WO2005103619A1 - Vibration gyroscope and angular velocity detecting method for vibration gyroscope - Google Patents

Vibration gyroscope and angular velocity detecting method for vibration gyroscope Download PDF

Info

Publication number
WO2005103619A1
WO2005103619A1 PCT/JP2005/007124 JP2005007124W WO2005103619A1 WO 2005103619 A1 WO2005103619 A1 WO 2005103619A1 JP 2005007124 W JP2005007124 W JP 2005007124W WO 2005103619 A1 WO2005103619 A1 WO 2005103619A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
circuit
vibrator
signal
vibration
Prior art date
Application number
PCT/JP2005/007124
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Mori
Iku Nagai
Kazushige Sawada
Makoto Narita
Original Assignee
Murata Manufacturing Co., Ltd.
Asahi Kasei Microsystems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd., Asahi Kasei Microsystems Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2006512506A priority Critical patent/JPWO2005103619A1/en
Publication of WO2005103619A1 publication Critical patent/WO2005103619A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces

Definitions

  • the present invention relates to a vibration gyroscope used for detecting an angular velocity, for example, and a method for detecting an angular velocity of the vibration gyroscope.
  • a vibrating gyroscope has been used as means for detecting the attitude of a vehicle, detecting the traveling direction of a navigation device, correcting camera shake, operating virtual reality, and the like.
  • Fig. 9 shows a circuit example of such a vibrating gyroscope.
  • a vibrator 200 as an angular velocity detecting element includes a driving unit 201 for driving the vibrator 200, a monitor unit 202 for monitoring the vibration state of the vibrator 200, Detecting means 203 for detecting the vibration displacement by Coriolis is provided.
  • the vibrator 200 is of a so-called non-resonant type in which the resonance frequency in the vibration direction generated by the Corioliser is set to be different from the resonance frequency in the vibration direction driven by the driving means 201.
  • Each of the means 201 to 203 is configured by forming, for example, a drive electrode, a monitor electrode, and a detection electrode on a substrate.
  • the monitor signal S2 obtained by the monitor means 202 is supplied to the drive means 201 via a signal amplification circuit 204, a phase adjustment circuit 205, and an AGC (Auto Gain Control) circuit 206.
  • the monitor means 202, the signal amplification circuit 204, the phase adjustment circuit 205, and the AGC circuit 206 constitute a closed loop self-excited oscillation circuit, whereby the vibrator 200 drives the drive signal applied to the drive means 201. It is oscillated with a constant amplitude and a unique resonance frequency by S1.
  • the vibration displacement is detected by the detection means 203, and a detection signal S3 is output.
  • the detection signal S3 since the vibration generated by the Corioliser and the driving vibration driven by the driving means 201 have a phase difference of 90 °, the detection signal S3 The signal S2 is output 90 ° out of phase.
  • the detection signal S3 is the reverse of the monitor signal S2.
  • a phase (or in-phase) error signal S9 may be included.
  • the monitor signal S2 is phase-shifted from the phase adjustment circuit 205.
  • the detection reference signal S6 output after the adjustment has the same phase as the detection signal S3. Therefore, the output signal S7 after synchronous detection by the synchronous detection circuit 208 has a half-wave rectified form, and if this is smoothed by the smoothing circuit 209, a signal S8 having a voltage level corresponding to the angular velocity is obtained. can get. The same applies to the case where the detection reference signal S6 has the opposite phase to the detection signal S3.
  • the detection signal S3 includes an error signal S9 having a phase opposite to that of the monitor signal S2
  • the detection reference signal S6 obtained by the phase adjustment circuit 205 is different from the error signal S9. Is shifted by 90 °, the output signal S7 after the next synchronous detection by the synchronous detection circuit 208 alternately repeats positive and negative at 90 ° cycles. Therefore, if this is smoothed by the smoothing circuit 209, the error signal S9 is canceled. The same applies to the case where the error signal S9 is in phase with the monitor signal S2.
  • phase adjustment circuit 205 in a conventional piezoelectric vibrating gyroscope for example, as shown in FIG. 11A, a delay circuit such as a CR secondary low-pass filter combining a resistor and a capacitor is widely used. (See, for example, JP-A-2002-148047 (Patent Document 1)).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-148047
  • the phase adjustment circuit 205 having such a conventional configuration has poor phase adjustment accuracy with respect to a change in the frequency of the input signal, as shown in FIG. 11B.
  • the vibration frequency changed due to variations in characteristics between the individual vibrators 200 and temperature characteristics of the vibrator 200.
  • the phase adjustment of 90 ° is not performed accurately, and the phase accuracy as the detection reference signal S6 deteriorates.
  • synchronous detection cannot be performed with high accuracy, so that the efficiency of the detection output deteriorates and the canceling effect of the error signal S9 is deteriorated.As a result, it becomes difficult to accurately detect the angular velocity. .
  • the present invention has been made in order to solve the above-mentioned problems, and even when the vibration frequency changes due to variations in the characteristics of individual vibrators, temperature characteristics of the vibrators, etc. This ensures that the phase of the detection reference signal with respect to the detection signal is always accurately maintained without being affected by the detection signal, thereby ensuring that the detection signal can be synchronously detected by the detection reference signal, thereby achieving higher accuracy than before.
  • An object of the present invention is to provide a vibrating gyroscope capable of detecting an angular velocity and a method for detecting a vibrating gyroscope angular velocity. Means for solving the problem
  • a vibration gyro includes a vibrator, a driving unit that drives the vibrator, a monitoring unit that monitors a vibration state of the vibrator, and an angular velocity application.
  • Detecting means for detecting the vibration displacement of the vibrator caused by Coriolis, a monitoring means force, a Hilbert conversion circuit for inputting a monitor signal obtained and a detection signal obtained by the detection means, and a detection signal passing through the Hilbert conversion circuit.
  • a synchronous detection circuit for detecting in synchronization with the monitor signal passed through the Hilbert conversion circuit.
  • an angular velocity detecting method for a vibrating gyroscope includes a step of driving a vibrator, a monitor step of monitoring a vibration state of the vibrator, and a step of applying an angular velocity.
  • the phase adjustment amount of both input signals produces a phase difference of exactly 90 °.
  • the Hilbert transform circuit since the phase adjustment difference is accurately maintained at 90 ° over a wide frequency band, variation in characteristics between individual oscillators and temperature characteristics of the oscillators Therefore, even when the vibration frequency changes due to the above, high phase adjustment accuracy can always be maintained without being affected by the change.
  • FIG. 1 is a plan view showing a structure of a vibrator of a vibrating gyroscope according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a part of a state where a vibrator substrate and a protective substrate constituting the vibrating gyroscope of FIG. 1 are joined.
  • FIG. 3 is a block diagram showing a circuit configuration of a vibration gyro.
  • FIG. 4A is a circuit diagram illustrating an example of a CV conversion circuit.
  • FIG. 4B is a circuit diagram illustrating an example of a CV conversion circuit.
  • FIG. 5A is a diagram showing input / output signals of a Hilbert transform circuit.
  • FIG. 5B is a characteristic diagram showing a relationship between a signal frequency and a signal phase of the Hilbert transform circuit.
  • FIG. 6A is a waveform diagram of a drive signal applied to a drive electrode of a vibrator.
  • FIG. 6B is a waveform diagram of a drive signal applied to a drive electrode of the vibrator.
  • FIG. 7 is an explanatory diagram of a vibration state of a vibrator.
  • FIG. 8 is an explanatory diagram showing a relationship between a driving vibration direction of a vibrator and a vibration direction of a Corioliser.
  • FIG. 9 is a block diagram showing a circuit configuration of a conventional vibration gyro.
  • FIG. 10A is a waveform chart for explaining signal processing under the circuit configuration shown in FIG. 9.
  • FIG. 10B is a waveform chart for explaining signal processing under the circuit configuration shown in FIG. 9.
  • FIG. 10C is a waveform chart for explaining signal processing under the circuit configuration shown in FIG. 9.
  • FIG. 11A is a diagram showing a phase adjusting circuit used in a conventional vibrating gyroscope.
  • FIG. 11B is a diagram showing the frequency dependence of the amount of phase adjustment of a phase adjustment circuit used in a conventional vibrating gyroscope.
  • FIG. 1 is a plan view showing the structure of a vibrator used in the vibrating gyroscope according to the present embodiment.
  • FIG. 2 shows a part of a state in which the vibrating gyroscope and a protective substrate are joined together.
  • the vibrating gyroscope according to the present embodiment includes a vibrator 1 as an angular velocity detecting element
  • the vibrator 1 is of an electrostatic drive Z-capacitance detection type and a non-resonant type.
  • a vibrator substrate 2 made of a single-crystal or polycrystalline low-resistance silicon material, and the vibrator 1 And a protective substrate 3 provided on the main surface and the back surface of the sub-substrate 2, for example, a high-resistance silicon material, a glass material, and the like.
  • the two substrates 2 and 3 are integrally joined by a joining method such as anodic joining, for example, except for a location where a cavity 4 for securing a movable portion of the vibrator substrate 2 is formed.
  • the inside of the cavity 4 is in a vacuum state in order to reduce vibration damping, and is kept in a low pressure state.
  • the vibrator substrate 2 is subjected to fine processing such as etching, so that the first to fourth mass portions 71 to 74, the driving beam 8, the first and second monitor electrodes 91 and 92, The first to fourth drive electrodes 101 to 104, the first to fourth detection electrodes 161 to 164, and the ground electrodes 181 and 182 are formed.
  • fine processing such as etching
  • the first to fourth mass parts 71 to 74 are supported in series along the Y-axis direction by a driving beam 8 partially connected to the ground electrodes 181, 182, whereby the first to fourth mass parts 71 to 74 are supported.
  • Each of the mass parts 71 to 74 of 4 is in a state capable of vibrating along the X-axis direction.
  • first to fourth mass parts 71 to 74 and the drive beam 8 are movable parts, and the first and second monitor electrodes 91 and 92, the first to fourth drive electrodes 101 to 104, and the ground are provided. Electrodes 181, 182 are fixed parts
  • the first mass portion 71 is a comb-shaped movable member formed to project right and left so as to face the comb-shaped portions of the first monitor electrode 91 and the first and second drive electrodes 101 and 102. Side electrodes 11 la, 111 b, 111 c are provided.
  • the second mass section 72 is formed by connecting a rectangular first drive frame 121 supported by the drive beam 8 and two squares supported by the upper and lower first detection beams 131 inside the first drive frame 121. And a first detection frame 141.
  • comb-shaped movable electrodes 151a, 151b are formed adjacent to the first mass portion 71 and opposed to the comb-shaped portions of the first and second drive electrodes 101, 102. Have been.
