JP2009103706A - Testing method, testing circuit and battery module of cell voltage sensing line - Google Patents

Testing method, testing circuit and battery module of cell voltage sensing line Download PDF

Info

Publication number
JP2009103706A
JP2009103706A JP2008311504A JP2008311504A JP2009103706A JP 2009103706 A JP2009103706 A JP 2009103706A JP 2008311504 A JP2008311504 A JP 2008311504A JP 2008311504 A JP2008311504 A JP 2008311504A JP 2009103706 A JP2009103706 A JP 2009103706A
Authority
JP
Japan
Prior art keywords
voltage detection
battery
voltage
battery voltage
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008311504A
Other languages
Japanese (ja)
Inventor
Kenichiro Tsuru
憲一朗 水流
Akihiko Kudo
彰彦 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2008311504A priority Critical patent/JP2009103706A/en
Publication of JP2009103706A publication Critical patent/JP2009103706A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide testing method for accurately testing connection status of cell voltage sensing line. <P>SOLUTION: In this method, measure open voltage value of an electric cell (S102), measure voltage value, when the bypass resistance for capacity modulation is connected in parallel with the electric cell to apply current (S106, 116, 126), determine whether difference between the open voltage value and the voltage value is larger than a predefined value (S108, 118, 128), and then determine the connection status of cell voltage sensing lines L1-L4 derived from the electric cell is incorrect, when this difference is the predefined value or larger (steps 112, 122, 132). Thus the use of the voltage value, when resistance is connected in parallel with the electric cell to apply current enables accurate testing of connection status, even if minute disconnections are found on the cell voltage sensing line. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は電池電圧検出線の検査方法、検査回路及び電池モジュールに関する。   The present invention relates to a battery voltage detection line inspection method, an inspection circuit, and a battery module.

例えば、電気自動車等には、二次電池(以下、単電池という。)を必要な電圧に相当する分だけ複数個直列に接続した組電池が使用されている。このような組電池は、複数個の単電池を用いるので、信頼性を確保することが重要である。すなわち、組電池を構成する単電池のうちの何れかが過充電や過放電等によりその機能が低下すると、組電池全体としての機能も低下することになる。また、組電池を構成する各単電池には製造時のバラツキがあり、更に、温度分布が均一でないこと等により、各単電池の充電受入性や放電容量が異なってくる。この状態で組電池を使用すると、過放電、過充電となる単電池が発生し、組電池全体の寿命が短くなってしまう。   For example, an assembled battery in which a plurality of secondary batteries (hereinafter referred to as single cells) are connected in series corresponding to a required voltage is used for an electric vehicle or the like. Since such an assembled battery uses a plurality of single cells, it is important to ensure reliability. That is, when any of the single cells constituting the assembled battery has its function lowered due to overcharge or overdischarge, the function of the assembled battery as a whole is also lowered. Further, each unit cell constituting the assembled battery has variations at the time of manufacture, and furthermore, the charge acceptance and discharge capacity of each unit cell differ due to the non-uniform temperature distribution. When the assembled battery is used in this state, a unit cell that is overdischarged or overcharged is generated, and the life of the entire assembled battery is shortened.

このため、電池モジュールでは、各単電池や組電池を制御する制御回路を具備しており、各単電池の電圧を単電池から導出された電池電圧検出線を介して検出して、検出した単電池の電圧に応じて二次電池毎に調整する容量(例えば、電流値と時間との積)をマイクロコンピュータで演算して、単電池に並列に接続された容量調整用抵抗と、容量調整用抵抗に直列に接続されたスイッチと、で構成される容量調整回路のスイッチを演算した所定時間の間オン状態とすることにより単電池と容量調整回路との間で閉回路を構成して、各単電池間の容量を均一に調整している。容量調整回路のスイッチは、例えば、FET等のユニポーラトランジスタやバイポーラトランジスタ等で構成されており、マイクロコンピュータから2値制御のハイレベル信号を出力し、FETやトランジスタのゲート又はベースに微少電流を流すことにより、ドレイン・ソース間又はコレクタ・エミッタ間に容量調整電流を流し、抵抗で調整容量分の電力を熱消費させている。   For this reason, the battery module is provided with a control circuit that controls each unit cell or battery pack, and detects the voltage of each unit cell by detecting the voltage of each unit cell through a battery voltage detection line derived from the unit cell. The capacity (for example, the product of the current value and time) to be adjusted for each secondary battery according to the battery voltage is calculated by the microcomputer, and the capacity adjustment resistor connected in parallel to the single battery and the capacity adjustment A switch connected in series with the resistor, and a switch of the capacity adjustment circuit composed of a switch is turned on for a predetermined time by calculating a closed circuit between the unit cell and the capacity adjustment circuit, The capacity between cells is adjusted uniformly. The switch of the capacity adjustment circuit is composed of, for example, a unipolar transistor such as an FET or a bipolar transistor, and outputs a high-level signal of binary control from a microcomputer to flow a minute current to the gate or base of the FET or transistor. As a result, a capacitance adjustment current is passed between the drain and source or between the collector and emitter, and the electric power corresponding to the adjustment capacitance is consumed by the resistor.

ところで、このような電池電圧検出線の接続状態についての検査は、従来、単電池毎の電池電圧を測定し(例えば、特許文献1参照)、単電池の電圧が検出されることで接続状態の確認をする方法が一般的であった。   By the way, the inspection about the connection state of such a battery voltage detection line conventionally measures the battery voltage for every single cell (for example, refer patent document 1), and the state of a connection state is detected by detecting the voltage of a single cell. The method of confirming was common.

特開2000−92732号公報JP 2000-92732 A

上述のとおり、電池電圧検出線を介して各単電池の端子電圧を検出しており、電池電圧検出線の接続状態を高い精度で検出することが望ましい。すなわち電池電圧検出線が微小断線状態に付いても高い精度で検出できることが望ましい。しかし、上記特許文献1では電池電圧検出線の接続状態を高い精度で検出することについて触れていない。   As described above, it is desirable to detect the terminal voltage of each single cell via the battery voltage detection line and to detect the connection state of the battery voltage detection line with high accuracy. That is, it is desirable that the battery voltage detection line can be detected with high accuracy even when the battery voltage detection line is in a minute disconnection state. However, the above-mentioned patent document 1 does not mention detecting the connection state of the battery voltage detection line with high accuracy.

