JP4802414B2 - Battery remaining capacity meter - Google Patents

Battery remaining capacity meter Download PDF

Info

Publication number
JP4802414B2
JP4802414B2 JP2001237666A JP2001237666A JP4802414B2 JP 4802414 B2 JP4802414 B2 JP 4802414B2 JP 2001237666 A JP2001237666 A JP 2001237666A JP 2001237666 A JP2001237666 A JP 2001237666A JP 4802414 B2 JP4802414 B2 JP 4802414B2
Authority
JP
Japan
Prior art keywords
battery
remaining capacity
temperature
capacity
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001237666A
Other languages
Japanese (ja)
Other versions
JP2003051341A (en
Inventor
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001237666A priority Critical patent/JP4802414B2/en
Publication of JP2003051341A publication Critical patent/JP2003051341A/en
Application granted granted Critical
Publication of JP4802414B2 publication Critical patent/JP4802414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電池の残容量を検出する装置に関する。
【0002】
【従来の技術】
電池の残容量を検出する装置が知られている(例えば、特開平06−174808号公報参照)。電池の容量は電池の温度に依存するため、この装置では電池の温度を検出して残存容量を補正している。
【0003】
【発明が解決しようとする課題】
しかしながら、上述した従来の電池の残容量計では、電池の温度を検出して残存容量を補正しているので、放電により電池の温度が上昇すると残存容量が必要以上に補正されて増加し、正確な残存容量を検出できないという問題がある。
【0004】
本発明の目的は、電池の残存容量を正確に検出することにある。
【0005】
【課題を解決するための手段】
(1) 請求項1の発明は、電池の残存容量を繰り返し算出し、電池の温度を検出して残存容量を補正する電池の残容量計に適用され、電池の放電容量を算出する放電容量算出手段と、電池の放電容量に対する電池温度の上昇率を算出する温度上昇率算出手段と、電池の放電容量に対する温度上昇率に基づいて、電池の温度上昇が放電にともなう温度上昇か否かを判定する判定手段と、電池の温度上昇が放電にともなう温度上昇であると判定されると、残存容量の前回の算出値と今回の算出値の内の少ない方を今回の残存容量算出値として表示する制御手段とを備える。
(2) 請求項2の発明は、電池の残存容量を繰り返し算出し、電池の温度を検出して残存容量を補正する電池の残容量計に適用され、電池の電圧と電流に基づいて電池の最大放電可能出力を繰り返し算出する放電可能出力算出手段と、電池の最大放電可能出力の今回の算出値が前回の算出値より減少していない場合は、前回の残存容量算出値を今回の残存容量算出値として表示する制御手段とを備える。
(3) 請求項3の発明は、電池の残存容量を繰り返し算出し、電池の温度を検出して残存容量を補正する電池の残容量計に適用され、電池の電圧と電流に基づいて電池の内部抵抗を算出する内部抵抗算出手段と、電池の内部抵抗の今回の算出値が前回の算出値より減少している場合は、前回の残存容量算出値を今回の残存容量算出値として表示する制御手段とを備える。
【0006】
【発明の効果】
(1) 請求項1の発明によれば、放電により電池の温度が上昇しても残存容量が不必要に補正されて増加するようなことがなく、残存容量を正確に検出することができる。
(2) 請求項2および請求項3の発明によれば、請求項1の上記効果に加え、温度検出器で電池外部の温度を検出するよりも電池内部の温度上昇をより早く検出することができ、残存容量が多い状態から残存容量を正確に検出することができる。さらに、低温時における残存容量の算出精度が従来の装置よりも向上する。
【0007】
【発明の実施の形態】
《発明の第1の実施の形態》
図1は第1の実施の形態の構成を示す。組電池1は例えばリチウムイオン電池の複数の単電池(セル)が直列に接続され、負荷2に直流電力を供給する。なお、組電池1を構成する単電池の種類はリチウムイオン電池に限定されない。また、例えば電気自動車の場合はモーターが負荷2に相当する。電圧検出回路3は組電池1の両端の電圧Vを検出し、電流検出回路4は組電池1から負荷2へ流れる電流Aを検出する。温度検出回路5は組電池1の温度θを検出する。
【0008】
演算回路6はマイクロコンピューターとメモリやADコンバーターなどの周辺部品から構成され、組電池1の電圧V、電流Aおよび温度θに基づいて残存容量を算出し、表示器7に表示する。
【0009】
図2は残容量検出プログラムを示すフローチャートである。このフローチャートにより、第1の実施の形態の動作を説明する。演算回路6は所定時間ごとにこの残容量検出プログラムを実行する。
【0010】
ステップ1において、電圧検出回路3、電流検出回路4および温度検出回路5により組電池1の両端電圧V、負荷2へ流れる電流Aおよび組電池1の温度θを検出する。続くステップ2では、負荷電流Aを積算することによってこれまで放電した放電容量を算出する。さらにステップ3で、予め測定した組電池1の温度θに対する放電可能容量のマップから組電池1の検出温度θに対する放電可能容量を表引き演算する。
【0011】
図3は組電池1の温度θ[℃]に対する放電可能容量[%]の関係を示す。一般に、電池の温度が下がるほど電池の放電可能容量が低下する。図3に示す例では、電池温度が25℃のときに放電可能容量は100%に近い値を示すが、電池温度が−25℃まで下がると放電可能容量は50%まで低下する。
【0012】
ステップ4において、と、ステップ3で算出した放電可能容量からステップ2で算出した放電容量を減じて組電池1の残存容量を算出する。例えば、組電池1の放電可能容量が60Ahで、これまで放電した放電容量が30Ahの場合は、残存容量は30Ahすなわち50%である。
【0013】
ステップ5では、今回放電した放電容量に対する電池温度上昇率[℃/Ah]を算出する。続くステップ6では、ステップ5で算出した電池温度上昇率が予め定めた判定基準値以上かどうかを判定する。ここで、判定基準値は電池により異なるが、例えば放電容量1%当たり約0.4℃の値である。ステップ7で、電池温度上昇率がこの判定基準値未満の場合には、ステップ4で算出した残存容量を今回の残存容量検出値とする。
【0014】
一方、ステップ8では、電池温度上昇率が上記判定基準値以上の場合は、これまで表示器7に表示していた残存容量と上記ステップ4で算出した残存容量とを比較する。ステップ9において、比較した残存容量の内の少ない方を今回の残存容量検出値とする。そして、ステップ10で、ステップ7またはステップ9で決定した今回の残存容量の値[%]を表示器7に表示する。
【0015】
図4に、第1の実施の形態の残存容量の検出結果を従来の残存容量の検出結果と比較して示す。図の横軸は電池の放電容量[%]であり、0がまったく放電していない状態である。縦軸は電池の残存容量[%]であり、放電容量が0のときは残存容量は100%である。電池の温度上昇がない場合は、放電容量が増加すると残存容量は直線的に減少する。放電容量が大きい場合は電池の温度上昇が大きいため、電池の放電可能容量が増加する。このため、図中の従来例に示すように、電池が放電しているにも拘わらず残存容量が増加するという現象が発生する。これに対し第1の実施の形態によれば、図中の本発明に示すように、従来の装置のような現象は発生しない。
【0016】
この第1の実施の形態によれば、放電容量に対する電池の温度上昇率(℃/Ah、℃/Wh、℃/%)に基づいて、電池の温度上昇が放電にともなう温度上昇か否かを判定し、放電にともなう温度上昇であると判定されると、残存容量の前回の算出値と今回の算出値の内の少ない方を今回の残存容量算出値として表示するようにしたので、放電により電池の温度が上昇しても残存容量が不必要に補正されて増加するようなことがなく、残存容量を正確に検出することができる。
【0017】
電池が放電しているときに残存容量が増加するという現象を防止するためには、放電中に残存容量が増加するときは残存容量を一定にするという方法も考えられる。しかし、残存容量の算出は電池温度の算出に比べ精度が悪いため、本発明の方がより残存容量の多い状態から、放電による温度上昇にともなって不必要に残存容量が補正されるのを防止できる。
【0018】
なお、上述した第1の実施の形態では残存容量の算出に電流積算を用いているが、電流積算に限らず、エネルギー(電力)を積算して残存容量を求める方法や、放電可能出力を算出して残存容量を求める方法など、すべての残存容量算出方法に適用可能である。
【0019】
エネルギーを積算して残存容量を求める場合には、残存容量検出プログラムを実行するたびに電圧Vと電流Aを検出し、電圧Vと電流Aの積から出力(エネルギー)を求め、これまで放電した出力を積算して残存容量を求める。一方、放電可能出力を算出して残存容量を求める場合には、ある期間、電圧Vと電流Aをサンプリングしてそれらを直線回帰し、回帰直線が電池の最低電圧と交わる点を最大放電可能出力とする。そして、最大放電可能出力からこれまで放電した出力を減じて電池の残存容量を求める。
【0020】
《発明の第2の実施の形態》
電池の残存容量を算出する第2の実施の形態を説明する。なお、この第2の実施の形態の構成は図1に示す第1の実施の形態の構成と同様であり、図示と説明を省略する。
【0021】
図5は残存容量検出プログラムを示すフローチャートである。このフローチャートにより、第2の実施の形態の動作を説明する。演算回路6は所定時間ごとにこの残容量検出プログラムを実行する。
