JP4383597B2 - Battery detection device and temperature detection method - Google Patents

Battery detection device and temperature detection method Download PDF

Info

Publication number
JP4383597B2
JP4383597B2 JP25819499A JP25819499A JP4383597B2 JP 4383597 B2 JP4383597 B2 JP 4383597B2 JP 25819499 A JP25819499 A JP 25819499A JP 25819499 A JP25819499 A JP 25819499A JP 4383597 B2 JP4383597 B2 JP 4383597B2
Authority
JP
Japan
Prior art keywords
temperature
battery
internal resistance
battery module
remaining capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25819499A
Other languages
Japanese (ja)
Other versions
JP2001085071A (en
Inventor
究 乾
利明 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP25819499A priority Critical patent/JP4383597B2/en
Publication of JP2001085071A publication Critical patent/JP2001085071A/en
Application granted granted Critical
Publication of JP4383597B2 publication Critical patent/JP4383597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、組電池の温度検出装置および温度検出方法に関し、詳しくは、少なくとも一つの電池を有する電池モジュールを複数直列または並列に接続してなる組電池の該複数の電池モジュールの各々の温度を検出する温度検出装置および温度検出方法に関する。
【0002】
【従来の技術】
従来、この種の組電池の温度検出装置としては、電池の端子間の電圧と電池に流れる電流とに基づいて電池の温度を推定するものが提案されている(例えば、特開平11−162526号公報など)。この装置では、電圧と電流とから電池の内部抵抗を演算し、演算した内部抵抗と電池の温度との関係から温度を推定している。なお、この装置では、電池の内部抵抗と電池の温度との関係は実験などにより予め求められており、演算された電池の内部抵抗に対応する温度を導出するものとしている。
【0003】
【発明が解決しようとする課題】
しかしながら、こうした温度検出装置では、電池の温度が正確に検出できない場合がある。電池は使用態様によって劣化の程度や劣化以外の要因により電池の内部抵抗と電池の温度との関係がズレる場合がある。このように内部抵抗と温度との関係がズレたときには、電池の温度は内部抵抗から推定された温度と異なるものとなってしまう。
【0004】
こうした問題に対して電池の温度を直接検出する手法もあるが、電池を複数接続してなる組電池の場合、電池の数だけの温度センサが必要になると共に制御コンピュータの回路規模も大きくなり、コストの増加を招いてしまう。
【0005】
本発明の組電池の温度検出装置および温度検出方法は、各電池モジュールの温度をより正確に検出することを目的の一つとする。また、本発明の組電池の温度検出装置および温度検出方法は、簡易な構成で各電池モジュールの温度を検出することを目的の一つとする。
【0006】
【課題を解決するための手段およびその作用・効果】
本発明の組電池の温度検出装置および温度検出方法は、上述の目的の少なくとも一部を達成するために以下の手段を採った。
【0007】
本発明の組電池の温度検出装置は、
少なくとも一つの電池を有する電池モジュールを複数直列または並列に接続してなる組電池の該複数の電池モジュールの各々の温度を検出する温度検出装置であって、
前記複数の電池モジュールの各々の端子間の電圧を検出する電圧検出手段と、
前記複数の電池モジュールの各々に流れる電流を検出する電流検出手段と、
前記電圧検出手段により検出された各電圧と前記電流検出手段により検出された各電流から各電池モジュールの内部抵抗及び残存容量を求め、この内部抵抗及び残存容量に基づいて前記複数の電池モジュールの各々の温度を推定する温度推定手段と、
前記複数の電池モジュールのうち一部の電池モジュールの温度を検出する温度検出手段と、
前記検出された温度と該温度を検出した電池モジュールについて演算された残存容量とからこの電池モジュールの内部抵抗を導出し、この導出された内部抵抗とこの電池モジュールの前記演算された内部抵抗とから補正係数を計算し、この補正係数を各電池モジュールの内部抵抗に演算して各電池モジュールの内部抵抗を補正し、補正後の内部抵抗と残存容量とから各電池モジュールの温度を導出する補正手段と
を備えることを要旨とする。
【0008】
この本発明の組電池の温度検出装置では、各電池モジュールの端子間の電圧と電流とに基づいて推定された温度を温度検出手段によって検出された温度に基づいて補正するから、電圧や電流から推定される温度が使用の態様などにより実際の温度と異なるものになっても、より正確な温度を検出値として得ることができる。
【0009】