本発明は上記事案に鑑み、電池電圧検出線の接続状態を高い精度で検査可能な検査方法、検査回路、該検査回路を備えた電池モジュールを提供することを課題とする。   An object of the present invention is to provide an inspection method, an inspection circuit, and a battery module including the inspection circuit that can inspect the connection state of the battery voltage detection line with high accuracy.

上記課題を解決するために、本発明の第1の態様は、電池電圧検出線の検査方法であって、単電池と並列に抵抗を接続し電流を流したときの電圧値と、前記単電池の開放電圧値との差が予め定められた所定値以上のとき、前記単電池から導出された電池電圧検出線の接続状態が異常と判定する。本態様では、電池電圧検出線に微小断線があると、単電池と並列に抵抗を接続し電流を流したときの電圧値が、電池検出線が正常なとき(微小断線がないとき)に比べ異なってくるので、単電池の開放電圧値との差が予め定められた所定値以上となり、電池電圧検出線の接続状態に異常があることを判定することができる。この場合に、抵抗として単電池に並列接続された容量調整用抵抗を用いることが好ましい。   In order to solve the above-mentioned problem, a first aspect of the present invention is a method for inspecting a battery voltage detection line, wherein a voltage value when a resistor is connected in parallel with a unit cell and a current is passed, and the unit cell When the difference from the open-circuit voltage value is equal to or greater than a predetermined value, it is determined that the connection state of the battery voltage detection line derived from the unit cell is abnormal. In this mode, if there is a minute disconnection in the battery voltage detection line, the voltage value when a current is passed by connecting a resistor in parallel with the cell is higher than when the battery detection line is normal (when there is no minute disconnection). Therefore, it is possible to determine that there is an abnormality in the connection state of the battery voltage detection line because the difference from the open-circuit voltage value of the unit cell is equal to or greater than a predetermined value. In this case, it is preferable to use a capacity adjusting resistor connected in parallel to the unit cell as the resistor.

また、上記課題を解決するために、本発明の第2の態様は、容量調整用抵抗がスイッチを介して並列接続された単電池を複数個接続して構成される組電池の各単電池から導出される電池電圧検出線の接続状態を検査する検査回路であって、前記単電池の開放電圧値を検出する開放電圧検出手段と、前記スイッチをオン、オフ制御するスイッチ制御手段と、前記スイッチのオン状態での前記単電池の電圧値を検出する電池電圧検出手段と、前記開放電圧検出手段及び前記電池電圧検出手段で検出された開放電圧値及び電圧値の差を演算する電圧差演算手段と、前記電圧差演算手段により演算された差が予め定めれられた所定値以上か否かを判断し、所定値以上のときに前記電池電圧検出線の接続状態が異常と判定する異常判定手段と、を備える。本態様では、開放電圧検出手段により単電池の開放電圧値が検出され、スイッチ制御手段でスイッチがオン状態とされて単電池と容量調整用抵抗が並列接続され、電池電圧検出手段によりスイッチのオン状態での単電池の電圧値、すなわち、単電池と並列に抵抗が接続され電流が流れたときの電圧値が検出される。そして、電圧差演算手段により開放電圧検出手段及び電池電圧検出手段で検出された開放電圧値及び電圧値の差が演算され、異常判定手段により電圧差演算手段で演算された差が予め定めれられた所定値以上か否かが判断され、所定値以上のときに電池電圧検出線の接続状態が異常と判定される。本態様によれば、電池電圧検出線に微小断線があると、電圧差演算手段により演算される、単電池と並列に抵抗を接続し電流を流したときの電圧値が、電池検出線が正常なときに比べ異なってくるので、異常判定手段により、開放電圧値と電圧値との差が予め定められた所定値以上と判断され、電池電圧検出線の接続状態に異常があると判定される。   In order to solve the above-mentioned problem, the second aspect of the present invention is that each unit cell of an assembled battery constituted by connecting a plurality of unit cells connected in parallel through a switch with a capacity adjustment resistor. An inspection circuit for inspecting a connection state of a derived battery voltage detection line, an open voltage detection means for detecting an open voltage value of the unit cell, a switch control means for controlling on / off of the switch, and the switch Battery voltage detection means for detecting the voltage value of the unit cell in the ON state, and voltage difference calculation means for calculating the difference between the open voltage value and the voltage value detected by the open voltage detection means and the battery voltage detection means And an abnormality determination unit that determines whether or not the difference calculated by the voltage difference calculation unit is equal to or greater than a predetermined value, and determines that the connection state of the battery voltage detection line is abnormal when the difference is equal to or greater than the predetermined value. And comprisingIn this aspect, the open voltage value of the single cell is detected by the open voltage detection means, the switch is turned on by the switch control means, the single battery and the capacity adjusting resistor are connected in parallel, and the switch is turned on by the battery voltage detection means. The voltage value of the unit cell in the state, that is, the voltage value when a current flows when a resistor is connected in parallel with the unit cell is detected. Then, the voltage difference calculating means calculates the open circuit voltage value detected by the open voltage detecting means and the battery voltage detecting means and the difference between the voltage values, and the abnormality calculating means determines the difference calculated by the voltage difference calculating means in advance. It is determined whether or not the battery voltage detection line is greater than or equal to the predetermined value. According to this aspect, if there is a minute disconnection in the battery voltage detection line, the voltage value calculated by the voltage difference calculation means when the resistor is connected in parallel with the unit cell and the current is passed is normal for the battery detection line. Therefore, the abnormality determination means determines that the difference between the open circuit voltage value and the voltage value is greater than or equal to a predetermined value, and determines that the connection state of the battery voltage detection line is abnormal. .