【0022】
ステップ11において、電圧検出回路3、電流検出回路4および温度検出回路5により組電池1の両端電圧V、負荷2へ流れる電流Aおよび組電池1の温度θを検出する。続くステップ12では電圧Vと電流Aに基づいて放電可能出力を算出する。電池の最大放電可能出力の算出方法は、ある期間、電流と電圧をサンプリングし、それらを直線回帰することにより求める。
【0023】
図6は組電池1のある状態における電流と電圧の関係を示す。図中の回帰直線が組電池1の最低電圧と交わる点が組電池1の最大放電可能出力である。
【0024】
ステップ13では、ステップ12で算出した最大放電可能出力と前回算出した放電可能出力との比較を行う。今回算出した最大放電可能出力が前回算出した最大放電可能出力より減少していない場合には、ステップ14で前回算出した残存容量を用いる。
【0025】
一方、今回算出した最大放電可能出力が前回算出した最大放電可能出力より減少している場合は、ステップ15において、そのときの組電池1の温度θにおける放電容量と最大放電可能出力の関係により組電池1の残存容量を算出する。図7に、組電池1のある温度θにおける放電容量[%]と最大放電可能出力の関係を示す。そして、ステップ16で、ステップ14またはステップ15で求めた残存容量の値[%]を表示器7に表示する。
【0026】
図8に、第2の実施の形態の残存容量の算出結果を従来の残存容量の算出結果と比較して示す。図の横軸は電池の放電容量[%]であり、0がまったく放電していない状態である。縦軸は電池の残存容量[%]であり、放電容量が0のときは残存容量は100%である。電池の温度上昇がない場合は、放電容量が増加すると残存容量は直線的に減少する。放電電流が大きい場合は電池の温度上昇が大きいため、電池の放電可能容量が増加する。このため、図中の従来例に示すように、電池が放電しているにも拘わらず、残存容量が増加するという現象が発生する。これに対し第2の実施の形態によれば、図中の本発明に示すように従来装置のような現象は発生しない。
【0027】
第2の実施の形態によれば、電池の最大放電可能出力の今回の算出値が前回の算出値より減少していない場合は、前回の残存容量算出値を今回の残存容量算出値として表示するようにしたので、放電により電池の温度が上昇しても残存容量が不必要に補正されて増加するようなことがなく、残存容量を正確に検出することができる。
【0028】
第1の実施の形態で説明した放電容量に対する温度上昇率により残存容量の値を一定にする方法に比べ、この第2の実施の形態では放電可能出力により判断する方法としたので、温度検出器で電池外部の温度を検出するよりも電池内部の温度上昇をより早く検出することができ、第1の実施の形態よりも残存容量が多い状態から、放電による電池の温度上昇により不必要に残存容量が補正されるのを防止でき、残存容量が多い状態から残存容量を正確に検出することができる。低温時における残存容量の算出精度が従来の装置よりも向上する。
【0029】
《発明の第3の実施の形態》
電池の内部抵抗を用いて残存容量を算出する第3の実施の形態を説明する。なお、この第3の実施の形態の構成は図1に示す第1の実施の形態の構成と同様であり、図示と説明を省略する。
【0030】
図9は残存容量検出プログラムを示すフローチャートである。このフローチャートにより、第3の実施の形態の動作を説明する。なお、図2に示す第1の実施の形態の処理と同様な処理を行うステップに対しては同一の符号を付して相違点を中心に説明する。演算回路6は所定時間ごとにこの残容量検出プログラムを実行する。
【0031】
ステップ1〜4において、上述したように、電流積算によりこれまで放電した放電容量を算出し、電池温度と放電可能容量の関係より放電可能容量を算出する。そして、放電容量と放電可能容量の関係より電池の残存容量を算出する。
【0032】
次に、ステップ21において、組電池1の電圧Vと電流Aの関係により組電池1の内部抵抗を算出する。続くステップ22では今回算出した内部抵抗と前回算出した内部抵抗を比較する。今回算出した内部抵抗が前回算出した内部抵抗より減少していない場合は、ステップ23で、上記ステップ4で算出した残存容量を用いる。一方、今回算出した内部抵抗が前回算出した内部抵抗より減少している場合は、ステップ24で前回算出した残存容量を用いる。そしてステップ25で、ステップ23またはステップ24で求めた残存容量の値[%]を表示器7に表示する。
【0033】
第3の実施の形態によれば、電池の内部抵抗の今回の算出値が前回の算出値より減少している場合は、前回の残存容量算出値を今回の残存容量算出値として表示するようにしたので、放電により電池の温度が上昇しても残存容量が不必要に補正されて増加するようなことがなく、残存容量を正確に検出することができる。また、第2の実施の形態と同様に、温度検出器で電池外部の温度を検出するよりも電池内部の温度上昇をより早く検出することができ、残存容量が多い状態から残存容量を正確に検出することができる。さらに、低温時における残存容量の算出精度が従来の装置よりも向上する。
【0034】
以上の実施の形態の構成において、演算回路6が放電容量算出手段、温度上昇率算出手段、判定手段、制御手段、放電可能出力算出手段および内部抵抗算出手段を構成する。
【図面の簡単な説明】
【図1】 第1の実施の形態の構成を示す図である。
【図2】 第1の実施の形態の残存容量検出プログラムを示すフローチャートである。
【図3】 組電池温度に対する放電可能容量の特性を示す図である。
【図4】 第1の実施の形態と従来装置の残存容量の算出結果を示す図である。
【図5】 第2の実施の形態の残存容量検出プログラムを示すフローチートである。
【図6】 電池の電圧と電流により最大出力を求める方法を示す図である。
【図7】 組電池のある温度における放電容量と最大放電可能出力の関係を示す図である。
【図8】 第2の実施の形態と従来装置の残存容量の算出結果を示す図である。
【図9】 第3の実施の形態の残存容量検出プログラムを示すフローチャートである
【符号の説明】
1 組電池
2 負荷
3 電圧検出回路
4 電流検出回路
5 温度検出回路
6 演算回路
7 表示器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for detecting the remaining capacity of a battery.
[0002]
[Prior art]
An apparatus for detecting the remaining capacity of a battery is known (see, for example, Japanese Patent Laid-Open No. 06-174808). Since the capacity of the battery depends on the temperature of the battery, this apparatus detects the temperature of the battery and corrects the remaining capacity.
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional battery remaining capacity meter, the remaining capacity is corrected by detecting the battery temperature. Therefore, when the battery temperature rises due to discharge, the remaining capacity is corrected and increased more than necessary. There is a problem that the remaining capacity cannot be detected.
[0004]
An object of the present invention is to accurately detect the remaining capacity of a battery.
[0005]
[Means for Solving the Problems]
(1) The invention of claim 1 is applied to a battery remaining capacity meter that repeatedly calculates the remaining capacity of the battery, corrects the remaining capacity by detecting the temperature of the battery, and calculates the discharge capacity of the battery. And a temperature rise rate calculating means for calculating a rate of increase of the battery temperature with respect to the battery discharge capacity, and determining whether the battery temperature rise is a temperature rise due to the discharge based on the temperature rise rate with respect to the battery discharge capacity. If the battery temperature increase is determined to be a temperature increase due to discharge, the lesser of the previous calculated value and the current calculated value of the remaining capacity is displayed as the calculated calculated remaining capacity value. Control means.