また、前記温度推定手段は、前記検出された各々の電圧と前記検出された各々の電流とに基づいて前記複数の電池モジュールの各々の内部抵抗を演算する第1内部抵抗演算手段と、前記検出された各々の電圧と前記検出された各々の電流とに基づいて前記複数の電池モジュールの各々の残存容量を演算する残存容量演算手段とを備え、前記第1内部抵抗演算手段により演算された各々の内部抵抗と前記残存容量演算手段により演算された各々の残存容量とに基づいて各電池モジュールの温度を推定する。
【0010】
そして、前記補正手段は、前記温度検出手段により検出された温度に基づいて該温度を検出した電池モジュールの内部抵抗を演算する第2内部抵抗演算手段と、該演算された内部抵抗と前記第1内部抵抗演算手段により演算された対応する電池モジュールの内部抵抗とに基づいて補正値を設定する補正値設定手段とを備え、該設定された補正値を用いて前記第1内部抵抗演算手段により演算された各々の内部抵抗を補正することにより補正後の内部抵抗と残存容量とから各電池モジュールの温度を導出することができる。
本発明によれば、温度検出手段は少なくとも一つの電池モジュールに設置すればよいから、制御コンピュータの回路規模の増大を抑えることができると共にコストも低く抑えることができる。なお、「電池モジュール」には、複数の電池を直列または並列に接続してなるものを含むほか、単一の電池のみからなるものも含まれる。
【0011】
本発明の組電池の温度検出方法は、
少なくとも一つの電池を有する電池モジュールを複数直列または並列に接続してなる組電池の該複数の電池モジュールの各々の温度を検出する温度検出方法であって、
前記複数の電池モジュールの各々の端子間の電圧と該複数の電池モジュールの各々に流れる電流から各電池モジュールの内部抵抗及び残存容量を求め、この内部抵抗及び残存容量に基づいて該複数の電池モジュールの各々の温度を推定し、
前記複数の電池モジュールのうち一部の電池モジュールの温度を検出し、
前記検出された温度と該温度を検出した電池モジュールについて演算された残存容量とからこの電池モジュールの内部抵抗を導出し、この導出された内部抵抗とこの電池モジュールの前記演算された内部抵抗とから補正係数を計算し、この補正係数を各電池モジュールの内部抵抗に演算して各電池モジュールの内部抵抗を補正し、補正後の内部抵抗と残存容量とから各電池モジュールの温度を導出する
ことを要旨とする。
【0012】
この本発明の組電池の温度検出方法は、各電池モジュールの端子間の電圧と電流とに基づいて推定された温度を検出された温度に基づいて補正するから、電圧や電流から推定される温度が使用の態様などにより実際の温度と異なるものになっても、より正確な温度を検出値として得ることができる。しかも、温度を検出する電池モジュールは少なくとも一つあればよいから、制御コンピュータの回路規模の増大を抑えることができると共にコストも低く抑えることができる。なお、「電池モジュール」の用語については前述の本発明の組電池の温度検出装置と同様である。
【0013】
【発明の実施の形態】
次に、本発明の実施の形態を実施例を用いて説明する。図1は、本発明の一実施例である組電池の温度検出装置20の構成の概略を示す構成図である。実施例の組電池の温度検出装置20は、図示するように、複数の電池モジュール1−nを直列または並列に接続してなる組電池22と、組電池22の各電池モジュール1−nの温度を検出する電池制御ユニット30とを備える。
【0014】
組電池22を構成する複数の電池モジュール1−nは、充放電可能な少なくとも一つの二次電池を直列または並列に接続して構成されている。組電池22の電池モジュール1には、その温度を検出する温度センサ24が取り付けられており、その検出値は電池制御ユニット30に入力されるようになっている。
【0015】
電池制御ユニット30は、組電池22の各電池モジュール1〜nの端子間電圧V1−nを測定すると共に組電池22に流れる電流Iを測定する各ブロック電圧・電流測定装置32と、この各ブロック電圧・電流測定装置32により測定された電圧V1−nと電流Iとにより各ブロック(各電池モジュール)の内部抵抗R1−nと残存容量SOCとを演算する各ブロック内部抵抗SOC演算装置34と、この各ブロック内部抵抗SOC演算装置34により演算された内部抵抗R1−nを温度センサ24により検出された電池モジュール1の温度Ts1に基づいて必要に応じて補正すると共に補正前の内部抵抗R1−nや補正後の内部抵抗R1−n’,残存容量SOCに基づいて各電池モジュール1〜nの温度T1−nを推定する電池温度推定演算装置36とを備える。
【0016】
各ブロック電圧・電流測定装置32は、具体的には、組電池22を流れる電流Iを検出する電流センサと、各電池モジュール1−nの出力端子に接続された複数の電圧センサとから構成されている。
【0017】
各ブロック内部抵抗SOC演算装置34と電池温度推定演算装置36は、具体的には、ハード構成としてはCPUを中心として構成されたマイクロコンピュータにより構成されており、マイクロコンピュータが内部に備えるROMに予め記憶された処理プログラムとハード構成とが一体となって機能する。
【0018】
次に、こうして構成された実施例の組電池の温度検出装置20の動作について説明する。図2は、各ブロック内部抵抗SOC演算装置34や電池温度推定演算装置36として機能するマイクロコンピュータにより実行される温度検出処理ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば、5分毎)に繰り返し実行される。
【0019】
この温度検出処理ルーチンが実行されると、所定時間(例えば、2分)に亘って各ブロック電圧・電流測定装置32により検出される各電池モジュール1−nの電圧V1−nと組電池22に流れる電流Iとを読み込む処理を実行する(ステップS100)。そして、読み込んだ電圧V1−nと電流Iとに基づいて各電池モジュール1−nの内部抵抗R1−nを演算する処理を行なう(ステップS102)。内部抵抗R1−nは、所定時間に亘って検出した電圧V1−nと電流Iとから電圧電流特性を直線近似し、その傾きを求めることにより演算することができる。所定時間に亘って検出した電池モジュールの電圧Vと電流Iとにより電池モジュールの内部抵抗Rを求める様子の一例を図3に示す。
【0020】
次に、残存容量SOCを読み込む処理を実行する(ステップS104)。実施例では、所定時間毎に繰り返し実行される図示しないルーチンにより、組電池22を流れる電流Iを積算することにより残存容量SOCを演算し、その値をマイクロコンピュータのRAMの所定アドレスに書き込むものとしたから、RAMの所定アドレスをアクセスすることにより残存容量SOCを読み込む処理を行なうことができる。そして、残存容量SOCと内部抵抗R1−nとから各電池モジュール1−nの温度T1−nを導出する処理を実行する(ステップS106)。この処理は、電池モジュールの内部抵抗と残存容量SOCと温度との関係を実験などにより求めて特性マップとしてマイクロコンピュータが内部に備えるROMに予め記憶しておき、残存容量SOCと内部抵抗R1−nをこの特性マップに適用して電池モジュール1−nの温度T1−nを導出することにより行なうことができる。この特性マップの一例を用いて電池温度を求める様子の一例を図4に示す。図4では、まず残存容量SOCの値から適用する特性マップを決定し、決定した特性マップに対して内部抵抗を与えることにより電池温度を得ている。
【0021】
次に、温度センサ24により検出される電池モジュール1の温度Ts1を読み込む処理を行ない(ステップS108)、読み込んだ温度Ts1と導出した電池モジュール1の温度T1とを比較する処理を行なう(ステップS110)。検出された温度Ts1が導出された温度T1に等しいときには、電池は劣化していないと判断し、ステップS106で導出した電池モジュール1−nの温度T1−nを検出値として本ルーチンを終了する。
【0022】
一方、検出した温度Ts1と導出した温度T1とが等しくないときには、電池に劣化が生じていると判定し、検出した温度Ts1と残存容量SOCとを前述の特性マップに適用して電池モジュール1の内部抵抗R1’を導出する処理を行なう(ステップS112)。続いて、導出した内部抵抗R1’をステップS102で演算した内部抵抗R1で割って補正係数kを計算する処理を行なう(ステップS114)。補正係数kを計算する様子を図5に例示する。こうした補正係数kを計算すると、計算した補正係数kをステップS102で演算した各内部抵抗R1−nに乗じて内部抵抗を補正する処理を行なう(ステップS116)。そして、補正後の内部抵抗R1−n’と残存容量SOCとを特性マップ(図4参照)に適用して各電池モジュール1−nの温度T1−nを導出する処理を行ない(ステップS118)、この導出した温度T1−nを検出値として本ルーチンを終了する。
【0023】
以上説明した実施例の組電池の温度検出装置20によれば、検出した電圧V1−nと電流Iとに基づいて演算される内部抵抗R1−nに基づいて各電池モジュール1−nの温度T1−nを求めることができる。しかも、電池モジュール1の温度を温度センサ24により検出し、検出した温度Ts1と導出した温度T1とから電池の劣化を判断し、電池が劣化しているときには、検出した温度Ts1に基づいて劣化を補正して各電池モジュール1−nの温度T1−nを求めることができる。この結果、より正確に各電池モジュール1−nの温度T1−nを検出することができる。
【0024】
また、実施例の組電池の温度検出装置20によれば、電池モジュール1にだけ温度センサ24を取り付けるものとしたから、各電池モジュール1−nに温度センサを取り付ける構成に比して、簡易な構成とすることができ、温度を検出するためのコストを抑制することができる。
【0025】
実施例の組電池の温度検出装置20では、残存容量SOCは別のルーチンにより演算するものとしたが、同一のルーチンにより演算するものとしてもよい。
【0026】
以上、本発明の実施の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】 本発明の一実施例である組電池の温度検出装置20の構成の概略を示す構成図である。
【図2】 各ブロック内部抵抗SOC演算装置34や電池温度推定演算装置36として機能するマイクロコンピュータにより実行される温度検出処理ルーチンの一例を示すフローチャートである。
【図3】 所定時間に亘って検出した電池モジュールの電圧Vと電流Iとにより電池モジュールの内部抵抗Rを求める様子の一例を示す説明図である。
【図4】 電池モジュールの内部抵抗と残存容量SOCと温度との関係の一例を示す特性マップを用いて温度を導出する様子を示す説明図である。
【図5】 補正係数kを計算する様子の一例を示す説明図である。
【符号の説明】
20 組電池の温度検出装置、22 組電池、24 温度センサ、30 電池制御ユニット、32 各ブロック電圧・電流測定装置、34 各ブロック内部抵抗SOC演算装置、36 電池温度推定演算装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature detection apparatus and a temperature detection method for an assembled battery, and more specifically, to determine the temperature of each of the plurality of battery modules of an assembled battery formed by connecting a plurality of battery modules having at least one battery in series or in parallel. The present invention relates to a temperature detecting device and a temperature detecting method.
