JP3783893B2 - Piezoelectric vibration angular velocity meter - Google Patents

Piezoelectric vibration angular velocity meter Download PDF

Info

Publication number
JP3783893B2
JP3783893B2 JP17202597A JP17202597A JP3783893B2 JP 3783893 B2 JP3783893 B2 JP 3783893B2 JP 17202597 A JP17202597 A JP 17202597A JP 17202597 A JP17202597 A JP 17202597A JP 3783893 B2 JP3783893 B2 JP 3783893B2
Authority
JP
Japan
Prior art keywords
drive
pair
detection
angular velocity
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17202597A
Other languages
Japanese (ja)
Other versions
JPH1123278A (en
Inventor
貴敬 三五
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP17202597A priority Critical patent/JP3783893B2/en
Publication of JPH1123278A publication Critical patent/JPH1123278A/en
Application granted granted Critical
Publication of JP3783893B2 publication Critical patent/JP3783893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転角速度を検出する圧電振動タイプの角速度計に関する。
【0002】
【従来の技術】
角速度計は、航空機、船舶、自動車等のナビゲーションシステムおよびこれらの姿勢制御に用いられたり、スチルカメラ、ビデオカメラの手ぶれや振動感知に用いられているが、これらの用途から分かるように、高精度な角速度の検出が要求されることが多い。このような用途に用いられる角速度計として圧電振動タイプの角速度計がある。圧電振動角速度計は、振動子を振動された状態でこれに角速度が加わると、振動方向と角速度の外積という形でコリオリ力が加わり、振動子の振動方向と直角な方向にコリオリ力による振動が発生するという現象を利用した角速度計である。
【0003】
このような圧電振動角速度計では、振動子を振動させるための駆動回路や、コリオリ力により発生した振動を検出する検出回路が設けられ、これらが組み合わされて角速度計が構成される。このような駆動および検出回路を有した従来の圧電振動角速度計の構成を図3に示している。この圧電振動角速度計を構成する検出回路4は、例えば直方体状の圧電体より構成される振動子100の検出用電極103からの出力信号を測定するために用いられる。
【0004】
この振動子100は回転中心1の方向に伸びる駆動用の圧電体100−1と、検出用の圧電体100−2と、前記二つの圧電体100−1,100−2の間に形成されたアース電極104と、駆動用圧電体100−1の外部下面に形成された駆動用電極101と、検出用圧電体100−2の外部上面に中心軸1に対して左右2つに分割されて形成された検出用電極103L,103Rと、この二つの検出用電極間の中央を前記二つの検出用電極と平行に伸びて形成された帰還用電極102とから構成されている。
【0005】
駆動用圧電体100−1の外部下面に形成された駆動用電極101と、検出用圧電体100−2の外部上面に形成された帰還用電極102との間には振動子100を励振駆動するための自励振駆動回路300が接続され、また検出用圧電体100−2の外部上面に形成された2つの検出用電極103L、103Rはそれぞれ差動回路200の反転(−)入力端子、非反転(+)入力端子に接続され、差動回路200によって2つの検出用電極103L、103Rからの出力差が検出されるように構成されている。
【0006】
差動回路200の出力は同期検波回路400に入力されて検波される。差動回路200の出力は振動子の無回転時には原理的に0であるが、振動子100の回転時においては同相分の励振信号が相殺されて、逆相分の交流コリオリ信号のみとなる。検波はこのコリオリ信号位相に同期して行なうことができるように、同期スイッチング信号が位相調整回路500から同期検波回路400に入力されている。位相調整回路500は自励振駆動回路300に接続されており、励振信号の位相をおよそ90度ずらしてコリオリ信号位相と同位相のスイッチング信号を生成するための回路である。同期検波回路400の出力は平滑回路600に入力され、リップルの少ない直流信号に変換される。
【0007】
このような従来の検出回路4は無回転時には以下のように動作する。自励振駆動回路300により駆動用圧電体100−1の機械的な共振周波数の交流電圧(励振信号)を駆動用電極101に印加することで、振動子100は励振方向(振動子100の上下方向、図4内においてvで示される方向)に励振(屈曲)させられる。この振動に伴った機械的な共振周波数の信号が、検出用圧電体100−2の外部上面に形成された検出用電極103R、103Lから検出されるが、このときの検出信号は検出用電極103R,103Lにおいて、振幅、位相ともに同一であり原理的に差動回路200の出力は0となる。従って、同期検波回路400の出力も0となり、平滑回路600の出力も0となっている。
【0008】
振動子100が回転中心1を中心に回転すると、振動子100の励振方向v及び振動子100の回転中心1とは直角の方向(図1の図面上における左右方向)にコリオリの力Fcが加わり、振動子100は無回転時の励振方向から左右の方向に少しずれて振動することになる。このずれた分が二つの検出用電極103R、103Lからコリオリ信号として検出される。
【0009】
ところで、回転中心1に対して二つの検出用電極103L,103Rは左右対称であり、一方の電極側が伸びるときには他方の電極側が縮小し圧電効果により互いに相反する分極電荷が検出用電極103L、103Rに誘起される。従って、左右二つの検出用電極103L、103Rから検出されるコリオリ信号は振幅が同一で互いに逆位相の機械的な共振周波数での交流信号となる。
【0010】
また、原理的には励振信号に対して二つの検出用電極103L、103Rからのコリオリ信号は一方は90度進み位相で、他方は90度遅れ位相である。よって、回転の角速度Ωが一定の場合には差動回路200の出力にはコリオリ信号が励振信号に対して90度の位相差をもって、回転角速度に比例した振幅値で出力される。この出力を平滑回路600で平滑し測定することによって、回転角速度Ωを検出することができる。
【0011】
このような従来の圧電振動角速度計の検出回路4は、外部環境や振動子100を形成する圧電体の経時変化等によって無回転時において差動回路200の出力が0とならず、誤差信号が生じてしまった場合であっても、コリオリ信号はこのような誤差信号に対しておよそ90度の位相差をもって出力されているので、このコリオリ信号の位相に同期して検波することにより差動回路出力後の誤差信号は正の部分と負の部分が常に対称になるように整流することができる。従って、この誤差信号は平滑回路600によって相殺されることになり、正確な回転角速度測定への影響を軽減できるという利点を有するものであった。
【0012】
【発明が解決しようとする課題】
しかしながら、振動子100を形成する圧電体の個体間の特性のばらつき、経時変化及び外部環境の変化に伴う静電容量の変化等により検出電極103R、103Lから発生する帰還された励振信号の振幅及び位相が現実には必ずしも同一とはならないため、無回転時における両者の誤差信号がコリオリ信号位相と正確には90度の位相差を持たないこともあり、同期検波回路400及び平滑回路600を通過しても誤差信号が完全には相殺されない場合が生じうる。そのため、より正確な回転角速度Ωの測定ができないことがあった。
【0013】
本発明はこのような問題点に鑑みてなされたものであり、振動子個体間の特性のばらつきや外部環境変化等の影響を受けにくく、より正確な回転角速度の検出が可能な圧電振動角速度計を提供することを目的とするものである。
【0014】
【課題を解決するための手段】
このような目的達成のため、本発明においては、長手方向に延びた直方体状の圧電体と、この圧電体の長手方向に延びる表面に長手方向中心軸に対してそれぞれ対称に配設された一対の駆動電極および一対の検出電極と、一対の駆動電極にそれぞれ独立して励振駆動信号を印加する一対の励振駆動手段と、一対の検出電極による検出信号の差に基づいて長手方向中心軸まわりの回転角速度を検出するように構成された角速度検出手段と、一対の駆動手段の少なくとも一方により印加される励振駆動信号の位相を調整する位相調整手段とを備えて圧電振動角速度計が構成される。その上で、一対の励振駆動手段は、一対の駆動電極の一方の駆動電極へ励振駆動信号を与えるとともに一方の駆動電極に対応する検出電極から帰還信号を得る第1の励振駆動手段と、一対の駆動電極の他方の駆動電極へ励振駆動信号を与えるとともに他方の駆動電極に対応する検出電極から帰還信号を得る第1の励振駆動手段とは異なる第2の励振駆動手段と含んでおり、振幅調整手段および位相調整手段は、長手方向中心軸まわりの回転角速度が零のときに一対の検出電極による検出信号の差をほぼ零とするように振幅および位相を調整する
【0015】
このような構成の圧電振動角速度計では、振動子個体間の特性のばらつきや外部環境変化等により圧電体の左右での振動にアンバランスが生じるなどして、無回転時において一対の検出電極により検出される信号に差が生じた場合には、振幅調整手段および位相調整手段が作動してこの差を零にするように振幅および位相の調整が自動的になされる。
【0016】
なお、圧電体を長手方向中心軸を通る水平面を中心線として上下に二分割し、両者の間にアース電極を挟んで一体に接合されて構成することができる。この場合には、二分割されたいずれか一方の圧電対の外面に一対の駆動電極が配設されて駆動用圧電体が構成されるとともに、他方の圧電体の外面に一対の検出電極が配設されて検出用圧電体が構成される。また、振幅調整手段および位相調整手段は、圧電体が長手方向中心軸まわりに角加速度が零でない回転が与えられて左右の検出電極からの検出信号に差があるときには調整を行わないようにかなり遅い応答性を有するのが好ましい。これにより、振幅および位相の調整は、振動子が実際に回転して角速度検出を行うときには行われず、角速度検出を正確に行うことができ、振動子が無回転の間に調整が行われる。
【0017】
また、第1の励振駆動手段を、振幅調整手段を兼ねる励振駆動兼用振幅調整手段とし、第2の励振駆動手段を、位相調整手段を兼ねる励振駆動兼用位相調整手段とすることが好ましい。また、一対の検出電極による検出信号の差を出力する差動手段を有し、差動手段の出力が振幅調整手段と位相調整手段とに入力されるように構成することが好ましい。
【0018】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態について説明する。まず、図1に本発明に係る圧電振動角速度計に用いられる振動子10の構成を示している。この振動子10は、長手方向の中心軸1(なお、圧電振動角速度計はこの中心軸まわりの回転角速度成分を検出する)の方向に延びるそれぞれ直方体状をした駆動用圧電体10−1および検出用圧電体10−2と、これら二つの圧電体10−1,10−2の間に形成されたアース電極14と、駆動用圧電体10−1の下面に中心軸1に対して左右対称に分割形成された左右一対の駆動用電極11L、11R(これら両電極を総称して駆動用電極11と称する)と、検出用圧電体10−2の上面に中心軸1に対して左右対象に分割形成された左右一対の検出用電極13L,13R(これら両電極を総称して検出用電極13と称する)とから構成されている。
【0019】
このような構成の振動子10に図2に示す駆動検出回路を組み合わされて本発明に係る圧電振動角速度計が構成される。この駆動検出回路は、まず、検出用圧電体10−2の上面に形成された左右の検出用電極13L、13Rからの検出信号が入力される差動回路20を有する。このとき、左側検出用電極13Lは差動回路200の反転(−)入力端子に接続され、右側検出用電極13Rは非反転(+)入力端子に接続され、差動回路20からは、これら左右の検出用電極13L、13Rの検出信号の差が出力される。
【0020】
この差動回路20の出力は同期検波回路40に入力されて検波される。ここで後述するように、理想状態において振動子10が無回転の時には差動回路20の出力は零であり、振動子10の回転時においては同相分の励振信号が相殺されて、逆相分の交流コリオリ信号のみとなる。検波はこのコリオリ信号位相に同期して行なうことができるように、同期スイッチング信号が同期調整回路30から同期検波回路40に入力されている。なお、同期調整回路30は右側検出用電極13Rに繋がるラインに接続されており、検出励振信号の位相をおよそ90度ずらしてコリオリ信号位相と同位相のスイッチング信号を生成するための回路である。このようにして同期検波回路40において同期検波された出力信号は平滑回路50に入力され、リップルの少ない直流信号に変換される。
【0021】
