JP2001153745A - Temperature conpensation method and device for sensor output - Google Patents

Temperature conpensation method and device for sensor output

Info

Publication number
JP2001153745A
JP2001153745A JP34048299A JP34048299A JP2001153745A JP 2001153745 A JP2001153745 A JP 2001153745A JP 34048299 A JP34048299 A JP 34048299A JP 34048299 A JP34048299 A JP 34048299A JP 2001153745 A JP2001153745 A JP 2001153745A
Authority
JP
Japan
Prior art keywords
temperature
compensation
output
sensor
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34048299A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tochitani
泰弘 栃谷
Yasuyoshi Nabeyama
康由 鍋山
Yozo Obara
陽三 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Industry Co Ltd
Original Assignee
Hokuriku Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Industry Co Ltd filed Critical Hokuriku Electric Industry Co Ltd
Priority to JP34048299A priority Critical patent/JP2001153745A/en
Publication of JP2001153745A publication Critical patent/JP2001153745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the capacity of a memory means used for temperature compensation in the output of semiconductor pressure sensor having a characteristic changing the output by temperature change. SOLUTION: Temperature characteristics of output of sensor 3 having a temperature characteristic changing the output by temperature change are separated into one or more primary compensation temperature regions and one or more higher degree compensation temperature regions. Temperature of the sensor 3 or the surrounding temperature is measured and a compensation equation proper for each compensation temperature region separated by the measured temperature is read out of a memory means 9. By using the compensation equation read out of the memory means 9 in a compensation operation means 11, the output of the sensor 3 for the temperature change is removed to output.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、温度変化により出
力が変化する温度特性を有する半導体圧力センサ等のセ
ンサの出力温度補償方法及び出力温度補償装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an output temperature compensating method and an output temperature compensating device for a sensor such as a semiconductor pressure sensor having a temperature characteristic whose output changes with a change in temperature.

【0002】[0002]

【従来の技術】各種のセンサの中で、例えば拡散抵抗を
用いたピエゾ抵抗型の半導体圧力センサ(以下センサと
称する)は、半導体基板上に形成されたシリコンダイヤ
フラムの上に複数のピエゾ抵抗素子がブリッジ回路を構
成するように形成されている。このセンサはピエゾ抵抗
素子を形成する際に用いる不純物の濃度等に応じた温度
特性を有する。そのため、センサの出力は温度の変化に
応じて変動する。広い温度範囲において出力の変動を抑
制するためには、温度変化により生じるセンサの出力の
変化量を補償する温度補償を行う必要がある。温度補償
の一つの方法としては、予めセンサの出力の変化特性を
測定しておき、センサの出力から温度変化による変化分
を除去する補償方法が知られている。
2. Description of the Related Art Among various types of sensors, for example, a piezoresistive type semiconductor pressure sensor (hereinafter referred to as a sensor) using a diffused resistor includes a plurality of piezoresistive elements on a silicon diaphragm formed on a semiconductor substrate. Are formed to constitute a bridge circuit. This sensor has a temperature characteristic corresponding to the concentration of impurities used when forming a piezoresistive element. Therefore, the output of the sensor fluctuates according to a change in temperature. In order to suppress fluctuations in output over a wide temperature range, it is necessary to perform temperature compensation for compensating the amount of change in the output of the sensor caused by a change in temperature. As one method of temperature compensation, there is known a compensation method in which a change characteristic of an output of a sensor is measured in advance, and a change due to a temperature change is removed from the output of the sensor.

【0003】[0003]

【発明が解決しようとする課題】図3は温度変化により
半導体圧力センサの出力が変化する温度特性の一例を示
すグラフである。また図4は図3の温度特性を有するセ
ンサの出力に一次の補償式だけを用いて温度補償を行っ
た場合のセンサの出力の変化の様子を示すグラフであ
る。図3及び図4に示すグラフの縦軸はセンサの出力
(V)を表し、グラフの横軸は温度(T)を表してい
る。図3に示すセンサの出力の温度特性の曲線Cは、温
度領域T〜T及びT〜Tの曲線部分C及びC
の曲率の変化は小さく、温度領域T〜Tの曲線部
分Cの曲率の変化が大きい。
FIG. 3 is a graph showing an example of a temperature characteristic in which the output of the semiconductor pressure sensor changes with a change in temperature. FIG. 4 is a graph showing how the output of the sensor changes when the temperature of the sensor having the temperature characteristic shown in FIG. 3 is subjected to temperature compensation using only a first-order compensation equation. The vertical axis of the graphs shown in FIGS. 3 and 4 represents the output (V) of the sensor, and the horizontal axis of the graph represents the temperature (T). Curves C of the temperature characteristics of the output of the sensor shown in FIG. 3 are curve portions C 1 and C of the temperature regions T 0 to T 1 and T 2 to T 3.
Change of 3 curvature is small, a large change in the curvature of the temperature range T 1 through T 2 of the curved portion C 2.

【0004】このような温度特性を有するセンサの出力
に温度補償を施す場合に、各温度領域における曲線部分
を一次の補償式を用いて変化特性の変化分を除去する
と、図4に示すように温度領域T〜Tの間で目標値
との差が大きくなる。この理由は、曲線部分C
びCの曲率の変化は小さいため、一次の補償式で補償
を行っても目標値との差は僅かしか生じないが、曲線部
分Cの曲率の変化は大きいので温度領域を広くして一
次の補償式により補償を行った場合には、目標値との差
が大きく現れるからである。このような問題を解決する
ためには、曲線部分Cにおける温度領域の設定を細か
くすればよい。しかしながら、温度領域の設定を細かく
すると、予めメモリに記憶させておく一次の補償式の係
数(補償係数)のデータ量が膨大となり、メモリ容量の
大きい記憶手段を用いなければならない。
When temperature compensation is performed on the output of a sensor having such temperature characteristics, the change in the change characteristics of the curve portion in each temperature region is removed by using a first-order compensation formula, as shown in FIG. the difference between the target value V m increases between the temperature range T 1 through T 2. The reason is, because the change in curvature of the curved portions C 1 and C 3 is small, although only occur slight difference between the target value even if the compensation by the primary compensation type, the change in curvature of the curved portion C 2 is This is because if the temperature range is widened and the compensation is performed by the first-order compensation formula, the difference from the target value appears largely. To solve such a problem, it is sufficient to finely set the temperature region in the curve portion C 2. However, if the setting of the temperature region is made fine, the amount of data of the coefficient (compensation coefficient) of the primary compensation equation stored in the memory in advance becomes enormous, and a storage means having a large memory capacity must be used.

【0005】本発明は、センサの出力の温度特性を複数
の領域に分割し、分割した領域に最適な補償式を用いて
温度補償を行うことにより、記憶手段に記憶させておく
データ量を少なくすることができるセンサの出力温度補
償の方法及び装置を提供することを目的とする。
The present invention divides the temperature characteristic of the sensor output into a plurality of regions and performs temperature compensation using an optimum compensation formula for the divided regions, thereby reducing the amount of data stored in the storage means. It is an object of the present invention to provide a method and apparatus for sensor output temperature compensation that can be performed.

【0006】[0006]

【課題を解決するための手段】本発明は、温度変化によ
り出力が変化する温度特性を有するセンサの出力から温
度変化による変化分を除去して補償するセンサの出力温
度補償方法を改良の対象とする。本発明では、温度特性
を予め測定しておき、この温度特性を一次の補償式で補
償できる1以上の一次補償温度領域と、高次の補償式で
補償できる1以上の高次補償温度領域とに区分けする。
また1以上の一次補償温度領域及び1以上の一次補償温
度領域で使用する1以上の一次の補償式と1以上の高次
補償温度領域及び1以上の高次補償温度領域で使用する
1以上の高次の補償式とを記憶手段に記憶させておく。
そしてセンサの温度またはその周囲温度を測定し、測定
した温度が1以上の一次補償温度領域及び1以上の高次
補償温度領域のいずれの領域にあるかを判定し、測定し
た温度が入る温度領域で使用する補償式を記憶手段から
読み出し、この補償式を用いて出力から変化分を除去す
る。
SUMMARY OF THE INVENTION An object of the present invention is to improve a sensor output temperature compensating method for compensating by removing a change due to a temperature change from an output of a sensor having a temperature characteristic whose output changes with a temperature change. I do. In the present invention, the temperature characteristic is measured in advance, and the temperature characteristic can be compensated by one or more first-order compensation equations, and one or more higher-order compensation temperature areas can be compensated by a higher-order equation. Is divided into
In addition, one or more primary compensation temperature regions, one or more primary compensation expressions used in one or more primary compensation temperature regions, and one or more primary compensation temperature regions and one or more primary compensation temperature regions used in one or more high compensation temperature regions. The higher-order compensation formula is stored in the storage means.
Then, the temperature of the sensor or its surrounding temperature is measured, and it is determined whether the measured temperature is in one or more of the primary compensation temperature region and one or more of the higher compensation temperature regions. Is read out from the storage means, and the change is removed from the output using this compensation equation.

【0007】このように、変化特性を一次の補償式及び
二次の補償式で補償できる領域に区分けしてそれぞれの
領域に適した補償式を用いて補償すると、温度特性を一
次の補償式のみで補償する場合よりも設定する温度領域
の数を少なくすることができ、また記憶手段に記憶させ
ておく補償式(補償係数)の数を少なくすることができ
る。その結果、補償式を記憶させておく記憶手段に記憶
させるデータ量が少なくなるのでメモリ容量の小さい記
憶手段を用いればよく、センサ装置全体のコストを下げ
ることができる。
As described above, when the change characteristic is divided into regions that can be compensated by the primary compensation formula and the secondary compensation formula, and the compensation is performed using the compensation formula suitable for each region, the temperature characteristic can be reduced only to the primary compensation formula. It is possible to reduce the number of temperature regions to be set as compared with the case where the compensation is made by the above method, and to reduce the number of compensation expressions (compensation coefficients) stored in the storage means. As a result, the amount of data to be stored in the storage means for storing the compensation formula is reduced, so that a storage means having a small memory capacity may be used, and the cost of the entire sensor device can be reduced.

【0008】上述したセンサの出力温度補償方法は、半
導体基板から形成されて測定する外力を受けて変形する
ダイアフラムと、ダイアフラムに形成された複数の拡散
抵抗を含むブリッジ回路とを具備し、ダイアフラムに作
用する外力を複数の拡散抵抗の抵抗値に変換してブリッ
ジ回路から出力する半導体圧力センサに適用することが
できる。
The above-described method for compensating the output temperature of a sensor includes a diaphragm formed from a semiconductor substrate and deformed by an external force to be measured, and a bridge circuit including a plurality of diffusion resistors formed in the diaphragm. The present invention can be applied to a semiconductor pressure sensor that converts an acting external force into resistance values of a plurality of diffusion resistors and outputs the converted values from a bridge circuit.

【0009】また本発明は、温度変化により出力が変化
する温度特性を有するセンサの出力から温度変化による
変化分を除去して補償するセンサの出力温度補償装置を
改良の対象とする。本発明の装置では、温度特性を一次
の補償式で補償できる1以上の一次補償温度領域と高次
の補償式で補償できる1以上の高次補償温度領域とに区
分けし、1以上の一次補償温度領域及び1以上の一次補
償温度領域で使用する1以上の一次の補償式と1以上の
高次補償温度領域及び1以上の高次補償温度領域で使用
する1以上の高次の補償式とを記憶した記憶手段と、セ
ンサの温度またはその周囲温度を測定する温度測定手段
と、温度測定手段で測定した温度が1以上の一次補償温
度領域及び1以上の高次補償温度領域のいずれの領域に
あるかを判定する温度領域判定手段と、センサの出力の
範囲を判定する出力範囲判定手段と、温度領域判定手段
で判定した温度領域と出力範囲判定手段で判定した出力
の範囲とで使用する補償式を記憶手段から読み出し、補
償式を用いて出力から変化分を除去する補償演算手段と
を備える。センサの出力範囲と温度領域のマトリックス
により使用する補償式(係数を含む)が定まる。本発明
の装置では、一次の補償式だけでなく、高次の補償式を
用いるため、温度領域の設定数を少なくしても十分な温
度補償を行うことができる。そのため、記憶手段に記憶
させるデータ(前述のマトリックスの大きさ)が少なく
て済み、安価な記憶手段を用いることができて、補償装
置の価格を下げることができる。
Another object of the present invention is to improve a sensor output temperature compensating device for compensating by removing a change due to a temperature change from an output of a sensor having a temperature characteristic whose output changes with a temperature change. In the apparatus of the present invention, the temperature characteristic is divided into one or more first-order compensation temperature regions that can be compensated by a first-order compensation expression and one or more higher-order compensation temperature regions that can be compensated by a higher-order compensation expression. One or more first-order compensation equations used in the temperature region and one or more first-order compensation temperature regions, and one or more higher-order compensation expressions used in one or more higher-order compensation temperature regions and one or more higher-order compensation temperature regions. , A temperature measuring means for measuring the temperature of the sensor or its surrounding temperature, and any one of a primary compensation temperature region and a higher compensation temperature region where the temperature measured by the temperature measuring device is one or more. Temperature range determining means for determining whether the temperature is within the range, output range determining means for determining the range of the output of the sensor, and a temperature range determined by the temperature range determining means and an output range determined by the output range determining means. Storage means for compensation formula Reading al, and a compensation calculating means for removing the variation from the output using a compensation formula. The compensation formula (including the coefficient) to be used is determined by the output range of the sensor and the matrix of the temperature range. In the apparatus of the present invention, not only the first-order compensation formula but also a higher-order compensation formula is used, so that sufficient temperature compensation can be performed even if the number of set temperature regions is reduced. Therefore, the amount of data (the size of the matrix described above) to be stored in the storage means can be reduced, an inexpensive storage means can be used, and the price of the compensator can be reduced.

【0010】出力温度補償装置で用いるセンサとして
は、半導体基板から形成されて測定する外力を受けて変
形するダイアフラムと、ダイアフラムに形成された複数
の拡散抵抗を含むブリッジ回路とを具備し、ダイアフラ
ムに作用する外力を複数の拡散抵抗の抵抗値に変換して
ブリッジ回路から出力する半導体圧力センサを用いるこ
とができる。ダイアフラムとしては、シリコンウェハー
を公知の半導体加工技術を用いて形成したシリコンダイ
アフラムを用いてもよい。ブリッジ回路はピエゾ抵抗素
子を4つ用いて構成する。この場合において、上記の温
度測定手段を半導体基板のダイアフラムを構成しない部
分に形成した拡散抵抗により構成することができる。拡
散抵抗は半導体基板上に不純物を拡散またはイオン打ち
込みを行って形成する。
The sensor used in the output temperature compensator includes a diaphragm formed from a semiconductor substrate and deformed by an external force to be measured, and a bridge circuit including a plurality of diffusion resistors formed in the diaphragm. A semiconductor pressure sensor that converts an acting external force into resistance values of a plurality of diffused resistors and outputs the converted values from a bridge circuit can be used. As the diaphragm, a silicon diaphragm formed by using a known semiconductor processing technique on a silicon wafer may be used. The bridge circuit is configured using four piezoresistive elements. In this case, the above-mentioned temperature measuring means can be constituted by a diffusion resistor formed in a portion of the semiconductor substrate which does not constitute the diaphragm. The diffusion resistance is formed by diffusing or ion-implanting impurities on the semiconductor substrate.

【0011】また、記憶手段としては一次及び高次の補
償式のデータを記録させておき電気的にこのデータを読
み込むことができる記録媒体、例えば半導体メモリを用
いることができる。半導体メモリとしては電気的にデー
タの書き換えが容易にでき、電圧が印加されていないと
きでも記憶させたデータを保持することができるEEP
ROMを用いることが好ましい。
Further, as the storage means, a recording medium on which first-order and higher-order compensation-type data is recorded and from which the data can be electrically read, for example, a semiconductor memory can be used. An EEP that can easily rewrite data electrically and retain stored data even when no voltage is applied as a semiconductor memory
It is preferable to use a ROM.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態の一例を詳細に説明する。図1は本発明のセ
ンサの出力温度補償装置の実施の形態の一例の構成を示
すブロック図である。図1において、出力温度補償装置
1は半導体圧力センサ等のセンサ3の出力を温度補償す
る。半導体圧力センサはシリコンウェハー等の半導体基
板上に公知の半導体加工技術を用いてダイアフラムが形
成されており、このダイアフラムの上に振動検出素子と
しての4つのピエゾ抵抗素子が抵抗ブリッジ回路を構成
するように形成されている。温度測定手段5はセンサ3
の温度または周囲温度を測定する。半導体圧力センサの
場合には半導体基板上のブリッジ回路からなるセンサ部
が形成されていない部分に形成した拡散抵抗を温度測定
手段として用いる。温度領域判定手段7は、温度測定手
段5で測定されたセンサ3の温度データを受け取り、測
定温度データから測定温度が記憶手段9に記憶されてい
る予め定めた温度領域のいずれの温度領域に入るものか
を判定する。出力判定手段11は、センサ3の出力が予
め定めた複数の出力範囲のいずれの範囲に入るものかを
判定する。そして補償式選択手段13は、出力範囲判定
手段11で判定した出力範囲と温度領域判定手段7で判
定した温度領域とから、この温度領域と出力範囲で特定
されるマトリックスのアドレスを出力する。記憶手段9
には複数の温度領域と複数の出力範囲とからなるマトリ
ックスに対応してそれぞれ一次または高次の補償式及び
この補償式で使用する係数が記憶されている。具体的に
は、予め定めた複数の出力範囲におけるセンサ3の温度
特性を測定しておき、その測定した温度特性を複数の温
度領域に区分けし、各温度領域における温度特性を補償
するの適した一次または高次の補償式及び係数を決定す
る。そして記憶手段9の対応するマトリックスのアドレ
ス部分に、決定した補償式と係数とを記憶させる。補償
式選択手段13は、記憶手段9から読み出した演算式と
係数を演算手段15に出力する。演算手段15は、選択
された補償式と、センサ3の出力と、温度測定手段5の
出力とを入力として、センサ3の出力Vに補償式と測定
温度とから求めた補償量Vcを加減等(V±Vc)して
センサ3の出力を目標値に近付けるための補償演算を行
う。なお、出力温度補償装置1の主要部分はマイクロコ
ンピュータやゲートアレイを用いて構成することができ
る。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an example of an embodiment of a sensor output temperature compensation device of the present invention. In FIG. 1, an output temperature compensating device 1 temperature compensates an output of a sensor 3 such as a semiconductor pressure sensor. In a semiconductor pressure sensor, a diaphragm is formed on a semiconductor substrate such as a silicon wafer using a known semiconductor processing technique, and four piezoresistive elements as vibration detecting elements constitute a resistance bridge circuit on the diaphragm. Is formed. The temperature measuring means 5 is a sensor 3
Measure the ambient or ambient temperature. In the case of a semiconductor pressure sensor, a diffusion resistance formed in a portion of the semiconductor substrate where a sensor portion including a bridge circuit is not formed is used as temperature measuring means. The temperature area determining means 7 receives the temperature data of the sensor 3 measured by the temperature measuring means 5, and from the measured temperature data, the measured temperature falls into any of the predetermined temperature areas stored in the storage means 9. Is determined. The output determination means 11 determines which of a plurality of predetermined output ranges the output of the sensor 3 falls within. Then, the compensation expression selecting means 13 outputs an address of a matrix specified by the temperature range and the output range from the output range determined by the output range determining means 11 and the temperature range determined by the temperature range determining means 7. Storage means 9
Stores a first-order or higher-order compensation equation and a coefficient used in this compensation equation corresponding to a matrix including a plurality of temperature regions and a plurality of output ranges. Specifically, the temperature characteristics of the sensor 3 in a plurality of predetermined output ranges are measured, the measured temperature characteristics are divided into a plurality of temperature regions, and the temperature characteristics in each temperature region are compensated. Determine the first order or higher order compensation equation and coefficients. Then, the determined compensation formula and coefficient are stored in the address portion of the corresponding matrix of the storage means 9. The compensation formula selection means 13 outputs the calculation formula and the coefficient read from the storage means 9 to the calculation means 15. The arithmetic means 15 receives the selected compensation equation, the output of the sensor 3 and the output of the temperature measuring means 5 as inputs and adjusts the output V of the sensor 3 by the compensation amount Vc obtained from the compensation equation and the measured temperature. (V ± Vc), and performs a compensation calculation for bringing the output of the sensor 3 closer to the target value. The main part of the output temperature compensator 1 can be configured using a microcomputer or a gate array.

【0013】また、図2は図1に示す装置で温度補償を
行う場合に用いるプログラムのアルゴリズムの一例を示
すフローチャートである。図3に示したセンサ3の温度
変化による出力の温度特性を温度補償する場合について
説明する。なお、ここではセンサ3の出力の温度特性
は、各出力範囲(例えば圧力0〜圧力P、圧力P
圧力P、圧力Pn−1〜圧力P)においてほぼ相似
形の特性を有しているものと考える。すなわち、出力の
値が異なったとしても、各温度領域C〜Cにおける
温度変化に対する出力の変化の傾向はほぼ同じになるも
のと考える。具体的には、温度領域Cにおいては、出
力範囲が異なっても一次の補償式を用いることができ、
温度領域Cにおいては高次(二次)の補償式を用いる
ことができ、温度領域Cにおいては一次の補償式を用
いることができるものと考える。
FIG. 2 is a flowchart showing an example of an algorithm of a program used when temperature compensation is performed by the apparatus shown in FIG. A case where the temperature characteristics of the output due to the temperature change of the sensor 3 shown in FIG. Here, the temperature characteristics of the output of the sensor 3 correspond to the respective output ranges (for example, pressure 0 to pressure P 1 , pressure P 1 to
It is considered that the pressure P 2 and the pressure P n−1 to the pressure P n ) have substantially similar characteristics. That is, even if the output value is different, it is considered that the tendency of the output change with respect to the temperature change in each of the temperature regions C 1 to C 3 is substantially the same. Specifically, in the temperature region C 1, also can be used primary compensation formula different output range,
In the temperature range C 2 can be used compensation type high-order (secondary), in the temperature range C 3 considered to be able to use a primary compensation formula.

【0014】まず、センサ3の出力が予め定めた出力範
囲のどの範囲に入るのかを判定する(ステップS1)。
次にセンサ3の温度またはセンサ3の周辺温度を温度測
定手段5により測定する(ステップS2)。ステップS
1〜S5では、温度測定手段5により測定されたセンサ
3の温度またはセンサ3の周辺温度が、予め定めた3つ
の温度領域のいずれに入るのかを判定する。本実施の形
態では、温度Tから温度Tの範囲(T≦T<
)を第1の一次補償温度領域Aとし、温度T
ら温度Tの範囲(T≦T<T)を高次補償温度領
域Aとし、温度T から温度Tの範囲(T≦T<
)を第2の一次補償温度領域Aとして区分けして
いる。
First, the output of the sensor 3 is set to a predetermined output range.
It is determined which range of the box is included (step S1).
Next, the temperature of the sensor 3 or the temperature around the sensor 3 is measured.
The measurement is performed by the determining means 5 (step S2). Step S
In 1 to S5, the sensors measured by the temperature measuring means 5
3 or the surrounding temperature of the sensor 3 is a predetermined three
It is determined which one of the temperature ranges falls. Form of this implementation
In the state, the temperature T0To temperature T1Range (T0≦ T <
T1) To the first primary compensation temperature region A1And the temperature T 1Or
Temperature T2Range (T1≦ T <T2) Is the higher order compensation temperature range
Area A2And the temperature T 2To temperature T3Range (T2≦ T <
T3) To the second primary compensation temperature region A3Classified as
I have.

【0015】次に、ステップS1で判定した出力範囲と
ステップS3〜S5において判定した各補償温度領域と
の組合せで定まる補償式を記憶手段9から読み出す(ス
テップS6〜S8)。温度Tから温度Tまでの範囲
(T≦T<T)である第1の一次補償温度領域A
では V=kT+l (1) で表わされる一次の補償式を記憶手段9から読み出す
(ステップS9)。また温度Tから温度Tまでの範
囲(T≦T<T)である高次補償温度領域Aでは V=k+lT+m (2) で表わされる二次の補償式を記憶手段9から読み出す
(ステップS10)。更に温度Tから温度Tまでの
範囲(T≦T<T)である第2の一次補償温度領域
では V=kT+l (3) で表わされる一次の補償式を記憶手段9から読み出す
(ステップS11)。ステップS1で判定した出力範囲
によって各式の係数は異なってくる。そのため記憶手段
9には、出力範囲と温度領域との組合せのマトリックス
の各アドレス部分に式と係数を記憶してある。
Next, a compensation equation determined by a combination of the output range determined in step S1 and each compensation temperature region determined in steps S3 to S5 is read from the storage means 9 (steps S6 to S8). First primary compensation temperature region A 1 in the range from temperature T 0 to temperature T 1 (T 0 ≦ T <T 1 )
Then, the primary compensation equation represented by V 1 = k 1 T + 1 1 (1) is read from the storage means 9 (step S9). And from temperature T 1 of the range to a temperature T 2 (T 1 ≦ T < T 2) at which high-order compensation temperature region A 2 in V 2 = k 2 T 2 + l 2 T + m 3 (2) in the secondary represented The compensation equation is read from the storage means 9 (step S10). Further primary compensation type represented by a range from temperature T 2 to the temperature T 3 (T 2 ≦ T < T 3) at a second primary compensation temperature region A 3 in V 3 = k 3 T + l 3 (3) The data is read from the storage means 9 (step S11). The coefficient of each equation differs depending on the output range determined in step S1. Therefore, the storage means 9 stores an equation and a coefficient in each address portion of the matrix of the combination of the output range and the temperature region.

【0016】次にステップS9〜S11で記憶手段7か
ら読み出した上記の各補償式(1)〜(3)から求めた
補償量Vm(前述のV〜V)を変化分とみなしてセ
ンサ3の出力Vからこの変化分を除去する補償演算(V
+V)が行われ、その演算結果をステップS13で出
力する。上述したステップS1〜S12が繰り返されて
センサ3が動作している間はセンサ3の出力に温度補償
が行われる。
[0016] Then each of the above compensation formula read out from the storage unit 7 in step S9 to S11 (1) ~ (3) from the obtained compensation amount Vm is regarded as variation (the aforementioned V 1 ~V 3) of the sensor The compensation calculation (V
+ V m ) is performed, and the calculation result is output in step S13. While the above-described steps S1 to S12 are repeated and the sensor 3 is operating, the output of the sensor 3 is subjected to temperature compensation.

【0017】本実施の形態ではセンサ3の出力特性を3
つの補償温度領域に区分けしたが、センサ3の出力特性
の変化が複雑であればさらに補償温度領域を細かく区分
けして温度補償を行うようにすればよい。出力範囲と温
度領域との組合せ(マトリックス部分)に対応して補償
式と係数とを予め決めておけばよいのであって、マトリ
ックス部分ごとに補償式が異なっていてもよいのは勿論
である。
In this embodiment, the output characteristic of the sensor 3 is set to 3
Although the compensation temperature range is divided into three, if the change of the output characteristic of the sensor 3 is complicated, the temperature compensation may be performed by further dividing the compensation temperature region more finely. The compensation formula and the coefficient may be determined in advance in accordance with the combination (matrix portion) of the output range and the temperature region, and it goes without saying that the compensation formula may be different for each matrix portion.

【0018】上述した構成を採用することにより、予め
記憶手段9に記憶させておく補償式や補償係数の量(デ
ータ容量)が少なくてすみ、記憶容量の小さい半導体メ
モリを用いて半導体圧力センサの出力を温度補償するこ
とができる。
By employing the above-described configuration, the amount of compensation formula and compensation coefficient (data capacity) stored in the storage means 9 in advance can be reduced, and the semiconductor pressure sensor can be implemented by using a semiconductor memory having a small storage capacity. The output can be temperature compensated.

【0019】[0019]

【発明の効果】本発明によれば、温度領域ごとに温度領
域に適した補償式を用いてセンサの出力を補償すること
ができるので、精度を高めることができる。
According to the present invention, the output of the sensor can be compensated for each temperature region by using a compensation formula suitable for the temperature region, so that the accuracy can be improved.