[0002]
[Prior art]
Conventionally, as this type of assembled battery temperature detection device, an apparatus that estimates the temperature of a battery based on the voltage between the terminals of the battery and the current flowing through the battery has been proposed (for example, Japanese Patent Application Laid-Open No. 11-162526). Gazette). In this device, the internal resistance of the battery is calculated from the voltage and current, and the temperature is estimated from the relationship between the calculated internal resistance and the temperature of the battery. In this apparatus, the relationship between the internal resistance of the battery and the temperature of the battery is obtained in advance by experiments or the like, and the temperature corresponding to the calculated internal resistance of the battery is derived.
[0003]
[Problems to be solved by the invention]
However, such a temperature detection device may not be able to accurately detect the temperature of the battery. Depending on the mode of use, the relationship between the internal resistance of the battery and the battery temperature may deviate depending on the degree of deterioration and factors other than the deterioration. When the relationship between the internal resistance and temperature deviates as described above, the battery temperature is different from the temperature estimated from the internal resistance.
[0004]
Although there is a method for directly detecting the temperature of the battery for such a problem, in the case of an assembled battery in which a plurality of batteries are connected, a temperature sensor corresponding to the number of batteries is required and the circuit scale of the control computer is increased. This will increase the cost.
[0005]
An object of the temperature detection apparatus and temperature detection method for an assembled battery of the present invention is to more accurately detect the temperature of each battery module. Another object of the temperature detection apparatus and temperature detection method for an assembled battery of the present invention is to detect the temperature of each battery module with a simple configuration.
[0006]
[Means for solving the problems and their functions and effects]
The assembled battery temperature detection apparatus and temperature detection method of the present invention employ the following means in order to achieve at least a part of the above-described object.
[0007]
The assembled battery temperature detection device of the present invention is
A temperature detection device for detecting the temperature of each of a plurality of battery modules of an assembled battery formed by connecting a plurality of battery modules having at least one battery in series or in parallel,
Voltage detecting means for detecting a voltage between terminals of each of the plurality of battery modules;
Current detection means for detecting current flowing in each of the plurality of battery modules;
An internal resistance and a remaining capacity of each battery module are obtained from each voltage detected by the voltage detecting means and each current detected by the current detecting means, and each of the plurality of battery modules is based on the internal resistance and the remaining capacity. Temperature estimation means for estimating the temperature of
Temperature detecting means for detecting the temperature of some of the battery modules ;
Derives the internal resistance of the battery module from the remaining capacity computed for battery module detects said detected temperature and the temperature, from this derived internal resistance and the computed internal resistance of the battery module Correction means that calculates a correction coefficient, calculates the correction coefficient to the internal resistance of each battery module to correct the internal resistance of each battery module, and derives the temperature of each battery module from the corrected internal resistance and the remaining capacity The gist is to provide and.
[0008]
In the assembled battery temperature detecting device of the present invention, the temperature estimated based on the voltage and current between the terminals of each battery module is corrected based on the temperature detected by the temperature detecting means, so temperature estimated even become different from the actual temperature due mode of use, it is possible to obtain a more accurate temperature as a detected value.
[0009]
Further , the temperature estimation means includes first internal resistance calculation means for calculating an internal resistance of each of the plurality of battery modules based on the detected voltages and the detected currents, and the detection Each of the plurality of battery modules based on the detected voltage and the detected current, and a remaining capacity calculating means for calculating the remaining capacity of each of the plurality of battery modules. based in on the remaining capacity of each calculated by the internal resistance and the remaining capacity calculating unit that to estimate the temperature of each battery module.