一方、駆動用電極11L,11Rには、それぞれ図2に示すように励振駆動回路を兼用する自動振幅調整回路60および自動位相調整回路70が繋がっている。さらに、これら両回路60,70にはそれぞれ検出用電極13L,13Rからの検出信号が帰還入力されるようになっており、検出用電極13L,13Rは帰還用電極としての作用も有する。このように、振動子10の左側の駆動用電極11Lおよび検出用電極13Lとの間に励振駆動兼用自動振幅調整回路60を介してループが形成されており、励振駆動兼用自動振幅調整回路60から振動子10の固有振動数の周波数を有する駆動信号を駆動用電極11Lに印加すれば、振動子10の左側にこの周波数の励振駆動力が作用する。同様に、振動子10の右側の駆動用電極11Rおよび検出用電極13Rとの間に励振駆動兼用自動位相調整回路70を介してループが形成されており、励振駆動兼用自動位相調整回路70から振動子10の固有振動数の周波数を有する駆動信号を駆動用電極11Rに印加すれば、振動子10の右側にこの周波数の励振駆動力が作用する。これにより振動子10はこの周波数で振動し、この振動により発生する圧電電力が検出用電極13L,13Rにより検出されて各回路60,70に入力されるため、振動子10は上記周波数で自励振振動する。
【0022】
このようにして自励振振動したときに検出用電極13L,13Rの検出信号は前述のように差動回路20に入力されて両信号の差が差動回路20から出力されるが、この差信号が上記両回路60,70に送られるようになっている。ここで、自動振幅調整回路60はこの差信号を受けて、左右の検出用電極13L,13Rの検出信号における振幅の差を検出し、この振幅の差を零にするように左駆動用電極11Lに印加する駆動信号を調整する。また、自動位相調整回路70は上記差信号を受けて、左右の検出用電極13L,13Rの検出信号における位相の差を検出し、この位相の差を零にするように右駆動用電極11Rに如何する駆動信号を調整する。この結果、振動子10の左右のアンバランスが調整できる。上記振幅の差および位相の差の検出は、二位相ロックイン検出方式などにより行うことができる。
【0023】
なお、上記両回路60,70による振幅および位相の自動調整に基づく左右のアンバランス調整は、振動子10の個体間のばらつき、経時変化および外部環境の変化に伴う静電容量の変化等により生じるアンバランスを調整するものである。このため、検出しようとする角速度が加わっていない状態で行う必要があり、自動振幅調整回路60および自動位相調整回路70の応答性を鈍くしている。具体的には、0.1HZ以下の周波数での差動後振幅変動に対しては両回路60,70による自動調整を行わせるがこれ以上の周波数での差動後振幅変動があるときにはこの自動調整は行わせないようにしている。
【0024】
以上のように構成された圧電振動角速度計の作動について以下に説明するが、まず最初に振動子の左右のアンバランスが無い理想状態での作動を説明する。上述したように、励振駆動兼用自動振幅調整回路60および励振駆動兼用自動位相調整回路70からの駆動により振動子10が自励振振動している状態において、振動子10の中心軸1まわりの回転角速度が零の時(無回転時)には、理想状態では、左右の検出用電極13L,13Rからの検出信号は同一振幅、同一位相である。このため、差動回路20の出力は0となり、同期検波回路40及び平滑回路50を通過した出力は0である。
【0025】
振動子10が自励振振動している状態において、振動子10に中心軸1まわりに角速度が加わった場合(回転時)、振動子10は横方向(自励振振動方向と直角な方向)にコリオリ力を受けるため、無回転時の振動から振動方向が横方向に若干変化する。このようなコリオリ力を受けた時には、左右の検出用電極13L,13Rからの信号は無回転時の信号と比較して、一方は90度進み位相となり、他方は90度遅れ位相となる信号(すなわち、振幅が同一で逆位相となる信号)がそれぞれ加わる。このため、差動回路20には左右の検出用電極13L,13Rから、無回転時の信号に加えて、この信号に対して90度位相の異なった信号(コリオリ力により生じる信号)が入力される。ここで、無回転時の振動は同一振幅、同一位相であるため、作動回路20において相殺されるが、コリオリ力により加わる信号は、逆位相であるため差動回路20において互いに加算されて出力される。すなわち、コリオリ力に対応する信号のみが差動回路20から出力され、この出力を同期検波回路40及び平滑回路50を通過させることにより、振動子10の中心軸1まわりの角速度を検出することができる。
【0026】
次に理想状態ではない場合、すなわち、振動体の個体間のばらつきや、経時変化および外部環境の変化に伴う静電容量の変化などが発生する場合について説明する。従来の自励振回路では外部環境の変化や経時変化などによって振動状態が変化した場合、すなわち、自励振状態において無回転時で左右の検出用電極13L,13Rからの信号はそれぞれ振幅、位相が異なるようなアンバランスが生じた場合には、差動回路20の出力が0とはならない。また、その出力の位相も励振信号に対して90度とならないため、この差動残留分が同期検波、平滑された出力も0とならず、これにより検出誤差が生じる。
【0027】
このようなことから、本回路では、無回転時の差動回路20の出力をモニター信号として自動振幅調整回路60と自動位相調整回路70に入力するようになっている。自動振幅調整回路60は、モニター信号を基にして振幅の相違が0になるように、振動子10を駆動するための印加電圧の振幅を自動的に変化させる。同時に、自動位相調整回路70はモニター信号を基にして位相の相違が0になるように、振動子を駆動するための印加電圧の位相を自動的に変化させる。これにより、外部環境の変化や経時変化などで振動子の状態が変化した場合においても、振動子を駆動するために印加する二つの駆動電圧の振幅及び位相を自動的に変化させて、無回転時においては常に差動増幅器の出力を0にするように動作する。よって、無回転時に同期検波回路40及び平滑回路50を通過した出力は常に0となるため、検出誤差を減少させることができる。
【0028】
このとき、回転時の差動増幅器20の出力の変化まで上記のような補正をしないように、自動振幅調整回路60及び自動位相調整回路70のそれぞれの応答性を、前述のようにあえて鈍くしている。すなわち、経時変化等のように差動増幅器20の出力がゆっくり変化する場合には上記二つの調整回路が作動し、早い変化に対しては作動しないようにしている。これにより、回転軸まわりに時計方向、反時計方向の回転を交互に繰り返すような速い角速度の変化に対しては、上記二つの調整回路は作動せず、本来検出すべき角速度による信号を打ち消すことはない。
【0029】
また、回転時に差動回路20の出力は励振信号に対して常に正確に90度の位相差を有するので、例えば、同期検波のスイッチング信号を同期調整回路30から励振信号と90度位相遅れのタイミングで入力することにより、外部環境の変化や経時変化があった場合でも、効率を落とすことなくコリオリ信号を抽出できる。また、残留差動応力が発生しないので、誤差も低減でき、高精度な角速度検出が可能である。
【0030】
【発明の効果】
以上説明したように、本発明によれば、振動子個体間の特性のばらつきや外部環境変化等により圧電体の左右での振動にアンバランスが生じるなどして、無回転時において一対の検出電極により検出される信号に差が生じた場合には、振幅調整手段および位相調整手段が作動してこの差を零にするように振幅および位相の調整が自動的になされるので、振動子個体間の特性のばらつきや外部環境変化等に影響されることなしに、常に高精度な回転角速度検出が可能となる。
【0031】
なお、振幅調整手段および位相調整手段は、圧電体が長手方向中心軸まわりに角加速度が零でない回転が与えられて左右の検出電極からの検出信号に差があるときには調整を行わないようにかなり遅い応答性を有するのが好ましく、これにより、振幅および位相の調整は、振動子が実際に回転して角速度検出を行うときには行われず、角速度検出精度に影響することなく、調整ができる。
【図面の簡単な説明】
【図1】本発明の圧電振動角速度計を構成する振動子を示す斜視図である。
【図2】本発明の圧電振動角速度計の構成を示すブロック図である。
【図3】従来の圧電振動角速度計の構成を示すブロック図である。
【符号の説明】
10 振動子
11 駆動用電極
13 検出用電極
14 アース電極
20 差動回路
40 同期検波回路
50 平滑回路
60 自動振幅調整回路
70 自動位相調整回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric vibration type angular velocity meter that detects a rotational angular velocity.
[0002]
[Prior art]
Angular velocity meters are used for navigation systems for aircraft, ships, automobiles, etc. and their attitude control, and are used for camera shake and vibration detection of still cameras and video cameras. In many cases, it is required to detect an angular velocity. There exists a piezoelectric vibration type angular velocity meter as an angular velocity meter used for such a use. When an angular velocity is applied to a vibratory vibratory angular velocity meter, a Coriolis force is applied in the form of the outer product of the vibration direction and the angular velocity. It is an angular velocity meter that utilizes the phenomenon that occurs.
[0003]
In such a piezoelectric vibration angular velocity meter, a drive circuit for vibrating the vibrator and a detection circuit for detecting vibration generated by Coriolis force are provided, and these are combined to constitute an angular velocity meter. FIG. 3 shows the configuration of a conventional piezoelectric vibration angular velocity meter having such a drive and detection circuit. The detection circuit 4 constituting the piezoelectric vibration angular velocity meter is used for measuring an output signal from the detection electrode 103 of the vibrator 100 made of, for example, a rectangular parallelepiped piezoelectric body.
[0004]
The vibrator 100 is formed between a driving piezoelectric body 100-1 extending in the direction of the rotation center 1, a detecting piezoelectric body 100-2, and the two piezoelectric bodies 100-1 and 100-2. The ground electrode 104, the driving electrode 101 formed on the outer lower surface of the driving piezoelectric body 100-1, and the outer upper surface of the detecting piezoelectric body 100-2 are divided into two parts on the left and right with respect to the central axis 1. The detection electrodes 103L and 103R and the feedback electrode 102 formed by extending the center between the two detection electrodes in parallel with the two detection electrodes.
[0005]
The vibrator 100 is driven to drive between the driving electrode 101 formed on the outer lower surface of the driving piezoelectric body 100-1 and the feedback electrode 102 formed on the outer upper surface of the detecting piezoelectric body 100-2. The two detection electrodes 103L and 103R formed on the outer upper surface of the detection piezoelectric body 100-2 are connected to the inverting (−) input terminal and the non-inverting terminal of the differential circuit 200, respectively. Connected to the (+) input terminal, the differential circuit 200 is configured to detect an output difference from the two detection electrodes 103L and 103R.
[0006]
The output of the differential circuit 200 is input to the synchronous detection circuit 400 and detected. The output of the differential circuit 200 is theoretically 0 when the vibrator is not rotated, but when the vibrator 100 is rotated, the in-phase excitation signal is canceled out, and only the reverse-phase AC Coriolis signal is obtained. A synchronous switching signal is input from the phase adjustment circuit 500 to the synchronous detection circuit 400 so that detection can be performed in synchronization with this Coriolis signal phase. The phase adjustment circuit 500 is connected to the self-excited drive circuit 300 and is a circuit for generating a switching signal having the same phase as the Coriolis signal phase by shifting the phase of the excitation signal by approximately 90 degrees. The output of the synchronous detection circuit 400 is input to the smoothing circuit 600 and converted into a DC signal with little ripple.
[0007]
Such a conventional detection circuit 4 operates as follows when there is no rotation. By applying an alternating voltage (excitation signal) having a mechanical resonance frequency of the driving piezoelectric body 100-1 to the driving electrode 101 by the self-excited driving circuit 300, the vibrator 100 is driven in the excitation direction (the vertical direction of the vibrator 100). 4 is excited (bent) in a direction indicated by v in FIG. A signal having a mechanical resonance frequency associated with the vibration is detected from the detection electrodes 103R and 103L formed on the outer upper surface of the detection piezoelectric body 100-2. The detection signal at this time is detected by the detection electrode 103R. , 103L, the amplitude and phase are the same, and in principle, the output of the differential circuit 200 is zero. Therefore, the output of the synchronous detection circuit 400 is also 0, and the output of the smoothing circuit 600 is also 0.
[0008]
When the vibrator 100 rotates around the rotation center 1, a Coriolis force Fc is applied in a direction perpendicular to the excitation direction v of the vibrator 100 and the rotation center 1 of the vibrator 100 (left-right direction in the drawing of FIG. 1). The vibrator 100 vibrates with a slight shift in the left and right directions from the excitation direction when there is no rotation. This shifted amount is detected as a Coriolis signal from the two detection electrodes 103R and 103L.
[0009]
By the way, the two detection electrodes 103L and 103R are symmetrical with respect to the rotation center 1, and when one electrode side is extended, the other electrode side is contracted, and polarization charges which are opposite to each other due to the piezoelectric effect are applied to the detection electrodes 103L and 103R. Induced. Therefore, the Coriolis signals detected from the two left and right detection electrodes 103L and 103R are AC signals having the same amplitude and opposite mechanical resonance frequencies.
[0010]
In principle, one of the Coriolis signals from the two detection electrodes 103L and 103R has a 90-degree advance phase and the other has a 90-degree delay phase with respect to the excitation signal. Therefore, when the rotational angular velocity Ω is constant, the Coriolis signal is output from the differential circuit 200 with an amplitude value proportional to the rotational angular velocity with a phase difference of 90 degrees with respect to the excitation signal. By smoothing and measuring this output by the smoothing circuit 600, the rotational angular velocity Ω can be detected.
[0011]
In the detection circuit 4 of such a conventional piezoelectric vibration angular velocity meter, the output of the differential circuit 200 does not become zero at the time of non-rotation due to the external environment or the aging of the piezoelectric body forming the vibrator 100, and an error signal is generated. Even if it occurs, the Coriolis signal is output with a phase difference of about 90 degrees with respect to such an error signal, so that the differential circuit is detected by detecting in synchronization with the phase of the Coriolis signal. The error signal after output can be rectified so that the positive part and the negative part are always symmetrical. Therefore, this error signal is canceled out by the smoothing circuit 600, which has the advantage that the influence on the accurate rotational angular velocity measurement can be reduced.
[0012]
[Problems to be solved by the invention]
However, the amplitudes of the feedback signals that are fed back from the detection electrodes 103R and 103L due to variations in characteristics among the individual piezoelectric members forming the vibrator 100, changes with time, changes in capacitance accompanying changes in the external environment, and the like. Since the phases are not necessarily the same in reality, the error signals of the two at the time of no rotation may not have a phase difference of exactly 90 degrees from the Coriolis signal phase, and pass through the synchronous detection circuit 400 and the smoothing circuit 600. Even in this case, the error signal may not be completely canceled. For this reason, there is a case where a more accurate measurement of the rotational angular velocity Ω cannot be performed.
[0013]
The present invention has been made in view of such a problem, and is a piezoelectric vibration angular velocity meter that is not easily affected by variations in characteristics among individual vibrators, changes in the external environment, and the like, and that can detect a rotational angular velocity more accurately. Is intended to provide.
[0014]
[Means for Solving the Problems]
In order to achieve such an object, in the present invention, a rectangular parallelepiped piezoelectric body extending in the longitudinal direction and a pair of symmetrically disposed on the longitudinally extending surface of the piezoelectric body with respect to the longitudinal central axis. Drive electrodes and a pair of detection electrodes, a pair of excitation drive means for independently applying excitation drive signals to the pair of drive electrodes, and a center axis in the longitudinal direction based on a difference between detection signals by the pair of detection electrodes The piezoelectric vibration angular velocity meter includes an angular velocity detection unit configured to detect the rotational angular velocity and a phase adjustment unit that adjusts the phase of the excitation drive signal applied by at least one of the pair of drive units. In addition, the pair of excitation drive means supplies the excitation drive signal to one drive electrode of the pair of drive electrodes and obtains a feedback signal from the detection electrode corresponding to the one drive electrode; Including a second excitation drive means different from the first excitation drive means for providing an excitation drive signal to the other drive electrode of the first drive electrode and obtaining a feedback signal from the detection electrode corresponding to the other drive electrode. The adjusting means and the phase adjusting means adjust the amplitude and phase so that the difference between the detection signals from the pair of detection electrodes is substantially zero when the rotational angular velocity around the longitudinal central axis is zero .
[0015]
In the piezoelectric vibration angular velocity meter having such a configuration, the vibrations on the left and right sides of the piezoelectric body are unbalanced due to variations in characteristics between individual vibrators and changes in the external environment. If there is a difference in the detected signal, the amplitude and phase adjustment means are operated to automatically adjust the amplitude and phase so that the difference becomes zero.
[0016]
In addition, the piezoelectric body can be divided into two parts with a horizontal plane passing through the central axis in the longitudinal direction as a center line, and the piezoelectric body can be integrally joined with a ground electrode interposed therebetween. In this case, a pair of drive electrodes are provided on the outer surface of one of the two piezoelectric pairs divided into two to form a drive piezoelectric body, and a pair of detection electrodes are disposed on the outer surface of the other piezoelectric body. The piezoelectric body for detection is configured. In addition, the amplitude adjusting means and the phase adjusting means are considerably adjusted so that the piezoelectric body is not adjusted when the rotation of the angular acceleration around the central axis in the longitudinal direction is given and there is a difference between the detection signals from the left and right detection electrodes. It preferably has a slow response. As a result, the amplitude and phase are not adjusted when the vibrator is actually rotated to detect the angular velocity, but the angular velocity can be accurately detected, and the adjustment is performed while the vibrator is not rotating.
[0017]
Preferably, the first excitation drive means is an excitation drive / amplitude adjustment means also serving as an amplitude adjustment means, and the second excitation drive means is an excitation drive / phase adjustment means also serving as a phase adjustment means. In addition, it is preferable to have a differential unit that outputs a difference between detection signals from the pair of detection electrodes, and the output of the differential unit is input to the amplitude adjustment unit and the phase adjustment unit.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, FIG. 1 shows a configuration of a vibrator 10 used in a piezoelectric vibration angular velocity meter according to the present invention. This vibrator 10 has a rectangular parallelepiped driving piezoelectric body 10-1 extending in the direction of the central axis 1 in the longitudinal direction (note that the piezoelectric vibration angular velocity meter detects a rotational angular velocity component around this central axis) and a detection. The piezoelectric body 10-2, the ground electrode 14 formed between the two piezoelectric bodies 10-1 and 10-2, and the lower surface of the driving piezoelectric body 10-1 are symmetrical with respect to the central axis 1. A pair of left and right drive electrodes 11L, 11R (collectively referred to as drive electrodes 11) and a detection piezoelectric body 10-2 divided into left and right objects with respect to the central axis 1 are divided. A pair of left and right detection electrodes 13L and 13R (both electrodes are collectively referred to as detection electrode 13) is formed.
[0019]
A piezoelectric vibration angular velocity meter according to the present invention is configured by combining the drive detection circuit shown in FIG. This drive detection circuit first has a differential circuit 20 to which detection signals from the left and right detection electrodes 13L and 13R formed on the upper surface of the detection piezoelectric member 10-2 are input. At this time, the left detection electrode 13L is connected to the inverting (−) input terminal of the differential circuit 200, and the right detection electrode 13R is connected to the non-inverting (+) input terminal. The difference between the detection signals of the detection electrodes 13L and 13R is output.
[0020]
The output of the differential circuit 20 is input to the synchronous detection circuit 40 and detected. As will be described later, when the vibrator 10 does not rotate in the ideal state, the output of the differential circuit 20 is zero, and when the vibrator 10 rotates, the in-phase excitation signal is canceled and the anti-phase component Only AC Coriolis signal. A synchronous switching signal is input from the synchronous adjustment circuit 30 to the synchronous detection circuit 40 so that the detection can be performed in synchronization with the Coriolis signal phase. The synchronization adjusting circuit 30 is connected to a line connected to the right detection electrode 13R, and is a circuit for generating a switching signal having the same phase as the Coriolis signal phase by shifting the phase of the detection excitation signal by approximately 90 degrees. The output signal synchronously detected by the synchronous detection circuit 40 in this way is input to the smoothing circuit 50 and converted into a DC signal with little ripple.
[0021]
On the other hand, as shown in FIG. 2, an automatic amplitude adjustment circuit 60 and an automatic phase adjustment circuit 70 that also serve as an excitation drive circuit are connected to the drive electrodes 11L and 11R, respectively. Further, the detection signals from the detection electrodes 13L and 13R are fed back to both the circuits 60 and 70, respectively, and the detection electrodes 13L and 13R also function as feedback electrodes. In this way, a loop is formed between the drive electrode 11L on the left side of the vibrator 10 and the detection electrode 13L via the excitation drive / automatic amplitude adjustment circuit 60. From the excitation drive / automatic amplitude adjustment circuit 60, the loop is formed. When a drive signal having a frequency of the natural frequency of the vibrator 10 is applied to the drive electrode 11L, an excitation driving force having this frequency acts on the left side of the vibrator 10. Similarly, a loop is formed between the drive electrode 11R on the right side of the vibrator 10 and the detection electrode 13R via the excitation drive / automatic phase adjustment circuit 70, and vibration is generated from the excitation drive / automatic phase adjustment circuit 70. When a driving signal having a frequency of the natural frequency of the child 10 is applied to the driving electrode 11R, an excitation driving force having this frequency acts on the right side of the vibrator 10. As a result, the vibrator 10 vibrates at this frequency, and the piezoelectric power generated by this vibration is detected by the detection electrodes 13L and 13R and input to the circuits 60 and 70. Therefore, the vibrator 10 is self-excited at the above frequency. Vibrate.
[0022]
As described above, the detection signals of the detection electrodes 13L and 13R are input to the differential circuit 20 and the difference between the two signals is output from the differential circuit 20 when self-excited vibration is caused in this way. Is sent to both circuits 60 and 70. Here, the automatic amplitude adjusting circuit 60 receives this difference signal, detects the difference in amplitude in the detection signals of the left and right detection electrodes 13L, 13R, and the left drive electrode 11L so that the difference in amplitude is zero. The drive signal applied to is adjusted. Further, the automatic phase adjustment circuit 70 receives the difference signal, detects the phase difference in the detection signals of the left and right detection electrodes 13L and 13R, and applies the right drive electrode 11R to zero the phase difference. The drive signal to be adjusted is adjusted. As a result, the left and right imbalance of the vibrator 10 can be adjusted. The amplitude difference and the phase difference can be detected by a two-phase lock-in detection method or the like.
[0023]
The left and right imbalance adjustment based on the automatic adjustment of the amplitude and phase by both the circuits 60 and 70 is caused by variation among the individual vibrators 10, changes with time, changes in capacitance accompanying changes in the external environment, and the like. This is to adjust the unbalance. For this reason, it is necessary to perform the detection without adding the angular velocity to be detected, and the responsiveness of the automatic amplitude adjusting circuit 60 and the automatic phase adjusting circuit 70 is made dull. Specifically, automatic adjustment is performed by both circuits 60 and 70 for post-differential amplitude fluctuations at a frequency of 0.1 Hz or less. Adjustments are not allowed.
[0024]
The operation of the piezoelectric vibration angular velocity meter configured as described above will be described below. First, the operation in an ideal state where there is no left / right imbalance of the vibrator will be described. As described above, the rotational angular velocity around the central axis 1 of the vibrator 10 in a state where the vibrator 10 is in self-excited vibration by the drive from the excitation drive / automatic amplitude adjustment circuit 60 and the excitation drive / automatic phase adjustment circuit 70. When is zero (no rotation), in the ideal state, the detection signals from the left and right detection electrodes 13L and 13R have the same amplitude and the same phase. Therefore, the output of the differential circuit 20 is 0, and the output that has passed through the synchronous detection circuit 40 and the smoothing circuit 50 is 0.
[0025]
In a state where the vibrator 10 is vibrating by self-excited vibration, when an angular velocity is applied to the vibrator 10 around the central axis 1 (when rotating), the vibrator 10 is coriolis in the lateral direction (a direction perpendicular to the self-excited vibration direction). Since the force is received, the vibration direction slightly changes in the horizontal direction from the vibration at no rotation. When such a Coriolis force is applied, the signals from the left and right detection electrodes 13L and 13R are compared with the non-rotation signals, one of which is a phase that is 90 degrees advanced and the other is a signal that is a phase that is 90 degrees delayed ( That is, signals having the same amplitude and opposite phases are added. For this reason, in addition to the non-rotating signal, the differential circuit 20 receives signals having a phase difference of 90 degrees (signal generated by Coriolis force) from the left and right detection electrodes 13L and 13R. The Here, since the vibration at the time of non-rotation has the same amplitude and the same phase, the operation circuit 20 cancels out the signals. However, since the signals added by the Coriolis force are in the opposite phase, they are added to each other in the differential circuit 20 and output. The That is, only the signal corresponding to the Coriolis force is output from the differential circuit 20, and the angular velocity around the central axis 1 of the transducer 10 can be detected by passing this output through the synchronous detection circuit 40 and the smoothing circuit 50. it can.
[0026]
Next, a case in which the state is not an ideal state, that is, a case in which variation among individual vibrators, a change in capacitance due to a change with time and a change in external environment, or the like occurs will be described. In the conventional self-excited circuit, when the vibration state changes due to changes in the external environment or changes over time, that is, the signals from the left and right detection electrodes 13L and 13R have different amplitudes and phases when there is no rotation in the self-excited state. When such an imbalance occurs, the output of the differential circuit 20 does not become zero. In addition, since the phase of the output does not become 90 degrees with respect to the excitation signal, the differential residual is synchronously detected and the smoothed output does not become 0, thereby causing a detection error.
[0027]
For this reason, in this circuit, the output of the differential circuit 20 during non-rotation is input to the automatic amplitude adjustment circuit 60 and the automatic phase adjustment circuit 70 as a monitor signal. The automatic amplitude adjustment circuit 60 automatically changes the amplitude of the applied voltage for driving the vibrator 10 so that the difference in amplitude becomes zero based on the monitor signal. At the same time, the automatic phase adjustment circuit 70 automatically changes the phase of the applied voltage for driving the vibrator so that the phase difference becomes 0 based on the monitor signal. As a result, even when the state of the vibrator changes due to changes in the external environment or changes over time, the amplitude and phase of the two drive voltages applied to drive the vibrator are automatically changed to make no rotation. In some cases, the output of the differential amplifier is always set to zero. Therefore, since the output that has passed through the synchronous detection circuit 40 and the smoothing circuit 50 is always zero when there is no rotation, the detection error can be reduced.
[0028]
At this time, the responsiveness of each of the automatic amplitude adjusting circuit 60 and the automatic phase adjusting circuit 70 is dulled as described above so that the above correction is not performed until the output of the differential amplifier 20 changes during rotation. ing. That is, when the output of the differential amplifier 20 changes slowly, such as a change with time, the above two adjustment circuits are activated and are not activated for a rapid change. As a result, the two adjustment circuits do not operate for fast changes in angular velocity that alternately repeat clockwise and counterclockwise rotation around the rotation axis, and cancel the signal due to the angular velocity that should be detected. There is no.
[0029]
Further, since the output of the differential circuit 20 always has an accurate phase difference of 90 degrees with respect to the excitation signal at the time of rotation, for example, the synchronous detection switching signal is sent from the synchronous adjustment circuit 30 to the timing of the excitation signal and the 90-degree phase delay. The Coriolis signal can be extracted without reducing the efficiency even if there is a change in the external environment or a change with time. Further, since no residual differential stress is generated, errors can be reduced, and highly accurate angular velocity detection is possible.
[0030]
【The invention's effect】
As described above, according to the present invention, a pair of detection electrodes can be used at the time of non-rotation due to unbalanced vibrations on the left and right sides of the piezoelectric body due to variations in characteristics between vibrators and changes in the external environment. When there is a difference between the signals detected by the above, the amplitude adjustment means and the phase adjustment means are activated and the amplitude and phase are automatically adjusted so that the difference is zero. Thus, it is possible to always detect the rotational angular velocity with high accuracy without being affected by variations in the characteristics and changes in the external environment.
[0031]
It should be noted that the amplitude adjusting means and the phase adjusting means are considerably adjusted so that the piezoelectric body is not adjusted when there is a difference between the detection signals from the left and right detection electrodes due to the rotation of the angular acceleration around the central axis in the longitudinal direction. It is preferable to have a slow response, whereby the amplitude and phase are not adjusted when the vibrator actually rotates to detect angular velocity, and can be adjusted without affecting the angular velocity detection accuracy.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a vibrator constituting a piezoelectric vibration angular velocity meter of the present invention.
FIG. 2 is a block diagram showing a configuration of a piezoelectric vibration angular velocity meter of the present invention.
FIG. 3 is a block diagram showing a configuration of a conventional piezoelectric vibration angular velocity meter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Vibrator 11 Drive electrode 13 Detection electrode 14 Ground electrode 20 Differential circuit 40 Synchronous detection circuit 50 Smoothing circuit 60 Automatic amplitude adjustment circuit 70 Automatic phase adjustment circuit

Claims (5)

長手方向に延びた直方体状の圧電体と、
前記圧電体の長手方向に延びる表面に長手方向中心軸に対してそれぞれ対称に配設された一対の駆動電極及び一対の検出電極と、
前記一対の駆動電極にそれぞれ独立して励振駆動信号を印加する一対の励振駆動手段と、
前記一対の検出電極による検出信号の差に基づいて前記長手方向中心軸まわりの回転角速度を検出するように構成された角速度検出手段と、
前記一対の駆動手段の少なくとも一方により印加される励振駆動信号の振幅を調整する振幅調整手段と、
前記一対の駆動手段の少なくとも一方により印加される励振駆動信号の位相を調整する位相調整手段とを備え、
前記一対の励振駆動手段は、前記一対の駆動電極の一方の駆動電極へ前記励振駆動信号を与えるとともに前記一方の駆動電極に対応する前記検出電極から帰還信号を得る第1の励振駆動手段と、前記一対の駆動電極の他方の駆動電極へ前記励振駆動信号を与えるとともに前記他方の駆動電極に対応する前記検出電極から帰還信号を得る前記第1の励振駆動手段とは異なる第2の励振駆動手段とを含み、
前記振幅調整手段および前記位相調整手段は、前記長手方向中心軸まわりの回転角速度が零のときに前記一対の検出電極による検出信号の差をほぼ零とするように前記振幅および前記位相を調整することを特徴とする圧電振動角速度計。
A rectangular parallelepiped piezoelectric body extending in the longitudinal direction;
A pair of drive electrodes and the pair of detection electrodes which are disposed symmetrically respectively with respect to the longitudinal central axis on the surface extending in the longitudinal direction of the piezoelectric,
A pair of excitation drive means for independently applying an excitation drive signal to the pair of drive electrodes;
Angular velocity detection means configured to detect a rotational angular velocity about the central axis in the longitudinal direction based on a difference between detection signals by the pair of detection electrodes;
Amplitude adjusting means for adjusting the amplitude of the excitation drive signal applied by at least one of the pair of drive means;
Phase adjustment means for adjusting the phase of the excitation drive signal applied by at least one of the pair of drive means,
The pair of excitation drive means provides the excitation drive signal to one drive electrode of the pair of drive electrodes and obtains a feedback signal from the detection electrode corresponding to the one drive electrode; Second excitation drive means different from the first excitation drive means for providing the excitation drive signal to the other drive electrode of the pair of drive electrodes and obtaining a feedback signal from the detection electrode corresponding to the other drive electrode. Including
Said amplitude adjusting means and said phase adjusting means adjusts the amplitude and the phase so that the rotation angular velocity around the longitudinal central axis is substantially zero difference detection signal by said pair of detection electrodes when the zero A piezoelectric vibration angular velocity meter characterized by that.
前記圧電体が前記長手方向中心軸を通る水平面を中心として上下に二分割されるとともに間にアース電極を挟んで一体に接合されて構成され、このように二分割されたいずれか一方の圧電体の外面に前記一対の駆動電極が配設されて駆動用圧電体が構成されるとともに、他方の圧電体の外面に前記一対の検出電極が配設されて検出用圧電体が構成されることを特徴とする請求項1に記載の圧電振動角速度計。  The piezoelectric body is divided into upper and lower parts centering on a horizontal plane passing through the central axis in the longitudinal direction, and is integrally joined with a ground electrode interposed therebetween, and either one of the two piezoelectric parts divided in this way The pair of drive electrodes are disposed on the outer surface of the first piezoelectric element to form a driving piezoelectric body, and the pair of detection electrodes are disposed on the outer surface of the other piezoelectric body to constitute the piezoelectric detecting element. The piezoelectric vibration angular velocity meter according to claim 1, wherein 前記振幅調整手段および前記位相調整手段は、前記圧電体が前記長手方向中心軸まわりに各加速度が零でない回転が与えられて前記一対の検出電極による検出信号の差が生じているときには、振幅および位相の調整を行わないように遅い応答性を有することを特徴とする請求項1もしくは2に記載の圧電振動角速度計。  The amplitude adjusting unit and the phase adjusting unit are configured such that when the piezoelectric body is given a rotation with non-zero acceleration around the longitudinal central axis and a difference between detection signals by the pair of detection electrodes is generated, 3. The piezoelectric vibration angular velocity meter according to claim 1, wherein the piezoelectric vibration angular velocity meter has a slow response so as not to adjust the phase. 前記第1の励振駆動手段は前記振幅調整手段を兼ねる励振駆動兼用振幅調整手段であり、前記第2の励振駆動手段は前記位相調整手段を兼ねる励振駆動兼用位相調整手段であることを特徴とする請求項1から請求項3までのいずれか1項に記載の圧電振動角速度計。The first excitation drive means is an excitation drive / amplitude adjustment means that also serves as the amplitude adjustment means, and the second excitation drive means is an excitation drive / phase adjustment means that also serves as the phase adjustment means. The piezoelectric vibration angular velocity meter according to any one of claims 1 to 3. 前記一対の検出電極による検出信号の差を出力する差動手段を有し、前記差動手段の出力が前記振幅調整手段と前記位相調整手段とに入力されることを特徴とする請求項1から請求項4までのいずれか1項に記載の圧電振動角速度計。2. A differential means for outputting a difference between detection signals of the pair of detection electrodes, and an output of the differential means is inputted to the amplitude adjusting means and the phase adjusting means. The piezoelectric vibration angular velocity meter according to any one of claims 4 to 5.
JP17202597A 1997-06-27 1997-06-27 Piezoelectric vibration angular velocity meter Expired - Lifetime JP3783893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17202597A JP3783893B2 (en) 1997-06-27 1997-06-27 Piezoelectric vibration angular velocity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17202597A JP3783893B2 (en) 1997-06-27 1997-06-27 Piezoelectric vibration angular velocity meter

Publications (2)

Publication Number Publication Date
JPH1123278A JPH1123278A (en) 1999-01-29
JP3783893B2 true JP3783893B2 (en) 2006-06-07

Family

ID=15934135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17202597A Expired - Lifetime JP3783893B2 (en) 1997-06-27 1997-06-27 Piezoelectric vibration angular velocity meter

Country Status (1)

Country Link
JP (1) JP3783893B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004061804B4 (en) * 2004-12-22 2015-05-21 Robert Bosch Gmbh Micromechanical rotation rate sensor with error suppression

Also Published As

Publication number Publication date
JPH1123278A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
US9714842B2 (en) Gyroscope self test by applying rotation on coriolis sense mass
US7984648B2 (en) Systems and methods for acceleration and rotational determination from an in-plane and out-of-plane MEMS device
US6621279B2 (en) Drive feedthrough nulling system
JP2005527783A (en) Microgyroscope with electronic alignment and tuning
US6125701A (en) Angular velocity detecting apparatus
WO2005103618A1 (en) Gyroscope device
NO339469B1 (en) Method and apparatus by coriolis gyroscope
JP2005249646A (en) Tuning fork type oscillator for angular velocity sensor, angular velocity sensor using the oscillator, and automobile using the angular velocity sensor
US20020100322A1 (en) Vibrating gyroscope and temperature-drift adjusting method therefor
JPH02129514A (en) Angular velocity sensor
US20010043026A1 (en) Vibrator, vibratory gyroscope, and vibration adjusting method
JP3783893B2 (en) Piezoelectric vibration angular velocity meter
JP3601822B2 (en) Double tone type vibration gyro sensor
JPH08327366A (en) Vibration type gyro scope
JP2006010408A (en) Vibratory gyro
JPH09105637A (en) Vibrating gyro
JPH067298Y2 (en) Vibrating gyro
JP3166484B2 (en) Vibrating gyro
RU2370733C1 (en) Vibration-type micromechanical gyro
JP3579878B2 (en) Drive detection circuit for piezoelectric vibrating gyroscope
JPH10170277A (en) Detection circuit of piezoelectric oscillation angular velocity meter
WO2005103619A1 (en) Vibration gyroscope and angular velocity detecting method for vibration gyroscope
JP2003083751A (en) Angular velocity sensor
JP2624431B2 (en) How to adjust the transducer
JP2615439B2 (en) Vibrating gyro device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150324

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150324

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150324

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term