(2) The invention of claim 2 is applied to a battery remaining capacity meter that repeatedly calculates the remaining capacity of the battery, detects the temperature of the battery, and corrects the remaining capacity, and based on the voltage and current of the battery, Dischargeable output calculation means that repeatedly calculates the maximum dischargeable output, and if the current calculated value of the battery's maximum dischargeable output is not lower than the previous calculated value, the previous remaining capacity calculated value is the current remaining capacity Control means for displaying as a calculated value.
(3) The invention of claim 3 is applied to a battery remaining capacity meter that repeatedly calculates the remaining capacity of the battery, detects the temperature of the battery and corrects the remaining capacity, and based on the voltage and current of the battery, Internal resistance calculation means for calculating internal resistance, and control that displays the previous remaining capacity calculation value as the current remaining capacity calculation value when the current calculation value of the battery internal resistance is lower than the previous calculation value Means.
[0006]
【The invention's effect】
(1) According to the invention of claim 1, even if the temperature of the battery rises due to discharge, the remaining capacity is not unnecessarily corrected and increased, and the remaining capacity can be detected accurately.
(2) According to the invention of claim 2 and claim 3, in addition to the effect of claim 1, it is possible to detect the temperature rise inside the battery earlier than the temperature detector detects the temperature outside the battery. The remaining capacity can be accurately detected from a state where the remaining capacity is large. Furthermore, the calculation accuracy of the remaining capacity at a low temperature is improved as compared with the conventional apparatus.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
<< First Embodiment of the Invention >>
FIG. 1 shows the configuration of the first embodiment. In the assembled battery 1, for example, a plurality of single cells (cells) of lithium ion batteries are connected in series, and DC power is supplied to the load 2. In addition, the kind of single battery which comprises the assembled battery 1 is not limited to a lithium ion battery. For example, in the case of an electric vehicle, the motor corresponds to the load 2. The voltage detection circuit 3 detects the voltage V across the assembled battery 1, and the current detection circuit 4 detects the current A flowing from the assembled battery 1 to the load 2. The temperature detection circuit 5 detects the temperature θ of the assembled battery 1.
[0008]
The arithmetic circuit 6 includes a microcomputer and peripheral components such as a memory and an AD converter, calculates a remaining capacity based on the voltage V, current A, and temperature θ of the assembled battery 1 and displays it on the display 7.
[0009]
FIG. 2 is a flowchart showing the remaining capacity detection program. The operation of the first embodiment will be described with reference to this flowchart. The arithmetic circuit 6 executes this remaining capacity detection program every predetermined time.
[0010]
In step 1, the voltage detection circuit 3, the current detection circuit 4, and the temperature detection circuit 5 detect the voltage V across the assembled battery 1, the current A flowing to the load 2, and the temperature θ of the assembled battery 1. In the subsequent step 2, the discharge capacity discharged so far is calculated by integrating the load current A. Further, in step 3, the dischargeable capacity with respect to the detected temperature θ of the assembled battery 1 is calculated from a map of the dischargeable capacity with respect to the temperature θ of the assembled battery 1 measured in advance.
[0011]
FIG. 3 shows the relationship of the dischargeable capacity [%] with respect to the temperature θ [° C.] of the assembled battery 1. Generally, the dischargeable capacity of a battery decreases as the temperature of the battery decreases. In the example shown in FIG. 3, the dischargeable capacity shows a value close to 100% when the battery temperature is 25 ° C., but the dischargeable capacity decreases to 50% when the battery temperature is lowered to −25 ° C.
[0012]
In step 4, the remaining capacity of the battery pack 1 is calculated by subtracting the discharge capacity calculated in step 2 from the dischargeable capacity calculated in step 3. For example, when the dischargeable capacity of the battery pack 1 is 60 Ah and the discharge capacity discharged so far is 30 Ah, the remaining capacity is 30 Ah, that is, 50%.