[0010]
The correction means includes second internal resistance calculation means for calculating the internal resistance of the battery module that has detected the temperature based on the temperature detected by the temperature detection means, the calculated internal resistance, and the first Correction value setting means for setting a correction value based on the internal resistance of the corresponding battery module calculated by the internal resistance calculation means, and calculating by the first internal resistance calculation means using the set correction value By correcting the respective internal resistances, the temperature of each battery module can be derived from the corrected internal resistance and the remaining capacity.
According to the present invention, since the temperature detection means may be installed in at least one battery module, it is possible to suppress an increase in the circuit scale of the control computer and to reduce the cost. The “battery module” includes not only a battery formed by connecting a plurality of batteries in series or in parallel, but also a battery consisting of only a single battery.
[0011]
The battery assembly temperature detection method of the present invention includes:
A temperature detection method for detecting the temperature of each of a plurality of battery modules of an assembled battery formed by connecting a plurality of battery modules having at least one battery in series or in parallel,
An internal resistance and a remaining capacity of each battery module are obtained from a voltage between terminals of each of the plurality of battery modules and a current flowing through each of the plurality of battery modules, and the plurality of battery modules are obtained based on the internal resistance and the remaining capacity. Estimate the temperature of each
Detecting the temperature of some of the plurality of battery modules;
Derives the internal resistance of the battery module from the remaining capacity computed for battery module detects said detected temperature and the temperature, from this derived internal resistance and the computed internal resistance of the battery module Calculate the correction coefficient, calculate the correction coefficient to the internal resistance of each battery module to correct the internal resistance of each battery module , and derive the temperature of each battery module from the corrected internal resistance and remaining capacity. The gist.
[0012]
Since the temperature detection method for the assembled battery of the present invention corrects the temperature estimated based on the voltage and current between the terminals of each battery module based on the detected temperature, the temperature estimated from the voltage and current Even if the temperature differs from the actual temperature depending on the mode of use or the like, a more accurate temperature can be obtained as the detected value. In addition, since at least one battery module for detecting the temperature is sufficient, an increase in the circuit scale of the control computer can be suppressed and the cost can be reduced. The term “battery module” is the same as that of the temperature detection device for a battery pack of the present invention described above.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described using examples. FIG. 1 is a configuration diagram showing an outline of a configuration of a temperature detection device 20 for an assembled battery according to an embodiment of the present invention. As shown in the figure, the battery pack temperature detection device 20 of the embodiment includes a battery pack 22 formed by connecting a plurality of battery modules 1-n in series or in parallel, and the temperature of each battery module 1-n of the battery pack 22. And a battery control unit 30 for detecting.
[0014]
The plurality of battery modules 1-n configuring the assembled battery 22 are configured by connecting at least one chargeable / dischargeable secondary battery in series or in parallel. A temperature sensor 24 for detecting the temperature is attached to the battery module 1 of the assembled battery 22, and the detected value is input to the battery control unit 30.
[0015]
The battery control unit 30 measures the voltage V1-n between the terminals of the battery modules 1 to n of the assembled battery 22 and measures the current I flowing through the assembled battery 22, and the block voltage / current measuring device 32 and the blocks. Each block internal resistance SOC calculating device 34 for calculating the internal resistance R1-n and the remaining capacity SOC of each block (each battery module) from the voltage V1-n and current I measured by the voltage / current measuring device 32; The internal resistance R1-n calculated by each block internal resistance SOC calculation device 34 is corrected as necessary based on the temperature Ts1 of the battery module 1 detected by the temperature sensor 24, and the internal resistance R1-n before correction is corrected. Battery temperature estimation calculation for estimating the temperature T1-n of each battery module 1 to n based on the corrected internal resistance R1-n ′ and the remaining capacity SOC Device 36.
[0016]
Specifically, each block voltage / current measuring device 32 includes a current sensor that detects the current I flowing through the assembled battery 22 and a plurality of voltage sensors connected to the output terminals of each battery module 1-n. ing.
[0017]
Specifically, each block internal resistance SOC calculation device 34 and battery temperature estimation calculation device 36 are configured by a microcomputer mainly composed of a CPU as a hardware configuration, and are stored in advance in a ROM included in the microcomputer. The stored processing program and hardware configuration function together.
[0018]
Next, the operation of the temperature detection device 20 for the assembled battery of the embodiment thus configured will be described. FIG. 2 is a flowchart showing an example of a temperature detection processing routine executed by a microcomputer functioning as each block internal resistance SOC calculation device 34 or battery temperature estimation calculation device 36. This routine is repeatedly executed every predetermined time (for example, every 5 minutes).
[0019]
When this temperature detection processing routine is executed, the voltage V1-n of each battery module 1-n detected by each block voltage / current measuring device 32 and the assembled battery 22 are detected over a predetermined time (for example, 2 minutes). A process of reading the flowing current I is executed (step S100). Then, a process of calculating the internal resistance R1-n of each battery module 1-n based on the read voltage V1-n and current I is performed (step S102). The internal resistance R1-n can be calculated by linearly approximating the voltage-current characteristic from the voltage V1-n and the current I detected over a predetermined time and obtaining the slope thereof. An example of how the internal resistance R of the battery module is obtained from the voltage V and current I of the battery module detected over a predetermined time is shown in FIG.