更に、上記課題を解決するために、本発明の第3の態様は、容量調整用抵抗がスイッチを介して並列接続された単電池を複数個接続して構成される組電池と、前記単電池から導出された電池電圧検出線の接続状態を検査する検査回路とを備えた電池モジュールであって、前記検査回路は、前記単電池の開放電圧値を検出する開放電圧検出手段と、前記スイッチをオン、オフ制御するスイッチ制御手段と、前記スイッチのオン状態での前記単電池の電圧値を検出する電池電圧検出手段と、前記開放電圧検出手段及び前記電池電圧検出手段で検出された開放電圧値及び電圧値の差を演算する電圧差演算手段と、前記電圧差演算手段により演算された差が予め定めれられた所定値以上か否かを判断し、所定値以上のときに前記電池電圧検出線の接続状態が異常と判定する異常判定手段と、を備える。   Furthermore, in order to solve the above-mentioned problem, a third aspect of the present invention is a battery pack configured by connecting a plurality of cells each having a capacity adjustment resistor connected in parallel via a switch, and the cell A battery module including an inspection circuit for inspecting a connection state of the battery voltage detection line derived from the open circuit voltage detecting means for detecting an open voltage value of the unit cell, and the switch. Switch control means for on / off control, battery voltage detection means for detecting the voltage value of the unit cell in the on state of the switch, open voltage value detected by the open voltage detection means and the battery voltage detection means And a voltage difference calculating means for calculating a difference between the voltage values, and determining whether or not the difference calculated by the voltage difference calculating means is equal to or greater than a predetermined value. Wire connection Comprising an abnormality judging means condition is determined to be abnormal, the.

本発明によれば、電池電圧検出線の接続状態を高い精度で、検出することができる。   According to the present invention, the connection state of the battery voltage detection line can be detected with high accuracy.

以下、図面を参照して本発明が適用可能な電池モジュールの実施の形態について説明する。   Hereinafter, embodiments of a battery module to which the present invention can be applied will be described with reference to the drawings.

(構成)
図1に示すように、本実施形態の電池モジュール20は、リチウムイオン二次電池(以下、単電池という。)1、7、11が3個直列に接続された組電池15を備えている。単電池1、7、11には、それぞれ単電池の容量を調整するための容量調整回路2、8、12が並列に接続されている。
(Constitution)
As shown in FIG. 1, the battery module 20 of the present embodiment includes an assembled battery 15 in which three lithium ion secondary batteries (hereinafter referred to as single cells) 1, 7, and 11 are connected in series. The unit cells 1, 7, and 11 are connected in parallel with capacity adjustment circuits 2, 8, and 12, respectively, for adjusting the unit cell capacity.

すなわち、単電池1、7、11の+端子には電池電圧検出線L1、L2、L3を介して容量調整用のバイパス抵抗3、9、13の一端が接続されており、バイパス抵抗3、9、13の他端にはスイッチとして機能するFET4、10、14のドレインがそれぞれ接続されている。一方、単電池1、7、11の−端子には電池電圧検出線L2、L3、L4を介してFET4、10、14のソースがそれぞれ接続されており、FET4、10、14のゲートは後述するマイクロコンピュータ(以下、マイコンという。)5の出力ポートに接続されている。従って、マイコン5の出力ポートからFETのゲートに微弱な2値ハイレベル信号が入力されると(オン状態となると)、FET4、10、14のドレイン側(単電池の+端子側)からソース側(単電池の−端子側)に電流が流れることで、電流がバイパス抵抗3、9、13により熱消費され単電池1、7、11毎に容量調整が可能である(以下、FET4、10、14をそれらの機能に着目してスイッチ4、10、14という。)。   That is, one end of capacity adjusting bypass resistors 3, 9, 13 is connected to the + terminals of the cells 1, 7, 11 through battery voltage detection lines L 1, L 2, L 3. , 13 are connected to the drains of FETs 4, 10, 14 functioning as switches, respectively. On the other hand, the sources of the FETs 4, 10, and 14 are connected to the negative terminals of the cells 1, 7, and 11 through battery voltage detection lines L2, L3, and L4, respectively, and the gates of the FETs 4, 10, and 14 will be described later. It is connected to an output port of a microcomputer (hereinafter referred to as a microcomputer) 5. Therefore, when a weak binary high level signal is input from the output port of the microcomputer 5 to the gate of the FET (when turned on), the drain side of the FETs 4, 10, 14 (the + terminal side of the unit cell) to the source side When the current flows through (the −terminal side of the unit cell), the current is thermally consumed by the bypass resistors 3, 9, and 13, and the capacity can be adjusted for each unit cell 1, 7, 11 (hereinafter, FET 4, 10, 14 is referred to as switches 4, 10, and 14 in view of their functions).

また、電池モジュール20は、単電池1、7、11の電圧を単電池毎に測定する開放電圧検出手段及び電池電圧検出手段の一部としての電圧測定回路6、電池モジュール20を制御し開放電圧検出手段、スイッチ制御手段、電池電圧検出手段、電圧差演算手段及び異常判定手段としてのマイコン5、組電池15の充放電並びに休止状態を検出して組電池15の状態をマイコン5に出力する図示を省略した充放電判別部、及び、マイコン5や電圧測定回路6に作動電源を供給する図示を省略した電源部を備えている。   In addition, the battery module 20 controls the open-circuit voltage detection means for measuring the voltage of the single cells 1, 7, and 11 for each single battery, and the voltage measurement circuit 6 as a part of the battery voltage detection means and the battery module 20 to control the open-circuit voltage. Detection means, switch control means, battery voltage detection means, voltage difference calculation means, abnormality determination means, microcomputer 5, charge / discharge of battery pack 15 and rest state are detected and the state of battery pack 15 is output to microcomputer 5 And a power supply unit (not shown) that supplies operating power to the microcomputer 5 and the voltage measurement circuit 6.