[0013]
In step 5, the battery temperature increase rate [° C./Ah] with respect to the discharge capacity discharged this time is calculated. In subsequent step 6, it is determined whether or not the battery temperature increase rate calculated in step 5 is greater than or equal to a predetermined determination reference value. Here, the determination reference value varies depending on the battery, but is, for example, a value of about 0.4 ° C. per 1% of the discharge capacity. If the battery temperature increase rate is less than the determination reference value in step 7, the remaining capacity calculated in step 4 is set as the current remaining capacity detection value.
[0014]
On the other hand, in Step 8, when the battery temperature increase rate is equal to or higher than the determination reference value, the remaining capacity displayed on the display unit 7 is compared with the remaining capacity calculated in Step 4 above. In step 9, the smaller of the compared remaining capacities is set as the current remaining capacity detection value. In step 10, the current remaining capacity value [%] determined in step 7 or 9 is displayed on the display 7.
[0015]
FIG. 4 shows the detection result of the remaining capacity of the first embodiment in comparison with the detection result of the conventional remaining capacity. The horizontal axis of the figure is the discharge capacity [%] of the battery, where 0 is not discharged at all. The vertical axis represents the remaining capacity [%] of the battery. When the discharge capacity is 0, the remaining capacity is 100%. When the battery temperature does not rise, the remaining capacity decreases linearly as the discharge capacity increases. When the discharge capacity is large, the temperature rise of the battery is large, so that the dischargeable capacity of the battery increases. For this reason, as shown in the conventional example in the figure, a phenomenon occurs in which the remaining capacity increases even though the battery is discharged. On the other hand, according to the first embodiment, as shown in the present invention in the figure, a phenomenon unlike the conventional apparatus does not occur.
[0016]
According to the first embodiment, based on the rate of battery temperature increase with respect to the discharge capacity (° C./Ah, ° C./Wh, ° C./%), it is determined whether or not the battery temperature increase is a temperature increase due to discharge. When it is determined that the temperature rises due to discharge, the lesser of the previous calculated value of the remaining capacity and the current calculated value is displayed as the calculated value of the remaining capacity. Even if the battery temperature rises, the remaining capacity is not unnecessarily corrected and increased, and the remaining capacity can be detected accurately.
[0017]
In order to prevent the phenomenon that the remaining capacity increases when the battery is discharged, a method of making the remaining capacity constant when the remaining capacity increases during discharging can be considered. However, since the calculation of the remaining capacity is less accurate than the calculation of the battery temperature, the present invention prevents the remaining capacity from being unnecessarily corrected as the temperature rises due to discharge from the state where the remaining capacity is higher. it can.
[0018]
In the first embodiment described above, current integration is used to calculate the remaining capacity. However, the present invention is not limited to current integration, and a method of calculating remaining capacity by integrating energy (electric power) or a dischargeable output is calculated. Thus, the present invention can be applied to all remaining capacity calculation methods such as a method for obtaining the remaining capacity.
[0019]
When calculating the remaining capacity by integrating the energy, the voltage V and the current A are detected every time the remaining capacity detection program is executed, the output (energy) is obtained from the product of the voltage V and the current A, and the discharge has been performed so far. Accumulate the output to determine the remaining capacity. On the other hand, when the dischargeable output is calculated to determine the remaining capacity, the voltage V and current A are sampled for a certain period, and they are linearly regressed. The point at which the regression line intersects the minimum battery voltage is the maximum dischargeable output. And Then, the remaining capacity of the battery is obtained by subtracting the output discharged so far from the maximum dischargeable output.
[0020]
<< Second Embodiment of the Invention >>
A second embodiment for calculating the remaining capacity of the battery will be described. The configuration of the second embodiment is the same as that of the first embodiment shown in FIG. 1, and illustration and description thereof are omitted.
[0021]
FIG. 5 is a flowchart showing the remaining capacity detection program. The operation of the second embodiment will be described with reference to this flowchart. The arithmetic circuit 6 executes this remaining capacity detection program every predetermined time.
[0022]
In step 11, the voltage detection circuit 3, the current detection circuit 4, and the temperature detection circuit 5 detect the voltage V across the assembled battery 1, the current A flowing to the load 2, and the temperature θ of the assembled battery 1. In the following step 12, a dischargeable output is calculated based on the voltage V and the current A. The battery maximum dischargeable output is calculated by sampling current and voltage for a certain period and performing linear regression on them.
[0023]
FIG. 6 shows the relationship between current and voltage in a certain state of the assembled battery 1. The point at which the regression line in the figure intersects the lowest voltage of the assembled battery 1 is the maximum dischargeable output of the assembled battery 1.
[0024]
In step 13, the maximum dischargeable output calculated in step 12 is compared with the previously calculated dischargeable output. When the maximum dischargeable output calculated this time is not lower than the previously calculated maximum dischargeable output, the remaining capacity calculated last time in step 14 is used.
[0025]
On the other hand, when the maximum dischargeable output calculated this time is smaller than the previously calculated maximum dischargeable output, in step 15, the set is determined based on the relationship between the discharge capacity at the temperature θ of the assembled battery 1 and the maximum dischargeable output. The remaining capacity of the battery 1 is calculated. FIG. 7 shows the relationship between the discharge capacity [%] of the assembled battery 1 at a certain temperature θ and the maximum dischargeable output. In step 16, the remaining capacity value [%] obtained in step 14 or step 15 is displayed on the display 7.
[0026]
FIG. 8 shows the calculation result of the remaining capacity of the second embodiment in comparison with the conventional calculation result of the remaining capacity. The horizontal axis of the figure is the discharge capacity [%] of the battery, where 0 is not discharged at all. The vertical axis represents the remaining capacity [%] of the battery. When the discharge capacity is 0, the remaining capacity is 100%. When the battery temperature does not rise, the remaining capacity decreases linearly as the discharge capacity increases. When the discharge current is large, the temperature rise of the battery is large, so that the dischargeable capacity of the battery increases. For this reason, as shown in the conventional example in the figure, a phenomenon occurs in which the remaining capacity increases even though the battery is discharged. On the other hand, according to the second embodiment, the phenomenon as in the conventional apparatus does not occur as shown in the present invention in the figure.
[0027]
According to the second embodiment, when the current calculated value of the maximum dischargeable battery output is not lower than the previous calculated value, the previous remaining capacity calculated value is displayed as the current remaining capacity calculated value. Thus, even if the battery temperature rises due to discharge, the remaining capacity is not unnecessarily corrected and increased, and the remaining capacity can be accurately detected.
[0028]
Compared with the method of making the value of the remaining capacity constant by the rate of temperature increase with respect to the discharge capacity described in the first embodiment, the second embodiment uses the method of judging by the dischargeable output, so the temperature detector Therefore, the temperature inside the battery can be detected more quickly than when the temperature outside the battery is detected, and the remaining capacity is higher than in the first embodiment. The capacity can be prevented from being corrected, and the remaining capacity can be accurately detected from a state where the remaining capacity is large. The calculation accuracy of the remaining capacity at a low temperature is improved as compared with the conventional apparatus.