【0020】また、本発明によれば、一次の補償式だけ
でなく高次の補償式を用いるため、温度領域の設定数を
少なくすることができ、その分記憶手段に予め記憶させ
ておく補償式、補償係数等のデータが少なくてすむの
で、容量の少ない記憶手段を用いて出力温度補償装置を
構成することができ、コスト削減の点で有利になる。
Further, according to the present invention, not only the first-order compensation formula but also a higher-order compensation formula is used, so that the number of temperature regions to be set can be reduced, and the compensation previously stored in the storage means. Since less data such as equations and compensation coefficients are required, the output temperature compensator can be configured using a storage device with a small capacity, which is advantageous in terms of cost reduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の出力温度補償装置の一例
の構成を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of an example of an output temperature compensator according to an embodiment of the present invention.

【図2】本発明の出力温度補償方法の手順を示すフロー
チャートである。
FIG. 2 is a flowchart illustrating a procedure of an output temperature compensation method according to the present invention.

【図3】センサの温度特性の一例を変化の様子を示すグ
ラフである。
FIG. 3 is a graph showing an example of a change in a temperature characteristic of a sensor.

【図4】従来の方法で温度補償した場合の結果の一例を
示すグラフである。
FIG. 4 is a graph showing an example of a result when temperature compensation is performed by a conventional method.

【符号の説明】[Explanation of symbols]

1 出力温度補償装置 3 センサ 5 温度測定手段 7 温度領域判定手段 9 記憶手段 11 出力範囲測定手段 13 補償式選択手段 15 演算手段 DESCRIPTION OF SYMBOLS 1 Output temperature compensating device 3 Sensor 5 Temperature measuring means 7 Temperature area judging means 9 Storage means 11 Output range measuring means 13 Compensation formula selecting means 15 Computing means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小原 陽三 富山県上新川郡大沢野町下大久保3158番地 北陸電気工業株式会社内 Fターム(参考) 2F055 AA40 BB20 CC02 DD05 EE14 FF02 2F075 AA03 BB03 EE04 EE14 EE18 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yozo Ohara 3158 Shimo-Okubo, Osawano-cho, Kamishinkawa-gun, Toyama F-term (reference) 2F055 AA40 BB20 CC02 DD05 EE14 FF02 2F075 AA03 BB03 EE04 EE14 EE18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 温度変化により出力が変化する温度特性
を有するセンサの前記出力から温度変化による変化分を
除去して補償するセンサの出力温度補償方法であって、 前記温度特性を予め測定し、 前記温度特性から一次の補償式で補償できる1以上の一
次補償温度領域と高次の補償式で補償できる1以上の高
次補償温度領域とに区分けし、 前記1以上の一次補償温度領域及び該1以上の一次補償
温度領域で使用する1以上の前記一次の補償式と前記1
以上の高次補償温度領域及び該1以上の高次補償温度領
域で使用する1以上の前記高次の補償式とを記憶手段に
記憶させておき、 前記センサの温度またはその周囲温度を測定し、 測定した温度が前記1以上の一次補償温度領域及び前記
1以上の高次補償温度領域のいずれの領域にあるかを判
定し、 前記測定した温度が入る温度領域で使用する補償式を前
記記憶手段から読み出し、前記補償式を用いて前記出力
から前記変化分を除去することを特徴とするセンサの出
力温度補償方法。
An output temperature compensating method for a sensor that compensates by removing a change due to a temperature change from the output of a sensor having a temperature characteristic whose output changes according to a temperature change, wherein the temperature characteristic is measured in advance, The temperature characteristic is divided into one or more primary compensation temperature regions that can be compensated by a first-order compensation formula and one or more higher-order compensation temperature regions that can be compensated by a higher-order compensation formula. One or more first-order compensation equations for use in one or more first-order compensation temperature ranges;
The above-mentioned higher-order compensation temperature region and one or more of the above-mentioned higher-order compensation expressions used in the one or more higher-order compensation temperature regions are stored in storage means, and the temperature of the sensor or its ambient temperature is measured. Determining whether the measured temperature is in one or more of the one or more primary compensation temperature regions and the one or more higher compensation temperature regions; and storing the compensation formula used in the temperature region in which the measured temperature falls. Reading from the means and removing the change from the output using the compensation equation.
【請求項2】 前記センサは、半導体基板から形成され
て測定する外力を受けて変形するダイアフラムと、前記
ダイアフラムに形成された複数の拡散抵抗を含むブリッ
ジ回路とを具備し、前記ダイアフラムに作用する前記外
力を前記複数の拡散抵抗の抵抗値に変換して前記ブリッ
ジ回路から出力する半導体圧力センサである請求項1に
記載のセンサの出力温度補償方法。
2. The sensor includes a diaphragm formed from a semiconductor substrate and deformed by an external force to be measured, and a bridge circuit formed on the diaphragm and including a plurality of diffusion resistors, and acts on the diaphragm. The sensor output temperature compensation method according to claim 1, wherein the sensor is a semiconductor pressure sensor that converts the external force into resistance values of the plurality of diffusion resistors and outputs the converted values from the bridge circuit.
【請求項3】 温度変化により出力が変化する温度特性
を有するセンサの前記出力から温度変化による変化分を
除去して補償するセンサの出力温度補償装置であって、 前記温度特性を一次の補償式で補償できる1以上の一次
補償温度領域と高次の補償式で補償できる1以上の高次
補償温度領域とに区分けし、前記1以上の一次補償温度
領域及び該1以上の一次補償温度領域で使用する1以上
の前記一次の補償式と前記1以上の高次補償温度領域及
び該1以上の高次補償温度領域で使用する1以上の前記
高次の補償式とを記憶した記憶手段と、 前記センサの温度またはその周囲温度を測定する温度測
定手段と、 前記温度測定手段で測定した温度が前記1以上の一次補
償温度領域及び前記1以上の高次補償温度領域のいずれ
の領域にあるかを判定する温度領域判定手段と、 前記センサの出力範囲を判定する出力範囲判定手段と、 前記温度領域判定手段で判定した温度領域と前記出力範
囲判定手段で判定した出力の範囲で使用する補償式を前
記記憶手段から読み出し、前記補償式を用いて前記出力
から前記変化分を除去する補償演算手段とを具備するこ
とを特徴とするセンサの出力温度補償装置。
3. An output temperature compensating device for a sensor which compensates by removing a change due to a temperature change from an output of a sensor having a temperature characteristic whose output changes with a temperature change, wherein the temperature characteristic is a linear compensation formula. Is divided into one or more primary compensation temperature regions that can be compensated by: and one or more high-order compensation temperature regions that can be compensated by a higher-order compensation equation, and the one or more primary compensation temperature regions and the one or more primary compensation temperature regions Storage means for storing one or more primary compensation equations to be used, and one or more higher-order compensation equations used in the one or more higher-order compensation temperature areas and the one or more higher-order compensation temperature areas; Temperature measuring means for measuring the temperature of the sensor or its surrounding temperature; and in which of the one or more primary compensation temperature areas and the one or more higher compensation temperature areas the temperature measured by the temperature measuring means is located Judge Temperature range determining means, an output range determining means for determining an output range of the sensor, and a compensation expression used in the temperature range determined by the temperature range determining means and the output range determined by the output range determining means. A compensation operation means for reading out from the storage means and removing the change from the output using the compensation equation.
【請求項4】 前記センサは、半導体基板から形成され
て測定する外力を受けて変形するダイアフラムと、前記
ダイアフラムに形成された複数の拡散抵抗を含むブリッ
ジ回路とを具備し、前記ダイアフラムに作用する前記外
力を前記複数の拡散抵抗の抵抗値に変換して前記ブリッ
ジ回路から出力する半導体圧力センサからなり、 前記温度測定手段が、前記半導体基板の前記ダイアフラ
ムを構成しない部分に形成された拡散抵抗から構成され
ていることを特徴とする請求項3に記載のセンサの出力
温度補償装置。
4. The sensor comprises a diaphragm formed from a semiconductor substrate and deformed by an external force to be measured, and a bridge circuit formed on the diaphragm and including a plurality of diffusion resistors, and acts on the diaphragm. A semiconductor pressure sensor that converts the external force into a resistance value of the plurality of diffusion resistors and outputs the resistance value from the bridge circuit, wherein the temperature measuring unit is configured to measure the diffusion resistance formed on a portion of the semiconductor substrate that does not constitute the diaphragm. The sensor output temperature compensating device according to claim 3, wherein the device is configured.
JP34048299A 1999-11-30 1999-11-30 Temperature conpensation method and device for sensor output Pending JP2001153745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34048299A JP2001153745A (en) 1999-11-30 1999-11-30 Temperature conpensation method and device for sensor output

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34048299A JP2001153745A (en) 1999-11-30 1999-11-30 Temperature conpensation method and device for sensor output

Publications (1)

Publication Number Publication Date
JP2001153745A true JP2001153745A (en) 2001-06-08

Family

ID=18337395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34048299A Pending JP2001153745A (en) 1999-11-30 1999-11-30 Temperature conpensation method and device for sensor output

Country Status (1)

Country Link
JP (1) JP2001153745A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103618A1 (en) * 2004-04-20 2005-11-03 Murata Manufacturing Co., Ltd. Gyroscope device
JP2007538254A (en) * 2004-05-19 2007-12-27 ローズマウント インコーポレイテッド Process transmitter with multiple operating modes
CN100392352C (en) * 2002-08-28 2008-06-04 索尼株式会社 Electronic instrument device, signal compensation device and signal compensation method
JP2012002741A (en) * 2010-06-18 2012-01-05 Yamatake Corp Physical quantity sensor
JP2012002742A (en) * 2010-06-18 2012-01-05 Yamatake Corp Physical quantity sensor
CN102539062A (en) * 2011-12-29 2012-07-04 中国燃气涡轮研究院 Sensor temperature drift compensation method and pressure sensor box
CN103410501A (en) * 2013-07-03 2013-11-27 中国石油天然气股份有限公司 Temperature drift compensation method and temperature drift compensation system of underground electronic pressure gauge
JP2013545085A (en) * 2010-10-12 2013-12-19 アレグロ・マイクロシステムズ・エルエルシー Magnetic field sensor and method used to adjust sensitivity and / or offset to temperature changes in the magnetic field sensor
CN103557969A (en) * 2013-11-07 2014-02-05 南京环科电子技术有限公司 Ceramic pressure sensor chip capable of accurately correcting and adjusting temperature drift error, correcting and adjusting system and correcting and adjusting method
KR101499509B1 (en) * 2013-05-20 2015-03-10 주식회사 마이센 Temperature correction method for attitude and heading reference system
US9395391B2 (en) 2013-03-15 2016-07-19 Allegro Microsystems, Llc Magnetic field sensor and associated method that can store a measured threshold value in a memory device during a time when the magnetic field sensor is powered off
CN106248295A (en) * 2016-08-31 2016-12-21 合肥迈思瑞仪器仪表有限公司 The method of calibration of digital pressure testers based on temperature correction feedback
US9644999B2 (en) 2012-01-06 2017-05-09 Allegro Microsystems, Llc Magnetic field sensor and associated method that can establish a measured threshold value and that can store the measured threshold value in a memory device
US10430296B2 (en) 2017-09-29 2019-10-01 Allegro Microsystems, Llc Circuit and method for storing information in non-volatile memory during a loss of power event
US10839920B2 (en) 2017-09-29 2020-11-17 Allegro Microsystems, Llc Circuit having a low power charge pump for storing information in non-volatile memory during a loss of power event
US10845434B2 (en) 2012-01-06 2020-11-24 Allegro Microsystems, Llc Magnetic field sensor having a temperature compensated threshold on power up
KR20210047446A (en) * 2019-10-22 2021-04-30 주식회사 엘지유플러스 Method and appratus for determining temperature

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392352C (en) * 2002-08-28 2008-06-04 索尼株式会社 Electronic instrument device, signal compensation device and signal compensation method
WO2005103618A1 (en) * 2004-04-20 2005-11-03 Murata Manufacturing Co., Ltd. Gyroscope device
JP2007538254A (en) * 2004-05-19 2007-12-27 ローズマウント インコーポレイテッド Process transmitter with multiple operating modes
US8838404B2 (en) 2010-06-18 2014-09-16 Azbil Corporation Physical quantity sensor
JP2012002742A (en) * 2010-06-18 2012-01-05 Yamatake Corp Physical quantity sensor
JP2012002741A (en) * 2010-06-18 2012-01-05 Yamatake Corp Physical quantity sensor
JP2013545085A (en) * 2010-10-12 2013-12-19 アレグロ・マイクロシステムズ・エルエルシー Magnetic field sensor and method used to adjust sensitivity and / or offset to temperature changes in the magnetic field sensor
US9052349B2 (en) 2010-10-12 2015-06-09 Allegro Microsystems, Llc Magnetic field sensor and method used in a magnetic field sensor that adjusts a sensitivity and/or an offset over temperature
CN102539062A (en) * 2011-12-29 2012-07-04 中国燃气涡轮研究院 Sensor temperature drift compensation method and pressure sensor box
US10845434B2 (en) 2012-01-06 2020-11-24 Allegro Microsystems, Llc Magnetic field sensor having a temperature compensated threshold on power up
US9644999B2 (en) 2012-01-06 2017-05-09 Allegro Microsystems, Llc Magnetic field sensor and associated method that can establish a measured threshold value and that can store the measured threshold value in a memory device
US10066965B2 (en) 2012-01-06 2018-09-04 Allegro Microsystems, Llc Magnetic field sensor and associated method that can establish a measured threshold value and that can store the measured threshold value in a memory device
US11009565B2 (en) 2013-03-15 2021-05-18 Allegro Microsystems, Llc Magnetic field sensor and associated method that can store a measured threshold value in a memory device during a time when the magnetic field sensor is powered off
US9395391B2 (en) 2013-03-15 2016-07-19 Allegro Microsystems, Llc Magnetic field sensor and associated method that can store a measured threshold value in a memory device during a time when the magnetic field sensor is powered off
KR101499509B1 (en) * 2013-05-20 2015-03-10 주식회사 마이센 Temperature correction method for attitude and heading reference system
CN103410501B (en) * 2013-07-03 2016-04-06 中国石油天然气股份有限公司 Temperature drift compensation method and temperature drift compensation system of underground electronic pressure gauge
CN103410501A (en) * 2013-07-03 2013-11-27 中国石油天然气股份有限公司 Temperature drift compensation method and temperature drift compensation system of underground electronic pressure gauge
CN103557969A (en) * 2013-11-07 2014-02-05 南京环科电子技术有限公司 Ceramic pressure sensor chip capable of accurately correcting and adjusting temperature drift error, correcting and adjusting system and correcting and adjusting method
CN106248295A (en) * 2016-08-31 2016-12-21 合肥迈思瑞仪器仪表有限公司 The method of calibration of digital pressure testers based on temperature correction feedback
US10430296B2 (en) 2017-09-29 2019-10-01 Allegro Microsystems, Llc Circuit and method for storing information in non-volatile memory during a loss of power event
US10839920B2 (en) 2017-09-29 2020-11-17 Allegro Microsystems, Llc Circuit having a low power charge pump for storing information in non-volatile memory during a loss of power event
US10929252B2 (en) 2017-09-29 2021-02-23 Allegro Microsystems, Llc Circuit and method for storing information in non-volatile memory during a loss of power event
US11467928B2 (en) 2017-09-29 2022-10-11 Allegro Microsystems, Llc Circuit and method for storing information in non-volatile memory during a loss of power event
KR20210047446A (en) * 2019-10-22 2021-04-30 주식회사 엘지유플러스 Method and appratus for determining temperature
KR102300192B1 (en) * 2019-10-22 2021-09-08 주식회사 엘지유플러스 Method and appratus for determining temperature

Similar Documents

Publication Publication Date Title
JP2001153745A (en) Temperature conpensation method and device for sensor output
JP5795034B2 (en) Method and imaging system for correcting a video signal of an infrared sensor
US4796212A (en) Load cell type, weight-measuring device
JP5147435B2 (en) Digital adaptive voltage source
JP2002538419A (en) Apparatus and method for correcting sensor drift
KR20040079323A (en) Semiconductor pressure sensor having diaphragm
KR20140125306A (en) System and method for determining sensor accuracy of a portable electronic device
US8326568B2 (en) Temperature sensor and temperature sensing method
JP4383597B2 (en) Battery detection device and temperature detection method
CN110220945B (en) Full-range temperature compensation method of semiconductor gas sensor
JP2882786B1 (en) Sensor signal processing circuit
JP2001147167A (en) Sensor device
JP2000146620A (en) Sensor device
JP3212898B2 (en) Leak test method and apparatus
WO2021035220A1 (en) Strain gauge type pressure sensing
JPH1137827A (en) Measuring device of load
JPH11118691A (en) Calibration method for automatic indentation reader
JPH10332519A (en) Characteristic measuring instrument for pressure sensor
JP2548347Y2 (en) Load cell
JP2881157B2 (en) Barometric pressure detector and weather forecaster
JPH0545235A (en) Temperature sensing device
JPS62228119A (en) digital display scale
JPH0531729B2 (en)
JP2636404B2 (en) Semiconductor differential pressure measuring device
JPH07218323A (en) Electromagnetic balance or force measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302