JP5160024B2 - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
JP5160024B2
JP5160024B2 JP2005111030A JP2005111030A JP5160024B2 JP 5160024 B2 JP5160024 B2 JP 5160024B2 JP 2005111030 A JP2005111030 A JP 2005111030A JP 2005111030 A JP2005111030 A JP 2005111030A JP 5160024 B2 JP5160024 B2 JP 5160024B2
Authority
JP
Japan
Prior art keywords
battery
voltage
voltage value
detection line
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005111030A
Other languages
Japanese (ja)
Other versions
JP2006294339A (en
Inventor
憲一朗 水流
彰彦 工藤
正樹 長岡
昭彦 江守
重之 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Hitachi Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Hitachi Ltd
Priority to JP2005111030A priority Critical patent/JP5160024B2/en
Publication of JP2006294339A publication Critical patent/JP2006294339A/en
Application granted granted Critical
Publication of JP5160024B2 publication Critical patent/JP5160024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は電池モジュールに係り、特に、抵抗がスイッチを介して並列に接続された単電池を複数個接続して構成される組電池の各単電池の電圧値を検出するための電池電圧検出線の接続状態を検査する検査手段を備えた電池モジュールに関する。   The present invention relates to a battery module, and in particular, a battery voltage detection line for detecting a voltage value of each unit cell of an assembled battery configured by connecting a plurality of unit cells whose resistances are connected in parallel via a switch. It is related with the battery module provided with the test | inspection means which test | inspects the connection state.

例えば、電気自動車等に用いられる電池モジュールは、複数個の単電池を接続して構成される組電池を用いており、走行中の振動も加わるため、信頼性を確保することが重要である。組電池を構成する単電池のうちの何れかが過充電や過放電等によりその機能が低下すると、組電池全体としての機能も低下することになる。このため、電池モジュールは、一般に各単電池の状態を監視するための制御回路を有している。すなわち、制御回路は、電池電圧検出線を介して各単電池の電圧を測定し、測定した電圧によって過充電や過放電等を含む各単電池の状態を監視している。このような電池電圧検出線の接続状態についての検査は、従来、単電池毎の電池電圧を測定し(例えば、特許文献1参照)、単電池の電圧が検出されることで接続状態を検査する方法が一般的であった。   For example, a battery module used for an electric vehicle or the like uses an assembled battery configured by connecting a plurality of single cells, and vibration during traveling is also applied, so it is important to ensure reliability. If any of the unit cells constituting the assembled battery has its function lowered due to overcharge, overdischarge, or the like, the function of the assembled battery as a whole is also lowered. For this reason, the battery module generally has a control circuit for monitoring the state of each unit cell. That is, the control circuit measures the voltage of each unit cell via the battery voltage detection line, and monitors the state of each unit cell including overcharge, overdischarge, and the like based on the measured voltage. For the inspection of the connection state of such battery voltage detection lines, conventionally, the battery voltage for each unit cell is measured (for example, see Patent Document 1), and the connection state is inspected by detecting the voltage of the unit cell. The method was general.

特開2000−92732号公報JP 2000-92732 A

しかしながら、上記従来の電池電圧検出線の接続検査では、組電池が休止状態にあるときに各単電池の開放電圧のみを測定するので、電池電圧検出線が微小断線状態にあると、測定される電池電圧に影響が表れず、電池電圧検出線の接続状態を正常と判断してしまう、という問題がある。このような誤判断を避けるため、本発明者らの一部は、特願2002−338940号において、単電池に並列接続された容量調整用抵抗に電流を流したときの電圧値と開放電圧値との電圧差に着目して電池電圧検出線の接続状態に異常があるかを判定する検査回路(検査手段)について出願した。本発明者らは、電池モジュールに具備された電池電圧検出線の接続状態(微小断線状態の有無)の検査回路について更に研究を進め、上記出願の改良発明に到った。   However, in the connection inspection of the conventional battery voltage detection line, only the open voltage of each unit cell is measured when the assembled battery is in a resting state. Therefore, it is measured when the battery voltage detection line is in a minute disconnection state. There is a problem that the battery voltage is not affected and the connection state of the battery voltage detection line is determined to be normal. In order to avoid such a misjudgment, some of the present inventors described in Japanese Patent Application No. 2002-338940 a voltage value and an open-circuit voltage value when a current is passed through a capacity adjustment resistor connected in parallel to a single cell. An application was made for an inspection circuit (inspection means) that determines whether there is an abnormality in the connection state of the battery voltage detection line by paying attention to the voltage difference. The present inventors have further studied the inspection circuit for the connection state (presence / absence of minute disconnection state) of the battery voltage detection line provided in the battery module, and have reached the improved invention of the above application.

本発明は上記事案に鑑み、電池電圧検出線の接続状態を正確に検査可能な検査手段を備えた電池モジュールを提供することを課題とする。   An object of the present invention is to provide a battery module including an inspection unit capable of accurately inspecting a connection state of a battery voltage detection line in view of the above case.

