 synchronously detects the angular velocity detection signal S3 using the detection reference signal S4.
  • the angular velocity detection signal S5 after synchronous detection by the synchronous detection circuit 61 has a half-wave rectified form, which is further smoothed.
  • an angular velocity detection signal S6 having a DC voltage level corresponding to the angular velocity is obtained.
  • this angular velocity detection signal S6 is amplified by a next-stage amplifier circuit 63, and is then supplied to an output adjustment circuit 64.
  • the offset voltage adjustment value stored in the memory 66 is determined by the D of the offset voltage adjustment unit 64B. After the analog signal is converted by the ZA converter 641, the signal is supplied to the first adding circuit 642. The first calorie calculation circuit 642 adds the offset voltage adjustment value to the angular velocity detection signal, so that the angular velocity is applied to the vibrator 1, and the voltage level of the angular velocity detection signal at room temperature in a normal case is always constant. It is adjusted so that it becomes the offset value (for example, + 2.5V).
  • the detection output of the temperature sensor 65 is applied to a comparator 64A and is also supplied to first and second temperature gradient adjusting circuits 645 and 649, respectively.
  • the comparator 64A compares the detection output of the temperature sensor 65 with the reference voltage provided from the reference voltage generator 67 to determine the current temperature region, and a signal corresponding to the current temperature region, for example, a low signal in a low temperature region. A high-level signal is output in a high-temperature region.
  • the first selection circuit 644 sets the temperature having a value of ml. Select the drift correction coefficient. Further, when the output signal of the comparator 64A is at the high level because the current temperature is included in the high temperature region, the temperature drift correction coefficient having the value of m2 is selected.
  • the temperature drift correction coefficient ml or m2 selected by the first selection circuit 644 as described above is supplied to the first temperature gradient adjustment circuit 645.
  • the first temperature gradient adjustment circuit 645 multiplies the detection output of the temperature sensor 65 by the temperature drift correction coefficient ml or m2 selected by the first selection circuit 644, and uses this as a temperature drift correction signal for a second addition.
  • the second addition circuit 646 adds the temperature drift correction signal output from the first temperature gradient adjustment circuit 645 to the angular velocity detection signal.
  • the angular velocity detection signal S6 input to the output adjustment circuit 64 causes a temperature drift as shown in FIG. 9A, while the detection output of the temperature sensor 65 changes to a linear detection characteristic curve as shown in FIG. 9B.
  • the detection output itself of the temperature sensor 65 cannot be used as a temperature drift correction signal for the angular velocity detection signal. Therefore, by multiplying the detection output of the temperature sensor 65 by the appropriate temperature drift correction coefficients ml and m2 for the high temperature region and the low temperature region, a temperature drift correction signal having temperature characteristics as shown in FIG. 9C is obtained. Can be Then, by adding this temperature drift correction signal to the angular velocity detection signal, the angular velocity detection signal after the addition is, as shown in FIG.
  • the temperature drift correction signal is a continuous analog signal generated based on the detection output of the temperature sensor 65, the angular velocity detection signal after the temperature drift correction has a conventional ripple. Does not occur.
  • the angular velocity detection signal subjected to the temperature drift correction is input to the sensitivity temperature correction unit 64D in the next stage.
  • the sensitivity temperature correction unit 64D for example, when the output signal of the comparator 64A is at a low level because the current temperature is included in the low temperature region, the second selection circuit 648 has a sensitivity temperature correction value of nl. Select a coefficient. When the output signal of the comparator 64A is at a high level because the current temperature is included in the high temperature region, the sensitivity temperature correction coefficient having the value of n2 is selected.
  • the sensitivity temperature correction coefficient nl or n2 selected by the second selection circuit 648 as described above is given to the second temperature gradient adjustment circuit 649.
  • the second temperature gradient adjustment circuit 649 multiplies the detection output of the temperature sensor 65 by the sensitivity temperature correction coefficient nl or n2 selected by the second selection circuit 648, and uses this as a sensitivity temperature correction signal in a first multiplication circuit.
  • the first multiplication circuit 650 multiplies the angular velocity detection signal by the sensitivity temperature correction signal output from the second temperature gradient adjustment circuit 649.
  • the detection output of the temperature sensor 65 is different between the high temperature region and the low temperature region.
  • a sensitivity temperature correction signal having a temperature characteristic as shown in FIG. 10C is obtained.
  • the sensitivity of the angular velocity detection signal after the multiplication is corrected so as to have a substantially flat characteristic unaffected by the temperature change as shown in FIG.10D.
  • the sensitivity temperature correction signal is a continuous analog signal generated based on the detection output of the temperature sensor 65 in this case, no ripple occurs during the sensitivity correction of the angular velocity detection signal.
  • the angular velocity detection signal corrected for the sensitivity temperature is input to the sensitivity adjustment unit 64E at the next stage.
  • the sensitivity adjustment value stored in the memory 66 is converted into an analog signal by the DZA converter 651 of the sensitivity adjustment unit 64E, and is provided to the second multiplication circuit 652.
  • the second multiplier 652 By multiplying the angular velocity detection signal after the sensitivity temperature correction by the degree adjustment value, gain adjustment is performed when the level of the angular velocity detection signal is different due to variation in characteristics such as the detection performance of the vibrator 1. Then, based on the angular velocity detection signal S7 after the gain adjustment, the magnitude of the actual angular velocity and its rotation direction are calculated by a subsequent processing circuit (not shown).
  • the temperature drift correction coefficients ml and m2 and the sensitivity temperature correction coefficients nl and n2 are set for the two regions of the low-temperature region and the high-temperature region, respectively.
  • An appropriate temperature drift correction coefficient and sensitivity temperature correction coefficient can be set according to the force and the temperature range, respectively.
  • a temperature drift correction signal having a temperature characteristic as shown in FIG. 11C may be generated by multiplying the detection output of the temperature sensor 65 shown in FIG. 11B by the temperature drift correction coefficient m3.
  • a single sensitivity temperature correction coefficient can be used.
  • the first temperature gradient adjustment circuit 645 constituting the temperature drift correction unit 64C is configured by a multiplication circuit, but may be a division circuit depending on the content of the temperature correction. You can also. That is, the first temperature gradient adjusting circuit 645 performs the division using the temperature drift correction coefficient ml or m2 selected by the first selecting circuit 644 as a divisor and the detection output of the temperature sensor 65 as a dividend, and performs the division. To the second adder circuit 646 as a temperature drift correction signal.
  • the second addition circuit 646 can be configured by a subtraction circuit depending on the content of the temperature drift. That is, the subtraction circuit that replaces the second addition circuit 646 also subtracts the angular drift detection signal strength from the temperature drift correction signal output from the first temperature gradient adjustment circuit 645, and outputs the subtraction result to the first multiplication circuit 650.
  • the second temperature gradient adjustment circuit 649 constituting the sensitivity temperature correction unit 64D is configured by a multiplication circuit, but may be a division circuit depending on the content of the correction. That is, the second temperature gradient adjusting circuit 649 performs the division with the sensitivity temperature correction coefficient nl or n2 selected by the second selection circuit 648 as a divisor and the detection output of the temperature sensor 65 as a dividend. Then, the result of the division is given to the first multiplier circuit 650 as a sensitivity temperature correction signal.
  • the first multiplication circuit 650 can also be configured by a division circuit depending on the content of the change in the temperature sensitivity. That is, the division circuit that replaces the first multiplication circuit 650 performs the division with the sensitivity temperature correction signal output from the second temperature gradient adjustment circuit 649 as a divisor and the angular velocity detection signal as a dividend.
  • the gyro device is applied to a vibrating gyro including the vibrator 1 of the electrostatic drive Z-capacitance detection type, but the present invention is not limited to this.
  • a vibrating gyroscope having a resonator element made of a piezoelectric material or a single crystal as an angular velocity detecting element a vibrating gyroscope having a tuning fork vibrator as an angular velocity detecting element, and other types of gyro devices.
  • a vibrating gyroscope having a resonator element made of a piezoelectric material or a single crystal as an angular velocity detecting element a vibrating gyroscope having a tuning fork vibrator as an angular velocity detecting element, and other types of gyro devices.

Abstract

A gyroscope device capable of detecting an angular velocity more accurately than before by preventing the occurrence of a ripple in an angular velocity detection signal after temperature compensation while removing the effect of the temperature drift of an angular velocity detection signal. The gyroscope device comprises an angular velocity detector (100), a temperature sensor (65) for detecting temperatures and outputting them in analogue values, a memory (66) for storing a correction factor that corrects the temperature gradient of a detected output from the temperature sensor (65), a temperature drift correction signal producing circuit (643) for regulating the detected output from the temperature sensor (65) based on a correction factor stored in the memory (66) and producing the regulated detected output as a temperature drift correction signal, and an adding/subtracting circuit (646) for adding a temperature drift correction signal produced by the temperature drift correction signal producing circuit (643) to an angular velocity detection signal output from the angular velocity detector (100) or for subtracting a temperature drift correction signal produced by the temperature drift correction signal producing circuit (643) from an angular velocity detection signal output from the angular velocity detector (100).