[0029]
<< Third Embodiment of the Invention >>
A third embodiment for calculating the remaining capacity using the internal resistance of the battery will be described. The configuration of the third embodiment is the same as that of the first embodiment shown in FIG. 1, and illustration and description thereof are omitted.
[0030]
FIG. 9 is a flowchart showing the remaining capacity detection program. The operation of the third embodiment will be described with reference to this flowchart. In addition, the same code | symbol is attached | subjected to the step which performs the process similar to the process of 1st Embodiment shown in FIG. 2, and it demonstrates centering on difference. The arithmetic circuit 6 executes this remaining capacity detection program every predetermined time.
[0031]
In steps 1 to 4, as described above, the discharge capacity that has been discharged so far is calculated by current integration, and the dischargeable capacity is calculated from the relationship between the battery temperature and the dischargeable capacity. Then, the remaining capacity of the battery is calculated from the relationship between the discharge capacity and the dischargeable capacity.
[0032]
Next, in step 21, the internal resistance of the assembled battery 1 is calculated from the relationship between the voltage V and the current A of the assembled battery 1. In the subsequent step 22, the internal resistance calculated this time is compared with the internal resistance calculated last time. If the internal resistance calculated this time is not lower than the previously calculated internal resistance, the remaining capacity calculated in step 4 is used in step 23. On the other hand, if the internal resistance calculated this time is less than the internal resistance calculated last time, the remaining capacity calculated last time in step 24 is used. In step 25, the remaining capacity value [%] obtained in step 23 or 24 is displayed on the display 7.
[0033]
According to the third embodiment, when the current calculated value of the internal resistance of the battery is smaller than the previous calculated value, the previous remaining capacity calculated value is displayed as the current remaining capacity calculated value. Therefore, even if the battery temperature rises due to discharge, the remaining capacity is not unnecessarily corrected and increased, and the remaining capacity can be accurately detected. In addition, as in the second embodiment, the temperature rise inside the battery can be detected earlier than when the temperature detector detects the temperature outside the battery, and the remaining capacity can be accurately determined from the state where the remaining capacity is large. Can be detected. Furthermore, the calculation accuracy of the remaining capacity at a low temperature is improved as compared with the conventional apparatus.
[0034]
In the configuration of the above embodiment, the arithmetic circuit 6 constitutes a discharge capacity calculation means, a temperature increase rate calculation means, a determination means, a control means, a dischargeable output calculation means, and an internal resistance calculation means.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a first exemplary embodiment.
FIG. 2 is a flowchart showing a remaining capacity detection program according to the first embodiment.
FIG. 3 is a diagram showing a characteristic of dischargeable capacity with respect to an assembled battery temperature.
FIG. 4 is a diagram showing a calculation result of remaining capacity of the first embodiment and the conventional apparatus.
FIG. 5 is a flowchart showing a remaining capacity detection program according to the second embodiment;
FIG. 6 is a diagram showing a method for obtaining a maximum output from a battery voltage and current.
FIG. 7 is a diagram showing the relationship between the discharge capacity at a certain temperature of a battery pack and the maximum dischargeable output.
FIG. 8 is a diagram showing a calculation result of remaining capacity of the second embodiment and a conventional apparatus.
FIG. 9 is a flowchart showing a remaining capacity detection program according to the third embodiment.
1 assembled battery 2 load 3 voltage detection circuit 4 current detection circuit 5 temperature detection circuit 6 arithmetic circuit 7 indicator

Claims (3)

電池の残存容量を繰り返し算出し、電池の温度を検出して残存容量を補正する電池の残容量計において、
電池の放電容量を算出する放電容量算出手段と、
電池の放電容量に対する電池温度の上昇率を算出する温度上昇率算出手段と、
電池の放電容量に対する温度上昇率に基づいて、電池の温度上昇が放電にともなう温度上昇か否かを判定する判定手段と、
電池の温度上昇が放電にともなう温度上昇であると判定されると、残存容量の前回の算出値と今回の算出値の内の少ない方を今回の残存容量算出値として表示する制御手段とを備えることを特徴とする電池の残容量計。
In the battery remaining capacity meter that repeatedly calculates the remaining capacity of the battery, detects the temperature of the battery and corrects the remaining capacity,
Discharge capacity calculating means for calculating the discharge capacity of the battery;
A temperature increase rate calculating means for calculating an increase rate of the battery temperature relative to the discharge capacity of the battery;
Based on the rate of temperature increase with respect to the discharge capacity of the battery, determination means for determining whether or not the temperature increase of the battery is a temperature increase accompanying discharge;
When it is determined that the temperature rise of the battery is a temperature rise due to discharging, a control means is provided for displaying the lesser of the previous calculated value of the remaining capacity and the current calculated value as the calculated value of the remaining capacity. A remaining capacity meter for a battery.
電池の残存容量を繰り返し算出し、電池の温度を検出して残存容量を補正する電池の残容量計において、
電池の電圧と電流に基づいて電池の最大放電可能出力を繰り返し算出する放電可能出力算出手段と、
電池の最大放電可能出力の今回の算出値が前回の算出値より減少していない場合は、前回の残存容量算出値を今回の残存容量算出値として表示する制御手段とを備えることを特徴とする電池の残容量計。
In the battery remaining capacity meter that repeatedly calculates the remaining capacity of the battery, detects the temperature of the battery and corrects the remaining capacity,
Dischargeable output calculating means for repeatedly calculating the maximum dischargeable output of the battery based on the voltage and current of the battery;
And a control means for displaying the previous remaining capacity calculation value as the current remaining capacity calculation value when the current calculation value of the maximum dischargeable battery output is not reduced from the previous calculation value. Battery capacity meter.
電池の残存容量を繰り返し算出し、電池の温度を検出して残存容量を補正する電池の残容量計において、
電池の電圧と電流に基づいて電池の内部抵抗を算出する内部抵抗算出手段と、
電池の内部抵抗の今回の算出値が前回の算出値より減少している場合は、前回の残存容量算出値を今回の残存容量算出値として表示する制御手段とを備えることを特徴とする電池の残容量計。
In the battery remaining capacity meter that repeatedly calculates the remaining capacity of the battery, detects the temperature of the battery and corrects the remaining capacity,
Internal resistance calculating means for calculating the internal resistance of the battery based on the voltage and current of the battery;
Control means for displaying the previous remaining capacity calculation value as the current remaining capacity calculation value when the current calculation value of the internal resistance of the battery is lower than the previous calculation value. Remaining capacity meter.
JP2001237666A 2001-08-06 2001-08-06 Battery remaining capacity meter Expired - Lifetime JP4802414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001237666A JP4802414B2 (en) 2001-08-06 2001-08-06 Battery remaining capacity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001237666A JP4802414B2 (en) 2001-08-06 2001-08-06 Battery remaining capacity meter

Publications (2)

Publication Number Publication Date
JP2003051341A JP2003051341A (en) 2003-02-21
JP4802414B2 true JP4802414B2 (en) 2011-10-26

Family

ID=19068706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001237666A Expired - Lifetime JP4802414B2 (en) 2001-08-06 2001-08-06 Battery remaining capacity meter

Country Status (1)

Country Link
JP (1) JP4802414B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696780B1 (en) 2004-11-29 2007-03-19 삼성에스디아이 주식회사 Battery monitoring device and its method
KR100686794B1 (en) 2005-01-25 2007-02-23 삼성에스디아이 주식회사 Battery monitoring system and its method
JP4967382B2 (en) * 2006-03-08 2012-07-04 日産自動車株式会社 Assembled battery
KR102517117B1 (en) * 2019-03-26 2023-04-03 주식회사 엘지에너지솔루션 Process of Capacity Calculation Method of Lithium Secondary Battery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2621115B2 (en) * 1987-11-25 1997-06-18 松下電工株式会社 Charger control circuit
JPH03163375A (en) * 1989-11-22 1991-07-15 Kyocera Corp Residual capacity display system of secondary battery
JPH0755903A (en) * 1993-06-08 1995-03-03 Honda Motor Co Ltd Residual capacity monitor for battery
JPH0883628A (en) * 1994-09-09 1996-03-26 Mitsubishi Electric Corp Residual battery capacity detecting device
JP3275592B2 (en) * 1994-11-16 2002-04-15 スズキ株式会社 Battery remaining capacity calculation device for electric vehicles
JPH0956011A (en) * 1995-08-11 1997-02-25 Nissan Motor Co Ltd Regenerative current charging controller for battery in electric automobile
JP3422174B2 (en) * 1996-05-07 2003-06-30 日産自動車株式会社 Battery remaining capacity meter
JP3416395B2 (en) * 1996-05-29 2003-06-16 三洋電機株式会社 Battery discharging method
JPH11162526A (en) * 1997-11-29 1999-06-18 Sanyo Electric Co Ltd Battery condition detecting device
JP3551767B2 (en) * 1998-06-22 2004-08-11 日産自動車株式会社 Battery discharge meter
JP3640142B2 (en) * 1998-09-30 2005-04-20 スズキ株式会社 Battery level indicator

Also Published As

Publication number Publication date
JP2003051341A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
US7688033B2 (en) Method for detecting state of secondary battery and device for detecting state of secondary battery
EP1873542B1 (en) Apparatus and method for estimating charge of a battery
EP2527855B1 (en) Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
US6469512B2 (en) System and method for determining battery state-of-health
EP1835297B1 (en) A method and device for determining characteristics of an unknown battery
US20080162059A1 (en) Secondary Battery Charge/Discharge Electricity Amount Estimation Method and Device, Secondary Battery Polarization Voltage Estimation Method and Device and Secondary Battery Remaining Capacity Estimation Method and Device
EP2664938B1 (en) Open circuit voltage estimation device, condition estimation device, and method of estimating open circuit voltage
WO2007074614A1 (en) Charged state estimation device and charged state estimation method of secondary battery
JP3006298B2 (en) Battery remaining capacity meter
WO2019026142A1 (en) Deterioration state computation method and deterioration state computation device
JP4668015B2 (en) Secondary battery state detection method and secondary battery state detection device
JP2006337155A (en) Battery-monitoring device
US6091246A (en) Battery remaining capacity measuring apparatus
JP3752888B2 (en) Battery state detection device
EP4152022B1 (en) Method for determining full-charge capacity of battery pack, method for determining state of health of battery pack, system, and apparatus
JP2003068366A (en) Detector for detecting abnormalities in sensor
US20070170892A1 (en) Method and apparatus for estimating remaining capacity of electric storage
JP2003035755A (en) Method for detecting stored power in battery
JP2000137062A (en) Method and device for detecting residual capacity of secondary battery
JP2004271342A (en) Charging and discharging control system
JPH09243717A (en) Method of detecting residual capacity of battery, and device therefor
JP2009103706A (en) Testing method, testing circuit and battery module of cell voltage sensing line
JP2004177373A (en) Method of estimating battery condition, and method of determining engine start
JP4802414B2 (en) Battery remaining capacity meter
JP4731051B2 (en) Lead-acid battery capacity detection method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R150 Certificate of patent or registration of utility model

Ref document number: 4802414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

EXPY Cancellation because of completion of term