上記課題を解決するために、本発明は、抵抗がスイッチを介して並列に接続された単電池を複数個接続して構成される組電池の各単電池の電圧値を検出するための電池電圧検出線の接続状態を検査する検査手段を備えた電池モジュールにおいて、検査手段は、スイッチのすべてをオフ状態としたときの組電池を構成するすべての単電池のそれぞれの電圧値V1と、スイッチを各単電池に対応して1つおきにオン状態としたときの組電池を構成するすべての単電池のそれぞれの電圧値V2とを測定し、組電池を構成するすべての単電池のそれぞれについて、対応するスイッチがオフ状態のときに測定した電圧値V1と、対応するスイッチがオフ状態或いはオン状態のときに測定した電圧値V2とを比較し、この電圧値の差が予め設定された規定値以上であるか否かを判断して対応する電池電圧検出線の接続状態を検査する。組電池を構成する単電池の直列個数が偶数の場合には、検査手段は、1つおきにスイッチをオン状態として各単電池の電圧値を測定する際にオン状態としなかった組電池の電位が最下位端部に位置する単電池に対応するスイッチのみをオン状態として該組電池の電位が最下位端部に位置する単電池の電圧値V2を測定し、スイッチのすべてをオフ状態として測定した該組電池の電位が最下位端部に位置する単電池の電圧値V1と、対応するスイッチをオン状態として測定した該組電池の電位が最下位端部に位置する単電池の電圧値V2とを比較し、電圧値の差が規定値以上であるか否かを判断して該組電池の電位が最下位端部に位置する単電池に対応する電池電圧検出線の接続状態を更に検査すればよい In order to solve the above-mentioned problem, the present invention provides a battery voltage for detecting a voltage value of each unit cell of an assembled battery configured by connecting a plurality of unit cells having resistors connected in parallel via a switch. In the battery module provided with the inspection means for inspecting the connection state of the detection lines, the inspection means includes the voltage value V1 of each unit cell constituting the assembled battery when all the switches are turned off, and the switch. Measure each voltage value V2 of all the unit cells constituting the assembled battery when every other unit cell is turned on, and for each of all the unit cells constituting the assembled battery, A voltage value V1 measured when the corresponding switch is in an OFF state and a voltage value V2 measured when the corresponding switch is in an OFF state or an ON state are compared, and a difference between the voltage values is set in advance. Checking the connection state of the battery voltage detection line corresponding to determine at either higher. In the case where the number of cells constituting the assembled battery is an even number, the inspection means sets the potential of the assembled battery that was not turned on when the voltage value of each cell was measured with every other switch turned on. Measure the voltage value V2 of the unit cell where the potential of the assembled battery is located at the end of the lowermost side with only the switch corresponding to the unit cell located at the end of the lowermost side turned on. the potential of said set battery voltage value V1 of the cells situated at the end of the least significant, measured as an off state, the end portion of the potential of said set battery was measured corresponding switch is turned on to the least significant The voltage value V2 of the unit cell located is compared, and it is determined whether or not the difference between the voltage values is equal to or greater than a specified value, and the potential of the assembled battery corresponds to the unit cell located at the end on the lowest side. What is necessary is just to test | inspect further the connection state of a battery voltage detection line .

本発明では、検査手段が、スイッチのすべてをオフ状態として組電池を構成するすべての単電池のそれぞれの電圧値V1と、スイッチを各単電池に対応して1つおきにオン状態として組電池を構成するすべての単電池のそれぞれの電圧値V2を測定し、組電池を構成するすべての単電池のそれぞれについて、対応するスイッチがオフ状態のときに測定した電圧値V1と、対応するスイッチがオフ状態或いはオン状態のときに測定した電圧値V2とを比較し、この電圧値の差が予め設定された規定値以上であるか否かを判断することにより、電池電圧検出線に微小断線があると、単電池と並列に抵抗を接続し電流を流したときの電圧値が、電池電圧検出線が正常なとき(微小断線がないとき)と比べ異なってくるため、電池電圧検出線の接続状態に異常があることを判定することができる。オフ状態での測定と1つおきにオン状態での測定とはいずれを先に行ってもよい。また、抵抗には各単電池に並列接続される容量調整用抵抗を用いることが好ましい。更に、組電池を構成する単電池の直列個数が多くなっても、単電池の直列数が奇数個の場合には2回、偶数個の場合は3回のスイッチのオンオフ状態での単電池電圧を測定することで、電池電圧検出線の接続状態に異常があることを判定することができる。 In the present invention, the inspecting means sets all the switches to the off state, sets the voltage values V1 of all the unit cells constituting the assembled battery, and turns on every other switch corresponding to each unit cell. The voltage value V2 of each unit cell constituting the battery is measured, and for each unit cell constituting the assembled battery, the voltage value V1 measured when the corresponding switch is OFF and the corresponding switch The voltage value V2 measured in the off state or the on state is compared, and it is determined whether or not the difference between the voltage values is equal to or greater than a preset specified value. If there is, the voltage value when the resistor is connected in parallel with the cell and the current flows is different from that when the battery voltage detection line is normal (when there is no minute disconnection). Condition That there is an abnormality in it can be determined. Either the measurement in the off state or the measurement in the on state every other may be performed first. Moreover, it is preferable to use the capacity | capacitance adjustment resistance connected in parallel to each single cell for resistance. Furthermore, even if the number of cells constituting the assembled battery increases, the cell voltage in the on / off state of the switch is twice when the number of cells is an odd number and three times when the number of cells is an even number. Can be determined that there is an abnormality in the connection state of the battery voltage detection line.

本発明によれば、検査手段が、スイッチのすべてをオフ状態として組電池を構成するすべての単電池のそれぞれの電圧値V1と、スイッチを各単電池に対応して1つおきにオン状態として組電池を構成するすべての単電池のそれぞれの電圧値V2を測定し、組電池を構成するすべての単電池のそれぞれについて、対応するスイッチがオフ状態のときに測定した電圧値V1と、対応するスイッチがオフ状態或いはオン状態のときに測定した電圧値V2とを比較し、この電圧値の差が予め設定された規定値以上であるか否かを判断することにより、電池電圧検出線に微小断線があると、単電池と並列に抵抗を接続し電流を流したときの電圧値が、電池電圧検出線が正常なときと比べ異なってくるため、電池電圧検出線の接続状態に異常があることを判定することができる、という効果を得ることができる。 According to the present invention, the inspection means sets all of the switches to the off state, sets the voltage values V1 of all the unit cells constituting the assembled battery, and turns on every other switch corresponding to each unit cell. each of the voltage value V2 of all the unit cells constituting the battery pack is measured, for each of all the unit cells constituting the battery pack, a voltage value V1 corresponding switch is measured in the off state, the corresponding By comparing with the voltage value V2 measured when the switch is in the off state or the on state, and determining whether or not the difference between the voltage values is greater than or equal to a preset specified value, a minute voltage is applied to the battery voltage detection line. If there is a disconnection, the voltage value when a resistor is connected in parallel with the unit cell and the current flows is different from that when the battery voltage detection line is normal, so the connection state of the battery voltage detection line is abnormal. about Can be determined, the effect can be obtained as.

(第1実施形態)
以下、図面を参照して本発明が適用可能な車載用電池モジュールの第1の実施の形態について説明する。なお、本実施形態は、組電池を構成する単電池の直列個数が奇数の場合の例である。
(First embodiment)
Hereinafter, a first embodiment of an in-vehicle battery module to which the present invention can be applied will be described with reference to the drawings. In addition, this embodiment is an example in case the number of series cells of the cell which comprises an assembled battery is an odd number.

図1に示すように、本実施形態の電池モジュール19は、リチウムイオン二次電池(以下、単電池という。)1、4、7、10、13が5個直列に接続された組電池18を備えている。単電池1、4、7、10、13には、直列接続された抵抗2、5、8、11、14及びFET等で構成されるスイッチ3、6、9、12、15が、それぞれ並列に接続されている。なお、抵抗2、5、8、11、14は、対応する単電池1、4、7、10、13の容量調整用抵抗である。各スイッチは、検出手段の一部としてのマイクロコンピュータ(以下、マイコンという。)17の出力ポートからの2値信号(Hiレベル信号(以下、Hiと略称する。)、Loレベル信号(以下、Loと略称する。))の出力によりオンオフ制御が可能である。   As shown in FIG. 1, the battery module 19 of the present embodiment includes an assembled battery 18 in which five lithium ion secondary batteries (hereinafter referred to as single cells) 1, 4, 7, 10, 13 are connected in series. I have. The cells 1, 4, 7, 10, 13 are connected in series with resistors 2, 5, 8, 11, 14 connected in series and switches 3, 6, 9, 12, 15, which are composed of FETs, etc. It is connected. The resistors 2, 5, 8, 11, and 14 are capacities for adjusting the capacity of the corresponding single cells 1, 4, 7, 10, and 13, respectively. Each switch is a binary signal (Hi level signal (hereinafter abbreviated as Hi)), Lo level signal (hereinafter Lo) from an output port of a microcomputer (hereinafter referred to as a microcomputer) 17 as a part of detection means. ON / OFF control is possible by the output of)).

各単電池の電圧は電池電圧検出線としての電圧検出ラインL1、L2、L3、L4、L5、L6を介して電圧測定回路16に入力される。電圧測定回路16は、例えば、マルチプレクサ等で構成することができ、マイコン17の電池指定ポートからの測定対象単電池の指定に従い、指定された測定対象単電池のアナログ電圧を、電圧検出ラインL6を基準に変換してマイコン17のAD入力ポートへ出力する。   The voltage of each unit cell is input to the voltage measurement circuit 16 via voltage detection lines L1, L2, L3, L4, L5, and L6 as battery voltage detection lines. The voltage measurement circuit 16 can be constituted by a multiplexer or the like, for example, and the analog voltage of the designated measurement target cell is designated by the voltage detection line L6 according to the designation of the measurement target cell from the battery designation port of the microcomputer 17. It converts into a reference | standard and outputs to AD input port of the microcomputer 17.

マイコン17は、演算処理を行うCPU、CPUが実行するプログラム及び種々の設定値等のプログラムデータを格納したROM、CPUのワークエリアとして働くRAM、及び電圧測定回路16からのアナログ電圧をデジタル電圧に変換するA/Dコンバータを含んで構成されている。なお、マイコン17は、上述した各ポートの他に、インターフェース(I/F)を介して(複数の)電池モジュール19を制御する上位システムとの通信を行うための図示を省略したポートを有している。   The microcomputer 17 is a CPU that performs arithmetic processing, a ROM that stores programs executed by the CPU and program data such as various setting values, a RAM that functions as a work area of the CPU, and an analog voltage from the voltage measurement circuit 16 as a digital voltage. An A / D converter for conversion is included. In addition to the above-described ports, the microcomputer 17 has a port (not shown) for communicating with a host system that controls the battery module 19 via an interface (I / F). ing.

次に、フローチャートを参照して、本実施形態の電池モジュール19の動作について説明する。なお、マイコン17に電源が投入されると、ROMに格納されたプログラム等がRAMに展開され、電圧検出ラインL1〜L6の接続状態(微小断線の有無)を検査するための検査ルーチンが実行可能な状態となり、上位システムから所定信号を受信すると、マイコン17のCPUにより、図2に示す検査ルーチンが実行される。   Next, with reference to a flowchart, operation | movement of the battery module 19 of this embodiment is demonstrated. When the microcomputer 17 is turned on, a program or the like stored in the ROM is expanded in the RAM, and an inspection routine for inspecting the connection state of the voltage detection lines L1 to L6 (the presence or absence of minute disconnection) can be executed. When a predetermined signal is received from the host system, the inspection routine shown in FIG. 2 is executed by the CPU of the microcomputer 17.

この検査ルーチンでは、まず、出力ポートの出力信号をすべてLoとしてスイッチ3、6、9、12、15をオフ状態とする(ステップ101)。次に、電圧測定回路16に測定対象単電池を単電池1として指定し(ステップ102)、電圧測定回路16を介して単電池1の電圧値Va1を測定して(A/Dコンバータからのデジタル電圧値を取り込んで)記憶(RAMに格納)する(ステップ103)。次いで、電圧測定回路16に測定対象単電池を単電池4として指定し(ステップ104)、電圧測定回路16を介して単電池4の電圧値Vb1を測定して記憶する(ステップ105)。続いて、残りの電池7、10、13も同様に電圧値を測定しそれぞれスイッチがオフ状態のときの電圧値Vc1、Vd1、Ve1を測定して記憶する(ステップ106〜111)。   In this inspection routine, first, all the output signals of the output ports are set to Lo, and the switches 3, 6, 9, 12, and 15 are turned off (step 101). Next, the measurement target cell is designated as the cell 1 in the voltage measurement circuit 16 (step 102), and the voltage value Va1 of the cell 1 is measured via the voltage measurement circuit 16 (digital from the A / D converter). The voltage value is taken in and stored (stored in the RAM) (step 103). Next, the unit cell to be measured is designated as the unit cell 4 in the voltage measurement circuit 16 (step 104), and the voltage value Vb1 of the unit cell 4 is measured and stored through the voltage measurement circuit 16 (step 105). Subsequently, the voltage values of the remaining batteries 7, 10 and 13 are similarly measured, and the voltage values Vc1, Vd1 and Ve1 when the switches are in the off state are measured and stored (steps 106 to 111).

次に、スイッチ3、6、9、12、15を1つおきにオン状態とするために、出力ポートの出力信号をHiLoHiLoHiとし、スイッチ3、9、15をオン状態とする(ステップ201)。次いで、電圧測定回路16に測定対象単電池を単電池1として指定し(ステップ202)、電圧測定回路16を介して単電池1の電圧値Va2を測定して記憶する(ステップ203)。続いて、残りの電池4、7、10、13も同様に電圧値を測定しそれぞれスイッチがオン状態のときの電圧値Vb2、Vc2、Vd2、Ve2を測定して記憶する(ステップ204〜211)。   Next, in order to turn on every other switch 3, 6, 9, 12, and 15, the output signal of the output port is set to HiLoHiLoHi, and the switches 3, 9, and 15 are turned on (step 201). Next, the unit cell to be measured is designated as the unit cell 1 in the voltage measurement circuit 16 (step 202), and the voltage value Va2 of the unit cell 1 is measured and stored through the voltage measurement circuit 16 (step 203). Subsequently, the voltage values of the remaining batteries 4, 7, 10, and 13 are similarly measured, and the voltage values Vb2, Vc2, Vd2, and Ve2 when the switches are turned on are measured and stored (steps 204 to 211). .

次に、スイッチ3をオフ状態としたときの電圧値Va1とオン状態としたときの電圧値Va2とを比較し、両者の差が規定値(例えば、0.8V)以上か否かを判断する(ステップ301)ことにより、肯定判断のときは電圧検出ラインL1もしくはL2に異常があると判断し、否定判断のときは電圧検出ラインL1、L2ともに正常であると判断する。なお、図2等のフローチャートでは、このような処理が明瞭に分かるように判断結果についても記載した。同様に、電圧値Vb1と電圧値Vb2とを比較することで電圧検出ラインL2と電圧検出ラインL3の異常の有無を、電圧値Vc1と電圧値Vc2とを比較することで電圧検出ラインL3と電圧検出ラインL4の異常の有無を、電圧値Vd1と電圧値Vd2とを比較することで電圧検出ラインL4と電圧検出ラインL5の異常の有無を、電圧値Ve1と電圧値Ve2とを比較することで電圧検出ラインL5と電圧検出ラインL6の異常の有無をそれぞれ判断して(ステップ302〜305)検査ルーチンを終了する。   Next, the voltage value Va1 when the switch 3 is turned off is compared with the voltage value Va2 when the switch 3 is turned on, and it is determined whether or not the difference between the two is a specified value (for example, 0.8 V) or more. (Step 301) Thus, when the determination is affirmative, it is determined that the voltage detection line L1 or L2 is abnormal. When the determination is negative, it is determined that both the voltage detection lines L1 and L2 are normal. In the flowchart of FIG. 2 and the like, the determination result is also described so that such processing can be clearly understood. Similarly, the voltage value Vb1 and the voltage value Vb2 are compared to determine whether the voltage detection line L2 and the voltage detection line L3 are abnormal. The voltage value Vc1 and the voltage value Vc2 are compared to compare the voltage detection line L3 and the voltage value Vb2. By comparing the voltage value Vd1 and the voltage value Vd2 for the presence / absence of the abnormality in the detection line L4, by comparing the voltage value Ve1 and the voltage value Ve2 for the presence / absence of the abnormality in the voltage detection line L4 and the voltage detection line L5. The presence or absence of abnormality in voltage detection line L5 and voltage detection line L6 is determined (steps 302 to 305), and the inspection routine is terminated.

従って、マイコン17のCPUは、すべての判断結果からどの電圧検出ラインが正常または異常かを判断することができ、電圧検出ラインL1〜L6の一つでも異常のあるときには上位システムに報知する(図2では、これらのステップは捨象している。)。上位システムは、例えば、インストールメントパネルにその旨を表示することで、ドライバに電池モジュール19に異常があることを報知する。この場合に、上位システムは、特定の電圧検出ラインが異常である旨をインストールメントパネルに表示するようにしてもよいし、専用治具に当該電圧検出ラインを報知するようにしてもよい。   Therefore, the CPU of the microcomputer 17 can determine which voltage detection line is normal or abnormal from all the determination results, and informs the host system when any one of the voltage detection lines L1 to L6 is abnormal (see FIG. In step 2, these steps are discarded.) For example, the host system notifies the driver that there is an abnormality in the battery module 19 by displaying that fact on the installation panel. In this case, the host system may display on the installation panel that the specific voltage detection line is abnormal, or may notify the dedicated jig of the voltage detection line.

(第2実施形態)
次に、本発明が適用可能な車載用電池モジュールの第2の実施の形態について説明する。本実施形態は、組電池を構成する単電池の直列個数が偶数の場合の例である。なお、本実施形態において第1実施形態と同一の回路要素(構成)には同一の符号を付してその説明を省略し、異なる箇所のみ説明する。
(Second Embodiment)
Next, a second embodiment of the in-vehicle battery module to which the present invention can be applied will be described. The present embodiment is an example in the case where the number of series cells constituting the assembled battery is an even number. In the present embodiment, the same circuit elements (configurations) as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different portions will be described.

図3に示すように、本実施形態の電池モジュール20は、単電池1、4、7、10、13が5個直列に接続された第1実施形態の電池モジュール19に対し、単電池21が更に加えられ6個直列に接続された組電池24を備えている。単電池21には、直列接続された抵抗22及びFET等で構成されるスイッチ23が並列に接続されており、スイッチ23も他のスイッチと同様にマイコン17の出力ポートからの2値信号の出力によりオンオフ制御が可能である。また、他の単電池と同様に単電池21の電圧は電圧検出ラインL6、L7を介して電圧測定回路16に入力され、電圧測定回路16は、マイコン17の単電池指定ポートからの測定対象単電池の指定に従い、指定された測定対象単電池のアナログ電圧を、電圧検出ラインL7を基準に変換してマイコン17のAD入力ポートへ出力する。   As shown in FIG. 3, the battery module 20 of the present embodiment includes a single cell 21 compared to the battery module 19 of the first embodiment in which five single cells 1, 4, 7, 10, and 13 are connected in series. Further, six assembled batteries 24 connected in series are provided. The unit cell 21 is connected in parallel with a resistor 23 and a switch 23 composed of an FET or the like connected in series. Similarly to the other switches, the switch 23 outputs a binary signal from the output port of the microcomputer 17. ON / OFF control is possible by this. Similarly to the other single cells, the voltage of the single cell 21 is input to the voltage measurement circuit 16 via the voltage detection lines L6 and L7, and the voltage measurement circuit 16 receives the single measurement target from the single cell designation port of the microcomputer 17. According to the designation of the battery, the analog voltage of the designated measurement target cell is converted with reference to the voltage detection line L7 and output to the AD input port of the microcomputer 17.

次に、フローチャートを参照して、本実施形態の電池モジュール20の動作について説明する。なお、マイコン17のCPUは、上位システムから所定信号を受信すると、図4に示す検査ルーチンを実行する。   Next, with reference to a flowchart, operation | movement of the battery module 20 of this embodiment is demonstrated. Note that the CPU of the microcomputer 17 executes the inspection routine shown in FIG. 4 when receiving a predetermined signal from the host system.

この検査ルーチンでは、まず、出力ポートの出力信号をすべてLoとしてスイッチ3、6、9、12、15、23をオフ状態とする(ステップ401)。次に、電圧測定回路16に測定対象単電池を単電池1として指定し(ステップ402)、電圧測定回路16を介して単電池1の電圧値Va1を測定して記憶する(ステップ403)。次いで、電圧測定回路16に測定対象単電池を単電池4として指定し(ステップ404)、電圧測定回路16を介して単電池4の電圧値Vb1を測定して記憶する(ステップ405)。続いて、残りの電池7、10、13、21も同様に電圧値を測定しそれぞれスイッチがオフ状態のときの電圧値Vc1、Vd1、Ve1、Vf1を測定して記憶する(ステップ406〜413)。   In this inspection routine, first, all the output signals of the output ports are set to Lo, and the switches 3, 6, 9, 12, 15, and 23 are turned off (step 401). Next, the unit cell to be measured is designated as the unit cell 1 in the voltage measurement circuit 16 (step 402), and the voltage value Va1 of the unit cell 1 is measured and stored through the voltage measurement circuit 16 (step 403). Next, the unit cell to be measured is designated as the unit cell 4 in the voltage measurement circuit 16 (step 404), and the voltage value Vb1 of the unit cell 4 is measured and stored through the voltage measurement circuit 16 (step 405). Subsequently, the remaining batteries 7, 10, 13, and 21 are similarly measured for voltage values, and the voltage values Vc 1, Vd 1, Ve 1, and Vf 1 when the switch is off are measured and stored (steps 406 to 413). .

次に、1つおきにスイッチをオン状態とするために、出力ポートの出力信号をHiLoHiLoHiLoとし、スイッチ3、9、15をオン状態とする(ステップ501)。次いで、電圧測定回路16に測定対象単電池を単電池1として指定し(ステップ502)、電圧測定回路16を介して単電池1の電圧値Va2を測定して記憶する(ステップ503)。続いて、残りの電池4、7、10、13も同様に電圧値を測定しそれぞれスイッチがオン状態のときの電圧値Vb2、Vc2、Vd2、Ve2を測定して記憶する(ステップ504〜511)。更に、1つおきにスイッチをオン状態とするときにオン状態とならなかった最下位の単電池21に対応するスイッチ23だけをオン状態とするために出力ポートの信号をLoLoLoLoLoHiとしてスイッチ23をオン状態とし(ステップ601)、電圧測定回路16に測定対象単電池を単電池21として指定し(ステップ602)、電圧測定回路16を介して単電池21の電圧値Vf2を測定して記憶する(ステップ603)。   Next, in order to turn on every other switch, the output signal of the output port is set to HiLoHiLoHiLo, and the switches 3, 9, and 15 are turned on (step 501). Next, the unit cell to be measured is designated as the unit cell 1 in the voltage measurement circuit 16 (step 502), and the voltage value Va2 of the unit cell 1 is measured and stored through the voltage measurement circuit 16 (step 503). Subsequently, the voltage values of the remaining batteries 4, 7, 10, and 13 are similarly measured, and the voltage values Vb2, Vc2, Vd2, and Ve2 when the switches are on are measured and stored (steps 504 to 511). . Furthermore, when the switch is turned on every other switch, the output port signal is set to LoLoLoLoLoHi to turn on only the switch 23 corresponding to the lowest cell 21 that was not turned on. The voltage measurement circuit 16 designates the unit cell to be measured as the unit cell 21 (step 602), and measures and stores the voltage value Vf2 of the unit cell 21 via the voltage measurement circuit 16 (step 601). 603).

次に、スイッチ3をオフ状態としたときの電圧値Va1とオン状態としたときの電圧値Va2の差が規定値以上か否かを判断することで、電圧検出ラインL1もしくはL2に異常があるか(肯定判断の場合)、電圧検出ラインL1、L2ともに正常であるか(否定判断の場合)を判断する(ステップ701)。同様に、電圧値Vb1と電圧値Vb2を比較することで電圧検出ラインL2と電圧検出ラインL3の異常の有無を、電圧値Vc1と電圧値Vc2を比較することで電圧検出ラインL3と電圧検出ラインL4の異常の有無を、電圧値Vd1と電圧値Vd2を比較することで電圧検出ラインL4と電圧検出ラインL5の異常の有無を、電圧値Ve1と電圧値Ve2を比較することで電圧検出ラインL5と電圧検出ラインL6の異常の有無を、電圧値Vf1と電圧値Vf2を比較することで電圧検出ラインL6と電圧検出ラインL7の異常の有無を判断する(ステップ702〜706)。従って、マイコン17のCPUは、すべての判断結果からどの電圧検出ラインが正常または異常かを判断することができる。   Next, the voltage detection line L1 or L2 is abnormal by determining whether or not the difference between the voltage value Va1 when the switch 3 is turned off and the voltage value Va2 when the switch 3 is turned on is greater than or equal to a specified value. (In the case of affirmative determination), it is determined whether both of the voltage detection lines L1 and L2 are normal (in the case of negative determination) (step 701). Similarly, the voltage value Vb1 and the voltage value Vb2 are compared to determine whether the voltage detection line L2 and the voltage detection line L3 are abnormal. The voltage value Vc1 and the voltage value Vc2 are compared to compare the voltage detection line L3 and the voltage detection line. Comparing the voltage value Vd1 and the voltage value Vd2 for the presence / absence of abnormality of L4, the presence / absence of the abnormality of the voltage detection line L4 and the voltage detection line L5, comparing the voltage value Ve1 and the voltage value Ve2 to the voltage detection line L5 Whether the voltage detection line L6 is abnormal is determined by comparing the voltage value Vf1 with the voltage value Vf2 to determine whether the voltage detection line L6 is abnormal (steps 702 to 706). Therefore, the CPU of the microcomputer 17 can determine which voltage detection line is normal or abnormal from all the determination results.

(第3実施形態)
次に、本発明が適用可能な車載用電池モジュールの第3の実施の形態について説明する。なお、本実施形態の回路要素は第2実施形態と同じであり、マイコン17のCPUが実行する検査ルーチンが異なるものである。このため、本実施形態では、回路要素の説明を省略し、異なる動作箇所を中心に説明する。
(Third embodiment)
Next, a third embodiment of an in-vehicle battery module to which the present invention can be applied will be described. The circuit elements of the present embodiment are the same as those of the second embodiment, and the inspection routine executed by the CPU of the microcomputer 17 is different. For this reason, in this embodiment, description of a circuit element is abbreviate | omitted and it demonstrates focusing on a different operation | movement location.

図5に示すように、本実施形態のマイコン17のCPUが実行する検査ルーチンは、ステップ401〜413までは、第2実施形態と同じである。次に、マイコン17のCPUは、電圧測定回路16に組電池24を指定し(ステップ414)、電圧測定回路16を介して組電池24の電圧値Vg1を測定して記憶する(ステップ415)。次のステップ501〜511までは、第2実施形態と同じである。次いで、電圧測定回路16に測定対象単電池を単電池21として指定し(ステップ802)、電圧測定回路16を介して単電池21の電圧値Vf2を測定して記憶する(ステップ803)。続いて、出力ポートの出力信号をすべてHiとし、すべてのスイッチをオン状態とする(ステップ801)。次に、電圧測定回路16に組電池24を指定し(ステップ804)、電圧測定回路16を介して組電池24の電圧値Vg2を測定して記憶する(ステップ805)。続いて、第2実施形態と同様に、電圧検出ラインL1〜L6に異常があるか判断した後(ステップ701〜705)、電圧値Vf1と電圧値Vf2を比較し両者の差が規定値以上か否かを判断することで電圧検出ラインL6の異常の有無を(ステップ707)、電圧値Vg1と電圧値Vg2を比較し両者の差が規定値以上か否かを判断することで電圧検出ラインL1と電圧検出ラインL7の異常の有無を判断する(ステップ708)。従って、マイコン17のCPUは、すべての判断結果からどの電圧検出ラインが正常または異常かを判断することができる。 As shown in FIG. 5, the inspection routine executed by the CPU of the microcomputer 17 of this embodiment is the same as that of the second embodiment in steps 401 to 413. Next, the CPU of the microcomputer 17 designates the assembled battery 24 in the voltage measuring circuit 16 (step 414), and measures and stores the voltage value Vg1 of the assembled battery 24 via the voltage measuring circuit 16 (step 415). The next steps 501 to 511 are the same as those in the second embodiment. Then, electrodeposition in pressure measurement circuit 16 the measured unit cell designated as a single battery 21 (step 802), and stores the measured voltage value Vf2 of the voltage measuring circuit 16 through the unit cell 21 (step 803). Subsequently, all the output signals of the output ports are set to Hi, and all the switches are turned on (step 801). Next, the assembled battery 24 is designated to the voltage measuring circuit 16 (step 804), and the voltage value Vg2 of the assembled battery 24 is measured and stored via the voltage measuring circuit 16 (step 805). Subsequently, as in the second embodiment, after determining whether or not there is an abnormality in the voltage detection lines L1 to L6 (steps 701 to 705), the voltage value Vf1 and the voltage value Vf2 are compared, and the difference between the two is equal to or greater than a specified value. By determining whether or not there is an abnormality in the voltage detection line L6 (step 707), the voltage value Vg1 and the voltage value Vg2 are compared, and it is determined whether or not the difference between the two is equal to or greater than a specified value. Whether or not the voltage detection line L7 is abnormal is determined (step 708). Therefore, the CPU of the microcomputer 17 can determine which voltage detection line is normal or abnormal from all the determination results.

以上のように、上記実施形態の電池モジュール19、20では、電圧検出ラインが異常な状態、例えば微小断線などがあると単電池と並列に抵抗を接続し電流を流したときの電圧値が、正常なときに比べ異なってくるので、単電池の開放電圧値(スイッチがオフ状態のときに測定した電圧値)との差が予め定められた所定値以上となり、電圧検出ラインの接続状態に異常があることを判定することができ、組電池を構成する単電池の直列個数が多くなっても、単電池の直列数が奇数個の場合は2回、偶数個の場合は3回のスイッチのオンオフ状態での単電池電圧を測定することで、電圧検出ラインの接続状態に異常があることを判定することができる。従って、上記実施形態の電池モジュール19、20によれば、電圧検出ラインの接続状態を正確に検査可能となる。   As described above, in the battery modules 19 and 20 of the above-described embodiment, when the voltage detection line is in an abnormal state, for example, when there is a minute disconnection, the voltage value when a current is flowed by connecting a resistor in parallel with the unit cell, The difference between the open voltage value of the unit cell (the voltage value measured when the switch is off) exceeds the predetermined value, and the connection state of the voltage detection line is abnormal. Even if the number of cells constituting the battery pack increases, the switch is switched twice if the number of cells in series is odd or three if the number of cells is even. By measuring the cell voltage in the on / off state, it can be determined that there is an abnormality in the connection state of the voltage detection line. Therefore, according to the battery modules 19 and 20 of the above embodiment, the connection state of the voltage detection line can be accurately inspected.

なお、上記実施形態では、マイコン17がA/Dコンバータを有する例を示したが、電圧測定回路16でアナログ電圧値からデジタル電圧値に変換してマイコン17へ出力する形態を採るようにしてもよい。また、上記実施形態では、組電池(18、24)を例示したが、本発明はこれに限らず、奇数個ないし偶数個で構成される単電池群にも適用可能である。従って、本発明の用語「組電池」には単電池群が含まれている。更に、上記実施形態では、5直列ないし6直列の単電池を例示したが、単電池を複数個並列接続した単電池群を複数個直列接続する態様を採るようにしてもよい。   In the above embodiment, the microcomputer 17 has an A / D converter. However, the voltage measurement circuit 16 converts the analog voltage value into the digital voltage value and outputs the converted voltage to the microcomputer 17. Good. Moreover, in the said embodiment, although assembled battery (18, 24) was illustrated, this invention is not limited to this, It is applicable also to the cell group comprised by odd number or even number. Therefore, the term “assembled battery” of the present invention includes a single battery group. Furthermore, in the above embodiment, 5 series to 6 series unit cells are illustrated, but a mode in which a plurality of unit cell groups in which a plurality of unit cells are connected in parallel may be adopted.

本発明は電池電圧検出線の接続状態を正確に検査可能な検査手段を備えた電池モジュールを提供するため、電池モジュールの製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention provides a battery module provided with an inspection means capable of accurately inspecting the connection state of the battery voltage detection line, it contributes to the manufacture and sale of the battery module, and thus has industrial applicability.

本発明が適用可能な第1実施形態の電池モジュールのブロック回路図である。1 is a block circuit diagram of a battery module according to a first embodiment to which the present invention is applicable. 第1実施形態の電池モジュールのマイコンのCPUが実行する検査ルーチンのフローチャートである。It is a flowchart of the test | inspection routine which CPU of the microcomputer of the battery module of 1st Embodiment performs. 本発明が適用可能な第2、第3実施形態の電池モジュールのブロック回路図である。It is a block circuit diagram of the battery module of 2nd, 3rd embodiment which can apply this invention. 第2実施形態の電池モジュールのマイコンのCPUが実行する検査ルーチンのフローチャートである。It is a flowchart of the test | inspection routine which CPU of the microcomputer of the battery module of 2nd Embodiment performs. 第3実施形態の電池モジュールのマイコンのCPUが実行する検査ルーチンのフローチャートである。It is a flowchart of the test | inspection routine which CPU of the microcomputer of the battery module of 3rd Embodiment performs.

符号の説明Explanation of symbols

1、4、7、10、13、21 単電池
2、5、8、11、14、22 抵抗
3、6、9、12、15、23 スイッチ
16 電圧測定回路(検査手段の一部)
17 マイコン(検査手段の一部)
18、24 組電池
19、20 電池モジュール
L1、L2、L3、L4、L5、L6、L7 電圧検出ライン(電池電圧検出線)
1, 4, 7, 10, 13, 21 Cell 2, 5, 8, 11, 14, 22 Resistor 3, 6, 9, 12, 15, 23 Switch 16 Voltage measurement circuit (part of inspection means)
17 Microcomputer (part of inspection method)
18, 24 Battery pack 19, 20 Battery module L1, L2, L3, L4, L5, L6, L7 Voltage detection line (battery voltage detection line)

Claims (2)

抵抗がスイッチを介して並列に接続された単電池を複数個接続して構成される組電池の各単電池の電圧値を検出するための電池電圧検出線の接続状態を検査する検査手段を備えた電池モジュールにおいて、前記検査手段は、前記スイッチのすべてをオフ状態としたときの前記組電池を構成するすべての単電池のそれぞれの電圧値V1と、前記スイッチを各単電池に対応して1つおきにオン状態としたときの前記組電池を構成するすべての単電池のそれぞれの電圧値V2とを測定し、前記組電池を構成するすべての単電池のそれぞれについて、対応するスイッチがオフ状態のときに測定した電圧値V1と、対応するスイッチがオフ状態或いはオン状態のときに測定した電圧値V2とを比較し、前記電圧値の差が予め設定された規定値以上であるか否かを判断して対応する電池電圧検出線の接続状態を検査することを特徴とする電池モジュール。   Inspecting means for inspecting the connection state of the battery voltage detection line for detecting the voltage value of each unit cell of the assembled battery configured by connecting a plurality of unit cells connected in parallel via a switch. In the battery module, the inspection means includes a voltage value V1 of each unit cell constituting the assembled battery when all the switches are turned off, and one switch corresponding to each unit cell. The voltage value V2 of each of all the cells constituting the assembled battery when every other battery is turned on is measured, and the corresponding switch is turned off for each of all the cells constituting the assembled battery. The voltage value V1 measured at the time is compared with the voltage value V2 measured when the corresponding switch is in the off state or the on state, and the difference between the voltage values is equal to or larger than a preset specified value. Battery module, characterized by checking the connection state of the battery voltage detection line corresponding to determine whether. 前記組電池を構成する単電池の直列個数が偶数の場合に、前記検査手段は、前記1つおきにスイッチをオン状態として各単電池の電圧値を測定する際にオン状態としなかった前記組電池の電位が最下位端部に位置する単電池に対応するスイッチのみをオン状態として前記組電池の電位が最下位端部に位置する単電池の電圧値V2を測定し、前記スイッチのすべてをオフ状態として測定した前記組電池の電位が最下位端部に位置する単電池の電圧値V1と、対応するスイッチをオン状態として測定した前記組電池の電位が最下位端部に位置する単電池の電圧値V2とを比較し、前記電圧値の差が前記規定値以上であるか否かを判断して前記組電池の電位が最下位端部に位置する単電池に対応する電池電圧検出線の接続状態を更に検査することを特徴とする請求項1に記載の電池モジュール。 If serial number of the unit cells constituting the battery pack is even, the inspection unit, the sets that did not turned on when measuring the voltage value of each cell wherein every other switch is turned on to the assembled potential of the battery measures the voltage value V2 of the cells situated at the end of the least significant only switches the potential of the battery corresponds to the unit cell located at the end of the lowermost side as the oN state, the potential of the battery pack of the measurement of all the switches is turned off is a voltage value V1 of the cells situated at the end of the lowermost side, the potential of the battery pack of the measurement of the corresponding switch is turned on to the least significant compares the voltage value of the cell located at the end V2 of, at an end potential of the lowest side of the battery pack difference between the voltage value to determine whether or not the specified value or higher connection state of the battery voltage detection line corresponding to the unit cells of The battery module according to claim 1, characterized in that the further checking.
JP2005111030A 2005-04-07 2005-04-07 Battery module Active JP5160024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005111030A JP5160024B2 (en) 2005-04-07 2005-04-07 Battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005111030A JP5160024B2 (en) 2005-04-07 2005-04-07 Battery module

Publications (2)

Publication Number Publication Date
JP2006294339A JP2006294339A (en) 2006-10-26
JP5160024B2 true JP5160024B2 (en) 2013-03-13

Family

ID=37414685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005111030A Active JP5160024B2 (en) 2005-04-07 2005-04-07 Battery module

Country Status (1)

Country Link
JP (1) JP5160024B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562949B2 (en) 2014-03-12 2017-02-07 Toyota Jidosha Kabushiki Kaisha Battery monitoring device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605952B2 (en) 2001-08-29 2011-01-05 株式会社日立製作所 Power storage device and control method thereof
JP5076812B2 (en) * 2006-12-18 2012-11-21 日産自動車株式会社 Abnormality diagnosis device
JP5469813B2 (en) 2008-01-29 2014-04-16 株式会社日立製作所 Battery system for vehicles
KR101065562B1 (en) 2008-09-05 2011-09-19 주식회사 엘지화학 Apparatus and Method for diagnosis of cell balancing switch
JP5133926B2 (en) 2009-03-26 2013-01-30 株式会社日立製作所 Battery system for vehicles
KR101256952B1 (en) * 2010-03-05 2013-04-25 주식회사 엘지화학 Apparatus and Method for diagnosis of cell balancing unit
JP2012021867A (en) * 2010-07-14 2012-02-02 Ricoh Co Ltd Protective semiconductor device for battery pack serially connected with plurality of secondary batteries, battery pack incorporating protective semiconductor device, and electronic apparatus
US8587318B2 (en) 2010-07-27 2013-11-19 GM Global Technology Operations LLC Sensor arrangement for an energy storage device and a method of using the same
JP5443327B2 (en) * 2010-12-08 2014-03-19 株式会社東芝 Battery assembly
KR101897049B1 (en) * 2011-06-03 2018-09-11 가부시키가이샤 지에스 유아사 Apparatus for monitoring cells of a storage module, and program and method for detecting disconnection
JP5789846B2 (en) * 2011-09-05 2015-10-07 三洋電機株式会社 Power supply device for vehicle and vehicle equipped with this power supply device
JP5439465B2 (en) * 2011-12-26 2014-03-12 三菱重工業株式会社 Battery system
JP5974849B2 (en) * 2012-11-19 2016-08-23 株式会社デンソー Battery monitoring device
DE102013220505A1 (en) * 2013-10-11 2015-04-16 Robert Bosch Gmbh Method and device for monitoring a measuring device for cell voltage measurement
JP6016754B2 (en) * 2013-11-15 2016-10-26 オムロンオートモーティブエレクトロニクス株式会社 Battery voltage detector
KR102648008B1 (en) * 2018-07-27 2024-03-15 에스케이온 주식회사 Apparatus and method for diagnosing abnormality of cell voltage sensing line

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3709785B2 (en) * 2000-12-01 2005-10-26 日産自動車株式会社 Diagnostic device for battery pack
JP4254209B2 (en) * 2002-11-22 2009-04-15 新神戸電機株式会社 Battery voltage detection line inspection method, inspection circuit, and battery module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562949B2 (en) 2014-03-12 2017-02-07 Toyota Jidosha Kabushiki Kaisha Battery monitoring device

Also Published As

Publication number Publication date
JP2006294339A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP5160024B2 (en) Battery module
US7129707B2 (en) Apparatus for judging state of assembled battery
US8587262B2 (en) Assembled battery monitoring apparatus, method for detecting wiring disconnection of assembled battery, and assembled battery system
JP5447260B2 (en) Battery voltage monitoring device
KR101470552B1 (en) Isolation resistance measurement apparatus having malfunction self-diagnosing function and malfunction self-diagnosing method using the same
US9459324B2 (en) Device and method for the redundant determination of a battery current flowing through the poles of a battery
EP2801837B1 (en) Device and method for measuring insulation resistance of battery
KR101298661B1 (en) Voltage monitoring apparatus
JP5390951B2 (en) Voltage measurement device for multiple assembled batteries
US8836341B2 (en) Semiconductor circuit, semiconductor device, method of diagnosing abnormality of wire, and computer readable storage medium
US20020130665A1 (en) Electronic battery tester
EP2629103A1 (en) Voltage measurement device for plurality of assembled batteries
JP3627922B2 (en) Method for monitoring DC voltage detector for battery pack
US20130162213A1 (en) Voltage equalizer for battery pack
US20070046419A1 (en) Temperature sensor control apparatus
CN101726653A (en) System and method for identifying issues in current and voltage measurements
JP4254209B2 (en) Battery voltage detection line inspection method, inspection circuit, and battery module
US8305084B2 (en) Voltage measuring apparatus for assembled battery
US20220179008A1 (en) Battery Diagnosing Apparatus and Method
JP2008064520A (en) Voltage measuring instrument
KR102324968B1 (en) System and method for diagnosing the connectivity of fuses, bms including a system for diagnosing the connectivity of fuses
JP2009103706A (en) Testing method, testing circuit and battery module of cell voltage sensing line
KR20190037883A (en) Battery management system and operating method thereof
JP2015102336A (en) Battery monitoring device
US10770906B2 (en) Method for testing a balanced circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111215

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121212

R150 Certificate of patent or registration of utility model

Ref document number: 5160024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250