JP2003035755A - Method for detecting stored power in battery - Google Patents

Method for detecting stored power in battery

Info

Publication number
JP2003035755A
JP2003035755A JP2001224077A JP2001224077A JP2003035755A JP 2003035755 A JP2003035755 A JP 2003035755A JP 2001224077 A JP2001224077 A JP 2001224077A JP 2001224077 A JP2001224077 A JP 2001224077A JP 2003035755 A JP2003035755 A JP 2003035755A
Authority
JP
Japan
Prior art keywords
battery
current
power storage
storage amount
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001224077A
Other languages
Japanese (ja)
Inventor
Takuya Kinoshita
拓哉 木下
Akihiko Emori
昭彦 江守
Masato Isogai
正人 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP2001224077A priority Critical patent/JP2003035755A/en
Publication of JP2003035755A publication Critical patent/JP2003035755A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To accurately estimate the stored power in a secondary battery. SOLUTION: In the method for detecting the stored power in a battery for detecting the stored power in a secondary battery, the first stored power is calculated based on the charge/discharge current of the secondary battery, at the same time the second stored power is calculated based on the detection value of at least voltage and current in the secondary battery, weighted averaging is made for averaging by multiplying the first and second calculation values of stored power by a weighting coefficient, where the weighting coefficient is calculated based on at least one detected value out of the current, voltage, and temperature of the secondary battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電池システムに係わ
り、特に、二次電池(以下電池)を集合させた組電池の
状態を管理するシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery system, and more particularly to a system for managing the state of an assembled battery in which secondary batteries (hereinafter referred to as batteries) are assembled.

【0002】[0002]

【従来の技術】従来、電池電圧、充放電電流および温度
を測定して電池の蓄電状態を検出する電池蓄電量検出方
法があった。例えば特開平11−121048号公報に
示されている。従来の電池蓄電量検出方法では、まず電
池電圧と電流、温度を測定し、電流の積算値から蓄電量
の変化分を求める方法と、電圧、電流、温度を電池特性
と比較して蓄電量を求める方法を、蓄電量の領域によっ
て切り替えて使用した。
2. Description of the Related Art Conventionally, there has been a method of detecting the amount of stored electricity in a battery by measuring the battery voltage, charge / discharge current and temperature to detect the state of charge of the battery. For example, it is disclosed in Japanese Patent Laid-Open No. 11-121048. In the conventional battery charge detection method, first, the battery voltage, current, and temperature are measured, and the change in the charge amount is calculated from the integrated value of the current, and the voltage, current, and temperature are compared with the battery characteristics to determine the charge amount. The method of determination was switched depending on the region of the amount of stored electricity.

【0003】[0003]

【発明が解決しようとする課題】電流の積算値から電池
の蓄電量を求める方法では、時間の経過と共に電流の積
算値に含まれる誤差が増大し、蓄電量の誤差が増大し
た。この誤差を解消する為、電池電圧、電流、温度を電
池特性と比較して蓄電量を求め、蓄電量を較正するため
に蓄電量を変化させなければならないという問題があっ
た。
In the method of determining the charged amount of the battery from the integrated value of the current, the error contained in the integrated value of the current increases with the passage of time, and the error of the charged amount increases. In order to eliminate this error, there has been a problem that it is necessary to compare the battery voltage, the current, and the temperature with the battery characteristics to obtain the charged amount and to change the charged amount in order to calibrate the charged amount.

【0004】本発明は前述の課題を解決するためになさ
れたものであり、蓄電量が変化しない場合でも、精度良
く蓄電量を推定する事を目的とする。
The present invention has been made in order to solve the above-mentioned problems, and an object thereof is to accurately estimate the charged amount even when the charged amount does not change.

【0005】[0005]

【課題を解決するための手段】本発明の発明は、二次電
池の充放電時の電流に基づいて第1の蓄電量を算出し、
前記二次電池の充放電時に検知される電流および電圧に
基づいて第2の蓄電量を算出し、前記二次電池の充放電
時の電流、電圧、温度の少なくとも一つの検出値に基づ
いて重み係数を算出し、前記第1、第2の蓄電量算出値
に前記重み係数を掛け平均化する重み付け平均の処理を
して蓄電量検出を行なうことを特徴する。
According to the invention of the present invention, a first charged amount is calculated based on a current during charging / discharging of a secondary battery,
A second charge amount is calculated based on a current and a voltage detected during charge / discharge of the secondary battery, and a weight is calculated based on at least one detected value of current, voltage, and temperature during charge / discharge of the secondary battery. It is characterized in that the coefficient is calculated, and the charged amount detection is performed by performing a weighted averaging process of averaging by multiplying the first and second calculated charged amounts by the weighting coefficient.

【0006】これにより、精度良く蓄電量を推定するこ
とができる。
As a result, it is possible to accurately estimate the charged amount.

【0007】また、本発明は前述の記載に加え、前記電
流、電圧、温度の少なくとも一つの検出値に基づいて算
出される前記重み係数の更新を所定の時間刻み毎に行う
ことを特徴する。
In addition to the above description, the present invention is characterized in that the weighting factor calculated based on at least one of the detected values of the current, voltage, and temperature is updated at predetermined time intervals.

【0008】これにより、より正確に蓄電量を演算する
ことができる。
As a result, it is possible to calculate the charged amount more accurately.

【0009】[0009]

【発明の実施の形態】図3は電池の簡略化した等価回路
モデルである。V+端子335とV−端子336はそれ
ぞれ電池の正、負極端子、Eは電池の起電圧、Rは内部
抵抗、Cは寄生容量、Rcは寄生容量の放電抵抗であ
る。これらのうち、Eは蓄電量(以下、残量、SOC)
を、Rは劣化を判断するパラメータの一つとなる。V+
端子335〜V−端子336間の電池電圧Vと、電池を
流れる電流I、電池の筐体外部の温度Tは直接測定可能
な状態量である。また、VcはCの分極電圧、IRは内
部抵抗Rと充放電電流Iにより発生する電圧で、E、
R、C、Rc、Vc等は直接測定不可能な状態量であ
る。
FIG. 3 is a simplified equivalent circuit model of a battery. V + terminal 335 and V- terminal 336 are the positive and negative terminals of the battery, E is the electromotive voltage of the battery, R is the internal resistance, C is the parasitic capacitance, and Rc is the discharge resistance of the parasitic capacitance. Of these, E is the amount of electricity stored (hereinafter, remaining amount, SOC)
, R is one of the parameters for determining deterioration. V +
The battery voltage V between the terminals 335 to V-terminal 336, the current I flowing through the battery, and the temperature T outside the housing of the battery are directly measurable state quantities. Vc is the polarization voltage of C, IR is the voltage generated by the internal resistance R and the charging / discharging current I, and E,
R, C, Rc, Vc, etc. are state quantities that cannot be directly measured.

【0010】電池の容量に対して十分に小さい電流で電
池を充放電させる場合、VcやIRがEに対して十分に
小さいため、V≒Eと近似する事が出来る。しかし、大
電流の場合はVcやIRが大きく、V≠Eとなる。
When the battery is charged and discharged with a current sufficiently smaller than the capacity of the battery, since Vc and IR are sufficiently small with respect to E, it can be approximated as V≈E. However, in the case of a large current, Vc and IR are large and V ≠ E.

【0011】そこで、EやRを求めるには、先ずVcを
電流履歴から推定してVを補正する(V’=V―V
c)。次にV’=IR+Eと近似し、回帰分析などの方
法から切片と傾きを求め、EとRを推定する。
Therefore, in order to obtain E and R, Vc is first estimated from the current history and V is corrected (V '= V-V).
c). Then, V '= IR + E is approximated, and the intercept and slope are obtained by a method such as regression analysis to estimate E and R.

