WO2005102404A1 - 人工硬膜及びその製造方法 - Google Patents

人工硬膜及びその製造方法 Download PDF

Info

Publication number
WO2005102404A1
WO2005102404A1 PCT/JP2005/007738 JP2005007738W WO2005102404A1 WO 2005102404 A1 WO2005102404 A1 WO 2005102404A1 JP 2005007738 W JP2005007738 W JP 2005007738W WO 2005102404 A1 WO2005102404 A1 WO 2005102404A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
glycolic acid
lactic acid
artificial
material layer
Prior art date
Application number
PCT/JP2005/007738
Other languages
English (en)
French (fr)
Inventor
Noriaki Shirahama
Tomokazu Mukai
Takao Okada
Yukari Imamura
Yoshimichi Fujiyama
Original Assignee
Kawasumi Laboratories, Inc.
Taki Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasumi Laboratories, Inc., Taki Chemical Co., Ltd. filed Critical Kawasumi Laboratories, Inc.
Priority to JP2006512610A priority Critical patent/JP4772669B2/ja
Priority to EP05734373.3A priority patent/EP1741456B1/en
Priority to US11/578,971 priority patent/US7736393B2/en
Publication of WO2005102404A1 publication Critical patent/WO2005102404A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/32Materials or treatment for tissue regeneration for nerve reconstruction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/924Material characteristic
    • Y10S623/926Synthetic