マイコン5は、演算処理を行うCPU、CPUが実行するプログラム及び種々の設定値等を格納したROM、CPUのワークエリアとして働くRAM、及び電圧測定回路6からのアナログ電圧をデジタル化するA/D変換部を含んで構成されている。また、マイコン5は、上述した各FETにハイレベル信号を出力する出力ポートの他に、電圧測定回路6に電圧測定対象の単電池を指定するための単電池指定ポート、電圧測定回路6から指定した単電池の電圧が入力されるAD入力ポート、インターフェース(I/F)を介して電池モジュール20を制御する上位システムとの通信を行うための図示を省略したシリアルポートを有している。   The microcomputer 5 is a CPU that performs arithmetic processing, a ROM that stores programs executed by the CPU and various setting values, a RAM that serves as a work area for the CPU, and an A / D that digitizes an analog voltage from the voltage measurement circuit 6. A conversion unit is included. In addition to the output port that outputs a high level signal to each FET described above, the microcomputer 5 designates the voltage measurement circuit 6 from a single cell designation port for designating a single cell to be measured, and the voltage measurement circuit 6. An AD input port to which the voltage of the single cell is input, and a serial port (not shown) for communicating with a host system that controls the battery module 20 via an interface (I / F).

電圧測定回路6は、各単電池の電圧を個別に測定する回路であり、例えば、増幅率1の差動増幅回路等を含む回路により構成することができる。電圧測定回路6の入力側は電池電圧検出線L1、L2、L3、L4に接続されており、電圧測定回路6の出力側はマイコン5のAD入力ポートに接続されている。また、電圧測定回路6は、マイコン5から電圧測定対象の単電池の指定を受けるためにマイコン5の単電池指定ポートに接続されている。従って、マイコン5は、単電池指定ポートから電圧測定回路6に電圧測定対象の単電池を指定することで、AD入力ポートを介して電圧測定回路6から測定対象の単電池の電圧を取り込み、かつ、A/D変換することで、指定した単電池の電圧値を取得(測定)することが可能である。   The voltage measurement circuit 6 is a circuit that individually measures the voltage of each unit cell, and can be configured by a circuit including a differential amplification circuit having an amplification factor of 1, for example. The input side of the voltage measurement circuit 6 is connected to the battery voltage detection lines L 1, L 2, L 3 and L 4, and the output side of the voltage measurement circuit 6 is connected to the AD input port of the microcomputer 5. In addition, the voltage measurement circuit 6 is connected to a single cell designation port of the microcomputer 5 in order to receive designation of a single cell for voltage measurement from the microcomputer 5. Therefore, the microcomputer 5 designates the voltage measurement target cell from the cell designation port to the voltage measurement circuit 6, thereby taking in the voltage of the measurement target cell from the voltage measurement circuit 6 through the AD input port, and By performing A / D conversion, it is possible to acquire (measure) the voltage value of the designated cell.

なお、図示を省略した充放電判別部は、最上位側の単電池1の+端子と組電池15の+外部出力端子との間に挿入されている。充放電判別部は、例えば、シャント(分路)抵抗やホール素子等により組電池15を流れる電流方向を検出可能に構成することができ、組電池15が充電、放電、休止のいずれの状態にあるかをマイコン5へ出力するものである。また、単電池11の−端子は電池モジュール20の−外部出力端子に接続されており、電池モジュール20の+外部出力端子及び−外部出力端子は充電器又は負荷に接続される。   The charge / discharge determination unit (not shown) is inserted between the + terminal of the uppermost unit cell 1 and the + external output terminal of the assembled battery 15. The charge / discharge discriminating unit can be configured to detect the direction of current flowing through the assembled battery 15 using, for example, a shunt (shunt) resistor or a Hall element, and the assembled battery 15 can be in any state of charging, discharging, and resting. Whether or not there is is output to the microcomputer 5. Further, the negative terminal of the cell 11 is connected to the negative external output terminal of the battery module 20, and the positive external output terminal and negative external output terminal of the battery module 20 are connected to a charger or a load.

(動作)
次に、フローチャートを参照して、本実施形態の電池モジュール20の動作について説明する。なお、初期状態においてマイコン5に電源が投入されると、ROMに格納された種々の設定値がRAMに移行され電池電圧検出線L1〜L4を検査するための電池電圧検出線検査ルーチンが実行可能な状態となり、インターフェースを介して図示しない検査治具から又は上位システムから所定信号を受信すると以下の電池電圧検出線検査ルーチンが実行される。
(Operation)
Next, with reference to a flowchart, operation | movement of the battery module 20 of this embodiment is demonstrated. When the microcomputer 5 is turned on in the initial state, various set values stored in the ROM are transferred to the RAM, and a battery voltage detection line inspection routine for inspecting the battery voltage detection lines L1 to L4 can be executed. When a predetermined signal is received from an inspection jig (not shown) or from a host system via the interface, the following battery voltage detection line inspection routine is executed.

図2に示すように、電池電圧検出線検査ルーチンでは、まず、ステップ102において、単電池1、7、11の開放電圧値Vb1、Vc1、Vd1を取得(測定)し、RAMに記憶する。すなわち、単電池指定ポートから電圧測定回路6に電圧測定対象の単電池1を指定し開放電圧値Vb1を取得してRAMに記憶した後、単電池7を指定し開放電圧値Vc1を取得してRAMに記憶し、同様に、単電池11を指定し開放電圧値Vd1を取得してRAMに記憶する。   As shown in FIG. 2, in the battery voltage detection line inspection routine, first, in step 102, open voltage values Vb1, Vc1, and Vd1 of the single cells 1, 7, and 11 are acquired (measured) and stored in the RAM. That is, after specifying the unit cell 1 to be voltage measured from the unit cell designation port to the voltage measurement circuit 6 and acquiring the open voltage value Vb1 and storing it in the RAM, the unit cell 7 is specified and the open circuit voltage value Vc1 is acquired. Similarly, the unit cell 11 is designated and the open-circuit voltage value Vd1 is acquired and stored in the RAM.

次にステップ104では、スイッチ4をオン状態(以下、ONと略記する。)、スイッチ10、14をオフ状態(FET10、14のゲートへの信号がローレベルの状態、以下、OFFと略記する。)とし、次のステップ106でバイパス抵抗3を並列に接続し電流を流したときの単電池1の電圧値Vb2を取得してRAMに記憶する。次いでステップ108において、(Vb2−Vb1)の絶対値が予め定められた所定値より小さいか否かを判断する。なお、このような所定値は、電池電圧検出線L1〜L4の長さ、電池電圧検出線L1〜L4と単電池1、7、11との接合方法、バイパス抵抗3、9、13の値等の影響を考慮し適切な値を設定することが好ましい(本例の場合は、0.8V)。肯定判断のときは、ステップ110で電池電圧検出線L1及びL2に異常がないこと(OK)をRAMに記憶し、否定判断のときは、ステップ112で電池電圧検出線L1及び/又はL2に異常(電池電圧検出線L1のみ異常、電池電圧検出線L2のみ異常、又は電池電圧検出線L1、L2の双方が異常)があること(NG)をRAMに記憶する。   Next, in step 104, the switch 4 is turned on (hereinafter abbreviated as ON), and the switches 10 and 14 are turned off (signals to the gates of the FETs 10 and 14 are at a low level, hereinafter abbreviated as OFF). In the next step 106, the bypass resistor 3 is connected in parallel, and the voltage value Vb2 of the unit cell 1 when the current flows is acquired and stored in the RAM. Next, at step 108, it is determined whether or not the absolute value of (Vb2-Vb1) is smaller than a predetermined value. Such predetermined values include the lengths of the battery voltage detection lines L1 to L4, the joining method of the battery voltage detection lines L1 to L4 and the cells 1, 7, and 11, the values of the bypass resistors 3, 9, and 13 and the like. It is preferable to set an appropriate value in consideration of the influence of (0.8 V in this example). If the determination is affirmative, the fact that there is no abnormality in the battery voltage detection lines L1 and L2 (OK) is stored in the RAM in step 110. If the determination is negative, the battery voltage detection lines L1 and / or L2 are abnormal in step 112. (NG) is stored in the RAM that there is an abnormality (only battery voltage detection line L1 is abnormal, only battery voltage detection line L2 is abnormal, or both battery voltage detection lines L1 and L2 are abnormal).

次にステップ114では、スイッチ10をON、スイッチ4、14をOFFとし、次のステップ116でバイパス抵抗9を並列に接続し電流を流したときの単電池7の電圧値Vc2を取得してRAMに記憶する。次いでステップ118において、(Vc2−Vc1)の絶対値が所定値より小さいか否かを判断する。肯定判断のときは、ステップ120で電池電圧検出線L2及びL3に異常がないことをRAMに記憶し、否定判断のときは、ステップ122で電池電圧検出線L2及び/又はL3に異常があることをRAMに記憶する。   Next, in step 114, the switch 10 is turned on, the switches 4 and 14 are turned off, and in the next step 116, the bypass resistor 9 is connected in parallel to obtain the voltage value Vc2 of the unit cell 7 when the current flows. To remember. Next, at step 118, it is determined whether or not the absolute value of (Vc2-Vc1) is smaller than a predetermined value. If the determination is affirmative, the fact that there is no abnormality in the battery voltage detection lines L2 and L3 is stored in the RAM in step 120, and if the determination is negative, there is an abnormality in the battery voltage detection lines L2 and / or L3 in step 122. Is stored in the RAM.

次にステップ124では、スイッチ14をON、スイッチ4、10をOFFとし、次のステップ126でバイパス抵抗13を並列に接続し電流を流したときの単電池11の電圧値Vd2を取得してRAMに記憶する。次いでステップ128において、(Vd2−Vd1)の絶対値が所定値より小さいか否かを判断する。肯定判断のときは、ステップ130で電池電圧検出線L3及びL4に異常がないことをRAMに記憶し、否定判断のときは、ステップ132で電池電圧検出線L3及び/又はL4に異常があることをRAMに記憶する。   Next, in step 124, the switch 14 is turned on, the switches 4 and 10 are turned off, and in the next step 126, the bypass resistor 13 is connected in parallel to obtain the voltage value Vd2 of the unit cell 11 when a current is passed. To remember. Next, at step 128, it is determined whether or not the absolute value of (Vd2-Vd1) is smaller than a predetermined value. If the determination is affirmative, the battery voltage detection lines L3 and L4 are stored in the RAM in step 130, and if the determination is negative, the battery voltage detection lines L3 and / or L4 are abnormal in step 132. Is stored in the RAM.

次のステップ134では、すべての電池電圧検出線L1〜L4が異常がないか否かを判断し、肯定判断のときは、図3のステップ168へ進み、否定判断のときは、図3のステップ136へ進む。   In the next step 134, it is determined whether or not all the battery voltage detection lines L1 to L4 are abnormal. If the determination is affirmative, the process proceeds to step 168 of FIG. 3, and if the determination is negative, the step of FIG. Go to 136.

ステップ168では、電池電圧検出線L1〜L4のすべてに異常がない(OK)ので、OKを表すデフォルト値を選択してステップ170へ進む。一方、ステップ136では、スイッチ4、10をON、スイッチ14をOFFとし、次のステップ138で単電池1、7の電圧値Vb3、Vc3をそれぞれ取得してRAMに記憶する。次いでステップ140において、{(Vb3+Vc3)−(Vb1+Vc1)}の絶対値が所定値より小さいか否かを判断する。肯定判断のときは、ステップ142で電池電圧検出線L1及びL3に異常がないことをRAMに記憶し、否定判断のときは、ステップ144で電池電圧検出線L1及び/又はL3に異常があることをRAMに記憶する。   In step 168, since all of the battery voltage detection lines L1 to L4 are not abnormal (OK), a default value representing OK is selected and the process proceeds to step 170. On the other hand, in step 136, the switches 4 and 10 are turned on and the switch 14 is turned off. In the next step 138, the voltage values Vb3 and Vc3 of the single cells 1 and 7 are acquired and stored in the RAM. Next, at step 140, it is determined whether or not the absolute value of {(Vb3 + Vc3) − (Vb1 + Vc1)} is smaller than a predetermined value. If an affirmative decision is made, the fact that there is no abnormality in the battery voltage detection lines L1 and L3 is stored in the RAM in step 142, and if a negative decision is made, there is an abnormality in the battery voltage detection lines L1 and / or L3 in step 144. Is stored in the RAM.

次にステップ146では、スイッチ10、14をON、スイッチ4をOFFとし、次のステップ148で単電池7、11の電圧値Vc4、Vd3をそれぞれ取得してRAMに記憶する。次いでステップ150において、{(Vc4+Vd3)−(Vc1+Vd1)}の絶対値が所定値より小さいか否かを判断する。肯定判断のときは、ステップ152で電池電圧検出線L2及びL4に異常がないことをRAMに記憶し、否定判断のときは、ステップ154で電池電圧検出線L2及び/又はL4に異常があることをRAMに記憶する。   Next, in step 146, the switches 10 and 14 are turned on and the switch 4 is turned off. In the next step 148, the voltage values Vc4 and Vd3 of the single cells 7 and 11 are acquired and stored in the RAM. Next, at step 150, it is determined whether or not the absolute value of {(Vc4 + Vd3) − (Vc1 + Vd1)} is smaller than a predetermined value. If the determination is affirmative, the fact that there is no abnormality in the battery voltage detection lines L2 and L4 is stored in the RAM in step 152, and if the determination is negative, the battery voltage detection lines L2 and / or L4 are abnormal in step 154. Is stored in the RAM.

次にステップ156では、スイッチ4、10、14をONとし、次のステップ158で単電池1、7、11の電圧値Vb4、Vc5、Vd4をそれぞれ取得してRAMに記憶する。次いでステップ160において、{(Vb4+Vc5+Vd4)−(Vb1+Vc1+Vd1)}の絶対値が所定値より小さいか否かを判断する。肯定判断のときは、ステップ162で電池電圧検出線L1及びL4に異常がないことをRAMに記憶し、否定判断のときは、ステップ164で電池電圧検出線L1及び/又はL4に異常があることをRAMに記憶する。   Next, in step 156, the switches 4, 10, and 14 are turned ON, and in the next step 158, the voltage values Vb4, Vc5, and Vd4 of the single cells 1, 7, and 11 are acquired and stored in the RAM. Next, at step 160, it is determined whether or not the absolute value of {(Vb4 + Vc5 + Vd4) − (Vb1 + Vc1 + Vd1)} is smaller than a predetermined value. If an affirmative determination is made, the fact that there is no abnormality in the battery voltage detection lines L1 and L4 is stored in the RAM in step 162, and if a negative determination is made, there is an abnormality in the battery voltage detection lines L1 and / or L4 in step 164. Is stored in the RAM.

次のステップ166では、ステップ142、144、152、154、162、164でRAMに記憶した電池電圧検出線L1〜L4のうち接続状態が異常な箇所(NG箇所)を特定し、特定されたNG箇所のデフォルト値を選択してステップ170へ進む。ステップ170では、選択されたデフォルト値をインターフェースから出力して電池電圧検出線検査ルーチンを終了する。これにより、図示しない検査治具又は上位システムに接続された検査治具のディスプレイには電池電圧検出線L1〜L4の接続状態が表示される。   In the next step 166, the battery voltage detection lines L1 to L4 stored in the RAM in steps 142, 144, 152, 154, 162, and 164 are identified as locations where the connection state is abnormal (NG locations), and the identified NG The default value of the location is selected and the process proceeds to step 170. In step 170, the selected default value is output from the interface, and the battery voltage detection line inspection routine is terminated. Thereby, the connection state of the battery voltage detection lines L1 to L4 is displayed on the display of the inspection jig (not shown) or the inspection jig connected to the host system.

(作用等)
本実施形態の電池モジュール20では、スイッチ3、9、12をON、OFFすることで、組電池15を構成する特定の単電池に1つずつパイパス抵抗を接続したり、又は、組み合わせることで、単電池1、7、11から導出された電池電圧検出線L1〜L4の接続状態を精度よく検査することができる。すなわち、電池電圧検出線L1〜L4に微小断線があると、単電池と並列に抵抗を接続し電流を流したときの電圧値が、電池検出線がOKのないときに比べ異なってくるので、単電池の開放電圧値との差が予め定められた所定値以上となり、接続状態に異常があることを電池電圧検出線L1〜L4毎に判定することができる。また、単電池1、7、11にはバイパス抵抗3、9、13が並列接続されているので、電池モジュール20の外部で抵抗を接続することなく、これらのバイパス抵抗を利用して単電池の放電時の電圧値を測定することでより精度の高い電池電圧検出線の接続状態の検査を行うことができる。更に、本実施形態の電池モジュール20では、電池電圧検出線検査ルーチンを実行可能なプログラムマイコン5に格納すると共に、ハードウエアを電池モジュール20が有している回路を使用して電池電圧検出線の接続状態を検査するようにしたので、検査治具の負担(回路構成)を小さくすることができる。
(Action etc.)
In the battery module 20 of the present embodiment, by turning ON / OFF the switches 3, 9, and 12, a bypass resistor is connected to a specific unit cell constituting the assembled battery 15 one by one, or combined, The connection state of the battery voltage detection lines L1 to L4 derived from the single cells 1, 7, and 11 can be accurately inspected. That is, if there is a minute disconnection in the battery voltage detection lines L1 to L4, the voltage value when a resistor is connected in parallel with the unit cell and current flows is different from when the battery detection line is not OK. The difference from the open-circuit voltage value of the unit cell is equal to or greater than a predetermined value, and it can be determined for each of the battery voltage detection lines L1 to L4 that the connection state is abnormal. In addition, since the bypass resistors 3, 9, and 13 are connected in parallel to the single cells 1, 7, and 11, without using the resistors outside the battery module 20, these bypass resistors are used to connect the single cells. By measuring the voltage value at the time of discharging, it is possible to inspect the connection state of the battery voltage detection line with higher accuracy. Further, in the battery module 20 of the present embodiment, the battery voltage detection line is stored in the program microcomputer 5 capable of executing the battery voltage detection line inspection routine, and the hardware of the battery voltage detection line is used by using a circuit that the battery module 20 has. Since the connection state is inspected, the burden on the inspection jig (circuit configuration) can be reduced.

なお、本実施形態では、電池モジュール20内のマイコン5に電池電圧検出線検査ルーチンを実行させるソフトウエアの例を示したが、本発明はこれに制限されず、OPアンプ等を含むハードウエア等で構成するようにしてもよい。   In the present embodiment, an example of software that causes the microcomputer 5 in the battery module 20 to execute the battery voltage detection line inspection routine is shown, but the present invention is not limited to this, and hardware including an OP amplifier and the like You may make it comprise.

また、本実施形態では、電圧測定回路6について単電池の電圧を1つずつ測定する例を示したが、複数の単電池の電圧を一度に測定可能な電圧測定回路を用いるようにしてもよい。   Further, in the present embodiment, an example in which the voltage of the single cell is measured one by one with respect to the voltage measurement circuit 6 is shown, but a voltage measurement circuit that can measure the voltages of a plurality of single cells at a time may be used. .

更に、本実施形態では、図4に示したように、電池電圧検出線L1〜L4のひとつでも異常が判明すると、正常と判明した電池電圧検出線についても再検査する例を示したが、図3で接続状態が異常の可能性がある電池電圧検出線についてのみ検査を行うようにしてもよい。このようにすれば、接続状態が異常な電池電圧検出線を早く特定することが可能となる。   Furthermore, in the present embodiment, as shown in FIG. 4, when an abnormality is found in any one of the battery voltage detection lines L1 to L4, the battery voltage detection line that has been found to be normal is reexamined. 3 may be performed only for the battery voltage detection line in which the connection state may be abnormal. In this way, it is possible to quickly identify a battery voltage detection line with an abnormal connection state.

本発明は電池電圧検出線の接続状態を正確に検査可能な検査方法、検査回路、該検査回路を備えた電池モジュールを提供するものであるため、産業上の利用可能性を有する。   The present invention provides an inspection method, an inspection circuit, and a battery module including the inspection circuit capable of accurately inspecting the connection state of the battery voltage detection line, and thus has industrial applicability.

本発明が適用可能な実施形態の電池モジュールのブロック回路図である。It is a block circuit diagram of the battery module of an embodiment to which the present invention is applicable. マイコンのCPUが実行する電池電圧検出線検査ルーチンその1のフローチャートである。It is a flowchart of the battery voltage detection line test | inspection routine 1 which CPU of a microcomputer performs. マイコンのCPUが実行する電池電圧検出線検査ルーチンその2のフローチャートである。It is a flowchart of the battery voltage detection line test | inspection routine 2 which CPU of a microcomputer performs.

符号の説明Explanation of symbols

1、7、11 リチウムイオン二次電池(単電池)
3、9、13 バイパス抵抗(抵抗、容量調整用抵抗)
4、10、14 FET(スイッチ)
5 マイコン(開放電圧検出手段、スイッチ制御手段、電池電圧検出手段、電圧差演算手段、異常判定手段)
15 組電池
20 電池モジュール
L1、L2、L3、L4 電池電圧検出線
1, 7, 11 Lithium ion secondary battery (single cell)
3, 9, 13 Bypass resistance (resistance, capacity adjustment resistance)
4, 10, 14 FET (switch)
5 Microcomputer (open voltage detection means, switch control means, battery voltage detection means, voltage difference calculation means, abnormality determination means)
15 Battery pack 20 Battery module L1, L2, L3, L4 Battery voltage detection line

Claims (4)

単電池と並列に抵抗を接続し電流を流したときの電圧値と、前記単電池の開放電圧値との差が予め定められた所定値以上のとき、前記単電池から導出された電池電圧検出線の接続状態が異常と判定することを特徴とする電池電圧検出線の検査方法。   A battery voltage detection derived from the unit cell when a difference between a voltage value when a resistor is connected in parallel with the unit cell and a current flows and an open voltage value of the unit cell is equal to or greater than a predetermined value. An inspection method for a battery voltage detection line, wherein the connection state of the line is determined to be abnormal. 前記抵抗として前記単電池に並列接続された容量調整用抵抗を用いることを特徴とする請求項1に記載の電池電圧検出線の検査方法。   The battery voltage detection line inspection method according to claim 1, wherein a capacity adjustment resistor connected in parallel to the single cell is used as the resistor. 容量調整用抵抗がスイッチを介して並列接続された単電池を複数個接続して構成される組電池の各単電池から導出される電池電圧検出線の接続状態を検査する検査回路であって、
前記単電池の開放電圧値を検出する開放電圧検出手段と、
前記スイッチをオン、オフ制御するスイッチ制御手段と、
前記スイッチのオン状態での前記単電池の電圧値を検出する電池電圧検出手段と、
前記開放電圧検出手段及び前記電池電圧検出手段で検出された開放電圧値及び電圧値の差を演算する電圧差演算手段と、
前記電圧差演算手段により演算された差が予め定めれられた所定値以上か否かを判断し、所定値以上のときに前記電池電圧検出線の接続状態が異常と判定する異常判定手段と、
を備えた検出回路。
An inspection circuit for inspecting a connection state of a battery voltage detection line derived from each unit cell of an assembled battery configured by connecting a plurality of unit cells connected in parallel via a switch with a capacity adjustment resistor,
An open-circuit voltage detecting means for detecting an open-circuit voltage value of the unit cell;
Switch control means for controlling on and off of the switch;
Battery voltage detection means for detecting a voltage value of the unit cell in the ON state of the switch;
A voltage difference calculation means for calculating an open voltage value detected by the open voltage detection means and the battery voltage detection means and a difference between the voltage values;
Determining whether or not the difference calculated by the voltage difference calculation means is greater than or equal to a predetermined value, and determining whether or not the connection state of the battery voltage detection line is abnormal when the difference is greater than or equal to a predetermined value;
A detection circuit comprising:
容量調整用抵抗がスイッチを介して並列接続された単電池を複数個接続して構成される組電池と、前記単電池から導出された電池電圧検出線の接続状態を検査する検査回路とを備えた電池モジュールであって、前記検査回路は、
前記単電池の開放電圧値を検出する開放電圧検出手段と、
前記スイッチをオン、オフ制御するスイッチ制御手段と、
前記スイッチのオン状態での前記単電池の電圧値を検出する電池電圧検出手段と、
前記開放電圧検出手段及び前記電池電圧検出手段で検出された開放電圧値及び電圧値の差を演算する電圧差演算手段と、
前記電圧差演算手段により演算された差が予め定めれられた所定値以上か否かを判断し、所定値以上のときに前記電池電圧検出線の接続状態が異常と判定する異常判定手段と、
を備えた電池モジュール。
An assembled battery configured by connecting a plurality of cells connected in parallel via a switch with capacity adjusting resistors, and an inspection circuit for inspecting a connection state of a battery voltage detection line derived from the cells. A battery module, wherein the inspection circuit comprises:
An open-circuit voltage detecting means for detecting an open-circuit voltage value of the unit cell;
Switch control means for controlling on and off of the switch;
Battery voltage detection means for detecting a voltage value of the unit cell in the ON state of the switch;
A voltage difference calculation means for calculating an open voltage value detected by the open voltage detection means and the battery voltage detection means and a difference between the voltage values;
Determining whether or not the difference calculated by the voltage difference calculation means is greater than or equal to a predetermined value, and determining whether or not the connection state of the battery voltage detection line is abnormal when the difference is greater than or equal to a predetermined value;
Battery module with
JP2008311504A 2008-12-05 2008-12-05 Testing method, testing circuit and battery module of cell voltage sensing line Pending JP2009103706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008311504A JP2009103706A (en) 2008-12-05 2008-12-05 Testing method, testing circuit and battery module of cell voltage sensing line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008311504A JP2009103706A (en) 2008-12-05 2008-12-05 Testing method, testing circuit and battery module of cell voltage sensing line

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002338940A Division JP4254209B2 (en) 2002-11-22 2002-11-22 Battery voltage detection line inspection method, inspection circuit, and battery module

Publications (1)

Publication Number Publication Date
JP2009103706A true JP2009103706A (en) 2009-05-14

Family

ID=40705485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008311504A Pending JP2009103706A (en) 2008-12-05 2008-12-05 Testing method, testing circuit and battery module of cell voltage sensing line

Country Status (1)

Country Link
JP (1) JP2009103706A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271267A (en) * 2009-05-25 2010-12-02 Mitsubishi Motors Corp Battery monitoring device
JP2012047522A (en) * 2010-08-25 2012-03-08 Nippon Soken Inc Battery state monitor
US8872477B2 (en) 2009-12-28 2014-10-28 Samsung Sdi Co., Ltd. Battery pack and line open detecting method thereof
WO2017051581A1 (en) * 2015-09-25 2017-03-30 株式会社豊田自動織機 Battery voltage monitoring device
CN108469589A (en) * 2018-02-08 2018-08-31 惠州市亿能电子有限公司 A kind of power battery pack connection abnormality determination method
JP2022530488A (en) * 2019-05-03 2022-06-29 エルジー エナジー ソリューション リミテッド Battery cell diagnostic device and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350375A (en) * 1999-03-29 2000-12-15 Japan Storage Battery Co Ltd Capacity leveling circuit for group battery
JP2001157367A (en) * 1999-11-24 2001-06-08 Taiyo Yuden Co Ltd Method of detecting poor connection of cells in battery pack and power supply unit therefor
JP2002168928A (en) * 2000-12-01 2002-06-14 Nissan Motor Co Ltd Diagnostic device for battery pack
JP2002204537A (en) * 2000-12-28 2002-07-19 Japan Storage Battery Co Ltd Battery pack device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350375A (en) * 1999-03-29 2000-12-15 Japan Storage Battery Co Ltd Capacity leveling circuit for group battery
JP2001157367A (en) * 1999-11-24 2001-06-08 Taiyo Yuden Co Ltd Method of detecting poor connection of cells in battery pack and power supply unit therefor
JP2002168928A (en) * 2000-12-01 2002-06-14 Nissan Motor Co Ltd Diagnostic device for battery pack
JP2002204537A (en) * 2000-12-28 2002-07-19 Japan Storage Battery Co Ltd Battery pack device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271267A (en) * 2009-05-25 2010-12-02 Mitsubishi Motors Corp Battery monitoring device
US8872477B2 (en) 2009-12-28 2014-10-28 Samsung Sdi Co., Ltd. Battery pack and line open detecting method thereof
JP2012047522A (en) * 2010-08-25 2012-03-08 Nippon Soken Inc Battery state monitor
WO2017051581A1 (en) * 2015-09-25 2017-03-30 株式会社豊田自動織機 Battery voltage monitoring device
CN108469589A (en) * 2018-02-08 2018-08-31 惠州市亿能电子有限公司 A kind of power battery pack connection abnormality determination method
JP2022530488A (en) * 2019-05-03 2022-06-29 エルジー エナジー ソリューション リミテッド Battery cell diagnostic device and method
US11796605B2 (en) 2019-05-03 2023-10-24 Lg Energy Solution, Ltd. Battery cell diagnostic device and method

Similar Documents

Publication Publication Date Title
JP4254209B2 (en) Battery voltage detection line inspection method, inspection circuit, and battery module
JP5160024B2 (en) Battery module
JP7072607B2 (en) Effective Battery Cell Balancing Methods and Systems Using Duty Control
US6323650B1 (en) Electronic battery tester
US10365331B2 (en) Method for determining the reliability of state of health parameter values
JP4832840B2 (en) Battery control device
US10666066B2 (en) Differential voltage measurement device
US20040239333A1 (en) Apparatus for judging state of assembled battery
JP2009103706A (en) Testing method, testing circuit and battery module of cell voltage sensing line
EP3336565B1 (en) Secondary battery monitoring device and method for diagnosing failure
JP2001186684A (en) Lithium ion battery charger
KR101988561B1 (en) Battery management system and operating method thereof
JP2014089159A (en) Current sensor failure detection device, battery system, and current sensor failure detection method
JP6386816B2 (en) Battery state monitoring circuit and battery device
JP5473277B2 (en) Charger
JP4670301B2 (en) Backup power system
KR102158259B1 (en) System and the battery which upon failure of the battery pack analysis method and system
JP2003257504A (en) Over-discharging detecting method of secondary battery
JP4802414B2 (en) Battery remaining capacity meter
JP2011095076A (en) Battery monitoring apparatus
JP2020190529A (en) Voltage measuring circuit
JP2005086867A (en) Charging control system
JP6020038B2 (en) Storage module monitoring device
JP2018091701A (en) Voltage estimation device
KR20220028387A (en) Method of calculating isolation resistance and battery system using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521