[0020]
Next, a process for reading the remaining capacity SOC is executed (step S104). In the embodiment, the remaining capacity SOC is calculated by integrating the current I flowing through the assembled battery 22 by a routine (not shown) that is repeatedly executed every predetermined time, and the value is written in a predetermined address of the RAM of the microcomputer. Therefore, the remaining capacity SOC can be read by accessing a predetermined address in the RAM. Then, a process of deriving the temperature T1-n of each battery module 1-n from the remaining capacity SOC and the internal resistance R1-n is executed (step S106). In this process, the relationship between the internal resistance of the battery module, the remaining capacity SOC, and the temperature is obtained by experiments and stored in advance in a ROM included in the microcomputer as a characteristic map, and the remaining capacity SOC and the internal resistance R1-n. Is applied to this characteristic map to derive the temperature T1-n of the battery module 1-n. An example of how the battery temperature is obtained using an example of this characteristic map is shown in FIG. In FIG. 4, first, a characteristic map to be applied is determined from the value of the remaining capacity SOC, and the battery temperature is obtained by giving an internal resistance to the determined characteristic map.
[0021]
Next, a process of reading the temperature Ts1 of the battery module 1 detected by the temperature sensor 24 is performed (step S108), and a process of comparing the read temperature Ts1 with the derived temperature T1 of the battery module 1 is performed (step S110). . When the detected temperature Ts1 is equal to the derived temperature T1, it is determined that the battery has not deteriorated, and the routine ends with the temperature T1-n of the battery module 1-n derived in step S106 as the detected value.
[0022]
On the other hand, when the detected temperature Ts1 and the derived temperature T1 are not equal, it is determined that the battery has deteriorated, and the detected temperature Ts1 and the remaining capacity SOC are applied to the aforementioned characteristic map to Processing for deriving the internal resistance R1 ′ is performed (step S112). Subsequently, a process of calculating the correction coefficient k by dividing the derived internal resistance R1 ′ by the internal resistance R1 calculated in step S102 is performed (step S114). FIG. 5 illustrates how the correction coefficient k is calculated. When such a correction coefficient k is calculated, a process of correcting the internal resistance by multiplying the calculated correction coefficient k by each internal resistance R1-n calculated in step S102 is performed (step S116). Then, a process for deriving the temperature T1-n of each battery module 1-n by applying the corrected internal resistance R1-n ′ and the remaining capacity SOC to the characteristic map (see FIG. 4) is performed (step S118). This derived temperature T1-n is used as a detected value, and this routine is terminated.
[0023]
According to the assembled battery temperature detection device 20 of the embodiment described above, the temperature T1 of each battery module 1-n based on the internal resistance R1-n calculated based on the detected voltage V1-n and the current I. -N can be obtained. In addition, the temperature of the battery module 1 is detected by the temperature sensor 24, and the deterioration of the battery is determined from the detected temperature Ts1 and the derived temperature T1, and when the battery is deteriorated, the deterioration is determined based on the detected temperature Ts1. It can correct | amend and can obtain | require temperature T1-n of each battery module 1-n. As a result, the temperature T1-n of each battery module 1-n can be detected more accurately.
[0024]
Moreover, according to the temperature detection apparatus 20 of the assembled battery of the embodiment, the temperature sensor 24 is attached only to the battery module 1, so that it is simpler than the configuration in which the temperature sensor is attached to each battery module 1-n. It can be set as a structure and the cost for detecting temperature can be suppressed.
[0025]
In the assembled battery temperature detection device 20 of the embodiment, the remaining capacity SOC is calculated by another routine, but may be calculated by the same routine.
[0026]
The embodiments of the present invention have been described using the embodiments. However, the present invention is not limited to these embodiments, and can be implemented in various forms without departing from the gist of the present invention. Of course you get.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an outline of the configuration of an assembled battery temperature detection device 20 according to an embodiment of the present invention.
FIG. 2 is a flowchart showing an example of a temperature detection processing routine executed by a microcomputer functioning as each block internal resistance SOC calculation device 34 and battery temperature estimation calculation device 36;
FIG. 3 is an explanatory diagram showing an example of how the internal resistance R of a battery module is obtained from the voltage V and current I of the battery module detected over a predetermined time.
FIG. 4 is an explanatory diagram showing how the temperature is derived using a characteristic map showing an example of the relationship between the internal resistance of the battery module, the remaining capacity SOC, and the temperature.
FIG. 5 is an explanatory diagram showing an example of how a correction coefficient k is calculated.