Description

明 細 書  Specification
ジャイロ装置  Gyro device
技術分野  Technical field
[0001] 本発明は、角速度やその回転方向を検出するために使用されるジャイロ装置に関 する。  The present invention relates to a gyro device used for detecting an angular velocity and a rotation direction thereof.
背景技術  Background art
[0002] 近年、車両の姿勢検知、ナビゲーシヨン装置の進行方向検知、カメラの手振れ補正 、仮想現実操作などの手段としてジャイロ装置が使用されている。  In recent years, gyro devices have been used as means for detecting the attitude of a vehicle, detecting the traveling direction of a navigation device, correcting camera shake, performing virtual reality operations, and the like.
[0003] このジャイロ装置において、一定の角速度が印加されている状態では、振動子等で 構成される角速度検出素子を含む角速度検出部力 はその角速度に応じた電圧レ ベルをもつ角速度検出信号が出力される。そして、この角速度検出信号の直流電圧 レベルの大きさを判別することにより、角速度の大きさと回転方向とを検出することが できる。  [0003] In this gyro device, when a constant angular velocity is applied, an angular velocity detecting section including an angular velocity detecting element composed of a vibrator or the like generates an angular velocity detection signal having a voltage level corresponding to the angular velocity. Is output. Then, by determining the magnitude of the DC voltage level of the angular velocity detection signal, the magnitude of the angular velocity and the rotation direction can be detected.
[0004] ところで、上記のように、角速度検出部から出力される角速度検出信号の電圧レべ ルは、角速度の大きさ以外の要因によっても変化することがある。すなわち、ジャイロ 装置の周囲温度が変化すると、無回転時の電圧レベルが変動する、いわゆる温度ド リフトが生じることがある。また、周囲温度の変化によって角速度検出素子やその周 辺回路の感度が変化することがある。  [0004] By the way, as described above, the voltage level of the angular velocity detection signal output from the angular velocity detector may change due to factors other than the magnitude of the angular velocity. That is, when the ambient temperature of the gyro device changes, the voltage level during non-rotation fluctuates, that is, a so-called temperature drift may occur. Also, the sensitivity of the angular velocity detecting element and its peripheral circuits may change due to a change in the ambient temperature.
[0005] このように、角速度検出部力 出力される角速度検出信号の電圧レベルが、周囲 温度変化に起因した温度ドリフトや検出感度の変化の影響を受けて変動すると、角 速度の大きさを精度良く検出することが困難になる。したがって、角速度を正確に検 出するためには、このような誤差要因を除くことが必要となる。  [0005] As described above, when the voltage level of the angular velocity detection signal output from the angular velocity detection section fluctuates due to the influence of the temperature drift and the change in detection sensitivity caused by the ambient temperature change, the magnitude of the angular velocity can be accurately determined. It becomes difficult to detect well. Therefore, in order to accurately detect the angular velocity, it is necessary to eliminate such error factors.
[0006] そこで、従来技術では、例えば温度ドリフトに関して、所定の比較的狭 、温度間隔 ごとに設定した温度補正値をメモリに記憶しておき、温度センサの出力に基づ!/ヽてメ モリから各温度に対応した温度補正値を読み出し、この温度補正値を DZA(  Therefore, in the related art, for example, regarding a temperature drift, a temperature correction value set for each predetermined relatively narrow temperature interval is stored in a memory, and based on the output of the temperature sensor, The temperature correction value corresponding to each temperature is read from
Digital/Analog)コンバータでアナログィ匕した後に角速度検出信号に加算するなどし て、角速度検出信号の電圧レベルを補正するようにしたものが提案されている(例え ば、実用新案登録第 2577760号公報 (特許文献 1)参照)。 Digital / Analog) converters have been proposed in which the voltage level of the angular velocity detection signal is corrected by adding it to the angular velocity detection signal after analog conversion. For example, see Japanese Utility Model Registration No. 2577760 (Patent Document 1).
[0007] さらに、従来技術では、所定の比較的広い温度間隔ごとに設定した温度補正値を メモリに記憶しておき、メモリに記憶されて 、な 、温度に対する温度補正値にっ 、て は、前後に存在する温度補正値から補間処理によってその温度に対応する温度補 正値を求め、この補間処理により得られた温度補正値によって上記と同様に角速度 検出信号の出力レベルを補正するようにしたものも提案されている(例えば、特開 20 00 258162号公報 (特許文献 2)参照)。 [0007] Further, in the related art, a temperature correction value set for each predetermined relatively wide temperature interval is stored in a memory, and stored in the memory. A temperature correction value corresponding to that temperature is obtained by interpolation processing from the temperature correction values existing before and after, and the output level of the angular velocity detection signal is corrected in the same manner as described above by the temperature correction value obtained by this interpolation processing. Some have been proposed (for example, see Japanese Patent Application Laid-Open No. 2000-258162 (Patent Document 2)).
特許文献 1:実用新案登録第 2577760号公報  Patent Document 1: Utility Model Registration No. 2577760
特許文献 2 :特開 2000— 258162号公報  Patent Document 2: JP-A-2000-258162
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力しながら、特許文献 1に記載されて 、るような前者の従来技術では、次の課題 がある。例えば、いま、角速度検出信号が温度変化に対して図 12Aに示すような温 度ドリフトを生じているとする。このとき、メモリに記憶されている各温度に対応した温 度補正値は離散的なデータであるので、この温度補正値を DZAコンバータでアナ 口グイ匕した場合には、図 12Bのように温度変化に対して階段状に変化する特性を示 す。 [0008] In the meantime, the former conventional technique described in Patent Document 1 has the following problems. For example, assume that the angular velocity detection signal has caused a temperature drift as shown in FIG. 12A with respect to a temperature change. At this time, since the temperature correction values corresponding to each temperature stored in the memory are discrete data, when this temperature correction value is analogized by a DZA converter, the temperature is corrected as shown in FIG. 12B. It shows a characteristic that changes stepwise in response to the change.
[0009] したがって、図 12Aに示すような温度ドリフトを生じる角速度検出信号を、図 12Bに 示すような特性をもつ温度補正値で補正して得られる角速度検出信号には、図 12C に示すように、温度変化に対して鋸歯波状に変化する、いわゆるリップルが発生する 。このため、角速度検出信号の SZN (Signal/Noise)比が劣化し、微小角速度の検出 が困難となる。  Accordingly, an angular velocity detection signal obtained by correcting an angular velocity detection signal that causes a temperature drift as shown in FIG. 12A with a temperature correction value having a characteristic as shown in FIG. 12B includes, as shown in FIG. 12C, Thus, a so-called ripple that changes in a sawtooth waveform with respect to a temperature change is generated. For this reason, the SZN (Signal / Noise) ratio of the angular velocity detection signal deteriorates, and it becomes difficult to detect a minute angular velocity.
[0010] 温度ドリフト補正後の角速度検出信号にリップルが発生しないようにするには、細か い温度間隔でもって温度補正値をメモリに記憶しておくことが考えられる。しかし、そ うすると、逆に大きなメモリ容量が必要となってコストアップを招来するため得策でな い。  [0010] To prevent the occurrence of ripples in the angular velocity detection signal after the temperature drift correction, it is conceivable to store the temperature correction value in a memory at small temperature intervals. However, in this case, conversely, a large memory capacity is required, which leads to an increase in cost, which is not an advantage.
[0011] また、特許文献 2に記載されているような後者の従来技術では、各温度に対して不 足する温度補正値を補間処理によって得て 、るので、温度補正値を記憶するメモリ の容量は比較的少なくて済む。 [0011] In the latter conventional technique as described in Patent Document 2, a temperature correction value that is insufficient for each temperature is obtained by interpolation processing, and therefore, a memory that stores the temperature correction value. Has a relatively small capacity.
[0012] し力しながら、この場合にお 、ても、補間処理により得られた温度補正値を DZAコ ンバータでアナログィ匕して角速度検出信号に加算する点では前者の従来技術と同じ であるので、離散的なデジタル値をアナログ値に変換する際の不連続性は避けられ ない。したがって、 DZAコンバータでアナログ化した温度補正値によって温度ドリフ トを補正した後の角速度検出信号には、図 12Cに示したように、依然として温度変化 に対してリップルが発生する。  [0012] However, even in this case, even in this case, the temperature correction value obtained by the interpolation processing is analogized by a DZA converter and added to the angular velocity detection signal, which is the same as the former related art. Therefore, discontinuities in converting discrete digital values to analog values are inevitable. Therefore, as shown in FIG. 12C, ripples still occur in the angular velocity detection signal after the temperature drift is corrected by the temperature correction value converted to analog by the DZA converter, as shown in FIG. 12C.
[0013] 本発明は、上記の課題を解決するためになされたもので、角速度検出素子から出 力される角速度検出信号の周囲温度変化に起因した温度ドリフトや検出感度の変化 に対して高い精度で温度補償を行えるとともに、温度補償後の角速度検出信号にリ ップルが発生しないようにして、従来よりも一層精度良く角速度を検出することが可能 なジャイロ装置を提供することを目的とする。 [0013] The present invention has been made to solve the above-described problem, and has high accuracy with respect to a temperature drift and a change in detection sensitivity caused by an ambient temperature change of an angular velocity detection signal output from an angular velocity detection element. It is an object of the present invention to provide a gyro device capable of performing temperature compensation by using the gyro apparatus and detecting an angular velocity with higher accuracy than before by preventing a ripple from being generated in the angular velocity detection signal after the temperature compensation.
課題を解決するための手段  Means for solving the problem
[0014] 上記課題を解決するために、この発明のある局面に係わるジャイロ装置は、角速度 検出部と、温度を検出してアナログ値で出力する温度センサと、温度センサの検出 出力の温度勾配を補正する補正係数を記憶するメモリと、メモリに記憶されて 、る補 正係数に基づいて温度センサの検出出力を調整し、調整された検出出力を温度ドリ フト補正信号として生成する温度ドリフト補正信号生成回路と、角速度検出部力 出 力される角速度検出信号に温度ドリフト補正信号生成回路で生成された温度ドリフト 補正信号を加算する力または角速度検出部力 出力される角速度検出信号力 温 度ドリフト補正信号生成回路で生成された温度ドリフト補正信号を減算する加減算回 路とを備える。 [0014] In order to solve the above problems, a gyro device according to an aspect of the present invention includes an angular velocity detection unit, a temperature sensor that detects a temperature and outputs an analog value, and a temperature gradient of a detection output of the temperature sensor. A memory for storing a correction coefficient to be corrected; and a temperature drift correction signal for adjusting a detection output of the temperature sensor based on the correction coefficient stored in the memory and generating the adjusted detection output as a temperature drift correction signal. Generating circuit and angular velocity detection section force Addition of the temperature drift correction signal generated by the temperature drift correction signal generation circuit to the output angular velocity detection signal or angular velocity detection section force Output angular velocity detection signal power Temperature drift correction An addition / subtraction circuit for subtracting the temperature drift correction signal generated by the signal generation circuit.
[0015] 好ましくは、温度ドリフト補正信号生成回路は、温度センサの検出出力とメモリから 読み出された補正係数とを乗算する力または温度センサの検出出力をメモリから読 み出された補正係数で除算する乗除算回路を含む。  [0015] Preferably, the temperature drift correction signal generation circuit uses the correction coefficient read from the memory or the force multiplied by the detection output of the temperature sensor and the correction coefficient read from the memory. Includes a multiplication / division circuit for division.
[0016] 好ましくは、メモリに記憶されている補正係数は、複数の温度領域ごとに個別の値 が設定されている。  [0016] Preferably, the correction coefficient stored in the memory is set to an individual value for each of the plurality of temperature regions.
[0017] より好ましくは、ジャイロ装置は、さらに、温度センサの検出出力を基準電圧と比較 して現在の温度領域を判定する比較器を備え、温度ドリフト補正信号生成回路は、 判定された現在の温度領域に対応する補正係数に基づいて温度センサの検出出力 を調整し、調整された検出出力を温度ドリフト補正信号として生成する。 [0017] More preferably, the gyro device further compares a detection output of the temperature sensor with a reference voltage. A temperature drift correction signal generation circuit that adjusts the detection output of the temperature sensor based on the correction coefficient corresponding to the determined current temperature region, and performs the adjusted detection. An output is generated as a temperature drift correction signal.
[0018] またこの発明のさらに別の局面に係わるジャイロ装置は、角速度検出部と、温度を 検出してアナログ値で出力する温度センサと、温度センサの検出出力の温度勾配を 補正する補正係数を記憶するメモリと、メモリに記憶されて 、る補正係数に基づ 、て 温度センサの検出出力を調整し、調整された検出出力を感度温度補正信号として生 成する感度温度補正信号生成回路と、角速度検出部から出力される角速度検出信 号と感度温度補正信号生成回路で生成された感度温度補正信号とを乗算するかま たは角速度検出部から出力される角速度検出信号を感度温度補正信号生成回路で 生成された感度温度補正信号で除算する乗除算回路とを備える。  A gyro device according to still another aspect of the present invention includes an angular velocity detecting unit, a temperature sensor that detects a temperature and outputs an analog value, and a correction coefficient that corrects a temperature gradient of a detection output of the temperature sensor. A memory for storing, a sensitivity temperature correction signal generation circuit for adjusting the detection output of the temperature sensor based on the correction coefficient stored in the memory, and generating the adjusted detection output as a sensitivity temperature correction signal; The angular velocity detection signal output from the angular velocity detection section is multiplied by the sensitivity temperature correction signal generated by the sensitivity temperature correction signal generation circuit, or the angular velocity detection signal output from the angular velocity detection section is multiplied by the sensitivity temperature correction signal generation circuit. And a multiplication / division circuit for dividing by the sensitivity temperature correction signal generated in the step (c).
[0019] 好ましくは、感度補正信号生成回路は、温度センサの検出出力とメモリから読み出 された補正係数とを乗算する力または温度センサの検出出力をメモリから読み出され た補正係数で除算する乗除算回路を含む。  Preferably, the sensitivity correction signal generation circuit divides a force for multiplying a detection output of the temperature sensor by a correction coefficient read from the memory or a detection output of the temperature sensor by a correction coefficient read from the memory. Includes multiplication / division circuit.
[0020] 好ましくは、メモリに記憶されている補正係数は、複数の温度領域ごとに個別の値 が設定されている。  [0020] Preferably, the correction coefficient stored in the memory is set to an individual value for each of the plurality of temperature regions.
[0021] より好ましくは、ジャイロ装置は、さらに、温度センサの検出出力を基準電圧と比較 して現在の温度領域を判定する比較器を備え、感度温度補正信号生成回路は、判 定された現在の温度領域に対応する補正係数に基づいて温度センサの検出出力を 調整し、調整された検出出力を感度温度補正信号として生成する。  [0021] More preferably, the gyro device further includes a comparator for comparing a detection output of the temperature sensor with a reference voltage to determine a current temperature region, and the sensitivity temperature correction signal generation circuit includes The detection output of the temperature sensor is adjusted on the basis of the correction coefficient corresponding to the temperature region, and the adjusted detection output is generated as a sensitivity temperature correction signal.
[0022] またこの発明のさらに別の局面に係わるジャイロ装置は、角速度検出部と、温度を 検出してアナログ値で出力する温度センサと、温度センサの検出出力の温度勾配を 補正する第 1の補正係数および第 2の補正係数を記憶するメモリと、メモリに記憶され ている第 1の補正係数に基づいて温度センサの検出出力を調整し、調整された検出 出力を温度ドリフト補正信号として生成する温度ドリフト補正信号生成回路と、角速度 検出部から出力される角速度検出信号に温度ドリフト補正信号生成回路で生成され た温度ドリフト補正信号を加算する力または角速度検出部力も出力される角速度検 出信号力も温度ドリフト補正信号生成回路で生成された温度ドリフト補正信号を減算 する加減算回路と、メモリに記憶されて 、る第 2の補正係数に基づ 、て温度センサの 検出出力を調整し、調整された検出出力を感度温度補正信号として生成する感度 温度補正信号生成回路と、加減算回路から出力される角速度検出信号と感度温度 補正信号生成回路で生成された感度温度補正信号とを乗算するかまたは加算また は減算された角速度検出信号を感度温度補正信号生成回路で生成された感度温 度補正信号で除算する乗除算回路とを備える。 A gyro device according to still another aspect of the present invention includes an angular velocity detection unit, a temperature sensor that detects a temperature and outputs an analog value, and a first sensor that corrects a temperature gradient of a detection output of the temperature sensor. A memory for storing a correction coefficient and a second correction coefficient, and a detection output of the temperature sensor is adjusted based on the first correction coefficient stored in the memory, and the adjusted detection output is generated as a temperature drift correction signal. The temperature drift correction signal generation circuit and the force for adding the temperature drift correction signal generated by the temperature drift correction signal generation circuit to the angular velocity detection signal output from the angular velocity detection unit or the angular velocity detection signal power output Subtract the temperature drift correction signal generated by the temperature drift correction signal generation circuit And a sensitivity temperature correction signal generation circuit that adjusts the detection output of the temperature sensor based on the second correction coefficient stored in the memory and generates the adjusted detection output as a sensitivity temperature correction signal. Multiplied by the angular velocity detection signal output from the addition / subtraction circuit and the sensitivity temperature correction signal generated by the sensitivity temperature correction signal generation circuit, or the added or subtracted angular velocity detection signal is generated by the sensitivity temperature correction signal generation circuit And a multiplication / division circuit for dividing by the sensitivity temperature correction signal.
発明の効果  The invention's effect
[0023] 請求項 1記載の発明によれば、角速度検出部から出力される角速度検出信号が周 囲温度変化に起因して温度ドリフトを生じた場合には、温度ドリフト補正信号を加算ま たは減算して温度ドリフトの影響を相殺するので、高 、精度で温度補償を行うことが できる。  According to the first aspect of the present invention, when the angular velocity detection signal output from the angular velocity detection unit has caused a temperature drift due to a change in ambient temperature, a temperature drift correction signal is added or Since the influence of the temperature drift is offset by subtraction, temperature compensation can be performed with high accuracy.
[0024] し力も、その際に使用する温度ドリフト補正信号は、 DZAコンバータの出力ではな ぐ基本的に温度センサの検出出力そのものを加工して生成されたアナログ信号で あるので、温度変化に対して連続的に変化する信号となる。このため、温度ドリフト補 正信号で温度補償した後の角速度検出信号には従来のようなリップルが発生しない 。したがって、従来よりも SZN比が向上し、一層精度良く角速度を検出することが可 會 になる。  [0024] The temperature drift correction signal used at that time is not an output of the DZA converter, but is basically an analog signal generated by processing the detection output itself of the temperature sensor. The signal changes continuously. For this reason, a ripple does not occur in the angular velocity detection signal after temperature compensation by the temperature drift compensation signal. Therefore, the SZN ratio is improved as compared with the related art, and the angular velocity can be detected with higher accuracy.
[0025] また、メモリには補正係数を記憶しておくだけでよぐ従来のように各温度に個別に 対応した温度ドリフト補正値までは記憶しておく必要がな 、ので、少な 、メモリ容量で 対処することができ、メモリに要する費用を削減することができる。  [0025] In addition, since it is only necessary to store the correction coefficient in the memory, it is not necessary to store the temperature drift correction value individually corresponding to each temperature as in the related art. The cost required for the memory can be reduced.
[0026] 請求項 2記載の発明によれば、温度ドリフト補正信号生成回路は、温度センサの検 出出力をメモリから読み出された補正係数で乗算または除算する乗除算回路を含む ので、簡単な構成でもって適切な温度ドリフト補正信号を生成することができる。  According to the invention described in claim 2, the temperature drift correction signal generation circuit includes a multiplication / division circuit that multiplies or divides the detection output of the temperature sensor by the correction coefficient read from the memory. With this configuration, an appropriate temperature drift correction signal can be generated.
[0027] 請求項 3記載の発明によれば、メモリには複数の温度領域ごとに個別の補正係数 が設定されているので、温度ドリフトの温度変化が 2次以上の関数値を示す場合にお Vヽても適切な対応をとることができる。  According to the third aspect of the present invention, since the memory has the individual correction coefficient set for each of the plurality of temperature regions, when the temperature change of the temperature drift indicates a function value of second order or higher, Appropriate measures can be taken with V ヽ.
[0028] 請求項 4および請求項 8記載の発明によれば、温度センサの検出出力を基準電圧 と比較して現在の温度領域を判定する比較器を備えるので、簡単な構成でもって現 在の温度領域を判定することができる。 [0028] According to the inventions set forth in claims 4 and 8, since a comparator for judging the current temperature region by comparing the detection output of the temperature sensor with the reference voltage is provided, the present invention has a simple configuration. The current temperature region can be determined.
[0029] 請求項 5記載の発明によれば、角速度検出素子の検出感度が周囲温度変化の影 響を受けて変動した場合には、感度温度補正信号で乗算または除算して検出感度 の変動の影響を相殺するので、高!、精度で温度補償を行うことができる。  [0029] According to the invention of claim 5, when the detection sensitivity of the angular velocity detecting element fluctuates due to the influence of the ambient temperature change, the detection sensitivity fluctuation is multiplied or divided by the sensitivity temperature correction signal. Since the effects are offset, temperature compensation can be performed with high accuracy.
[0030] し力も、その際に使用する感度温度補正信号は、 DZAコンバータの出力ではなく 、基本的に温度センサの検出出力そのものをカ卩ェして生成されたアナログ信号であ るので、温度変化に対して連続的に変化する信号となる。このため、感度温度補正 信号で角速度検出信号の感度を温度補正する際にはリップルが発生しない。したが つて、従来よりも SZN比が向上し、一層精度良く角速度を検出することが可能になる  [0030] The sensitivity temperature correction signal used at that time is not an output of the DZA converter but an analog signal generated basically by detecting the output of the temperature sensor itself. The signal changes continuously with the change. Therefore, no ripple occurs when the sensitivity of the angular velocity detection signal is temperature-corrected by the sensitivity temperature correction signal. Therefore, the SZN ratio is higher than before, and it is possible to detect angular velocity with higher accuracy.
[0031] また、メモリには補正係数を記憶しておくだけでよぐ各温度に対応した感度温度補 正値までは記憶しておく必要がないので、少ないメモリ容量で対処することができ、メ モリに要する費用を削減することができる。 [0031] Further, since it is not necessary to store the sensitivity temperature correction value corresponding to each temperature just by storing the correction coefficient in the memory, it is possible to cope with a small memory capacity. The cost required for memory can be reduced.
[0032] 請求項 6記載の発明によれば、感度補正信号生成回路は、温度センサの検出出力 をメモリから読み出された補正係数で乗算または除算する乗除算回路を含むので、 簡単な構成でもって適切な感度温度補正信号を生成することができる。  [0032] According to the invention described in claim 6, the sensitivity correction signal generation circuit includes a multiplication / division circuit that multiplies or divides the detection output of the temperature sensor by the correction coefficient read from the memory. Thus, an appropriate sensitivity temperature correction signal can be generated.
[0033] 請求項 7記載の発明によれば、メモリには複数の温度領域ごとに個別の補正係数 が設定されているので、感度の温度変化が 2次以上の関数値を示す場合においても 適切な対応をとることができる。  According to the invention described in claim 7, since the memory has the individual correction coefficient set for each of the plurality of temperature regions, it is suitable even when the temperature change of the sensitivity indicates a function value of second order or higher. Response can be taken.
[0034] 請求項 9記載の発明によれば、温度ドリフト補正信号生成回路および加減算回路、 ならびに感度温度補正信号生成回路および乗除算回路を共に備えているので、角 速度検出信号の温度ドリフトに対する温度補償、ならびに角速度検出素子の検出感 度の変動に対する温度補償を共に行うことができるので、さらに一層精度良く角速度 を検出することが可能になる。  According to the ninth aspect of the present invention, since both the temperature drift correction signal generation circuit and the addition / subtraction circuit, and the sensitivity temperature correction signal generation circuit and the multiplication / division circuit are provided, the temperature with respect to the temperature drift of the angular velocity detection signal is obtained. Since the compensation and the temperature compensation for the fluctuation of the detection sensitivity of the angular velocity detecting element can be performed together, the angular velocity can be detected with higher accuracy.
図面の簡単な説明  Brief Description of Drawings
[0035] [図 1]本発明の実施の形態におけるジャイロ装置の振動子の構造を示す平面図であ る。  FIG. 1 is a plan view showing a structure of a vibrator of a gyro device according to an embodiment of the present invention.
[図 2]図 1のジャイロ装置を構成する振動子基板と保護基板とを接合した状態の一部 を示す断面図である。 [FIG. 2] A part of a state where a vibrator substrate and a protective substrate constituting the gyro device of FIG. 1 are joined together FIG.
[図 3]ジャイロ装置の全体の回路構成を示すブロック図である。  FIG. 3 is a block diagram showing the overall circuit configuration of the gyro device.
圆 4A]CV変換回路の一例を示す回路図である。 FIG. 4 is a circuit diagram illustrating an example of a [4A] CV conversion circuit.
圆 4B]CV変換回路の一例を示す回路図である。 FIG. 4 is a circuit diagram illustrating an example of a [4B] CV conversion circuit.
圆 5]出力調整回路の詳細を示すブロック図である。 FIG. 5 is a block diagram showing details of an output adjustment circuit.
圆 6A]振動子の駆動電極に加える駆動信号の波形図である。 [6A] A waveform diagram of a drive signal applied to the drive electrode of the vibrator.
圆 6B]振動子の駆動電極に加える駆動信号の波形図である。 FIG. 6B is a waveform diagram of a drive signal applied to the drive electrode of the vibrator.
[図 7] (a)振動子の振動状態の説明図である。(b)振動子の振動状態の説明図である 圆 8]振動子における駆動振動方向とコリオリカによる振動方向との関係を示す説明 図である。  FIG. 7 (a) is an explanatory diagram of a vibration state of a vibrator. (B) is an explanatory diagram of the vibration state of the vibrator. [8] An explanatory diagram showing the relationship between the driving vibration direction of the vibrator and the vibration direction of Coriolis.
圆 9A]角速度検出信号に生じる温度ドリフトを温度ドリフト補正信号により補正する場 合の処理動作の説明図である。 [9A] is an explanatory diagram of a processing operation when correcting a temperature drift occurring in an angular velocity detection signal with a temperature drift correction signal.
圆 9B]角速度検出信号に生じる温度ドリフトを温度ドリフト補正信号により補正する場 合の処理動作の説明図である。 [9B] FIG. 9 is an explanatory diagram of a processing operation in a case where a temperature drift generated in an angular velocity detection signal is corrected by a temperature drift correction signal.
圆 9C]角速度検出信号に生じる温度ドリフトを温度ドリフト補正信号により補正する場 合の処理動作の説明図である。 [9C] is an explanatory diagram of a processing operation when correcting a temperature drift generated in the angular velocity detection signal by a temperature drift correction signal.
圆 9D]角速度検出信号に生じる温度ドリフトを温度ドリフト補正信号により補正する場 合の処理動作の説明図である。 [9D] is an explanatory diagram of a processing operation when correcting a temperature drift generated in an angular velocity detection signal by a temperature drift correction signal.
圆 10A]角速度検出信号に生じる感度の温度変化を感度温度補正信号により補正 する場合の処理動作の説明図である。 [FIG. 10A] is an explanatory diagram of a processing operation in the case where a temperature change in sensitivity occurring in an angular velocity detection signal is corrected by a sensitivity temperature correction signal.
圆 10B]角速度検出信号に生じる感度の温度変化を感度温度補正信号により補正 する場合の処理動作の説明図である。 [FIG. 10B] is an explanatory diagram of a processing operation in the case where a temperature change in sensitivity occurring in an angular velocity detection signal is corrected by a sensitivity temperature correction signal.
圆 10C]角速度検出信号に生じる感度の温度変化を感度温度補正信号により補正 する場合の処理動作の説明図である。 [10C] is an explanatory diagram of a processing operation in a case where a temperature change in sensitivity occurring in an angular velocity detection signal is corrected by a sensitivity temperature correction signal.
[図 10D]角速度検出信号に生じる感度の温度変化を感度温度補正信号により補正 する場合の処理動作の説明図である。  FIG. 10D is an explanatory diagram of a processing operation in the case where a temperature change in sensitivity that occurs in the angular velocity detection signal is corrected using a sensitivity temperature correction signal.
圆 11A]角速度検出信号に生じる温度ドリフトを温度ドリフト補正信号により補正する 場合の他の処理動作の説明図である。 [11A] Correct the temperature drift that occurs in the angular velocity detection signal with the temperature drift correction signal FIG. 14 is an explanatory diagram of another processing operation in the case.
[図 11B]角速度検出信号に生じる温度ドリフトを温度ドリフト補正信号により補正する 場合の他の処理動作の説明図である。  FIG. 11B is an explanatory diagram of another processing operation when correcting a temperature drift generated in the angular velocity detection signal using a temperature drift correction signal.
[図 11C]角速度検出信号に生じる温度ドリフトを温度ドリフト補正信号により補正する 場合の他の処理動作の説明図である。  FIG. 11C is an explanatory diagram of another processing operation when correcting a temperature drift generated in the angular velocity detection signal using a temperature drift correction signal.
[図 11D]角速度検出信号に生じる温度ドリフトを温度ドリフト補正信号により補正する 場合の他の処理動作の説明図である。  FIG. 11D is an explanatory diagram of another processing operation in a case where a temperature drift generated in the angular velocity detection signal is corrected using the temperature drift correction signal.
[図 12A]従来技術において、角速度検出信号に生じる温度ドリフトを温度ドリフト補正 信号により補正する場合の処理動作の説明図である。  FIG. 12A is an explanatory diagram of a processing operation when a temperature drift generated in an angular velocity detection signal is corrected by a temperature drift correction signal in a conventional technique.
[図 12B]従来技術において、角速度検出信号に生じる温度ドリフトを温度ドリフト補正 信号により補正する場合の処理動作の説明図である。  FIG. 12B is an explanatory diagram of a processing operation in a case where a temperature drift generated in an angular velocity detection signal is corrected by a temperature drift correction signal in the related art.
[図 12C]従来技術において、角速度検出信号に生じる温度ドリフトを温度ドリフト補正 信号により補正する場合の処理動作の説明図である。  FIG. 12C is an explanatory diagram of a processing operation when a temperature drift generated in an angular velocity detection signal is corrected by a temperature drift correction signal in the related art.
符号の説明  Explanation of symbols
[0036] 1 振動子、 64 出力調整回路、 64A 比較器、 64B オフセット電圧調整部、 64C 温度ドリフト補正部、 64D 感度温度補正部、 64E 感度調整部、 65 温度センサ 、66 メモリ、 643 温度ドリフト補正信号生成回路、 645 第 1温度勾配調整回路( 乗除算回路)、 646 第 1加算回路 (加減算回路)、 647 感度温度補正信号生成回 路、 649 第 2温度勾配調整回路 (乗除算回路)、 650 第 1乗算回路 (乗除算回路) 、 100 角速度検出部。  [0036] 1 oscillator, 64 output adjustment circuit, 64A comparator, 64B offset voltage adjustment section, 64C temperature drift correction section, 64D sensitivity temperature correction section, 64E sensitivity adjustment section, 65 temperature sensor, 66 memory, 643 temperature drift correction Signal generation circuit, 645 1st temperature gradient adjustment circuit (multiplication / division circuit), 646 1st addition circuit (addition / subtraction circuit), 647 sensitivity temperature correction signal generation circuit, 649 2nd temperature gradient adjustment circuit (multiplication / division circuit), 650 1st multiplication circuit (multiplication / division circuit), 100 angular velocity detector.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] この実施の形態では、振動子を角速度検出素子として用いたジャイロ装置に適用 した場合について説明する。 In this embodiment, a case will be described in which the present invention is applied to a gyro device using a vibrator as an angular velocity detecting element.
[0038] 図 1はこの実施の形態のジャイロ装置に使用される振動子の構造を示す平面図、 図 2はこのジャイロ装置を構成する振動子基板と保護基板とを接合した状態の一部を 示す断面図である。 FIG. 1 is a plan view showing the structure of a vibrator used in the gyro device according to the present embodiment. FIG. 2 shows a part of a state in which a vibrator substrate and a protection substrate constituting the gyro device are joined. FIG.
[0039] この実施の形態のジャイロ装置は、角速度検出素子としての振動子 1を備えている 。この振動子 1は、静電駆動 Z容量検出型のものであって、例えば単結晶または多 結晶をなす低抵抗なシリコン材料カゝらなる振動子基板 2と、この振動子基板 2の主面 および裏面に設けられた例えば高抵抗なシリコン材料、ガラス材料等カゝらなる保護基 板 3とを有する。そして、両基板 2, 3は、振動子基板 2の可動部分を確保するための キヤビティ 4形成箇所を除いて、例えば陽極接合等の接合方法により一体的に接合 されている。また、キヤビティ 4内は振動ダンピングを低減するために真空状態あるい は低圧力状態に保たれて!/ヽる。 The gyro device according to the present embodiment includes a vibrator 1 as an angular velocity detecting element. The vibrator 1 is of an electrostatic drive Z-capacitance detection type, for example, a single crystal or a polycrystal. A vibrator substrate 2 made of a low-resistance silicon material that forms a crystal, and a protective substrate 3 made of a high-resistance silicon material, a glass material, or the like provided on the main surface and the back surface of the vibrator substrate 2. And The two substrates 2 and 3 are integrally joined by a joining method such as anodic joining, for example, except for a portion where a cavity 4 for securing a movable portion of the vibrator substrate 2 is formed. Also, the cavity 4 is kept in a vacuum state or a low pressure state to reduce vibration damping! / ピ ン グ.
[0040] 振動子基板 2には、エッチング処理等の微細加工を施すことにより、第 1〜第 4の各 質量部 71〜74や駆動梁 8、第 1,第 2モニタ電極 91, 92、第 1〜第 4駆動電極 101 〜104、第 1〜第 4検出電極 161〜164、および接地電極 181, 182などが形成され ている。ここで、図 1において、振動子 1の長手方向を Y軸方向、これに直交する短手 方向を X軸方向、両軸に共に直交する紙面に垂直な方向を Z軸方向としたとき、第 1 〜第 4の各質量部 71〜74は、部分的に接地電極 181, 182に接続された駆動梁 8 によって Y軸方向に沿って直列に支持されており、これによつて第 1〜第 4の各質量 部 71〜74は X軸方向に沿って振動可能な状態になっている。すなわち、第 1〜第 4 の各質量部 71〜74や駆動梁 8が可動部となっており、第 1,第 2モニタ電極 91, 92 、第 1〜第 4駆動電極 101〜104、および接地電極 181, 182が固定部となっている The vibrator substrate 2 is subjected to fine processing such as etching, so that the first to fourth mass portions 71 to 74, the driving beam 8, the first and second monitor electrodes 91 and 92, The first to fourth drive electrodes 101 to 104, the first to fourth detection electrodes 161 to 164, and the ground electrodes 181 and 182 are formed. Here, in FIG. 1, when the longitudinal direction of the vibrator 1 is the Y-axis direction, the transverse direction perpendicular to the Y-axis direction is the X-axis direction, and the direction perpendicular to the paper plane perpendicular to both axes is the Z-axis direction, The first to fourth mass parts 71 to 74 are supported in series along the Y-axis direction by a driving beam 8 partially connected to the ground electrodes 181, 182, whereby the first to fourth mass parts 71 to 74 are supported. Each of the mass parts 71 to 74 of 4 is in a state capable of vibrating along the X-axis direction. That is, the first to fourth mass parts 71 to 74 and the drive beam 8 are movable parts, and the first and second monitor electrodes 91 and 92, the first to fourth drive electrodes 101 to 104, and the ground are provided. Electrodes 181, 182 are fixed parts
[0041] 上記の第 1質量部 71は、第 1モニタ電極 91および第 1,第 2の駆動電極 101, 102 の櫛歯状部分に対向するように左右に突出形成された櫛歯状の可動側電極 11 la, 111b, 111c力設けられている。 The first mass section 71 is a comb-shaped movable member formed to project right and left so as to face the comb-shaped portions of the first monitor electrode 91 and the first and second drive electrodes 101 and 102. Side electrodes 11 la, 111 b, 111 c are provided.
[0042] また、第 2質量部 72は、駆動梁 8により支持された四角形の第 1駆動枠 121と、その 内側において上下の第 1検出梁 131により支持された 2つの四角形を連接させた形 状の第 1検出枠 141とを有する。第 1駆動枠 121の外側には第 1質量部 71に近接し て上記の第 1,第 2駆動電極 101, 102の櫛歯状部分に対向した櫛歯状の可動側電 極 151a, 151bが形成されている。また、第 1検出枠 141の 2つの四角形部分の内側 にはそれぞれ櫛歯状の第 1,第 2検出電極 161, 162にそれぞれ対向して櫛歯状の 可動側電極 171が形成されている。これにより、第 1検出枠 141は可動側電極 171と 共に第 1検出梁 131によって Y軸方向に沿つて振動可能な状態になっている。 [0043] 上記の第 4質量部 74は、第 2モニタ電極 92および第 3,第 4の駆動電極 103, 104 の櫛歯状部分に対向するように左右に突出形成された櫛歯状の可動側電極 112a, 112b, 112c力設けられている。 The second mass section 72 is formed by connecting a square first drive frame 121 supported by the drive beam 8 and two squares supported by the upper and lower first detection beams 131 inside the first drive frame 121. And a first detection frame 141 having a rectangular shape. Outside the first drive frame 121, comb-shaped movable electrodes 151a and 151b are provided in proximity to the first mass portion 71 and opposed to the comb-shaped portions of the first and second drive electrodes 101 and 102. Is formed. Further, inside the two quadrangular portions of the first detection frame 141, a comb-shaped movable side electrode 171 is formed to face the first and second comb-shaped detection electrodes 161, 162, respectively. As a result, the first detection frame 141 and the movable side electrode 171 can be vibrated along the Y-axis direction by the first detection beam 131. The fourth mass part 74 is a comb-shaped movable member that is formed to project right and left so as to face the comb-shaped part of the second monitor electrode 92 and the third and fourth drive electrodes 103 and 104. Side electrodes 112a, 112b, 112c are provided.
[0044] また、第 3質量部 73は、駆動梁 8により支持された四角形の第 2駆動枠 122と、その 内側において上下の第 2検出梁 132により支持された 2つの四角形を連接させた形 状の第 2検出枠 142とを有する。第 2駆動枠 122の外側には、第 4質量部 74に近接 して上記の第 3,第 4駆動電極 103, 104の櫛歯状部分に対向した櫛歯状の可動側 電極 152a, 152bが形成されている。また、第 2検出枠 142の四角形部分の内側に はそれぞれ櫛歯状の第 3,第 4検出電極 163, 164にそれぞれ対向して櫛歯状の可 動側電極 172が形成されている。これにより、第 2検出枠 142は可動側電極 172と共 に第 2検出梁 132によって Y軸方向に沿つて振動可能な状態になっている。  The third mass part 73 is formed by connecting a square second drive frame 122 supported by the drive beam 8 and two squares supported by the upper and lower second detection beams 132 inside the second drive frame 122. And a second detection frame 142 in the shape of a circle. Outside the second drive frame 122, comb-shaped movable electrodes 152a and 152b are disposed adjacent to the fourth mass portion 74 and opposed to the comb-shaped portions of the third and fourth drive electrodes 103 and 104. Is formed. Further, inside the quadrangular portion of the second detection frame 142, a comb-shaped movable electrode 172 is formed opposite to the comb-shaped third and fourth detection electrodes 163, 164, respectively. As a result, the second detection frame 142 can be vibrated along the Y-axis direction by the second detection beam 132 together with the movable-side electrode 172.
[0045] 上記の第 1,第 2モニタ電極 91, 92、第 1〜第 4駆動電極 101〜104、第 1〜第 4検 出電極 161〜164、および接地電極 181, 182は、振動子基板 2上の保護基板 3と の接合箇所の上に形成されていて固定状態になっている。そして、これらの固定側 の各電極 91, 92、 101〜104、 161〜164、 181, 182ίま、図 2に示すように各電極 ノッド 5にそれぞれ個別に接続されており、これらの各電極パッド 5を介して後述する 外部の電気回路と電気的接続が可能になっている。なお、振動子 1の可動部分は、 駆動梁 8を介して接地電極 181, 182と機械的かつ電気的に接続されていて接地電 位に保たれている。  [0045] The first and second monitor electrodes 91 and 92, the first to fourth drive electrodes 101 to 104, the first to fourth detection electrodes 161 to 164, and the ground electrodes 181 and 182 are connected to the vibrator substrate. It is formed on the joint with the protective substrate 3 on 2 and is fixed. Each of the electrodes 91, 92, 101-104, 161-164, 181, 182 on the fixed side is individually connected to each electrode node 5 as shown in FIG. Electrical connection to an external electric circuit described later via 5 is enabled. The movable part of the vibrator 1 is mechanically and electrically connected to the ground electrodes 181 and 182 via the driving beam 8, and is kept at the ground potential.
[0046] 図 3はジャイロ装置の全体の回路構成を示すブロック図である。  FIG. 3 is a block diagram showing the overall circuit configuration of the gyro device.
[0047] 角速度検出部 100は、振動子 1と、反転回路 21と、 AGC (Auto Gain Control)回 路 22と、第 1位相調整回路 23と、第 1,第 2CV変換回路 31, 32と、第 1差動増幅回 路 41と、フィルタ回路 51と、第 3,第 4CV変換回路 33, 34と、第 2差動増幅回路 42 と、フィルタ回路 52と、第 2位相調整回路 60と、同期検波回路 61と、平滑回路 62と、 増幅回路 63とを含む。なお、角速度検出部 100は、フィルタ回路 51と、フィルタ回路 52と、増幅回路 63とを含むことが好ましいが、これらを含まない構成であってもよい。  [0047] The angular velocity detection unit 100 includes an oscillator 1, an inverting circuit 21, an AGC (Auto Gain Control) circuit 22, a first phase adjusting circuit 23, first and second CV converting circuits 31, 32, The first differential amplification circuit 41, the filter circuit 51, the third and fourth CV conversion circuits 33 and 34, the second differential amplification circuit 42, the filter circuit 52, and the second phase adjustment circuit 60 are synchronized with each other. It includes a detection circuit 61, a smoothing circuit 62, and an amplification circuit 63. The angular velocity detector 100 preferably includes a filter circuit 51, a filter circuit 52, and an amplifier circuit 63, but may have a configuration that does not include these.
[0048] 第 1モニタ電極 91は第 1CV変換回路 31に接続され、第 2モニタ電極 92は第 2CV 変換回路 32に接続されている。第 1,第 2CV変換回路 31, 32は共に第 1差動増幅 回路 41に接続され、この第 1差動増幅回路 41は、フィルタ回路 51、第 1位相調整回 路 23を介して AGC回路 22に接続されている。また、第 1差動増幅回路 41は、フィル タ回路 51を介して後述の第 2位相調整回路 60に接続されている。 AGC回路 22の出 力部は、第 2駆動電極 102と第 3駆動電極 103とに直接接続されるとともに、反転回 路 21を介して第 1駆動電極 101と第 4駆動電極 104とに接続されている。 The first monitor electrode 91 is connected to the first CV conversion circuit 31, and the second monitor electrode 92 is connected to the second CV conversion circuit 32. The first and second CV conversion circuits 31, 32 are both the first differential amplifier The first differential amplifier circuit 41 is connected to the AGC circuit 22 via the filter circuit 51 and the first phase adjustment circuit 23. Further, the first differential amplifier circuit 41 is connected to a second phase adjustment circuit 60 described later via a filter circuit 51. The output section of the AGC circuit 22 is directly connected to the second drive electrode 102 and the third drive electrode 103, and is also connected to the first drive electrode 101 and the fourth drive electrode 104 via the inversion circuit 21. ing.
[0049] 一方、第 1検出電極 161と第 3検出電極 163は共に第 3CV変換回路 33に接続さ れ、また、第 2検出電極 162と第 4検出電極 164は共に第 4CV変換回路 34に接続さ れている。そして、第 3,第 4CV変換回路 33, 34は共に第 2差動増幅回路 42に接続 されている。さらに、第 2差動増幅回路 42は、フィルタ回路 52を介して同期検波回路 61に接続されている。 On the other hand, the first detection electrode 161 and the third detection electrode 163 are both connected to the third CV conversion circuit 33, and the second detection electrode 162 and the fourth detection electrode 164 are both connected to the fourth CV conversion circuit 34 Has been done. The third and fourth CV conversion circuits 33 and 34 are both connected to the second differential amplifier circuit 42. Further, the second differential amplifier circuit 42 is connected to a synchronous detection circuit 61 via a filter circuit 52.
[0050] なお、上記の第 1〜第 4の CV変換回路 31〜34としては、例えば、図 4Aに示すよう な電荷増幅回路や、図 4Bに示すようなインピーダンス変換回路が適用される。また、 第 1,第 2差動増幅回路 41, 42としては、例えば演算増幅器が適用される。  Note that, as the first to fourth CV conversion circuits 31 to 34, for example, a charge amplification circuit as shown in FIG. 4A or an impedance conversion circuit as shown in FIG. 4B is applied. As the first and second differential amplifier circuits 41 and 42, for example, an operational amplifier is applied.
[0051] 上記の第 2位相調整回路 60は、第 1差動増幅回路 41からフィルタ回路 51を介して 出力されるモニタ信号の位相を 90° ずらせて検波参照信号 S4として出力するもの である。また、同期検波回路 61は、第 2位相調整回路 60から出力される検波参照信 号 S4に同期して第 2差動増幅回路 42からフィルタ回路 52を介して与えられる角速 度検出信号 S3の位相検波を行うものである。そして、この同期検波回路 61は、平滑 回路 62および増幅回路 63を介して出力調整回路 64に接続されている。また、出力 調整回路 64には、温度センサ 65、メモリ 66、および基準電圧発生器 67がそれぞれ 接続されている。  The second phase adjustment circuit 60 shifts the phase of the monitor signal output from the first differential amplifier circuit 41 via the filter circuit 51 by 90 ° and outputs the same as the detection reference signal S4. Also, the synchronous detection circuit 61 synchronizes the detection reference signal S4 output from the second phase adjustment circuit 60 with the angular velocity detection signal S3 supplied from the second differential amplifier circuit 42 via the filter circuit 52. It performs phase detection. The synchronous detection circuit 61 is connected to an output adjustment circuit 64 via a smoothing circuit 62 and an amplification circuit 63. Further, a temperature sensor 65, a memory 66, and a reference voltage generator 67 are connected to the output adjustment circuit 64, respectively.
[0052] 上記の温度センサ 65は、角速度検出素子 1を含むジャイロ装置全体の温度をアナ ログ値で検出するもので、例えばサーミスタ等が適用される。また、メモリ 66は、例え ば ROM (Read Only Memory)力 なり、温度センサ 65の検出出力の温度勾配を補 正する補正係数が複数の温度領域ごとに個別に設定されて記憶されている。すなわ ち、本例では低温領域と高温領域の 2つの領域について、それぞれ温度ドリフト補正 用に利用される補正係数 (以下、温度ドリフト補正係数という)、および感度温度補正 用に利用される補正係数 (以下、感度温度補正係数と 、う)が個別に記憶されて 、る 。さらに、メモリ 66にはオフセット電圧調整値、および感度調整値が予め記憶されて いる。 The temperature sensor 65 detects the temperature of the entire gyro device including the angular velocity detecting element 1 as an analog value, and is, for example, a thermistor. In the memory 66, for example, a ROM (Read Only Memory) is used, and a correction coefficient for correcting a temperature gradient of a detection output of the temperature sensor 65 is set and stored individually for each of a plurality of temperature regions. That is, in this example, a correction coefficient used for temperature drift correction (hereinafter referred to as a temperature drift correction coefficient) and a correction coefficient used for sensitivity temperature correction for two regions, a low temperature region and a high temperature region, respectively. (Hereinafter referred to as “sensitivity temperature correction coefficient”) are stored separately. . Further, the memory 66 stores an offset voltage adjustment value and a sensitivity adjustment value in advance.
[0053] 出力調整回路 64は、図 5に示すように、比較器 64A、オフセット電圧調整部 64B、 温度ドリフト補正部 64C、感度温度補正部 64D、および感度調整部 64E力もなる。  As shown in FIG. 5, the output adjustment circuit 64 also includes a comparator 64A, an offset voltage adjustment unit 64B, a temperature drift correction unit 64C, a sensitivity temperature correction unit 64D, and a sensitivity adjustment unit 64E.
[0054] 比較器 64Aは、温度センサの検出出力を基準電圧発生器 67から与えられる基準 電圧と比較して現在の温度領域を判定するもので、例えば低温領域ならばローレべ ル、高温領域ならばノヽィレベルの信号が出力されるようになっている。  The comparator 64A compares the detection output of the temperature sensor with the reference voltage given from the reference voltage generator 67 to determine the current temperature range. For example, a noisy level signal is output.
[0055] オフセット電圧調整部 64Bは、常温でかつ振動子 1に角速度が加わっていない場 合において、角速度検出信号の電圧レベルが常に一定のオフセット値 (例えば + 2. 5V)になるようにメモリ 66から与えられるオフセット電圧調整値によって調整するもの で、 DZ Aコンバータ 641と第 1加算回路 642とからなる。  [0055] The offset voltage adjustment unit 64B stores the voltage so that the voltage level of the angular velocity detection signal always becomes a constant offset value (for example, +2.5 V) at normal temperature and when the angular velocity is not applied to the vibrator 1. It is adjusted by the offset voltage adjustment value given from 66 and comprises a DZA converter 641 and a first addition circuit 642.
[0056] 温度ドリフト補正部 64Cは、メモリ 66に記憶されている温度ドリフト補正係数に基づ いて温度センサ 65の検出出力を調整し、これを温度ドリフト補正信号として生成する 温度ドリフト補正信号生成回路 643と、この温度ドリフト補正信号生成回路 643で生 成された温度ドリフト補正信号をオフセット電圧調整後の角速度検出信号に加算す る第 2加算回路 646とを備える。  The temperature drift correction unit 64C adjusts the detection output of the temperature sensor 65 based on the temperature drift correction coefficient stored in the memory 66, and generates this as a temperature drift correction signal. 643 and a second addition circuit 646 that adds the temperature drift correction signal generated by the temperature drift correction signal generation circuit 643 to the angular velocity detection signal after the offset voltage adjustment.
[0057] そして、上記の温度ドリフト補正信号生成回路 643は、メモリ 66から与えられる温度 ドリフト補正係数を選択する第 1選択回路 644と、この第 1選択回路 644で選択され た温度ドリフト補正係数を温度センサ 65の検出出力に対して乗算する乗算回路で構 成された第 1温度勾配調整回路 645とからなる。  The temperature drift correction signal generating circuit 643 includes a first selection circuit 644 for selecting a temperature drift correction coefficient given from the memory 66, and a temperature drift correction coefficient selected by the first selection circuit 644. And a first temperature gradient adjusting circuit 645 composed of a multiplying circuit for multiplying the detection output of the temperature sensor 65.
[0058] 感度温度補正部 64Dは、メモリ 66に記憶されて 、る感度温度補正係数に基づ!/、て 温度センサ 65の検出出力を調整し、これを感度温度補正信号として生成する感度 温度補正信号生成回路 647と、この感度温度補正信号生成回路 647で生成された 感度温度補正信号を温度ドリフト補正後の角速度検出信号に乗算する第 1乗算回路 650とを備える。  [0058] The sensitivity temperature correction unit 64D adjusts the detection output of the temperature sensor 65 based on the sensitivity temperature correction coefficient stored in the memory 66 and generates a sensitivity temperature correction signal as a sensitivity temperature correction signal. A correction signal generation circuit 647 and a first multiplication circuit 650 for multiplying the angular velocity detection signal after temperature drift correction by the sensitivity temperature correction signal generated by the sensitivity temperature correction signal generation circuit 647 are provided.
[0059] そして、上記の感度補正信号生成回路 647は、メモリ 66から与えられる感度温度 補正係数を選択する第 2選択回路 648と、この第 2選択回路 648で選択された感度 温度補正係数を温度センサ 65の検出出力に対して乗算する乗算回路で構成された 第 2温度勾配調整回路 649とからなる。 [0059] The sensitivity correction signal generation circuit 647 includes a second selection circuit 648 that selects a sensitivity temperature correction coefficient given from the memory 66, and a sensitivity temperature correction coefficient selected by the second selection circuit 648 as a temperature. It consists of a multiplication circuit that multiplies the detection output of sensor 65. And a second temperature gradient adjusting circuit 649.
[0060] 感度調整部 64Eは、振動子 1の温度特性とは関係なぐ振動子 1の検出性能等の 特性ばらつきによって常温での角速度検出信号の感度が異なる場合が生じるので、 メモリ 66から与えられる感度調整値によって利得調整を行うために設けられたものでThe sensitivity adjuster 64E is provided from the memory 66 because the sensitivity of the angular velocity detection signal at room temperature may differ due to variations in characteristics such as detection performance of the vibrator 1 that are not related to the temperature characteristics of the vibrator 1. It is provided to adjust the gain by the sensitivity adjustment value.
、 DZ Aコンバータ 651と、第 2乗算回路 652とからなる。 , A DZA converter 651 and a second multiplication circuit 652.
[0061] 次に上記構成のジャイロ装置の動作について説明する。 Next, the operation of the gyro device having the above configuration will be described.
[0062] 第 1,第 4駆動電極 101, 104には AGC回路 22から出力される駆動信号 S11を反 転回路 21でレベル反転した後の駆動信号 S12が加えられる。また、第 2,第 3駆動電 極 102, 103には AGC回路 22から出力される駆動信号 S11がそのままカ卩えられる。 この場合、両駆動信号 Sl l, S12は、図 6Aおよび図 6Bに示すように、接地電位に 対して例えば + 2. 5Vのオフセット電位を基準として互いにレベルが反転関係にある 交流信号である。  [0062] The drive signal S12 obtained by inverting the level of the drive signal S11 output from the AGC circuit 22 by the inverting circuit 21 is applied to the first and fourth drive electrodes 101 and 104. The drive signal S11 output from the AGC circuit 22 is directly applied to the second and third drive electrodes 102 and 103. In this case, as shown in FIG. 6A and FIG. 6B, both drive signals Sl 1 and S12 are AC signals whose levels are in an inverting relationship with each other with reference to an offset potential of, for example, +2.5 V with respect to the ground potential.
[0063] このため、例えば、一方の駆動信号 S 12がハイレベル、他方の駆動信号 S11が口 一レベルの場合、第 1,第 4駆動電極 101, 104とこれらの電極 101, 104に対向す る可動側電極 111a, 151aおよび 112b, 152bの静電引力は"強"の状態になる一 方、第 2,第 3駆動電極 102, 103とこれらの電極 102, 103に対向する可動側電極 1 l ib, 151bおよび 112a, 152aの静電引力は"弱"の状態になる。当然、両信号 S12 , S11のレベルが逆の場合には、上記の説明と逆の状態になる。このため、その静電 引力の差によって、図 7 (a)に示すように、第 1〜第 4の各質量部 71〜74は X軸方向 に互 ヽに逆相で駆動されて振動する。  [0063] Therefore, for example, when one drive signal S12 is at a high level and the other drive signal S11 is at a single level, the first and fourth drive electrodes 101, 104 and the electrodes 101, 104 are opposed to each other. The electrostatic attraction of the movable electrodes 111a, 151a and 112b, 152b becomes "strong", while the second and third drive electrodes 102, 103 and the movable electrode 1 facing the electrodes 102, 103 The electrostatic attraction of l ib, 151b and 112a, 152a is in a "weak" state. Naturally, if the levels of the two signals S12 and S11 are opposite, the state is reversed. Therefore, as shown in FIG. 7A, the first to fourth mass portions 71 to 74 are driven in opposite phases in the X-axis direction and vibrate due to the difference in electrostatic attraction.
[0064] この振動に依存して第 1質量部 71に設けられて 、る可動側電極 11 lcと第 1モニタ 電極 91間の容量、および第 4質量部 74に設けられて 、る可動側電極 112cと第 2モ ニタ電極 92間の容量がそれぞれ変化する。  [0064] Depending on this vibration, the capacitance between the movable electrode 11lc and the first monitor electrode 91 provided on the first mass portion 71 and the movable electrode provided on the fourth mass portion 74 are provided. The capacitance between 112c and the second monitor electrode 92 changes.
[0065] 振動子 1の X軸方向の駆動振動状態をモニタする第 1,第 2モニタ電極 91, 92にお ける容量変化は、第 1,第 2CV変換回路 31, 32によって各容量変化に対応した電 圧レベルをもつモニタ信号 S21, S22に変換される。この場合、両モニタ信号 S21, S22は互いに逆相の信号であるので、次段の第 1差動増幅回路 41で一つのモニタ 信号 S2に増幅変換される。 [0066] このモニタ信号 S2は、フィルタ回路 51で不要なノイズ成分が除かれ、さらに第 1位 相調整回路 23で自励発振に必要な位相調整が行われた後、 AGC回路 22に入力さ れる。 AGC回路 22は、その入力信号振幅が一定となるようにその増幅率を自動的に 調整する。このため、第 1〜第 4の各駆動電極 101〜104には、常に適切な振幅をも つ駆動信号 Sl l, S12が加えられることになる。 The capacitance change at the first and second monitor electrodes 91 and 92 for monitoring the driving vibration state of the vibrator 1 in the X-axis direction corresponds to each capacitance change by the first and second CV conversion circuits 31 and 32. It is converted into monitor signals S21 and S22 having the obtained voltage levels. In this case, since both monitor signals S21 and S22 are signals having phases opposite to each other, they are amplified and converted into one monitor signal S2 by the first differential amplifier circuit 41 in the next stage. [0066] The monitor signal S2 is input to the AGC circuit 22 after unnecessary noise components are removed by the filter circuit 51 and the first phase adjustment circuit 23 performs phase adjustment required for self-excited oscillation. It is. The AGC circuit 22 automatically adjusts the amplification factor so that the input signal amplitude becomes constant. Therefore, the first to fourth driving electrodes 101 to 104 are always supplied with the driving signals Sll and S12 having appropriate amplitudes.
[0067] このようにして、第 1,第 2モニタ電極 91, 92で得られるモニタ信号 S2から駆動信号 Sl l, S 12をそれぞれ生成して各駆動信号 Sl l, S12を第 1〜第 4駆動電極に印加 することにより、閉ループの自励発振回路が構成され、振動子 1は駆動信号 Sl l, S 12と同じ周波数の共振周波数で振動が持続される。  [0067] In this way, the drive signals Sll and S12 are generated from the monitor signals S2 obtained at the first and second monitor electrodes 91 and 92, respectively, and the respective drive signals Sll and S12 are converted to the first to fourth signals. By applying a voltage to the drive electrodes, a closed-loop self-excited oscillation circuit is formed, and the vibrator 1 continues to vibrate at the same resonance frequency as the drive signals Sl1, S12.
[0068] この状態で、 Z軸を中心軸とした回転角速度が振動子 1に加わると、各質量部 71〜 74には振動方向と直交する Y軸方向にコリオリカが発生する。そして、第 1,第 2検出 梁 131, 132に支持されている第 1,第 2検出枠 141, 142は、図 7 (b)に示すように、 コリオリカによって Y軸方向に互いに逆方向に駆動されて X軸方向の駆動振動と同じ 周波数で振動する。この振動に依存して第 1,第 2検出枠 141, 142にそれぞれ設け られた可動側電極 171, 172と第 1〜第 4検出電極 161〜164間の容量がそれぞれ 変化する。なお、図 7 (b)については、各質量部 71〜74の X軸方向の振動について は省略している。  In this state, when a rotational angular velocity about the Z axis as a central axis is applied to the vibrator 1, Corioliska is generated in each of the mass portions 71 to 74 in the Y axis direction orthogonal to the vibration direction. The first and second detection frames 141 and 142 supported by the first and second detection beams 131 and 132 are driven by Coriolisers in directions opposite to each other in the Y-axis direction, as shown in FIG. And vibrates at the same frequency as the drive vibration in the X-axis direction. The capacitance between the movable electrodes 171 and 172 provided in the first and second detection frames 141 and 142 and the first to fourth detection electrodes 161 to 164 respectively changes depending on the vibration. In FIG. 7 (b), the vibration of the mass parts 71 to 74 in the X-axis direction is omitted.
[0069] 角速度印加時に発生するコリオリカ Fは、次式で与えられる。  [0069] Coriolis F generated when an angular velocity is applied is given by the following equation.
F = 2M ov  F = 2M ov
ここに、 Mは第 1〜第 4質量部 71〜74全体の質量、 ωは角速度、 Vは第 1〜第 4質 量部 71〜74全体の駆動振動速度である。  Here, M is the mass of the entire first to fourth mass parts 71 to 74, ω is the angular velocity, and V is the driving vibration velocity of the entire first to fourth mass parts 71 to 74.
[0070] ここで、振動子 1が非共振型の場合、振動子 1の構造的な Υ軸方向の共振周波数 が駆動信号 Sl l, S12により X軸方向に駆動される際の振動周波数と十分に離れて いるので、コリオリカにより生じる Υ軸方向の振動と駆動信号 Sl l, S12によって駆動 される X軸方向の駆動振動とは 90° の位相差を有している。このため、 X軸方向に駆 動振動している状態で、 Υ軸方向の振動が生じると、図 8に示すように、第 1〜第 4の 各質量部 71〜74は楕円運動を行う。したがって、駆動振動に伴って第 1,第 2モニタ 電極 91, 92に発生する容量変化と、コリオリカによる振動に伴って各検出電極 161 〜164に発生する容量変化とは、 90° の位相差が生じることになる。 Here, when the vibrator 1 is a non-resonant type, the structural resonance frequency of the vibrator 1 in the Υ-axis direction is sufficiently different from the vibration frequency when driven in the X-axis direction by the drive signals Sl l and S12. Therefore, there is a 90 ° phase difference between the の -axis vibration caused by Coriolis and the X-axis drive vibration driven by the drive signals Sl 1 and S12. For this reason, if vibration occurs in the Υ-axis direction while driving vibration occurs in the X-axis direction, the first to fourth mass portions 71 to 74 perform elliptical motion as shown in FIG. Therefore, the capacitance change generated in the first and second monitor electrodes 91 and 92 due to the drive vibration, and each detection electrode 161 due to the vibration due to the Corioliska. The change in capacitance occurring at 164164 results in a phase difference of 90 °.
[0071] 一方、コリオリカによる振動に伴って第 1,第 3検出電極 161, 163に発生する容量 変化は、第 3CV変換回路 33によって容量変化に対応した電圧レベルをもつ角速度 検出信号 S31に変換される。同様に、コリオリカによる振動に伴って第 2,第 4検出電 極 162, 164に発生する容量変化は、第 4CV変換回路 34によって容量変化に対応 した電圧レベルをもつ角速度検出信号 S32に変換される。 On the other hand, the capacitance change generated in the first and third detection electrodes 161 and 163 due to the vibration by Coriolis is converted by the third CV conversion circuit 33 into an angular velocity detection signal S 31 having a voltage level corresponding to the capacitance change. You. Similarly, the capacitance change generated in the second and fourth detection electrodes 162 and 164 due to the vibration by Coriolis is converted by the fourth CV conversion circuit 34 into an angular velocity detection signal S32 having a voltage level corresponding to the capacitance change. .
[0072] この場合、第 3,第 4CV変換回路 33, 34からそれぞれ出力される角速度検出信号 S31, S32はコリオリカに依存する成分に関しては互いに逆相の信号であるので、次 段の第 2差動増幅回路 42で一つの角速度検出信号 S3に増幅変換される。この角速 度検出信号 S3はフィルタ回路 52で不要なノイズ成分が除かれた後、同期検波回路 61に入力される。 In this case, since the angular velocity detection signals S31 and S32 output from the third and fourth CV conversion circuits 33 and 34 are signals having phases opposite to each other with respect to the components that depend on Coriolis, the second difference in the next stage is used. The dynamic amplification circuit 42 amplifies and converts the signal into one angular velocity detection signal S3. The angular velocity detection signal S3 is input to a synchronous detection circuit 61 after unnecessary noise components are removed by a filter circuit 52.
[0073] また、第 1差動増幅回路 41から出力されるモニタ信号 S2は、フィルタ回路 51で不 要なノイズ成分が除かれた後、第 2位相調整回路 60に入力される。フィルタ回路 51, 52は、その位相回転量が同一となるように予め設計されている。第 2位相調整回路 6 0は、このフィルタ回路 51の出力信号の位相を 90° ずらせて検波参照信号 S4として 出力する。前述のように、非共振型の振動子 1においては、モニタ信号 S2と角速度 検出信号 S3とは元々 90° の位相差をもって出力される。また、フィルタ回路 51とフィ ルタ回路 52の位相回転は同一となるように設計されている。したがって、第 2位相調 整回路 60から出力される検波参照信号 S4は、フィルタ回路 52から出力される信号 のコリオリ成分と同相(あるいは逆相)になり、この検波参照信号 S4が同期検波回路 6 1に入力される。  The monitor signal S 2 output from the first differential amplifier circuit 41 is input to the second phase adjustment circuit 60 after unnecessary noise components are removed by the filter circuit 51. The filter circuits 51 and 52 are designed in advance so that the phase rotation amounts are the same. The second phase adjustment circuit 60 shifts the phase of the output signal of the filter circuit 51 by 90 ° and outputs the result as the detection reference signal S4. As described above, in the non-resonant type vibrator 1, the monitor signal S2 and the angular velocity detection signal S3 are originally output with a phase difference of 90 °. Further, the phase rotation of the filter circuit 51 and the phase rotation of the filter circuit 52 are designed to be the same. Therefore, the detection reference signal S4 output from the second phase adjustment circuit 60 has the same phase (or opposite phase) as the Coriolis component of the signal output from the filter circuit 52, and this detection reference signal S4 is used as the synchronous detection circuit 6. Entered into 1.
[0074] 同期検波回路 61は、検波参照信号 S4によって角速度検出信号 S3を同期検波す る。この場合、上記の両信号 S3, S4は同相(あるいは逆相)になっているので、同期 検波回路 61で同期検波された後の角速度検出信号 S5は半波整流された形となり、 これがさらに平滑回路 62で平滑ィ匕されることで角速度に対応した直流電圧レベルを もつ角速度検出信号 S6が得られる。そして、この角速度検出信号 S6が次段の増幅 回路 63で増幅された後に出力調整回路 64に与えられる。  The synchronous detection circuit 61 synchronously detects the angular velocity detection signal S3 using the detection reference signal S4. In this case, since the two signals S3 and S4 are in phase (or opposite phase), the angular velocity detection signal S5 after synchronous detection by the synchronous detection circuit 61 has a half-wave rectified form, which is further smoothed. By being smoothed by the circuit 62, an angular velocity detection signal S6 having a DC voltage level corresponding to the angular velocity is obtained. Then, this angular velocity detection signal S6 is amplified by a next-stage amplifier circuit 63, and is then supplied to an output adjustment circuit 64.
[0075] メモリ 66に格納されているオフセット電圧調整値は、オフセット電圧調整部 64Bの D ZAコンバータ 641でアナログィ匕された後、第 1加算回路 642に与えられる。第 1カロ 算回路 642は、このオフセット電圧調整値を角速度検出信号に加算することで、振動 子 1に角速度が加わって 、な 、場合における角速度検出信号の常温での電圧レべ ルが常に一定のオフセット値 (例えば + 2. 5V)になるように調整される。 [0075] The offset voltage adjustment value stored in the memory 66 is determined by the D of the offset voltage adjustment unit 64B. After the analog signal is converted by the ZA converter 641, the signal is supplied to the first adding circuit 642. The first calorie calculation circuit 642 adds the offset voltage adjustment value to the angular velocity detection signal, so that the angular velocity is applied to the vibrator 1, and the voltage level of the angular velocity detection signal at room temperature in a normal case is always constant. It is adjusted so that it becomes the offset value (for example, + 2.5V).
[0076] また、温度センサ 65の検出出力は、比較器 64Aに加わるとともに、第 1,第 2温度 勾配調整回路 645, 649にそれぞれ与えられる。比較器 64Aは、温度センサ 65の検 出出力を基準電圧発生器 67から与えられる基準電圧と比較して現在の温度領域を 判定し、現在の温度領域に対応した信号、例えば低温領域ならばローレベルの信号 、高温領域ならばハイレベルの信号を出力する。  Further, the detection output of the temperature sensor 65 is applied to a comparator 64A and is also supplied to first and second temperature gradient adjusting circuits 645 and 649, respectively. The comparator 64A compares the detection output of the temperature sensor 65 with the reference voltage provided from the reference voltage generator 67 to determine the current temperature region, and a signal corresponding to the current temperature region, for example, a low signal in a low temperature region. A high-level signal is output in a high-temperature region.
[0077] 温度ドリフト補正部 64Cにおいて、第 1選択回路 644は、例えば、現在の温度が低 温領域に含まれるために比較器 64Aの出力信号がローレベルであるときには、 ml の値をもつ温度ドリフト補正係数を選択する。また、現在の温度が高温領域に含まれ るために比較器 64Aの出力信号がハイレベルであるときには、 m2の値をもつ温度ド リフト補正係数を選択する。  [0077] In the temperature drift correction unit 64C, for example, when the output signal of the comparator 64A is at a low level because the current temperature is included in the low temperature region, the first selection circuit 644 sets the temperature having a value of ml. Select the drift correction coefficient. Further, when the output signal of the comparator 64A is at the high level because the current temperature is included in the high temperature region, the temperature drift correction coefficient having the value of m2 is selected.
[0078] このようにして第 1選択回路 644で選択された温度ドリフト補正係数 mlあるいは m2 は、第 1温度勾配調整回路 645に与えられる。第 1温度勾配調整回路 645は、第 1選 択回路 644で選択された温度ドリフト補正係数 mlあるいは m2を温度センサ 65の検 出出力に対して乗算し、これを温度ドリフト補正信号として第 2加算回路 646に与える 。第 2加算回路 646は、第 1温度勾配調整回路 645から出力される温度ドリフト補正 信号を角速度検出信号に加算する。  The temperature drift correction coefficient ml or m2 selected by the first selection circuit 644 as described above is supplied to the first temperature gradient adjustment circuit 645. The first temperature gradient adjustment circuit 645 multiplies the detection output of the temperature sensor 65 by the temperature drift correction coefficient ml or m2 selected by the first selection circuit 644, and uses this as a temperature drift correction signal for a second addition. Give to circuit 646. The second addition circuit 646 adds the temperature drift correction signal output from the first temperature gradient adjustment circuit 645 to the angular velocity detection signal.
[0079] したがって、例えば出力調整回路 64に入力される角速度検出信号 S6が図 9Aに 示すような温度ドリフトを生じる一方、温度センサ 65の検出出力が図 9Bに示すような リニアな検出特性曲線をもつ場合、この温度センサ 65の検出出力そのものを角速度 検出信号に対する温度ドリフト補正信号として利用することができない。そこで、温度 センサ 65の検出出力に対して高温領域と低温領域についてそれぞれ適切な温度ド リフト補正係数 ml, m2を乗算することにより、図 9Cに示すような温度特性を有する 温度ドリフト補正信号が得られる。そして、この温度ドリフト補正信号を角速度検出信 号に加算することにより、加算後の角速度検出信号は、図 9Dに示すように、温度ドリ フトを生じない略平坦な特性をもつように補正される。しカゝも、この場合、温度ドリフト 補正信号は、温度センサ 65の検出出力に基づいて作成された連続したアナログ信 号であるので、温度ドリフト補正後の角速度検出信号には従来のようなリップルは発 生しない。 Accordingly, for example, the angular velocity detection signal S6 input to the output adjustment circuit 64 causes a temperature drift as shown in FIG. 9A, while the detection output of the temperature sensor 65 changes to a linear detection characteristic curve as shown in FIG. 9B. In this case, the detection output itself of the temperature sensor 65 cannot be used as a temperature drift correction signal for the angular velocity detection signal. Therefore, by multiplying the detection output of the temperature sensor 65 by the appropriate temperature drift correction coefficients ml and m2 for the high temperature region and the low temperature region, a temperature drift correction signal having temperature characteristics as shown in FIG. 9C is obtained. Can be Then, by adding this temperature drift correction signal to the angular velocity detection signal, the angular velocity detection signal after the addition is, as shown in FIG. It is corrected so as to have a substantially flat characteristic that does not cause a shift. In this case, however, since the temperature drift correction signal is a continuous analog signal generated based on the detection output of the temperature sensor 65, the angular velocity detection signal after the temperature drift correction has a conventional ripple. Does not occur.
[0080] 温度ドリフト補正された角速度検出信号は、次段の感度温度補正部 64Dに入力さ れる。この感度温度補正部 64Dにおいて、第 2選択回路 648は、例えば、現在の温 度が低温領域に含まれるために比較器 64Aの出力信号がローレベルであるときには 、 nlの値をもつ感度温度補正係数を選択する。また、現在の温度が高温領域に含ま れるために比較器 64Aの出力信号がハイレベルであるときには、 n2の値をもつ感度 温度補正係数を選択する。  [0080] The angular velocity detection signal subjected to the temperature drift correction is input to the sensitivity temperature correction unit 64D in the next stage. In the sensitivity temperature correction unit 64D, for example, when the output signal of the comparator 64A is at a low level because the current temperature is included in the low temperature region, the second selection circuit 648 has a sensitivity temperature correction value of nl. Select a coefficient. When the output signal of the comparator 64A is at a high level because the current temperature is included in the high temperature region, the sensitivity temperature correction coefficient having the value of n2 is selected.
[0081] このようにして第 2選択回路 648で選択された感度温度補正係数 nlあるいは n2は 、第 2温度勾配調整回路 649に与えられる。第 2温度勾配調整回路 649は、第 2選択 回路 648で選択された感度温度補正係数 nlあるいは n2を温度センサ 65の検出出 力に対して乗算し、これを感度温度補正信号として第 1乗算回路 650に与える。第 1 乗算回路 650は、第 2温度勾配調整回路 649から出力される感度温度補正信号を 角速度検出信号に乗算する。  The sensitivity temperature correction coefficient nl or n2 selected by the second selection circuit 648 as described above is given to the second temperature gradient adjustment circuit 649. The second temperature gradient adjustment circuit 649 multiplies the detection output of the temperature sensor 65 by the sensitivity temperature correction coefficient nl or n2 selected by the second selection circuit 648, and uses this as a sensitivity temperature correction signal in a first multiplication circuit. Give to 650. The first multiplication circuit 650 multiplies the angular velocity detection signal by the sensitivity temperature correction signal output from the second temperature gradient adjustment circuit 649.
[0082] したがって、例えば出力調整回路 64に入力される角速度検出信号の感度が図 10 Aに示すような温度変化を生じる場合には、温度センサ 65の検出出力に対して高温 領域と低温領域についてそれぞれ適切な感度温度補正係数 nl, n2を乗算すること により、図 10Cに示すような温度特性を有する感度温度補正信号が得られる。そして 、この感度温度補正信号を角速度検出信号に乗算することにより、乗算後の角速度 検出信号の感度は、図 10Dに示すように、温度変化に影響されない略平坦な特性を もつように補正される。し力も、この場合、感度温度補正信号は、温度センサ 65の検 出出力に基づいて作成された連続したアナログ信号であるので、角速度検出信号の 感度補正の際にリップルが発生しな 、。  Therefore, for example, when the sensitivity of the angular velocity detection signal input to the output adjustment circuit 64 causes a temperature change as shown in FIG. 10A, the detection output of the temperature sensor 65 is different between the high temperature region and the low temperature region. By multiplying the appropriate sensitivity temperature correction coefficients nl and n2, a sensitivity temperature correction signal having a temperature characteristic as shown in FIG. 10C is obtained. Then, by multiplying the angular velocity detection signal by the sensitivity temperature correction signal, the sensitivity of the angular velocity detection signal after the multiplication is corrected so as to have a substantially flat characteristic unaffected by the temperature change as shown in FIG.10D. . In this case, since the sensitivity temperature correction signal is a continuous analog signal generated based on the detection output of the temperature sensor 65 in this case, no ripple occurs during the sensitivity correction of the angular velocity detection signal.
[0083] 感度温度補正された角速度検出信号は、次段の感度調整部 64Eに入力される。メ モリ 66に格納されている感度調整値は、感度調整部 64Eの DZAコンバータ 651で アナログ化された後、第 2乗算回路 652に与えられる。第 2乗算回路 652は、この感 度調整値を感度温度補正された後の角速度検出信号に乗算することで、振動子 1の 検出性能等の特性ばらつきによって角速度検出信号のレベルが異なる場合の利得 調整が行われる。そして、利得調整後の角速度検出信号 S7に基づいて図示しない 以降の処理回路によって実際の角速度の大きさとその回転方向とが算出される。 The angular velocity detection signal corrected for the sensitivity temperature is input to the sensitivity adjustment unit 64E at the next stage. The sensitivity adjustment value stored in the memory 66 is converted into an analog signal by the DZA converter 651 of the sensitivity adjustment unit 64E, and is provided to the second multiplication circuit 652. The second multiplier 652 By multiplying the angular velocity detection signal after the sensitivity temperature correction by the degree adjustment value, gain adjustment is performed when the level of the angular velocity detection signal is different due to variation in characteristics such as the detection performance of the vibrator 1. Then, based on the angular velocity detection signal S7 after the gain adjustment, the magnitude of the actual angular velocity and its rotation direction are calculated by a subsequent processing circuit (not shown).
[0084] なお、上記の実施の形態では、低温領域と高温領域の 2つの領域によってそれぞ れ温度ドリフト補正係数 ml, m2、感度温度補正係数 nl, n2を設定しているが、さら に細力ゝ 、温度領域にっ 、てそれぞれ適切な温度ドリフト補正係数や感度温度補正 係数を設定することもできる。  In the above embodiment, the temperature drift correction coefficients ml and m2 and the sensitivity temperature correction coefficients nl and n2 are set for the two regions of the low-temperature region and the high-temperature region, respectively. An appropriate temperature drift correction coefficient and sensitivity temperature correction coefficient can be set according to the force and the temperature range, respectively.
[0085] また、図 11Aに示すように、角速度検出信号の温度ドリフト特性がリニアに変化する ような場合には、温度領域を区別せずに単一の温度ドリフト補正係数 m3を用い、こ の温度ドリフト補正係数 m3を図 11Bに示す温度センサ 65の検出出力に対して乗算 することにより、図 11Cに示すような温度特性を有する温度ドリフト補正信号を生成す るようにしてもよい。同様に、角速度検出信号の感度が温度変化に応じてリニアに変 化するような場合には、単一の感度温度補正係数を用いることができる。  Further, as shown in FIG. 11A, when the temperature drift characteristic of the angular velocity detection signal changes linearly, a single temperature drift correction coefficient m3 is used without distinguishing the temperature region. A temperature drift correction signal having a temperature characteristic as shown in FIG. 11C may be generated by multiplying the detection output of the temperature sensor 65 shown in FIG. 11B by the temperature drift correction coefficient m3. Similarly, when the sensitivity of the angular velocity detection signal changes linearly according to the temperature change, a single sensitivity temperature correction coefficient can be used.
[0086] さらにまた、上記の実施の形態では、温度ドリフト補正部 64Cを構成する第 1温度 勾配調整回路 645は乗算回路により構成しているが、温度補正の内容によっては除 算回路とすることもできる。すなわち、第 1温度勾配調整回路 645は、第 1選択回路 6 44で選択された温度ドリフト補正係数 mlあるいは m2を除数とし、また、温度センサ 6 5の検出出力を被除数として除算を行ない、除算結果を温度ドリフト補正信号として 第 2加算回路 646に与える。  [0086] Furthermore, in the above embodiment, the first temperature gradient adjustment circuit 645 constituting the temperature drift correction unit 64C is configured by a multiplication circuit, but may be a division circuit depending on the content of the temperature correction. You can also. That is, the first temperature gradient adjusting circuit 645 performs the division using the temperature drift correction coefficient ml or m2 selected by the first selecting circuit 644 as a divisor and the detection output of the temperature sensor 65 as a dividend, and performs the division. To the second adder circuit 646 as a temperature drift correction signal.
[0087] また、第 2加算回路 646についても温度ドリフトの内容によって減算回路で構成す ることができる。すなわち、第 2加算回路 646の代わりとなる減算回路は、角速度検出 信号力も第 1温度勾配調整回路 645が出力する温度ドリフト補正信号を減算し、減 算結果を第 1乗算回路 650へ出力する。  [0087] Also, the second addition circuit 646 can be configured by a subtraction circuit depending on the content of the temperature drift. That is, the subtraction circuit that replaces the second addition circuit 646 also subtracts the angular drift detection signal strength from the temperature drift correction signal output from the first temperature gradient adjustment circuit 645, and outputs the subtraction result to the first multiplication circuit 650.
[0088] また、感度温度補正部 64Dを構成する第 2温度勾配調整回路 649は乗算回路によ り構成しているが、補正の内容によっては除算回路とすることもできる。すなわち、第 2温度勾配調整回路 649は、第 2選択回路 648で選択された感度温度補正係数 nl あるいは n2を除数とし、また、温度センサ 65の検出出力を被除数として除算を行な い、除算結果を感度温度補正信号として第 1乗算回路 650に与える。 Further, the second temperature gradient adjustment circuit 649 constituting the sensitivity temperature correction unit 64D is configured by a multiplication circuit, but may be a division circuit depending on the content of the correction. That is, the second temperature gradient adjusting circuit 649 performs the division with the sensitivity temperature correction coefficient nl or n2 selected by the second selection circuit 648 as a divisor and the detection output of the temperature sensor 65 as a dividend. Then, the result of the division is given to the first multiplier circuit 650 as a sensitivity temperature correction signal.
[0089] また、第 1乗算回路 650についても温度感度変化の内容によって除算回路で構成 することができる。すなわち、第 1乗算回路 650の代わりとなる除算回路は、第 2温度 勾配調整回路 649から出力される感度温度補正信号を除数とし、また、角速度検出 信号を被除数として除算を行なう。 Further, the first multiplication circuit 650 can also be configured by a division circuit depending on the content of the change in the temperature sensitivity. That is, the division circuit that replaces the first multiplication circuit 650 performs the division with the sensitivity temperature correction signal output from the second temperature gradient adjustment circuit 649 as a divisor and the angular velocity detection signal as a dividend.
[0090] 上記の実施の形態では、ジャイロ装置として、静電駆動 Z容量検出型の振動子 1を 備えた振動ジャイロに適用した場合について説明したが、本発明はこれに限定され るものではなぐ例えば、圧電材料や単結晶からなる音片型振動子を角速度検出素 子として備えた振動ジャイロや、音叉型振動子を角速度検出素子として備えた振動 ジャイロ、さらには他の種類のジャイロ装置についても広く適用することが可能である In the above-described embodiment, a case has been described in which the gyro device is applied to a vibrating gyro including the vibrator 1 of the electrostatic drive Z-capacitance detection type, but the present invention is not limited to this. For example, a vibrating gyroscope having a resonator element made of a piezoelectric material or a single crystal as an angular velocity detecting element, a vibrating gyroscope having a tuning fork vibrator as an angular velocity detecting element, and other types of gyro devices. Can be widely applied

Claims

請求の範囲 The scope of the claims
[1] 角速度検出部(100)と、  [1] an angular velocity detector (100),
温度を検出してアナログ値で出力する温度センサ(65)と、  A temperature sensor (65) that detects temperature and outputs an analog value;
前記温度センサ(65)の検出出力の温度勾配を補正する補正係数を記憶するメモ リ(66)と、  A memory (66) for storing a correction coefficient for correcting a temperature gradient of a detection output of the temperature sensor (65),
前記メモリ (66)に記憶されている前記補正係数に基づいて前記温度センサ(65) の検出出力を調整し、前記調整された検出出力を温度ドリフト補正信号として生成す る温度ドリフト補正信号生成回路 (643)と、  A temperature drift correction signal generation circuit that adjusts a detection output of the temperature sensor (65) based on the correction coefficient stored in the memory (66) and generates the adjusted detection output as a temperature drift correction signal. (643),
前記角速度検出部(100)から出力される角速度検出信号に前記温度ドリフト補正 信号生成回路 (643)で生成された温度ドリフト補正信号を加算するかまたは前記角 速度検出部(100)から出力される角速度検出信号から前記温度ドリフト補正信号生 成回路 (643)で生成された温度ドリフト補正信号を減算する加減算回路 (646)とを 備えるジャイロ装置。  The temperature drift correction signal generated by the temperature drift correction signal generation circuit (643) is added to the angular velocity detection signal output from the angular velocity detection section (100), or the angular drift detection signal is output from the angular velocity detection section (100). A gyro device comprising: an addition / subtraction circuit (646) for subtracting the temperature drift correction signal generated by the temperature drift correction signal generation circuit (643) from the angular velocity detection signal.
[2] 前記温度ドリフト補正信号生成回路 (643)は、前記温度センサ (65)の検出出力と 前記メモリ (66)力 読み出された補正係数とを乗算する力または前記温度センサ(6 5)の検出出力を前記メモリ (66)力 読み出された補正係数で除算する乗除算回路 (645)を含む請求項 1記載のジャイロ装置。  [2] The temperature drift correction signal generation circuit (643) includes: a force multiplied by a detection output of the temperature sensor (65) and a force read out from the memory (66) or the temperature sensor (65) The gyro apparatus according to claim 1, further comprising a multiplication / division circuit (645) for dividing the detection output of the memory by the correction coefficient read out by the memory (66).
[3] 前記メモリ (66)に記憶されて 、る前記補正係数は、複数の温度領域ごとに個別の 値が設定されて 、る請求項 1記載のジャイロ装置。  3. The gyro device according to claim 1, wherein the correction coefficient stored in the memory (66) is set to an individual value for each of a plurality of temperature regions.
[4] 前記ジャイロ装置は、さらに、  [4] The gyro device further comprises:
前記温度センサ(65)の検出出力を基準電圧と比較して現在の温度領域を判定す る比較器 (64A)を備え、  A comparator (64A) for comparing a detection output of the temperature sensor (65) with a reference voltage to determine a current temperature region;
前記温度ドリフト補正信号生成回路 (643)は、前記判定された現在の温度領域に 対応する前記補正係数に基づいて前記温度センサ(65)の検出出力を調整し、前記 調整された検出出力を温度ドリフト補正信号として生成する請求項 3記載のジャイロ 装置。  The temperature drift correction signal generation circuit (643) adjusts a detection output of the temperature sensor (65) based on the correction coefficient corresponding to the determined current temperature region, and outputs the adjusted detection output to a temperature. The gyro device according to claim 3, wherein the gyro device is generated as a drift correction signal.
[5] 角速度検出部(100)と、  [5] angular velocity detector (100),
温度を検出してアナログ値で出力する温度センサ(65)と、 前記温度センサ(65)の検出出力の温度勾配を補正する補正係数を記憶するメモ リ(66)と、 A temperature sensor (65) that detects temperature and outputs an analog value; A memory (66) for storing a correction coefficient for correcting a temperature gradient of a detection output of the temperature sensor (65),
前記メモリ (66)に記憶されている前記補正係数に基づいて前記温度センサ(65) の検出出力を調整し、前記調整された検出出力を感度温度補正信号として生成する 感度温度補正信号生成回路 (647)と、  A sensitivity temperature correction signal generation circuit (A) that adjusts a detection output of the temperature sensor (65) based on the correction coefficient stored in the memory (66) and generates the adjusted detection output as a sensitivity temperature correction signal. 647),
前記角速度検出部(100)から出力される角速度検出信号と前記感度温度補正信 号生成回路 (647)で生成された感度温度補正信号とを乗算するかまたは前記角速 度検出部(100)から出力される角速度検出信号を前記感度温度補正信号生成回路 (647)で生成された感度温度補正信号で除算する乗除算回路 (650)とを備えるジ ャイロ装置。  The angular velocity detection signal output from the angular velocity detection section (100) is multiplied by the sensitivity temperature correction signal generated by the sensitivity temperature correction signal generation circuit (647), or the angular velocity detection signal is output from the angular velocity detection section (100). A gyro device comprising: a multiplication / division circuit (650) for dividing the output angular velocity detection signal by the sensitivity temperature correction signal generated by the sensitivity temperature correction signal generation circuit (647).
[6] 前記感度補正信号生成回路は、前記温度センサ(65)の検出出力と前記メモリ (66 )力も読み出された補正係数とを乗算する力または前記温度センサ (65)の検出出力 を前記メモリ (66)から読み出された補正係数で除算する乗除算回路 (649)を含む 請求項 5記載のジャイロ装置。  [6] The sensitivity correction signal generation circuit outputs a force multiplied by a detection coefficient of the temperature sensor (65) and a correction coefficient from which a force of the memory (66) is read or a detection output of the temperature sensor (65). The gyro device according to claim 5, further comprising a multiplication / division circuit (649) for dividing by the correction coefficient read from the memory (66).
[7] 前記メモリ (66)に記憶されて 、る前記補正係数は、複数の温度領域ごとに個別の 値が設定されて 、る請求項 5記載のジャイロ装置。  [7] The gyro device according to claim 5, wherein the correction coefficient stored in the memory (66) is set to an individual value for each of a plurality of temperature regions.
[8] 前記ジャイロ装置は、さらに、  [8] The gyro device further comprises:
前記温度センサ(65)の検出出力を基準電圧と比較して現在の温度領域を判定す る比較器 (64A)を備え、  A comparator (64A) for comparing a detection output of the temperature sensor (65) with a reference voltage to determine a current temperature region;
前記感度温度補正信号生成回路 (647)は、前記判定された現在の温度領域に対 応する前記補正係数に基づいて前記温度センサ(65)の検出出力を調整し、前記調 整された検出出力を感度温度補正信号として生成する請求項 7記載のジャイロ装置  The sensitivity temperature correction signal generation circuit (647) adjusts the detection output of the temperature sensor (65) based on the correction coefficient corresponding to the determined current temperature region, and adjusts the adjusted detection output. 8. The gyro device according to claim 7, wherein the gyro device generates the sensitivity temperature correction signal.
[9] 角速度検出部(100)と、 [9] angular velocity detector (100),
温度を検出してアナログ値で出力する温度センサ(65)と、  A temperature sensor (65) that detects temperature and outputs an analog value;
前記温度センサ(65)の検出出力の温度勾配を補正する第 1の補正係数および第 2の補正係数を記憶するメモリ(66)と、  A memory (66) for storing a first correction coefficient and a second correction coefficient for correcting a temperature gradient of a detection output of the temperature sensor (65);
前記メモリ (66)に記憶されている前記第 1の補正係数に基づいて前記温度センサ (65)の検出出力を調整し、前記調整された検出出力を温度ドリフト補正信号として 生成する温度ドリフト補正信号生成回路 (643)と、 The temperature sensor based on the first correction coefficient stored in the memory (66); A temperature drift correction signal generation circuit (643) for adjusting the detection output of (65) and generating the adjusted detection output as a temperature drift correction signal;
前記角速度検出部(100)から出力される角速度検出信号に前記温度ドリフト補正 信号生成回路 (643)で生成された温度ドリフト補正信号を加算するかまたは前記角 速度検出部(100)から出力される角速度検出信号から前記温度ドリフト補正信号生 成回路 (643)で生成された温度ドリフト補正信号を減算する加減算回路 (646)と、 前記メモリ (66)に記憶されている前記第 2の補正係数に基づいて前記温度センサ (65)の検出出力を調整し、前記調整された検出出力を感度温度補正信号として生 成する感度温度補正信号生成回路 (647)と、  The temperature drift correction signal generated by the temperature drift correction signal generation circuit (643) is added to the angular velocity detection signal output from the angular velocity detection section (100), or the angular velocity detection signal is output from the angular velocity detection section (100). An addition / subtraction circuit (646) for subtracting the temperature drift correction signal generated by the temperature drift correction signal generation circuit (643) from the angular velocity detection signal; and the second correction coefficient stored in the memory (66) A sensitivity temperature correction signal generation circuit (647) that adjusts a detection output of the temperature sensor (65) based on the detection output, and generates the adjusted detection output as a sensitivity temperature correction signal.
前記加減算回路 (646)から出力される角速度検出信号と前記感度温度補正信号 生成回路 (647)で生成された感度温度補正信号とを乗算するかまたは前記加算ま たは減算された角速度検出信号を前記感度温度補正信号生成回路 (647)で生成さ れた感度温度補正信号で除算する乗除算回路とを備えるジャイロ装置。  The angular velocity detection signal output from the addition / subtraction circuit (646) is multiplied by the sensitivity temperature correction signal generated by the sensitivity temperature correction signal generation circuit (647), or the added or subtracted angular velocity detection signal is calculated. A gyro device comprising: a multiplication / division circuit for dividing by the sensitivity temperature correction signal generated by the sensitivity temperature correction signal generation circuit (647).
PCT/JP2005/007125 2004-04-20 2005-04-13 Gyroscope device WO2005103618A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004124122A JP2007255890A (en) 2004-04-20 2004-04-20 Gyroscope device
JP2004-124122 2004-04-20

Publications (1)

Publication Number Publication Date
WO2005103618A1 true WO2005103618A1 (en) 2005-11-03

Family

ID=35197078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007125 WO2005103618A1 (en) 2004-04-20 2005-04-13 Gyroscope device

Country Status (2)

Country Link
JP (1) JP2007255890A (en)
WO (1) WO2005103618A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292680A (en) * 2006-04-27 2007-11-08 Epson Toyocom Corp Vibration gyrosensor
JP2008170294A (en) * 2007-01-12 2008-07-24 Matsushita Electric Ind Co Ltd Angular velocity sensor
CN101915588A (en) * 2010-07-14 2010-12-15 北京航空航天大学 Method for compensating temperature error of inertial device
CN102230806A (en) * 2011-04-26 2011-11-02 中国科学院软件研究所 Temperature drift compensation method for gyroscope
CN104964680A (en) * 2015-05-27 2015-10-07 苏州合欣美电子科技有限公司 Fiber-optical gyroscope temperature compensating system
EP3203190A1 (en) * 2016-02-08 2017-08-09 Atlantic Inertial Systems Limited Inertial measurement unit
CN117109639A (en) * 2023-10-24 2023-11-24 中国船舶集团有限公司第七〇七研究所 Temperature drift error detection method and system of hemispherical resonator gyroscope

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559805B2 (en) * 2004-09-21 2010-10-13 シチズンホールディングス株式会社 Physical quantity sensor
WO2009060531A1 (en) * 2007-11-09 2009-05-14 Fujitsu Limited Angular velocity sensor and electronic device having same
JP5360361B2 (en) 2008-07-17 2013-12-04 セイコーエプソン株式会社 Angular velocity detector circuit, angular velocity detector, and failure determination system
JP5360362B2 (en) 2008-07-17 2013-12-04 セイコーエプソン株式会社 Angular velocity detector circuit, angular velocity detector, and failure determination system
JP2010054431A (en) * 2008-08-29 2010-03-11 Murata Mfg Co Ltd External force detecting apparatus and method of correcting output signal
JP5316434B2 (en) * 2010-01-27 2013-10-16 パナソニック株式会社 Angular velocity sensor
EP2469228B1 (en) 2009-10-13 2017-08-02 Panasonic Intellectual Property Management Co., Ltd. Angular velocity sensor
JP5387314B2 (en) * 2009-10-13 2014-01-15 パナソニック株式会社 Angular velocity sensor
JP5316435B2 (en) * 2010-01-27 2013-10-16 パナソニック株式会社 Angular velocity sensor
WO2012005062A1 (en) * 2010-07-06 2012-01-12 日立オートモーティブシステムズ株式会社 Inertia sensor
JP5552976B2 (en) * 2010-09-07 2014-07-16 セイコーエプソン株式会社 Angular velocity detection device and electronic device
JP5561187B2 (en) * 2011-01-26 2014-07-30 株式会社デンソー Angular velocity sensor device
JP2012202768A (en) * 2011-03-24 2012-10-22 Denso Corp Angular velocity sensor
JP2015094723A (en) * 2013-11-13 2015-05-18 セイコーエプソン株式会社 Temperature characteristic correction device, temperature characteristic correction method, electronic apparatus, and control circuit
EP3112804B1 (en) * 2014-02-26 2020-05-06 Sumitomo Precision Products Co., Ltd. Vibration-type angular velocity sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273013A (en) * 1991-02-28 1992-09-29 Tokimec Inc Gyroscope device
JPH05264280A (en) * 1992-03-19 1993-10-12 Tokimec Inc Gyro device
JP2000258162A (en) * 1999-03-04 2000-09-22 Alps Electric Co Ltd Temperature compensator piezoelectric oscillator
JP2001153745A (en) * 1999-11-30 2001-06-08 Hokuriku Electric Ind Co Ltd Temperature conpensation method and device for sensor output

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273013A (en) * 1991-02-28 1992-09-29 Tokimec Inc Gyroscope device
JPH05264280A (en) * 1992-03-19 1993-10-12 Tokimec Inc Gyro device
JP2000258162A (en) * 1999-03-04 2000-09-22 Alps Electric Co Ltd Temperature compensator piezoelectric oscillator
JP2001153745A (en) * 1999-11-30 2001-06-08 Hokuriku Electric Ind Co Ltd Temperature conpensation method and device for sensor output

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292680A (en) * 2006-04-27 2007-11-08 Epson Toyocom Corp Vibration gyrosensor
JP2008170294A (en) * 2007-01-12 2008-07-24 Matsushita Electric Ind Co Ltd Angular velocity sensor
CN101915588A (en) * 2010-07-14 2010-12-15 北京航空航天大学 Method for compensating temperature error of inertial device
CN102230806A (en) * 2011-04-26 2011-11-02 中国科学院软件研究所 Temperature drift compensation method for gyroscope
CN102230806B (en) * 2011-04-26 2012-11-28 中国科学院软件研究所 Temperature drift compensation method for gyroscope
CN104964680A (en) * 2015-05-27 2015-10-07 苏州合欣美电子科技有限公司 Fiber-optical gyroscope temperature compensating system
EP3203190A1 (en) * 2016-02-08 2017-08-09 Atlantic Inertial Systems Limited Inertial measurement unit
CN117109639A (en) * 2023-10-24 2023-11-24 中国船舶集团有限公司第七〇七研究所 Temperature drift error detection method and system of hemispherical resonator gyroscope
CN117109639B (en) * 2023-10-24 2023-12-22 中国船舶集团有限公司第七〇七研究所 Temperature drift error detection method and system of hemispherical resonator gyroscope

Also Published As

Publication number Publication date
JP2007255890A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
WO2005103618A1 (en) Gyroscope device
US5806364A (en) Vibration-type angular velocity detector having sensorless temperature compensation
US9046366B2 (en) Signal processing circuit, physical quantity detection apparatus, angular velocity detection apparatus, integrated circuit device, and electronic instrument
EP2351982B1 (en) Angular velocity sensor
JP2010054431A (en) External force detecting apparatus and method of correcting output signal
JP4310571B2 (en) Capacitance detection type vibration gyro and capacitance change detection method
JPH06300567A (en) Gyro output detecting method
JP4915474B2 (en) External force detection device and wiring breakage detection method
JP5348408B2 (en) Physical quantity detection device, physical quantity detection device abnormality diagnosis system, and physical quantity detection device abnormality diagnosis method
US20020100322A1 (en) Vibrating gyroscope and temperature-drift adjusting method therefor
JP2008170294A (en) Angular velocity sensor
JPH07270166A (en) Method for detection of vibration gyro
JP4706704B2 (en) Temperature characteristic setting method of angular velocity sensor and angular velocity sensor
US20110056291A1 (en) Angular Velocity Detecting Apparatus
JP2006010408A (en) Vibratory gyro
JP2010054404A (en) Oscillation gyro sensor
JP5589171B2 (en) Circuit for physical quantity detection device
JP2003247828A (en) Angular velocity sensor
JP2006250643A (en) Abnormality detection device for angular velocity sensor
JP2004212111A (en) Angular velocity sensor
JP5700090B2 (en) Manufacturing method of angular velocity detection device
JP2012163477A (en) Angular velocity sensor
JP2008216050A (en) System and method for sensor drift compensation
JP3783893B2 (en) Piezoelectric vibration angular velocity meter
JP2004279271A (en) Sensor utilizing piezoelectric material and gyroscope sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP