JP2012002742A - Physical quantity sensor - Google Patents

Physical quantity sensor Download PDF

Info

Publication number
JP2012002742A
JP2012002742A JP2010139379A JP2010139379A JP2012002742A JP 2012002742 A JP2012002742 A JP 2012002742A JP 2010139379 A JP2010139379 A JP 2010139379A JP 2010139379 A JP2010139379 A JP 2010139379A JP 2012002742 A JP2012002742 A JP 2012002742A
Authority
JP
Japan
Prior art keywords
temperature
correction
physical quantity
value
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010139379A
Other languages
Japanese (ja)
Inventor
Munenori Takai
宗則 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2010139379A priority Critical patent/JP2012002742A/en
Publication of JP2012002742A publication Critical patent/JP2012002742A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the output accuracy of a physical quantity sensor in a determined temperature segment.SOLUTION: A physical quantity sensor includes a memory part 133 for storing data relating to higher correction formula g1, g2 which are quadratic equations or larger than them for determining the correction value of the physical amount detection value by a physical amount detection element 11 in a corresponding partial temperature segment for each of a plurality of partial temperature segments selected from the determined temperature region and a correction processing part 13-i (wherein i is equal to 1 or 2) for correcting the physical quantity detection value based on a correction value of the corresponding partial temperature segment based on data of the correction formula g1, g2 corresponding to one of the partial temperature regions.

Description

本発明の一態様は、圧力、温度、湿度等の物理量をセンシングする技術に関する。   One embodiment of the present invention relates to a technique for sensing physical quantities such as pressure, temperature, and humidity.

2つの被測定圧力を検出する圧力センサ(デュアル圧力センサ)として例えば下記特許文献1に記載された技術が知られている。特許文献1に記載のデュアル圧力センサは、2つの感圧ダイヤフラムチップを有し、2つの導圧管から導入された2つの被測定圧力がそれぞれの感圧ダイヤフラムに加えられる。このときの感圧ダイヤフラムの変位を例えば拡散型歪みゲージによって電気信号に変換することにより、被測定圧力に応じた検出信号を得ることができる。   As a pressure sensor (dual pressure sensor) for detecting two measured pressures, for example, a technique described in Patent Document 1 below is known. The dual pressure sensor described in Patent Document 1 has two pressure-sensitive diaphragm chips, and two measured pressures introduced from two pressure guiding tubes are applied to the respective pressure-sensitive diaphragms. By converting the displacement of the pressure-sensitive diaphragm at this time into an electrical signal using, for example, a diffusion strain gauge, a detection signal corresponding to the pressure to be measured can be obtained.

このようなデュアル圧力センサは、2つの被測定圧力を検出できるから両者の差分つまりは差圧を求める差圧センサとしても利用できる。求められる差圧の一例としては、流量制御弁の上流側および下流側の流体の圧力差(つまりは差圧)が挙げられる。なお、流量制御弁の一例としては、下記特許文献2に記載のものが知られている。   Since such a dual pressure sensor can detect two measured pressures, it can also be used as a differential pressure sensor for obtaining a difference between them, that is, a differential pressure. As an example of the required differential pressure, there is a pressure difference (that is, differential pressure) between fluids upstream and downstream of the flow control valve. As an example of the flow control valve, one described in Patent Document 2 below is known.

特開2009−31003号公報JP 2009-31003 A 特開2009−115302号公報JP 2009-115302 A 特開2004−294110号公報JP 2004-294110 A 特開2004−294110号公報JP 2004-294110 A

流量制御弁の上流側及び下流側の流体圧力の差分(差圧)は、当該流量制御弁内を流れる流体の流量を求めるのに用いることができる。ここで、感圧ダイヤフラムを用いた圧力センサは、印加圧力に応じて感圧ダイヤフラムに物理的な変位が生じることを利用して流体の圧力を検出する構成であるため、使用温度によってセンサ出力にオフセットが生じたり出力ゲインが変化したりする温度特性を有する。   The difference (differential pressure) between the fluid pressure upstream and downstream of the flow control valve can be used to determine the flow rate of the fluid flowing through the flow control valve. Here, the pressure sensor using a pressure-sensitive diaphragm is configured to detect the pressure of the fluid by utilizing the physical displacement of the pressure-sensitive diaphragm according to the applied pressure. It has a temperature characteristic in which an offset occurs and the output gain changes.

そのため、流体の流量を精度良く求めるには、個々の圧力センサの温度に応じた適切な補正(補償)をセンサ出力に施すことが求められる。温度補正の手法としては、例えば上記特許文献3及び4に記載された手法が知られている。   Therefore, in order to accurately determine the flow rate of the fluid, it is required to perform appropriate correction (compensation) according to the temperature of each pressure sensor on the sensor output. As temperature correction methods, for example, the methods described in Patent Documents 3 and 4 are known.

特許文献3に記載の手法(以下、「補正法1」と称する。)では、所定の温度範囲において、センサ出力の補正値を求める温度特性曲線を複数の温度区間に分割し、各温度区間の両端の補正値を結ぶ直線上に当該温度区間の中間温度に対応した補正値が存在するものとして、当該直線上からセンサの温度に対応した補正値を求めて温度補正を行なう。   In the method described in Patent Document 3 (hereinafter referred to as “correction method 1”), a temperature characteristic curve for obtaining a sensor output correction value is divided into a plurality of temperature sections in a predetermined temperature range, and each temperature section is divided. Assuming that a correction value corresponding to the intermediate temperature in the temperature section exists on a straight line connecting the correction values at both ends, a correction value corresponding to the temperature of the sensor is obtained from the straight line, and temperature correction is performed.

また、特許文献4に記載の手法(以下、「補正法2」と称する。)では、所定の温度範囲において、センサ出力の補正値を求める温度特性曲線に最も近い高次の近似式を求め、当該近似式からセンサの温度に対応した補正値を求めて温度補正を行なう。   Further, in the method described in Patent Document 4 (hereinafter referred to as “correction method 2”), a high-order approximate expression closest to a temperature characteristic curve for obtaining a correction value of the sensor output in a predetermined temperature range is obtained. A correction value corresponding to the temperature of the sensor is obtained from the approximate expression to perform temperature correction.

ところで、特許文献2に記載の流量制御弁が空調システムの熱源供給系統に適用される場合、流量制御弁内の流路には、時期によって低温流体〔例えば、冷水(5℃〜20℃程度)〕及び高温流体〔例えば、温水(40℃〜60℃程度)〕のいずれか一方が選択的に流れる。そのため、センサ温度がその中間温度範囲(20℃〜40℃)(以下、「スプリットレンジ」と称する。)になることは稀であるといえる。   By the way, when the flow control valve described in Patent Document 2 is applied to a heat source supply system of an air conditioning system, a low-temperature fluid [for example, cold water (about 5 ° C. to 20 ° C.)] ] Or a high-temperature fluid [for example, warm water (about 40 ° C. to 60 ° C.)] selectively flows. Therefore, it can be said that the sensor temperature rarely falls within the intermediate temperature range (20 ° C. to 40 ° C.) (hereinafter referred to as “split range”).

このような状況において、前記補正法1で温度補正を行なおうとすると、スプリットレンジを含めて所定の温度範囲の全範囲を多数の温度区間に分割するため、分割数に応じて必要な温度補正値の数が増大し、当該温度補正値を記憶するメモリの容量が増大する。すなわち、温度補正に求められる精度とメモリ容量との間にはトレードオフの関係がある。また、補正法1では、各温度区間の両端の温度補正値を直線近似することで中間部分の温度補正値を補完しているため、温度区間の両端以外の中間部分の温度補正精度が劣化しやすい。   In such a situation, if temperature correction is to be performed by the correction method 1, the entire temperature range including the split range is divided into a number of temperature sections, so that necessary temperature correction is performed according to the number of divisions. The number of values increases, and the capacity of the memory that stores the temperature correction value increases. That is, there is a trade-off relationship between the accuracy required for temperature correction and the memory capacity. Moreover, in the correction method 1, since the temperature correction value of the intermediate portion is complemented by linearly approximating the temperature correction values at both ends of each temperature interval, the temperature correction accuracy of the intermediate portion other than both ends of the temperature interval deteriorates. Cheap.

一方、スプリットレンジが存在する場合において、前記補正法2で温度補正を行なおうとすると、スプリットレンジを含めて所定の温度範囲の全範囲の温度特性曲線を単一の高次式で近似するため、補正法1に比して所定の温度補正精度を得られない温度区間が生じやすい。例えば、低温流体及び高温流体の一方の温度範囲の中央値で最も精度が得られるように高次式を決定すると、他方の温度範囲についての温度補正精度を高められない。   On the other hand, in the case where the split range exists, if temperature correction is performed by the correction method 2, the temperature characteristic curve of the entire range of the predetermined temperature range including the split range is approximated by a single higher-order expression. As compared with the correction method 1, a temperature interval in which a predetermined temperature correction accuracy cannot be obtained is likely to occur. For example, if the higher-order equation is determined so that the accuracy is obtained at the median value of one temperature range of the low temperature fluid and the high temperature fluid, the temperature correction accuracy for the other temperature range cannot be increased.

なお、以上のような温度補正精度の劣化は、流体圧力を検出(測定)する圧力センサに限らず、非線形の温度特性を有する物理量センサに共通して生じ得る。   It should be noted that the deterioration of the temperature correction accuracy as described above is not limited to the pressure sensor that detects (measures) the fluid pressure, but may occur in common with a physical quantity sensor having nonlinear temperature characteristics.

そこで、本発明の目的の一つは、所定の温度区間で物理量センサの出力温度補正の精度を向上できるようにすることにある。   Accordingly, one of the objects of the present invention is to improve the accuracy of the output temperature correction of the physical quantity sensor in a predetermined temperature section.

なお、前記目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本発明の他の目的の一つとして位置付けることができる。   In addition, the present invention is not limited to the above-described object, and other effects of the present invention can be achieved by the functions and effects derived from the respective configurations shown in the embodiments for carrying out the invention which will be described later. It can be positioned as one of

本発明の物理量センサの一態様は、温度特性を有する所定の物理量を検出する物理量検出素子と、所定の温度範囲から選択された複数の部分温度区間毎に、当該部分温度区間での前記物理量検出素子による物理量検出値の補正値を求める2次以上の高次の補正式に関するデータを記憶する記憶部と、いずれかの前記部分温度区間に対応する前記補正式のデータに基づいて当該部分温度区間における補正値を求め、当該補正値を前記物理量検出値に与える補正処理部と、を備える。   One aspect of the physical quantity sensor of the present invention includes a physical quantity detection element that detects a predetermined physical quantity having temperature characteristics, and the physical quantity detection in the partial temperature section for each of a plurality of partial temperature sections selected from a predetermined temperature range. A storage unit that stores data relating to a correction equation of a second or higher order for obtaining a correction value of the physical quantity detection value by the element, and the partial temperature interval based on the data of the correction equation corresponding to any of the partial temperature intervals And a correction processing unit that obtains the correction value and supplies the correction value to the physical quantity detection value.

ここで、前記物理量センサは、前記物理量検出素子の温度を検出する温度検出素子を更に備え、前記補正処理部は、前記温度検出素子による温度検出値が含まれる第1の前記部分温度区間と前記温度検出値が含まれない第2の前記部分温度区間とのそれぞれに対応する前記補正式に関するデータに基づいて、前記第1及び第2の部分温度区間のそれぞれにおける前記補正値を求める補正演算部と、前記温度検出値が含まれる前記第1の部分温度区間に対応する補正値を与えられた前記物理量検出値を選択出力する選択出力部と、を備えてもよい。   Here, the physical quantity sensor further includes a temperature detection element that detects a temperature of the physical quantity detection element, and the correction processing unit includes the first partial temperature section including a temperature detection value by the temperature detection element and the first partial temperature section. A correction calculation unit that obtains the correction value in each of the first and second partial temperature intervals based on data relating to the correction formula corresponding to each of the second partial temperature intervals not including the temperature detection value. And a selection output unit that selectively outputs the physical quantity detection value given the correction value corresponding to the first partial temperature section in which the temperature detection value is included.

また、前記部分温度区間に対応する前記補正式のそれぞれは、当該部分温度区間の中央値に対して他よりも精度の高い補正値が得られる補正式としてもよい。   In addition, each of the correction formulas corresponding to the partial temperature section may be a correction formula that can obtain a correction value with higher accuracy than the other for the median value of the partial temperature section.

上述した本発明の一態様によれば、所定の温度範囲から選択された複数の部分温度区間の別に、それぞれに対応する二次以上の高次の補正式を用いて物理量検出素子の検出値の補正値を求めるので、選択された各部分温度区間のそれぞれにおいて高精度な補正値を得ることができる。したがって、物理量検出センサによる物理量検出精度を向上することができる。   According to the above-described aspect of the present invention, the detection value of the physical quantity detection element is calculated using a correction equation of a second or higher order corresponding to each of a plurality of partial temperature sections selected from a predetermined temperature range. Since the correction value is obtained, a highly accurate correction value can be obtained in each of the selected partial temperature sections. Therefore, the physical quantity detection accuracy by the physical quantity detection sensor can be improved.

一実施形態にかかる圧力センサユニットの構成例を示すブロック図である。It is a block diagram which shows the structural example of the pressure sensor unit concerning one Embodiment. 図1に例示する補正演算部の構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of a correction calculation unit illustrated in FIG. 1. 図1に例示する圧力センサに与えられる負荷と圧力センサの補正後の出力との関係を例示するグラフである。3 is a graph illustrating a relationship between a load applied to the pressure sensor illustrated in FIG. 1 and an output after correction of the pressure sensor. 図1に例示する圧力センサの圧力特性の一例を示すグラフである。3 is a graph illustrating an example of pressure characteristics of the pressure sensor illustrated in FIG. 1. 図1に例示する圧力センサの温度特性の一例を示すグラフである。3 is a graph illustrating an example of temperature characteristics of the pressure sensor illustrated in FIG. 1. 図1に例示する圧力センサの温度補正後の出力(PV)と圧力との関係を例示するグラフである。3 is a graph illustrating the relationship between the pressure-corrected output (PV) and pressure of the pressure sensor illustrated in FIG. 1. 図1に例示する圧力センサの補正後の出力(OUT)と温度補正後の出力(PV)との関係を例示するグラフである。3 is a graph illustrating the relationship between an output (OUT) after correction of the pressure sensor illustrated in FIG. 1 and an output (PV) after temperature correction; 図1に例示する圧力センサユニットの温度対出力誤差の一例を示す図である。It is a figure which shows an example of the temperature vs. output error of the pressure sensor unit illustrated in FIG. 従来の圧力センサユニットの温度対出力誤差の一例を示す図である。It is a figure which shows an example of the temperature versus output error of the conventional pressure sensor unit.

以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。即ち、本発明は、その趣旨を逸脱しない範囲で種々変形(各実施例を組み合わせる等)して実施することができる。また、以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付して表している。図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described below. In other words, the present invention can be implemented with various modifications (combining the embodiments, etc.) without departing from the spirit of the present invention. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. The drawings are schematic and do not necessarily match actual dimensions and ratios. In some cases, the dimensional relationships and ratios may be different between the drawings.

(一実施形態)
図1は、一実施形態に係る圧力センサユニットの構成例を示すブロック図である。図1に示す圧力センサユニット1は、例えば流量制御弁に取り付けることができ、例示的に、圧力センサ11と、温度センサ12と、補正処理部13−1及び13−2と、セレクタ14と、を備える。
(One embodiment)
FIG. 1 is a block diagram illustrating a configuration example of a pressure sensor unit according to an embodiment. The pressure sensor unit 1 shown in FIG. 1 can be attached to, for example, a flow control valve. For example, the pressure sensor 11, the temperature sensor 12, the correction processing units 13-1 and 13-2, the selector 14, Is provided.

圧力センサ11は、物理量の一つである流体の圧力を検出する物理量検出素子の一例であり、例えば感圧部の一例として感圧ダイヤフラムが形成された半導体基板(シリコン)と、拡散型歪みゲージと、を備えた半導体チップにより構成できる。拡散型歪みゲージは、感圧ダイヤフラムの被測定圧力による歪みをピエゾ抵抗効果を利用して検出し、その検出値(歪み量)に応じた電気信号(電圧信号)を出力する。圧力センサ11の出力信号は、2つの補正処理部13−1及び13−2のそれぞれに入力される。   The pressure sensor 11 is an example of a physical quantity detection element that detects the pressure of a fluid that is one of physical quantities. For example, a semiconductor substrate (silicon) on which a pressure-sensitive diaphragm is formed as an example of a pressure-sensitive part, and a diffusion-type strain gauge. And a semiconductor chip comprising The diffusion strain gauge detects strain due to the pressure to be measured of the pressure-sensitive diaphragm using the piezoresistive effect, and outputs an electrical signal (voltage signal) corresponding to the detected value (strain amount). The output signal of the pressure sensor 11 is input to each of the two correction processing units 13-1 and 13-2.

温度センサ(温度検出素子)12は、圧力センサ11(感圧ダイヤフラム)の温度を検出し、検出した温度に応じた電気信号を出力する。温度センサ12の一例は、圧力センサ11の感圧ダイヤフラム近傍に設けられた測温抵抗素子であり、当該抵抗素子の抵抗値の温度変化に応じた電気信号を出力する。温度センサ12の出力信号は、各補正処理部13−1及び13−2とセレクタ14とにそれぞれ入力される。   The temperature sensor (temperature detection element) 12 detects the temperature of the pressure sensor 11 (pressure-sensitive diaphragm) and outputs an electrical signal corresponding to the detected temperature. An example of the temperature sensor 12 is a temperature measuring resistance element provided in the vicinity of the pressure-sensitive diaphragm of the pressure sensor 11, and outputs an electrical signal corresponding to a temperature change in the resistance value of the resistance element. The output signal of the temperature sensor 12 is input to the correction processing units 13-1 and 13-2 and the selector 14, respectively.

補正処理部13−i(i=1又は2)は、圧力センサ11の出力信号(圧力検出値)と温度センサ12の出力信号(温度検出値)とに基づいて、圧力センサ11の出力信号の補正値を求める。そのため、補正処理部13−iは、例示的に、多重部(MUX)131と、アナログ−デジタル変換器(ADC)132と、記憶部133と、補正演算部134と、を備える。   The correction processing unit 13-i (i = 1 or 2) calculates the output signal of the pressure sensor 11 based on the output signal (pressure detection value) of the pressure sensor 11 and the output signal (temperature detection value) of the temperature sensor 12. Find the correction value. Therefore, the correction processing unit 13-i exemplarily includes a multiplexing unit (MUX) 131, an analog-digital converter (ADC) 132, a storage unit 133, and a correction calculation unit 134.

多重部131は、圧力センサ11の出力信号と温度センサ12の出力信号とを例えば時分割に多重してADC132に出力する。なお、多重部131とADC132との間には、時分割多重信号を増幅する増幅器を設けてもよい。   The multiplexing unit 131 multiplexes the output signal of the pressure sensor 11 and the output signal of the temperature sensor 12, for example, in a time division manner, and outputs the multiplexed signal to the ADC 132. An amplifier that amplifies the time division multiplexed signal may be provided between the multiplexing unit 131 and the ADC 132.

ADC132は、時分割多重された圧力センサ11の出力信号及び温度センサ12の出力信号のそれぞれをアナログ−デジタル変換して補正演算部134に出力する。   The ADC 132 performs analog-to-digital conversion on each of the output signal of the pressure sensor 11 and the output signal of the temperature sensor 12 that are time-division multiplexed and outputs the result to the correction calculation unit 134.

記憶部133は、圧力センサ11の出力信号に与える補正値を求める補正式に関するデータを記憶する。記憶部133には、例えばEEPROMを用いることができる。「補正式」は、圧力センサ11が有する「圧力特性」と「温度特性」とに基づいて定めることができる。ここで、「補正」とは、例えば図3に示すように、或る負荷(本例では、例えば圧力とする)に対して一定の出力(OUT)が得られるようにすることである。また、「圧力特性」とは、与えられる負荷に応じて出力(圧力)が変化する特性(図4参照)であり、「温度特性」とは、温度に応じて出力が変化する特性(図5参照)である。   The storage unit 133 stores data relating to a correction formula for obtaining a correction value to be given to the output signal of the pressure sensor 11. For example, an EEPROM can be used as the storage unit 133. The “correction formula” can be determined based on “pressure characteristics” and “temperature characteristics” of the pressure sensor 11. Here, “correction” means to obtain a constant output (OUT) for a certain load (in this example, for example, pressure) as shown in FIG. 3, for example. Further, the “pressure characteristic” is a characteristic (see FIG. 4) in which the output (pressure) changes according to the applied load, and the “temperature characteristic” is a characteristic in which the output changes in accordance with the temperature (FIG. 5). Reference).

「圧力特性」及び「温度特性」は、負荷に対する出力の変化量(傾き)を表すゲインと、負荷が一定の状態で出力が変化するオフセットとに分けることができる。「圧力特性」及び「温度特性」は、圧力センサ11に固有の特性であり、線形的な変化と非線形的な変化とがある。非線形な特性を補正する場合には、補正式の次数が2次であったり3次であったりと、圧力センサ11によって異なる。   The “pressure characteristic” and the “temperature characteristic” can be divided into a gain representing the amount of change (slope) of the output with respect to the load and an offset at which the output changes while the load is constant. “Pressure characteristics” and “temperature characteristics” are characteristics inherent to the pressure sensor 11 and include a linear change and a non-linear change. When correcting non-linear characteristics, the order of the correction formula is different depending on the pressure sensor 11 depending on whether it is secondary or tertiary.

そこで、それぞれの次数に関する圧力及び温度それぞれについてのゲイン及びオフセットの補正係数を次のように表わす。ただし、nは例示的に2以上の整数と仮定する。
n次に関する圧力ゲインの補正係数: Gp_n
n次に関する圧力オフセットの補正係数:Op_n
n次に関する温度ゲインの補正係数: Gt_n
n次に関する温度オフセットの補正係数:Ot_n
Therefore, the gain and offset correction coefficients for the pressure and temperature for the respective orders are expressed as follows. However, n is illustratively assumed to be an integer of 2 or more.
Correction factor of pressure gain for the nth order: Gp_n
Correction coefficient of pressure offset for the nth order: Op_n
nth-order temperature gain correction coefficient: Gt_n
Correction coefficient of temperature offset for the nth order: Ot_n

また、以下の説明において、圧力センサ11の温度(使用環境温度)を「Temp」で表わし、基準温度(例えば25℃)と圧力センサ11の使用環境温度(Temp)との差分(つまりは温度差)を「ΔT」で表す。また、温度差ΔTの影響を受けている(温度補
正前の)出力(圧力)を「PV(ΔT)」で表わす。
In the following description, the temperature (use environment temperature) of the pressure sensor 11 is represented by “Temp”, and the difference (that is, the temperature difference) between the reference temperature (for example, 25 ° C.) and the use environment temperature (Temp) of the pressure sensor 11. ) Is represented by “ΔT”. Further, the output (pressure) that is affected by the temperature difference ΔT (before temperature correction) is represented by “PV (ΔT)”.

まず、どのような温度においても一定の出力が得られるように温度補正を行なう。ここで、温度補正後の出力をPVとし、PV(ΔT)及びTempを変数とした時の温度補正
係数(Gt_n及びOt_n)を求める。これにより、PV=f(PV(ΔT),Tem
p)と表わすことができ、この式を温度補正式として用いることができる。この温度補正式による演算を実施するのが例えば図2に示す温度補正部134aである。
First, temperature correction is performed so that a constant output can be obtained at any temperature. Here, the temperature-corrected coefficients (Gt_n and Ot_n) when PV (ΔT) and Temp are variables are obtained with PV being the temperature-corrected output. As a result, PV = f (PV (ΔT), Tem
p) and this equation can be used as a temperature correction equation. For example, the temperature correction unit 134a shown in FIG. 2 performs the calculation based on the temperature correction formula.

次に、圧力補正について説明する。図3及び図6から、補正後の出力(OUT)と温度補正後の出力(PV)との関係は、例えば図7のように表すことができる。図7に例示する圧力特性から、最小二乗法等を用いて補正後の出力と温度補正後の出力との関係(式)を導き出し、当該関係(式)から圧力補正係数(Gp_n,OP_n)を導き出すことができる。   Next, pressure correction will be described. From FIG. 3 and FIG. 6, the relationship between the corrected output (OUT) and the temperature corrected output (PV) can be expressed as shown in FIG. 7, for example. From the pressure characteristics illustrated in FIG. 7, a relationship (expression) between the corrected output and the temperature corrected output is derived using the least square method or the like, and the pressure correction coefficient (Gp_n, OP_n) is calculated from the relationship (expression). Can be derived.

よって、補正後の出力(OUT)は、OUT=g(f(PV(ΔT),Temp))と
いう、補正前の出力PV(ΔT)と温度出力Tempとの合成関数で表わすことができる
。当該合成関数による演算を実施するのが例えば図2に示す圧力補正部134bである。記憶部133は、上記の各補正係数Gp_n,Op_n,Gt_n及びOt_nをそれぞれ「補正式に関するデータ」の一例として記憶することができる。
Therefore, the corrected output (OUT) can be expressed by a composite function of the output PV (ΔT) before correction and the temperature output Temp, OUT = g (f (PV (ΔT), Temp)). For example, the pressure correction unit 134b shown in FIG. The storage unit 133 can store each of the correction coefficients Gp_n, Op_n, Gt_n, and Ot_n as an example of “data related to a correction formula”.

ただし、関数gは、被測定流体の所定の温度範囲の全範囲ではなく当該温度範囲から選択された一部の温度区間(部分温度区間)について適正化された補正式であれば足りる。例えば、圧力センサユニット1を取り付けられた流量制御弁が空調システムの熱源供給系統に適用された場合、圧力測定対象の流体は、時期によって低温流体〔冷水(5℃〜20℃程度)〕及び高温流体〔温水(40℃〜60℃程度)〕のいずれか一方となる(スプリットレンジが生じる)から、それぞれの部分温度区間について適正化された補正式を個別に用いればよい。   However, the function g need only be a correction formula optimized for a part of the temperature range (partial temperature range) selected from the temperature range rather than the entire range of the predetermined temperature range of the fluid to be measured. For example, when a flow control valve to which the pressure sensor unit 1 is attached is applied to a heat source supply system of an air conditioning system, the fluid to be pressure-measured is a low-temperature fluid [cold water (5 ° C. to 20 ° C.)] and a high temperature depending on the time Since one of the fluids [warm water (about 40 ° C. to 60 ° C.)] (split range occurs), a correction formula optimized for each partial temperature section may be used individually.

例えば、低温流体が取り得る温度区間(5℃〜20℃)について適正化された補正式を関数g1、高温流体が取り得る温度区間(40℃〜60℃)について適正化された補正式を関数g2とそれぞれ表わす。そして、各関数g1及びg2のうち、一方を定める補正係数を一方の補正処理部13−1の記憶部133に記憶し、他方を定める補正係数を他方の補正処理部13−2の記憶部133に記憶しておく。別言すれば、補正処理部13−1は低温流体用に適正化された補正式g1にて、補正処理部13−2は高温流体用に適正化された補正式g2にて、それぞれ補正値を求める。   For example, the function g1 is a correction equation optimized for a temperature interval (5 ° C. to 20 ° C.) that a low temperature fluid can take, and a function that is a correction equation optimized for a temperature interval (40 ° C. to 60 ° C.) that a high temperature fluid can take. Represented as g2. Then, a correction coefficient that determines one of the functions g1 and g2 is stored in the storage unit 133 of one correction processing unit 13-1, and a correction coefficient that determines the other is stored in the storage unit 133 of the other correction processing unit 13-2. Remember it. In other words, the correction processing unit 13-1 is a correction formula g1 optimized for a low temperature fluid, and the correction processing unit 13-2 is a correction value g2 optimized for a high temperature fluid. Ask for.

なお、補正式(関数)g1及びg2は、例えば、それぞれの部分温度区間において複数の温度で予め実測した個々の圧力データを基に計算(例えばフィッティング)することで得ることができる。また、補正式g1及びg2は、いずれも該当する部分温度区間のすべてで所定の精度の補正値が得られる関数である必要は無い。例えば、それぞれの部分温度区間におけるいずれかの温度、例えば、中央値(12.5℃又は50℃)で当該部分温度区間の他区間よりも高い精度の補正値が得られるよう近似された関数(近似式)であっても構わない。   The correction equations (functions) g1 and g2 can be obtained, for example, by calculating (for example, fitting) based on individual pressure data measured in advance at a plurality of temperatures in each partial temperature section. Further, the correction equations g1 and g2 do not have to be functions that can obtain a correction value with a predetermined accuracy in all of the corresponding partial temperature sections. For example, a function approximated so as to obtain a correction value with higher accuracy than any other temperature in the partial temperature interval at any temperature in each partial temperature interval, for example, the median value (12.5 ° C. or 50 ° C.). (Approximate expression).

次に、補正演算部134は、図2に例示するように、上述した温度補正部134a及び圧力補正部134bを備え、ADC132から入力されたデジタル信号、すなわち圧力センサ11の出力信号と温度センサ12の出力信号との時分割多重信号と、記憶部133に記憶された補正式(関数)gi(i=1又は2)に関する補正係数とを基に、該当温度区間での補正値を求める。   Next, as illustrated in FIG. 2, the correction calculation unit 134 includes the temperature correction unit 134 a and the pressure correction unit 134 b described above, and the digital signal input from the ADC 132, that is, the output signal of the pressure sensor 11 and the temperature sensor 12. Based on the time-division multiplexed signal with the output signal and the correction coefficient (function) gi (i = 1 or 2) stored in the storage unit 133, a correction value in the corresponding temperature interval is obtained.

すなわち、各補正処理部13−1及び13−2の補正演算部134は、温度センサ12による温度検出値が含まれる第1の部分温度区間と当該温度検出値が含まれない第2の部分温度区間とのそれぞれに対応する補正式に関する補正係数に基づいて、各部分温度区間のそれぞれにおける補正値を求める。なお、得られた補正値は、圧力センサ11の出力信号に与えられる。   That is, the correction calculation unit 134 of each of the correction processing units 13-1 and 13-2 includes the first partial temperature section in which the temperature detection value by the temperature sensor 12 is included and the second partial temperature in which the temperature detection value is not included. A correction value in each partial temperature section is obtained based on a correction coefficient related to the correction formula corresponding to each section. The obtained correction value is given to the output signal of the pressure sensor 11.

セレクタ14は、各補正処理部13−i(補正演算部134)の出力、すなわち低温流体用及び高温流体用の各補正式を用いてそれぞれ補正された圧力センサ11の出力信号を選択的に出力する。当該出力信号の選択は、例えば温度センサ12の出力信号によって制御できる。例示すると、温度センサ12の出力信号が低温流体の温度区間(5℃〜20℃)内の温度を示す場合、セレクタ14は、低温流体用の補正処理部13−1(補正演算部134)の出力信号を補正された検出圧力として出力する。一方、温度センサ12の出力信号が高温流体の温度区間(40℃〜60℃)内の温度を示す場合、セレクタ14は、高温流体用の補正処理部13−2(補正演算部134)の出力信号を補正された検出圧力として出力する。   The selector 14 selectively outputs the output of each correction processing unit 13-i (correction calculation unit 134), that is, the output signal of the pressure sensor 11 corrected using the correction equations for low temperature fluid and high temperature fluid, respectively. To do. The selection of the output signal can be controlled by the output signal of the temperature sensor 12, for example. For example, when the output signal of the temperature sensor 12 indicates a temperature within the temperature interval (5 ° C. to 20 ° C.) of the low temperature fluid, the selector 14 is connected to the correction processing unit 13-1 (correction calculation unit 134) for the low temperature fluid. The output signal is output as a corrected detected pressure. On the other hand, when the output signal of the temperature sensor 12 indicates the temperature within the temperature zone (40 ° C. to 60 ° C.) of the high temperature fluid, the selector 14 outputs the correction processing unit 13-2 (correction calculation unit 134) for the high temperature fluid. The signal is output as a corrected detected pressure.

ただし、セレクタ14による選択は、所定の設定情報によって制御してもよい。例えば、現在の時期(春、夏、秋、冬)や日時を示す情報を設定情報として自動あるいは手動でセレクタ14に与えて、いずれの補正式に基づく補正演算結果を有効にするかを制御するようにしてもよい。   However, the selection by the selector 14 may be controlled by predetermined setting information. For example, information indicating the current time (spring, summer, autumn, winter) and date and time is automatically or manually given to the selector 14 as setting information to control which correction formula based on which correction calculation result is valid. You may do it.

以上のように、本実施形態の圧力センサユニット1によれば、所定の温度範囲(例えば、5℃〜60℃)の全範囲を1つの補正式で補正する場合に比して、補正対象とする部分温度区間(例えば、5〜20℃の温度区間及び40〜60℃の温度区間)にそれぞれ適正化された補正式を選択的に用いるので、それぞれの温度区間における補正値を高精度化して、圧力センサ11の圧力検出精度を向上できる。   As described above, according to the pressure sensor unit 1 of the present embodiment, the correction target is compared with a case where the entire range of a predetermined temperature range (for example, 5 ° C. to 60 ° C.) is corrected with one correction equation. Since the correction formulas optimized for each of the partial temperature intervals (for example, the temperature interval of 5 to 20 ° C. and the temperature interval of 40 to 60 ° C.) are selectively used, the correction value in each temperature interval is made highly accurate. The pressure detection accuracy of the pressure sensor 11 can be improved.

例えば、5℃〜60℃の温度範囲の全範囲を単一の補正式で補正した場合、図9に例示するように、最大で1%程度の誤差が生じるところ、本実施形態によれば、5〜20℃及び40〜60℃の各部分温度区間の中央値(12.5℃又は50℃)でそれぞれ最も高い補正精度が得られるよう最適化された補正式を選択的に用いることで、図8に例示するように、各部分温度区間での補正の最大誤差を0.25%程度に抑えることができる。   For example, when the entire temperature range of 5 ° C. to 60 ° C. is corrected with a single correction formula, as illustrated in FIG. 9, an error of about 1% occurs at the maximum. According to this embodiment, By selectively using a correction formula optimized to obtain the highest correction accuracy at the median value (12.5 ° C. or 50 ° C.) of each partial temperature interval of 5 to 20 ° C. and 40 to 60 ° C., As illustrated in FIG. 8, the maximum correction error in each partial temperature section can be suppressed to about 0.25%.

別言すれば、補正対象とする温度区間を絞り込むことで、当該温度区間以外での補正精度を考慮しなくてよいので、当該温度区間における補正の高精度化が図られる。また、補正対象とする温度区間を絞り込むことで個々の温度区間の幅を狭くできるので、個々の温度区間における補正式を圧力センサ11の実際の温度特性曲線にフィッティングさせやすくなる。したがって、近似による補正精度の劣化を最小限に抑えることができる。   In other words, by narrowing down the temperature section to be corrected, it is not necessary to consider the correction accuracy outside the temperature section, so that the correction accuracy in the temperature section can be increased. In addition, since the width of each temperature section can be narrowed by narrowing down the temperature section to be corrected, it becomes easy to fit the correction formula in each temperature section to the actual temperature characteristic curve of the pressure sensor 11. Therefore, it is possible to minimize deterioration of correction accuracy due to approximation.

なお、図1に示した圧力センサユニット1の構成はあくまでも一例にすぎない。例えば、補正処理部13−iの構成要素の一部又は全部は、各温度区間に共用にしてもよい。例示すると、1つの記憶部133の記憶領域(アドレス)を関数giの別に分けてそれぞれの係数を記憶してもよい。   The configuration of the pressure sensor unit 1 shown in FIG. 1 is merely an example. For example, some or all of the components of the correction processing unit 13-i may be shared by each temperature section. For example, the storage area (address) of one storage unit 133 may be divided according to the function gi to store each coefficient.

また、多重部131、ADC132及び補正演算部134も各温度区間に共用として、補正演算部134で用いる補正式giを温度センサ12の出力信号や前記設定情報に応じて選択的に切り替えるようにしてもよい。この場合、補正演算部134が切り替えの判断を行なってもよいし、別途、制御部を設けて当該制御部から補正演算部134に切り替え指示を与えるようにしてもよい。補正処理部13−iの共用化を図ることで、圧力センサユニット1の規模や消費電力を低減することが可能である。   In addition, the multiplexing unit 131, the ADC 132, and the correction calculation unit 134 are also shared by each temperature section, and the correction formula gi used in the correction calculation unit 134 is selectively switched according to the output signal of the temperature sensor 12 and the setting information. Also good. In this case, the correction calculation unit 134 may perform switching determination, or a separate control unit may be provided to give a switching instruction from the control unit to the correction calculation unit 134. By using the correction processing unit 13-i in common, the scale and power consumption of the pressure sensor unit 1 can be reduced.

また、上述した実施形態では、検出対象の物理量が流体圧力である場合について説明したが、湿度等の他の物理量であって温度特性を有する物理量について上述した実施形態を適用してもよい。   In the above-described embodiment, the case where the physical quantity to be detected is a fluid pressure has been described. However, the above-described embodiment may be applied to a physical quantity having other temperature characteristics such as humidity and having temperature characteristics.

1…圧力センサユニット、11…圧力センサ(物理量検出素子)、12…温度センサ(温度検出素子)、13−1,13−2…補正処理部、14…セレクタ、131…多重部(MUX)、132…アナログ−デジタル変換器(ADC)、133…記憶部、134…補正演算部、134a…温度補正部、134b…圧力補正部   DESCRIPTION OF SYMBOLS 1 ... Pressure sensor unit, 11 ... Pressure sensor (physical quantity detection element), 12 ... Temperature sensor (temperature detection element), 13-1, 13-2 ... Correction processing part, 14 ... Selector, 131 ... Multiplexing part (MUX), 132 ... Analog-to-digital converter (ADC), 133 ... Storage unit, 134 ... Correction calculation unit, 134a ... Temperature correction unit, 134b ... Pressure correction unit

Claims (3)

温度特性を有する所定の物理量を検出する物理量検出素子と、
所定の温度範囲から選択された複数の部分温度区間毎に、当該部分温度区間での前記物理量検出素子による物理量検出値の補正値を求める2次以上の高次の補正式に関するデータを記憶する記憶部と、
いずれかの前記部分温度区間に対応する前記補正式のデータに基づいて当該部分温度区間における補正値を求め、当該補正値によって前記物理量検出値を補正する補正処理部と、
を備える、物理量センサ。
A physical quantity detecting element for detecting a predetermined physical quantity having temperature characteristics;
A memory for storing data relating to a correction equation of a second or higher order for obtaining a correction value of a physical quantity detection value by the physical quantity detection element in the partial temperature section for each of a plurality of partial temperature sections selected from a predetermined temperature range And
A correction processing unit that obtains a correction value in the partial temperature section based on the data of the correction formula corresponding to any of the partial temperature sections, and corrects the physical quantity detection value by the correction value;
A physical quantity sensor.
前記物理量検出素子の温度を検出する温度検出素子を更に備え、
前記補正処理部は、
前記温度検出素子による温度検出値が含まれる第1の前記部分温度区間と前記温度検出値が含まれない第2の前記部分温度区間とのそれぞれに対応する前記補正式に関するデータに基づいて、前記第1及び第2の部分温度区間のそれぞれにおける前記補正値を求める補正演算部と、
前記温度検出値が含まれる前記第1の部分温度区間に対応する補正値を与えられた前記物理量検出値を選択出力する選択出力部と、
を備えた、請求項1に記載の物理量センサ。
A temperature detection element for detecting the temperature of the physical quantity detection element;
The correction processing unit
Based on the data related to the correction formula corresponding to each of the first partial temperature section in which the temperature detection value by the temperature detection element is included and the second partial temperature section in which the temperature detection value is not included, A correction calculation unit for obtaining the correction value in each of the first and second partial temperature sections;
A selection output unit that selectively outputs the physical quantity detection value given a correction value corresponding to the first partial temperature section in which the temperature detection value is included;
The physical quantity sensor according to claim 1, comprising:
前記部分温度区間に対応する前記補正式のそれぞれは、当該部分温度区間の中央値に対して他よりも精度の高い補正値が得られる補正式である、請求項1又は2に記載の物理量センサ。   3. The physical quantity sensor according to claim 1, wherein each of the correction formulas corresponding to the partial temperature section is a correction formula for obtaining a correction value with higher accuracy than the other for the median value of the partial temperature section. .
JP2010139379A 2010-06-18 2010-06-18 Physical quantity sensor Pending JP2012002742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010139379A JP2012002742A (en) 2010-06-18 2010-06-18 Physical quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139379A JP2012002742A (en) 2010-06-18 2010-06-18 Physical quantity sensor

Publications (1)

Publication Number Publication Date
JP2012002742A true JP2012002742A (en) 2012-01-05

Family

ID=45534876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139379A Pending JP2012002742A (en) 2010-06-18 2010-06-18 Physical quantity sensor

Country Status (1)

Country Link
JP (1) JP2012002742A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176332A1 (en) * 2018-03-14 2019-09-19 富士電機株式会社 Sensor device
CN111946422A (en) * 2019-05-16 2020-11-17 丰田自动车株式会社 Abnormality diagnosis device for in-vehicle internal combustion engine
JP2021003708A (en) * 2020-10-19 2021-01-14 株式会社写真化学 Agitating and defoaming apparatus
JP2021117110A (en) * 2020-01-27 2021-08-10 アズビル株式会社 Pressure sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160343U (en) * 1986-03-31 1987-10-12
JPH05282004A (en) * 1992-04-03 1993-10-29 Yokogawa Electric Corp Control system
JPH0784670A (en) * 1993-09-09 1995-03-31 Mitsubishi Electric Corp Timer
JPH0829269A (en) * 1994-07-14 1996-02-02 Texas Instr Japan Ltd Temperature compensating circuit
JP2001153745A (en) * 1999-11-30 2001-06-08 Hokuriku Electric Ind Co Ltd Temperature conpensation method and device for sensor output
JP2002358101A (en) * 2001-06-01 2002-12-13 Seiko Instruments Inc Feedback control system and feedback control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160343U (en) * 1986-03-31 1987-10-12
JPH05282004A (en) * 1992-04-03 1993-10-29 Yokogawa Electric Corp Control system
JPH0784670A (en) * 1993-09-09 1995-03-31 Mitsubishi Electric Corp Timer
JPH0829269A (en) * 1994-07-14 1996-02-02 Texas Instr Japan Ltd Temperature compensating circuit
JP2001153745A (en) * 1999-11-30 2001-06-08 Hokuriku Electric Ind Co Ltd Temperature conpensation method and device for sensor output
JP2002358101A (en) * 2001-06-01 2002-12-13 Seiko Instruments Inc Feedback control system and feedback control method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176332A1 (en) * 2018-03-14 2019-09-19 富士電機株式会社 Sensor device
JPWO2019176332A1 (en) * 2018-03-14 2020-10-01 富士電機株式会社 Sensor device
US11422049B2 (en) 2018-03-14 2022-08-23 Fuji Electric Co., Ltd. Sensor device configured to reduce output errors due to temperature characteristics
CN111946422A (en) * 2019-05-16 2020-11-17 丰田自动车株式会社 Abnormality diagnosis device for in-vehicle internal combustion engine
JP2021117110A (en) * 2020-01-27 2021-08-10 アズビル株式会社 Pressure sensor
JP7436218B2 (en) 2020-01-27 2024-02-21 アズビル株式会社 pressure sensor
JP2021003708A (en) * 2020-10-19 2021-01-14 株式会社写真化学 Agitating and defoaming apparatus
JP7291406B2 (en) 2020-10-19 2023-06-15 株式会社写真化学 Stirring/defoaming device

Similar Documents

Publication Publication Date Title
US8851105B2 (en) Mass flow meter, mass flow controller, mass flow meter system and mass flow control system containing the mass flow meter and the mass flow controller
KR101645727B1 (en) Mass flow meter and mass flow controller
KR101717069B1 (en) Mass flow controller with enhanced operating range
US8504311B2 (en) Method and mass flow controller for enhanced operating range
ES2705433T3 (en) Method for temperature drift compensation of temperature measurement device using thermocouple
JP4705140B2 (en) Mass flow meter and mass flow controller
KR101741284B1 (en) Flow rate sensor
Rudtsch et al. Calibration and self-validation of thermistors for high-precision temperature measurements
US8874387B2 (en) Air flow measurement device and air flow correction method
CN101706346A (en) Method for compensating for nonlinear temperature drift of measurement of intelligent force sensor
US8838404B2 (en) Physical quantity sensor
JP2012002742A (en) Physical quantity sensor
US20160003686A1 (en) Intake air temperature sensor and flow measurement device
AU2014202006B2 (en) Flow sensor with improved linear output
US8443675B2 (en) Dual physical quantity sensor
WO2015034081A1 (en) Thermal flow meter, temperature measurement device, and thermal flow meter program
CN102519666A (en) Digital temperature compensation system and method
JP4669193B2 (en) Temperature measuring device for pressure flow control device
CN106644193B (en) Method and system for measuring pressure value
JP4636428B2 (en) Multivariable transmitter and arithmetic processing method of multivariable transmitter
WO2014024621A1 (en) Thermal flow measurement device and control device using same
JP4852654B2 (en) Pressure flow control device
JPH07306100A (en) Integrating calorimeter
JP2009116904A (en) Pressure type flow control device
TH183346A (en) Method and system for measuring temperature with NTC thermistors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140523