  • comb-shaped movable side electrodes 171 are formed so as to face the comb-shaped first and second detection electrodes 161, 162, respectively. .
  • the first detection frame 141 can be vibrated along the Y-axis direction by the first detection beam 131 together with the movable-side electrode 171.
  • the fourth mass part 74 is a comb-shaped movable member formed to protrude left and right so as to face the comb-shaped parts of the second monitor electrode 92 and the third and fourth drive electrodes 103 and 104. Side electrodes 112a, 112b, 112c are provided.
  • the third mass part 73 has a shape in which a square second drive frame 122 supported by the drive beam 8 and two squares supported by upper and lower second detection beams 132 inside the square are connected.
  • a second detection frame 142 outside the second drive frame 122, comb-shaped movable electrodes 152a and 152b are formed adjacent to the fourth mass portion 74 and opposed to the comb-shaped portions of the third and fourth drive electrodes 103 and 104. Have been.
  • comb-shaped movable side electrodes 172 are formed so as to face the comb-shaped third and fourth detection electrodes 163, 164, respectively. .
  • the second detection frame 142 can be vibrated along the Y-axis direction by the second detection beam 132 together with the movable-side electrode 172.
  • the first and second monitor electrodes 91 and 92, the first to fourth drive electrodes 101 to 104, the first to fourth detection electrodes 161 to 164, and the ground electrodes 181 and 182 are connected to the It is formed on the joint with the protective substrate 3 on 2 and is fixed.
  • Each of the electrodes 91, 92, 101-104, 161-164, 181, 182 on the fixed side is individually connected to each electrode node 5 as shown in FIG. Electrical connection to an external electric circuit described later via 5 is enabled.
  • the movable part of the vibrator 1 is mechanically and electrically connected to the ground electrodes 181 and 182 via the driving beam 8, and is kept at the ground potential.
  • FIG. 3 is a block diagram showing a circuit configuration of the vibration gyro.
  • the first monitor electrode 91 is connected to a first CV (Capacitance Voltage) conversion circuit 31, and the second monitor electrode 92 is connected to a second CV conversion circuit 32.
  • the first and second CV conversion circuits 31, 32 are both connected to a first differential amplifier circuit 41, and the first differential amplifier circuit 41 is connected to an AGC circuit 22 via a filter circuit 51 and a phase adjustment circuit 23. I have.
  • the output of the first differential amplifier circuit 41 is connected to one input section of a Hilbert transform circuit 60 described later via a filter circuit 51.
  • the output of the AGC circuit 22 is directly connected to the second drive electrode 102 and the third drive electrode 103, and is also connected to the first drive electrode 101 and the fourth drive electrode 104 via the inversion circuit 21.
  • the first detection electrode 161 and the third detection electrode 163 are both connected to the third CV conversion circuit 33, and the second detection electrode 162 and the fourth detection electrode 164 are both connected to the fourth CV conversion circuit 34 Has been done.
  • the third and fourth CV conversion circuits 33 and 34 are both connected to the second differential amplifier circuit 42. Further, the second differential amplifier circuit 42 is connected via a filter circuit 52 to the other input of a Hilbert transform circuit 60 described later.
  • first to fourth CV conversion circuits 31 to 34 for example, a charge amplification circuit as shown in FIG. 4A or an impedance conversion circuit as shown in FIG. 4B is applied.
  • first and second differential amplifiers 41 and 42 for example, operational amplifiers are applied.
  • the Hilbert transform circuit 60 when the same signal Vin is input to two input terminals, the Hilbert transform circuit 60 outputs two signals Voutl output over a wide frequency band ⁇ . , Vout2, and has a characteristic of generating a phase difference of exactly 90 °. For example, a phase difference of 90 ° ⁇ 1.5 ° is generated between the two output signals Voutl and Vout2 over a frequency band of 5 KHz to 25 KHz. That is, the Hilbert transform circuit 60 has two phase adjustment paths, and has a region where the difference between the respective phase adjustment amounts is always 90 °. As described above, even when the Hilbert transform circuit 60 causes variations in the characteristics between the individual vibrators 1 and changes in the vibration frequency due to the temperature characteristics of the vibrator 1 and the like, it is not affected by this. High phase adjustment accuracy can always be maintained.
  • Two output sections of the Hilbert transform circuit 60 are connected to a synchronous detection circuit 61.
  • the synchronous detection circuit 61 performs phase detection of the detection signal S5 in synchronization with the detection reference signal S4. is there.
  • a smoothing circuit 62 and an amplification circuit 63 are sequentially connected.
  • the first and fourth drive electrodes 101 and 104 are supplied with a drive signal S12 obtained by inverting the level of the drive signal S11 output from the AGC circuit 22 by the inverting circuit 21.
  • the drive signal S11 output from the AGC circuit 22 is directly applied to the second and third drive electrodes 102 and 103.
  • both drive signals Sl 1 and S12 are AC signals whose levels are in an inverting relationship with each other with reference to an offset potential of, for example, +2.5 V with respect to the ground potential.
  • the capacitance between the movable electrode 111c provided in the first mass part 71 and the first motor electrode 91 and the movable electrode provided in the fourth mass part 74 changes respectively.
  • the capacitance change at the first and second monitor electrodes 91 and 92 for monitoring the driving vibration state of the vibrator 1 in the X-axis direction corresponds to each capacitance change by the first and second CV conversion circuits 31 and 32. It is converted into monitor signals S21 and S22 having the obtained voltage levels. In this case, since both monitor signals S21 and S22 are signals having phases opposite to each other, they are amplified and converted into one monitor signal S2 by the first differential amplifier circuit 41 in the next stage.
  • the monitor signal S 2 is input to one input unit of the Hilbert conversion circuit 60 after unnecessary noise components are removed by the filter circuit 51, and the monitor signal S 2 is necessary for self-excited oscillation by the phase adjustment circuit 23. After the phase is adjusted, it is input to the AGC circuit 22. AGC circuit 22 The gain of the AGC circuit 22 is automatically adjusted so that the input signal amplitude of the C circuit 22 becomes constant. For this reason, the first to fourth drive electrodes 101 to 104 are always supplied with drive signals Sll and S12 having appropriate amplitudes.
  • the drive signals Sll and S12 are generated from the monitor signals S2 obtained at the first and second monitor electrodes 91 and 92, respectively, and the respective drive signals Sll and S12 are converted into the first to fourth drive signals.
  • a closed-loop self-excited oscillation circuit is formed, and the vibrator 1 continues to vibrate at the resonance frequency of the same frequency as the drive signal.
  • Coriolis F generated when an angular velocity is applied is given by the following equation.
  • M is the mass of the entire first to fourth mass parts 71 to 74
  • is the angular velocity
  • V is the driving vibration velocity of the entire first to fourth mass parts 71 to 74.
  • the structural resonance frequency in the ⁇ -axis direction of the vibrator 1 is sufficiently separated from the vibration frequency when driven in the X-axis direction by the driving signal, There is a 90 ° phase difference between the ⁇ -axis vibration generated by Corioca and the X-axis vibration driven by the drive signals Sll and S12. For this reason, when vibration in the ⁇ -axis direction occurs while driving and oscillating in the X-axis direction, the first to fourth mass portions 71 to 74 perform elliptical motion as shown in FIG.
  • the capacitance change generated in the first and third detection electrodes 161 and 163 due to the vibration caused by Coriolis is detected by the third CV conversion circuit 33 by a detection signal having a voltage level corresponding to the capacitance change. No. S31.
  • the change in capacitance generated at the second and fourth detection electrodes 162 and 164 due to the vibration by Coriolis is converted by the fourth CV conversion circuit 34 into a detection signal S32 having a voltage level corresponding to the change in capacitance.
  • the detection signals S31 and S32 output from the third and fourth CV conversion circuits 33 and 34 are signals having phases opposite to each other with respect to the component that depends on Coriolis, the second differential signal at the next stage is used.
  • the signal is amplified and converted into one detection signal S3 by the amplifier circuit 42.
  • the detection signal S3 is input to the other input section of the Hilbert transform circuit 60 after unnecessary noise components are removed by the filter circuit 52.
  • the monitor signal S2 and the detection signal S3 are originally output with a phase difference of 90 °.
  • the filter circuit 51 and the filter circuit 52 are designed so that their phase characteristics are the same. Therefore, the monitor signal S2 ′ and the detection signal S3 ′ input to the Hilbert transform circuit 60 are respectively
  • the Hilbert transform circuit 60 adjusts the phases of the input monitor signal S2 'and detection signal S3', respectively. A phase difference of exactly 90 ° is generated in each phase adjustment amount over the frequency band ⁇ f. Therefore, assuming that the monitor signal after passing through the Hilbert transform circuit 60 is S4 and the detection signal is S5,
  • the monitor signal S4 after passing through the Hilbert transform circuit 60 is provided to the next-stage synchronous detection circuit 61 as a detection reference signal S4.
  • the synchronous detection circuit 61 performs synchronous detection of the detection signal S5 that has passed through the Hilbert conversion circuit 60, based on the detection reference signal S4. In this case, the two signals S4 and S5 are always exactly in phase (or opposite phase).
  • the detection signal S7 output after synchronous detection by the phase detection circuit 61 is correctly half-wave rectified, and if this is smoothed by the smoothing circuit 62, the desired voltage level corresponding to the magnitude of the angular velocity can be obtained. Is obtained.
  • the detection signal S8 is output after being amplified by the amplification circuit 63 in the next stage.
  • the detection signal amplified by the amplifier circuit 63 is subjected to an output adjustment circuit 64 at the next stage to remove the influence of temperature drift and the influence of temperature change of sensitivity, and then calculate the actual angular velocity. Given to the circuit.
  • the detection signal S3 output from the second differential amplifier circuit 42 includes an error signal S9 having a phase opposite to or the same as that of the monitor signal S2, the error signal S9 is converted to a Hilbert transform circuit. After passing through 60, the phase is shifted by 90 ° with respect to the detection reference signal S4.Therefore, the output signal S7 after being synchronously detected by the synchronous detection circuit 61 in the next stage alternates between positive and negative with a 90 ° cycle. If this is smoothed by the smoothing circuit 62, the error signal S9 is cancelled.
  • the vibration gyro provided with the vibrator 1 of the electrostatic drive Z-capacitance detection type has been described.
  • the present invention is not limited to this.
  • the present invention can also be applied to a vibrating gyroscope having a vibrating piece type vibrator or a vibrating gyroscope having a tuning fork vibrator.

Abstract

A vibration gyroscope and an angular velocity detecting method for a vibration gyroscope capable of detecting an angular velocity more accurately than before. The vibration gyroscope comprises a vibrator (1), driving means (101-104) for driving the vibrator (1), monitoring means (91, 92) for monitoring the vibration condition of the vibrator (1), detecting means (161-164) for detecting the vibration displacement of the vibrator (1) by a Coriolis force at an angular velocity application, a Hilbert conversion circuit (60) for receiving a monitor signals obtained from the monitoring means (91, 92) and detection signals obtained from the detecting means (161-164), and a synchronizing detection circuit (61) for detecting a detection signals passed through the Hilbert conversion circuit (60) in synchronization with monitor signals passed through the Hilbert conversion circuit (60).

Description

明 細 書  Specification
振動ジャイロおよび振動ジャイロの角速度検出方法  Vibrating gyroscope and method for detecting angular velocity of vibrating gyroscope
技術分野  Technical field
[0001] 本発明は、例えば角速度を検出するのに使用される振動ジャイロ、および振動ジャ イロの角速度検出方法に関する。  The present invention relates to a vibration gyroscope used for detecting an angular velocity, for example, and a method for detecting an angular velocity of the vibration gyroscope.
背景技術  Background art
[0002] 近年、車両の姿勢検知、ナビゲーシヨン装置の進行方向検知、カメラの手振れ補正 、仮想現実操作などの手段として振動ジャイロが使用されている。このような振動ジャ イロの回路例を図 9に示す。  [0002] In recent years, a vibrating gyroscope has been used as means for detecting the attitude of a vehicle, detecting the traveling direction of a navigation device, correcting camera shake, operating virtual reality, and the like. Fig. 9 shows a circuit example of such a vibrating gyroscope.
[0003] この振動ジャイロにおいて、角速度検出素子としての振動子 200には、当該振動子 200を駆動する駆動手段 201と、振動子 200の振動状態をモニタするモニタ手段 20 2と、角速度印加時のコリオリカによる振動変位を検出する検出手段 203が設けられ ている。そして、この振動子 200は、コリオリカにより生じる振動方向の共振周波数が 、駆動手段 201により駆動される振動方向の共振周波数と異なるように設定されてい る、いわゆる非共振型のものである。なお、上記の各手段 201〜203は、例えば基板 上に駆動電極、モニタ電極、検出電極などを形成することにより構成されている。  In this vibrating gyroscope, a vibrator 200 as an angular velocity detecting element includes a driving unit 201 for driving the vibrator 200, a monitor unit 202 for monitoring the vibration state of the vibrator 200, Detecting means 203 for detecting the vibration displacement by Coriolis is provided. The vibrator 200 is of a so-called non-resonant type in which the resonance frequency in the vibration direction generated by the Corioliser is set to be different from the resonance frequency in the vibration direction driven by the driving means 201. Each of the means 201 to 203 is configured by forming, for example, a drive electrode, a monitor electrode, and a detection electrode on a substrate.
[0004] ここで、モニタ手段 202で得られたモニタ信号 S2は、信号増幅回路 204、位相調 整回路 205、および AGC (Auto Gain Control)回路 206を介して駆動手段 201に 対して駆動信号 S1としてカ卩えられる。したがって、モニタ手段 202、信号増幅回路 20 4、位相調整回路 205、 AGC回路 206によって閉ループの自励発振回路が構成さ れており、これによつて振動子 200は駆動手段 201に加えられる駆動信号 S1により 一定の振幅でかつ固有の共振周波数で振動される。  [0004] Here, the monitor signal S2 obtained by the monitor means 202 is supplied to the drive means 201 via a signal amplification circuit 204, a phase adjustment circuit 205, and an AGC (Auto Gain Control) circuit 206. As a squid. Therefore, the monitor means 202, the signal amplification circuit 204, the phase adjustment circuit 205, and the AGC circuit 206 constitute a closed loop self-excited oscillation circuit, whereby the vibrator 200 drives the drive signal applied to the drive means 201. It is oscillated with a constant amplitude and a unique resonance frequency by S1.
[0005] 一方、角速度印加時のコリオリカによって振動変位が生じると、この振動変位が検 出手段 203によって検出されて検出信号 S3が出力される。この場合、前述のような 非共振型の圧電振動子においては、コリオリカにより生じる振動と駆動手段 201によ り駆動される駆動振動とは 90° の位相差を有するので、検出信号 S3は、モニタ信号 S2と位相が 90° ずれて出力される。また、この検出信号 S3にはモニタ信号 S2と逆 相(あるいは同相)の誤差信号 S9が含まれることがある。 [0005] On the other hand, when a vibration displacement occurs due to the Corioliser at the time of applying the angular velocity, the vibration displacement is detected by the detection means 203, and a detection signal S3 is output. In this case, in the non-resonant type piezoelectric vibrator as described above, since the vibration generated by the Corioliser and the driving vibration driven by the driving means 201 have a phase difference of 90 °, the detection signal S3 The signal S2 is output 90 ° out of phase. In addition, the detection signal S3 is the reverse of the monitor signal S2. A phase (or in-phase) error signal S9 may be included.
[0006] 検出信号 S3を同期検波するためには、検出信号 S3と同相(あるいは逆)の検波参 照信号が必要となる。このため、位相調整回路 205でモニタ信号 S2の位相を 90° ずらせることによって検出信号 S3と同相(あるいは逆相)の検波参照信号 S6を生成 し、この検波参照信号 S6を同期検波回路 208に与えている。  [0006] In order to perform synchronous detection of the detection signal S3, a detection reference signal in phase (or opposite) to the detection signal S3 is required. For this reason, the phase of the monitor signal S2 is shifted by 90 ° by the phase adjustment circuit 205 to generate a detection reference signal S6 in the same phase (or opposite phase) as the detection signal S3, and this detection reference signal S6 is sent to the synchronous detection circuit 208. Have given.
[0007] 図 10Aに示すように、いま位相調整回路 205によってモニタ信号 S2の位相が正確 に 90° ずれていると仮定すると、図 10Bに示すように、位相調整回路 205からモニタ 信号 S2を位相調整した後に出力される検波参照信号 S6は、検出信号 S3と同相に なる。したがって、同期検波回路 208で同期検波された後の出力信号 S7は半波整 流された形となり、これを平滑回路 209で平滑ィ匕すれば角速度に対応した電圧レべ ルをもつ信号 S8が得られる。なお、検波参照信号 S6が検出信号 S3と逆相の場合も 同様である。  [0007] As shown in FIG. 10A, assuming that the phase of the monitor signal S2 is now exactly 90 ° shifted by the phase adjustment circuit 205, as shown in FIG. 10B, the monitor signal S2 is phase-shifted from the phase adjustment circuit 205. The detection reference signal S6 output after the adjustment has the same phase as the detection signal S3. Therefore, the output signal S7 after synchronous detection by the synchronous detection circuit 208 has a half-wave rectified form, and if this is smoothed by the smoothing circuit 209, a signal S8 having a voltage level corresponding to the angular velocity is obtained. can get. The same applies to the case where the detection reference signal S6 has the opposite phase to the detection signal S3.
[0008] また、図 10Cに示すように、検出信号 S3にモニタ信号 S2と逆相の誤差信号 S9が 含まれている場合、位相調整回路 205で得られる検波参照信号 S6は、誤差信号 S9 とは位相が 90° ずれることになるので、次に同期検波回路 208で同期検波された後 の出力信号 S7は 90° 周期で交互に正負を繰り返す形となる。したがって、これを平 滑回路 209で平滑ィ匕すれば誤差信号 S9が相殺される。なお、誤差信号 S9がモニタ 信号 S 2と同相の場合も同様である。  [0008] Further, as shown in FIG. 10C, when the detection signal S3 includes an error signal S9 having a phase opposite to that of the monitor signal S2, the detection reference signal S6 obtained by the phase adjustment circuit 205 is different from the error signal S9. Is shifted by 90 °, the output signal S7 after the next synchronous detection by the synchronous detection circuit 208 alternately repeats positive and negative at 90 ° cycles. Therefore, if this is smoothed by the smoothing circuit 209, the error signal S9 is canceled. The same applies to the case where the error signal S9 is in phase with the monitor signal S2.
[0009] ところで、従来の圧電振動ジャイロにおける上記の位相調整回路 205としては、例 えば図 11Aに示すように、抵抗とコンデンサとを組み合わせた CR2次ローパスフィル タ等の遅延回路が広く用いられている(例えば、特開 2002— 148047号公報 (特許 文献 1)参照)。  As the above-described phase adjustment circuit 205 in a conventional piezoelectric vibrating gyroscope, for example, as shown in FIG. 11A, a delay circuit such as a CR secondary low-pass filter combining a resistor and a capacitor is widely used. (See, for example, JP-A-2002-148047 (Patent Document 1)).
特許文献 1:特開 2002— 148047号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-148047
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] し力しながら、このような従来構成の位相調整回路 205は、図 11Bに示すように、入 力信号の周波数変化に対する位相調整精度が悪い。このため、振動子 200の個体 間の特性のばらつきや振動子 200の温度特性等に起因して振動周波数が変化した 場合には正確に 90° の位相調整が行われず、検波参照信号 S6としての位相精度 が劣化する。すると、これに伴って同期検波が精度良く行えなくなるため、検波出力 の効率が悪くなるとともに、誤差信号 S9のキャンセル効果が劣化し、結果的に角速 度を精度良く検出することが困難となる。 [0010] However, the phase adjustment circuit 205 having such a conventional configuration has poor phase adjustment accuracy with respect to a change in the frequency of the input signal, as shown in FIG. 11B. As a result, the vibration frequency changed due to variations in characteristics between the individual vibrators 200 and temperature characteristics of the vibrator 200. In this case, the phase adjustment of 90 ° is not performed accurately, and the phase accuracy as the detection reference signal S6 deteriorates. As a result, synchronous detection cannot be performed with high accuracy, so that the efficiency of the detection output deteriorates and the canceling effect of the error signal S9 is deteriorated.As a result, it becomes difficult to accurately detect the angular velocity. .
[0011] 本発明は、上記の課題を解決するためになされたもので、振動子の個体間の特性 のばらつきや振動子の温度特性等に起因して振動周波数が変化した場合でも、そ れに影響されることなく検出信号に対する検波参照信号の位相が常に正確に維持さ れるようにして、検出信号を検波参照信号によって確実に同期検波できるようにし、こ れにより、従来よりも一層精度良く角速度を検出することが可能な振動ジャイロおよび 振動ジャイロの角速度検出方法を提供することを目的とする。 課題を解決するための手段 The present invention has been made in order to solve the above-mentioned problems, and even when the vibration frequency changes due to variations in the characteristics of individual vibrators, temperature characteristics of the vibrators, etc. This ensures that the phase of the detection reference signal with respect to the detection signal is always accurately maintained without being affected by the detection signal, thereby ensuring that the detection signal can be synchronously detected by the detection reference signal, thereby achieving higher accuracy than before. An object of the present invention is to provide a vibrating gyroscope capable of detecting an angular velocity and a method for detecting a vibrating gyroscope angular velocity. Means for solving the problem
[0012] 上記課題を解決するために、この発明のある局面に係わる振動ジャイロは、振動子 と、振動子を駆動する駆動手段と、振動子の振動状態をモニタするモニタ手段と、角 速度印加時のコリオリカによる振動子の振動変位を検出する検出手段と、モニタ手 段力 得られるモニタ信号と検出手段で得られる検出信号とを入力すヒルベルト変換 回路と、ヒルベルト変換回路を通過した検出信号を、ヒルベルト変換回路を通過した モニタ信号に同期して検波する同期検波回路とを備える。  [0012] In order to solve the above problems, a vibration gyro according to an aspect of the present invention includes a vibrator, a driving unit that drives the vibrator, a monitoring unit that monitors a vibration state of the vibrator, and an angular velocity application. Detecting means for detecting the vibration displacement of the vibrator caused by Coriolis, a monitoring means force, a Hilbert conversion circuit for inputting a monitor signal obtained and a detection signal obtained by the detection means, and a detection signal passing through the Hilbert conversion circuit. And a synchronous detection circuit for detecting in synchronization with the monitor signal passed through the Hilbert conversion circuit.
[0013] 上記課題を解決するために、この発明のある局面に係わる振動ジャイロの角速度 検出方法は、振動子を駆動するステップと、振動子の振動状態をモニタするモニタス テツプと、角速度印加時のコリオリカによる振動子の振動変位を検出する検出ステツ プと、検出ステップにお 、て得られる検出信号およびモニタステップにお 、て得られ るモニタ信号をヒルベルト変換回路を用いて位相調整するステップと、位相調整され た検出信号を位相調整されたモニタ信号に同期して検波するステップとを含む。 発明の効果  [0013] In order to solve the above problem, an angular velocity detecting method for a vibrating gyroscope according to an aspect of the present invention includes a step of driving a vibrator, a monitor step of monitoring a vibration state of the vibrator, and a step of applying an angular velocity. A detection step of detecting a vibration displacement of the vibrator caused by Coriolis, a phase adjustment of a detection signal obtained in the detection step and a monitor signal obtained in the monitor step using a Hilbert transform circuit, Detecting the phase-adjusted detection signal in synchronization with the phase-adjusted monitor signal. The invention's effect
[0014] 本発明によれば、モニタ信号と検出信号とを共にヒルベルト変換回路に入力して同 回路を通過させることにより、両入力信号の位相調整量が正確に 90° の位相差を生 じる。すなわち、ヒルベルト変換回路は、広い周波数帯域にわたって位相調整差が正 確に 90° に保たれるので、振動子の個体間の特性のばらつきや振動子の温度特性 等に起因して振動周波数が変化した場合でも、これに影響されることなく常に高い位 相調整精度を維持することができる。 According to the present invention, by inputting both the monitor signal and the detection signal to the Hilbert transform circuit and passing the same, the phase adjustment amount of both input signals produces a phase difference of exactly 90 °. You. In other words, in the Hilbert transform circuit, since the phase adjustment difference is accurately maintained at 90 ° over a wide frequency band, variation in characteristics between individual oscillators and temperature characteristics of the oscillators Therefore, even when the vibration frequency changes due to the above, high phase adjustment accuracy can always be maintained without being affected by the change.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の実施の形態における振動ジャイロの振動子の構造を示す平面図であ る。  FIG. 1 is a plan view showing a structure of a vibrator of a vibrating gyroscope according to an embodiment of the present invention.
[図 2]図 1の振動ジャイロを構成する振動子基板と保護基板とを接合した状態の一部 を示す断面図である。  FIG. 2 is a cross-sectional view showing a part of a state where a vibrator substrate and a protective substrate constituting the vibrating gyroscope of FIG. 1 are joined.
[図 3]振動ジャイロの回路構成を示すブロック図である。  FIG. 3 is a block diagram showing a circuit configuration of a vibration gyro.
[図 4A]CV変換回路の一例を示す回路図である。  FIG. 4A is a circuit diagram illustrating an example of a CV conversion circuit.
[図 4B]CV変換回路の一例を示す回路図である。  FIG. 4B is a circuit diagram illustrating an example of a CV conversion circuit.
[図 5A]ヒルベルト変換回路の入出力信号を示す図である。  FIG. 5A is a diagram showing input / output signals of a Hilbert transform circuit.
[図 5B]ヒルベルト変換回路の信号周波数と信号位相の関係を示す特性図である。  FIG. 5B is a characteristic diagram showing a relationship between a signal frequency and a signal phase of the Hilbert transform circuit.
[図 6A]振動子の駆動電極に加える駆動信号の波形図である。  FIG. 6A is a waveform diagram of a drive signal applied to a drive electrode of a vibrator.
[図 6B]振動子の駆動電極に加える駆動信号の波形図である。  FIG. 6B is a waveform diagram of a drive signal applied to a drive electrode of the vibrator.
[図 7]振動子の振動状態の説明図である。  FIG. 7 is an explanatory diagram of a vibration state of a vibrator.
[図 8]振動子における駆動振動方向とコリオリカによる振動方向との関係を示す説明 図である。  FIG. 8 is an explanatory diagram showing a relationship between a driving vibration direction of a vibrator and a vibration direction of a Corioliser.
[図 9]従来の振動ジャイロの回路構成を示すブロック図である。  FIG. 9 is a block diagram showing a circuit configuration of a conventional vibration gyro.
[図 10A]図 9に示す回路構成の下での信号処理の説明に供する波形図である。  FIG. 10A is a waveform chart for explaining signal processing under the circuit configuration shown in FIG. 9.
[図 10B]図 9に示す回路構成の下での信号処理の説明に供する波形図である。  FIG. 10B is a waveform chart for explaining signal processing under the circuit configuration shown in FIG. 9.
[図 10C]図 9に示す回路構成の下での信号処理の説明に供する波形図である。  FIG. 10C is a waveform chart for explaining signal processing under the circuit configuration shown in FIG. 9.
[図 11A]従来の振動ジャイロで使用されている位相調整回路を示す図である。  FIG. 11A is a diagram showing a phase adjusting circuit used in a conventional vibrating gyroscope.
[図 11B]従来の振動ジャイロで使用されている位相調整回路の位相調整量の周波数 依存性を示す図である。  FIG. 11B is a diagram showing the frequency dependence of the amount of phase adjustment of a phase adjustment circuit used in a conventional vibrating gyroscope.
符号の説明  Explanation of symbols
[0016] 1 振動子、 60 ヒルベルト変換回路、 61 同期検波回路、 91, 92 モニタ電極 (モ ユタ手段)、 101〜104 駆動電極 (駆動手段)、 161〜164 検出電極 (検出手段) 発明を実施するための最良の形態 [0016] 1 oscillator, 60 Hilbert conversion circuit, 61 synchronous detection circuit, 91, 92 monitor electrode (monitor means), 101-104 drive electrode (drive means), 161-164 detection electrode (detection means) BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 図 1はこの実施の形態の振動ジャイロに使用される振動子の構造を示す平面図、 図 2はこの振動ジャイロを構成する振動子基板と保護基板とを接合した状態の一部を 示す断面図である。  FIG. 1 is a plan view showing the structure of a vibrator used in the vibrating gyroscope according to the present embodiment. FIG. 2 shows a part of a state in which the vibrating gyroscope and a protective substrate are joined together. FIG.
[0018] この実施の形態の振動ジャイロは、角速度検出素子としての振動子 1を備えている The vibrating gyroscope according to the present embodiment includes a vibrator 1 as an angular velocity detecting element
。この振動子 1は、静電駆動 Z容量検出型で、かつ非共振型のものであって、例え ば単結晶または多結晶をなす低抵抗なシリコン材料力 なる振動子基板 2と、この振 動子基板 2の主面および裏面に設けられた例えば高抵抗なシリコン材料、ガラス材 料等力もなる保護基板 3とを有する。そして、両基板 2, 3は、振動子基板 2の可動部 分を確保するためのキヤビティ 4形成箇所を除いて例えば陽極接合等の接合方法に より一体的に接合されている。また、キヤビティ 4内は振動ダンピングを低減するため に真空状態ある 、は低圧力状態に保たれて 、る。 . The vibrator 1 is of an electrostatic drive Z-capacitance detection type and a non-resonant type. For example, a vibrator substrate 2 made of a single-crystal or polycrystalline low-resistance silicon material, and the vibrator 1 And a protective substrate 3 provided on the main surface and the back surface of the sub-substrate 2, for example, a high-resistance silicon material, a glass material, and the like. The two substrates 2 and 3 are integrally joined by a joining method such as anodic joining, for example, except for a location where a cavity 4 for securing a movable portion of the vibrator substrate 2 is formed. In addition, the inside of the cavity 4 is in a vacuum state in order to reduce vibration damping, and is kept in a low pressure state.
[0019] 振動子基板 2には、エッチング処理等の微細加工を施すことにより、第 1〜第 4の各 質量部 71〜74や駆動梁 8、第 1,第 2モニタ電極 91, 92、第 1〜第 4駆動電極 101 〜104、第 1〜第 4検出電極 161〜164、および接地電極 181, 182などが形成され ている。ここで、図 1において、振動子 1の長手方向を Y軸方向、これに直交する短手 方向を X軸方向、両軸に共に直交する紙面に垂直な方向を Z軸方向としたとき、第 1 〜第 4の各質量部 71〜74は、部分的に接地電極 181, 182に接続された駆動梁 8 によって Y軸方向に沿って直列に支持されており、これによつて第 1〜第 4の各質量 部 71〜74は X軸方向に沿って振動可能な状態になっている。すなわち、第 1〜第 4 の各質量部 71〜74や駆動梁 8が可動部となっており、第 1,第 2モニタ電極 91, 92 、第 1〜第 4駆動電極 101〜104、および接地電極 181, 182が固定部となっている The vibrator substrate 2 is subjected to fine processing such as etching, so that the first to fourth mass portions 71 to 74, the driving beam 8, the first and second monitor electrodes 91 and 92, The first to fourth drive electrodes 101 to 104, the first to fourth detection electrodes 161 to 164, and the ground electrodes 181 and 182 are formed. Here, in FIG. 1, when the longitudinal direction of the vibrator 1 is the Y-axis direction, the transverse direction perpendicular to the Y-axis direction is the X-axis direction, and the direction perpendicular to the paper plane perpendicular to both axes is the Z-axis direction, The first to fourth mass parts 71 to 74 are supported in series along the Y-axis direction by a driving beam 8 partially connected to the ground electrodes 181, 182, whereby the first to fourth mass parts 71 to 74 are supported. Each of the mass parts 71 to 74 of 4 is in a state capable of vibrating along the X-axis direction. That is, the first to fourth mass parts 71 to 74 and the drive beam 8 are movable parts, and the first and second monitor electrodes 91 and 92, the first to fourth drive electrodes 101 to 104, and the ground are provided. Electrodes 181, 182 are fixed parts
[0020] 上記の第 1質量部 71は、第 1モニタ電極 91および第 1,第 2の駆動電極 101, 102 の櫛歯状部分に対向するように左右に突出形成された櫛歯状の可動側電極 11 la, 111b, 111c力設けられている。 The first mass portion 71 is a comb-shaped movable member formed to project right and left so as to face the comb-shaped portions of the first monitor electrode 91 and the first and second drive electrodes 101 and 102. Side electrodes 11 la, 111 b, 111 c are provided.
[0021] また、第 2質量部 72は、駆動梁 8により支持された四角形の第 1駆動枠 121と、その 内側において上下の第 1検出梁 131により支持された 2つの四角形を連接した形状 の第 1検出枠 141とを有する。第 1駆動枠 121の外側には第 1質量部 71に近接して 上記の第 1,第 2駆動電極 101, 102の櫛歯状部分に対向した櫛歯状の可動側電極 151a, 151bが形成されている。また、第 1検出枠 141の 2つの四角形部分の内側に はそれぞれ櫛歯状の第 1,第 2検出電極 161, 162にそれぞれ対向して櫛歯状の可 動側電極 171が形成されている。これにより、第 1検出枠 141は可動側電極 171と共 に第 1検出梁 131によって Y軸方向に沿つて振動可能な状態になっている。 The second mass section 72 is formed by connecting a rectangular first drive frame 121 supported by the drive beam 8 and two squares supported by the upper and lower first detection beams 131 inside the first drive frame 121. And a first detection frame 141. Outside the first drive frame 121, comb-shaped movable electrodes 151a, 151b are formed adjacent to the first mass portion 71 and opposed to the comb-shaped portions of the first and second drive electrodes 101, 102. Have been. Further, inside the two rectangular portions of the first detection frame 141, comb-shaped movable side electrodes 171 are formed so as to face the comb-shaped first and second detection electrodes 161, 162, respectively. . As a result, the first detection frame 141 can be vibrated along the Y-axis direction by the first detection beam 131 together with the movable-side electrode 171.
[0022] 上記の第 4質量部 74は、第 2モニタ電極 92および第 3,第 4の駆動電極 103, 104 の櫛歯状部分に対向するように左右に突出形成された櫛歯状の可動側電極 112a, 112b, 112c力設けられている。  [0022] The fourth mass part 74 is a comb-shaped movable member formed to protrude left and right so as to face the comb-shaped parts of the second monitor electrode 92 and the third and fourth drive electrodes 103 and 104. Side electrodes 112a, 112b, 112c are provided.
[0023] また、第 3質量部 73は、駆動梁 8により支持された四角形の第 2駆動枠 122と、その 内側において上下の第 2検出梁 132により支持された 2つの四角形を連接した形状 の第 2検出枠 142とを有する。第 2駆動枠 122の外側には第 4質量部 74に近接して 上記の第 3,第 4駆動電極 103, 104の櫛歯状部分に対向した櫛歯状の可動側電極 152a, 152bが形成されている。また、第 2検出枠 142の 2つの四角形部分の内側に はそれぞれ櫛歯状の第 3,第 4検出電極 163, 164にそれぞれ対向して櫛歯状の可 動側電極 172が形成されている。これにより、第 2検出枠 142は可動側電極 172と共 に第 2検出梁 132によって Y軸方向に沿つて振動可能な状態になっている。  The third mass part 73 has a shape in which a square second drive frame 122 supported by the drive beam 8 and two squares supported by upper and lower second detection beams 132 inside the square are connected. A second detection frame 142. Outside the second drive frame 122, comb-shaped movable electrodes 152a and 152b are formed adjacent to the fourth mass portion 74 and opposed to the comb-shaped portions of the third and fourth drive electrodes 103 and 104. Have been. Further, inside the two quadrangular portions of the second detection frame 142, comb-shaped movable side electrodes 172 are formed so as to face the comb-shaped third and fourth detection electrodes 163, 164, respectively. . As a result, the second detection frame 142 can be vibrated along the Y-axis direction by the second detection beam 132 together with the movable-side electrode 172.
[0024] 上記の第 1,第 2モニタ電極 91, 92、第 1〜第 4駆動電極 101〜104、第 1〜第 4検 出電極 161〜164、および接地電極 181, 182は、振動子基板 2上の保護基板 3と の接合箇所の上に形成されていて固定状態になっている。そして、これらの固定側 の各電極 91, 92、 101〜104、 161〜164、 181, 182ίま、図 2に示すように各電極 ノッド 5にそれぞれ個別に接続されており、これらの各電極パッド 5を介して後述する 外部の電気回路と電気的接続が可能になっている。なお、振動子 1の可動部分は、 駆動梁 8を介して接地電極 181, 182と機械的かつ電気的に接続されていて接地電 位に保たれている。  The first and second monitor electrodes 91 and 92, the first to fourth drive electrodes 101 to 104, the first to fourth detection electrodes 161 to 164, and the ground electrodes 181 and 182 are connected to the It is formed on the joint with the protective substrate 3 on 2 and is fixed. Each of the electrodes 91, 92, 101-104, 161-164, 181, 182 on the fixed side is individually connected to each electrode node 5 as shown in FIG. Electrical connection to an external electric circuit described later via 5 is enabled. The movable part of the vibrator 1 is mechanically and electrically connected to the ground electrodes 181 and 182 via the driving beam 8, and is kept at the ground potential.
[0025] そして、第 1〜第 4の各駆動電極 101〜104が特許請求の範囲の駆動手段に含ま れ、また第 1,第 2モニタ電極 91, 92が特許請求の範囲のモニタ手段に、第 1〜第 4 検出電極 161〜164が特許請求の範囲の検出手段に含まれている。 [0026] 図 3は振動ジャイロの回路構成を示すブロック図である。 [0025] The first to fourth drive electrodes 101 to 104 are included in the driving means of the claims, and the first and second monitor electrodes 91 and 92 are included in the monitoring means of the claims. The first to fourth detection electrodes 161 to 164 are included in the detection means in the claims. FIG. 3 is a block diagram showing a circuit configuration of the vibration gyro.
[0027] 第 1モニタ電極 91は第 1CV (容量電圧: Capacitance Voltage)変換回路 31に接続 され、第 2モニタ電極 92は第 2CV変換回路 32に接続されている。第 1,第 2CV変換 回路 31, 32は共に第 1差動増幅回路 41に接続され、第 1差動増幅回路 41はフィル タ回路 51および位相調整回路 23を介して AGC回路 22に接続されている。また、第 1差動増幅回路 41の出力は、フィルタ回路 51を介して後述するヒルベルト変換回路 60の一方の入力部に接続されている。 AGC回路 22の出力部は、第 2駆動電極 102 と第 3駆動電極 103とに直接接続されるとともに、反転回路 21を介して第 1駆動電極 101と第 4駆動電極 104に接続されている。  The first monitor electrode 91 is connected to a first CV (Capacitance Voltage) conversion circuit 31, and the second monitor electrode 92 is connected to a second CV conversion circuit 32. The first and second CV conversion circuits 31, 32 are both connected to a first differential amplifier circuit 41, and the first differential amplifier circuit 41 is connected to an AGC circuit 22 via a filter circuit 51 and a phase adjustment circuit 23. I have. The output of the first differential amplifier circuit 41 is connected to one input section of a Hilbert transform circuit 60 described later via a filter circuit 51. The output of the AGC circuit 22 is directly connected to the second drive electrode 102 and the third drive electrode 103, and is also connected to the first drive electrode 101 and the fourth drive electrode 104 via the inversion circuit 21.
[0028] 一方、第 1検出電極 161と第 3検出電極 163は共に第 3CV変換回路 33に接続さ れ、また、第 2検出電極 162と第 4検出電極 164は共に第 4CV変換回路 34に接続さ れている。そして、第 3,第 4CV変換回路 33, 34は共に第 2差動増幅回路 42に接続 されている。さらに、第 2差動増幅回路 42はフィルタ回路 52を介して後述のヒルベル ト変換回路 60の他方の入力部に接続されている。  On the other hand, the first detection electrode 161 and the third detection electrode 163 are both connected to the third CV conversion circuit 33, and the second detection electrode 162 and the fourth detection electrode 164 are both connected to the fourth CV conversion circuit 34 Has been done. The third and fourth CV conversion circuits 33 and 34 are both connected to the second differential amplifier circuit 42. Further, the second differential amplifier circuit 42 is connected via a filter circuit 52 to the other input of a Hilbert transform circuit 60 described later.
[0029] なお、上記の第 1〜第 4の CV変換回路 31〜34としては、例えば、図 4Aに示すよう な電荷増幅回路や、図 4Bに示すようなインピーダンス変換回路が適用される。また、 第 1,第 2差動増幅器 41, 42としては、例えば演算増幅器が適用される。  As the first to fourth CV conversion circuits 31 to 34, for example, a charge amplification circuit as shown in FIG. 4A or an impedance conversion circuit as shown in FIG. 4B is applied. As the first and second differential amplifiers 41 and 42, for example, operational amplifiers are applied.
[0030] 上記のヒルベルト変換回路 60は、図 5Aおよび図 5Bに示すように、同一信号 Vinが 2つの入力端子に入力された場合、広い周波数帯域 Δ ίにわたつて、出力する 2つの 信号 Voutl, Vout2間で正確に 90° の位相差を生じさせるような特性を有している 。例えば、 5KHz〜25KHzの周波数帯域にわたって 2つの出力信号 Voutl, Vout 2間で 90° ± 1. 5° の位相差を生じさせる。つまり、ヒルベルト変換回路 60は、 2つ の位相調整経路を有しており、各々の位相調整量の差が常に 90° となる領域を有 する。このように、ヒルベルト変換回路 60によって振動子 1の個体間の特性のばらつ きや、振動子 1の温度特性等に起因して振動周波数が変化した場合でも、これに影 響されることなく常に高い位相調整精度を維持することができる。  [0030] As shown in Figs. 5A and 5B, when the same signal Vin is input to two input terminals, the Hilbert transform circuit 60 outputs two signals Voutl output over a wide frequency band Δί. , Vout2, and has a characteristic of generating a phase difference of exactly 90 °. For example, a phase difference of 90 ° ± 1.5 ° is generated between the two output signals Voutl and Vout2 over a frequency band of 5 KHz to 25 KHz. That is, the Hilbert transform circuit 60 has two phase adjustment paths, and has a region where the difference between the respective phase adjustment amounts is always 90 °. As described above, even when the Hilbert transform circuit 60 causes variations in the characteristics between the individual vibrators 1 and changes in the vibration frequency due to the temperature characteristics of the vibrator 1 and the like, it is not affected by this. High phase adjustment accuracy can always be maintained.
[0031] ヒルベルト変換回路 60の 2つの出力部は同期検波回路 61に接続されている。同期 検波回路 61は、検波参照信号 S4に同期して検出信号 S5の位相検波を行うもので ある。この同期検波回路 61には、平滑回路 62および増幅回路 63が順次接続されて いる。 Two output sections of the Hilbert transform circuit 60 are connected to a synchronous detection circuit 61. The synchronous detection circuit 61 performs phase detection of the detection signal S5 in synchronization with the detection reference signal S4. is there. To the synchronous detection circuit 61, a smoothing circuit 62 and an amplification circuit 63 are sequentially connected.
[0032] 次に上記構成の振動ジャイロの動作について説明する。  Next, the operation of the vibrating gyroscope having the above configuration will be described.
[0033] 第 1,第 4駆動電極 101, 104には AGC回路 22から出力される駆動信号 S11を反 転回路 21でレベル反転した後の駆動信号 S12が加えられる。また、第 2,第 3駆動電 極 102, 103には AGC回路 22から出力される駆動信号 S11がそのままカ卩えられる。 この場合、両駆動信号 Sl l, S12は、図 6Aおよび図 6Bに示すように、接地電位に 対して例えば + 2. 5Vのオフセット電位を基準として互いにレベルが反転関係にある 交流信号である。  The first and fourth drive electrodes 101 and 104 are supplied with a drive signal S12 obtained by inverting the level of the drive signal S11 output from the AGC circuit 22 by the inverting circuit 21. The drive signal S11 output from the AGC circuit 22 is directly applied to the second and third drive electrodes 102 and 103. In this case, as shown in FIG. 6A and FIG. 6B, both drive signals Sl 1 and S12 are AC signals whose levels are in an inverting relationship with each other with reference to an offset potential of, for example, +2.5 V with respect to the ground potential.
[0034] このため、例えば、一方の駆動信号 S 12がハイレベル、他方の駆動信号 S11が口 一レベルの場合、第 1,第 4駆動電極 101, 104とこれらの電極 101, 104に対向す る可動側電極 111a, 151aおよび 112b, 152bの静電引力は"強"の状態になる一 方、第 2,第 3駆動電極 102, 103とこれらの電極 102, 103に対向する可動側電極 1 l ib, 151bおよび 112a, 152aの静電引力は"弱"の状態になる。当然、両信号 S12 , S11のレベルが逆の場合には、上記の説明と逆の状態になる。このため、その静電 引力の差によって、図 7 (a)に示すように、第 1〜第 4の各質量部 71〜74は隣どうし X 軸方向に互!、に逆相で駆動されて振動する。  [0034] Therefore, for example, when one drive signal S12 is at the high level and the other drive signal S11 is at the oral level, the first and fourth drive electrodes 101, 104 and the electrodes 101, 104 are opposed to each other. The electrostatic attraction of the movable electrodes 111a, 151a and 112b, 152b becomes "strong", while the second and third drive electrodes 102, 103 and the movable electrode 1 facing the electrodes 102, 103 The electrostatic attraction of l ib, 151b and 112a, 152a is in a "weak" state. Naturally, if the levels of the two signals S12 and S11 are opposite, the state is reversed. For this reason, as shown in FIG. 7A, the first to fourth mass portions 71 to 74 are driven in opposite phases in the X-axis direction between each other, as shown in FIG. Vibrate.
[0035] この振動に依存して、第 1質量部 71に設けられている可動側電極 111cと第 1モ- タ電極 91間の容量、および第 4質量部 74に設けられている可動側電極 112cと第 2 モニタ電極 92間の容量がそれぞれ変化する。  Depending on the vibration, the capacitance between the movable electrode 111c provided in the first mass part 71 and the first motor electrode 91 and the movable electrode provided in the fourth mass part 74 The capacitance between 112c and the second monitor electrode 92 changes respectively.
[0036] 振動子 1の X軸方向の駆動振動状態をモニタする第 1,第 2モニタ電極 91, 92にお ける容量変化は、第 1,第 2CV変換回路 31, 32によって各容量変化に対応した電 圧レベルをもつモニタ信号 S21, S22に変換される。この場合、両モニタ信号 S21, S22は互いに逆相の信号であるので、次段の第 1差動増幅回路 41で一つのモニタ 信号 S2に増幅変換される。  The capacitance change at the first and second monitor electrodes 91 and 92 for monitoring the driving vibration state of the vibrator 1 in the X-axis direction corresponds to each capacitance change by the first and second CV conversion circuits 31 and 32. It is converted into monitor signals S21 and S22 having the obtained voltage levels. In this case, since both monitor signals S21 and S22 are signals having phases opposite to each other, they are amplified and converted into one monitor signal S2 by the first differential amplifier circuit 41 in the next stage.
[0037] このモニタ信号 S2は、フィルタ回路 51で不要なノイズ成分が除かれた後、ヒルベル ト変換回路 60の一方の入力部に入力されるとともに、位相調整回路 23で自励発振 に必要な位相調整が行われた後、 AGC回路 22に入力される。 AGC回路 22は、 AG C回路 22の入力信号振幅が一定となるように AGC回路 22の増幅率を自動的に調 整する。このため、第 1〜第 4の各駆動電極 101〜104には、適切な振幅をもつ駆動 信号 Sl l, S12が常に加えられることになる。 The monitor signal S 2 is input to one input unit of the Hilbert conversion circuit 60 after unnecessary noise components are removed by the filter circuit 51, and the monitor signal S 2 is necessary for self-excited oscillation by the phase adjustment circuit 23. After the phase is adjusted, it is input to the AGC circuit 22. AGC circuit 22 The gain of the AGC circuit 22 is automatically adjusted so that the input signal amplitude of the C circuit 22 becomes constant. For this reason, the first to fourth drive electrodes 101 to 104 are always supplied with drive signals Sll and S12 having appropriate amplitudes.
[0038] このようにして、第 1,第 2モニタ電極 91, 92で得られるモニタ信号 S2から駆動信号 Sl l, S12をそれぞれ生成し、各駆動信号 Sl l, S12を第 1〜第 4駆動電極に印加 することにより、閉ループの自励発振回路が構成され、振動子 1は駆動信号と同じ周 波数の共振周波数で振動が持続される。 [0038] In this manner, the drive signals Sll and S12 are generated from the monitor signals S2 obtained at the first and second monitor electrodes 91 and 92, respectively, and the respective drive signals Sll and S12 are converted into the first to fourth drive signals. By applying the voltage to the electrodes, a closed-loop self-excited oscillation circuit is formed, and the vibrator 1 continues to vibrate at the resonance frequency of the same frequency as the drive signal.
[0039] この状態で、 Z軸を中心軸とした回転角速度が振動子 1に加わると、各質量部 71〜 74には振動方向と直交する Y軸方向にコリオリカが発生する。そして、第 1,第 2検出 梁 131, 132に支持されている第 1,第 2検出枠 141, 142は、図 7 (b)に示すように、 コリオリカによって Y軸方向に互いに逆方向に駆動されて X軸方向の駆動振動と同じ 周波数で振動する。この振動に依存して、第 1,第 2検出枠に設けられた可動側電極 171, 172と第 1〜第 4検出電極 161〜164間の容量がそれぞれ変化する。なお、図 7 (b)においては、各質量部 71〜74の X軸方向の振動については省略している。  In this state, when a rotational angular velocity about the Z axis as a central axis is applied to the vibrator 1, Corioliska is generated in each of the mass portions 71 to 74 in the Y axis direction orthogonal to the vibration direction. The first and second detection frames 141 and 142 supported by the first and second detection beams 131 and 132 are driven by Coriolisers in directions opposite to each other in the Y-axis direction, as shown in FIG. And vibrates at the same frequency as the drive vibration in the X-axis direction. The capacitance between the movable electrodes 171 and 172 provided on the first and second detection frames and the first to fourth detection electrodes 161 to 164 changes depending on the vibration. In FIG. 7 (b), the vibration of the mass parts 71 to 74 in the X-axis direction is omitted.
[0040] 角速度印加時に発生するコリオリカ Fは、次式で与えられる。  [0040] Coriolis F generated when an angular velocity is applied is given by the following equation.
F = 2M ov  F = 2M ov
ここに、 Mは第 1〜第 4質量部 71〜74全体の質量、 ωは角速度、 Vは第 1〜第 4質 量部 71〜74全体の駆動振動速度である。  Here, M is the mass of the entire first to fourth mass parts 71 to 74, ω is the angular velocity, and V is the driving vibration velocity of the entire first to fourth mass parts 71 to 74.
[0041] 非共振型の振動子 1においては、振動子 1の構造的な Υ軸方向の共振周波数が駆 動信号により X軸方向に駆動される際の振動周波数と十分に離れているので、コリオ リカにより生じる Υ軸方向の振動と駆動信号 Sl l, S12によって駆動される X軸方向 の駆動振動とは 90° の位相差を有している。このため、 X軸方向に駆動振動してい る状態で、 Υ軸方向の振動が生じると、図 8に示すように、第 1〜第 4の各質量部 71 〜74は楕円運動を行う。したがって、駆動振動に伴って第 1,第 2モニタ電極 91, 92 に発生する容量変化と、コリオリカによる振動に伴って各検出電極 161〜 164に発 生する容量変化とは、 90° の位相差が生じることになる。  In the non-resonant type vibrator 1, since the structural resonance frequency in the Υ-axis direction of the vibrator 1 is sufficiently separated from the vibration frequency when driven in the X-axis direction by the driving signal, There is a 90 ° phase difference between the Υ-axis vibration generated by Corioca and the X-axis vibration driven by the drive signals Sll and S12. For this reason, when vibration in the Υ-axis direction occurs while driving and oscillating in the X-axis direction, the first to fourth mass portions 71 to 74 perform elliptical motion as shown in FIG. Therefore, a phase difference of 90 ° between the capacitance change generated at the first and second monitor electrodes 91 and 92 due to the drive vibration and the capacitance change generated at each of the detection electrodes 161 to 164 due to the vibration caused by Corioliska. Will occur.
[0042] 一方、コリオリカによる振動に伴って第 1,第 3検出電極 161, 163に発生する容量 変化は、第 3CV変換回路 33によって容量変化に対応した電圧レベルをもつ検出信 号 S31に変換される。同様に、コリオリカによる振動に伴って第 2,第 4検出電極 162 , 164に発生する容量変化は、第 4CV変換回路 34によって容量変化に対応した電 圧レベルをもつ検出信号 S32に変換される。 On the other hand, the capacitance change generated in the first and third detection electrodes 161 and 163 due to the vibration caused by Coriolis is detected by the third CV conversion circuit 33 by a detection signal having a voltage level corresponding to the capacitance change. No. S31. Similarly, the change in capacitance generated at the second and fourth detection electrodes 162 and 164 due to the vibration by Coriolis is converted by the fourth CV conversion circuit 34 into a detection signal S32 having a voltage level corresponding to the change in capacitance.
[0043] この場合、第 3,第 4CV変換回路 33, 34からそれぞれ出力される検出信号 S31, S32はコリオリカに依存する成分に関しては互いに逆相の信号であるので、次段の 第 2差動増幅回路 42で一つの検出信号 S3に増幅変換される。この検出信号 S3は フィルタ回路 52で不要なノイズ成分が除かれた後、ヒルベルト変換回路 60の他方の 入力部に入力される。 In this case, since the detection signals S31 and S32 output from the third and fourth CV conversion circuits 33 and 34 are signals having phases opposite to each other with respect to the component that depends on Coriolis, the second differential signal at the next stage is used. The signal is amplified and converted into one detection signal S3 by the amplifier circuit 42. The detection signal S3 is input to the other input section of the Hilbert transform circuit 60 after unnecessary noise components are removed by the filter circuit 52.
[0044] 前述のように、非共振型の振動子 1においては、モニタ信号 S2と検出信号 S3とは 元々 90° の位相差をもって出力される。また、フィルタ回路 51とフィルタ回路 52とは 、その位相特性が同一となるように設計されている。したがって、ヒルベルト変換回路 60に入力されるモニタ信号 S2'と検出信号 S3'は、それぞれ、  As described above, in the non-resonant type vibrator 1, the monitor signal S2 and the detection signal S3 are originally output with a phase difference of 90 °. The filter circuit 51 and the filter circuit 52 are designed so that their phase characteristics are the same. Therefore, the monitor signal S2 ′ and the detection signal S3 ′ input to the Hilbert transform circuit 60 are respectively
S2' =Asin ot  S2 '= Asin ot
S3, =Bsin( ot+ πΖ2)  S3, = Bsin (ot + πΖ2)
(ただし、 A, Bは振幅)と表記することができる。  (However, A and B are amplitudes).
[0045] そして、両信号 S2, , S3,力ヒルベルト変換回路 60に入力されると、ヒルベルト変換 回路 60は、入力されるモニタ信号 S2'と検出信号 S3'を各々位相調整するとともに、 広 、周波数帯域 Δ fにわたつて各々の位相調整量に正確に 90° の位相差を生じさ せる。このため、ヒルベルト変換回路 60を通過した後のモニタ信号を S4、検出信号を S5とすると、  [0045] When both signals S2, S3, and the Hilbert transform circuit 60 are input, the Hilbert transform circuit 60 adjusts the phases of the input monitor signal S2 'and detection signal S3', respectively. A phase difference of exactly 90 ° is generated in each phase adjustment amount over the frequency band Δf. Therefore, assuming that the monitor signal after passing through the Hilbert transform circuit 60 is S4 and the detection signal is S5,
S4=Asin ot— )  S4 = Asin ot—)
S5 = Bsin( ot+ πΖ2—(α + πΖ2)) =Bsin( ot— a)  S5 = Bsin (ot + πΖ2— (α + πΖ2)) = Bsin (ot— a)
( αは両信号に共通の位相変化量)となる。つまり、ヒルベルト変換回路 60を通過し た後の両信号 S4, S5は常に正確に同相(あるいは逆相)になる。  (α is the amount of phase change common to both signals). That is, both signals S4 and S5 after passing through the Hilbert transform circuit 60 are always exactly in phase (or opposite phase).
[0046] ヒルベルト変換回路 60を通過した後のモニタ信号 S4は、次段の同期検波回路 61 に対して検波参照信号 S4として与えられる。同期検波回路 61は、この検波参照信 号 S4により、ヒルベルト変換回路 60を通過した検出信号 S 5を同期検波する。この場 合、上記の両信号 S4, S5は常に正確に同相(あるいは逆相)になっているので、同 期検波回路 61で同期検波された後に出力される検出信号 S7は正しく半波整流され た形となり、これを平滑回路 62で平滑ィ匕すれば角速度の大きさに対応した所期の電 圧レベルをもつ検出信号 S8が得られる。そして、この検出信号 S8が次段の増幅回 路 63で増幅された後に出力される。この増幅回路 63で増幅された後の検出信号は 、次段の出力調整回路 64により温度ドリフトの影響や感度の温度変化の影響が除か れた後、実際の角速度を算出する図示な 、演算回路に与えられる。 The monitor signal S4 after passing through the Hilbert transform circuit 60 is provided to the next-stage synchronous detection circuit 61 as a detection reference signal S4. The synchronous detection circuit 61 performs synchronous detection of the detection signal S5 that has passed through the Hilbert conversion circuit 60, based on the detection reference signal S4. In this case, the two signals S4 and S5 are always exactly in phase (or opposite phase). The detection signal S7 output after synchronous detection by the phase detection circuit 61 is correctly half-wave rectified, and if this is smoothed by the smoothing circuit 62, the desired voltage level corresponding to the magnitude of the angular velocity can be obtained. Is obtained. Then, the detection signal S8 is output after being amplified by the amplification circuit 63 in the next stage. The detection signal amplified by the amplifier circuit 63 is subjected to an output adjustment circuit 64 at the next stage to remove the influence of temperature drift and the influence of temperature change of sensitivity, and then calculate the actual angular velocity. Given to the circuit.
[0047] また、第 2差動増幅回路 42から出力される検出信号 S3にモニタ信号 S2と逆相ある いは同相の誤差信号 S9が含まれている場合、この誤差信号 S9がヒルベルト変換回 路 60を通過すると、検波参照信号 S4に対して位相が 90° ずれることになるので、次 段の同期検波回路 61で同期検波された後の出力信号 S7は 90° 周期で交互に正 負を繰り返す形となり、これを平滑回路 62で平滑ィ匕すれば誤差信号 S9が相殺される When the detection signal S3 output from the second differential amplifier circuit 42 includes an error signal S9 having a phase opposite to or the same as that of the monitor signal S2, the error signal S9 is converted to a Hilbert transform circuit. After passing through 60, the phase is shifted by 90 ° with respect to the detection reference signal S4.Therefore, the output signal S7 after being synchronously detected by the synchronous detection circuit 61 in the next stage alternates between positive and negative with a 90 ° cycle. If this is smoothed by the smoothing circuit 62, the error signal S9 is cancelled.
[0048] 上記の実施の形態では、静電駆動 Z容量検出型の振動子 1を備えた振動ジャイロ について説明したが、本発明はこれに限定されるものではなぐ例えば、圧電材料や 単結晶からなる音片型振動子を備えた振動ジャイロや、音叉型振動子を備えた振動 ジャイロについても適用することが可能である。 [0048] In the above embodiment, the vibration gyro provided with the vibrator 1 of the electrostatic drive Z-capacitance detection type has been described. However, the present invention is not limited to this. The present invention can also be applied to a vibrating gyroscope having a vibrating piece type vibrator or a vibrating gyroscope having a tuning fork vibrator.

Claims

請求の範囲 The scope of the claims
[1] 振動子(1)と、  [1] a vibrator (1),
前記振動子(1)を駆動する駆動手段(101〜104)と、  Driving means (101 to 104) for driving the vibrator (1);
前記振動子(1)の振動状態をモニタするモニタ手段 (91, 92)と、  Monitoring means (91, 92) for monitoring a vibration state of the vibrator (1);
角速度印加時のコリオリカによる前記振動子(1)の振動変位を検出する検出手段( 161〜164)と、  Detecting means (161 to 164) for detecting a vibration displacement of the vibrator (1) due to Corioliser when an angular velocity is applied;
前記モニタ手段(91, 92)力 得られるモニタ信号と前記検出手段( 161〜 164)で 得られる検出信号とを入力するヒルベルト変換回路 (60)と、  A Hilbert transform circuit (60) for inputting a monitor signal obtained by the monitoring means (91, 92) and a detection signal obtained by the detection means (161 to 164);
前記ヒルベルト変換回路(60)を通過した検出信号を、前記ヒルベルト変換回路(6 0)を通過したモニタ信号に同期して検波する同期検波回路 (61)とを備える振動ジャ イロ。  A vibration gyroscope comprising: a synchronous detection circuit (61) for detecting a detection signal passed through the Hilbert conversion circuit (60) in synchronization with a monitor signal passed through the Hilbert conversion circuit (60).
[2] 振動子(1)を駆動するステップと、  [2] driving the vibrator (1);
前記振動子(1)の振動状態をモニタするモニタステップと、  A monitoring step of monitoring a vibration state of the vibrator (1);
角速度印加時のコリオリカによる前記振動子(1)の振動変位を検出する検出ステツ プと、  A detection step for detecting a vibration displacement of the vibrator (1) by Corioliser when applying an angular velocity;
前記検出ステップにお 、て得られる検出信号および前記モニタステップにお 、て 得られるモニタ信号をヒルベルト変換回路(60)を用いて位相調整するステップと、 前記位相調整された検出信号を前記位相調整されたモニタ信号に同期して検波 するステップとを含む振動ジャイロの角速度検出方法。  Adjusting the phase of the detection signal obtained in the detection step and the monitor signal obtained in the monitoring step using a Hilbert transform circuit (60); and adjusting the phase-adjusted detection signal to the phase adjustment. Detecting the angular velocity of the vibrating gyroscope in synchronization with the detected monitor signal.
PCT/JP2005/007124 2004-04-20 2005-04-13 Vibration gyroscope and angular velocity detecting method for vibration gyroscope WO2005103619A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512506A JPWO2005103619A1 (en) 2004-04-20 2005-04-13 Vibration gyro and method for detecting angular velocity of vibration gyro

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004124099 2004-04-20
JP2004-124099 2004-04-20

Publications (1)

Publication Number Publication Date
WO2005103619A1 true WO2005103619A1 (en) 2005-11-03

Family

ID=35197079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007124 WO2005103619A1 (en) 2004-04-20 2005-04-13 Vibration gyroscope and angular velocity detecting method for vibration gyroscope

Country Status (2)

Country Link
JP (1) JPWO2005103619A1 (en)
WO (1) WO2005103619A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927734A (en) * 1994-11-29 1997-01-28 Sgs Thomson Microelectron Ltd Tuner of satellite receiving system, and method for selecting required channel carrier frequency from among input signal frequency group of satellite receiving system
JP2001356018A (en) * 2000-06-15 2001-12-26 Murata Mfg Co Ltd Angular velocity sensor
JP2003247828A (en) * 2002-02-21 2003-09-05 Kinseki Ltd Angular velocity sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927734A (en) * 1994-11-29 1997-01-28 Sgs Thomson Microelectron Ltd Tuner of satellite receiving system, and method for selecting required channel carrier frequency from among input signal frequency group of satellite receiving system
JP2001356018A (en) * 2000-06-15 2001-12-26 Murata Mfg Co Ltd Angular velocity sensor
JP2003247828A (en) * 2002-02-21 2003-09-05 Kinseki Ltd Angular velocity sensor

Also Published As

Publication number Publication date
JPWO2005103619A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
WO2005103618A1 (en) Gyroscope device
WO2005078389A1 (en) Angular velocity sensor
JPH07113645A (en) Vibrating gyro
JPH06300567A (en) Gyro output detecting method
WO2002018875A1 (en) Angular velocity sensor
JP4915474B2 (en) External force detection device and wiring breakage detection method
JP2005249646A (en) Tuning fork type oscillator for angular velocity sensor, angular velocity sensor using the oscillator, and automobile using the angular velocity sensor
JP4449128B2 (en) Angular velocity sensor
JP2001208546A (en) Angular velocity sensor
US20020100322A1 (en) Vibrating gyroscope and temperature-drift adjusting method therefor
JP2001264071A (en) Vibrator driving device
JP2006010408A (en) Vibratory gyro
JP4877322B2 (en) Tuning fork type bimorph piezoelectric vibrator, vibration gyro module using the same, and method for manufacturing tuning fork type bimorph piezoelectric vibrator
JPH08327366A (en) Vibration type gyro scope
KR100198308B1 (en) Vibrating gyroscope
WO2005103619A1 (en) Vibration gyroscope and angular velocity detecting method for vibration gyroscope
JP2006250643A (en) Abnormality detection device for angular velocity sensor
JP3783893B2 (en) Piezoelectric vibration angular velocity meter
JP3166484B2 (en) Vibrating gyro
JPH09105637A (en) Vibrating gyro
JPH09145378A (en) Detector employing piezoelectric oscillator
JP2004279271A (en) Sensor utilizing piezoelectric material and gyroscope sensor
JP2624431B2 (en) How to adjust the transducer
JP3356012B2 (en) Vibrating gyro
JPH10170277A (en) Detection circuit of piezoelectric oscillation angular velocity meter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512506

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase