JP4254209B2 - Battery voltage detection line inspection method, inspection circuit, and battery module - Google Patents

Battery voltage detection line inspection method, inspection circuit, and battery module Download PDF

Info

Publication number
JP4254209B2
JP4254209B2 JP2002338940A JP2002338940A JP4254209B2 JP 4254209 B2 JP4254209 B2 JP 4254209B2 JP 2002338940 A JP2002338940 A JP 2002338940A JP 2002338940 A JP2002338940 A JP 2002338940A JP 4254209 B2 JP4254209 B2 JP 4254209B2
Authority
JP
Japan
Prior art keywords
circuit
unit cell
voltage detection
terminal voltage
capacity adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002338940A
Other languages
Japanese (ja)
Other versions
JP2004170335A (en
Inventor
憲一朗 水流
彰彦 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2002338940A priority Critical patent/JP4254209B2/en
Publication of JP2004170335A publication Critical patent/JP2004170335A/en
Application granted granted Critical
Publication of JP4254209B2 publication Critical patent/JP4254209B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電池電圧検出線の検査方法、検査回路及び電池モジュールに関する。
【0002】
【従来の技術】
例えば、電気自動車等には、二次電池(以下、単電池という。)を必要な電圧に相当する分だけ複数個直列に接続した組電池が使用されている。このような組電池は、複数個の単電池を用いるので、信頼性を確保することが重要である。すなわち、組電池を構成する単電池のうちの何れかが過充電や過放電等によりその機能が低下すると、組電池全体としての機能も低下することになる。また、組電池を構成する各単電池には製造時のバラツキがあり、更に、温度分布が均一でないこと等により、各単電池の充電受入性や放電容量が異なってくる。この状態で組電池を使用すると、過放電、過充電となる単電池が発生し、組電池全体の寿命が短くなってしまう。
【0003】
このため、電池モジュールでは、各単電池や組電池を制御する制御回路を具備しており、各単電池の電圧を単電池から導出された電池電圧検出線を介して検出して、検出した単電池の電圧に応じて二次電池毎に調整する容量(例えば、電流値と時間との積)をマイクロコンピュータで演算して、単電池に並列に接続された容量調整用抵抗と、容量調整用抵抗に直列に接続されたスイッチと、で構成される容量調整回路のスイッチを演算した所定時間の間オン状態とすることにより単電池と容量調整回路との間で閉回路を構成して、各単電池間の容量を均一に調整している。容量調整回路のスイッチは、例えば、FET等のユニポーラトランジスタやバイポーラトランジスタ等で構成されており、マイクロコンピュータから2値制御のハイレベル信号を出力し、FETやトランジスタのゲート又はベースに微少電流を流すことにより、ドレイン・ソース間又はコレクタ・エミッタ間に容量調整電流を流し、抵抗で調整容量分の電力を熱消費させている。
【0004】
ところで、このような電池電圧検出線の接続状態についての検査は、従来、単電池毎の電池電圧を測定し(例えば、特許文献1参照)、単電池の電圧が検出されることで接続状態の確認をする方法が一般的であった。
【0005】
【特許文献1】
特開2000−92732号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来の電池電圧検出線の接続検査方法では、組電池が休止状態にあるときに各単電池の開放電圧のみを測定するので、電池電圧検出線が微小断線状態にあると、測定される電池電圧に影響が表れず、電池電圧検出線の接続状態を正常と判断してしまう、という問題があった。
【0007】
本発明は上記事案に鑑み、電池電圧検出線の接続状態を正確に検査可能な検査方法、検査回路、該検査回路を備えた電池モジュールを提供することを課題とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明の第1の態様は、電池電圧検出線の検査方法であって、本態様では、電池電圧検出線に微小断線があると、単電池と並列に抵抗を接続し電流を流したときの電圧値が、電池検出線が正常なとき(微小断線がないとき)に比べ異なってくるので、単電池の開放電圧値との差が予め定められた所定値以上となり、電池電圧検出線の接続状態に異常があることを判定することができる
【0011】
【発明の実施の形態】
以下、図面を参照して本発明が適用可能な電池モジュールの実施の形態について説明する。
【0012】
(構成)
図1に示すように、本実施形態の電池モジュール20は、リチウムイオン二次電池(以下、単電池という。)1、7、11が3個直列に接続された組電池15を備えている。単電池1、7、11には、それぞれ単電池の容量を調整するための容量調整回路2、8、12が並列に接続されている。
【0013】
すなわち、単電池1、7、11の+端子には電池電圧検出線L1、L2、L3を介して容量調整用のバイパス抵抗3、9、13の一端が接続されており、バイパス抵抗3、9、13の他端にはスイッチとして機能するFET4、10、14のドレインがそれぞれ接続されている。一方、単電池1、7、11の−端子には電池電圧検出線L2、L3、L4を介してFET4、10、14のソースがそれぞれ接続されており、FET4、10、14のゲートは後述するマイクロコンピュータ(以下、マイコンという。)5の出力ポートに接続されている。従って、マイコン5の出力ポートからFETのゲートに微弱な2値ハイレベル信号が入力されると(オン状態となると)、FET4、10、14のドレイン側(単電池の+端子側)からソース側(単電池の−端子側)に電流が流れることで、電流がバイパス抵抗3、9、13により熱消費され単電池1、7、11毎に容量調整が可能である(以下、FET4、10、14をそれらの機能に着目してスイッチ4、10、14という。)。
【0014】
また、電池モジュール20は、単電池1、7、11の電圧を単電池毎に測定する開放電圧検出手段及び電池電圧検出手段の一部としての電圧測定回路6、電池モジュール20を制御し開放電圧検出手段、スイッチ制御手段、電池電圧検出手段、電圧差演算手段及び異常判定手段としてのマイコン5、組電池15の充放電並びに休止状態を検出して組電池15の状態をマイコン5に出力する図示を省略した充放電判別部、及び、マイコン5や電圧測定回路6に作動電源を供給する図示を省略した電源部を備えている。
【0015】
マイコン5は、演算処理を行うCPU、CPUが実行するプログラム及び種々の設定値等を格納したROM、CPUのワークエリアとして働くRAM、及び電圧測定回路6からのアナログ電圧をデジタル化するA/D変換部を含んで構成されている。また、マイコン5は、上述した各FETにハイレベル信号を出力する出力ポートの他に、電圧測定回路6に電圧測定対象の単電池を指定するための単電池指定ポート、電圧測定回路6から指定した単電池の電圧が入力されるAD入力ポート、インターフェース(I/F)を介して電池モジュール20を制御する上位システムとの通信を行うための図示を省略したシリアルポートを有している。
【0016】
電圧測定回路6は、各単電池の電圧を個別に測定する回路であり、例えば、増幅率1の差動増幅回路等を含む回路により構成することができる。電圧測定回路6の入力側は電池電圧検出線L1、L2、L3、L4に接続されており、電圧測定回路6の出力側はマイコン5のAD入力ポートに接続されている。また、電圧測定回路6は、マイコン5から電圧測定対象の単電池の指定を受けるためにマイコン5の単電池指定ポートに接続されている。従って、マイコン5は、単電池指定ポートから電圧測定回路6に電圧測定対象の単電池を指定することで、AD入力ポートを介して電圧測定回路6から測定対象の単電池の電圧を取り込み、かつ、A/D変換することで、指定した単電池の電圧値を取得(測定)することが可能である。
【0017】
なお、図示を省略した充放電判別部は、最上位側の単電池1の+端子と組電池15の+外部出力端子との間に挿入されている。充放電判別部は、例えば、シャント(分路)抵抗やホール素子等により組電池15を流れる電流方向を検出可能に構成することができ、組電池15が充電、放電、休止のいずれの状態にあるかをマイコン5へ出力するものである。また、単電池11の−端子は電池モジュール20の−外部出力端子に接続されており、電池モジュール20の+外部出力端子及び−外部出力端子は充電器又は負荷に接続される。
【0018】
(動作)
次に、フローチャートを参照して、本実施形態の電池モジュール20の動作について説明する。なお、初期状態においてマイコン5に電源が投入されると、ROMに格納された種々の設定値がRAMに移行され電池電圧検出線L1〜L4を検査するための電池電圧検出線検査ルーチンが実行可能な状態となり、インターフェースを介して図示しない検査治具から又は上位システムから所定信号を受信すると以下の電池電圧検出線検査ルーチンが実行される。
【0019】
図2に示すように、電池電圧検出線検査ルーチンでは、まず、ステップ102において、単電池1、7、11の開放電圧値Vb1、Vc1、Vd1を取得(測定)し、RAMに記憶する。すなわち、単電池指定ポートから電圧測定回路6に電圧測定対象の単電池1を指定し開放電圧値Vb1を取得してRAMに記憶した後、単電池7を指定し開放電圧値Vc1を取得してRAMに記憶し、同様に、単電池11を指定し開放電圧値Vd1を取得してRAMに記憶する。
【0020】
次にステップ104では、スイッチ4をオン状態(以下、ONと略記する。)、スイッチ10、14をオフ状態(FET10、14のゲートへの信号がローレベルの状態、以下、OFFと略記する。)とし、次のステップ106でバイパス抵抗3を並列に接続し電流を流したときの単電池1の電圧値Vb2を取得してRAMに記憶する。次いでステップ108において、(Vb2−Vb1)の絶対値が予め定められた所定値より小さいか否かを判断する。なお、このような所定値は、電池電圧検出線L1〜L4の長さ、電池電圧検出線L1〜L4と単電池1、7、11との接合方法、バイパス抵抗3、9、13の値等の影響を考慮し適切な値を設定することが好ましい(本例の場合は、0.8V)。肯定判断のときは、ステップ110で電池電圧検出線L1及びL2に異常がないこと(OK)をRAMに記憶し、否定判断のときは、ステップ112で電池電圧検出線L1及び/又はL2に異常(電池電圧検出線L1のみ異常、電池電圧検出線L2のみ異常、又は電池電圧検出線L1、L2の双方が異常)があること(NG)をRAMに記憶する。
【0021】
次にステップ114では、スイッチ10をON、スイッチ4、14をOFFとし、次のステップ116でバイパス抵抗9を並列に接続し電流を流したときの単電池7の電圧値Vc2を取得してRAMに記憶する。次いでステップ118において、(Vc2−Vc1)の絶対値が所定値より小さいか否かを判断する。肯定判断のときは、ステップ120で電池電圧検出線L2及びL3に異常がないことをRAMに記憶し、否定判断のときは、ステップ122で電池電圧検出線L2及び/又はL3に異常があることをRAMに記憶する。
【0022】
次にステップ124では、スイッチ14をON、スイッチ4、10をOFFとし、次のステップ126でバイパス抵抗13を並列に接続し電流を流したときの単電池11の電圧値Vd2を取得してRAMに記憶する。次いでステップ128において、(Vd2−Vd1)の絶対値が所定値より小さいか否かを判断する。肯定判断のときは、ステップ130で電池電圧検出線L3及びL4に異常がないことをRAMに記憶し、否定判断のときは、ステップ132で電池電圧検出線L3及び/又はL4に異常があることをRAMに記憶する。
【0023】
次のステップ134では、すべての電池電圧検出線L1〜L4が異常がないか否かを判断し、肯定判断のときは、図3のステップ168へ進み、否定判断のときは、図3のステップ136へ進む。
【0024】
ステップ168では、電池電圧検出線L1〜L4のすべてに異常がない(OK)ので、OKを表すデフォルト値を選択してステップ170へ進む。一方、ステップ136では、スイッチ4、10をON、スイッチ14をOFFとし、次のステップ138で単電池1、7の電圧値Vb3、Vc3をそれぞれ取得してRAMに記憶する。次いでステップ140において、{(Vb3+Vc3)−(Vb1+Vc1)}の絶対値が所定値より小さいか否かを判断する。肯定判断のときは、ステップ142で電池電圧検出線L1及びL3に異常がないことをRAMに記憶し、否定判断のときは、ステップ144で電池電圧検出線L1及び/又はL3に異常があることをRAMに記憶する。
【0025】
次にステップ146では、スイッチ10、14をON、スイッチ4をOFFとし、次のステップ148で単電池7、11の電圧値Vc4、Vd3をそれぞれ取得してRAMに記憶する。次いでステップ150において、{(Vc4+Vd3)−(Vc1+Vd1)}の絶対値が所定値より小さいか否かを判断する。肯定判断のときは、ステップ152で電池電圧検出線L2及びL4に異常がないことをRAMに記憶し、否定判断のときは、ステップ154で電池電圧検出線L2及び/又はL4に異常があることをRAMに記憶する。
【0026】
次にステップ156では、スイッチ4、10、14をONとし、次のステップ158で単電池1、7、11の電圧値Vb4、Vc5、Vd4をそれぞれ取得してRAMに記憶する。次いでステップ160において、{(Vb4+Vc5+Vd4)−(Vb1+Vc1+Vd1)}の絶対値が所定値より小さいか否かを判断する。肯定判断のときは、ステップ162で電池電圧検出線L1及びL4に異常がないことをRAMに記憶し、否定判断のときは、ステップ164で電池電圧検出線L1及び/又はL4に異常があることをRAMに記憶する。
【0027】
次のステップ166では、ステップ142、144、152、154、162、164でRAMに記憶した電池電圧検出線L1〜L4のうち接続状態が異常な箇所(NG箇所)を特定し、特定されたNG箇所のデフォルト値を選択してステップ170へ進む。ステップ170では、選択されたデフォルト値をインターフェースから出力して電池電圧検出線検査ルーチンを終了する。これにより、図示しない検査治具又は上位システムに接続された検査治具のディスプレイには電池電圧検出線L1〜L4の接続状態が表示される。
【0028】
(作用等)
本実施形態の電池モジュール20では、スイッチ3、9、12をON、OFFすることで、組電池15を構成する特定の単電池に1つずつパイパス抵抗を接続したり、又は、組み合わせることで、単電池1、7、11から導出された電池電圧検出線L1〜L4の接続状態を精度よく検査することができる。すなわち、電池電圧検出線L1〜L4に微小断線があると、単電池と並列に抵抗を接続し電流を流したときの電圧値が、電池検出線がOKのないときに比べ異なってくるので、単電池の開放電圧値との差が予め定められた所定値以上となり、接続状態に異常があることを電池電圧検出線L1〜L4毎に判定することができる。また、単電池1、7、11にはバイパス抵抗3、9、13が並列接続されているので、電池モジュール20の外部で抵抗を接続することなく、これらのバイパス抵抗を利用して単電池の放電時の電圧値を測定することでより精度の高い電池電圧検出線の接続状態の検査を行うことができる。更に、本実施形態の電池モジュール20では、電池電圧検出線検査ルーチンを実行可能なプログラムマイコン5に格納すると共に、ハードウエアを電池モジュール20が有している回路を使用して電池電圧検出線の接続状態を検査するようにしたので、検査治具の負担(回路構成)を小さくすることができる。
【0029】
なお、本実施形態では、電池モジュール20内のマイコン5に電池電圧検出線検査ルーチンを実行させるソフトウエアの例を示したが、本発明はこれに制限されず、OPアンプ等を含むハードウエア等で構成するようにしてもよい。
【0030】
また、本実施形態では、電圧測定回路6について単電池の電圧を1つずつ測定する例を示したが、複数の単電池の電圧を一度に測定可能な電圧測定回路を用いるようにしてもよい。
【0031】
更に、本実施形態では、図4に示したように、電池電圧検出線L1〜L4のひとつでも異常が判明すると、正常と判明した電池電圧検出線についても再検査する例を示したが、図3で接続状態が異常の可能性がある電池電圧検出線についてのみ検査を行うようにしてもよい。このようにすれば、接続状態が異常な電池電圧検出線を早く特定することが可能となる。
【0032】
【発明の効果】
以上説明したように、本発明によれば、電池電圧検出線に微小断線があると、単電池と並列に抵抗を接続し電流を流したときの電圧値が、電池検出線が正常なときに比べ異なってくるので、単電池の開放電圧値との差が予め定められた所定値以上となり、電池電圧検出線の接続状態に異常があることを判定することができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用可能な実施形態の電池モジュールのブロック回路図である。
【図2】マイコンのCPUが実行する電池電圧検出線検査ルーチンその1のフローチャートである。
【図3】マイコンのCPUが実行する電池電圧検出線検査ルーチンその2のフローチャートである。
【符号の説明】
1、7、11 リチウムイオン二次電池(リチウムイオン電池、単電池)
2、8、12 容量調整回路
3、9、13 バイパス抵
4、10、14 FET(半導体スイッチ)
5 マイコン(記憶回路、制御回路)
6 電圧測定回路(選択回路)
15 組電池
20 電池モジュール
L1、L2、L3、L4 電池電圧検出線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery voltage detection line inspection method, an inspection circuit, and a battery module.
[0002]
[Prior art]
For example, an assembled battery in which a plurality of secondary batteries (hereinafter referred to as single cells) are connected in series corresponding to a required voltage is used for an electric vehicle or the like. Since such an assembled battery uses a plurality of single cells, it is important to ensure reliability. That is, when any of the single cells constituting the assembled battery has its function lowered due to overcharge or overdischarge, the function of the assembled battery as a whole is also lowered. Further, each unit cell constituting the assembled battery has variations at the time of manufacture, and furthermore, the charge acceptance and discharge capacity of each unit cell differ due to the non-uniform temperature distribution. When the assembled battery is used in this state, a unit cell that is overdischarged or overcharged is generated, and the life of the entire assembled battery is shortened.
[0003]
For this reason, the battery module is provided with a control circuit that controls each unit cell or battery pack, and detects the voltage of each unit cell by detecting the voltage of each unit cell through a battery voltage detection line derived from the unit cell. The capacity (for example, the product of the current value and time) to be adjusted for each secondary battery according to the battery voltage is calculated by the microcomputer, and the capacity adjustment resistor connected in parallel to the single battery and the capacity adjustment A switch connected in series with the resistor, and a switch of the capacity adjustment circuit composed of a switch is turned on for a predetermined time by calculating a closed circuit between the unit cell and the capacity adjustment circuit, The capacity between cells is adjusted uniformly. The switch of the capacity adjustment circuit is composed of, for example, a unipolar transistor such as an FET or a bipolar transistor, and outputs a high-level signal of binary control from a microcomputer to flow a minute current to the gate or base of the FET or transistor. As a result, a capacitance adjustment current is passed between the drain and source or between the collector and emitter, and the electric power corresponding to the adjustment capacitance is consumed by the resistor.
[0004]
By the way, the inspection about the connection state of such a battery voltage detection line conventionally measures the battery voltage for every single cell (for example, refer patent document 1), and the state of a connection state is detected by detecting the voltage of a single cell. The method of confirming was common.
[0005]
[Patent Document 1]
JP-A-2000-92732 gazette
[Problems to be solved by the invention]
However, in the above conventional battery voltage detection line connection inspection method, only the open voltage of each unit cell is measured when the assembled battery is in a dormant state. Therefore, it is measured when the battery voltage detection line is in a minute disconnection state. There is a problem that the battery voltage is not affected and the connection state of the battery voltage detection line is determined to be normal.
[0007]
An object of the present invention is to provide an inspection method, an inspection circuit, and a battery module including the inspection circuit capable of accurately inspecting the connection state of the battery voltage detection line in view of the above-described case.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, a first aspect of the present invention is a method for inspecting a battery voltage detection line . In this aspect, if there is a minute disconnection in the battery voltage detection line, a resistance is provided in parallel with the unit cell. Since the voltage value when the current is connected and current is different compared to when the battery detection line is normal (when there is no minute disconnection), the difference from the open voltage value of the unit cell is greater than a predetermined value Thus, it can be determined that there is an abnormality in the connection state of the battery voltage detection line .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a battery module to which the present invention can be applied will be described with reference to the drawings.
[0012]
(Constitution)
As shown in FIG. 1, the battery module 20 of the present embodiment includes an assembled battery 15 in which three lithium ion secondary batteries (hereinafter referred to as single cells) 1, 7, and 11 are connected in series. The unit cells 1, 7, and 11 are connected in parallel with capacity adjustment circuits 2, 8, and 12, respectively, for adjusting the unit cell capacity.
[0013]
That is, one end of capacity adjusting bypass resistors 3, 9, 13 is connected to the + terminals of the cells 1, 7, 11 through battery voltage detection lines L 1, L 2, L 3. , 13 are connected to the drains of FETs 4, 10, 14 functioning as switches, respectively. On the other hand, the sources of the FETs 4, 10, and 14 are connected to the negative terminals of the cells 1, 7, and 11 through battery voltage detection lines L2, L3, and L4, respectively, and the gates of the FETs 4, 10, and 14 will be described later. It is connected to an output port of a microcomputer (hereinafter referred to as a microcomputer) 5. Therefore, when a weak binary high level signal is input from the output port of the microcomputer 5 to the gate of the FET (when turned on), the drain side of the FETs 4, 10, 14 (the + terminal side of the unit cell) to the source side When the current flows through (the −terminal side of the unit cell), the current is thermally consumed by the bypass resistors 3, 9, and 13, and the capacity can be adjusted for each unit cell 1, 7, 11 (hereinafter, FET 4, 10, 14 is referred to as switches 4, 10, and 14 in view of their functions).
[0014]
In addition, the battery module 20 controls the open-circuit voltage detection means for measuring the voltage of the single cells 1, 7, and 11 for each single battery, and the voltage measurement circuit 6 as a part of the battery voltage detection means and the battery module 20 to control the open-circuit voltage. Detection means, switch control means, battery voltage detection means, voltage difference calculation means, abnormality determination means, microcomputer 5, charge / discharge of battery pack 15 and rest state are detected and the state of battery pack 15 is output to microcomputer 5 And a power supply unit (not shown) that supplies operating power to the microcomputer 5 and the voltage measurement circuit 6.
[0015]
The microcomputer 5 is a CPU that performs arithmetic processing, a ROM that stores programs executed by the CPU and various setting values, a RAM that serves as a work area for the CPU, and an A / D that digitizes an analog voltage from the voltage measurement circuit 6. A conversion unit is included. In addition to the output port that outputs a high level signal to each FET described above, the microcomputer 5 designates the voltage measurement circuit 6 from a single cell designation port for designating a single cell to be measured, and the voltage measurement circuit 6. An AD input port to which the voltage of the single cell is input, and a serial port (not shown) for communicating with a host system that controls the battery module 20 via an interface (I / F).
[0016]
The voltage measurement circuit 6 is a circuit that individually measures the voltage of each unit cell, and can be configured by a circuit including a differential amplification circuit having an amplification factor of 1, for example. The input side of the voltage measurement circuit 6 is connected to the battery voltage detection lines L 1, L 2, L 3 and L 4, and the output side of the voltage measurement circuit 6 is connected to the AD input port of the microcomputer 5. In addition, the voltage measurement circuit 6 is connected to a single cell designation port of the microcomputer 5 in order to receive designation of a single cell for voltage measurement from the microcomputer 5. Therefore, the microcomputer 5 designates the voltage measurement target cell from the cell designation port to the voltage measurement circuit 6, thereby taking in the voltage of the measurement target cell from the voltage measurement circuit 6 through the AD input port, and By performing A / D conversion, it is possible to acquire (measure) the voltage value of the designated cell.
[0017]
The charge / discharge determination unit (not shown) is inserted between the + terminal of the uppermost unit cell 1 and the + external output terminal of the assembled battery 15. The charge / discharge discriminating unit can be configured to detect the direction of current flowing through the assembled battery 15 using, for example, a shunt (shunt) resistor or a Hall element, and the assembled battery 15 can be in any state of charging, discharging, and resting. Whether or not there is is output to the microcomputer 5. Further, the negative terminal of the cell 11 is connected to the negative external output terminal of the battery module 20, and the positive external output terminal and negative external output terminal of the battery module 20 are connected to a charger or a load.
[0018]
(Operation)
Next, with reference to a flowchart, operation | movement of the battery module 20 of this embodiment is demonstrated. When the microcomputer 5 is turned on in the initial state, various set values stored in the ROM are transferred to the RAM, and a battery voltage detection line inspection routine for inspecting the battery voltage detection lines L1 to L4 can be executed. When a predetermined signal is received from an inspection jig (not shown) or from a host system via the interface, the following battery voltage detection line inspection routine is executed.
[0019]
As shown in FIG. 2, in the battery voltage detection line inspection routine, first, in step 102, open voltage values Vb1, Vc1, and Vd1 of the single cells 1, 7, and 11 are acquired (measured) and stored in the RAM. That is, after specifying the unit cell 1 to be voltage measured from the unit cell designation port to the voltage measurement circuit 6 and acquiring the open voltage value Vb1 and storing it in the RAM, the unit cell 7 is specified and the open circuit voltage value Vc1 is acquired. Similarly, the unit cell 11 is designated and the open-circuit voltage value Vd1 is acquired and stored in the RAM.
[0020]
Next, in step 104, the switch 4 is turned on (hereinafter abbreviated as ON), and the switches 10 and 14 are turned off (signals to the gates of the FETs 10 and 14 are at a low level, hereinafter abbreviated as OFF). In the next step 106, the bypass resistor 3 is connected in parallel, and the voltage value Vb2 of the unit cell 1 when the current flows is acquired and stored in the RAM. Next, at step 108, it is determined whether or not the absolute value of (Vb2-Vb1) is smaller than a predetermined value. Such predetermined values include the lengths of the battery voltage detection lines L1 to L4, the joining method of the battery voltage detection lines L1 to L4 and the cells 1, 7, and 11, the values of the bypass resistors 3, 9, and 13 and the like. It is preferable to set an appropriate value in consideration of the influence of (0.8 V in this example). If the determination is affirmative, the fact that there is no abnormality in the battery voltage detection lines L1 and L2 (OK) is stored in the RAM in step 110. If the determination is negative, the battery voltage detection lines L1 and / or L2 are abnormal in step 112. (NG) is stored in the RAM that there is an abnormality (only battery voltage detection line L1 is abnormal, only battery voltage detection line L2 is abnormal, or both battery voltage detection lines L1 and L2 are abnormal).
[0021]
Next, in step 114, the switch 10 is turned on, the switches 4 and 14 are turned off, and in the next step 116, the bypass resistor 9 is connected in parallel to obtain the voltage value Vc2 of the unit cell 7 when the current flows. To remember. Next, at step 118, it is determined whether or not the absolute value of (Vc2-Vc1) is smaller than a predetermined value. If the determination is affirmative, the fact that there is no abnormality in the battery voltage detection lines L2 and L3 is stored in the RAM in step 120, and if the determination is negative, there is an abnormality in the battery voltage detection lines L2 and / or L3 in step 122. Is stored in the RAM.
[0022]
Next, in step 124, the switch 14 is turned on, the switches 4 and 10 are turned off, and in the next step 126, the bypass resistor 13 is connected in parallel to obtain the voltage value Vd2 of the unit cell 11 when a current is passed. To remember. Next, at step 128, it is determined whether or not the absolute value of (Vd2-Vd1) is smaller than a predetermined value. If the determination is affirmative, the battery voltage detection lines L3 and L4 are stored in the RAM in step 130, and if the determination is negative, the battery voltage detection lines L3 and / or L4 are abnormal in step 132. Is stored in the RAM.
[0023]
In the next step 134, it is determined whether or not all the battery voltage detection lines L1 to L4 are abnormal. If the determination is affirmative, the process proceeds to step 168 of FIG. 3, and if the determination is negative, the step of FIG. Go to 136.
[0024]
In step 168, since all of the battery voltage detection lines L1 to L4 are not abnormal (OK), a default value representing OK is selected and the process proceeds to step 170. On the other hand, in step 136, the switches 4 and 10 are turned on and the switch 14 is turned off. In the next step 138, the voltage values Vb3 and Vc3 of the single cells 1 and 7 are acquired and stored in the RAM. Next, at step 140, it is determined whether or not the absolute value of {(Vb3 + Vc3) − (Vb1 + Vc1)} is smaller than a predetermined value. If an affirmative decision is made, the fact that there is no abnormality in the battery voltage detection lines L1 and L3 is stored in the RAM in step 142, and if a negative decision is made, there is an abnormality in the battery voltage detection lines L1 and / or L3 in step 144. Is stored in the RAM.
[0025]
Next, in step 146, the switches 10 and 14 are turned on and the switch 4 is turned off. In the next step 148, the voltage values Vc4 and Vd3 of the single cells 7 and 11 are acquired and stored in the RAM. Next, at step 150, it is determined whether or not the absolute value of {(Vc4 + Vd3) − (Vc1 + Vd1)} is smaller than a predetermined value. If the determination is affirmative, the fact that there is no abnormality in the battery voltage detection lines L2 and L4 is stored in the RAM in step 152, and if the determination is negative, the battery voltage detection lines L2 and / or L4 are abnormal in step 154. Is stored in the RAM.
[0026]
Next, in step 156, the switches 4, 10, and 14 are turned ON, and in the next step 158, the voltage values Vb4, Vc5, and Vd4 of the single cells 1, 7, and 11 are acquired and stored in the RAM. Next, at step 160, it is determined whether or not the absolute value of {(Vb4 + Vc5 + Vd4) − (Vb1 + Vc1 + Vd1)} is smaller than a predetermined value. If an affirmative determination is made, the fact that there is no abnormality in the battery voltage detection lines L1 and L4 is stored in the RAM in step 162, and if a negative determination is made, there is an abnormality in the battery voltage detection lines L1 and / or L4 in step 164. Is stored in the RAM.
[0027]
In the next step 166, the battery voltage detection lines L1 to L4 stored in the RAM in steps 142, 144, 152, 154, 162, and 164 are identified as locations where the connection state is abnormal (NG locations), and the identified NG The default value of the location is selected and the process proceeds to step 170. In step 170, the selected default value is output from the interface, and the battery voltage detection line inspection routine is terminated. Thereby, the connection state of the battery voltage detection lines L1 to L4 is displayed on the display of the inspection jig (not shown) or the inspection jig connected to the host system.
[0028]
(Action etc.)
In the battery module 20 of the present embodiment, by turning ON / OFF the switches 3, 9, and 12, a bypass resistor is connected to a specific unit cell constituting the assembled battery 15 one by one, or combined, The connection state of the battery voltage detection lines L1 to L4 derived from the single cells 1, 7, and 11 can be accurately inspected. That is, if there is a minute disconnection in the battery voltage detection lines L1 to L4, the voltage value when a resistor is connected in parallel with the unit cell and current flows is different from when the battery detection line is not OK. The difference from the open-circuit voltage value of the unit cell is equal to or greater than a predetermined value, and it can be determined for each of the battery voltage detection lines L1 to L4 that the connection state is abnormal. In addition, since the bypass resistors 3, 9, and 13 are connected in parallel to the single cells 1, 7, and 11, without using the resistors outside the battery module 20, these bypass resistors are used to connect the single cells. By measuring the voltage value at the time of discharging, it is possible to inspect the connection state of the battery voltage detection line with higher accuracy. Further, in the battery module 20 of the present embodiment, the battery voltage detection line is stored in the program microcomputer 5 capable of executing the battery voltage detection line inspection routine, and the hardware of the battery voltage detection line is used by using a circuit that the battery module 20 has. Since the connection state is inspected, the burden on the inspection jig (circuit configuration) can be reduced.
[0029]
In the present embodiment, an example of software that causes the microcomputer 5 in the battery module 20 to execute the battery voltage detection line inspection routine is shown, but the present invention is not limited to this, and hardware including an OP amplifier and the like You may make it comprise.
[0030]
Further, in the present embodiment, an example in which the voltage of the single cell is measured one by one with respect to the voltage measurement circuit 6 is shown, but a voltage measurement circuit that can measure the voltages of a plurality of single cells at a time may be used. .
[0031]
Furthermore, in the present embodiment, as shown in FIG. 4, when an abnormality is found in any one of the battery voltage detection lines L1 to L4, the battery voltage detection line that has been found to be normal is reexamined. 3 may be performed only for the battery voltage detection line in which the connection state may be abnormal. In this way, it is possible to quickly identify a battery voltage detection line with an abnormal connection state.
[0032]
【The invention's effect】
As described above, according to the present invention, when there is a minute disconnection in the battery voltage detection line, the voltage value when a current is passed by connecting a resistor in parallel with the unit cell is determined when the battery detection line is normal. Since the difference is different, the difference from the open-circuit voltage value of the unit cell is equal to or greater than a predetermined value, and it is possible to determine that there is an abnormality in the connection state of the battery voltage detection line. it can.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram of a battery module according to an embodiment to which the present invention is applicable.
FIG. 2 is a flowchart of a battery voltage detection line inspection routine 1 executed by a CPU of a microcomputer.
FIG. 3 is a flowchart of a battery voltage detection line inspection routine 2 executed by the CPU of the microcomputer.
[Explanation of symbols]
1, 7, 11 Lithium ion secondary battery (lithium ion battery, single battery)
2,8,12 capacity adjustment circuits 3,9,13 bypass resistor 4,10,14 FET (semiconductor switch)
5 microcomputer (memory circuit, control circuits)
6 Voltage measurement circuit (selection circuit)
15 Battery pack 20 Battery module L1, L2, L3, L4 Battery voltage detection line

Claims (7)

直列に接続された複数のリチウムイオン電池と、
前記複数のリチウムイオン電池からの複数の端子電圧を受け、指定信号に基づき前記複数の端子電圧から指定された端子電圧を選択するための選択回路と、
前記複数のリチウムイオン電池の端子電圧をそれぞれ前記選択回路に導くための電池電圧検出線と、
バイパス抵抗と半導体スイッチとの直列回路を有し、前記電池電圧検出線を介して前記複数のリチウムイオン電池の各端子間にそれぞれ接続される複数の容量調整回路と、
アナログ値をデジタル値に変換するAD変換回路と、
記憶回路と、
プログラムに基づいて動作する制御回路とを備え、
前記制御回路の動作に基づき容量調整回路の半導体スイッチが制御され、前記容量調整回路が接続されているリチウムイオン電池の容量調整が行われ、
さらに、前記制御回路の動作により、前記複数のリチウムイオン電池の内の一方のリチウムイオン電池に接続されている一方の容量調整回路の半導体スイッチをON状態に、また前記複数のリチウムイオン電池の内の他方のリチウムイオン電池に並列接続されている他方の容量調整回路の半導体スイッチをOFF状態に制御し、
前記制御回路からの一方のリチウムイオン電池を指定する指定信号に基づき、前記選択回路は一方の容量調整回路の半導体スイッチのON動作に基づく前記一方のリチウムイオン電池の端子電圧を選択し、
選択された前記端子電圧は前記AD変換回路により前記デジタル値に変換され、
前記制御回路の動作により前記デジタル値に基づいて、電池電圧検出線の接続状態の異常判定が行われ、判定結果が前記記憶回路に記憶されることを特徴とする電池電圧検出線の検査方法。
A plurality of lithium ion batteries connected in series;
A selection circuit for receiving a plurality of terminal voltages from the plurality of lithium ion batteries and selecting a designated terminal voltage from the plurality of terminal voltages based on a designation signal;
A battery voltage detection line for guiding terminal voltages of the plurality of lithium ion batteries to the selection circuit, and
A plurality of capacity adjustment circuits each having a series circuit of a bypass resistor and a semiconductor switch and connected between the terminals of the plurality of lithium ion batteries via the battery voltage detection line;
An AD converter circuit for converting an analog value into a digital value;
A memory circuit;
And a control circuit that operates based on a program,
The semiconductor switch of the capacity adjustment circuit is controlled based on the operation of the control circuit, and the capacity adjustment of the lithium ion battery to which the capacity adjustment circuit is connected is performed.
Further, by the operation of the control circuit, the semiconductor switch of one capacity adjustment circuit connected to one lithium ion battery of the plurality of lithium ion batteries is turned on, and the inside of the plurality of lithium ion batteries Control the semiconductor switch of the other capacity adjustment circuit connected in parallel to the other lithium ion battery to the OFF state,
Based on the designation signal designating one lithium ion battery from the control circuit, the selection circuit selects the terminal voltage of the one lithium ion battery based on the ON operation of the semiconductor switch of one capacity adjustment circuit,
The selected terminal voltage is converted into the digital value by the AD conversion circuit,
An inspection method for a battery voltage detection line, wherein an abnormality determination of a connection state of the battery voltage detection line is performed based on the digital value by an operation of the control circuit, and a determination result is stored in the storage circuit.
直列に接続された複数の単電池と、
前記複数の単電池のそれぞれの端子電圧を導くための複数の電池電圧検出線と、
前記複数の電池電圧検出線を介して入力された複数の端子電圧から指定信号に基づく端子電圧を選択するための選択回路と、
バイパス抵抗と半導体スイッチとの直列回路を有し、前記電池電圧検出線を介して前記各単電池の端子間にそれぞれ接続される複数の容量調整回路と、
アナログ値をデジタル値に変換するAD変換回路と、
記憶回路と、
プログラムに基づいて動作する制御回路とを備え、
前記複数の単電池の一方の単電池に並列接続された一方の容量調整回路と前記複数の単電池の内の他方の単電池に並列接続された他方の容量調整回路とがそれぞれ有する一方および他方の半導体スイッチが前記制御回路の動作に基づいてそれぞれ制御されて、前記一方および他方の単電池の容量調整が行われ、
前記容量調整のための動作とは別に、前記制御回路の動作により、一方の半導体スイッチがON状態にまた他方の半導体スイッチがOFF状態に制御され、また一方の単電池の端子電圧を指定する指定信号が前記選択回路に加えられて前記一方の単電池の端子電圧が選択されて、選択された前記一方の単電池の端子電圧が前記AD変換回路によりデジタル変換され、変換されたデジタル値から電池電圧検出線の接続状態の異常判定が行われることを特徴とする電池電圧検出線の検査方法。
A plurality of cells connected in series;
A plurality of battery voltage detection lines for guiding the terminal voltage of each of the plurality of unit cells;
A selection circuit for selecting a terminal voltage based on a designation signal from a plurality of terminal voltages input via the plurality of battery voltage detection lines;
A plurality of capacity adjustment circuits, each having a series circuit of a bypass resistor and a semiconductor switch, each connected between terminals of each unit cell via the battery voltage detection line;
An AD converter circuit for converting an analog value into a digital value;
A memory circuit;
And a control circuit that operates based on a program,
One and the other of one capacity adjustment circuit connected in parallel to one unit cell of the plurality of unit cells and the other capacity adjustment circuit connected in parallel to the other unit cell among the plurality of unit cells The semiconductor switches are controlled based on the operation of the control circuit, respectively, and the capacity adjustment of the one and the other unit cells is performed,
Separately from the operation for adjusting the capacity, the operation of the control circuit controls one of the semiconductor switches to be in an ON state and the other semiconductor switch to be in an OFF state, and designates the terminal voltage of one unit cell. A signal is applied to the selection circuit to select the terminal voltage of the one unit cell, and the terminal voltage of the selected one unit cell is digitally converted by the AD conversion circuit, and the battery is converted from the converted digital value. An inspection method for a battery voltage detection line, wherein abnormality determination of a connection state of the voltage detection line is performed.
直列に接続された複数の単電池と、
前記複数の単電池のそれぞれの端子電圧を導くための複数の電池電圧検出線と、
前記複数の電池電圧検出線を介して入力された複数の端子電圧から指定信号に基づく端子電圧を選択するための選択回路と、
バイパス抵抗と半導体スイッチとの直列回路を有し、前記電池電圧検出線を介して前記単電池の各端子間にそれぞれ接続される複数の容量調整回路と、
アナログ値をデジタル値に変換するAD変換回路と、
記憶回路と、
プログラムに基づいて動作する制御回路とを備え、
前記複数の単電池の一方の単電池に並列接続された一方の容量調整回路と前記複数の単電池の内の他方の単電池に並列接続された他方の容量調整回路とがそれぞれ有する一方および他方の半導体スイッチが前記制御回路の動作に基づいてそれぞれ制御されて、前記一方および他方の単電池の容量調整が行われ、
前記容量調整のための動作とは別に、前記制御回路の動作により、一方の半導体スイッチがON状態にまた他方の半導体スイッチがOFF状態に制御され、また一方の単電池の端子電圧を指定する指定信号が前記選択回路に加えられて前記一方の単電池の端子電圧が選択されて、選択された前記一方の単電池の端子電圧が前記AD変換回路によりデジタル変換され、
さらに、前記制御回路の動作により、他方の半導体スイッチがON状態にまた一方の半導体スイッチがOFF状態に制御され、また他方の単電池の端子電圧を指定する指定信号が前記選択回路に加えられて前記他方の単電池の端子電圧が選択されて、選択された前記他方の単電池の端子電圧が前記AD変換回路によりデジタル変換され、
前記一方および他方の単電池のデジタル値から前記電池電圧検出線の接続状態の異常判定が行われることを特徴とする電池電圧検出線の検査方法。
A plurality of cells connected in series;
A plurality of battery voltage detection lines for guiding the terminal voltage of each of the plurality of unit cells;
A selection circuit for selecting a terminal voltage based on a designation signal from a plurality of terminal voltages input via the plurality of battery voltage detection lines;
A plurality of capacity adjustment circuits each having a series circuit of a bypass resistor and a semiconductor switch, each connected between each terminal of the unit cell via the battery voltage detection line;
An AD converter circuit for converting an analog value into a digital value;
A memory circuit;
And a control circuit that operates based on a program,
One and the other of one capacity adjustment circuit connected in parallel to one unit cell of the plurality of unit cells and the other capacity adjustment circuit connected in parallel to the other unit cell among the plurality of unit cells The semiconductor switches are controlled based on the operation of the control circuit, respectively, and the capacity adjustment of the one and the other unit cells is performed,
Separately from the operation for adjusting the capacity, the operation of the control circuit controls one of the semiconductor switches to be in an ON state and the other semiconductor switch to be in an OFF state, and designates the terminal voltage of one unit cell. A signal is applied to the selection circuit to select a terminal voltage of the one unit cell, and the terminal voltage of the selected one unit cell is digitally converted by the AD conversion circuit,
Further, by the operation of the control circuit, the other semiconductor switch is controlled to be in an ON state and one semiconductor switch is controlled to be in an OFF state, and a designation signal designating a terminal voltage of the other unit cell is applied to the selection circuit. The terminal voltage of the other unit cell is selected, and the terminal voltage of the selected other unit cell is digitally converted by the AD conversion circuit,
An inspection method for a battery voltage detection line, wherein abnormality determination of a connection state of the battery voltage detection line is performed from digital values of the one and the other unit cells.
直列に接続された複数のリチウムイオン電池と、
前記複数のリチウムイオン電池からの複数の端子電圧を受け、指定信号に基づき前記複数の端子電圧から指定された端子電圧を選択するための選択回路と、
前記複数のリチウムイオン電池の端子電圧をそれぞれ前記選択回路に導くための電池電圧検出線と、
バイパス抵抗と半導体スイッチとの直列回路を有し、前記電池電圧検出線を介して前記複数のリチウムイオン電池の各端子間にそれぞれ接続される複数の容量調整回路と、
アナログ値をデジタル値に変換するAD変換回路と、
記憶回路と、
プログラムに基づいて動作する制御回路とを備え、
前記制御回路の動作に基づき容量調整回路の半導体スイッチが制御され、前記容量調整回路が接続されているリチウムイオン電池の容量調整が行われ、
前記制御回路が制御停止状態から動作開始状態に移るとこれに基づき、前記制御回路は、前記複数のリチウムイオン電池の内の一方のリチウムイオン電池に接続されている一方の容量調整回路の半導体スイッチをON状態に、また前記複数のリチウムイオン電池の内の他方のリチウムイオン電池に並列接続されている他方の容量調整回路の半導体スイッチをOFF状態に制御し、
前記制御回路からの一方のリチウムイオン電池を指定する指定信号に基づき、前記選択回路は一方の容量調整回路の半導体スイッチのON動作に基づく前記一方のリチウムイオン電池の端子電圧を選択し、
選択された前記端子電圧は前記AD変換回路により前記デジタル値に変換され、
前記制御回路の動作により前記デジタル値に基づいて、電池電圧検出線の接続状態の異常判定が行われ、判定結果が前記記憶回路に記憶されることを特徴とする電池電圧検出線の検査方法。
A plurality of lithium ion batteries connected in series;
A selection circuit for receiving a plurality of terminal voltages from the plurality of lithium ion batteries and selecting a designated terminal voltage from the plurality of terminal voltages based on a designation signal;
A battery voltage detection line for guiding terminal voltages of the plurality of lithium ion batteries to the selection circuit, and
A plurality of capacity adjustment circuits each having a series circuit of a bypass resistor and a semiconductor switch and connected between the terminals of the plurality of lithium ion batteries via the battery voltage detection line;
An AD converter circuit for converting an analog value into a digital value;
A memory circuit;
And a control circuit that operates based on a program,
The semiconductor switch of the capacity adjustment circuit is controlled based on the operation of the control circuit, and the capacity adjustment of the lithium ion battery to which the capacity adjustment circuit is connected is performed.
When the control circuit shifts from the control stop state to the operation start state, the control circuit is connected to one lithium ion battery of the plurality of lithium ion batteries, and the semiconductor switch of one capacity adjustment circuit is connected to the lithium ion battery. And the semiconductor switch of the other capacity adjustment circuit connected in parallel to the other lithium ion battery among the plurality of lithium ion batteries is controlled to be in the OFF state,
Based on the designation signal designating one lithium ion battery from the control circuit, the selection circuit selects the terminal voltage of the one lithium ion battery based on the ON operation of the semiconductor switch of one capacity adjustment circuit,
The selected terminal voltage is converted into the digital value by the AD conversion circuit,
An inspection method for a battery voltage detection line, wherein an abnormality determination of a connection state of the battery voltage detection line is performed based on the digital value by an operation of the control circuit, and a determination result is stored in the storage circuit.
直列に接続された複数の単電池と、
前記複数の単電池のそれぞれの端子電圧を導くための複数の電池電圧検出線と、
前記複数の電池電圧検出線を介して入力された複数の端子電圧から指定信号に基づく端子電圧を選択するための選択回路と、
バイパス抵抗と半導体スイッチとの直列回路を有し、前記電池電圧検出線を介して前記各単電池の端子間にそれぞれ接続される複数の容量調整回路と、
アナログ値をデジタル値に変換するAD変換回路と、
記憶回路と、
プログラムに基づいて動作する制御回路とを備え、
前記複数の単電池の一方の単電池に並列接続された一方の容量調整回路と前記複数の単電池の内の他方の単電池に並列接続された他方の容量調整回路とがそれぞれ有する一方および他方の半導体スイッチが前記制御回路の動作に基づいてそれぞれ制御されて、前記一方および他方の単電池の容量調整が行われ、
前記制御回路が制御停止状態から動作開始状態に移るとこれに基づき、一方の半導体スイッチがON状態にまた他方の半導体スイッチがOFF状態に制御され、また一方の単電池の端子電圧を指定する指定信号が前記選択回路に加えられて前記一方の単電池の端子電圧が選択されて、選択された前記一方の単電池の端子電圧が前記AD変換回路によりデジタル変換され、変換されたデジタル値から電池電圧検出線の接続状態の異常判定が行われることを特徴とする電池電圧検出線の検査方法。
A plurality of cells connected in series;
A plurality of battery voltage detection lines for guiding the terminal voltage of each of the plurality of unit cells;
A selection circuit for selecting a terminal voltage based on a designation signal from a plurality of terminal voltages input via the plurality of battery voltage detection lines;
A plurality of capacity adjustment circuits, each having a series circuit of a bypass resistor and a semiconductor switch, each connected between terminals of each unit cell via the battery voltage detection line;
An AD converter circuit for converting an analog value into a digital value;
A memory circuit;
And a control circuit that operates based on a program,
One and the other of one capacity adjustment circuit connected in parallel to one unit cell of the plurality of unit cells and the other capacity adjustment circuit connected in parallel to the other unit cell among the plurality of unit cells The semiconductor switches are controlled based on the operation of the control circuit, respectively, and the capacity adjustment of the one and the other unit cells is performed,
Based on this, when the control circuit shifts from the control stop state to the operation start state, one semiconductor switch is controlled to be in the ON state and the other semiconductor switch is controlled to be in the OFF state, and the designation that specifies the terminal voltage of one unit cell A signal is applied to the selection circuit to select the terminal voltage of the one unit cell, and the terminal voltage of the selected one unit cell is digitally converted by the AD conversion circuit, and the battery is converted from the converted digital value. An inspection method for a battery voltage detection line, wherein abnormality determination of a connection state of the voltage detection line is performed.
直列に接続された複数の単電池と、
前記複数の単電池のそれぞれの端子電圧を導くための複数の電池電圧検出線と、
前記複数の電池電圧検出線を介して入力された複数の端子電圧から指定信号に基づく端子電圧を選択するための選択回路と、
バイパス抵抗と半導体スイッチとの直列回路を有し、前記電池電圧検出線を介して前記各単電池にそれぞれ並列に接続される複数の容量調整回路と、
アナログ値をデジタル値に変換するAD変換回路と、
記憶回路と、
プログラムに基づいて動作する制御回路とを備え、
前記複数の単電池の一方の単電池に並列接続された一方の容量調整回路と前記複数の単電池の内の他方の単電池に並列接続された他方の容量調整回路とがそれぞれ有する一方および他方の半導体スイッチが前記制御回路の動作に基づいてそれぞれ制御されて、前記一方および他方の単電池の容量調整が行われ、
前記制御回路が制御停止状態から動作開始状態に移るとこれに基づき、一方の半導体スイッチがON状態にまた他方の半導体スイッチがOFF状態に制御され、また一方の単電池の端子電圧を指定する指定信号が前記選択回路に加えられて前記一方の単電池の端子電圧が選択されて、選択された前記一方の単電池の端子電圧が前記AD変換回路によりデジタル変換され、
さらに、前記制御回路の動作により、他方の半導体スイッチがON状態にまた一方の半導体スイッチがOFF状態に制御され、また他方の単電池の端子電圧を指定する指定信号が前記選択回路に加えられて前記他方の単電池の端子電圧が選択されて、選択された前記他方の単電池の端子電圧が前記AD変換回路によりデジタル変換され、
前記一方および他方の単電池のデジタル値から前記電池電圧検出線の接続状態の異常判定が行われることを特徴とする電池電圧検出線の検査方法。
A plurality of cells connected in series;
A plurality of battery voltage detection lines for guiding the terminal voltage of each of the plurality of unit cells;
A selection circuit for selecting a terminal voltage based on a designation signal from a plurality of terminal voltages input via the plurality of battery voltage detection lines;
A plurality of capacity adjustment circuits each having a series circuit of a bypass resistor and a semiconductor switch and connected in parallel to each of the cells via the battery voltage detection line;
An AD converter circuit for converting an analog value into a digital value;
A memory circuit;
And a control circuit that operates based on a program,
One and the other of one capacity adjustment circuit connected in parallel to one unit cell of the plurality of unit cells and the other capacity adjustment circuit connected in parallel to the other unit cell among the plurality of unit cells The semiconductor switches are controlled based on the operation of the control circuit, respectively, and the capacity adjustment of the one and the other unit cells is performed,
Based on this, when the control circuit shifts from the control stop state to the operation start state, one semiconductor switch is controlled to be in the ON state and the other semiconductor switch is controlled to be in the OFF state, and the designation that specifies the terminal voltage of one unit cell A signal is applied to the selection circuit to select a terminal voltage of the one unit cell, and the terminal voltage of the selected unit cell is digitally converted by the AD conversion circuit,
Further, by the operation of the control circuit, the other semiconductor switch is controlled to be in an ON state and one semiconductor switch is controlled to be in an OFF state, and a designation signal designating a terminal voltage of the other unit cell is applied to the selection circuit. The terminal voltage of the other unit cell is selected, and the terminal voltage of the selected other unit cell is digitally converted by the AD conversion circuit,
An inspection method for a battery voltage detection line, wherein abnormality determination of a connection state of the battery voltage detection line is performed from digital values of the one and the other unit cells.
直列に接続された複数の単電池と、
前記複数の単電池のそれぞれの端子電圧を導くための複数の電池電圧検出線と、
前記複数の電池電圧検出線を介して入力された複数の端子電圧から指定信号に基づく端子電圧を選択するための選択回路と、
バイパス抵抗と半導体スイッチとの直列回路を有し、前記電池電圧検出線を介して前記各単電池にそれぞれ並列に接続される複数の容量調整回路と、
アナログ値をデジタル値に変換するAD変換回路と、
記憶回路と、
プログラムに基づいて動作する制御回路とを備え、
前記複数の単電池の一方の単電池に並列接続された一方の容量調整回路と前記複数の単電池の内の他方の単電池に並列接続された他方の容量調整回路とがそれぞれ有する一方および他方の半導体スイッチが前記制御回路の動作に基づいてそれぞれ制御されて、前記一方および他方の単電池の容量調整が行われ、
前記制御回路が制御停止状態から動作開始状態に移るとこれに基づき、一方の半導体スイッチがON状態にまた他方の半導体スイッチがOFF状態に制御され、また一方の単電池の端子電圧を指定する指定信号が前記選択回路に加えられて前記一方の単電池の端子電圧が選択されて、選択された前記一方の単電池の端子電圧が前記AD変換回路によりデジタル変換され、
さらに、前記制御回路の動作により、他方の半導体スイッチがON状態にまた一方の半導体スイッチがOFF状態に制御され、また他方の単電池の端子電圧を指定する指定信号が前記選択回路に加えられて前記他方の単電池の端子電圧が選択されて、選択された前記他方の単電池の端子電圧が前記AD変換回路によりデジタル変換され、
前記一方および他方の単電池のデジタル値から前記電池電圧検出線の接続状態の異常判定が行われることを特徴とする電池電圧検出線の検査方法。
A plurality of cells connected in series;
A plurality of battery voltage detection lines for guiding the terminal voltage of each of the plurality of unit cells;
A selection circuit for selecting a terminal voltage based on a designation signal from a plurality of terminal voltages input via the plurality of battery voltage detection lines;
A plurality of capacity adjustment circuits each having a series circuit of a bypass resistor and a semiconductor switch and connected in parallel to each of the cells via the battery voltage detection line;
An AD converter circuit for converting an analog value into a digital value;
A memory circuit;
And a control circuit that operates based on a program,
One and the other of one capacity adjustment circuit connected in parallel to one unit cell of the plurality of unit cells and the other capacity adjustment circuit connected in parallel to the other unit cell among the plurality of unit cells The semiconductor switches are controlled based on the operation of the control circuit, respectively, and the capacity adjustment of the one and the other unit cells is performed,
Based on this, when the control circuit shifts from the control stop state to the operation start state, one semiconductor switch is controlled to be in the ON state and the other semiconductor switch is controlled to be in the OFF state, and the designation that specifies the terminal voltage of one unit cell A signal is applied to the selection circuit to select a terminal voltage of the one unit cell, and the terminal voltage of the selected unit cell is digitally converted by the AD conversion circuit,
Further, by the operation of the control circuit, the other semiconductor switch is controlled to be in an ON state and one semiconductor switch is controlled to be in an OFF state, and a designation signal designating a terminal voltage of the other unit cell is applied to the selection circuit. The terminal voltage of the other unit cell is selected, and the terminal voltage of the selected other unit cell is digitally converted by the AD conversion circuit,
An inspection method for a battery voltage detection line, wherein abnormality determination of a connection state of the battery voltage detection line is performed from digital values of the one and the other unit cells.
JP2002338940A 2002-11-22 2002-11-22 Battery voltage detection line inspection method, inspection circuit, and battery module Expired - Lifetime JP4254209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002338940A JP4254209B2 (en) 2002-11-22 2002-11-22 Battery voltage detection line inspection method, inspection circuit, and battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002338940A JP4254209B2 (en) 2002-11-22 2002-11-22 Battery voltage detection line inspection method, inspection circuit, and battery module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008311504A Division JP2009103706A (en) 2008-12-05 2008-12-05 Testing method, testing circuit and battery module of cell voltage sensing line

Publications (2)

Publication Number Publication Date
JP2004170335A JP2004170335A (en) 2004-06-17
JP4254209B2 true JP4254209B2 (en) 2009-04-15

Family

ID=32702014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002338940A Expired - Lifetime JP4254209B2 (en) 2002-11-22 2002-11-22 Battery voltage detection line inspection method, inspection circuit, and battery module

Country Status (1)

Country Link
JP (1) JP4254209B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5160024B2 (en) * 2005-04-07 2013-03-13 新神戸電機株式会社 Battery module
WO2007119682A1 (en) * 2006-04-13 2007-10-25 Panasonic Corporation Battery pack and method for detecting disconnection of same
KR100846710B1 (en) * 2006-09-07 2008-07-16 삼성에스디아이 주식회사 Battery management system and driving method thereof
JP5076812B2 (en) * 2006-12-18 2012-11-21 日産自動車株式会社 Abnormality diagnosis device
US8478552B2 (en) 2008-02-29 2013-07-02 Nissan Motor Co., Ltd. Monitor of assembled battery
JP5349021B2 (en) * 2008-11-26 2013-11-20 三洋電機株式会社 Battery system
JP2010271267A (en) * 2009-05-25 2010-12-02 Mitsubishi Motors Corp Battery monitoring device
JP5705556B2 (en) 2011-01-11 2015-04-22 ラピスセミコンダクタ株式会社 Semiconductor circuit, semiconductor device, disconnection detection method, and disconnection detection program
JP6229248B2 (en) * 2011-06-03 2017-11-15 株式会社Gsユアサ Storage module cell monitoring device and disconnection detection method
JP5789846B2 (en) * 2011-09-05 2015-10-07 三洋電機株式会社 Power supply device for vehicle and vehicle equipped with this power supply device
JP5439465B2 (en) * 2011-12-26 2014-03-12 三菱重工業株式会社 Battery system
JP5940363B2 (en) * 2012-04-27 2016-06-29 三洋電機株式会社 Power supply device and vehicle equipped with this power supply device
JP5974849B2 (en) * 2012-11-19 2016-08-23 株式会社デンソー Battery monitoring device
JP6081165B2 (en) * 2012-11-26 2017-02-15 三洋電機株式会社 Battery management device and power supply device
JP6236775B2 (en) * 2012-12-05 2017-11-29 日産自動車株式会社 Detection device
JP6253270B2 (en) 2013-06-14 2017-12-27 ラピスセミコンダクタ株式会社 Battery monitoring system, semiconductor circuit, disconnection detection program, and disconnection detection method
JP2013242324A (en) * 2013-07-11 2013-12-05 Mitsubishi Motors Corp Battery monitoring device
US9876369B2 (en) * 2016-03-15 2018-01-23 Lg Chem, Ltd. Battery system and method for determining an open circuit fault condition in a battery module
CN106772082B (en) * 2016-12-23 2020-01-10 惠州市蓝微新源技术有限公司 Voltage acquisition line disconnection detection method for single battery
CN117092410B (en) * 2023-10-19 2024-01-26 深圳国瑞协创储能技术有限公司 Detection circuit, energy storage battery, battery sampling line resistance value determining method and equipment

Also Published As

Publication number Publication date
JP2004170335A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP4254209B2 (en) Battery voltage detection line inspection method, inspection circuit, and battery module
US8358136B2 (en) State of charge calculator for multi-cell energy storage system having cell balancing
JP5160024B2 (en) Battery module
US6323650B1 (en) Electronic battery tester
JP7072607B2 (en) Effective Battery Cell Balancing Methods and Systems Using Duty Control
US7688033B2 (en) Method for detecting state of secondary battery and device for detecting state of secondary battery
JP5110154B2 (en) Voltage detection device and voltage detection system
US20130002261A1 (en) Battery pack
KR101996974B1 (en) Open circuit voltage estimation device, state estimation device, method of open circuit voltage estimation
JP3797254B2 (en) Secondary battery capacity adjustment method
JP2007085847A (en) Abnormality detection system for cell balance circuit
US10666066B2 (en) Differential voltage measurement device
JP2001186684A (en) Lithium ion battery charger
EP3336565B1 (en) Secondary battery monitoring device and method for diagnosing failure
JP2009103706A (en) Testing method, testing circuit and battery module of cell voltage sensing line
JP2000137062A (en) Method and device for detecting residual capacity of secondary battery
JP2019193351A (en) Failure detection function-provided charger and failure detection method
KR101988561B1 (en) Battery management system and operating method thereof
JP3684998B2 (en) Battery capacity adjustment method
JP3633412B2 (en) Battery pack control device and battery pack
JPH1164398A (en) Battery voltage measuring method
KR102158259B1 (en) System and the battery which upon failure of the battery pack analysis method and system
JP2006105641A (en) Backup power supply system
JP2005086867A (en) Charging control system
JP4802414B2 (en) Battery remaining capacity meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4254209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term