【0012】図1は本発明の実施例である電池システム
を示す図である。複数の電池が直列に接続された組電池
10と、電池に流れる電流Iを検出する電流センサー2
2、所定直列個数毎の電池電圧Vを検出する電圧センサ
ー20、電池の筐体外部の温度Tを検出する温度センサ
ー24、リレー26、それぞれのセンサーとリレー及び
上位コントローラに接続された電池制御装置30によっ
て構成されている。
FIG. 1 is a diagram showing a battery system which is an embodiment of the present invention. An assembled battery 10 in which a plurality of batteries are connected in series, and a current sensor 2 for detecting a current I flowing through the batteries
2. A voltage sensor 20 for detecting the battery voltage V for each predetermined number of series, a temperature sensor 24 for detecting the temperature T outside the battery casing, a relay 26, and a battery control device connected to each sensor and the relay and the host controller. It is composed of 30.

【0013】電池制御装置30は、電流Iを測定する電
流検出装置104,組電池10のそれぞれの電池電圧V
を測定する電圧検出装置102,温度Tを測定する温度
検出装置100,所定期間内に流れた電流の積算値∫I
dtを測定する積算電流検出装置106,各検出装置が
データをサンプルしてくるタイミングを決定するサンプ
ラー108,残量推定装置130,保護判定装置13
2,及び周辺装置134からなる。
The battery control device 30 includes a battery voltage V of each of the current detection device 104 for measuring the current I and the assembled battery 10.
Voltage detecting device 102 for measuring temperature, temperature detecting device 100 for measuring temperature T, and integrated value ∫I of current flowing within a predetermined period
Integrated current detection device 106 for measuring dt, sampler 108 for determining the timing at which each detection device samples data, remaining amount estimation device 130, protection determination device 13
2, and peripheral device 134.

【0014】残量推定装置130は残量演算装置11
0,残量補正装置116,重み付平均装置112,記憶
装置114,時計118で構成されている。
The remaining amount estimating device 130 is a remaining amount calculating device 11
0, a remaining amount correction device 116, a weighted averaging device 112, a storage device 114, and a clock 118.

【0015】残量演算装置110は、温度T,電池電圧
V,電流I,電流の積算値∫Idtを各検出装置から受
取り、温度T,電池電圧V,電流I,電流の積算値∫I
dtの関数を演算して残量SOCaと残量SOCaの誤
差に相当する誤差σaを、所定演算周期で、所定直列個
数毎の電池に対して演算し、重み付平均装置112に出
力する。演算の詳細については後述する。
The remaining amount calculation device 110 receives the temperature T, the battery voltage V, the current I, and the integrated value ∫Idt of the current from each detection device, and the temperature T, the battery voltage V, the current I, and the integrated value ∫I of the current.
A function of dt is calculated to calculate an error σa corresponding to an error between the remaining amount SOCa and the remaining amount SOCa for a predetermined number of batteries in a predetermined calculation cycle and output to the weighted averaging device 112. Details of the calculation will be described later.

【0016】残量補正装置116は、前回重み付平均装
置112が出力した残量SOCとσを記憶装置114か
ら、電流の積算値∫Idtを積算電流検出装置106か
ら受取り、残量の変化量とσの増加量を電流の積算値∫
Idtの関数で演算して残量SOCを補正し、現在の残
量SOCbとσbを求め、重み付平均装置に出力する。
演算の詳細については後述する。
The remaining amount correction device 116 receives the remaining amount SOC and σ output from the weighted averaging device 112 last time from the storage device 114 and the integrated value ∫Idt of the current from the integrated current detection device 106, and changes the remaining amount. And σ increase by the integrated value of current ∫
The remaining amount SOC is corrected by calculating with the function of Idt, and the present remaining amounts SOCb and σb are obtained and output to the weighted averaging device.
Details of the calculation will be described later.

【0017】重み付平均装置112は、残量演算装置1
10と残量補正装置116からそれぞれ残量SOCa、
残量SOCbとσa、σbを、時計から時刻を受取り、
σの関数で重みと重み付平均演算後のσを演算し、演算
された重みに従って残量SOCを重み付平均演算し、残
量SOCを推定する。演算の詳細については後述する。
演算された残量SOCとσを記憶装置114、保護判定
装置132、周辺装置134に出力する。
The weighted averaging device 112 is the remaining amount calculating device 1.
10 and the remaining amount correction device 116 from the remaining amount SOCa,
The remaining SOCb and σa and σb are received from the clock,
The weight and σ after the weighted average calculation are calculated by the function of σ, and the remaining amount SOC is weighted and averaged according to the calculated weight to estimate the remaining amount SOC. Details of the calculation will be described later.
The calculated remaining amount SOC and σ are output to the storage device 114, the protection determination device 132, and the peripheral device 134.

【0018】周辺装置134は、表示装置120,通信
装置122,冷却装置124,電流遮断装置126から
成る。
The peripheral device 134 comprises a display device 120, a communication device 122, a cooling device 124, and a current interruption device 126.

【0019】保護判定装置132は、温度検出装置10
0から温度Tを、電圧検出装置102から電池電圧V
を、電流検出装置104から電流Iを、残量推定装置1
30から残量とσ、及びRを受取り、電池電圧V,電流
I,温度T,残量とσの和、Rが使用範囲に入っている
かを判定し、表示装置120,通信装置122,冷却装
置124,電流遮断装置126に保護指令を出力する。
The protection determining device 132 is the temperature detecting device 10.
0 to temperature T, voltage detection device 102 to battery voltage V
, The current I from the current detection device 104, and the remaining amount estimation device 1
The remaining amount, σ, and R are received from 30, and the battery voltage V, the current I, the temperature T, the sum of the remaining amount and σ, and R are determined to be within the use range, and the display device 120, the communication device 122, and the cooling device are used. A protection command is output to the device 124 and the current interruption device 126.

【0020】また、表示装置120は保護指令だけでな
く残量も表示し、通信装置122は保護判定装置132
の出力と、必要に応じて残量等も、後述する上位コント
ローラ出力する。
Further, the display device 120 displays not only the protection command but also the remaining amount, and the communication device 122 is the protection determination device 132.
And the remaining amount and the like, if necessary, are also output to a higher-level controller described later.

【0021】冷却装置124は、保護判定装置132の
指令に基づいて電池を冷却する。
The cooling device 124 cools the battery based on a command from the protection determination device 132.

【0022】電流遮断装置126は電池10の電流経路
上に設けられたリレー26を制御する。
The current interrupt device 126 controls the relay 26 provided on the current path of the battery 10.

【0023】電池制御装置30の動作は、まず運転開始
とともに、サンプラー108と電圧検出装置102,電
流検出装置104,積算電流検出装置106,温度検出
装置100により例えば1秒間毎に電池電圧Vと電流
I,電流の積算値∫Idt,温度Tを測定する。
The operation of the battery controller 30 is as follows. First, when the operation is started, the battery voltage V and the current are detected by the sampler 108, the voltage detector 102, the current detector 104, the integrated current detector 106, and the temperature detector 100, for example, every one second. Measure I, integrated value of current ∫Idt, and temperature T.

【0024】次に、残量推定装置130で電池電圧Vと
電流I、電流の積算値∫Idt、温度Tを各検出装置か
ら読込み、残量SOCとσを推定する。
Next, the remaining amount estimating device 130 reads the battery voltage V and the current I, the integrated value ∫Idt of the current, and the temperature T from each detecting device to estimate the remaining amount SOC and σ.

【0025】図4は、ニッケル水素電池やニッケルカド
ミウム電池、黒鉛系負極のLiイオン電池、鉛電池等の
Eと残量の関係を示す図である。これらの電池において
残量変化に対してEがほとんど変化しない領域では、残
量を求めることが困難であった。まず、残量演算装置1
10では、CとRcをあらかじめ規定し、電流検出結果
を入力とし、パルス応答の加重積や状態遷移方程式等を
用いてVcを演算し、Vを補正する。次に、補正した電
池電圧Vと電流Iのデータを最小二乗法等で回帰分析
し、EとRを演算。図4に示した電池特性からEをSO
Caに換算し、重み付平均装置112に出力する。計算
式は次のとおりである。
FIG. 4 is a diagram showing the relationship between E and the remaining amount of nickel-hydrogen batteries, nickel-cadmium batteries, graphite-based negative electrode Li-ion batteries, lead batteries, and the like. In these batteries, it is difficult to obtain the remaining amount in the region where E hardly changes with the change in the remaining amount. First, the remaining amount calculation device 1
In 10, C and Rc are defined in advance, the current detection result is input, Vc is calculated using the weighted product of the pulse response, the state transition equation, etc., and V is corrected. Next, the corrected data of the battery voltage V and the current I is subjected to regression analysis by the least square method or the like to calculate E and R. From the battery characteristics shown in FIG.
It is converted to Ca and output to the weighted averaging device 112. The calculation formula is as follows.

【0026】[0026]

【数1】 ここで残量SOCtable(E)は、電圧Eをテーブル参
照でSOCに変換した値である。また、求めたRを保護
判定装置132に出力する。ここまでの演算は既に本出
願人が提出した特願2000−034314号にも一部
記載されている。次にσaを求める。前述した方法でS
OCを求めた場合、誤差要因としては、電圧測定装置1
02の誤差、Vcの補正に見込まれる誤差、電流と電圧
の測定タイミングのずれ等がある。それらの誤差の和δ
EをEに加算した電圧と、減算した電圧を残量SOCに
換算し、二つの残量SOCの差でσaが計算され、重み
付平均装置112に出力される。計算式は次のとおりで
ある。
[Equation 1] Here, the remaining amount SOC table (E) is a value obtained by converting the voltage E into SOC by referring to the table. Further, the obtained R is output to the protection determination device 132. The calculation up to this point is also partially described in Japanese Patent Application No. 2000-034314 filed by the present applicant. Next, σa is obtained. S as described above
When the OC is obtained, the error factor is the voltage measuring device 1.
02 error, an error expected for Vc correction, and a deviation in measurement timing of current and voltage. Sum of those errors δ
The voltage obtained by adding E to E and the voltage obtained by subtraction are converted into the remaining amount SOC, and σa is calculated by the difference between the two remaining amount SOCs, and output to the weighted averaging device 112. The calculation formula is as follows.

【0027】[0027]

【数2】 図4(a)に示したようなEの演算結果の場合、図4
(b)のようなEの演算結果の場合よりも、残量SOC
に対するEの感度が悪いため、変換後の残量SOCのσ
は大きい。
[Equation 2] In the case of the calculation result of E as shown in FIG.
As compared with the case of the calculation result of E as in (b), the remaining amount SOC
Since the sensitivity of E with respect to
Is big.

【0028】本実施例では、電圧測定装置102の誤差
は一定値、Vcの誤差はVcに対する割合で規定した
が、Vcの誤差を一定値としてもよい。また、CやRc
は電池種類により異なり、温度Tにより変化する。本実
施例では温度Tの関数としてテーブルで用意したが、式
で近似してもよい。また、回帰分析の際に同時に計算で
きる電流Iの分散や、電流Iの最大値と最小値の差をσ
に反映させてもよい。
In this embodiment, the error of the voltage measuring device 102 is defined as a constant value and the error of Vc is defined as a ratio with respect to Vc, but the error of Vc may be a constant value. Also, C and Rc
Varies depending on the battery type and varies depending on the temperature T. In this embodiment, a table is prepared as a function of the temperature T, but it may be approximated by a formula. In addition, the variance of the current I that can be calculated simultaneously during the regression analysis and the difference between the maximum value and the minimum value of the current I
May be reflected in.

【0029】ここで、残量推定装置130と共に内部抵
抗から劣化を推定する装置を組み込んでもよい。また、
内部分極が小さい電池に対してはVcを補正しなくて
も、電池電圧Vを直接回帰分析する事で十分な精度のE
を求める事ができる。また、Rの変化が小さい電池では
回帰分析を行わなくても、電池電圧Vと電流Iと既知の
RからEを求める事ができる。
Here, a device for estimating deterioration from the internal resistance may be incorporated together with the remaining amount estimating device 130. Also,
Even if Vc is not corrected for a battery having a small internal polarization, a direct regression analysis of the battery voltage V is performed to obtain a sufficiently accurate E.
Can be asked. Further, E can be obtained from the battery voltage V, the current I, and the known R without performing regression analysis for the battery in which the change in R is small.

【0030】また、電圧Eをテーブル参照で残量SOC
に変換する際に、電池の温度に対して複数のテーブルを
用意し、温度検出結果に対応するテーブルを選択しても
良い。
Further, the voltage E is compared with the remaining amount SOC by referring to the table.
When converting to, a plurality of tables may be prepared for the battery temperature and the table corresponding to the temperature detection result may be selected.

【0031】「式1」と「式2」を用いたここまでの演
算が、請求項に記載した第2の蓄電量を算出する方法の
一例であり、Eは電流、電圧の検出値を基に算出されて
おり、結果、第2の蓄電量も電流、電圧の検出値を基に
算出されている。
The calculation up to this point using "Equation 1" and "Equation 2" is an example of the method of calculating the second charged amount described in the claims, and E is based on the detected values of current and voltage. As a result, the second charged amount is also calculated based on the detected values of current and voltage.

【0032】残量補正装置116では、記憶装置114
から前回重み付平均装置が出力した残量SOC(t−
1)とσ(t−1)を読込み、電流積算装置から読込ん
だ電流の積算値∫Idtを電池の全容量Qで除算し、残
量SOCの変化分に換算して残量SOCを補正し、重み
付平均装置に出力する。計算式は次のとおりである。
In the remaining amount correction device 116, the storage device 114
From the previous SOC output by the weighted averaging device (t-
1) and σ (t-1) are read, the integrated value ∫Idt of the current read from the current accumulator is divided by the total capacity Q of the battery, and converted to the change in the remaining SOC to correct the remaining SOC. And outputs it to the weighted averaging device. The calculation formula is as follows.

【0033】[0033]

【数3】 また、電流積算装置の誤差(δ∫Idt)を残量SOC
に換算してσに加算し、重み付平均装置112にσbを
出力する。計算式は次のとおりである。
[Equation 3] In addition, the error (δ∫Idt) of the current accumulator is calculated as the remaining SOC.
Is converted to and added to σ, and σb is output to the weighted averaging device 112. The calculation formula is as follows.

【0034】[0034]

【数4】 電池の充電効率に関する記述は省略したが、充電側と放
電側の電流積算を別々に行い、充電効率を考慮した残量
補正も有効である。
[Equation 4] Although the description about the charging efficiency of the battery is omitted, it is also effective to carry out the current integration on the charging side and the discharging side separately to correct the remaining amount in consideration of the charging efficiency.

【0035】式3と式4を用いたここまでの演算が、請
求項に記載した第1の蓄電量を算出する方法の一例であ
る。
The calculation up to this point using the equations 3 and 4 is an example of the method for calculating the first charged amount described in the claims.

【0036】図5はσと重みの関係を示す図である。重
み付平均装置では、残量演算装置110と残量補正装置
116から入力されたσaとσbを基に、図5に示した
σ−重み係数の関係を参照し、重み係数の比率を決定、
重み係数の和が1になるように調整して、SOCを重み
付平均する。ここで、図5ではσと重み係数の関係をグ
ラフで示したが、実際はテーブルや式として保持しても
よい。計算式は次のとおりである。
FIG. 5 shows the relationship between σ and weight. In the weighted averaging device, based on σa and σb input from the remaining amount calculation device 110 and the remaining amount correction device 116, the σ-weighting coefficient relationship shown in FIG.
The SOC is weighted and averaged by adjusting the sum of the weighting factors to be 1. Here, in FIG. 5, the relationship between σ and the weighting coefficient is shown in the form of a graph, but in practice it may be held as a table or a formula. The calculation formula is as follows.

【0037】[0037]

【数5】 σは、次の計算式を用いて演算される。[Equation 5] σ is calculated using the following calculation formula.

【0038】[0038]

【数6】 ここで、WaはSOCaの重み係数、WbはSOCbの
重み係数である。Wa、Wbはσaの関数、σaはEの
関数、Eは電流、電圧、温度の検出値の関数となってお
り、結果、Wa、Wbは電流、電圧、温度の検出値に基
づいて算出されている。
[Equation 6] Here, Wa is a weighting coefficient of SOCa, and Wb is a weighting coefficient of SOCb. Wa and Wb are functions of σa, σa is a function of E, and E is a function of detected values of current, voltage, and temperature. As a result, Wa and Wb are calculated based on the detected values of current, voltage, and temperature. ing.

【0039】次に演算して求めた残量SOCとσを記憶
装置114、保護判定装置132、表示装置120、通
信装置122等に出力する。
Next, the remaining SOC and σ obtained by the calculation are output to the storage device 114, the protection determination device 132, the display device 120, the communication device 122 and the like.

【0040】ここで、Vcの時定数が極端に長い電池を
対象とし、電流が長時間流れない場合、真のVcと演算
で求めたVcがほとんど変化せず、誤差も変化しないの
で、オフセット的なVc補正誤差が発生する。Eの推定
結果にオフセット誤差が含まれる場合には、どのような
フィルタ処理でも誤差を除去する事が出来ない。このよ
うな問題を回避する為、回帰分析を演算する時に同時に
求められるIの分散やIの最大値と最小値の差を基準値
と比較し、基準値以下の場合には残量SOCaの重み係
数を0にセットする事により、Vcが変化している場合
だけを抽出して、オフセット的な誤差の発生を押さえる
ことが出来る。
Here, in the case of a battery having an extremely long Vc time constant, when the current does not flow for a long time, the true Vc and the calculated Vc hardly change and the error does not change. Vc correction error occurs. If the estimation result of E includes an offset error, the error cannot be removed by any filtering process. In order to avoid such a problem, the variance of I and the difference between the maximum value and the minimum value of I, which are obtained at the same time when calculating the regression analysis, are compared with a reference value. By setting the coefficient to 0, it is possible to suppress the occurrence of offset error by extracting only when Vc is changing.

【0041】以上は運転中の残量推定装置130の動作
であるが、装置の起動時には電池の自己放電などによ
り、記憶装置114に保持されている残量SOCが大き
な誤差を持っている場合がある。この誤差を回避するた
め、起動時は運転中とは異なる動作をする。
The above is the operation of the remaining amount estimation device 130 during operation. However, when the device is started, the remaining amount SOC held in the storage device 114 may have a large error due to self-discharge of the battery or the like. is there. In order to avoid this error, the operation at the time of start-up is different from that during operation.

【0042】残量推定装置130では、起動時に前回終
了時の時刻と起動時の時刻の差を計算し、閾値以上の時
間が経過していた場合、残量演算装置110では、初回
に測定した電池電圧VをEとみなし、残量SOCaとσ
aを求める。次に重み付平均装置112では、残量SO
Caの重みを1にセットし、残量補正装置の演算結果の
重みを0にする。また、前回終了時の時刻と起動時の時
刻の差が閾値以下だった場合、運転中と同様の演算を行
う。
In the remaining amount estimating device 130, the difference between the time at the time of the previous end and the time at the time of starting is calculated at the time of starting, and when the time more than the threshold has passed, the remaining amount calculating device 110 makes the first measurement. The battery voltage V is regarded as E, and the remaining SOCa and σ
Find a. Next, in the weighted averaging device 112, the remaining amount SO
The weight of Ca is set to 1 and the weight of the calculation result of the remaining amount correction device is set to 0. If the difference between the time at the end of the previous time and the time at the start is less than or equal to the threshold value, the same calculation as during driving is performed.

【0043】図6は、前回の終了時から前述の閾値以上
の時間経過後に起動した場合における、σとσa、Wa
の時間変化を示す図である。起動時のσは、σaと等し
いが、2回目の残量推定以降は演算式の特性のため、常
にσはσaよりも小さくなる。また、起動後にσaが変
化しない場合には、残量演算回数の増加に共ない、σは
減少していく。図4(b)に示した残量に対するEの感
度が悪い残量領域から、感度の良い領域に残量が変化し
た場合(図6、)、σaが小さくなるので、Waが増
加し、σが減少していく。逆に、感度の良い残量領域か
ら感度の悪い領域に変化した場合(図6、)、σaが
大きくなるため、残量SOCaの重みが減少し、電流の
積算値∫Idtに含まれる誤差のためにσが増加してい
く。しかし、σの増加と共に、Waが増加し、電流の積
算値∫Idtの誤差蓄積の効果と測定回数増加による平
均値の誤差減少の効果がバランスし、σは設計値以上に
は増加しない。従来は、Eの感度が悪い残量領域では電
流の積算値∫Idtだけをもとに残量を演算しており、
電流の積算値∫Idtに誤差蓄積があるため時間の経過
と共に残量の誤差が無尽蔵に拡大していた。そのため、
定期的にEの感度が良い残量領域に残量を変化させ、残
量を較正する必要があった。しかし、本実施例では、E
の感度が悪い残量領域で電池を使用しつづけても、誤差
が設計値以上に増加しないため、残量領域を変化させる
必要がない。
FIG. 6 shows σ, σa, and Wa in the case where the system is started after a lapse of time equal to or more than the above-mentioned threshold value from the time of the previous end.
It is a figure which shows the time change of. Although σ at the time of startup is equal to σa, σ is always smaller than σa after the second estimation of the remaining amount because of the characteristics of the arithmetic expression. If σa does not change after the start-up, σ decreases with the increase in the number of remaining amount calculations. When the remaining amount changes from the remaining amount region where the sensitivity of E with respect to the remaining amount shown in FIG. 4 (b) is low to the region where the sensitivity is high (FIG. 6), σa decreases, so Wa increases and σ Is decreasing. On the contrary, when the residual amount area with good sensitivity is changed to the insensitive area (FIG. 6), σa becomes large, so that the weight of the residual amount SOCa decreases, and the error included in the integrated value ∫Idt of the current is reduced. Therefore, σ increases. However, as σ increases, Wa increases, and the effect of error accumulation of the integrated value ∫Idt of the current and the effect of error reduction of the average value due to the increase in the number of measurements are balanced, and σ does not increase above the design value. Conventionally, in the remaining amount region where the sensitivity of E is poor, the remaining amount is calculated based only on the integrated value ∫Idt of the current,
Since there is an error accumulation in the integrated value ∫Idt of the current, the error of the remaining amount was inexhaustibly expanded with the passage of time. for that reason,
It was necessary to periodically calibrate the remaining amount by changing the remaining amount to a region where the E sensitivity is good. However, in this embodiment, E
Even if the battery is continuously used in the remaining amount area where the sensitivity is low, the error does not increase beyond the design value, so there is no need to change the remaining amount area.

【0044】図7は残量推定精度と時間の関係を示す図
である。一般的に、複数回測定した測定結果の平均値の
誤差は、測定回数の−0.5乗に比例する。本実施例の
最大誤差は、σaの最悪値を切片とし、(測定回数×測
定周期)-0.5に比例する曲線aと、電流積算による残量
誤差の蓄積を示す直線bの交点になる。このため、精度
=設計精度に対応する直線と曲線aの交点と原点を結ぶ
直線のような電流積算を用いれば設計精度を満足する。
ここで、直線bの傾きが小さいほど、電流積算の精度が
高く、誤差の蓄積が少ない。電池容量6.5Ah、σa
の最悪値を30%、演算周期を1分(回帰分析用データ
が揃う時間)、設計精度を5%と仮定して電流積分に許
容されるオフセット誤差を計算すると、0.5Aとな
る。
FIG. 7 is a diagram showing the relationship between the remaining amount estimation accuracy and time. Generally, the error of the average value of the measurement results obtained by measuring a plurality of times is proportional to the −0.5th power of the number of measurements. The maximum error in this embodiment is the intersection of the curve a proportional to (measurement count × measurement period) −0.5 with the worst value of σa as the intercept, and the straight line b indicating the accumulation of the residual amount error due to current integration. Therefore, the design accuracy is satisfied by using current integration such as a straight line connecting the origin and the intersection of the straight line corresponding to the precision = design accuracy and the curve a.
Here, the smaller the slope of the straight line b, the higher the accuracy of current integration and the less error accumulation. Battery capacity 6.5Ah, σa
Assuming that the worst value of is 30%, the operation cycle is 1 minute (the time for which the data for regression analysis is gathered), and the design accuracy is 5%, the offset error allowed for the current integration is calculated to be 0.5A.

【0045】従来は残量の較正を行った後、次の較正ま
での期間、電流積算を続けるため、較正時の精度を切片
とし、電流積算の精度を傾きとする直線b’を引き、較
正周期での精度が最大誤差となる。例えば500km走
行毎に較正を行う場合、平均速度を25km/hと仮定
すると、較正周期は20時間となる。較正時の誤差を1
%と仮定し、他の条件を前述と同様にして許容オフセッ
ト誤差を計算すると、0.013Aとなる。
Conventionally, after the remaining amount is calibrated, the current integration is continued until the next calibration. Therefore, a straight line b'having the accuracy of the calibration as the intercept and the accuracy of the current integration as the slope is drawn, and the calibration is performed. The accuracy in the cycle is the maximum error. For example, when the calibration is performed every 500 km, assuming that the average speed is 25 km / h, the calibration cycle is 20 hours. Error during calibration is 1
If the allowable offset error is calculated under the other conditions similar to those described above, 0.013 A is obtained.

【0046】このように、従来と同等の残量精度を実現
する為には、本発明では1/10以下の電流積算精度し
か必要としない。このため、より精度が低く、安価な電
流センサーを用いる事により、電池システムのコストを
低減できる。
As described above, in order to realize the remaining amount accuracy equivalent to the conventional one, the present invention requires only 1/10 or less current integration accuracy. Therefore, the cost of the battery system can be reduced by using an inexpensive current sensor with lower accuracy.

【0047】次に保護判定装置では、重み付平均装置で
求めた残量とσの和が設定上下限を超えていた場合は過
充放電異常を、表示装置120、又は通信装置122、
又は電流遮断装置126に出力する。残量の分散や最大
値と最小値の差を演算して設定上限を超えていた場合は
均等充電要求を表示装置120、又は通信装置122、
又は電流遮断装置126に出力する。均等充電とは残量
が100%になっても引き続き小さい電流で充電を行う
ことである。残量が多くなると電池の充電効率が低下
し、残量が頭打ちとなることを利用し、その結果残量の
少なかった電池が残量の多かった電池に追いつき、残量
のばらつきを小さくする。
Next, in the protection determination device, when the sum of the remaining amount and σ obtained by the weighted averaging device exceeds the set upper and lower limits, an overcharge / discharge abnormality is displayed, and the display device 120 or the communication device 122,
Alternatively, it is output to the current interruption device 126. If the variance of the remaining amount or the difference between the maximum value and the minimum value is calculated and the setting upper limit is exceeded, an equal charge request is issued to the display device 120 or the communication device 122.
Alternatively, it is output to the current interruption device 126. Equal charging is to continue charging with a small current even when the remaining amount is 100%. The fact that the charging efficiency of the battery decreases when the remaining amount increases and the remaining amount reaches the limit is utilized, and as a result, the battery with the lower remaining amount catches up with the battery with the higher remaining amount, and the variation in the remaining amount is reduced.

【0048】図8は本発明を用いた残量演算結果の一例
を示す図である。ここでは、500秒から5500秒ま
での期間にある電流パターンを5回繰返して電池に通電
して残量SOCの推定を行った。電流の積算値∫Idt
から求めたSOCは初期値の誤差を解消せず、Eから求
めた残量SOCは通電中に真値を中心として誤差を持っ
た値を算出する。本発明により、これらを重み付平均し
て求めた残量SOCは、真値と類似した形で変化しなが
ら、初期値に含まれる誤差を時間の経過と共に解消し、
真値に近づいていく。ここで、電流が流れない時には、
Eから求めた残量SOCの誤差がほぼ一定となり、本発
明によっても残量SOC推定結果が真値に近づかない。
このような場合には、測定した電流値が閾値以下の場合
にはEから求めた残量SOCの重みを0にすることが望
ましい。また、本発明は電流がランダムに変化する場合
に最も有効なので、一定以上の期間、定電流で運転され
た後には、意図的に電流を変化させることが望ましい。
FIG. 8 is a diagram showing an example of the remaining amount calculation result using the present invention. Here, the current pattern in the period from 500 seconds to 5500 seconds was repeated five times to energize the battery to estimate the remaining amount SOC. Integrated value of current ∫Idt
The SOC obtained from the above does not eliminate the error of the initial value, and the remaining amount SOC obtained from E calculates a value with an error centered on the true value during energization. According to the present invention, the remaining amount SOC obtained by weighted averaging these changes in a manner similar to the true value, while eliminating the error contained in the initial value with the passage of time,
It approaches the true value. Here, when no current flows,
The error of the remaining amount SOC obtained from E becomes almost constant, and the remaining amount SOC estimation result does not approach the true value even by the present invention.
In such a case, when the measured current value is less than or equal to the threshold value, it is desirable to set the weight of the remaining amount SOC obtained from E to 0. Further, since the present invention is most effective when the current changes randomly, it is desirable to intentionally change the current after operating at a constant current for a certain period or more.

【0049】図2には、本発明をハイブリッド自動車に
適用した場合の概略図が示されている。図2において図
1と共通する構成要素には同一の番号を付している。電
池10は図示するように、複数の電池が直列に接続され
た組電池であり、インバータ40を介してモータジェネ
レータ60に接続されている。モータジェネレータ60
はエンジン50、タイヤ70に接続されている。また、
制御CPU32は電池制御装置30、インバータ40、
エンジン50と接続されており、電池制御装置30から
電池の状態を受信し、エンジン50とインバータ40を
介してモータジェネレータ60を制御している。
FIG. 2 shows a schematic diagram when the present invention is applied to a hybrid vehicle. 2, the same components as those in FIG. 1 are designated by the same reference numerals. As illustrated, the battery 10 is an assembled battery in which a plurality of batteries are connected in series, and is connected to a motor generator 60 via an inverter 40. Motor generator 60
Is connected to the engine 50 and the tire 70. Also,
The control CPU 32 includes a battery control device 30, an inverter 40,
It is connected to the engine 50, receives the state of the battery from the battery control device 30, and controls the motor generator 60 via the engine 50 and the inverter 40.

【0050】ハイブリッド自動車が運行する場合、加速
時にはエンジンや電池からエネルギーが取り出され、減
速時には運動エネルギーが電池に回生される。そのた
め、電池は常に充電と放電の両方を受け入れられるよう
に50%近辺の残量に保たれる事が好ましい。
When a hybrid vehicle operates, energy is taken out from the engine or battery during acceleration, and kinetic energy is regenerated to the battery during deceleration. Therefore, it is preferable that the battery is always kept at a remaining amount of around 50% so that it can receive both charge and discharge.

【0051】電池の特性として、残量が大きく変化する
使用形態よりも、残量の変化が小さい使用形態の方が劣
化し難い傾向にある。
As a characteristic of the battery, the usage pattern in which the remaining amount changes little tends to be less likely to deteriorate than the usage pattern in which the remaining amount changes greatly.

【0052】このため、できるだけ50%近辺から大き
く動かないように制御されることが望ましいが、従来は
残量を較正するため定期的に残量を変化させる必要があ
った。しかし、本発明の方法を用いれば、従来のような
残量の較正を行うために残量を変化させる必要がなく、
電池の寿命を引き出すことができ、ハイブリッド自動車
のランニングコストを下げることが出来る。
For this reason, it is desirable to control so as not to move largely from around 50% as much as possible, but conventionally it was necessary to periodically change the remaining amount in order to calibrate the remaining amount. However, with the method of the present invention, it is not necessary to change the remaining amount in order to perform the conventional remaining amount calibration,
The battery life can be extended and the running cost of the hybrid vehicle can be reduced.

【0053】また上記実施形態は、電池蓄電量検出方法
に基づくものであるが、本発明は前記電池蓄電量検出方
法を用いた蓄電装置にも適用できるものである。
Further, although the above embodiment is based on the battery storage amount detection method, the present invention is also applicable to a storage device using the battery storage amount detection method.

【0054】[0054]

【発明の効果】本発明によれば、電池の蓄電量を精度良
く推定することができる。
According to the present invention, the amount of electricity stored in a battery can be accurately estimated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態にかかるもので、電池システ
ムの概要を示す図である。
FIG. 1 is a diagram showing an outline of a battery system according to an embodiment of the present invention.

【図2】本発明の実施形態にかかるもので、ハイブリッ
ド自動車の概略を示す図である。
FIG. 2 is a diagram showing an outline of a hybrid vehicle according to the embodiment of the present invention.

【図3】本発明の実施形態にかかるもので、電池の等価
回路を示す図である。
FIG. 3 is a diagram showing an equivalent circuit of a battery according to the embodiment of the present invention.

【図4】本発明の実施形態にかかるもので、Eと残量の
関係を示す図である。
FIG. 4 is a diagram illustrating a relationship between E and a remaining amount according to the embodiment of the present invention.

【図5】本発明の実施形態にかかるもので、σと重みの
関係を示す図である。
FIG. 5 is a diagram showing a relationship between σ and weight according to the embodiment of the present invention.

【図6】本発明の実施形態にかかるもので、σと重みの
演算結果を示す図である。
FIG. 6 is a diagram showing a calculation result of σ and a weight according to the embodiment of the present invention.

【図7】本発明の実施形態にかかるもので、残量精度と
時間の関係を示す図である。
FIG. 7 is a diagram showing a relationship between remaining amount accuracy and time according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…組電池、20…電圧センサー、22…電流センサ
ー、24…温度センサー、30…電池制御装置、32…
制御CPU、40…インバータ、50…エンジン、60
…モータージェネレータ、70…タイヤ、100…温度
検出装置、102…電圧検出装置、104…電流検出装
置、106…積算電流検出装置、108…サンプラー、
110…残量演算装置、112…重み付平均装置、11
4…記憶装置、116…残量補正装置、118…時計、
120…表示装置、122…通信装置、124…冷却装
置、126…電流遮断装置、130…残量推定装置、1
32…保護判定装置、134…周辺装置、335…V+
端子、336…V−端子。
10 ... Battery pack, 20 ... Voltage sensor, 22 ... Current sensor, 24 ... Temperature sensor, 30 ... Battery control device, 32 ...
Control CPU, 40 ... Inverter, 50 ... Engine, 60
... motor generator, 70 ... tire, 100 ... temperature detecting device, 102 ... voltage detecting device, 104 ... current detecting device, 106 ... integrated current detecting device, 108 ... sampler,
110 ... Remaining amount calculation device, 112 ... Weighted averaging device, 11
4 ... Storage device, 116 ... Remaining amount correction device, 118 ... Clock,
120 ... Display device, 122 ... Communication device, 124 ... Cooling device, 126 ... Current interruption device, 130 ... Remaining amount estimation device, 1
32 ... Protection determination device, 134 ... Peripheral device, 335 ... V +
Terminal, 336 ... V-terminal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江守 昭彦 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 磯貝 正人 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 2G016 CA03 CB13 CB22 CC01 CC02 CC04 CC06 CC07 CC24 CD02 CF06 5H030 AA03 AA04 AA06 AS08 FF21 FF42 FF43 FF44    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akihiko Emori             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Masato Isogai             Hitachima, 1-88, Torora, Ibaraki City, Osaka Prefecture             Within Kucsel Co., Ltd. F term (reference) 2G016 CA03 CB13 CB22 CC01 CC02                       CC04 CC06 CC07 CC24 CD02                       CF06                 5H030 AA03 AA04 AA06 AS08 FF21                       FF42 FF43 FF44

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】二次電池の充放電時に検出される電流、電
圧、温度で電池蓄電量を検出する電池蓄電量検出方法で
あって 前記二次電池の充放電時の電流に基づいて第1の蓄電量
を算出し、前記二次電池の充放電時に検知される電流お
よび電圧に基づいて第2の蓄電量を算出し、 前記二次電池の充放電時の電流、電圧、温度の少なくと
も一つの検出値に基づいて重み係数を算出し、 前記第1、第2の蓄電量算出値に前記重み係数を掛け平
均化する重み付け平均の処理をして蓄電量検出を行なう
ことを特徴する電池蓄電量検出方法。
1. A battery storage amount detection method for detecting a storage amount of a battery based on a current, a voltage, and a temperature detected during charging / discharging of a secondary battery, which is based on a current during charging / discharging of the secondary battery. Is calculated, and a second storage amount is calculated based on the current and voltage detected during charging / discharging of the secondary battery, and at least one of current, voltage, and temperature during charging / discharging of the secondary battery. A battery power storage characterized by calculating a weighting coefficient based on one detection value, and performing a weighted averaging process of averaging by multiplying the first and second calculated power storage values by the weighting coefficient to detect the power storage amount. Quantity detection method.
【請求項2】請求項1に記載の電池蓄電量検出方法であ
って、 前記電流、電圧、温度の少なくとも一つの検出値に基づ
いて算出される前記重み係数の更新を所定の時間刻み毎
に行うことを特徴とする電池蓄電量検出方法。
2. The battery storage amount detecting method according to claim 1, wherein the updating of the weighting factor calculated based on at least one detected value of the current, voltage, and temperature is performed at predetermined time intervals. A method for detecting the amount of stored electricity in a battery, comprising:
【請求項3】請求項1又は2に記載の電池蓄電量検出方
法であって、前記重み係数は電流、電圧、温度の少なく
とも一つの検出値を用いて算出する前記第1の蓄電量算
出法の誤差予想値と前記第2の蓄電量算出法の誤差予想
値から算出することを特徴とする電池蓄電量検出方法。
3. The battery storage amount detection method according to claim 1, wherein the weighting factor is calculated using at least one detection value of current, voltage and temperature. And the estimated error value of the second stored electricity amount calculation method.
【請求項4】請求項1から3の何れか一つに記載されて
いる電池蓄電量検出方法であって、 前記第2の蓄電量算出法は、前記二次電池の端子電圧
と、前記二次電池に流れる電流に基づき蓄電量と蓄電量
誤差を算出することを特徴とする電池蓄電量検出方法。
4. The battery storage amount detection method according to any one of claims 1 to 3, wherein the second storage amount calculation method includes: a terminal voltage of the secondary battery; A method for detecting the amount of stored electricity in a battery, characterized in that an amount of stored electricity and an error in the amount of stored electricity are calculated based on the current flowing through the next battery.
【請求項5】請求項1又は2に記載の電池蓄電量検出方
法であって、 前記第1の蓄電量算出法は、1回前の時間刻みにおいて
前記重み付け平均により算出された蓄電量検出値を初期
値とし、該初期値に当該時間刻みの期間における前記二
次電池の充放電電流積算値から算出された蓄電量変化値
を加算して前記第1の蓄電量を算出することを特徴とす
る電池蓄電量検出方法。
5. The battery storage amount detection method according to claim 1 or 2, wherein the first storage amount calculation method is a storage amount detection value calculated by the weighted average in a time step one time before. Is set as an initial value, and the first storage amount is calculated by adding the storage amount change value calculated from the charging / discharging current integrated value of the secondary battery in the time step period to the initial value. Method for detecting the amount of stored electricity in a battery.
【請求項6】請求項1から5記載の少なくとも1つの電
池蓄電量検出方法を用いて算出された蓄電量をもとに前
記二次電池の充放電電流を制御する蓄電装置であって、 前記二次電池から負荷に供給する電流を制御するに充放
電電流制御手段と、前記二次電池の端子電圧と、電流
と、温度をそれぞれ検出する検知手段を備え、 前記充放電電流制御手段は前記二次電池から負荷に供給
する電流の時間変化が基準値以下の場合に、当該電流に
パルス状の電流成分を重畳させる事を特徴とする蓄電装
置。
6. A power storage device for controlling a charging / discharging current of the secondary battery based on a power storage amount calculated by using at least one battery power storage amount detection method according to claim 1, wherein: The charging / discharging current control means for controlling the current supplied from the secondary battery to the load, the terminal voltage of the secondary battery, the current, and the detection means for detecting the temperature, respectively, the charging / discharging current control means is A power storage device, wherein a pulsed current component is superimposed on the current when the time change of the current supplied from the secondary battery to the load is less than or equal to a reference value.
【請求項7】請求項1から5記載の少なくとも1つの電
池蓄電量検出方法を用いて算出された蓄電量をもとに前
記二次電池の充放電電流を制御する蓄電装置であって、 前記電流が所定値以上の場合には前記第1、第2蓄電量
と誤差予想値の算出を行うことを特徴とする蓄電装置。
7. A power storage device for controlling a charging / discharging current of the secondary battery based on a power storage amount calculated by using at least one battery power storage amount detection method according to claim 1, wherein: A power storage device, characterized in that when the current is equal to or more than a predetermined value, the first and second power storage amounts and the expected error value are calculated.
【請求項8】請求項1から5記載の少なくとも1つの電
池蓄電量検出方法を用いて算出された蓄電量をもとに前
記二次電池の充放電電流を制御する蓄電装置であって、 前記二次電池に流れる電流を検出する電流検出手段と、
前記二次電池の端子電圧を検出する電圧検出手段を備
え、 前記電流が所定値以上の場合には、前記電流と端子電圧
に基づき、当該二次電池の蓄電量と誤差予想値を算出す
る蓄電量算出手段を備えたことを特徴とする蓄電装置。
8. A power storage device for controlling a charging / discharging current of the secondary battery based on a power storage amount calculated by using at least one battery power storage amount detection method according to claim 1, wherein: Current detection means for detecting the current flowing through the secondary battery,
A battery for detecting the terminal voltage of the secondary battery, wherein when the current is equal to or higher than a predetermined value, the storage amount of the secondary battery and an estimated error value are calculated based on the current and the terminal voltage. A power storage device comprising an amount calculation means.
【請求項9】請求項1から5記載の少なくとも1つの電
池蓄電量検出方法を用いて算出された蓄電量をもとに前
記二次電池の充放電電流を制御する蓄電装置であって、 充放電電流が流れたことを検出する起動検出手段を備
え、 該起動検出手段に応じて前記二次電池の蓄電量を前記第
2の蓄電量算出法で算出することを特徴とする蓄電装
置。
9. A power storage device for controlling a charging / discharging current of the secondary battery on the basis of a power storage amount calculated by using at least one battery power storage amount detecting method according to claim 1. A power storage device comprising: a startup detection unit that detects that a discharge current has flowed, and the storage amount of the secondary battery is calculated by the second storage amount calculation method according to the startup detection unit.
【請求項10】請求項9に記載の蓄電装置であって、 前記起動手段に応じて前記第2の蓄電量算出法で前記二
次電池の蓄電量を算出してからの経過時間が、所定時間
に達していない場合は、前記第2の蓄電量算出法で算出
する事を禁止する禁止手段を有することを特徴とする蓄
電装置。
10. The power storage device according to claim 9, wherein the elapsed time after the storage amount of the secondary battery is calculated by the second storage amount calculation method according to the starting means is a predetermined value. A power storage device comprising a prohibition unit that prohibits calculation by the second storage amount calculation method when the time has not been reached.
【請求項11】請求項1から5記載の少なくとも1つの
電池蓄電量検出方法を用いて算出された蓄電量をもとに
前記二次電池の充放電電流を制御する蓄電装置であっ
て、 前記二次電池が鉛電池、ニッケル水素電池、ニッカド電
池、或いはリチウムイオン電池のいずれか一つであるこ
とを特徴とする蓄電装置。
11. A power storage device for controlling a charging / discharging current of the secondary battery based on a power storage amount calculated by using at least one battery power storage amount detection method according to claim 1. A power storage device, wherein the secondary battery is any one of a lead battery, a nickel hydrogen battery, a NiCd battery, and a lithium ion battery.
JP2001224077A 2001-07-25 2001-07-25 Method for detecting stored power in battery Pending JP2003035755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001224077A JP2003035755A (en) 2001-07-25 2001-07-25 Method for detecting stored power in battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001224077A JP2003035755A (en) 2001-07-25 2001-07-25 Method for detecting stored power in battery

Publications (1)

Publication Number Publication Date
JP2003035755A true JP2003035755A (en) 2003-02-07

Family

ID=19057305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001224077A Pending JP2003035755A (en) 2001-07-25 2001-07-25 Method for detecting stored power in battery

Country Status (1)

Country Link
JP (1) JP2003035755A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201743A (en) * 2004-01-14 2005-07-28 Fuji Heavy Ind Ltd Remaining capacity calculation device for electric power storage device
JP2005331483A (en) * 2004-05-21 2005-12-02 Fuji Heavy Ind Ltd Remaining capacity display for electricity accumulation device
JP2006030080A (en) * 2004-07-20 2006-02-02 Fuji Heavy Ind Ltd Remaining capacity calculation device for electric power storage device
JP2006038495A (en) * 2004-07-22 2006-02-09 Fuji Heavy Ind Ltd Remaining capacity arithmetic unit for electric power storage device
JP2006098135A (en) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd Device for estimating degree of deterioration in battery
JP2006098134A (en) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd Residual capacity arithmetic unit for charge accumulation device
JP2006170621A (en) * 2004-12-10 2006-06-29 Fuji Heavy Ind Ltd Apparatus for computing remaining capacity of electricity storage device
JP2006242880A (en) * 2005-03-07 2006-09-14 Hitachi Vehicle Energy Ltd Condition detector for power supply device, power supply device, and initial characteristic extractor used for power supply device
US7382110B2 (en) 2004-04-23 2008-06-03 Sony Corporation Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack
US7528581B2 (en) 2001-08-29 2009-05-05 Shin-Kobe Electric Machinery Co., Ltd. Battery apparatus for controlling plural batteries and control method of plural batteries
WO2011039912A1 (en) * 2009-09-30 2011-04-07 新神戸電機株式会社 Storage battery device, storage battery state of charge evaluation device and method
WO2013057784A1 (en) * 2011-10-18 2013-04-25 日立ビークルエナジー株式会社 Battery control device and secondary battery system
CN103630843A (en) * 2012-08-24 2014-03-12 日立车辆能源株式会社 Battery state estimation system, battery control system,and battery system
CN104169733A (en) * 2012-03-13 2014-11-26 日产自动车株式会社 Battery residual capacitance calculation device and battery residual capacitance calculation method
JP2016114469A (en) * 2014-12-15 2016-06-23 川崎重工業株式会社 Secondary battery charge state estimation method and secondary battery charge state estimation device
JPWO2014115294A1 (en) * 2013-01-25 2017-01-26 日立オートモティブシステムズ株式会社 Battery control device, battery system
JP2017022852A (en) * 2015-07-09 2017-01-26 株式会社豊田自動織機 Power storage device and power storage method
WO2017195760A1 (en) * 2016-05-12 2017-11-16 日立オートモティブシステムズ株式会社 Battery condition estimation device
CN109661585A (en) * 2016-10-26 2019-04-19 日立汽车系统株式会社 Battery control device
JP2019164148A (en) * 2019-04-26 2019-09-26 川崎重工業株式会社 Secondary battery charge state estimation method and secondary battery charge state estimation device
US10718815B2 (en) 2016-11-22 2020-07-21 Samsung Electronics Co., Ltd. Method and apparatus for estimating state of battery based on error correction

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528581B2 (en) 2001-08-29 2009-05-05 Shin-Kobe Electric Machinery Co., Ltd. Battery apparatus for controlling plural batteries and control method of plural batteries
US8253382B2 (en) 2001-08-29 2012-08-28 Hitachi, Ltd. Battery apparatus for controlling plural batteries and control method of plural batteries
US8098047B2 (en) 2001-08-29 2012-01-17 Hitachi, Ltd. Battery apparatus for controlling plural batteries and control method of plural batteries
US8106661B2 (en) 2001-08-29 2012-01-31 Hitachi, Ltd. Battery apparatus for controlling plural batteries and control method of plural batteries
US8896273B2 (en) 2001-08-29 2014-11-25 Hitachi, Ltd. Battery apparatus for controlling plural batteries and control method of plural batteries
US7136762B2 (en) 2004-01-14 2006-11-14 Fuji Jukogyo Kabushiki Kaisha System for calculating remaining capacity of energy storage device
JP4583765B2 (en) * 2004-01-14 2010-11-17 富士重工業株式会社 Remaining capacity calculation device for power storage device
JP2005201743A (en) * 2004-01-14 2005-07-28 Fuji Heavy Ind Ltd Remaining capacity calculation device for electric power storage device
US7382110B2 (en) 2004-04-23 2008-06-03 Sony Corporation Method of charging secondary battery, method of calculating remaining capacity rate of secondary battery, and battery pack
JP2005331483A (en) * 2004-05-21 2005-12-02 Fuji Heavy Ind Ltd Remaining capacity display for electricity accumulation device
JP4638175B2 (en) * 2004-05-21 2011-02-23 富士重工業株式会社 Remaining capacity display device for power storage device
JP2006030080A (en) * 2004-07-20 2006-02-02 Fuji Heavy Ind Ltd Remaining capacity calculation device for electric power storage device
JP4570916B2 (en) * 2004-07-20 2010-10-27 富士重工業株式会社 Remaining capacity calculation device for power storage device
JP2006038495A (en) * 2004-07-22 2006-02-09 Fuji Heavy Ind Ltd Remaining capacity arithmetic unit for electric power storage device
JP4570918B2 (en) * 2004-07-22 2010-10-27 富士重工業株式会社 Remaining capacity calculation device for power storage device
JP2006098134A (en) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd Residual capacity arithmetic unit for charge accumulation device
JP4638195B2 (en) * 2004-09-28 2011-02-23 富士重工業株式会社 Battery degradation degree estimation device
JP4638194B2 (en) * 2004-09-28 2011-02-23 富士重工業株式会社 Remaining capacity calculation device for power storage device
JP2006098135A (en) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd Device for estimating degree of deterioration in battery
JP4638211B2 (en) * 2004-12-10 2011-02-23 富士重工業株式会社 Remaining capacity calculation device for power storage device
JP2006170621A (en) * 2004-12-10 2006-06-29 Fuji Heavy Ind Ltd Apparatus for computing remaining capacity of electricity storage device
US8054045B2 (en) 2005-03-07 2011-11-08 Hitachi Vehicle Energy, Ltd. Status detector for power supply, power supply, and initial characteristic extracting device for use with power supply
JP2006242880A (en) * 2005-03-07 2006-09-14 Hitachi Vehicle Energy Ltd Condition detector for power supply device, power supply device, and initial characteristic extractor used for power supply device
WO2011039912A1 (en) * 2009-09-30 2011-04-07 新神戸電機株式会社 Storage battery device, storage battery state of charge evaluation device and method
KR101248623B1 (en) 2009-09-30 2013-04-01 신코베덴키 가부시키가이샤 Accumulator device, and soc evaluation device and method thereof
CN102124360A (en) * 2009-09-30 2011-07-13 新神户电机株式会社 Storage battery device, storage battery state of charge evaluation device and method
US10209313B2 (en) 2009-09-30 2019-02-19 Hitachi Chemical Company, Ltd. Accumulator device, and state of charge evaluation apparatus and method for accumulator
JPWO2013057784A1 (en) * 2011-10-18 2015-04-02 日立オートモティブシステムズ株式会社 Battery control device, secondary battery system
WO2013057784A1 (en) * 2011-10-18 2013-04-25 日立ビークルエナジー株式会社 Battery control device and secondary battery system
CN104169733A (en) * 2012-03-13 2014-11-26 日产自动车株式会社 Battery residual capacitance calculation device and battery residual capacitance calculation method
CN103630843A (en) * 2012-08-24 2014-03-12 日立车辆能源株式会社 Battery state estimation system, battery control system,and battery system
JP2014044074A (en) * 2012-08-24 2014-03-13 Hitachi Vehicle Energy Ltd Battery state estimation device, battery control device, battery system, and battery state estimation method
JPWO2014115294A1 (en) * 2013-01-25 2017-01-26 日立オートモティブシステムズ株式会社 Battery control device, battery system
JP2016114469A (en) * 2014-12-15 2016-06-23 川崎重工業株式会社 Secondary battery charge state estimation method and secondary battery charge state estimation device
JP2017022852A (en) * 2015-07-09 2017-01-26 株式会社豊田自動織機 Power storage device and power storage method
WO2017195760A1 (en) * 2016-05-12 2017-11-16 日立オートモティブシステムズ株式会社 Battery condition estimation device
JPWO2017195760A1 (en) * 2016-05-12 2019-01-24 日立オートモティブシステムズ株式会社 Battery state estimation device
CN109661585A (en) * 2016-10-26 2019-04-19 日立汽车系统株式会社 Battery control device
CN109661585B (en) * 2016-10-26 2021-06-29 日本汽车能源株式会社 Battery control device
US10718815B2 (en) 2016-11-22 2020-07-21 Samsung Electronics Co., Ltd. Method and apparatus for estimating state of battery based on error correction
JP2019164148A (en) * 2019-04-26 2019-09-26 川崎重工業株式会社 Secondary battery charge state estimation method and secondary battery charge state estimation device

Similar Documents

Publication Publication Date Title
JP2003035755A (en) Method for detecting stored power in battery
US7928736B2 (en) Method of estimating state of charge for battery and battery management system using the same
EP1873542B1 (en) Apparatus and method for estimating charge of a battery
JP4984527B2 (en) Secondary battery charge state estimation device and charge state estimation method
US5606243A (en) Battery state judging apparatus
US9187007B2 (en) Online battery capacity estimation
JP6371415B2 (en) Method for determining the reliability of degradation state parameters
US8643331B1 (en) Enhanced voltage-based fuel gauges and methods
JP4890977B2 (en) Battery deterioration calculation device
US20070262750A1 (en) Battery management system and method of operating same
JP3006298B2 (en) Battery remaining capacity meter
US20120166116A1 (en) Apparatus for calculating residual capacity of secondary battery
US20210018568A1 (en) Method and apparatus for calculating soh of battery power pack, and electric vehicle
WO2003061054A1 (en) Method for estimating polarization voltage of secondary cell, method and device for estimating remaining capacity of secondary cell, battery pack system, and electric vehicle
CN109031133B (en) SOC correction method of power battery
JPH0652903A (en) Battery monitor for monitoring of operating parameter of battery
JP6534746B2 (en) Battery control device and battery system
JP2001021628A (en) Apparatus for measuring capacity of battery with rechargeable capacity calculation function by using temperature sensor
JP2005083970A (en) State sensing device and state detection method of secondary battery
JPH06242193A (en) Remaining capacity meter
JP2002008732A (en) Voltage compensating device for battery assembly in electric vehicle
JP4415074B2 (en) Charge / discharge control system
JP3432463B2 (en) Battery capacity measurement device
JP2004177373A (en) Method of estimating battery condition, and method of determining engine start
KR20040005133A (en) Battery full charge management method of electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821