Definitions

  • the present invention relates to an artificial dura used for filling a dura defect in the field of neurosurgery and a method for producing the same.
  • the dura is a membrane that is interposed between the brain and the skull and performs functions such as protecting the brain and cerebrospinal fluid. In craniotomy surgery in neurosurgery, the dura must always be incised. The resulting dura defect or contraction must be compensated for. Traditionally, human dura mater was used to compensate for the disease, but the transplant was banned by the Ministry of Health and Welfare in 1.997 for the possibility that this transplant could cause Croyf-Jet-Jakob disease (CJD) infection. Was.
  • An artificial hardening film made of fluorocarbon resin (polytetrafluoroethylene) ⁇ ⁇ silicone resin has been developed as an artificial hardening material to replace human dry hardening material.
  • these plastic materials forming the artificial dura are usually non-degradable high molecular substances in the living body, so they remain permanently in the body and chronically irritate surrounding tissues. It has been reported to cause tissue hypertrophy and intracapsular hemorrhage. Attempts have also been made to produce artificial dura with collagen or gelatin as the main material, but there are problems such as insufficient suture strength and the inability to maintain the required film strength until dura regeneration.
  • the present applicant has proposed an artificial dura consisting of two or more layers of biodegradable synthetic polymers in Japanese Patent Application Laid-Open No. 2003-199817. At least one layer of the laminate is a “water leakage prevention layer” for preventing leakage of cerebrospinal fluid from an artificial dura needle hole.
  • a “water leakage prevention layer” for preventing leakage of cerebrospinal fluid from an artificial dura needle hole.
  • two layers (elastic layer and shape maintaining layer) having further different performances are laminated on the “water leakage prevention layer”, so that the production process becomes complicated for mass production.
  • Patent No. 345,648 describes a copolymer of lactide and glycolide having a reduced metal content that adversely affects the living body. Is stated. However, with such a copolymer of lactide and glycolide, an artificial dura having the performance of efficiently preventing cerebrospinal fluid leakage as intended by the present invention cannot be obtained.
  • an object of the present invention is to solve the above-described problems in the known art.
  • the "water leakage prevention layer” two layers (elastic layer and shape-maintaining layer) having different performances must be laminated, and the production process becomes complicated to mass-produce them, resulting in:
  • Another object of the present invention is to solve the difficulty in eliminating cerebrospinal fluid leakage from a needle hole in an artificial dura made of stretched fluororesin / silicon: / resin. '
  • melt molding method as a typical method for producing an artificial hardening film.
  • the degradable polymer lactic acid / daricholic acid £ -caprolactone copolymer has a problem that the metal catalyst used for polymerization remains. Therefore, there is a problem that physical properties are deteriorated due to thermal decomposition during melt molding.
  • the present inventors have conducted intensive studies in order to solve the above problems, and as a result, simplified the manufacturing process that could not be achieved by the conventional human hardening, that is, reduced the number of sheets to be laminated, And (a) no liquid leakage, which is a function required for the artificial dura, no liquid leakage from the needle hole around the suture, which is a problem in particular; (b) softness close to that of the biological dura (C) decomposed and absorbed during tissue repair, d) brain surface (E) withstands suture tension, and (f) has no physical deterioration during melt molding. The invention has been reached. Invention
  • the following artificial dura invention is provided.
  • the copolymer has a constituent molar fraction of 60 to & 5: 3 to 15: 10 to 30 mol%, and the average chain length of the copolymer is represented by the following formula:
  • L (LA) represents the average chain length of lactic acid units
  • L (GA) represents the average chain length of glycolic acid units
  • L (CL) represents the average chain length of force prolactone units.
  • % represents the molar fraction of lactic acid in the copolymer
  • GA% represents the molar fraction of glycolic acid in the copolymer
  • CL% represents the molar fraction of force prolactone in the copolymer
  • X represents the copolymer. Shows the degree of polymerization of the polymer.
  • a layer of a hydrophilic polymer is laminated on one side or both sides of the base material layer, and the layer is used as a material layer having a function of preventing adhesion to the brain surface (1) to (4).
  • the artificial dura according to any one of the above.
  • a biodegradable polymer is formed by laminating two or more layers by melt molding.
  • At least one layer of the base material layer is composed of a lactic acid / glycolic acid lactic acid prolactone copolymer.
  • the constituent molar fraction of the copolymer is 60 to 85 .: 3 to 15: 10 to 30 mol%.
  • the metal content in the copolymer is 6 Oppm or less, and the monomer content in the copolymer is 40 ppm or less in terms of the total amount of monomers of lactic acid, glycolic acid and £ -force prolactone.
  • artificial dura there is provided the following invention relating to a method for producing an artificial dura. '[80 with a base layer'.
  • FIG. 1 is an explanatory view showing an example of a layer configuration of an artificial dura 1 of the present invention, and shows an example in which a stacking material layer 3 is laminated on one surface of a base material layer 2.
  • FIG. 2 is an explanatory view showing another example of the layer structure of the artificial hardening film of the present invention, and shows an example in which a stacking material layer 3 is laminated on both surfaces of a base material layer 2.
  • FIG. 3 is an explanatory view showing still another example of the layer configuration of the artificial dura mater of the present invention, and shows an example in which a plurality of material layers, 3a and 3b are laminated on both surfaces of a base material layer 2. Show. The best mode for carrying out the present invention will be described in detail below. -(Content of artificial dura) ''
  • the artificial dura mater of the present invention is constituted by laminating two or more biodegradable polymers, at least one of which is a base material layer, and the base material layer is composed of lactic acid monosaccharide. It is composed of a copolymer ofizic acid and one-pot prolactone, and the constituent molar fraction of the copolymer is 60 to 85: 3 to 15: 10 to 30 mol%, and the average chain length of the copolymer Satisfies the following expressions (1 to '(.3).-.'
  • L (LA) represents the average chain length of lactic acid units
  • L (GA) represents the average chain length of glycolic acid units
  • L (CL) represents the average chain length of force prolactone units.
  • % represents the molar fraction of lactic acid in the copolymer
  • GA% represents the molar fraction of glycolic acid in the copolymer
  • CL% represents the molar fraction of force prolactone in the copolymer
  • X represents the copolymer. Shows the degree of polymerization of the polymer.
  • the artificial dura mater of the present invention is constituted by laminating two or more biodegradable polymers, but the base material layer constitutes at least one layer and retains the necessary strength as an artificial dura mater. Substrate layer that retains its morphology as a dura mater It is.
  • the base material layer is composed of a biodegradable polymer that is decomposed by hydrolysis or enzymatic action in a living body. In the present invention, in particular, the specific lactic acid Z glycoglycolic acid / A copolymer of force prolactone is used.
  • the base material layer is a shape-retaining layer, and at the same time, increases the adhesion to the dura at the time of suturing, and prevents leakage of cerebrospinal fluid from the needle hole at the time of suturing with the dura.
  • the above-mentioned copolymer of lactic acid / glycolic acid / £ -force prolactone (hereinafter referred to as “lactic acid / glycolic acid £ -force prolactone. Copolymer” or simply “copolymer” or “in vivo”
  • the use of “degradable polymer” is the most suitable.
  • the constituent mole fraction of the lactic acid / glycolic acid / p-force prolactone must be 60 to 85: 3 to 15:10 to 30 mol%.
  • the combined mole fraction of lactic acid and glycolic acid exceeds 90%. If the molar fraction is too high, the base material layer becomes too hard, and as a result, the entire artificial dura becomes hard. Such an excessively hard artificial dura is undesirable because it may damage the brain surface. In addition, when the artificial dura is sewn with the autologous dura, it is not desirable because the sutured portion is not tightly attached to the autologous dura. '.
  • the segment unit of the biodegradable polymer constituting the base material layer needs to satisfy the condition of “average chain length” defined by the following formulas (1) to (3). .
  • L (LA) is the average chain length of lactic acid units
  • L (GA) is the average chain length of glycolic acid units
  • L (CL) is the average chain length of force prolactone units.
  • LA% indicates the molar fraction of lactic acid in the copolymer
  • GA% indicates the molar fraction of glycolic acid in the copolymer
  • CL% indicates the molar fraction of force prolagtone in the copolymer.
  • X indicates the degree of polymerization of the copolymer.
  • the sheet made of the copolymer has a softness close to a living body required for an artificial dura and a cerebrospinal fluid from the needle hole. This is a necessary condition to achieve the rubber-like physical properties of shrinking the needle hole without causing leakage. Therefore, it is necessary that the copolymer used in the present invention satisfies all of the formulas (1) to (3). If any of 3) is not met, the copolymer can no longer be used undesirably in the artificial dura mater of the present invention.
  • the metal content in the biodegradable polymer constituting the base material layer is desirably 60 ppm or less, preferably 30 ppm or less.
  • the metal content is a metal mainly derived from a polymerization catalyst used in the polymerization of the biodegradable polymer, and refers to metals such as tin and zinc, but is not particularly limited thereto. It is not.
  • the monomer content in the biodegradable polymer constituting the base material layer must be 40 ppm or less as the total amount of lactic acid, glycolic acid and ⁇ -force prolactone.
  • the total amount of the monomers exceeds 40 ppm, not only does the storage stability of the biodegradable polymer decrease, but also the strength decreases and it becomes difficult to maintain the shape in the living body. Further, if melt molding for producing an artificial hardening is carried out in the presence of a monomer in an amount exceeding 4 Oppm, excessive thermal decomposition occurs, which further reduces the strength of the artificial hardening. mm).
  • the artificial dura mater of the present invention is formed as a film-like sheet having two or more layers of the above-mentioned biodegradable polymer, and the film thickness can be easily controlled by a molding temperature and a molding pressure. If the dura is too thin, its strength may be insufficient and cerebrospinal fluid may leak, while if it is too thick, the dura may become too rigid and damage the brain surface. I don't like it. : Therefore, the total thickness of the artificial dura is preferably in the range of 30 to 100.0 m.
  • the thickness of the base material layer is 25 to 900 / iii, preferably about 50 to 500 m, and the thickness of each material layer is 5 to 500 m, preferably It is about 5 to 200 zm. .
  • the artificial dura mater of the present invention has a function of laminating a layer of a hydrophilic polymer on one or both sides of the substrate layer made of a biodegradable polymer, and preventing the layer from adhering to the brain surface. It is configured as a stacking material layer having a laminate, and is a laminated body (laminated sheet) of two or more layers.
  • the layer configuration of the artificial dura will be further described based on the drawings.
  • FIG. 1 is an explanatory view showing an example of a layer configuration of an artificial dura mater 1 of the present invention, in which a stacking material layer 3 is laminated on one surface of a base material layer 2
  • FIG. 3 shows another layer configuration of the artificial hardening film of the present invention, in which a stacking material layer 3 is laminated on both surfaces of the base material layer 2.
  • FIG. 3 shows still another layer configuration of the artificial hardening film of the present invention.
  • FIG. 4 is an explanatory diagram showing an example of the present invention, and shows an example in which a plurality of material layers, 3a and 3b, are laminated on both surfaces of a base material layer 2.
  • the material layer 3 is a layer made of a hydrophilic polymer, and is a layer that imparts a further function of preventing cerebrospinal fluid from leaking.
  • the artificial dura of the present invention is, as illustrated in at least FIG. 1, an artificial dura 1 having a two-layer structure, or an artificial dura 1A having a three-layer structure as illustrated in FIG.
  • the cerebrospinal fluid basically played in the base layer 2 is constituted by the base layer and the masonry layer.
  • the leakage prevention function is further strengthened by the pile layer.
  • the hydrophilic polymer which is the substrate layer 3 to be laminated on one side or both sides of the substrate layer 2 may be any hydrophilic polymer as long as it is a biodegradable hydrophilic polymer. In view of this, a hydrophilic polymer having high biocompatibility is preferred. In this way, the artificial dura comes into close contact with the autologous dura, so that leakage of cerebrospinal fluid from the contact surface can be suppressed as much as possible.
  • the hydrophilic polymer is a water-swellable polymer, such as hyaluronic acid, carboxymethylcellulose, methylcellulose, and hydroxy.
  • propylcellulose alginic acid, or a copolymer thereof.
  • any copolymer may be used as long as it is a hydrophilic polymer.
  • a gel-like glycolic acid / e-force prolacdone copolymer described in the above-mentioned JP-A-2003-1997817 Can also be used.
  • the stacking material layer 3 is not limited to a single layer, but may have a multilayer structure of two or more layers (3a, 3b, 3c, ⁇ , 3n).
  • a layer 3a of glycolic acid / e-force product may be formed as a stacking layer, and a layer 3b of hyaluronic acid or carboxymethyl cellulose may be further formed thereon.
  • the artificial dura mater of the present invention is produced by a process of obtaining a biodegradable polymer by two-step polymerization as described below, and a process of using the polymerized polymer as a base layer. That is, the artificial dura having the substrate layer,
  • Lactic acid / glycolic acid / ⁇ -force prolactone copolymer is added to the copolymer of (1).
  • the monomer mixture is added to the mixture, and the molar fraction of the final product is lactic acid / glycolic acid—60 85: 3 to 15: 1030 mol% as a force prolactone. Obtaining a coalescence, and
  • lactic acid / glycolic acid-force prolactone copolymer As a first step, lactic acid / glycolic acid is placed in a reaction vessel equipped with a thermometer, a nitrogen inlet tube, and an exhaust port. / £ -Lactide, glycolide, and force prolactone are added so that the molar fraction of force prolactone is 60 98: 3 20: 3 40 mole%.
  • a catalyst tin octanoate, tin chloride, dibutyl tin dilaurate, aluminum isopropoxide, titanium tetraisopropoxide, getyl zinc, etc. are added in the range of 0.0005 0.005% by mass, and in the presence of the catalyst, Heating is performed to perform ring-opening polymerization at 100 250 ° C to obtain a copolymer.
  • the constituent molar fraction of the final product in this copolymer is 60 85 ⁇ : 3 1 ⁇ 5: 10 30% by volume as lactic acid / glycolic acid / -force prolactone.
  • a monomer mixture of lactide, glyceride, glycolide, and ⁇ -force prolactone is added to the polymerization system, and ring-opening polymerization is performed at 100 to 250 ° C.
  • the average chain length of each monomer unit of the copolymer is controlled so as to satisfy the expressions (1) and (3) defined in the present invention. It is possible to do.
  • the lactic acid / glycolic acid / e-force prolactone copolymer in the first stage polymerization is not particularly limited, and any method can be used as long as it is produced by a general polymerization method. It may be.
  • a method of obtaining a copolymer by directly dehydrating and polycondensing lactic acid, glycolic acid, and e-force prolactone under reduced pressure may be used.
  • the monomer raw material can be polymerized in a molten state, but the polymerization can also be performed in a solvent in which the monomer is dissolved.
  • the lactide or lactic acid monomer used for ring-opening polymerization or dehydration polycondensation may be any of D-form, L-form, and DL-form, or may be used as a mixture of these. Yes.
  • the copolymer when the copolymer is subjected to melt molding in the presence of these monomers or oligomers, excessive thermal decomposition occurs and the strength is reduced, and the shape maintaining performance in an organism required as an artificial hardening film is reduced. It is not desirable because it lowers. Therefore, it is preferable that the monomer content in the copolymer is substantially absent by repeating the reprecipitation method or the like, and specifically, it is 4 ppm or less, preferably 30 ppm or less. It is preferable to use it after purification.
  • the number average molecular weight of the lactic acid / glycolic acid / ⁇ -proprolactone copolymer obtained by the two-stage polymerization described above is in the range of 100,000 to 500,000. is there. ', ...
  • the average chain length of the obtained copolymer satisfies the conditions defined by the above-mentioned formulas (1) to (3), for example, the number average molecular weight. Even when the average chain length is within the above range, unless the average chain length satisfies the condition specified in the present invention, it is not possible to obtain an artificial dura having the excellent properties aimed at by the present invention. (Manufacture of artificial dura)
  • the base material layer 2 constituting the artificial hardening film of the present invention may be formed by any of the known plastic molding methods for forming a general film or sheet.
  • the copolymer material for artificial hardening composed of a lactate / dalicholate / £ -force prolactone copolymer obtained by the above-described method is prepared by using, for example, Cloth-form. It can be processed into a film or sheet by dissolving in a solvent of the type described above, applying a solution of the polymer on an appropriate substrate, air-drying and releasing. Alternatively, the copolymer powder may be melted under heating and pressed. Further, the copolymer may be melted by heating and extruded with a die to form a film or a sheet.
  • the method of laminating the stacking layer 3 of the hydrophilic polymer to be stacked on the base layer 2 may be any method as long as the stacking layer can be disposed in close contact with the base layer 2.
  • heat-welding of the hydrophilic polymer, coating of the substrate layer film or sheet diving (immersion) on the hydrophilic polymer solution, base of the hydrophilic polymer solution Means include application and casting to the material layer, and adhesion of the hydrophilic polymer film or sheet to the base material layer with an adhesive or the like.
  • lactic acid / glycolic acid / hydroprolactone copolymer and hydrophilic polymer are separated from each die by a multilayer extrusion molding machine using a multilayer die.
  • a multilayer film or a multilayer sheet composed of the base material layer 2 and the stacking material layer 3 at once by melt extrusion.
  • a multilayer film or the like may be formed by a multilayer thermal lamination or a multilayer adhesive lamination.
  • the artificial dura mater of the present invention is similar to the artificial dura described in Japanese Patent Application Laid-Open No. 2003-1999817: 'a “water leakage prevention layer”; Even if the (elastic layer and the shape maintaining layer) are not laminated, (1) the needle hole is not enlarged and liquid leakage does not occur, and ('2) even if the artificial dura is manufactured by melt molding. It is estimated that the strength is maintained for about 3 months or more in vivo, which is optimally slightly longer than the regeneration period of the autologous dura.
  • Glycolic acid was obtained by subjecting glycolic acid (reagent, manufactured by Tokyo Chemical Industry Co., Ltd.) to dehydration polycondensation at about 180 ° C. with stirring under reduced pressure at 250 ° C. to obtain glycolide.
  • glycolic acid (reagent, manufactured by Tokyo Chemical Industry Co., Ltd.)
  • 202 g of L-lactide (reagent, manufactured by Aldrich Co.)
  • 10 g of the above-mentioned glycolide and , manufactured by Tokyo Chemical Industry Co., Ltd.) 3 8 g and stannous octoate (reagent as a catalyst, manufactured by Sigma Co.) 0.
  • O lg was added, 1 X 1 0- 3 mmH the reaction vessel using a vacuum pump g, and polymerization was carried out at 150 ° C for 24 hours.
  • the copolymer obtained after the reaction is purified by dissolving the copolymer in chloroform and precipitating the precipitate in methanol to obtain a lactic acid / glycolic acid / e-force prolactone copolymer for use in the artificial hardening film of the present invention. A coalescence was obtained.
  • Lactic acid / glycolic acid / e-force prolactone copolymer obtained as described above.
  • the number average molecular weight of the polymer was measured by GPC and found to be 280,000.
  • the composition (molar fraction) was As a result of measurement by iH-NMR, the molar fraction of lactic acid / glycolic acid monoprolactone was 67: 8: 25 mol%.
  • the average chain length of the copolymer was determined by 13 C-NMR measurement. As a result, L (LA) was 7, L (GA) was 5.1, and L (CL) was 1.2. In addition, the average chain length in equations (1) to (3) is 2 ⁇ L (LA) ⁇ 133, 1 ⁇ L. (GA), 1, 59, and KL (CL) ⁇ 497. Was also within the range defined by the formulas 'to (3).'-Also, as the metal content in the lactic acid / glycolic acid / e-force prolactone copolymer thus obtained, tin was The Sn content was 16 ppm, and the monomer content was 20 ppm as the total amount of lactic acid, glycolic acid and lactone prolactone.
  • An artificial hardened film having the layer configuration shown in FIG. 1 was formed using the obtained lactic acid / glycolic acid / e-force prolactone copolymer as a base material layer. That is, the powder of the copolymer was press-molded at 160 ° 30 kg / cm 2 and cooled by a cooling press machine at 10 ° C. to obtain a 200- ⁇ m-thick film-like sheet having rubber elastic shape retention. Thus, a base material layer 2 was obtained.
  • a cast film of hyaluronic acid (reagent, manufactured by Wako Pure Chemical Industries, Ltd.), which is a hydrophilic swellable polymer, is laminated to form a stacking material layer 3 having a thickness of 300 m.
  • An artificial dura 1 consisting of two layers was obtained.
  • the constituent molar fraction of the final product becomes 75: 7: 18 mol% as lactic acid Z-glycolic acid / p-force prolactone.
  • the copolymer obtained after the reaction is purified by dissolving the copolymer in chloroform and precipitating the precipitate in methanol to obtain the lactic acid / glycolic acid / thickness prolactone copolymer used in the artificial hardening film of the present invention. Obtained.
  • the metal content in the lactic acid / glycolic acid / £ -prolactone copolymer thus obtained was as follows: tin was 20 ppm as Sn, and the monomer content was as the total amount of lactic acid, glycolic acid and ⁇ -force prolactone. It was 18 ppm.
  • An artificial hardened layer having a layer configuration as shown in FIG. 3 was formed using the obtained lactic acid / glycolic acid / coprolactone copolymer as a base material layer. That is, the above copolymer powder was press-molded at 200 ° C. and 30 kgZcm 2 , and 10. The resultant was cooled by a cooling press machine C to obtain a base material layer 2 of a 200 m-thick film-like sheet having a rubber-like shape maintaining property. Further, a copolymer of a gel-like biodegradable polymer, glycolic acid Z £ —force prolactone (number average molecular weight 68,000), is laminated on one surface by thermal welding to form a stacking material layer 3a.
  • both sides are coated with hyaluronic acid (reagent, manufactured by Wako Pure Chemical Industries, Ltd.), and coated on both sides to form layers 3b and 3b to obtain an artificial hardened film consisting of four layers with a thickness of 350 mm.
  • hyaluronic acid (reagent, manufactured by Wako Pure Chemical Industries, Ltd.)
  • glycolic acid Ze-force prolactone copolymer used for forming the stacking layer 3a was synthesized by the following method.
  • the number average molecular weight of the glycolic acid / £ -force prolactone copolymer obtained in this manner was determined by GPC to be 68,000, and its composition (molar fraction) was 1
  • the molar fraction of glygolic acid / ⁇ : gap D-lactone was 40:60 mol%.
  • Glycolic acid was obtained by subjecting glycolic acid (reagent, manufactured by Tokyo Chemical Industry Co., Ltd.) to dehydration polycondensation at about 180 ° C. with stirring under reduced pressure at 250 ° C.
  • glycolic acid (reagent, manufactured by Tokyo Chemical Industry Co., Ltd.)
  • dehydration polycondensation at about 180 ° C. with stirring under reduced pressure at 250 ° C.
  • 10 g of glycolide and £ -force prolacton (reagent, Tokyo Kasei) 1 12 g and Jechiru zinc (reagent as a catalyst, Kanto chemical Co., Ltd.) 0. 01 g was added and vacuum inside the reaction vessel to 1 X 10- 3 mm Hg with a vacuum pump, 145 ° C For 24 hours.
  • the average chain length in the formulas (.1) to (3) is 2 * L (LA) ⁇ 107, 1 * L (GA) ⁇ 67, 1 ⁇ L (CL) ⁇ 201. Were all within the range defined by equations (1) to (3).
  • lactic acid Z glycolic acid £ one strength prolactone copolymer zinc is Zn and 30 ppm is a monomer content of lactic acid, glycolic acid and one strength prolactone. The total amount was 26 ppm.
  • An artificial hardening layer 1A having a layer structure as shown in FIG. 2 having a base layer made of the obtained lactic acid 7 glycolic acid / hydroprolactone copolymer was prepared. That press-molding a powder of the copolymer at 180 ° C, 30 kg / cm 2, and cooled at 10 ° C Me cooled pre scan machine, the film thickness of 200 ⁇ In having rubber elasticity shape maintainability Thus, a base sheet 2 having a state sheet was obtained.
  • the pressure was reduced to mmHg, and polymerization was carried out at 160 ° C for 8 hours.
  • 156 g of ⁇ force prolactone was added into the reaction vessel, and polymerization was carried out at 190 ° C. for 10 hours.
  • 22 g of glycolide was added, and the mixture was heated to 210 ° C. to perform polymerization for 24 hours.
  • the product was dissolved in chloroform and purified in methanol to obtain a lactic acid / glycolic acid / ⁇ -force prolactone copolymer.
  • An artificial hardening film 1 was prepared from the obtained copolymer according to the layer structure shown in FIG. That is, the copolymer powder was press-molded at 200 ° C. and 30 kg cm 2 , cooled with a cooling press machine at 10 ° C., and formed into a 200 zm thick film having a rubber elastic shape maintaining property. Thus, a base material layer 2 was obtained. Further, a copolymer of glycolic acid / e-force prolactone (number average molecular weight 68,000), which is a gel-like biodegradable polymer as in Example 2, was laminated as a stacking material layer 3 by heat welding. An artificial dura 1 consisting of two layers having a thickness of 350 m was obtained.
  • glycolic acid Z-force prolactone copolymer used as the material layer 3 was synthesized in the same manner as in Example 2.
  • reaction vessel equipped with an exhaust port and a thermometer, as the first stage of polymerization, 130 g of L-lactide, 2 g of glycolide, 50 g of proprolactone and 0.01 g of tin octoate as a catalyst was added, the reaction vessel was reduced to IX 10_ 3 mm Hg with a vacuum pump, it was polymerized for 24 hours at .150 ° C.
  • An artificial hardened film using the obtained copolymer as a base material layer was prepared according to the layer configuration shown in FIG.
  • the copolymer powder was press-molded at 160 ° C. and 3 OkgZcm 2 , cooled with a cooling press machine at 10 ° C., and formed into a 200 ⁇ m thick film having a rubber elastic shape maintaining property.
  • a base material layer 2 was obtained.
  • hyaluronic acid which is a hydrophilic swellable polymer, was arranged as the bulk material layer 3 in the same manner as in Example 1 to obtain an artificial hardened film 1 composed of two layers having a thickness of 300 ⁇ m.
  • Glycolic acid (reagent, manufactured by Tokyo Kasei Co., Ltd.) was stirred and dehydrated and polycondensed at about 180 ° C, and the oligomer obtained was distilled under reduced pressure at 250 ° C to obtain glycolide.
  • L-lactide L-lactide (L-lactide) was used so that the constituent molar fraction of the final product was 72: 8: 20 mol% as lactic glycolic acid da-force prolactone.
  • Reagents Aldrich (278 g), the above-mentioned glycolide (18 g), and £ -force prolactone (Reagent, Tokyo Kasei Co., Ltd.) (120 g) were added, and polymerization was further performed at 150 ° C for 24 hours.
  • the copolymer obtained after the reaction is purified by dissolving the copolymer in chloroform and precipitating it in methanol to form a copolymer of lactic acid-Z-glycolic acid / £ -prolactone used in the artificial hardening film of the present invention. A coalescence was obtained.
  • the metal content in the lactic acid / glycolic acid / e-force prolactone copolymer thus obtained was as follows: tin was 2 Oppm as Sn, and the monomer content was lactic acid, glycolic acid, and £ -force prolactone. The total amount was 16 ppm.
  • the number of tests ⁇ was 5, and the average was determined.
  • Each artificial dura was cut into 6.35 mm X 64 mm, and a tensile test (Shimazu Seisakusho Co., Ltd., at a constant temperature of 3: 7 ° C, a distance between the chucks of 20 mm and a bow I tension speed of 10 mm / min.) 'Use a tensile tester)' and record the tensile-tensile resistance at 10% increase.
  • a tensile test Shiazu Seisakusho Co., Ltd., at a constant temperature of 3: 7 ° C, a distance between the chucks of 20 mm and a bow I tension speed of 10 mm / min.
  • Each artificial dura was cut into 6. '35 mm x 64 mm and subjected to a bending resistance test in the same manner as in JIS-L1096.
  • the length of the test piece during the test was 40 mm.
  • Each artificial dura was cut into 6.35 mm x 64 mm, stretched 100% at a constant temperature of 37 ° C at a chuck distance of 20 mm and a pulling speed of 1 Omm / min, removed from the chuck, and kept at a constant temperature of 37 ° C. After storage under the conditions for 1 hour, the elongation percentage of the stretched portion was measured.
  • Degradable test specimens obtained by cutting each artificial dura into each 6.35 mm x 64 mm were immersed in a physiological saline solution and kept at 37 ° C. This was taken out after 4 weeks, 8 weeks, and 12 weeks, and a bow I tensile strength test was performed. The tensile test was performed under the conditions of a test piece of 1 Omm between chucks and a pulling speed of 50 mm / min. 7k leak test
  • An artificial dura of 50 mm, width 25 mm and a living brain dura collected from bush are continuously sutured with a suture thread (Betril suture, made by Ethicon, Inc.) so that the overlap width is 5 mm and the suture interval is 2 mm.
  • a 50 mm square test piece was prepared. This test piece was set in a 47 mm in-line filter holder (MILLIPORE), a 37 ° C saline bag was set in the upper opening of the in-line filter holder, and pressurized to 20 mmHg and 6 OmmHg. Then, the physiological saline flowing out from the lower mouth was collected, and the amount of water leaking from the sutured portion in one minute was measured. The number of tests n was 5, and the average was obtained from the measurement results.
  • the average chain length of the biodegradable polymer used for each substrate layer was determined by 13 C-NMR measurement of the polymer, and was determined by the following formula based on the measurement results. The results are shown in Table 1. Average length of lactic acid unit ⁇
  • L (LA) (LLL + LLC + CLL + LLG + GLL) / ⁇ (LLC + CLL) /: 2+ (LLG-l-GLL) 2 ⁇ : average chain length of Rico Le acid Knit: -. ' . '
  • L (CL) (CCC + CCL + LCC + LCL) / (LCC + LCL) / 2
  • LLL, LLC, CLL, LLG, and GLL are integral values of carbonyl carbon of lactic acid unit
  • GGG, GGL, and LGG are integral values of carbonyl carbon of glycolic acid unit
  • CCC, CCL, LCC, LCL is the integral value of carbonyl carbon of force prolactone unit.
  • Table 1 summarizes the compositions of the examples and comparative examples. (Composition table)
  • Examples 1 to 3 have smaller permanent elongation than Comparative Examples 1 to 3, and can minimize the hypertrophy of the needle hole generated at the time of suturing. It can be easily presumed that prevention is possible.
  • Table 3 Water leak test
  • Example 2 Using the artificial dura mater used in Example 1 and Comparative Example 2, an embedding test was performed on the head of a perch.
  • the artificial hardening film of the present invention basically comprises a base material layer and a masonry layer.
  • a base material layer for example, like a conventional artificial hardening film, two layers having different performances (elasticity) Layer and shape-maintaining layer), the needle hole is not enlarged and liquid leakage does not occur, and even if it is an artificial dura manufactured by melt molding, it can be autologous in vivo. It is estimated to maintain strength for about 3 months or more, which is slightly longer than the renewal period, and its industrial applicability is very large.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

生体内分解性高分子を二層以上積層して構成され、少なくともその一層は基材層であり、当該基材層は、乳酸/グリコール酸/ε-カプロラクトン共重合体からなり、当該共重合体の構成モル分率が60~85:3~15:10~30モル%であって、かつ、共重合体の平均連鎖長が下記式(1)~(3)を満たす人工硬膜及びその製造方法を提供する。この人工硬膜を使用した場合、針穴の肥大が小さいため液漏れが生じず、また、その強度維持期間が、自家硬膜の再生期間より若干長く好適である。2<L(LA)<〔LA%/(LA%+GA%+CL%)〕×X×0.058(1)1<L(GA)<〔GA%/(LA%+GA%+CL%)〕×X×0.58(2)1<L(CL)<〔CL%/(LA%+GA%+CL%)〕×X×0.58(3)(式中、L(LA)、L(GA)、L(CL)は、それぞれ乳酸、グリコール酸、カプロラクトンの各ユニットの平均連鎖長を示す。LA%、GA%、CL%は、共重合体中の乳酸、グリコール酸、カプロラクトンのそれぞれのモル分率を、Xは共重合体の重合度を示す。)

Description

明 細 書 人工硬膜及びその製造方法
坊術 睜
本発明は、脳外科分野における硬膜欠損の補填に用いる人工硬膜及びその製造 方法に関する。
硬膜は脳と頭蓋骨との間に介在し、 脳の保護、 脳脊髄液の保護等の機能を担う 膜である。脳外科における開頭手術においては、 必ず硬膜を切開することになる が、 これにより生じた硬膜の欠損あるいは収縮は、 これを補填する必要がある。 従来は の補填に、 ヒト乾燥硬膜が使用されてきたが、 この移植は、 クロィヅフ エルト ·ャコブ病 ( C J D )感染の原因となる恐れがあるとし、 1.9 9 7年厚生 省により使用が禁止された。
ヒト乾燥硬膜に代わる人工硬膜として延伸したフヅ素系 脂' (ポリテトラフル · ォロエチレン) ゃシリコ一ン樹脂を素材とする人工硬膜も開発されている。 しか しながら、 これら人工硬膜を形成するプラスチヅクス材料は、 通常生体内非分解 性高分子物質であるため、 体内に永続的に残留し、 周辺組織へ慢性的に刺激を与 えることから、 肉芽組織の肥大化、 皮膜内出血の原因となると報告されている。 また、 コラーゲンやゼラチンを主材料とする人工硬膜の作製も試みられたが縫 合強度の不足、硬膜再生まで必要とされる膜強度を保持できない等の問題がある。 本出願人は、 特開 2 0 0 3— 1 9 9 8 1 7号において、 生体内分解性合成高分 子二層以上積層することからなる人工硬膜を提案した。当該積層体の少なくとも 一層は、 人工硬膜針穴から脳脊髄液の漏れを防止するための「漏水防止層」であ る。 しかしながら、 当該人工硬膜の形態としては、 前記「漏水防止層」 に、 さら に性能の異なる二つの層 (弾性層と形状維持層) を積層するため、 量産化するの に製造工程が煩雑となり、 コスト高になるという問題があった。
また、 これまでに提案されている生体内分解性合成高分子からなる人工硬膜は、 生体親和性が高きに過ぎ、 脳表面との癒着が懸念され、 特に外傷性脳損傷などの 場合、 出血が激しく癒着する危険性がとくに高いという大きな問題があった。 ま た、 先の外傷性脳損傷の場合、 再開頭を行う頻度が高いが、 もし、 脳表面と人工 硬膜が癒着した場合は、 開頭手技が困難になるというは大きな問題がある。
また、 特許第 3 4 5 3 6 4 8号には、 生体に悪影響を及ぼす金属含量を減少し たラクチドとグリコリドからなる共重合体が記載されており、 その用途には人工 硬膜があることが述べられている。 しかしながら、 この様なラクチドとグリコリ ドとの共重合体では、 本発明が目的とするような脳脊髄液の漏れを効率的に防止 する性能を有した人工硬膜を得ることができない。
以上のように、 現在では、 必ずしも性能的に、 また、.製造プロ.セス的にも充分 とはいえない人工硬膜しか提案されていない状況にある。
かくして、 本発明の目的は、 上記した公知技術における問題を解決することで あり、 例えば上記特開 2 0 0 3 - 1 9 9 8 1 7号に記載の人工硬膜においては 「漏水防止層」 に、 さらに性能の異なる二つの層 (弾性層と形状維持層) を積層 しなければならないこと、及び、これらを量産化するのに製造工程が煩雑となり、: :5ス下高にな-ること、.また、 延伸フヅ素樹脂ゃシリコ一:/樹脂 素材とする人工 硬膜における、針穴からの脳脊髄液の漏れを皆無にするのが困難な点を解決する ことである。 . '
また、 従来、 人工硬膜を製造する代表的な方法に溶融成形法があるが、 分解性 ポリマ一である乳酸/ダリコール酸 £ -カプロラクトン共重合体は、重合に使用 する金属触媒が残存することにより、 溶融成形中に熱分解により物性が劣化する という問題がある。
これにより人工硬膜が、 自家硬膜が再生するまでの期間、 脳脊髄液漏れを抑制 することが困難となる。
本発明者らは、 以上の課題を解決するために鋭意検討を重ねた結果、 従来の人 ェ硬膜がかって成しえなかった製造工程の簡略化即ち、積層するシートの構成数 を減らし、 かつ、 (a ) 人工硬膜に要求される機能である液漏れが無いこと、 特 に問題となる縫合糸周囲の針穴からの液漏れが無いこと、 (b ) 生体硬膜に近い 柔らかさを有すること、 (c ) 組織の修復に伴い分解吸収されること、 d ) 脳表 面との癒着がないこと、 (e)縫合張力に耐えうること、 及び(f ) 溶融成形時の 物性劣化がないこと等、人工硬膜に要求される全ての性能を具備した人工硬膜の 発明に到達した。 発明の闘示
本発明によれば、 以下の人工硬膜の発明が提供される。
〔 1〕 生体内分解性高分子を二層以上積層することにより構成される人工硬膜で あって、 少なくともその一層は基材層であり、 当該基材層は、 乳酸 グリコール酸 —力プロラクトン共重合体からなり、 当該共重合体の構成モル分率が 60〜& 5 : 3〜15 : 10〜30モル%であって、 かつ、 共重合体の平均連鎖長が下記式
(1) 〜 (3) を満たすことを特徴とする人工硬膜。
2 <L(LA)<CLA%/(LA% + GA% + CL%))XXX 0.058 -. (1) 1ぐ L(GA)<〔GA%/(LA% + GA%+CL%)〕xXxO..58 (2) 1ぐ L (CL)く〔CL%/(LA% + GA%+CL%)〕— XX.X 0.58 (3)
(式中、 L (LA) は乳酸ユニットの平均連鎖長を、 L (GA) はグリコール酸 ユニットの平均連鎖長を、 L (CL)は力プロラクトンユニットの平均連鎖長を 示す。 更に、 LA%は共重合体中の乳酸モル分率を、 GA%は共重合体中のグリ コール酸モル分率を、 CL%は共重合体中の力プロラクトンモル分率をそれぞれ 示し、 Xは共重合体の重合度を示す。)
〔 2〕 前記共重合体中の金属含有量が 60 p p m以下である 〔 1〕 に記載の人 ェ硬膜。
〔3〕 前記共重合体中のモノマ一含量が、 乳酸、 グリコール酸及びど-力プロ ラクトンのモノマ一総量として 4 Oppm以下である 〔1〕又は〔2〕 に記載の 人工硬膜。
〔4〕 生体脳硬膜と縫合した際に於ける脳圧が 2 OmmHg以下の場合に於い て、 縫合部からの液の漏れが 5 ml/mi n以下である 〔1〕 ないし 〔3〕 のい ずれかに記載の人工硬膜。
〔5〕 前記基材層の片面又は両面に親水性高分子の層を積層し、 当該層を脳表 面との癒着を防止する機能を有する積材層とした 〔1〕ないし〔4〕のいずれか に記載の人工硬膜。
〔 6〕 前記積材層を構成する親水性高分子が、 水膨潤性高分子である 〔 1〕 な いし 〔5〕 のいずれかに記載の人工硬膜。
〔 7〕 生体内分解性高分子を、 溶融成形により、 二層以上積層することにより 構成され、 ··
少なくとも基材層の一層は、 乳酸/グリコール酸 力プロラクトン共重合体 . からなり'、 当該共重合体の構成モル分率が 60〜85.: 3~15 : 10~30モ ル%であって、 かつ共重合体中の金属含有量が 6 Op pm以下、 かつ共重合体中 のモノマ一含量が、 乳酸、 グリコール酸及び £ -力プロラクトンのモノマー総量 として 40 p p m以下であることを特徴とする人工硬膜。 また本発明によれば、 以下の人工硬膜の製造方法に関する発明が提供される。' 〔 80 基材層を有す 'る-人工硬膜の製造方法であ '5て;: .
( 1 )構成モル分率が 60〜94 : 3〜20 : 3〜37モル%の割合で乳酸 グ リコ ""ル酸/ £—力プロラクトン共重合体め重合を行う工程、.
(2) (1) の共重合体に、 乳酸/グリコール酸 Ζε—力プロラクトン共重合体 を構成する各モノマ一混合物を添加して、 最終生成物の構成モル分率が、 乳酸 ζ グリコール酸 /ε—力プロラクトンとして 60〜 85: 3〜; 15 : 10〜 30モ ル%とな.る共重合体を得る工程、 及び
(3) 以上の (1) 及び(2) の工程による共重合体により前記基材層を製造す ることを特徴とする人工硬膜の製造方法。
〔9〕 〔8〕 において製造した基材層の片面又は両面に親水性高分子を積層さ せることにより脳表面との癒着を防止する機能を付与した積材層を形成するこ とを特徴とする人工硬膜の製造方法。 面の簡 な説昍 第 1図は、 本発明の人工硬膜 1の層構成の一例を示す説明図であって、 基材層 2 の片面に、 積材層 3を積層した例を示す。
第 2図は、 本発明の人工硬膜の他の層構成の例を示す説明図であって、 基材層 2 の両面に、 積材層 3を積層した例を示す。
第 3図は、 本発明の人工硬膜のさらに他の層構成の例を示す説明図であって、 基 材層 2の両面に、 複数の積材層、 3a、 3 bを積層した例を示す。 雜日 fl»実施するかめの最 ϋの形態 . . · 以下、 本発明を実施するための最良の形態を詳細に説明する。 . - (人工硬膜の内容) '
本発明の人工硬膜は、 生体内分解性高分子を二層以上積層することにより構成さ れるものであって、 少なくともその一層は基材層であり、 当該基材層は、 乳酸ダグ リコ一ル酸/ £一力プロラクトン共重合体からなり、 当該共重合体の構成モル分率 が 60〜 85 : 3〜15: 10〜 30モル%であって、 かつ、 共重合体の平均連鎖 長が下記式 (1 〜'(.3) を満たすものである。 - . '
2く L (LA) < LA%/ (LA% + GA%+CL%)〕 xXx O . 058
KL (GA) < CGA%/ (LA% + GA%+CL%) xXx O . 58
KL (CL) < CCL%/ (LA% + GA + CL%) xXx 0
(式中、 L (LA) は乳酸ユニットの平均連鎖長を、 L (GA) はグリコール酸 ユニットの平均連鎖長を、 L (CL)は力プロラクトンユニットの平均連鎖長を 示す。 更に、 LA%は共重合体中の乳酸モル分率を、 GA%は共重合体中のグリ コール酸モル分率を、 CL%は共重合体中の力プロラクトンモル分率をそれぞれ 示し、 Xは共重合体の重合度を示す。)
(基材層)
本発明の人工硬膜は、生体内分解性高分子を二層以上積層することにより構成 されるが、 基材層は、 少なくともその一層を構成し、 人工硬膜としての必要な強 度を保持し硬膜としての形態を保持する基材としての層 (Substrate Layer) である。基材層は、 生体内において加水分解あるいは酵素的作用を受けて分解さ れる生体内分解性高分子から構成されるものであって、 本発明においては、 特に 上記特定の乳酸 Zグリコ一ル酸/ 力プロラクトンの共重合体が使用される。 基材層は、 より具体的には、 形態保持層であるとともに、 縫合時に脳硬膜との 密着性を上げること、生体硬膜と縫合時に当該針穴からの脳髄液の漏出を防止す ること、 及び生体内で分解される際に、 当該形状を長期間維持することを目的と するための層である。
この目的には、上記の乳酸 グリコール酸/ £ -力プロラクトンの共重合体(以 下.「乳酸/グリコール酸 £ -力プロラク.トン共重合体」 又は単に Γ共重合体」 又は 「生体内分解性高分子」 という。) の使用が最も適するものである。 またそ の構成モル分率は、 乳酸/グリコール酸/ £ -力プロラクトンとして 6 0〜8 5 : 3〜1 5 : 1 0〜3 0モル%であることが必要である。
例えば、乳酸とグリコール酸を合わせたモル分率が 9 0 %を超えるよう.にあま ' り高くなると、 基材層が固くなりすぎて、 その結果、 人工硬膜全体が硬くなる。 このように過度に硬くなつた人工硬膜は、脳表面を傷 'づける可能性があり好まし くない。 また、 人工硬膜を自家硬膜と縫合した際、 縫合部の自家硬膜とめ密着性 が乏しくなり望ましくない。 ' . .
'一方また、グリコ一ル酸のモル分率が 1 5 %を超えるようにあまり高くなると、 人工硬膜全体の生体内での形状維持期間が短くなるため、本来の硬膜が再生する までの期間、 形状を維持することが困難となるため好ましくない。 :
また、 £ -力プロラクトンのモル分率が 3 0 %を超えるようにあまり高.くなれ ば、 膜全体が柔軟となりすぎ、 縫合時の張力に耐えることができないため好まし くない。
(平均連鎖長)
' 本発明においては、基材層を構成する生体内分解性高分子のセグメントュニッ トは、 下記式 (1 ) 〜 (3 ) で規定する 「平均連鎖長」の条件を満たすことが必 要である。
2 < L (LA) < CLA / (LA% + GA%+ C L%) x X x 0 . 0 5 8 1 <L (GA) < CGA%/ (LA% + GA%+CL%)) XXX 0. 58 (2) KL (CL) < CCL%/ (LA% + GA%+CL%)〕 xXx 0. 58 (3)
(式中、 L (LA) は乳酸ユニットの平均連鎖長を、 L (GA) はグリコ一ル酸 ュニヅトの平均連鎖長を、 L (CL)は力プロラクトンュニヅトの平均連鎖長を 示す。 更に、 LA%は共重合体中の乳酸モル分率を、 GA%は共重合体中のグリ コール酸モル分率を、 CL%は共重合体中の力プロラグトンモル分率をそれぞれ 示し、 Xは共重合体の重合度を示す。) ' 本発明の人工硬膜を構成する生体内分解性高分子は 上記したその平均連鎖長 が、 乳酸/グリコ一ル酸/ ε -力プロラクトン共重合体が前記のような構成モル 分率の範囲であることと相俟って、 当該共重合体からなるシートが、 人工硬膜に 要求される生体に近い柔らかさ及び針穴より脳脊髄液の漏れを生じないような 針穴を収縮させるゴム的物性を達成するために必要な条件で.ある。 ' ' 従って、 本発明で使用する共重合体は、 この式 (1)〜 (3)のすベてを充足 することが必要であり、 もし、 当該共重合体が当該式 (1)〜ぐ 3)のいずれか に適合しない場合は、 もはやその共重合体は、 本発明の人工硬膜に好ましくなく 使用することはできない。
(金属含有量等)
また、 基材層を構成する生体内分解性高分子中の金属含有量は、 60ppm以 下、 好ましくは 3 Oppm以下であることが望ましい。 なお、 当該金属含有量と は、 主に当該生体内分解性高分子の重合に際し使用する重合触媒から由来する金 属であって、 例えばスズ、 亜鉛等の金属をいうが、 特にこれに限定されるもので はない。
共重合体の金属含有量が 60 ppmを超える量の金属の共存下で、人工硬膜製 造のための溶融成形を行うと、 熱分解が過剰に生じて分子量が低下し、 人工硬膜 の強度が不足する場合があり好ましくない。更に、 熱分解による生成物である低 分子量体が多量に生成されるため、 人工硬膜を生体内に埋殖した場合、 低分子量 体の分解反応が加速され、 自家硬膜が再生するまでの期間、 脳脊髄液漏れの防止 が困難となるおそれがある。更には、 人工硬膜の保存安定性も低下するという問 題も生じる。
基材層を構成する生体内分解性高分子中のモノマー含量は、 乳酸、 グリコ一ル 酸及び ε -力プロラクトンのモノマ一総量として 4 0 p p m以下であることが必 要である。モノマー総量が 4 0 p p mを超えると生体内分解性高分子の保存安定 性が低下するばかりでなく、 強度が低下して生体内での形状維持が困難になる。 更に、 4 O p p mを超える量のモノマーの存在下で人工硬膜製造のための溶融成 形を行うと、 熱分解が過剰に生じて更に人工硬膜の強度が低下する原因となる。 mm) . .
本発明の人工硬膜は、上記生体内分解性高分子の二層以上のフィルム状シ一ト として成形するが、その膜厚は成形温度、成形圧力により容易に制御可能である。 人工硬膜が薄すぎる場合、 その強度が足りず脳脊髄液の漏れを発生させる可能性 があり、逆に厚すぎると人工硬膜の剛性が高くなりすぎ脳表面.を傷つける可能性 があるた.め好まし.くない。:従って、 人工硬膜の総膜厚は、 3 0〜1 0 O. 0 zmで あることが好ましい。 なお、 基材層の膜厚は 2 5〜9 9 0 /iii、 好ましくは 5 0 - 5 0 0 m程度であり、 それぞれの積材層の膜厚は 5〜 5 0 0〃m、 好ましく は 5〜2 0 0 zm程度である。 .
(積層構造)
本発明の人工硬膜は、生体内分解性高分子からなる上記基材層の片面又は両面 に、 親水性高分子の層を積層し、 当該層を、 脳表面との瘛着を防止する機能を有 する積材層として構成し、 二層以上の積層体 (積層シート) としたものである。 当該人工硬膜の層構成を図面に基づき、 さらに説明する。
第 1図は、 本発明の人工硬膜 1の層構成の一例を示す説明図であって、 基材層 2の片面に、 積材層 3を積層した例であり、 第 2図は、 本発明の人工硬膜の他の 層構成であって、 基材層 2の両面に、 積材層 3を積層した例であり、 第 3図は、 本発明の人工硬膜のさらに他の層構成の例を示す説明図であって、基材層 2の両 面に、 複数の積材層、 3 a、 3 bを積層した例を示す。
ここで積材層 3とは、 親水性高分子からなる層であって、 更なる脳脊髄液の漏 れ防止機能を付与する層である。 本発明の人工硬膜は、 このように、 少なくとも第 1図に例示するように、 二層 構造の人工硬膜 1、 又は第 2図に例示するように三層構造の人工硬膜 1 A、 さら に又は第 3図に例示するように四層構造の人工硬膜 1 Bとして、基材層と積材層 から構成することにより、基材層 2で基本的に奏される脳脊髄液の漏れ防止機能 を、 積材層で更に強化するものである。 なお、 四層を超えるさらに多層構造とす ることも可能である。
• · 基材層 2の片面又は両面に積層させる基材層 3である親水性高分子は、生体内 分解性の親水性高分子であればいかなるものでもよいが、生体組織との密着性等 を鑑みれば生体親和性の高い親水性高分子が好ましい。 このようにして、 当該人 工硬膜が自家硬膜と密着することにより、密着面からの脳脊髄液の漏れを極力抑 制することが可能となる。 また、当該親水性高分子は、 水膨潤性高分子である、 ヒアルロン酸、 カルボキシメチルセルロース、 メチルセルロース、 ハイ ドロキシ
.プロピルセル.ロース、アルギン酸、またはこれらの共重合体などが最も好ましい。 しかしながら、 親水性高分子であるならば、 如何なるものでもよぐ、 先の特開 2 0 0 3 - 1 9 9 8 1 7号に記載のゲル状のグリコール酸/ e—力プロラクドンの 共重合体も使用可能である。 その他、 コラーゲン、 ' 'チ. '口 ラ'一ゲン'..(コラ ゲ ンをプロテア一ゼ処理して水溶性としてもの)、 ゼラチン等を主成分とする酵素 分解性の生体吸収性高分子であってもよい。
なお、 第 3図に示すように、 積材層 3は、 単層ではなく、 二層以上の複層構造 ( 3 a、 3 b、 3 c、 ' · ·、 3 n) としてもよい。例えば、 積材層としてグリ コール酸/ e—力プロラク卜の層 3 aを一層形成し、 さらにその上にヒアルロン 酸やカルボキシルメチルセルロースの層 3 bを形成してもよい。
(重合方法)
本発明の人工硬膜は、生体内分解性高分子を以下のごとき 2段階重合により得 る工程、 及び重合された当該高分子を基材層とする工程、 により製造される。 すなわち、 当該基材層を有する人工硬膜は、
( 1 )構成モル分率が 6 0〜9 8 : 3〜2 0 : 3〜4 0モル%の割合で乳酸/グ リコ一ル酸/ e—力プロラクトン共重合体の重合を行う工程、
( 2 ) ( 1 ) の共重合体に、 乳酸/グリコール酸/ ε—力プロラクトン共重合体 を構成する各モノマ一混合物を添加して、 最終生成物の構成モル分率が、 乳酸/ グリコ一ル酸 —力プロラクトンとして 60 85: 3〜: 15: 10 30モ ル%となる共重合体を得る工程、 及び
(3)以上の (1)及び (2) の工程による共重合体により前記基材層を形成す ることにより製造されるものである。
ここで、 当該乳酸/グリコール酸 —力プロラクトン共重合体の重合方法の 一例を挙げれば、 一段階目として、 温度計、 窒素導入管、 排気口を備えた反応容 器に、 乳酸/グリコール酸 /£-力プロラクトンの構成モル分率が 60 98 : 3 20: 3 40モル%となるようにラクチド、 グリコリ ド、 力プロラク. 卜ンを投入する。 これに触媒として、 オクタン酸スズ、 塩化スズ、 ジラウリン酸 ジブチルスズ、 アルミニウムイソプロポキシド、 チタニウムテトライソプロポキ シド、 ジェチル亜鉛等を 0. 0005 0. 005質量%の範囲で加え、 当該触 媒存在下で加熱-して 100 250°Cで開環重合を行い、 共重合体を得る。
引き続き二段階目として、 この共重合体に最終生成物の構成モル分率が、 乳酸 /グリコ一ル酸/ -力プロラクトンとして 60 85 ·: 3 1· 5 : 10 30 乇ル%となる'ように、 当該重合系に、 ラクチド、 グ,リコリ ド、 ε 力プロラク小' ンの各モノマ一混合物を添カ卩し、 100 250°Cで開環重合を行うものである。 このようにして、 二段階で共重合体を製造することにより、,当該共重合体の各 モノマーュニットの平均連鎖長を、 本発明で規定する式 (1) (3) を充足す るように制御することが可能となる。
なお、 一段階目の重合における乳酸/グリコ一ル酸/ e—力プロラクトン共重 合体は、 特に限定するものではなく、 一般的な重合方法により製造するものであ ればいずれの方法によるものであってもよい。例えば、 上記した開環重合の代わ りに、 乳酸、 グリコール酸、 e—力プロラクトンを減圧下で直接脱水重縮合する ことにより共重合体を得る方法であってもよい。 また開環重合では、 モノマー原 料を溶融状態下で重合させることも可能であるが、 当該モノマーを溶解する溶媒 中で重合を行うこともできる。
なお、 開環重合や脱水重縮合等に使用するラクチドまたは乳酸のモノマーは、 D体、 L体、 DL体のいずれであってもよいし、 これらを混合して使用してもよ い。
しかしながら、得られた乳酸 Zグリコール酸/ £〜力プロラクトン共重合体に モノマーやオリゴマーが存在すると、 これを生体内で使用した際に、 生体の組織 反応及び分解が異常に促進され、 マクロファ一ジの吸収分解以上に分解切片が生 成するため、 組織傷害性を生ずる原因となり好ましくない。
また、 当該共重合体を、 これらモノマ一あるいはオリゴマーの共存下で溶融成 形を行うと、熱分解が過剰に生じるため強度が低下して人工硬膜として必要な生 体内での形状維持性能が低下するため望ましくない。従って、 再沈殿法等の方法 を繰り返すことにより、共重合体中のモノマ一含量を実質的に不存在とすること が好ましく、具体的には 4ひ p p m以下、 好ましくは 3 0 p p m以下になるまで 精製して使用するのが好ましい。
また、前述のような二段階の重合によって得られる乳酸 グリコール酸/ ε― 力プロラクトン共重合体の数平均分子量は、 1 0 0, 0 0 0〜 5 0 0. , 0 0 0の 範囲である。 ' 、 . . ·
本発明において; 特に重要なことは、得られる共重合体の平均連鎖.長が.、 前述 'の式 (1 )〜 ( 3 ) で規定された条件を満たすことであって、 例え数平均分子量 が上記の範囲内であっても、 当該平均連鎖長が本発明で規定する条件を満たさな い限り、 本発明の目的とする優れた特性を有する人工硬膜を得ることができない。 (人工硬膜の製造)
本発明の人工硬膜を構成する基材層 2は、 それ自身公知の一般的なフィル ム又はシートを形成するプラスチック成形方法のいずれかの方法によって 形成すればよい。
基材層 2の作製方法の一例を挙げると、 上記の方法によって得られた、 乳 酸/ダリコール酸/ £ -力プロラクトン共重合体からなる人工硬膜用共重合 体材料をクロ口ホルムなどの溶媒に溶解し、 当該重合体の溶液を、 適当な基 体上に塗布し、風乾後離形することによりフィルム又はシート状に加工する ことができる。 また、 当該共重合体の粉末を加熱下に溶融しプレス成形して もよい。さらに当該共重合体を加熱溶融し Τダイにより押出成形してフィル ムまたはシートとすることもできる。 また、 基材層 2に積層させる親水性高分子の積材層 3の積層方法も、 当該 基材層 2に対して積材層を密着して配置できる方法であればどのような方 法であってもよいが、 例えば当該親水性高分子の加熱溶着、 当該親水性高分 子溶液への当該基材層フィルム又はシートディッビング (浸漬) によるコ一 ティング、 当該親水性高分子溶液の基材層への塗布やキャスティング、 当該 親水性高分子のフィルム又はシートの基材層への接着剤等による接着等の 手段が挙げられる。
さらには、 多層ダイを使用する、 多層押出し成形機により、 乳酸/グリコ —ル酸/ 力プロラク トン共重合体と親水性高分子をそれぞれのダイから
'溶融押出して基材層 2と積材層 3からなる多層フィルム又は多層シートを 一挙に形成することも可能である。 同様にして多層熱ラミネ一シヨン、 多層 接着ラミネ一シヨンにより多層フィルム等を形成してもよい。
(発明の効果) '
. 本発明の人工硬膜は、特開 2 0 0 3— 1 9 9 8 1 7号に記載の人工硬膜のよう: 'に 「漏水防止層」 に、 さちに性能の異なる二つの層'(弾性層と形状維持層) を積 層しなくても、 (1 )針穴の肥大が小さく液漏れを生じず、 また、 ('2 ) 溶融成形 によって製造される人工硬膜であっても、生体内で約 3ヶ月以上強度を維持する と推定され、 これは自家硬膜の再生期間より若干長ぐ最適である。
串施例
以下実施例を挙げてさらに本発明を詳細に説明するが、 本発明はこれらに限定 されるものではない。 なお、 特に断らない限り%は全て質量%を示す。
[:実施例 1〕
( 1 ) グリコール酸 (試薬、 東京化成製) を撹拌下、 約 1 8 0 °Cで脱水重縮合さ せて得たオリゴマーを、 2 5 0 °Cで減圧蒸留することによりグリコリドを得た。 排気口と温度計を備えた反応容器に、重合の一段階目として、 L—ラクチド(試 薬、 アルドリヅチ社製) 2 0 2 gと、 上記グリコリド 1 0 gと、 £一力プロラク トン (試薬、 東京化成社製) 3 8 g及び触媒としてオクタン酸スズ (試薬、 シグ マ社製) 0 . O l gを加え、 真空ポンプを用いて反応容器内を 1 X 1 0— 3mmH gまで減圧し、 150°Cで 24時間重合を行った。
(2)次に、 重合の二段階目として、 最終生成物の構成モル分率が、 乳酸 Zダリ コール酸 /e—力プロラクトンとして 67 : 8 : 25モル%となるように、 L一 ラクチド 64 g、グリコリ ド 18 g、及び £一力プロラクトン 168 gを添カロし、 更に 150°Cで 24時間重合を行った。
反応後に得られた共重合体をクロ口ホルムに溶解し、 メタノール中で析出させ ることにより精製処理を行い、 本発明の人工硬膜に使用する乳酸/グリコール酸 / e—力プロラクトン共重合体を得た。
(3)このようにして得られた乳酸/グリコール酸 /e—力プロラクトン共重合. 体の数平均分子量を GPCにより測定した結果、 280, 000であり、 その組 成 (モル分率) を iH— NMRの測定から求めた結果、 乳酸/グリコール酸 一力プロラクトンのモル分率は 67 : 8 : 25モル%であった。
. また13 C— NMRの測定から共重合体の平均連鎖長を求めた結果、 L (LA) =7, L (GA) =5. 1、 L (CL) =1. 2であった。 また、 式 (1) 〜 (3)における平均連鎖長は、 2<L (LA) く 133、 1く L.(GA) ぐ 1, 59、 KL (CL〉 <497となり、 平均連鎖長はいずれも式 '〜 (3) ' で規定される範囲内であった。 . - また、 このようにして得られた乳酸/グリコール酸/e—力プロラクトン共重 合体中の金属含量として、 スズは Snとして 16 ppm、 モノマー含量は乳酸、 グリコール酸及び £—力プロラクトンの総量として 20 ppmであった。
( 4 )得られた乳酸/グリコール酸/ e—力プロラクトン共重合体を基材層とす る第 1図に示す層構成の人工硬膜を形成した。 すなわち、 当該共重合体の粉末を 160° 30 kg/ cm2にてプレス成形し、 10 °Cの冷却プレス機にて冷却 し、 ゴム弾性形状維持性を有する厚さ 200〃mのフィルム状シートの基材層 2 を得た。 得られたシート基材層 2の片側に、 親水性膨潤性高分子であるヒアルロ ン酸 (試薬、 和光純薬社製) のキャストフィルムを積層して積材層 3とし、 厚さ 300〃mの二層からなる人工硬膜 1を得た。
〔実施例 2〕
(1) グリコール酸 (試薬、 東京化成社製) を撹拌下、 約 180°Cで脱水重縮合 させて得たオリゴマーを、 250°Cで減圧蒸留することによりグリコリ ドを得た。 排気口と温度計を備えた反応容器に、重合の一段階目として、 L—ラクチド(試 薬、 アルドリヅチ社製) 111 gと、 上記グリコリ ド 7 gと、 及び £一力プロラ クトン (試薬、 東京化成製) 82 g及び触媒としてオクタン酸スズ (試薬、 シグ マ社製) 0. 01 gを加え、 真空ポンプを用いて反応容器内を 1 X 10— 3mmH gまで減圧し、 180°Cで 24時間重合を行った。
(2)次に、 重合の二段階目として、 最終生成物の構成モル分率が、 乳酸 Zグリ コール酸/ £—力プロラクトンとして 75 : 7 : 18モル%となるょゔに、 L一 ラクチド: 200 g、 グリコリ ド 18g、 £—力プロラクトン 82gを添カロし、 更 に 180°Cで 24時間重合を行った。反応後に得られた共重合体をクロ口ホルム に溶解し、 メタノール中で析出させることにより精製処理を行い、 本発明の人工 硬膜に使用する乳酸 グリコール酸/ど—力プロラクトン共重合体を得た。
(3)このようにして得られた乳酸/ダリコール酸 Z.£—力プロラクトン共重合 体の数平均分子量を G PCにより測定した結果、 350, 0:0 ,0であ.り、 その組; -成 (モル分率) を1 Ή— NMRの測定から求めた結果、:乳酸 Zグリコール酸/ £- .—·,力プロラクトンのモル分率は 75: 7 : 18モル%であ όた'。
また、 13C— NMRの測定から共重合体の平均連鎖長を求めた結果、 L (LA) =6. 3、 L (GA) =4. 6、 L (CL) = 1. 9.であった。 また、 式 (1) 〜 (3) における平均連鎖長は、 2く L (LA) く 193、 1く L (GA) < 1 80、 KL (CL) く 464となり、 平均連鎖長はいずれも式 (1) 〜 (3) 規定の範囲内であった。
また、 このようにして得られた乳酸/グリコール酸/ £一力プロラクトン共重 合体中の金属含量として、 スズは Snとして 20ppm、 モノマー含量は乳酸、 グリコール酸及び ε—力プロラクトンの総量として 18 p p mであつた。
( 4 )得られた乳酸/グリコ一ル酸/ £一力プロラクトン共重合体を基材層とす る、 第 3図に示すような層構成の人工硬膜を形成した。 すなわち、 上記共重合体 の粉末を 200°C、 30 kgZcm2にてプレス成形し、 10。Cの冷却プレス機 にて冷却し、 ゴム弹性形状維持性を有する厚さ 200 mのフィルム状シートの 基材層 2を得た。 更に、 ゲル状の生分解性高分子であるグリコ一ル酸 Z £—力プロラクトンの共 重合体 (数平均分子量 68, 000) を熱溶着により片面に積層させ積材層 3 a を形成させ、 更に両面にヒアルロン酸 (試薬、 和光純薬社製) を、 両面にコ一テ ィングして積材層 3 b、 3 bとし、 厚さ 350〃mの四層からなる人工硬膜を得 た。
なお、 上記積材層 3 aの形成に使用したグリコール酸 Ze—力プロラクトン共 重合体は以下の方法で合成したものである。
排気口と温度計を備えた反応容器に、 前記方法により得たグリコリ ド 43, gと、 力プロラクトン (試薬、 東京化成社製) 158 g及び触媒としてオクタン酸 スズ (試薬、 シグマ社製) 0. 01 gを加え、 .真空ポンプを用いて反応容器内を 1 X 10_3mmHgまで減圧し、 160°Cで 24時間重合を行った。反応後に得 られた共重合体をクロ口ホルムに溶解し、 メタノール中で析出させることにより 精製処理を行い、 グリコール酸/ £—力プロラグトン共重合 を得た。 このよ.う にして得られたグ'リコ ル酸/ £—力プロラクトン共重合体め数平均分子量を •G P Cにより測定した結果、 68, 000であり、 その組成 (モル分率) を1 H - N MRの測定から求めた結果、 グリゴ一ル酸/ ε一:ガプ Dラク 'トンのモル分率 は 40 : 60モル%であった。
〔実施例 3〕 '
(1) グリコール酸 (試薬、 東京化成社製) を撹拌下、 約 180°Cで脱水重縮合 させて得たオリゴマーを、 250°Cで減圧蒸留することによりグリコリ ドを得た。 排気口と温度計を備えた反応容器に、重合の一段階目として、 L—ラクチド(試 薬、 アルドリッチ社製) 328 gと、 グリコリ ド 10 gと、 及び £—力プロラク トン (試薬、 東京化成社製) 1 12 g及び触媒としてジェチル亜鉛 (試薬、 関東 化学社製) 0. 01 gを加え、 真空ポンプを用いて反応容器内を 1 X 10— 3mm Hgまで減圧し、 145°Cで 24時間重合を行った。
(2) 次に、 重合の二段階目として、 最終生成物の構成モル分率が、 乳酸/グリ コール酸/ 力プロラクトンとして 80 : 5 : 15モル%となるように、 L— ラクチド 10 g、 グリコリ ド 8 g、 力プロラクトン 32 gを添カロし、 更に 1 80°Cで 24時間重合を行った。 反応後に得られた共重合体をクロ口ホルムに溶解し、 メ夕ノ一ル中で析出させ ることにより精製処理を行い、 本発明の人工硬膜に使用する乳酸/グリコール酸 £—力プロラクトン共重合体を得た。
( 3 ) このようにして得られた乳酸/グリコ一ル酸 Z £—力プロラクトン共重合 体の数平均分子量を GPCにより測定した結果、 180, 000であり、 その組 成 (モル分率) を1 H— NMRの測定から求めた結果、 乳酸 グリコール酸/ £ 一力プロラクトンのモル分率は 80: 5: 15モル%であった。
また13 C— N MR.の測定から共重合体の平均連鎖長を求めた結果、 は L ( L A )=5. 9、 L(GA)=4. 8、 L(CL)=1. 6であった。 また、.式.(.1)〜(3) における平均連鎖長は、 2く L(LA)<107、 1く L(GA)<67、 1<L(C L)<201となり、 平均連鎖長はいずれも式 (1)〜(3) で規定している範 囲内であった。
また、 このようにして得られた乳酸 Zグリコール酸 £一力プロラクトン共重 合体中の金属含量として、 亜鉛は Z nとして 30 p.p m モノマー含量は乳酸、 グリコ一ル酸及び 一力プロラクトンの総量として 26 p p mであうた。
•;(:4)得られた乳酸 7グリコール酸/ £一力プロラクトン共重合体から ¾る基材 層を有する第 2図で示される層構成の人工硬膜 1 Aを作成した。 すなわち上記共 重合体の粉末を 180°C、 30 kg/ cm2にてプレス成形し、 10°Cめ冷却プレ ス機にて冷却し、 ゴム弾性形状維持性を有する厚さ 200〃inのフィルム状シ一 トの基材層 2を得た。 更に、 得られたフィルム状シ一トの両面に水膨潤性高分子 であるアルギン酸 (試薬、 和光純薬社製) のキャストフィルムを積材層 3として 配置し、 厚さ 400 zmの三層からなる人工硬膜 (1 A) を得た。
〔比較例 1〕
(1)排気口と温度計を備えた反応容器に、 L-ラクチド (試薬、 アルドリッチ 社製) 263 gと、 グリコリド (実施例 1と同条件で製造) 42gと、 £-力プロ ラクトン (試薬、 東京化成社製) 194 g、 及び触媒としてオクタン酸スズ (試 薬、 シグマ社製) 0. 01 gを加え、 真空ポンプを用いて反応容器内を 1 10 一3 mmHgまで減圧し、 190°Cで 24時間重合を行った。反応後、 生成物をク ロロホルムに溶解し、 メタノール中で析出させることにより精製処理を行い、 乳 酸 Zグリコール酸 £-力プロラクトン共重合体を得た。
(2) このようにして得られた乳酸/グリコ一ル酸/ £ -力プロラクトン共重合 体の数平均分子量を GPCにより測定した結果、 220, 000であり、 その組 成 (モル分率) を1 H— NMRの測定から求めた結果、 乳酸 Zグリコール酸 /£- 力プロラクトンのモル分率は、 65 : 15 : 20モル%であった。
また、 13C-NMRの測定から共重合体の平均連鎖長を求めた結果、 L(LA)= 1. 8 L(GA)=1. 2 L(CL)=0. 8であった。 また、 式 (1) (3) における平均連鎖長は、 2く L(LA)<106 1く L(GA)く 244 KL ( C L ) < 326となり、 L ( L A )及び L ( C L )は式で規定する下限値以下であつ た。 ' .
(3)第 1図に示される層構成に準じて人工硬膜を形成した。 すなわち、 ここで 得られた共重合体粉末を 200°C 30 kg/cm2にてプレス成形し、 10°C の冷却プレス機にて冷却し、 ゴム弾性形状維持性を有する厚さ.200 zmのフィ ルム状シートの基材層 2を得た。 更に、 実施例 1と同じく親水性膨潤性高分子で あるヒアルロン酸を積材層 3として、 基材層 2の片面に配置し、. 厚さ 30ひ /m め二層からなる'人工硬膜 1を得た。 '
〔比較例 2〕
( 1 )排気口と温度計を備えた反応容器に、 L-ラクチド 322 gおよび触媒と してオクタン酸スズ 0. 01 をカロぇ、 真空ポンプを用いて反応容器内を 1 X 1 0一3 mmHgまで減圧し、 160°Cで 8時間重合を行った。 次いで、 《Ξ—力プロ ラクトン 156 gを反応容器内に添加し、 190°Cで 10時間重合を行った。 更 に、 グリコリド 22 gを添加して 210°Cに加熱して 24時間重合を行った。 反応後、 生成物をクロ口ホルムに溶解し、 メタノール中で析出させることにより 精製処理を行い、 乳酸/グリコール酸/ ε-力プロラクトン共重合体を得た。
(2) このようにして得られた乳酸/グリコ一ル酸/ £ -力プロラクトン共重合 体の数平均分子量を GPCにより測定した結果、 200, 000であり、 その組 成 (モル分率) を1 H— NMRの測定から求めた結果、 乳酸/グリコール酸/ £ - 力プロラクトンのモル分率は、 75 : 7 : 18モル%であった。
また、 13C-NMRの測定から共重合体の平均連鎖長を求めた結果、 L(LA)= 1830、 L(GA)=120、 L( C L )=480であった。 また、 式( 1)〜(3) における平均連鎖長は、 2く L(LA)<110、 1<L(GA)<103、 1<L (CL)< 266となり、 平均連鎖長はいずれも式 (1)〜(3)で規定する上限 を越えていた。
(3)得られた共重合体により、 第 1図の層構成に準じて人工硬膜 1作成した。 すなわちこの共重合体粉末を 200°C、 30kgノ cm2にてプレス成形し、 1 0°Cの冷却プレス機にて冷却し、 ゴム弾性形状維持性を有する厚さ 200 zmの フィルム状シ一トの基材層 2を得た。更に、 実施例 2と同じくゲル状の生分解性 高分子である、 グリコール酸/ e—力プロラクトンの共重合体(数平均分子量 6 8, 000) を熱溶着により積材層 3として積層させ、 厚さ 350 mの二層か. らなる人工硬膜 1を得た。
なお、 積材層 3として使用したグリコール酸 Z力プロラクトン共重合体は、 実 施例 2と.同様の方法で合成した。
〔比較例 3〕 ·. : . :
( 1 ) 排気口と温度計を備えた反応容器に、 重合の一段階目として、 L -ラクチ ド 130 gとグリコリド 2 gと 力プロラクトン 50 gおよび触媒としてォク タン酸スズ 0. 01 gを加え、真空ポンプを用いて反応容器内を IX 10_3mm Hgまで減圧し、.150°Cで 24時間重合を行った。
(2)次に、 重合の二段階目として、 最終生成物の構成モル分率が、 乳酸/ダリ コール酸 /£—力プロラクトンとして 40 : 5 : 55モル%となるように、 L— ラクチド 4g、 グリコリド 10g、 £ -力プロラクトン 304 gを添カロし、 更に 150°Cで 24時間重合を行った。反応後に得られた共重合体をクロ口ホルムに 溶解し、 メタノール中で析出させることにより精製処理を行い、 乳酸 Zグリコ一 ル酸 £-力プロラクトン共重合体を得た。
(3) このようにして得られた乳酸/グリコール酸/ £ -力プロラクトン共重合 体の数平均分子量を GPCにより測定した結果、 290, 000であり、 その組 成(モル分率) を1 H— NMRの測定から求めた結果、 乳酸/グリコール酸/ ε- 力プロラクトンのモル分率は、 40 : 5 : 55モル%であった。
ま た、 13C-NMRの測定から共重合体の平均連鎖長を求めた結果、 L(LA)= 5. 6、 L(GA)=1. 2、 L(CL)=3. 8であった。 また、 式 (1)〜(3) における平均連鎖長は、 2く L(LA)<71、 1く L(GA)<89、 1く L(C L)<980となり、 平均連鎖長はいずれも式 (1)〜(3) で規定する範囲内 であった。
(4)得られた共重合体を基材層とする人工硬膜を第 1図の層構成に準じて作成 した。 当該共重合体の粉末を 160°C、 3 OkgZcm2にてプレス成形し、 1 0°Cの冷却プレス機にて冷却し、 ゴム弾性形状維持性を有する厚さ 200〃mの フィルム状シ一トの基材層 2を得た。更に、 実施例 1と同じ方法で親水性膨潤性 高分子であるヒアルロン酸を積材層 3として配置して、厚さ 300〃mの二層か らなる人工硬膜 1.を得た。
〔実施例 4〕
(1) グリコール酸 (試薬、 東京化成社製) を撹拌下、 約 180°Cで脱水重縮合 させて得たオリゴマーを、 250°Cで減圧蒸留することによりグリコリドを得た。
: 排気口と温度計を備えた反応容器に、重合の一段階目として、 L—乳酸(試薬、 シグマ社製') 3gと、 グリコール酸 (試薬、 東京化成社製') 2gと、 £—力プロ ラクトン (試薬、 東京化成社製) 55 g及び触媒としてオクタン酸スズ.(試薬、'' シグマ社製) .0. O lgを加え、 減圧下、 180°Cで 24時間重合を行った。
(2)次に、 重合の二段階目として、 最終生成物の構成モル分率が、 乳酸 グリ コール酸ダ£ -力プロラクトンとして 72 : 8 : 20モル%となるように、 L— ラクチド (試薬、 アルドリツチ製) 278 g、 上記のグリコリド 18 g、 £—力 プロラクトン (試薬、 東京化成社製) 120 gを添加し、 更に 150 °Cで 24時 間重合を行った。反応後に得られた共重合体をクロ口ホルムに溶解し、 メタノー ル中で析出させることにより精製処理を行い、本発明の人工硬膜に使用する乳酸 Zグリコール酸/ £一力プロラクトン共重合体を得た。
(3)このようにして得られた乳酸/グリコ一ル酸/ £一力プロラクトン共重合 体の数平均分子量を GPCにより測定した結果、 120, 000であり、 その組 成 (モル分率) を1 H— NMRの測定から求めた結果、 乳酸 Zグリコ一ル酸/ £ —力プロラクトンのモル分率は 72 : 8 : 20モル%であった。
また、 13 C— NMRの測定から共重合体の平均連鎖長を求めた結果、 L(LA)= 4. 8、 L(GA)=1. 2、 L(CL)=2. 8であった。 また、 式 (1) 〜 (3) での平均連鎖長は、 2く L(LA)く 64、 1く L(GA)く 70、 1<L(CL)< 176となり、 平均連鎖長はいずれも式 (1)〜(3)で規定する範囲内であつ た。
また、 このようにして得られた乳酸/グリコール酸/ e—力プロラクトン共重 合体中の金属含量として、 スズは Snとして 2 Oppm、 モノマ一含量は乳酸、 グリコール酸及び £—力プロラクトンの総量として 16ppmであった。
〈性能評価試験〉 '
前記実施例 1から 3と比較例 1から 3に記載した人工硬膜を用いて、以下の各 性能評価試験を行った。 - 物†牛評価試験
各試験数 ηは 5とし、 その平均を求めた。
' ( 1 ) 10%引っ張り抵抗
各人工硬膜を 6. 35 mm X 64 mmに切断し、 3:7 °Cの恒温条件でチヤヅク 間距離 20 mm、 弓 I張速度 10 mm/m i n.で引張試験(島津製作所社製、'引つ 張り試験機使用)'を行い、 10%伸びだ時点の引つ—張り抵抗を記録じだ。
(2) 剛軟度 '
各人工硬膜を 6.' 35mmx 64 mmに切断し、 JIS— L1096と同様の方法で 剛軟度試験を行った。 なお、 試験の際の試験片長さは 40mmとした。
(3 ) 永久伸び
各人工硬膜を 6. 35mmx 64 mmに切断し、 37 °Cの恒温条件でチヤヅク 間距離 20mm、 引張速度 1 Omm/mi nで 100%延伸し、 これをチャック から取り外し、 37 °Cの恒温条件にて 1時間保存した後の延伸した部位の伸び率 を計測した。
^解袢評価試験
それぞれの人工硬膜をそれぞれ 6. 35mmx 64 mmに切断した分解性試験 片を、生理食塩液に浸潰し、これらを 37°Cに保温した。これを 4週後、 8週後、 及び 12週後に取り出し、 弓 I張り強度試験を行った。 引っ張り試験は、 試験片を チャック間 1 Omm、 引っ張り速度 50 mm/m i nの条件にて実施した。 7k漏れ試験
それぞれの人工硬膜を用いて脳髄液の漏れの防止機能を評価した。それぞれ縦
50 mm,横 25mmの人工硬膜と、 ブ夕から採取した生体脳硬膜を重なり幅 5 mm、 縫合間隔 2mmになるように縫合糸.(ェチコン社製、 バイクリル縫合糸) によって連続縫合し、 50mm四方の試験片を作製した。 この試験片を 47mm インラインフィルターホルダ一 (MILLIPORE社製) にセットし、 インラインフ ィルターホルダ一の上口部に 37 °Cの生理食塩水バヅグをセヅトして、 20 mm Hg及び 6 OmmHgに加圧し、 下口部から出る生理食塩水を回収し、 1分間に 縫合部より漏れ出す水の量を測定した。試験数 nは 5で行い、 測定結果よりその 平均を求めた。
長の、 §1
それぞれの基材層に用いた生体分解性ポリマーの平均連鎖長は、 ポリマ一を 13 C— NMRの測定に供し、測定結果を基に以下の式で求め、結果を表 1に示した。 乳酸ユニットの平均連鎖長 ·
L(LA) = (LLL+LLC+CLL+LLG+GLL)/{ (LLC+CLL)/:2+(LLG-l-GLL) 2} : .リコ ル酸 ニットの平均連鎖長 . : - ' .'
L ( GA ) = ( GGG+GGL+LGG ) / ( GGL+LGG ) / 2
力プロラクトンユニットの平均連鎖長 -
L ( CL ) = ( CCC+CCL+LCC+LCL ) / ( LCC+LCL ) /2
なお、 ここで LLL,LLC,CLL,LLG,GLLは乳酸ュニッ卜のカルボニル炭素の積分 値であり、 GGG,GGL,LGGはグリコール酸ュニットのカルボニル炭素の積分値で あり、 CCC,CCL,LCC,LCLは力プロラクトンュニヅ卜のカルボニル炭素の積分値 である。
実施例、 比較例における組成を表 1にまとめて示した。 (組成表)
Figure imgf000024_0001
〈評価試験結果〉
評価試験結果を表 2 4にまとめて示した。 表 2 (物性評価)
Figure imgf000024_0002
表 2の結果より、実施例 1から 3は、比較例 1から 3よりも永久伸びが小さく、 縫合時に生じた針穴の肥大を最小限に抑えることが可能であり、脳脊髄液の漏れ を防止することが可能であることを容易に推定できる。 表 3 (水漏れ試験)
Figure imgf000025_0001
表 3の結果より実施例 1から 3は比較例 1から 3と比較して水漏れがほとん どないことがわかる。 表 4 (分解性評価結果)
Figure imgf000025_0002
表 4の結果より実施例 1から 3は、比較例 1及び 3よりも 2ヶ月以上の強度維持 性能に優れていることがわかる。 さらに比較例 2はほとんど強度の低下がなく、 長期間体内に残存することが予想され好ましくない。
〔動物実験〕
実施例 1及び比較例 2で用いた人工硬膜を使用し、 ゥサギ頭部への埋植試験を 行った。
(試験方法)
ゥサギ頭蓋骨の両側頭部に、 8 mm x 1 4 mm程度の長方形の穿孔を行い、 自 家硬膜を 8 mm X 1 0 mm程度摘出した。 その後、 当該欠損部を 9 mm x 1 5 m m大の人工硬膜で覆った。 その際、 出血した血液は可能な限り取り除かず、 出血 した脳表面に直接人工硬膜を設置した。埋植 3力月後に再解頭し、 人工硬膜と脳 表面の癒着状態を確認した。 この試験を 2 0例行い、 実施例 1及び比較例 2の人 ェ硬膜の癒着発生率を比較した。 結果を表 5に示す。 表 5 (動物試験結果)
Figure imgf000026_0001
表 5の結果より、 明らかに実施例 1の人工硬膜は比較例 2の人工硬膜より癒着 の発生率が低いことがわかる。 産業卜の利用 ί能件
本発明の人工硬膜は、 基本的には基材層と積材層とからなるもので、 例えば従 来の人工硬膜のように、 漏水防止層に、 さらに性能の異なる二つの層 (弾性層と 形状維持層)を積層しなくても、針穴の肥大が小さく液漏れを生じることがなく、 また、 溶融成形によって製造される人工硬膜であっても、 生体内で、 自家硬膜の 再生期間より若干長い、 約 3ヶ月以上強度を維持すると推定されるもので、 その 産業上の利用可能性は、 非常に大きい。

Claims

1. 生体内分解性高分子を二層以上積層することにより構成される人工硬膜であ つて、 少なくともその一層は基材層であり、 当該基材層は、 乳酸 Zグリコール酸 Z
£—力プロラクトン共重合体からなり、 当該共重合体の構成モル分率が 60〜 8 5· 3〜15 : 10〜30モル%であって、 かつ、 共重合体の平均連鎖長が下記式 請
. (1) 〜 (3) を満たすことを特徴とする人工硬膜。 .
2. L (LA) < CLA%/ (LA% + Gの
く A% + CL%)〕 xXx 0 . 058 (1) KL (GA) <〔GA%/ (LA% + GA%+CL%)〕 xXx 0• 58 (2) KL (CL) < CCL%/ (LA% + GA%+CL囲%)〕 XXxO . 58 (3)
(式中、 L (LA)は乳酸ュニヅトの平均連鎖長を、 L (G.A)はグリコール酸 :ュニヅトの平均連鎖長を、 L ( CL) は力プロラクトンュニヅ十の平均連鎖長を 示す。 更に、 LA%は共重合体中の乳酸モル分率を、 GA%は共重合体中のグリ コール酸モル分率を、 C L %は共重合体中の力プロラクトンモル分率をそれぞれ 示し、 Xは共重合体の重合度を示す。)
2. 前記共重合体中の金属含有量が 60 p p m以下である請求項 1'記載の人工 硬膜 o
3. 前記共重合体中のモノマー含量が、 乳酸、 グリコール酸及び £-力プロラ クトンのモノマ一総量として 40 ppm以下である請求項 1又は 2に記載の人 ェ硬膜。
4. 生体脳硬膜と縫合した際に於ける脳圧が 20 mmH g以下の場合に於いて、 縫合部からの液の漏れが 5 ml/mi n以下である請求項 1ないし 3のいずれ か 1項に記載の人工硬膜。
5. 前記基材層の片面又は両面に親水性高分子の層を積層し、 当該層を脳表面 との瘛着を防止する機能を有する積材層とした請求項 1ないし 4のいずれか 1 項に記載の人工硬膜。
6. 前記積材層を構成する親水性嵩分子が、 水膨潤性高分子である請求項 1な いし 5のいずれか 1項に記載の人工硬膜。
7. 生体内分解性高分子を、 溶融成形により、 二層以上積層することにより構成 され、
少なくとも基材層の一層は、 乳酸/グリコール酸 Ζε-力プロラクトン共重合体 からなり、 当該共重合体の構成モル分率が 60〜85: 3〜15: 10〜 30モ ル%であって、 かつ共重合体中の金属含有量が 6 Op pm以下、 かつ共重合体中 のモノマ一含量が、 乳酸、 グリコール酸及び £ -力プロラクトンのモノマー総量 として 40 p p m以下であることを特徴とする人工硬膜。
8. 基材層を有する人工硬膜の製造方法であって、 · ' . . · .
( 1 )構成モル分率が 60〜 94 : 3〜 20 : 3〜 37モル%の割合で乳酸 グ リコール酸 /£一力プロラクトン共重合体の重合を行う工程、
(2) ( 1) の共重合体に、 乳酸/グリコール酸 Ze—力プロラクトン共重合体 を構成する各モノマ 混合物を添加して、 最終生成物の構成モル分率が、,乳酸/ グリコ一ル酸 ε—力プロラク小ンとして 60〜8.5 :'3〜15: 10〜30モ ル:% 'となる共重合体を得る工程、 及び ' ·■·■:· '"' " ·"·■■". · . 「■
(3)以上の (.1)及び(2)の工程による共重合体により前記基材層を製造す ることを特徴とする人工硬膜の製造方法。
9. 請求項 8において製造した基材層の片面又は両面に親水性高分子を積層さ せることにより脳表面との癒着を防止する機能を付与した積材層を形成するこ とを特徴とする人工硬膜の製造方法。
PCT/JP2005/007738 2004-04-19 2005-04-18 人工硬膜及びその製造方法 WO2005102404A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006512610A JP4772669B2 (ja) 2004-04-19 2005-04-18 人工硬膜及びその製造方法
EP05734373.3A EP1741456B1 (en) 2004-04-19 2005-04-18 Artificial dura mater and process for producing the same
US11/578,971 US7736393B2 (en) 2004-04-19 2005-04-18 Artificial dura mater and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004122852 2004-04-19
JP2004-122852 2004-04-19

Publications (1)

Publication Number Publication Date
WO2005102404A1 true WO2005102404A1 (ja) 2005-11-03

Family

ID=35196745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/007738 WO2005102404A1 (ja) 2004-04-19 2005-04-18 人工硬膜及びその製造方法

Country Status (4)

Country Link
US (1) US7736393B2 (ja)
EP (1) EP1741456B1 (ja)
JP (1) JP4772669B2 (ja)
WO (1) WO2005102404A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008109979A (ja) * 2006-10-30 2008-05-15 Kawasumi Lab Inc 癒着防止材
US8158729B2 (en) * 2006-03-14 2012-04-17 Jms Co., Ltd. Material for producing bioabsorbable material, bioabsorbable material, and process for producing these

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902303B2 (en) 2005-12-30 2011-03-08 Industrial Technology Research Institute Aliphatic polyester polymer compositions and preparation method thereof
DE602007014354D1 (de) * 2007-06-23 2011-06-16 Ind Tech Res Inst Aliphatische Polyester-Polymer-Zusammensetzungen und Herstellungsverfahren dafür
EP2340785B1 (en) * 2009-03-10 2016-05-18 Medprin Regenerative Medical Technologies Co., Ltd. Artificial dura mater and manufacturing method thereof
MX2014014656A (es) * 2012-05-30 2015-08-10 Univ New York Dispositivos de reparacion de tejido y andamiajes.
ES2897898T3 (es) 2013-12-17 2022-03-03 Nurami Medical Ltd Una matriz multicapa sustituta de tejidos y usos de la misma
CN107913435B (zh) * 2016-10-10 2022-09-09 北京邦塞科技有限公司 复合型硬脑(脊)膜植入物及其制备方法和用途
CN109364294B (zh) * 2018-11-27 2019-12-17 普丽妍(南京)医疗科技有限公司 一种可吸收人工硬脑膜及其制备方法
CN115154658B (zh) * 2022-04-21 2023-09-15 中山大学附属第八医院(深圳福田) 一种吸水自粘硬脊膜补片的制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205059A (ja) * 1989-09-27 1991-09-06 Bristol Myers Squibb Co 生分解ステント
WO1999017815A1 (fr) * 1997-10-06 1999-04-15 Gunze Limited Dure-mere artificielle et procede de fabrication de dure-mere
JP2000191753A (ja) * 1998-12-26 2000-07-11 Bmg:Kk 金属含有量が少ない生体内分解吸収性高分子およびその製造方法。
WO2003020330A2 (en) * 2001-09-05 2003-03-13 Synthes Ag Chur Poly (l-lactide-co-glycolide) copolymers and medical devices containing same
JP2003199817A (ja) * 2001-11-01 2003-07-15 Kawasumi Lab Inc 人工硬膜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2987064B2 (ja) * 1994-09-12 1999-12-06 グンゼ株式会社 人工硬膜
US6441073B1 (en) * 1999-08-17 2002-08-27 Taki Chemical Co., Ltd. Biological materials
JP2001309969A (ja) * 2000-04-28 2001-11-06 Gunze Ltd 人工硬膜
US7148315B2 (en) * 2002-10-23 2006-12-12 Ethicon, Inc. Monomer addition techniques to control manufacturing of bioabsorbable copolymers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205059A (ja) * 1989-09-27 1991-09-06 Bristol Myers Squibb Co 生分解ステント
WO1999017815A1 (fr) * 1997-10-06 1999-04-15 Gunze Limited Dure-mere artificielle et procede de fabrication de dure-mere
JP2000191753A (ja) * 1998-12-26 2000-07-11 Bmg:Kk 金属含有量が少ない生体内分解吸収性高分子およびその製造方法。
WO2003020330A2 (en) * 2001-09-05 2003-03-13 Synthes Ag Chur Poly (l-lactide-co-glycolide) copolymers and medical devices containing same
JP2003199817A (ja) * 2001-11-01 2003-07-15 Kawasumi Lab Inc 人工硬膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1741456A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158729B2 (en) * 2006-03-14 2012-04-17 Jms Co., Ltd. Material for producing bioabsorbable material, bioabsorbable material, and process for producing these
JP2008109979A (ja) * 2006-10-30 2008-05-15 Kawasumi Lab Inc 癒着防止材

Also Published As

Publication number Publication date
EP1741456A1 (en) 2007-01-10
US7736393B2 (en) 2010-06-15
US20070233275A1 (en) 2007-10-04
JPWO2005102404A1 (ja) 2008-03-13
EP1741456A4 (en) 2010-10-20
JP4772669B2 (ja) 2011-09-14
EP1741456B1 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
WO2005102404A1 (ja) 人工硬膜及びその製造方法
EP2218466A1 (en) Lactide/ -caprolactone copolymer for medical implant, method for producing lactide/ -caprolactone copolymer for medical implant, medical implant and artificial dura mater
JP2986509B2 (ja) 変性ポリエステル樹脂組成物、その製造方法、およびその用途
JP2987064B2 (ja) 人工硬膜
JP3126637B2 (ja) 生体適合性ブロックコポリマー
US20080090936A1 (en) Adhesion-Preventive Film
JP2009501559A (ja) 再吸収性ポリエーテルエステル及び医療用インプラントを製造するためのその使用
JPH06277274A (ja) エラストマーの医学的装置
JPWO2018062464A1 (ja) 癒着防止材
Jin et al. A double-layer dura mater based on poly (caprolactone-co-lactide) film and polyurethane sponge: preparation, characterization, and biodegradation study
JP2001309969A (ja) 人工硬膜
JP5143396B2 (ja) 癒着防止材
JP5258189B2 (ja) 柔軟性生分解性ポリマー
JP2008222768A (ja) 分岐型生分解性ポリエステル及びその製造方法
JP4953052B2 (ja) 癒着防止フィルム
JP4448260B2 (ja) 骨組織再生誘導膜
JP2009132769A (ja) 医療用インプラント用ラクチド/ε−カプロラクトン共重合体
JP7484167B2 (ja) 医療用成形体、医療機器、神経再生誘導チューブ
JP2009131358A (ja) 人工硬膜
JP4734772B2 (ja) ポリマー、生体内吸収性材料および組織癒着防止膜
JP3743566B2 (ja) 人工硬膜
US8309132B2 (en) Bioabsorbable polyesteramides and uses thereof
JP2008120888A (ja) 生分解性共重合体及びその製造方法
JP4395606B2 (ja) くも膜代用品
JP3582347B2 (ja) ブロック共重合体並びにフィルム及び繊維

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512610

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005734373

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005734373

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11578971

Country of ref document: US

Ref document number: 2007233275

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11578971

Country of ref document: US