[Explanation of symbols]
20 battery assembly temperature detection device, 22 battery assembly, 24 temperature sensor, 30 battery control unit, 32 each block voltage / current measurement device, 34 each block internal resistance SOC computation device, 36 battery temperature estimation computation device.

Claims (2)

少なくとも一つの電池を有する電池モジュールを複数直列または並列に接続してなる組電池の該複数の電池モジュールの各々の温度を検出する温度検出装置であって、
前記複数の電池モジュールの各々の端子間の電圧を検出する電圧検出手段と、
前記複数の電池モジュールの各々に流れる電流を検出する電流検出手段と、
前記電圧検出手段により検出された各電圧と前記電流検出手段により検出された各電流から各電池モジュールの内部抵抗及び残存容量を求め、この内部抵抗及び残存容量に基づいて前記複数の電池モジュールの各々の温度を推定する温度推定手段と、
前記複数の電池モジュールのうち一部の電池モジュールの温度を検出する温度検出手段と、
前記検出された温度と該温度を検出した電池モジュールについて演算された残存容量とからこの電池モジュールの内部抵抗を導出し、この導出された内部抵抗とこの電池モジュールの前記演算された内部抵抗とから補正係数を計算し、この補正係数を各電池モジュールの内部抵抗に演算して各電池モジュールの内部抵抗を補正し、補正後の内部抵抗と残存容量とから各電池モジュールの温度を導出する補正手段と、
を備えた
温度検出装置。
A temperature detection device for detecting the temperature of each of a plurality of battery modules of an assembled battery formed by connecting a plurality of battery modules having at least one battery in series or in parallel,
Voltage detecting means for detecting a voltage between terminals of each of the plurality of battery modules;
Current detection means for detecting current flowing in each of the plurality of battery modules;
An internal resistance and a remaining capacity of each battery module are obtained from each voltage detected by the voltage detecting means and each current detected by the current detecting means, and each of the plurality of battery modules is based on the internal resistance and the remaining capacity. Temperature estimation means for estimating the temperature of
Temperature detecting means for detecting the temperature of some of the battery modules ;
Derives the internal resistance of the battery module from the remaining capacity computed for battery module detects said detected temperature and the temperature, from this derived internal resistance and the computed internal resistance of the battery module Correction means that calculates a correction coefficient, calculates the correction coefficient to the internal resistance of each battery module to correct the internal resistance of each battery module, and derives the temperature of each battery module from the corrected internal resistance and the remaining capacity When,
Temperature detection device example Bei the.
少なくとも一つの電池を有する電池モジュールを複数直列または並列に接続してなる組電池の該複数の電池モジュールの各々の温度を検出する温度検出方法であって、A temperature detection method for detecting the temperature of each of a plurality of battery modules of an assembled battery formed by connecting a plurality of battery modules having at least one battery in series or in parallel,
前記複数の電池モジュールの各々の端子間の電圧と該複数の電池モジュールの各々に流れる電流から各電池モジュールの内部抵抗及び残存容量を求め、この内部抵抗及び残存容量に基づいて該複数の電池モジュールの各々の温度を推定し、An internal resistance and a remaining capacity of each battery module are obtained from a voltage between terminals of each of the plurality of battery modules and a current flowing through each of the plurality of battery modules, and the plurality of battery modules are obtained based on the internal resistance and the remaining capacity. Estimate the temperature of each
前記複数の電池モジュールのうち一部の電池モジュールの温度を検出し、Detecting the temperature of some of the plurality of battery modules;
前記検出された温度と該温度を検出した電池モジュールについて演算された残存容量とからこの電池モジュールの内部抵抗を導出し、この導出された内部抵抗とこの電池モジュールの前記演算された内部抵抗とから補正係数を計算し、この補正係数を各電池モジュールの内部抵抗に演算して各電池モジュールの内部抵抗を補正し、補正後の内部抵抗と残存容量とから各電池モジュールの温度を導出するThe internal resistance of the battery module is derived from the detected temperature and the remaining capacity calculated for the battery module that detected the temperature, and the internal resistance of the battery module and the calculated internal resistance of the battery module are derived. The correction coefficient is calculated, the correction coefficient is calculated for the internal resistance of each battery module to correct the internal resistance of each battery module, and the temperature of each battery module is derived from the corrected internal resistance and the remaining capacity.
温度検出方法。Temperature detection method.
JP25819499A 1999-09-13 1999-09-13 Battery detection device and temperature detection method Expired - Fee Related JP4383597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25819499A JP4383597B2 (en) 1999-09-13 1999-09-13 Battery detection device and temperature detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25819499A JP4383597B2 (en) 1999-09-13 1999-09-13 Battery detection device and temperature detection method

Publications (2)

Publication Number Publication Date
JP2001085071A JP2001085071A (en) 2001-03-30
JP4383597B2 true JP4383597B2 (en) 2009-12-16

Family

ID=17316826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25819499A Expired - Fee Related JP4383597B2 (en) 1999-09-13 1999-09-13 Battery detection device and temperature detection method

Country Status (1)

Country Link
JP (1) JP4383597B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4157317B2 (en) 2002-04-10 2008-10-01 株式会社日立製作所 Status detection device and various devices using the same
JP4770149B2 (en) * 2004-10-15 2011-09-14 日産自動車株式会社 Battery temperature detector
JP4767558B2 (en) 2005-03-07 2011-09-07 日立ビークルエナジー株式会社 Power supply state detection device, power supply device, and initial characteristic extraction device used for power supply device
JP5130608B2 (en) * 2005-05-31 2013-01-30 日産自動車株式会社 Battery control device
JP5261951B2 (en) * 2007-03-23 2013-08-14 パナソニック株式会社 Power storage device
JP5061839B2 (en) * 2007-10-17 2012-10-31 ソニー株式会社 Battery pack and temperature estimation method
JP5343512B2 (en) * 2008-10-30 2013-11-13 トヨタ自動車株式会社 Battery pack input / output control device
JP2010135075A (en) * 2008-12-02 2010-06-17 Calsonic Kansei Corp Method and device for estimating temperature of battery pack
CN102576914B (en) * 2009-10-14 2014-10-29 株式会社日立制作所 Battery control device and motor drive system
US8521456B2 (en) 2010-10-05 2013-08-27 Toyota Jidosha Kabushiki Kaisha State estimation method and state estimation apparatus of electric storage element
JP5741168B2 (en) * 2011-04-14 2015-07-01 トヨタ自動車株式会社 Power supply system, vehicle equipped with the same, and control method of power supply system
JP5874560B2 (en) * 2012-07-25 2016-03-02 株式会社デンソー Battery temperature calculation device
WO2014108971A1 (en) 2013-01-11 2014-07-17 アルプス・グリーンデバイス株式会社 Method for measuring temperature of electrical storage device
CN103869254B (en) * 2014-02-20 2018-04-17 北京九高科技有限公司 Lithium battery group SOC assay methods based on the control of inline diagnosis adaptive prediction
JP6382662B2 (en) * 2014-09-25 2018-08-29 プライムアースEvエナジー株式会社 Battery temperature estimation method and battery temperature estimation device
DE102017102668A1 (en) * 2017-02-10 2018-08-16 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and device for monitoring a temperature of a battery system
DE102019200062A1 (en) * 2018-12-20 2020-06-25 Continental Automotive Gmbh Battery sensor and method for operating a battery sensor
JP7097336B2 (en) * 2019-08-29 2022-07-07 株式会社日立製作所 Secondary battery module temperature estimation method, deterioration state estimation method and life prediction method, secondary battery module temperature estimation device, deterioration state estimation device and life prediction device, and charging device

Also Published As

Publication number Publication date
JP2001085071A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
JP4383597B2 (en) Battery detection device and temperature detection method
JP4793332B2 (en) Battery charge state estimation method
US6285163B1 (en) Means for estimating charged state of battery and method for estimating degraded state of battery
EP1906193B1 (en) Method and device for detecting charged state of battery
US10895602B2 (en) Battery assembly state estimation device and battery assembly state estimation method
US10310025B2 (en) Control device and control method for electric vehicle
US7531990B2 (en) Voltage detector for an assembled battery
US20040100227A1 (en) Apparatus and method for estimating charge rate of secondary cell
JP2003151643A (en) State determining apparatus for battery pack
US10649035B2 (en) Method for estimating the current and the state of charge of a battery pack or cell, without direct detection of current under operating conditions
JP3752888B2 (en) Battery state detection device
US5129258A (en) Method for determining temperature with the aid of the internal resistance of a lambda sensor
JP5163542B2 (en) Secondary battery input / output possible power estimation device
JP2021508817A (en) Shunt resistor current value correction system and method
JP2021012106A (en) SOC estimation device
US11226373B2 (en) Method for determining a state noise covariance matrix for adjusting an observer of the state of charge of a battery and corresponding device
JP6528598B2 (en) Diffusion resistance identification device for secondary battery
CN112858924A (en) Method and device for estimating residual energy of power battery, vehicle and storage medium
CN112189143B (en) Device for estimating the state of charge of a battery
KR20210050990A (en) Soc estimation method and baterry system using the same
JP5412891B2 (en) Secondary battery control device
JP4802414B2 (en) Battery remaining capacity meter
US20230324465A1 (en) Method for calibrating a plurality of current sensors, battery system
JP4632963B2 (en) Voltage measuring device
JP2023030328A (en) Battery state estimation method and battery state estimation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees