WO2005101439A1 - Meldegerät für eine sicherheitsschaltung - Google Patents

Meldegerät für eine sicherheitsschaltung Download PDF

Info

Publication number
WO2005101439A1
WO2005101439A1 PCT/EP2005/003073 EP2005003073W WO2005101439A1 WO 2005101439 A1 WO2005101439 A1 WO 2005101439A1 EP 2005003073 W EP2005003073 W EP 2005003073W WO 2005101439 A1 WO2005101439 A1 WO 2005101439A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling device
input
safety
switching element
control part
Prior art date
Application number
PCT/EP2005/003073
Other languages
English (en)
French (fr)
Inventor
Jürgen PULLMANN
Christoph Zinser
Günter HORNUNG
Jürgen FLEINER
Original Assignee
Pilz Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34963957&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005101439(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE102004020995.2A external-priority patent/DE102004020995C5/de
Application filed by Pilz Gmbh & Co. Kg filed Critical Pilz Gmbh & Co. Kg
Priority to JP2007507686A priority Critical patent/JP5089378B2/ja
Priority to AT05731057T priority patent/ATE467224T1/de
Priority to DE200550009527 priority patent/DE502005009527D1/de
Priority to EP05731057.5A priority patent/EP1738383B2/de
Publication of WO2005101439A1 publication Critical patent/WO2005101439A1/de
Priority to US11/581,742 priority patent/US7948391B2/en
Priority to HK07106495A priority patent/HK1099123A1/xx

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • H01H47/004Monitoring or fail-safe circuits using plural redundant serial connected relay operated contacts in controlled circuit

Definitions

  • the present invention relates to a signaling device (other name: sensor, signal transmitter) for a safety circuit, with an input part for receiving an external state variable, with at least one switching element with an input and an output, and with a control part, which is designed for this purpose to control the at least one switching element from the external state variable such that one at the input applied signal to the output is switched through, i.e. appears at the output.
  • a signaling device other name: sensor, signal transmitter
  • the invention further relates to a safety circuit for safely switching off a dangerous system, with a safety controller that is designed to switch off the system fail-safe, and with a first and at least a second signaling device of the aforementioned type, which are connected in series to one another to the safety controller ,
  • An operating control system receives setpoints and process variables of the system and uses them to generate control signals, which actuate the actuators of the system, using a predetermined control program.
  • safety aspects ie the avoidance of dangers for people who are in the area of the system, are becoming increasingly important.
  • systems that perform automated movements are now generally shielded by protective fences, light barriers, step mats and the like.
  • emergency stop buttons when the system (or at least part of it) is to be switched off or otherwise brought into a safe state when actuated.
  • safety-related signaling devices which therefore only generate status signals relevant for the protection of the system. conditions and make available, are generally not evaluated with the "normal" operational control of the system, but fed to a so-called safety controller or, in simpler cases, to a so-called safety switching device.
  • safety control encompasses both simpler safety switching devices, such as those offered by the present applicant under the name PNOZ ® , and complex safety controls, such as the PLC-based PSS® from the applicant.
  • safety controls differ from "normal” operational controls in that they are designed to be inherently fail-safe through measures such as redundant signal processing channels, regular self-tests and the like.
  • simple operating controls also have error detection and prevention measures, but these are generally not sufficient to ensure that the system is safely shut down under all circumstances.
  • the present invention relates to signaling devices, safety controls and safety circuits constructed therefrom which meet at least Category 3 of the European Standard EN 954-1, preferably the highest Category 4, or comparable safety requirements.
  • the aforementioned EP 1 363 306 A2 describes a so-called safety switch, ie a signaling device, for monitoring the position of protective grilles, protective doors, machine clothing and similar protective devices.
  • safety switches have an actuator with which the opening or closing position of the protective door can be determined in a fail-safe manner.
  • safety switches are generally electromechanically constructed in practice and the necessary function tests and error monitoring, such as cross-circuit detection, are carried out by or at least with the help of the higher-level safety controller.
  • Corresponding safety switches are therefore usually only approved in accordance with EN 954-1 or comparable standards in combination with the safety controller.
  • EP 1 363 306 A2 proposes to integrate safety logic into the safety switch, as is already known from light barriers, light grids and other “intelligent” signaling devices
  • Proposed safety switch two mutually redundant electronic switching elements, which are controlled by a fail-safe control part.
  • An external release signal is looped through the switching elements, which is ultimately fed to the higher-level safety control.
  • the release signal can thus be suppressed by the control part, which signals the safety control that the
  • the enabled signal can also be looped through several safety switches connected in series, so that each of these safety switches detects the Fr can suppress input signal.
  • Such a series connection of signaling devices has already been implemented in practice with electromechanical signaling devices, in which case the release signal was generated by the safety controller and looped back via the series-connected relay contacts of the individual signaling devices.
  • the structure of the safety switches described in EP 1 363 306 A2 enables the higher-level safety control to react quickly, even if a larger number of signaling devices are connected to the safety control in series with one another.
  • looping through the enable signal limits the maximum spatial distribution of the signaling devices connected in series.
  • the entire series is "dead” if one of the signaling devices suppresses the release signal, be it due to a change in the actuator (opening the protective door or the like) or due to an internally detected functional error.
  • the flexibility and performance of the safety switches described does not go beyond what has been possible for a long time with comparable relay-based signaling devices.
  • a signaling device of the type mentioned in the introduction in which the input of the switching element is internally assigned a fixed potential, preferably a fixed high potential.
  • the object is further achieved by a corresponding safety circuit in which the input of the at least one switching element in each signaling device is internally assigned a fixed potential, and in which the output of the at least one switching element in the first signaling device is fed to the control part of the second signaling device, and in which the control part of the second signaling device also controls the at least one switching element of the second signaling device as a function of the first signaling device.
  • the new signaling device differs from the safety switch known from EP 1 363 306 A2 in that an enable signal is no longer looped through the at least one switching element. Rather, the release signal is now generated anew in each signaling device.
  • the control part of a downstream, second signaling device of a series connection takes into account the output signal of the signaling device located upstream of it. It is therefore easily possible to simulate the looping of an enable signal through several signaling devices so that no difference can be seen from the point of view of the higher-level safety controller.
  • the individual signaling devices in a row arrangement are not "dead" if an upstream signaling device has suppressed the release signal.
  • a signaling device located downstream to send a message to other subsequent signaling devices and / or the higher-level safety controller by means of a data telegram or the like, which enables the entire safety circuit to react flexibly.
  • the data telegram can be transmitted via the existing connections, as shown below with the aid of a preferred exemplary embodiment, ie the wiring effort is low despite increased flexibility.
  • each signaling device takes on a repeater function due to the new wiring, and it is therefore possible to realize considerably larger distances between the signaling devices arranged in series with one another. This also enables more flexible plant planning.
  • a group shutdown can also be easily implemented due to the new functionality of the signaling devices, since each signaling device in the row arrangement can generate a signal at its output independently of the upstream signaling devices.
  • the new signaling device has at least one input, preferably a redundant safety input, for an external release signal which is fed to the control part, the control part also controlling the at least one switching element as a function of the release signal.
  • the release signal is fed to the first signaling device by the safety controller.
  • the signal connected through to the output of the at least one switching element is fed to the control part of the signaling device.
  • the output signal of the switching element (and thus at least indirectly also the output signal of the signaling device) is fed back to the control part.
  • the control section is thus able to detect device-internal malfunctions.
  • This embodiment is also known per se from EP 1 363 306 A2 and has also been known for a long time from light barriers and other “intelligent” signaling devices and safety switching devices.
  • the advantages of this embodiment only come into full advantage on the basis of the present invention, since each signaling device in a row arrangement can pass on an internal functional error regardless of the state of upstream signaling devices.
  • control part of the signaling device is designed to detect a device-internal functional error and to generate a data telegram at its output with the aid of the at least one switching element.
  • the data telegram is a pulse telegram, i.e. the control part switches the at least one switching element on and off in pulses.
  • an address assigned to the signaling device can also be transmitted to the higher-level controller with little effort, so that the safety controller can individually identify each signaling device in a series connection.
  • each signaling device has at least two redundant switching elements, each with an input and an output, each of the at least two redundant switching elements being assigned the fixed potential on the input side.
  • This design already known per se from safety controls, in combination with the present invention has the advantage that the signaling device can report an internal functional error on the existing signal lines to the higher-level safety controller, even if one of the switching elements is the cause of the functional error.
  • the redundancy provided in the known safety switching devices for safety reasons also leads to a higher availability here.
  • the signaling device has an input for supplying an operating voltage, the operating voltage being supplied to the at least one switching element as a fixed potential.
  • This configuration is particularly advantageous with regard to the repeater function of the new signaling device described above. Because the at least one switching element is connected to the operating voltage on the input side, large distances between a plurality of signaling devices can easily be bridged.
  • the signaling device contains a movable actuator which can be moved between a first and at least a second spatial position, the external state variable being a current spatial position.
  • the actuator is a transponder.
  • the new signaling device is, in particular, a protective door switch, an emergency stop button, a limit or position switch, a sensor for a step mat or a manually operated start or command button.
  • the actuator can be integrated in the signaling device or can also be be carried out separately, as is customary, for example, with protective door switches.
  • the actuator can be connected to the signaling device optically, inductively, capacitively or in any other way. This configuration is preferred because the above-mentioned signaling devices are relatively simple components which have hitherto had practically no signal processing of their own. The expanded range of functions therefore comes into its own with these signaling devices.
  • the use of the present invention in such "simple" signaling devices can also make the use of a higher-level safety controller for smaller applications superfluous by the signaling device activating an actuator without an intermediate safety control via its outputs.
  • the new signaling device has a readback input for supplying an external readback signal from an actuator.
  • the signaling device of this embodiment thus combines the previously separate functions “record state variable” (sensor) and “shutdown system” (signal processing). Small security applications can thus be implemented very inexpensively.
  • the input part is designed to receive a physical measured variable, in particular a speed, a voltage and / or a current, as an external state variable.
  • Sensors for recording such status variables are usually installed in a control cabinet, while emergency stop buttons, limit switches or position switches, protective door switches and similar signaling devices are usually installed on the system.
  • the advantages mentioned above can also be transferred in the same way to such measuring sensors as signaling devices. For example, several speed monitors can be connected in series in the manner described here, so that multiple moving axes of a system can be monitored very cost-effectively in terms of safety.
  • FIG. 1 shows a simplified illustration of a system in which a signaling device according to the present invention is used for security purposes
  • FIG. 3 shows a safety circuit with two signaling devices of the type shown in FIG. 2 in a row arrangement
  • FIG. 4 shows a time diagram with signal profiles when initializing a safety circuit according to FIG. 3
  • Fig. 5 shows another embodiment of a new signaling device.
  • a system that is protected with the aid of the invention is designated in its entirety by reference number 10.
  • the system 10 here includes a robot 12, the automated movements of which would be dangerous for a person (not shown here) who would be in the range of motion of the robot 12. Therefore, the range of motion of the robot 12, as known per se, is secured with a protective door 14 and protective fences.
  • An actuator 16 is attached to the protective door 14.
  • a safety switch 18, more generally the fixed part of a signaling device according to the present invention, is located on a fixed frame against which the protective door 14 bears in the closed state.
  • the safety switch 18 is connected to a safety controller 20 via several lines. On the output side, the safety controller 20 controls two contactors 22, 24, the contacts of which can interrupt the power supply 26 to the robot 12.
  • the system 10 is shown here in simplified form.
  • the protective door 14 is usually equipped with at least two safety switches 18 and corresponding actuators 16, one of the safety switches often being arranged in a concealed manner in order to make manipulations more difficult. It also contains one System often other signaling devices, such as emergency stop buttons or other protective door switches (not shown here).
  • the required operational control for the robot 12 is not shown here for the sake of simplicity.
  • one or more speed monitors can be connected to the drives and / or the moving axes of the robot.
  • the safety controller 20 can be a safety relay in a simple scenario, as offered by the applicant under the name PNOZ ®. However, if numerous safety-related signaling devices are needed to protect the system 10, it is advantageous to use a more complex safety controller, such as those sold under the name PSS ® by the applicant safety controls. At least in the latter case, the safety controller 20 usually has a fieldbus connection and further interfaces for communication with the operating control (not shown here) and / or for communication with a higher-level master computer.
  • the safety switch 18 has a two-channel redundant structure. Accordingly, the safety switch 18 here has two redundant microcontrollers 30, 32 which monitor one another, which is represented by a double arrow between the microcontrollers. In preferred exemplary embodiments, the microcontrollers are different, that is to say the safety switch 18 has a diverse structure.
  • Reference numerals 34, 36 denote two electronic switching elements, which are shown here as field effect transistors. Alternatively, however, bipolar transistors or other, preferably electronic switching elements can also be used.
  • the control connection (gate) of the switching element 34 is connected to the microcontroller 30.
  • the input 38 (source) is connected to a line 40, to which an operating voltage U B is present during the operation of the safety switch 18.
  • the output 42 (drain) is connected to a connection 44 to which the safety switch 18 can be externally wired.
  • the output 42 of the switching element 34 thus forms an output signal of the safety switch 18.
  • the second switching element 36 is connected to the microcontroller 32 at its control connection (gate). Its input 38 is also connected to operating voltage U B via line 40. Its output 42 is fed to a second output connection 46 of the safety switch 18.
  • the signals at the outputs 42 of the switching elements 34, 36 are fed back to the microcontrollers 30, 32 via two voltage dividers 48, 50. This enables the microcontrollers 30, 32 to monitor the respective switching state of the switching elements 34, 36.
  • Reference number 52 denotes an input part, with the aid of which the microcontrollers 30, 32 determine the current state of the actuator 16, in this case its spatial position.
  • the Actuator 16 a transponder with a signal generating circuit 54 and a transmitting and receiving coil 56.
  • An individual coding 58 is stored in the signal generating circuit 54.
  • the input part 52 has a transmitting and receiving coil (shown here only symbolically), via which it sends out an interrogation signal.
  • the signal generating circuit 54 in the actuator 16 is activated.
  • the actuator 16 then sends the stored coding 58 back to the input part 52.
  • There the coding 58 is demodulated from the received signal and made available to the microcontrollers 30, 32.
  • the actuator 16 is outside the transmission and reception range of the input part 52, which is shown in FIG. 2 at position 16 '. In this case, there is no communication between actuator 16 and input part 52.
  • the microcontrollers 30, 32 consequently do not receive any coding, which is interpreted as an open protective door 14. If a second protective door switch or at least a second actuator (not shown) is present, a defect in the actuator 16 or the input part 52 can also be detected.
  • the input part 52 can be designed for other types of actuators.
  • the actuator can also be integrated in the safety switch 18.
  • the safety switch 18 could be an emergency stop button and the actuator in this case would be the push rod of the button.
  • the input part 52 contains inductive, capacitive, optical or otherwise term sensors for determining a current position of a mechanically movable actuator.
  • the invention can in principle also be applied to light barriers and other signaling devices which differentiate between at least two states.
  • the input part is designed for the measurement recording of a physical state variable, as will be explained in more detail below with reference to FIG. 5.
  • the safety switch 18 On the input side, the safety switch 18 here has three connections 60, 62, 64, which are each designed as safety inputs and are redundantly connected to the two microcontrollers 30, 32. External enable signals can be supplied redundantly to the microcontrollers 30, 32 via the connections 60 to 64. In addition, in a manner known per se, there is a connection 66 for supplying an operating voltage U B and a ground connection 68. It is understood that the connections mentioned are each accessible on the outside of a housing 70 of the safety switch 18.
  • a safety circuit with two of the described safety switches 18 is designated in its entirety with the reference number 80. Otherwise, the same reference numerals designate the same elements as before.
  • the two safety switches are labeled 18a and 18b for mutual distinction.
  • the safety switch 18a is connected at its connections 60, 62 to outputs of the safety controller 20. These are preferably so-called clock outputs of the safety controller 20, on which two clock signals are different Frequency and / or phase are present, so that cross-circuit detection is possible both in the safety switch 18a and (by reading back, not shown here) in the safety controller 20.
  • the safety switch 18a is connected to the operating voltage U B or ground at the connections 66, 68. On the output side, the connections 44, 46 of the safety switch 18a are led to the connections 60, 62 of the subsequent safety switch 18b.
  • the two safety switches 18a, 18b are thus arranged in series with one another. In the arrangement shown, the safety switch 18b also receives operating voltage from the safety switch 18a. Alternatively, the safety switch 18b could also be connected to another source for the operating voltage U B.
  • the two output signals of the safety switch 18b i.e. the signals present at its connections 44, 46 are fed to safety inputs of the safety controller 20.
  • the safety controller 20 On the output side, the safety controller 20 is connected between the power supply 26 and a drive 82 to be switched off, for example an actuator of the robot 12. It is also shown schematically here that the safety controller 20 is connected via a fieldbus 84 to an operating controller 86 for the robot 12 and / or a higher-level master computer. For reasons of clarity, the actuators belonging to the safety switches 18a, 18b are not shown in FIG. 3.
  • the functioning of the safety circuit 80 is as follows:
  • the safety controller 20 After commissioning, the safety controller 20 generates two clock signals 88, 90 at its outputs, which the safety Switches 18a are supplied as release signals.
  • the microcontrollers 30, 32 of the safety switch 18a monitor the current state of the associated actuator with the aid of the input part 52. If the actuator is in the area of the input part 52 and the enable signals 88, 90 are received without any problems, the microcontrollers 30, 32 generate two output signals with the aid of the switching elements 34, 36, which emulate the enable signals 88, 90. However, they could also differ from the clock signals 88, 90, for example with regard to their frequency.
  • the second safety switch 18b receives the simulated release signals and, in turn, simulates these at the output if it also detects a closed protective door and proper functioning.
  • the safety controller 20 receives the simulated release signals via the lines 92, 94.
  • the microcontrollers 30, 32 open the switching elements 34, 36.
  • the subsequent safety switch 18b consequently no longer receives the simulated release signals. This is recognized by the microcontrollers in the safety switch 18b and reported to the safety controller 20 by switching off the switching elements 34, 36. The latter can then switch off the drive 82.
  • the signal flow takes place in the same way when the safety switch 18a detects a functional fault, for example a cross-circuit at the connections on the input or output side, a breakdown of one of the switching elements 34, 36 or another functional fault.
  • a functional fault for example a cross-circuit at the connections on the input or output side, a breakdown of one of the switching elements 34, 36 or another functional fault.
  • the safety switch 18a After a short wait time that is stored in the microcontrollers of all the safety switches 18a, 18b and the safety controller 20, the safety switch 18a generates a data telegram 96 on at least one of its output lines by pulsing at least one of the switching elements 34, 36 and opening them again.
  • the subsequent safety switch 18b receives this data telegram and forwards it to the safety controller 20 in the same way. If necessary, he can also integrate further information into the data telegram 96.
  • the data telegram 96 is implemented as in an asynchronous, serial interface, i.e. it starts with a defined start bit and ends with a defined stop bit. In between there is an arbitrary or fixed number of data bits.
  • each data telegram 96 contains a defined number of pulses with a defined pulse duration. The meaning of each individual pulse depends on the protocol that is defined between the safety switches 18 and the safety controller 20.
  • the safety switch 18b generates its own data telegram 96 if it in turn detects a functional error.
  • the safety switch 18b can generate its data telegrams regardless of whether the safety switch 18a has opened or closed the switching elements 34, 36.
  • the data telegrams of the safety switches 18a, 18b contain address information which identifies the safety switch that would like to report information to the higher-level safety controller 20.
  • the respective address can be assigned to the safety switch 18a, 18b in different ways.
  • each safety switch 18a, 18b can be provided with a multi-stage address selection switch (not shown here), at which the assigned address is set.
  • the safety switches 18a, 18b each use the coding 58 of the actuators 16 assigned to them as the address.
  • the safety switches 18a, 18b connected in series are assigned an address in an initialization mode after the safety circuit 80 has been started up.
  • a preferred method of how this address assignment is carried out is shown in FIG. 4.
  • the first safety switch 18 thus receives a permanent high at its input 60 and a single pulse at its input 62 after the operating voltage U B is switched on. As soon as it detects this, it simulates the signal present at its connection 60 (continuous high) at its output 44 (reference number 106). After a waiting time T, it then generates two pulses at its output 46, as in Reference numeral 108 shown.
  • the waiting time T serves to recognize whether further impulses are received on the input side.
  • the second safety switching device 18b receives the signals 106, 108 at its inputs 60, 62 and simulates them at its outputs 44, 46. In doing so, it adds a further individual pulse to the individual pulses 108 that it receives at connection 62.
  • the pulse sequences shown at reference numbers 110, 112 are consequently present at the outputs of the second safety switch 18b.
  • further safety switching devices 18c, 18d etc. would simulate a continuous high on one signal line (reference number 114) and a pulse train on the second signal line, and each safety switch would increase the pulse train by one pulse ,
  • the safety controller 20 receives the signals according to the reference numbers 114, 116. From the signal 114, the safety controller 20 recognizes that the wiring of channel A is correct. The safety controller 20 recognizes from the pulse sequence 116 that the wiring of the channel B is correct. It can also determine the number of safety switches 18a, 18b etc. arranged in series from the number of pulses (minus 1). In the same way, each safety switch 18a, 18b can recognize its address from the number of pulses received. In this way, when the safety circuit 80 is switched on, an individual address can be automatically assigned to each safety switch arranged in series. If the safety circuit 80 is changed later, a new and correct address assignment to the then existing configuration takes place automatically when the system is switched on again.
  • the flexibility of the new signaling devices is further increased here by the input connection 64, which has not been explained so far.
  • This connection can be used to feed an external feedback signal into the safety switch 18. It is thus possible, for example, for the safety switch 18 to control a contactor with positively driven contacts independently, ie without a previously used safety switching device or a corresponding safety controller. It is sufficient if the positively driven break contact of the contactor is led to the feedback input 64 of the safety switch 18.
  • signaling devices such as the safety switch 18 shown, have a further input connection for applying a start signal. This makes it possible to implement a monitored restart of the system without the usual safety control.
  • the respective function of the signaling devices 18 can be parameterized via the input connection 64, as is described, for example, in DE 100 16 712 AI.
  • parameters can be set from the outside using different transponder codes.
  • FIG. 5 shows an exemplary embodiment of a new signaling device 100 as a speed monitor.
  • the same reference numerals designate the same elements as before.
  • the signaling device 100 differs from the signaling device 18 from FIG. 2 essentially in relation to the input part 102, which, in contrast to the input part 52, is designed here for measuring a rotational speed.
  • the speed detection takes place in this exemplary embodiment without an encoder, in that the input part 102 taps the motor voltages of a rotary drive 104 and evaluates them with regard to their frequency.
  • the signaling device 100 is designed as a standstill monitor, ie it monitors the achievement and compliance with a speed of zero. This can be done by the input part 102 tapping and monitoring the generator voltages generated by the expiring rotary drive 104, as is known per se from standstill monitors for safety-related applications.
  • the input part 102 detects a voltage, a current or another physical variable using measurement technology, and the microcontrollers control the switching elements 34, 36 as a function of the detected variable, in particular as a function of the detected variable maintaining a predetermined target value.

Abstract

Ein Meldegerät für eine Sicherheitsschaltung besitzt einen Eingangsteil (52) zum Aufnehmen einer externen Zustandsgröße, zumindest ein Schaltelement (34, 36) und einen Steuerteil (30, 32). Der Steuerteil (30, 32) ist dazu ausgebildet, in Abhängigkeit von der externen Zustandsgröße das zumindest eine Schaltelement (34, 36) so anzusteuern, dass ein am Eingang (38) anliegendes Signal zum Ausgang (42) durchgeschaltet ist. Gemäß einem Aspekt der Erfindung ist der Eingang (38) des Schaltelements (34, 36) intern mit einem festen Potential belegt, vorzugsweise einem festen High-Potential. In einer Sicherhetsschaltung zum Abschalten einer gefahrbringenden Anlage sind derartige Meldegeräte in Reihe zueinander an eine Sicherheitssteuerung angeschlossen. Dabei steuert der Steuerteil des zweiten Meldegerätes die ihm zugeordneten Schaltelemente auch in Abhängigkeit von dem ersten Meldegerät.

Description

Meldeσerät für eine Sicherheitsschaltunσ
Die vorliegende Erfindung betrifft ein Meldegerät (andere Bezeichnung: Sensor, Signalgeber) für eine Sicherheitsschaltung, mit einem Eingangsteil zum Aufnehmen einer externen Zustandsgröße, mit zumindest einem Schaltelement mit einem Eingang und einem Ausgang, und mit einem Steuerteil, der dazu ausgebildet ist, in Abhängigkeit von der externen Zustandsgröße das zumindest eine Schaltelement so anzusteuern, dass ein am Eingang anliegendes Signal zum Ausgang durchgeschaltet ist, also am Ausgang erscheint.
Die Erfindung betrifft ferner eine Sicherheitsschaltung zum sicheren Abschalten einer gefahrbringenden Anlage, mit einer Sicherheitssteuerung, die dazu ausgebildet ist, die Anlage fehlersicher abzuschalten, und mit einem ersten und zumindest einem zweiten Meldegerät der zuvor genannten Art, die in Reihe zueinander an die Sicherheitssteuerung angeschlossen sind.
Ein solches Meldegerät und eine solche Sicherheitsschaltung sind aus EP 1 363 306 A2 bekannt.
Die Betriebsabläufe von modernen technischen Anlagen, wie etwa industriellen Produktionsanlagen und Fertigungsstraßen, Transport- und Förderanlagen, Fahrgeschäften und dergleichen, werden zunehmend vollautomatisch gesteuert. Eine Betriebssteuerung erhält Soll- und Prozessgrößen der Anlage und bildet daraus mit Hilfe eines vorgegebenen Steuerprogramms Steuersignale, die Aktoren der Anlage betätigen. Neben der Steuerung des vorgesehenen Betriebsablaufs gewinnen Sicherheitsaspekte, d.h. die Vermeidung von Gefahren für Personen, die sich im Bereich der Anlage aufhalten, zunehmende Beachtung. Beispielsweise werden Anlagen, die automatisierte Bewegungen durchführen, heutzutage in aller Regel durch Schutzzäune, Lichtschranken, Trittmatten und dergleichen abgeschirmt. Des weiteren ist es bekannt, technische Anlagen mit Not-Aus-Tastern auszurüsten, bei deren Betätigung die Anlage (oder zumindest ein Teil davon) abgeschaltet oder anderweitig in einen gefahrlosen Zustand gebracht werden soll. Derartige sicherheitsrelevante Meldegeräte, die also rein für die Absicherung der Anlage relevante Zustandssignale erzeu- gen und bereitstellen, werden in aller Regel nicht mit der "normalen" Betriebssteuerung der Anlage ausgewertet, sondern einer sogenannten Sicherheitssteuerung oder in einfacheren Fällen einem sogenannten Sicherheitsschaltgerät zugeführt. Der Einfachheit halber wird im folgenden nicht weiter zwischen komplexer Sicherheitssteuerung und einfacherem Sicherheitsschaltgerät unterschieden, d.h. der Begriff "Sicherheitssteuerung" umfasst sowohl einfachere Sicherheitsschaltgeräte, wie sie beispielsweise von der vorliegenden Anmelderin unter der Bezeichnung PNOZ® angeboten werden, als auch komplexe Sicherheitssteuerungen, wie etwa die SPS-basierte PSS® der Anmelderin.
Sicherheitssteuerungen unterscheiden sich allerdings von "normalen" Betriebssteuerungen dadurch, dass sie durch Maßnahmen wie redundante Signalverarbeitungskanäle, regelmäßige Selbsttests und dergleichen eigenfehlersicher aufgebaut sind. Einfache Betriebssteuerungen besitzen zwar in gewissem Rahmen auch Fehlererkennungs- und Fehlervermeidungsmaßnahmen, diese sind jedoch in aller Regel nicht ausreichend, um das sichere Abschalten der Anlage unter allen Umständen zu gewährleisten. Zur Abgrenzung von "einfachen" Steuerungen und „einfachen" Meldegeräten betrifft die vorliegende Erfindung Meldegeräte, Sicherheitssteuerungen und daraus aufgebaute Sicherheitsschaltungen, die zumindest die Kategorie 3 der Europäischen Norm EN 954-1, bevorzugt die höchste Kategorie 4, oder vergleichbare Sicherheitsanforderungen erfüllen.
Die eingangs genannte EP 1 363 306 A2 beschreibt einen sogenannten Sicherheitsschalter, d.h. ein Meldegerät, zur Positi- onsüberwachung von Schutzgittern, Schutztüren, Maschinenver- kleidungsteilen und ähnlichen Schutzeinrichtungen. Derartige Sicherheitsschalter besitzen einen Betätiger, mit dessen Hilfe die Offnungs- oder Schließposition der Schutztür fehlersicher bestimmt werden kann. Bis heute sind derartige Sicherheitsschalter in der Praxis in aller Regel elektromechanisch aufgebaut und die erforderlichen Funktionstests und Fehlerüberwachungen, wie etwa Querschlusserkennung, werden von oder zumindest mit Hilfe der übergeordneten Sicherheitssteuerung durchgeführt. Entsprechende Sicherheitsschalter erhalten daher üblicherweise nur in Kombination mit der Sicherheitssteuerung eine Zulassung gemäß EN 954-1 oder vergleichbaren Normen.
Um für den Sicherheitsschalter selbst eine höhere Sicherheitskategorie zu ermöglichen, schlägt die EP 1 363 306 A2 vor, eine Sicherheitslogik in den Sicherheitsschalter zu integrieren, wie dies von Lichtschranken, Lichtgittern und anderen „intelligenten" Meldegeräten schon bekannt ist. In den beschriebenen Ausführungsbeispielen besitzen die vorgeschlagenen Sicherheitsschalter zwei zueinander redundante elektronische Schaltelemente, die von einem fehlersicheren Steuerteil angesteuert werden. Über die Schaltelemente wird ein externes Freigabesignal geschleift, das letztlich der übergeordneten Sicherheitssteuerung zugeführt ist. Das Freigabesignal kann damit von dem Steuerteil unterdrückt werden, was der Sicherheitssteuerung signalisiert, dass die überwachte Anlage in einen sicheren Zustand gebracht werden soll. Das Freigabesignal kann auch durch mehrere, in Reihe hintereinander geschaltete Sicherheitsschalter geschleift werden, so dass jeder dieser Sicherheitsschalter das Freigabesignal unterdrücken kann. Eine solche Reihenschaltung von Meldegeräten wurde in der Praxis auch schon mit elektromechanischen Meldegeräten realisiert, wobei das Freigabesignal in diesen Fällen von der Sicherheitssteuerung erzeugt und über die in Reihe geschalteten Relaiskontakte der einzelnen Meldegeräte zurückgeschleift wurde.
Der in EP 1 363 306 A2 beschriebene Aufbau der Sicherheitsschalter ermöglicht eine schnelle Reaktion der übergeordneten Sicherheitssteuerung, selbst wenn eine größere Anzahl an Meldegeräten in Reihe zueinander an die Sicherheitssteuerung angeschlossen sind. Andererseits begrenzt das Durchschleifen des Freigabesignals die maximale räumliche Verteilung der in Reihe geschalteten Meldegeräte. Darüber hinaus ist aus Sicht der übergeordneten Sicherheitssteuerung die gesamte Reihe "tot", wenn eines der Meldegeräte das Freigabesignal unterdrückt, sei es aufgrund einer Veränderung des Betätigers (Öffnen der Schutztür oder ähnliches) oder aufgrund eines intern detektier- ten Funktionsfehlers. Die Flexibilität und Leistungsfähigkeit der beschriebenen Sicherheitsschalter geht damit nicht über das hinaus, was bereits seit langem mit vergleichbaren relaisbasierten Meldegeräten möglich ist.
Vor diesem Hintergrund ist es eine Aufgabe der vorliegenden Erfindung, ein Meldegerät der eingangs genannten Art anzugeben, das eine flexiblere Verwendung, insbesondere in einer Reihenanordnung ermöglicht.
Es ist ferner eine Aufgabe der Erfindung, eine Sicherheitsschaltung mit einer Reihenanordnung derartiger Meldegeräte anzugeben, die eine flexiblere Reaktion auf ein Meldeereignis ermöglicht.
Gemäß einem Aspekt der Erfindung werden diese Aufgaben durch ein Meldegerät der eingangs genannten Art gelöst, bei dem der Eingang des Schaltelements intern mit einem festen Potential belegt ist, vorzugsweise einem festen High-Potential .
Die Aufgabe wird ferner durch eine entsprechende Sicherheitsschaltung gelöst, bei der der Eingang des zumindest einen Schaltelements in jedem Meldegerät intern mit einem festen Potential belegt ist, bei dem ferner der Ausgang des zumindest einen Schaltelements in dem ersten Meldegerät dem Steuerteil des zweiten Meldegeräts zugeführt ist, und bei dem der Steuerteil des zweiten Meldegeräts das zumindest eine Schaltelement des zweiten Meldegeräts auch in Abhängigkeit von dem ersten Meldegerät ansteuert.
Schaltungstechnisch betrachtet unterscheidet sich das neue Meldegerät also von dem aus EP 1 363 306 A2 bekannten Sicherheitsschalter dadurch, dass ein Freigabesignal nicht mehr durch das zumindest eine Schaltelement hindurchgeschleift wird. Vielmehr wird das Freigabesignal nun in jedem Meldegerät neu erzeugt. Dabei berücksichtigt der Steuerteil eines stromabwärts liegenden, zweiten Meldegerätes einer Reihenschaltung allerdings das Ausgangssignal des vor ihm stromaufwärts liegenden Meldegerätes. Es ist damit leicht möglich, das Durchschleifen eines Freigabesignals durch mehrere Meldegeräte so nachzubilden, dass aus Sicht der übergeordneten Sicherheitssteuerung kein Unterschied erkennbar ist. Andererseits sind die einzelnen Meldegeräte in einer Reihenanordnung jedoch nicht "tot", wenn ein stromaufwärts liegendes Meldegerät das Freigabesignal unterdrückt hat. Aufgrund der Erfindung ist es insbesondere möglich, dass ein stromabwärts liegendes Meldegerät anderen nachfolgenden Meldegeräten und/oder der übergeordneten Sicherheitssteuerung durch ein Datentelegramm oder dergleichen eine Nachricht zukommen lässt, die eine flexible Reaktion der gesamten Sicherheitsschaltung ermöglicht. Dabei kann das Datentelegramm, wie nachfolgend anhand eines bevorzugten Ausführungsbeispiels gezeigt ist, über die vorhandenen Anschlüsse übertragen werden, d.h. der Verdrahtungsaufwand ist trotz gestiegener Flexibilität gering.
Unabhängig davon übernimmt jedes Meldegerät aufgrund der neuen Verschaltung eine Repeater-Funktion, und es können daher erheblich größere Abstände zwischen den in Reihe zueinander angeordneten Meldegeräten realisiert werden. Auch dies ermöglicht eine flexiblere Anlagenplanung. Auch eine Gruppenabschaltung lässt sich aufgrund der neuen Funktionalität der Meldegeräte einfach realisieren, da jedes Meldegerät der Reihenanordnung unabhängig von den stromaufwärts liegenden Meldegeräten an seinem Ausgang ein Meldesignal erzeugen kann.
Die genannte Aufgabe ist daher vollständig gelöst.
In einer Ausgestaltung besitzt das neue Meldegerät zumindest einen Eingang, bevorzugt einen redundanten Sicherheitseingang, für ein externes Freigabesignal, das dem Steuerteil zugeführt ist, wobei der Steuerteil das zumindest eine Schaltelement auch in Abhängigkeit von dem Freigabesignal ansteuert. In der bevorzugten Sicherheitsschaltung ist das Freigabesignal dem ersten Meldegerät von der Sicherheitssteuerung zugeführt. Diese Ausgestaltung macht von der gewonnenen Flexibilität vorteilhaften Gebrauch. Zwar besitzt das neue Meldegerät aufgrund der bereits beschriebenen Repeater-Funktion auch ohne diese Ausgestaltung Vorteile gegenüber dem bekannten Sicherheitsschalter, erst die Berücksichtigung des extern zugeführten Freigabesignals im Steuerteil ermöglicht jedoch eine individuelle Reaktion des neuen Meldegerätes, die Ereignisse berücksichtigt, die außerhalb von dem Meldegerät auftreten.
In einer weiteren Ausgestaltung ist das zum Ausgang des zumindest einen Schaltelements durchgeschaltete Signal dem Steuerteil des Meldegerätes zugeführt.
Mit anderen Worten wird das Ausgangssignal des Schaltelements (und damit zumindest mittelbar auch das Ausgangssignal des Meldegerätes) auf den Steuerteil zurückgekoppelt. Der Steuerteil ist damit in der Lage, geräteinterne Funktionsfehler zu detektieren. Diese Ausgestaltung ist für sich genommen auch aus EP 1 363 306 A2 und auch seit langem von Lichtschranken und anderen "intelligenten" Meldegeräten und Sicherheitsschaltgeräten bekannt. Die Vorteile dieser Ausgestaltung kommen jedoch erst aufgrund der vorliegenden Erfindung voll zur Geltung, da jedes Meldegerät einer Reihenanordnung einen internen Funktionsfehler unabhängig von dem Zustand stromaufwärtsliegender Meldegeräte weitergeben kann.
In einer weiteren Ausgestaltung ist der Steuerteil des Meldegerätes dazu ausgebildet, einen geräteinternen Funktionsfehler zu detektieren und mit Hilfe des zumindest einen Schaltelements ein Datentelegramm an dessen Ausgang zu erzeugen. Der besondere Vorteil liegt darin, dass das neue Meldegerät Diagnosedaten über die vorhandenen Anschlüsse an die übergeordnete Sicherheitssteuerung übertragen kann, d.h. es müssen keine zusätzlichen Anschlüsse und Leitungen zum Übertragen von Diagnosedaten bereitgestellt werden. Dementsprechend vereinfacht sich die Verdrahtung und sowohl beim Meldegerät als auch bei der Sicherheitssteuerung können Bauraum und Kosten für zusätzliche Anschlüsse eingespart werden.
In bevorzugten Ausgestaltungen ist das Datentelegramm ein Pulstelegramm, d.h. der Steuerteil schaltet das zumindest eine Schaltelement pulsweise an und aus.
Auf diese Weise können Nachrichten mit einem Informationsgehalt von mehreren Bits auf den vorhandenen Signalleitungen sehr kostengünstig und variabel übertragen werden. Damit ist die effiziente Weitergabe von sehr detaillierten Diagnoseinformationen möglich. Auch eine dem Meldegerät zugewiesene Adresse kann in dieser Ausgestaltung mit geringem Aufwand an die übergeordnete Steuerung übertragen werden, so dass die Sicherheitssteuerung jedes Meldegerät einer Reihenschaltung einzeln identifizieren kann.
In einer weiteren Ausgestaltung besitzt jedes Meldegerät zumindest zwei redundante Schaltelemente mit je einem Eingang und einem Ausgang, wobei jedes der zumindest zwei redundanten Schaltelemente eingangsseitig mit dem festen Potential belegt ist.
Diese für sich genommene bereits von Sicherheitssteuerungen bekannte Ausgestaltung besitzt in Kombination mit der vorlie- genden Erfindung den Vorteil, dass das Meldegerät einen internen Funktionsfehler auf den vorhandenen Signalleitungen an die übergeordnete Sicherheitssteuerung melden kann, selbst wenn eines der Schaltelemente Ursache des Funktionsfehlers ist. Die bei den bekannten Sicherheitsschaltgeräten aus Sicherheitsgründen vorgesehene Redundanz führt hier also auch zu einer höheren Verfügbarkeit .
In einer weiteren Ausgestaltung besitzt das Meldegerät einen Eingang zum Zuführen einer Betriebsspannung, wobei die Betriebsspannung dem zumindest einen Schaltelement als festes Potential zugeführt ist.
Diese Ausgestaltung ist besonders vorteilhaft im Hinblick auf die oben beschriebene Repeater-Funktion des neuen Meldegerätes. Indem das zumindest eine Schaltelement eingangsseitig mit der Betriebsspannung verbunden ist, können große Strecken zwischen mehreren Meldegeräten einfach überbrückt werden.
In einer weiteren Ausgestaltung beinhaltet das Meldegerät einen beweglichen Betätiger, der zwischen einer ersten und zumindest einer zweiten Raumposition bewegbar ist, wobei die externe Zustandsgröße eine aktuelle Raumposition ist. In einer besonders bevorzugten Ausgestaltung ist der Betätiger ein Transpon- der .
In dieser Ausgestaltung ist das neue Meldegerät insbesondere ein Schutztürschalter, ein Not-Aus-Taster, ein End- oder Positionsschalter, ein Sensor für eine Trittmatte oder ein handbetätigter Start- oder Befehlstaster. Der Betätiger kann dabei in das Meldegerät integriert sein oder auch vom Meldegerät ge- trennt ausgeführt sein, wie dies beispielsweise bei Schutztürschaltern üblich ist. Die Anbindung des Betätigers an das Meldegerät kann optisch, induktiv, kapazitiv oder auf eine beliebige andere Weise erfolgen. Diese Ausgestaltung ist bevorzugt, weil es sich bei den genannten Meldegeräten um relativ einfache Komponenten handelt, die bislang praktisch keine eigene Signalverarbeitung besessen haben. Der erweiterte Funktionsumfang kommt daher bei diesen Meldegeräten besonders stark zur Geltung. Die Verwendung der vorliegenden Erfindung bei derartigen "einfachen" Meldegeräten kann zudem auch den Einsatz einer übergeordneten Sicherheitssteuerung für kleinere Anwendungsfälle überflüssig machen, indem das Meldegerät einen Aktor ohne zwischengeschaltete Sicherheitssteuerung über seine Ausgänge aktiviert.
Daher ist es in einer weiteren Ausgestaltung bevorzugt, wenn das neue Meldegerät einen Rückleseeingang zum Zuführen eines externen Rücklesesignals von einem Aktor besitzt.
Das Meldegerät dieser Ausgestaltung vereint damit die bislang getrennten Funktionen „Zustandsgröße erfassen" (Sensor) und „Anlage Abschalten" (Signalverarbeitung). Kleine sicherheitstechnische Anwendungen lassen sich damit sehr kostengünstig realisieren.
In einer weiteren Ausgestaltung ist der Eingangsteil dazu ausgebildet, eine physikalische Messgröße, insbesondere eine Drehzahl, eine Spannung und/oder einen Strom, als externe Zustandsgröße aufzunehmen. Sensoren zum Aufnehmen derartiger Zustandsgrößen werden üblicherweise in einem Schaltschrank verbaut, während Not-AusTaster, End- oder Positionsschalter, Schutztürschalter und ähnliche Meldegräte üblicherweise an der Anlage installiert sind. Die zuvor erwähnten Vorteile lassen sich jedoch in gleicher Weise auch auf solche messenden Sensoren als Meldegeräte übertragen. Beispielsweise können mehrere Drehzahlwächter in der hier beschriebenen Weise in Reihe geschaltet werden, so dass sich mehrere bewegte Achsen einer Anlage sehr kostengünstig sicherheitstechnisch überwachen lassen.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig. 1 eine vereinfachte Darstellung einer Anlage, bei der ein Meldegerät gemäß der vorliegenden Erfindung zur Absicherung eingesetzt wird,
Fig. 2 eine schematische Darstellung eines Ausführungsbeispiels des neuen Meldegerätes,
Fig. 3 eine Sicherheitsschaltung mit zwei Meldegeräten der in Fig. 2 gezeigten Art in einer Reihenanordnung, Fig. 4 eine Zeitdiagramm mit Signalverläufen beim Initialisieren einer Sicherheitsschaltung gemäß Fig. 3, und
Fig. 5 ein weiteres Ausführungsbeispiel eines neuen Meldegerätes .
In Fig. 1 ist eine Anlage, die mit Hilfe der Erfindung abgesichert wird, in ihrer Gesamtheit mit der Bezugsziffer 10 bezeichnet.
Die Anlage 10 beinhaltet hier einen Roboter 12, dessen automatisierte Bewegungen für eine Person (hier nicht dargestellt), die sich im Bewegungsbereich des Roboters 12 aufhalten würde, gefährlich wären. Daher ist der Bewegungsbereich des Roboters 12, wie an sich bekannt, mit einer Schutztür 14 und Schutzzäunen abgesichert. An der Schutztür 14 ist ein Betätiger 16 befestigt. An einem feststehenden Rahmen, an dem die Schutztür 14 in geschlossenem Zustand anliegt, befindet sich ein Sicherheitsschalter 18, allgemeiner also der feststehende Teil eines Meldegerätes gemäß der vorliegenden Erfindung. Der Sicherheitsschalter 18 ist über mehrere Leitungen mit einer Sicherheitssteuerung 20 verbunden. Die Sicherheitssteuerung 20 steuert ausgangsseitig zwei Schütze 22, 24, deren Kontakte die Stromversorgung 26 zum Roboter 12 unterbrechen können.
Die Anlage 10 ist hier vereinfacht dargestellt. Wie den einschlägigen Fachleuten bekannt ist, wird die Schutztür 14 in der Praxis üblicherweise mit zumindest zwei Sicherheitsschaltern 18 und entsprechenden Betätigern 16 ausgerüstet, wobei einer der Sicherheitsschalter häufig verdeckt angeordnet wird, um Manipulationen zu erschweren. Darüber hinaus enthält eine solche Anlage häufig weitere Meldegeräte, wie beispielsweise Not-AusTaster oder weitere Schutztürschalter (hier nicht gezeigt) . Außerdem ist hier die erforderliche Betriebssteuerung für den Roboter 12 der Einfachheit halber nicht dargestellt. Um einen eingeschränkten Betrieb bei geöffneter Schutztür zu ermöglichen, können ein oder mehrere Drehzahlwächter (hier nicht gezeigt) mit den Antrieben und/oder den bewegten Achsen des Roboters verbunden sein.
Die Sicherheitssteuerung 20 kann in einem einfachen Szenario ein Sicherheitsschaltgerät sein, wie es von der Anmelderin unter der Bezeichnung PNOZ® angeboten wird. Wenn zahlreiche sicherheitstechnische Meldegeräte zur Absicherung der Anlage 10 benötigt werden, ist es jedoch vorteilhaft, eine komplexere Sicherheitssteuerung einzusetzen, wie etwa die unter der Bezeichnung PSS® von der Anmelderin vertriebenen Sicherheitssteuerungen. Zumindest im letztgenannten Fall besitzt die Sicherheitssteuerung 20 üblicherweise einen Feldbusanschluss und weitere Schnittstellen zur Kommunikation mit der hier nicht gezeigten Betriebssteuerung und/oder zur Kommunikation mit einem übergeordneten Leitrechner.
In dem bevorzugten Ausführungsbeispiel gemäß Fig. 2 ist der Sicherheitsschalter 18 zweikanalig-redundant aufgebaut. Dementsprechend besitzt der Sicherheitsschalter 18 hier zwei redundante MikroController 30, 32, die sich gegenseitig überwachen, was durch einen Doppelpfeil zwischen den Mikrocontrollern dargestellt ist. In bevorzugten Ausführungsbeispielen sind die Mikrocontroller unterschiedlich, d.h. der Sicherheitsschalter 18 ist diversitär aufgebaut. Mit den Bezugsziffern 34, 36 sind zwei elektronische Schaltelemente bezeichnet, die hier als Feldeffekttransistoren dargestellt sind. Alternativ können jedoch auch bipolare Transistoren oder andere, vorzugsweise elektronische Schaltelemente eingesetzt werden.
Der Steueranschluss (Gate) des Schaltelements 34 ist mit dem Mikrocontroller 30 verbunden. Der Eingang 38 (Source) ist mit einer Leitung 40 verbunden, an der im Betrieb des Sicherheitsschalters 18 eine Betriebsspannung UB anliegt. Der Ausgang 42 (Drain) ist mit einem Anschluss 44 verbunden, an dem der Sicherheitsschalter 18 extern verdrahtet werden kann. Damit bildet der Ausgang 42 des Schaltelements 34 ein Ausgangssignal des Sicherheitsschalters 18.
Das zweite Schaltelement 36 ist an seinem Steueranschluss (Gate) mit dem Mikrocontroller 32 verbunden. Sein Eingang 38 liegt über die Leitung 40 ebenfalls an Betriebsspannung UB. Sein Ausgang 42 ist einem zweiten Ausgangsanschluss 46 des Sicherheitsschalters 18 zugeführt.
Die Signale an den Ausgängen 42 der Schaltelemente 34, 36 sind über zwei Spannungsteiler 48, 50 auf die Mikrocontroller 30, 32 zurückgekoppelt. Damit ist es den Mikrocontrollern 30, 32 möglich, den jeweiligen Schaltzustand der Schaltelemente 34, 36 zu überwachen.
Mit der Bezugsziffer 52 ist ein Eingangsteil bezeichnet, mit dessen Hilfe die Mikrocontroller 30, 32 den aktuellen Zustand des Betätigers 16, hier also seine Raumposition, bestimmen. In dem hier gezeigten, bevorzugten Ausführungsbeispiel ist der Betätiger 16 ein Transponder mit einem Signalerzeugungsschaltkreis 54 und einer Sende- und Empfangsspule 56. In dem Signalerzeugungsschaltkreis 54 ist eine individuelle Codierung 58 abgespeichert. Der Eingangsteil 52 besitzt eine Sende- und Empfangsspule (hier nur symbolisch dargestellt), über die er ein Abfragesignal aussendet. Sobald sich der Transponder 16 im Nahbereich des Eingangsteils 52 befindet (Schutztür geschlossen), wird der Signalerzeugungsschaltkreis 54 im Betätiger 16 aktiviert. Der Betätiger 16 sendet dann die abgespeicherte Codierung 58 an den Eingangsteil 52 zurück. Dort wird die Codierung 58 aus dem empfangenen Signal demoduliert und den Mikrocontrollern 30, 32 zur Verfügung gestellt.
Ist die Schutztür 14 hingegen geöffnet, befindet sich der Betätiger 16 außerhalb der Sende- und Empfangsreichweite des Eingangsteils 52, was in Fig. 2 bei der Position 16' dargestellt ist. In diesem Fall findet zwischen Betätiger 16 und Eingangsteil 52 keine Kommunikation statt. Die Mikrocontroller 30, 32 erhalten folglich keine Codierung, was als geöffnete Schutztür 14 interpretiert wird. Ist ein zweiter Schütztürschalter oder zumindest ein zweiter Betätiger (nicht dargestellt) vorhanden, kann auch ein Defekt des Betätigers 16 oder des Eingangsteils 52 erkannt werden.
In anderen Ausführungsbeispielen kann der Eingangsteil 52 für andere Arten von Betätigern ausgebildet sein. Dabei kann der Betätiger auch im Sicherheitsschalter 18 integriert sein. Beispielsweise könnte der Sicherheitsschalter 18 ein Not-AusTaster sein und der Betätiger wäre in diesem Fall der Stößel des Tasters. In weiteren Ausführungsbeispielen beinhaltet der Eingangsteil 52 induktive, kapazitive, optische oder anderwei- tige Sensoren zum Bestimmen einer aktuellen Position eines mechanisch beweglichen Betätigers. Darüber hinaus kann die Erfindung grundsätzlich auch bei Lichtschranken und anderen Meldegeräten angewendet werden, die zwischen zumindest zwei Zuständen unterscheiden. In weiteren Ausführungsbeispielen ist der Eingangsteil zur messenden Aufnahme einer physikalischen Zustandsgröße ausgebildet, wie weiter unten anhand Fig. 5 näher erläutert ist.
Eingangsseitig besitzt der Sicherheitsschalter 18 hier drei Anschlüsse 60, 62, 64, die jeweils als Sicherheitseingänge ausgebildet sind und redundant mit den beiden Mikrocontrollern 30, 32 verbunden sind. Über die Anschlüsse 60 bis 64 können den Mikrocontrollern 30, 32 externe Freigabesignale redundant zugeführt werden. Außerdem ist in an sich bekannter Weise ein Anschluss 66 zum Zuführen einer Betriebsspannung UB und ein Mas- seanschluss 68 vorhanden. Es versteht sich, dass die genannten Anschlüsse jeweils an der Außenseite eines Gehäuses 70 des Sicherheitsschalters 18 zugänglich sind.
In Fig. 3 ist eine Sicherheitsschaltung mit zwei der beschriebenen Sicherheitsschalter 18 in ihrer Gesamtheit mit der Bezugsziffer 80 bezeichnet. Im übrigen bezeichnen gleiche Bezugszeichen dieselben Elemente wie zuvor. Die beiden Sicherheitsschalter sind zur gegenseitigen Unterscheidung mit 18a und 18b bezeichnet.
Der Sicherheitsschalter 18a ist an seinen Anschlüssen 60, 62 mit Ausgängen der Sicherheitssteuerung 20 verbunden. Bevorzugt handelt es sich hierbei um sogenannte Taktausgänge der Sicherheitssteuerung 20, an denen zwei Taktsignale unterschiedlicher Frequenz und/oder Phase anliegen, so dass eine Querschlusserkennung sowohl im Sicherheitsschalter 18a als auch (durch Rücklesen, hier nicht gezeigt) in der Sicherheitssteuerung 20 möglich ist. Außerdem ist der Sicherheitsschalter 18a an den Anschlüssen 66, 68 mit Betriebsspannung UB bzw. Masse verbunden. Ausgangsseitig sind die Anschlüsse 44, 46 des Sicherheitsschalters 18a auf die Anschlüsse 60, 62 des nachfolgenden Sicherheitsschalters 18b geführt. Die beiden Sicherheitsschalter 18a, 18b sind also in Reihe zueinander angeordnet. Betriebsspannung erhält der Sicherheitsschalter 18b in der gezeigten Anordnung ebenfalls vom Sicherheitsschalter 18a. Alternativ hierzu könnte der Sicherheitsschalter 18b jedoch auch mit einer anderen Quelle für die Betriebsspannung UB verbunden sein.
Die beiden Ausgangssignale des Sicherheitsschalters 18b, d.h. die an dessen Anschlüssen 44, 46 anliegenden Signale, sind Sicherheitseingängen der Sicherheitssteuerung 20 zugeführt. Ausgangsseitig ist die Sicherheitssteuerung 20 zwischen die Stromversorgung 26 und einen abzuschaltenden Antrieb 82, beispielsweise einen Stellantrieb des Roboters 12, geschaltet. Außerdem ist hier schematisch dargestellt, dass die Sicherheitssteuerung 20 über einen Feldbus 84 mit einer Betriebssteuerung 86 für den Roboter 12 und/oder einem übergeordneten Leitrechner verbunden ist. Die zu den Sicherheitsschaltern 18a, 18b gehörenden Betätiger sind aus Gründen der Übersichtlichkeit in Fig. 3 nicht gezeigt.
Die Funktionsweise der Sicherheitsschaltung 80 ist wie folgt:
Nach der Inbetriebnahme erzeugt die Sicherheitssteuerung 20 an ihren Ausgängen zwei Taktsignale 88, 90, die dem Sicherheits- Schalter 18a als Freigabesignale zugeführt sind. Die Mikrocontroller 30, 32 des Sicherheitsschalters 18a überwachen mit Hilfe des Eingangsteils 52 den aktuellen Zustand des zugehörigen Betätigers. Befindet sich der Betätiger im Bereich des Eingangsteils 52 und werden die Freigabesignale 88, 90 einwandfrei empfangen, erzeugen die Mikrocontroller 30, 32 mit Hilfe der Schaltelemente 34, 36 zwei Ausgangssignale, die den Freigabesignalen 88, 90 nachgebildet sind. Sie könnten sich jedoch auch von den Taktsignalen 88, 90 unterscheiden, beispielsweise hinsichtlich ihrer Frequenz. Der zweite Sicherheitsschalter 18b empfängt die nachgebildeten Freigabesignale und bildet diese seinerseits am Ausgang nach, wenn er ebenfalls eine geschlossene Schutztür und einwandfreie Funktion feststellt. Die Sicherheitssteuerung 20 erhält die nachgebildeten Freigabesignale über die Leitungen 92, 94.
Wenn nun der Sicherheitsschalter 18a das Öffnen der ihm zugeordneten Schutztür detektiert, d.h. wenn der zugeordnete Betätiger seinen Zustand wechselt, öffnen die Mikrocontroller 30, 32 die Schaltelemente 34, 36. Der nachfolgende Sicherheitsschalter 18b erhält folglich nicht mehr die nachgebildeten Freigabesignale. Dies wird von den Mikrocontrollern im Sicherheitsschalter 18b erkannt und durch Abschalten der Schaltelemente 34, 36 an die Sicherheitssteuerung 20 gemeldet. Diese kann daraufhin den Antrieb 82 abschalten.
In gleicher Weise erfolgt der Signalfluss, wenn der Sicherheitsschalter 18a einen Funktionsfehler detektiert, beispielsweise einen Querschluss an den eingangs- oder ausgangsseitigen Anschlüssen, ein Durchlegieren eines der Schaltelemente 34, 36 oder einen sonstigen Funktionsfehler. Nach einer kurzen Warte- zeit, die in den Mikrocontrollern aller Sicherheitsschalter 18a, 18b und der Sicherheitssteuerung 20 hinterlegt ist, erzeugt der Sicherheitsschalter 18a ein Datentelegramm 96 auf zumindest einer seiner Ausgangsleitungen, indem er zumindest eines der Schaltelemente 34, 36 pulsweise schließt und wieder öffnet. Der nachfolgende Sicherheitsschalter 18b empfängt dieses Datentelegramm und gibt es an die Sicherheitssteuerung 20 in gleicher Weise weiter. Bei Bedarf kann er auch weitere Informationen in das Datentelegramm 96 integrieren.
In einem Ausführungsbeispiel ist das Datentelegramm 96 wie bei einer asynchronen, seriellen Schnittstelle realisiert, d.h. es beginnt mit einem definierten Startbit und endet mit einem definierten Stoppbit. Dazwischen liegt eine beliebige oder festgelegte Anzahl an Datenbits. In einem anderen Ausführungsbeispiel beinhaltet jedes Datentelegramm 96 eine festgelegte Anzahl an Impulsen mit definierter Impulsdauer. Die Bedeutung jedes einzelnen Impulses hängt von dem Protokoll ab, das zwischen den Sicherheitsschaltern 18 und der Sicherheitssteuerung 20 festgelegt ist.
In gleicher Weise erzeugt der Sicherheitsschalter 18b ein eigenes Datentelegramm 96, wenn er seinerseits einen Funktionsfehler feststellt. Im Unterschied zu der bekannten Anordnung kann der Sicherheitsschalter 18b seine Datentelegramme unabhängig davon erzeugen, ob der Sicherheitsschalter 18a die Schaltelemente 34, 36 geöffnet oder geschlossen hat.
In einem bevorzugten Ausführungsbeispiel beinhalten die Daten- telegramme der Sicherheitsschalter 18a, 18b eine Adressinformation, die denjenigen Sicherheitsschalter identifiziert, der eine Information an die übergeordnete Sicherheitssteuerung 20 melden möchte. Die jeweilige Adresse kann den Sicherheitsschalter 18a, 18b auf verschiedene Weise zugeordnet werden. Beispielsweise kann jeder Sicherheitsschalter 18a, 18b mit einem mehrstufigen Adresswahlschalter (hier nicht gezeigt) versehen sein, an dem die zugeordnete Adresse eingestellt wird. In einem anderen Ausführungsbeispiel verwenden die Sicherheitsschalter 18a, 18b als Adresse jeweils die Codierung 58 der ihnen zugeordneten Betätiger 16.
In einem weiteren Ausführungsbeispiel wird den in Reihe geschalteten Sicherheitsschaltern 18a, 18b in einem Initialisierungsmodus nach Inbetriebnahme der Sicherheitsschaltung 80 eine Adresse zugewiesen. Ein bevorzugtes Verfahren, wie diese Adresszuweisung erfolgt, ist anhand Fig. 4 dargestellt.
Fig. 4 zeigt die Signaldiagramme für diesen Initialisierungsmodus. Die oberste Impulsfolge 100 ist das Einschalten der Betriebsspannung UB für sämtliche Komponenten der Sicherheitsschaltung 80. Bei Bezugsziffer 102 ist das Signal am ersten Taktausgang der Sicherheitssteuerung 20, d.h. das Signal auf der Leitung 88 dargestellt. Bei Bezugsziffer 104 ist das Signal am zweiten Taktausgang der Sicherheitssteuerung 20, d.h. das Signal auf Leitung 90 dargestellt. Der erste Sicherheitsschalter 18 erhält also nach dem Einschalten der Betriebsspannung UB an seinem Eingang 60 ein Dauer-High und an seinem Eingang 62 einen einzelnen Impuls. Sobald er diesen erkennt, bildet er das an seinem Anschluss 60 anliegende Signal (Dauer-High) an seinem Ausgang 44 nach (Bezugsziffer 106). Nach einer Wartezeit T erzeugt er dann an seinem Ausgang 46 zwei Impulse, wie bei Bezugsziffer 108 dargestellt. Die Wartezeit T dient zum Erkennen, ob weitere Impuls eingangsseitig empfangen werden.
Das zweite Sicherheitsschaltgerät 18b empfängt an seinen Eingängen 60, 62 die Signale 106, 108 und bildet diese an seinen Ausgängen 44, 46 nach. Dabei fügt es den Einzelimpulsen 108, die es am Anschluss 62 empfängt, einen weiteren Einzelimpuls hinzu. An den Ausgängen des zweiten Sicherheitsschalters 18b liegen folglich die Impulsfolgen an, die bei den Bezugsziffern 110, 112 dargestellt sind. In gleicher Weise würden weitere Sicherheitsschaltgeräte 18c, 18d etc. (in Fig. 3 nicht dargestellt) auf der einen Signalleitung ein Dauer-High nachbilden (Bezugsziffer 114) und auf der zweiten Signalleitung eine Impulsfolge, und jeder Sicherheitsschalter würde die Impulsfolge um einen Impuls erhöht.
Am Ende der Kette erhält die Sicherheitssteuerung 20 die Signale gemäß den Bezugsziffern 114, 116. Aus dem Signal 114 erkennt die Sicherheitssteuerung 20, dass die Verdrahtung des Kanals A stimmt. Aus der Impulsfolge 116 erkennt die Sicherheitssteuerung 20, dass die Verdrahtung des Kanals B stimmt. Außerdem kann sie die Anzahl der in Reihe angeordneten Sicherheitsschalter 18a, 18b etc. aus der Anzahl der Impulse (minus 1) bestimmen. In gleicher Weise kann jeder Sicherheitsschalter 18a, 18b seine Adresse aus der Anzahl der empfangenen Impulse erkennen. Auf diese Weise kann beim Einschalten der Sicherheitsschaltung 80 eine individuelle Adresse an jeden in Reihe angeordneten Sicherheitsschalter automatisch zugewiesen werden. Wird die Sicherheitsschaltung 80 später verändert, erfolgt eine erneute und korrekte Adresszuordnung an die dann vorhandene Konfiguration automatisch beim Wiedereinschalten. Die Flexibilität der neuen Meldegeräte wird hier noch weiter durch den bislang nicht erläuterten Eingangsanschluss 64 erhöht. Dieser Anschluss kann verwendet werden, um ein externes Rückkopplungssignal in den Sicherheitsschalter 18 einzuspeisen. Damit ist es beispielsweise möglich, dass der Sicherheitsschalter 18 einen Schütz mit zwangsgeführten Kontakten eigenständig, d.h. ohne ein bislang übliches Sicherheitsschaltgerät oder eine entsprechende Sicherheitssteuerung ansteuert. Es genügt, wenn der zwangsgeführte Öffnerkontakt des Schützes auf den Rückkoppeleingang 64 des Sicherheitsschalters 18 geführt ist.
In weiteren Ausführungsbeispielen besitzen Meldegeräte, wie der gezeigte Sicherheitsschalter 18, einen weiteren Eingangsanschluss zum Anlegen eines Startsignals. Damit ist es ohne die bislang übliche Sicherheitssteuerung möglich, auch einen überwachten Wiederanlauf der Anlage zu realisieren.
Des weiteren kann die jeweilige Funktion der Meldegeräte 18 über den Eingangsanschluss 64 parametriert werden, wie dies beispielsweise in DE 100 16 712 AI beschrieben ist. Außerdem kann eine Parametrierung von außen mit Hilfe unterschiedlicher Transpondercodierungen erfolgen.
Fig. 5 zeigt ein Ausführungsbeispiel eines neuen Meldegerätes 100 als Drehzahlwächter. Gleiche Bezugszeichen bezeichnen dabei dieselben Elemente wie zuvor.
Das Meldegerät 100 unterscheidet sich von dem Meldegerät 18 aus Fig. 2 im wesentlichen in Bezug auf den Eingangsteil 102, der hier im Unterschied zum Eingangsteil 52 zum messtechnischen Erfassen einer Drehzahl ausgebildet ist. Die Drehzahlerfassung erfolgt in diesem Ausführungsbeispiel geberlos, indem der Eingangsteil 102 die Motorspannungen eines Drehantriebes 104 abgreift und hinsichtlich ihrer Frequenz auswertet. In einer besonderen Ausführung ist das Meldegerät 100 als Stillstandswächter ausgebildet, d.h. es überwacht das Erreichen und die Einhaltung einer Drehzahl Null. Dies kann geschehen, indem der Eingangsteil 102 die vom auslaufenden Drehantrieb 104 erzeugten Generatorspannungen abgreift und überwacht, wie dies an sich von Stillstandswächtern für sicherheitstechnische Anwendungen bekannt ist.
In weiteren Ausführungsbeispielen erfasst der Eingangsteil 102 eine Spannung, einen Strom oder eine andere physikalische Größe messtechnisch und die Mikrocontroller steuern die Schaltelemente 34, 36 in Abhängigkeit von der erfassten Größe, insbesondere in Abhängigkeit davon, dass die erfasste Größe einen vorgegebenen Sollwert einhält.

Claims

Patentansprüche
1. Meldegerät für eine Sicherheitsschaltung, mit einem Eingangsteil (52) zum Aufnehmen einer externen Zustandsgröße, mit zumindest einem Schaltelement (34, 36) mit einem Eingang (38) und einem Ausgang (42), und mit einem Steuerteil (30, 32), der dazu ausgebildet ist, in Abhängigkeit von der externen Zustandsgröße das zumindest eine Schaltelement (34, 36) so anzusteuern, dass ein am Eingang (38) anliegendes Signal zum Ausgang (42) durchgeschaltet ist, dadurch gekennzeichnet, dass der Eingang (38) des Schaltelements (34, 36) intern mit einem festen Potential, vorzugsweise einem High-Potential (UB), belegt ist.
2. Meldegerät nach Anspruch 1, gekennzeichnet durch zumindest einen Eingang, vorzugsweise einen redundanten Sicherheitseingang (60, 62), für ein externes Freigabesignal 88, 90), das dem Steuerteil (30, 32) zugeführt ist, wobei der Steuerteil (30, 32) das zumindest eine Schaltelement (34, 36) auch in Abhängigkeit von dem Freigabesignal (88, 90) ansteuert.
3. Meldegerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das zum Ausgang (42) des zumindest einen Schaltelements (34, 36) durchgeschaltete Signal dem Steuerteil (30, 32) zugeführt ist.
4. Meldegerät nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Steuerteil (30, 32) dazu ausgebildet ist, einen geräteinternen Funktionsfehler zu detektie- ren und mit Hilfe des zumindest einen Schaltelements (34, 36) ein Datentelegramm (96) an dessen Ausgang (42) zu erzeugen.
Meldegerät nach Anspruch 4, dadurch gekennzeichnet, dass das Datentelegramm ein Pulstelegramm ist.
Meldegerät nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zumindest zwei redundante Schaltelemente (34, 36) mit je einem Eingang (38) und je einem Ausgang (42) vorhanden sind, wobei jedes der zumindest zwei redundanten Schaltelemente (34, 36) eingangsseitig mit dem festen Potential belegt ist.
Meldegerät nach einem der Ansprüche 1 bis 6, gekennzeichnet durch einen Eingang (66) zum Zuführen einer Betriebsspannung (UB), wobei die Betriebsspannung dem zumindest einen Schaltelement (34, 36) als festes Potential zugeführt ist.
Meldegerät nach einem der Ansprüche 1 bis 7, gekennzeichnet durch einen beweglichen Betätiger (16), der zwischen einer ersten und zumindest einer zweiten Raumposition (16') bewegbar ist, insbesondere einen Transponder, wobei die externe Zustandsgröße eine aktuelle Raumposition des Betätigers (16) ist.
Meldegerät nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Eingangsteil (52) dazu ausgebildet ist, eine physikalische Messgröße, insbesondere eine Dreh- zahl, eine variable Spannung und/oder einen variablen Strom, als externe Zustandsgröße aufzunehmen.
10. Meldegerät nach einem der Ansprüche 1 bis 9, gekennzeichnet durch einen Rückleseeingang (64) zum Zuführen eines externen Rücklesesignals von einem Aktor (22, 24).
11. Sicherheitsschaltung zum sicheren Abschalten einer gefahrbringenden Anlage (10), mit einer Sicherheitssteuerung (20), die dazu ausgebildet ist, die Anlage (10) fehlersicher abzuschalten, und mit einem ersten und zumindest einem zweiten Meldegerät (18a, 18b), die in Reihe zueinander an die Sicherheitssteuerung (20) angeschlossen sind, wobei jedes Meldegerät (18a, 18b) einen Eingangsteil (52) zum Aufnehmen einer externen Zustandsgröße, zumindest ein Schaltelement (34, 36) mit einem Eingang (38) und einem Ausgang (42) sowie einen Steuerteil (30, 32) besitzt, der dazu ausgebildet ist, in Abhängigkeit von der externen Zustandsgröße das zumindest eine Schaltelement (34, 36) so anzusteuern, dass ein am Eingang (38) anliegendes Signal zum Ausgang (42) durchgeschaltet ist, dadurch gekennzeichnet, dass der Eingang (38) des zumindest einen Schaltelements (34, 36) in jedem Meldegerät intern mit einem festen Potential, vorzugsweise einem High-Potential, belegt ist, dass der Ausgang (42) des zumindest einen Schaltelements (34, 36) in dem ersten Meldegerät (18a) dem Steuerteil (30, 32) des zweiten Meldegeräts (18b) zugeführt ist, und dass der Steuerteil (30, 32) des zweiten Meldegeräts (18b) das zumindest eine Schaltelement (34, 36) des zweiten Meldegeräts (18b) auch in Abhängigkeit von dem ersten Meldegerät (18a) ansteuert.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass dem Steuerteil (30, 32) des ersten Meldegeräts (18a) ein Freigabesignal (88, 90) von der Sicherheitssteuerung (20) zugeführt ist, wobei der Steuerteil (30, 32) des ersten Meldegeräts (18a) das zumindest eine Schaltelement (34, 36) des ersten Meldegeräts (18a) auch in Abhängigkeit von dem Freigabesignal (88, 90) ansteuert.
13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass der Steuerteil (30, 32) in jedem Meldegerät (18a, 18b) dazu ausgebildet ist, einen geräteinternen Funktionsfehler zu detektieren und mit Hilfe des zumindest einen Schaltelements (34, 36) ein Datentelegramm (96) an dessen Ausgang (42) zu erzeugen.
PCT/EP2005/003073 2004-04-19 2005-03-23 Meldegerät für eine sicherheitsschaltung WO2005101439A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007507686A JP5089378B2 (ja) 2004-04-19 2005-03-23 安全回路用信号伝送装置
AT05731057T ATE467224T1 (de) 2004-04-19 2005-03-23 Meldegerät für eine sicherheitsschaltung
DE200550009527 DE502005009527D1 (de) 2004-04-19 2005-03-23 Meldegerät für eine sicherheitsschaltung
EP05731057.5A EP1738383B2 (de) 2004-04-19 2005-03-23 Meldegerät für eine sicherheitsschaltung
US11/581,742 US7948391B2 (en) 2004-04-19 2006-10-16 Signaling device for a safety circuit
HK07106495A HK1099123A1 (en) 2004-04-19 2007-06-15 Signaling device for a protective circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004020995.2 2004-04-19
DE102004020995.2A DE102004020995C5 (de) 2004-04-19 2004-04-19 Meldegerät für eine Sicherheitsschaltung
DE102004031918.9 2004-06-23
DE102004031918 2004-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/581,742 Continuation US7948391B2 (en) 2004-04-19 2006-10-16 Signaling device for a safety circuit

Publications (1)

Publication Number Publication Date
WO2005101439A1 true WO2005101439A1 (de) 2005-10-27

Family

ID=34963957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/003073 WO2005101439A1 (de) 2004-04-19 2005-03-23 Meldegerät für eine sicherheitsschaltung

Country Status (8)

Country Link
US (1) US7948391B2 (de)
EP (1) EP1738383B2 (de)
JP (1) JP5089378B2 (de)
AT (1) ATE467224T1 (de)
DE (1) DE502005009527D1 (de)
ES (1) ES2342543T3 (de)
HK (1) HK1099123A1 (de)
WO (1) WO2005101439A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2083433A1 (de) * 2008-01-24 2009-07-29 Sick Ag Sicherheitsgerät und System
CN103353715A (zh) * 2013-06-26 2013-10-16 许继集团有限公司 监控系统冗余保护测控数据传输方法
WO2013164041A1 (de) * 2012-05-04 2013-11-07 Chr. Mayr Gmbh & Co. Kg Schaltgerät
WO2023011898A1 (de) * 2021-08-05 2023-02-09 Trumpf Laser Gmbh Vorrichtung und verfahren zur laserleistungsüberwachung

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10348884A1 (de) * 2003-10-14 2005-05-25 Pilz Gmbh & Co. Kg Sicherheitsschalter, insbesondere Not-Aus-Schalter, zum sicheren Abschalten eines gefahrbringenden Gerätes
EP1738383B2 (de) 2004-04-19 2023-01-11 Pilz GmbH & Co. KG Meldegerät für eine sicherheitsschaltung
DE102005014125A1 (de) * 2005-03-22 2006-09-28 Pilz Gmbh & Co. Kg Sicherheitsschaltvorrichtung zum sicheren Abschalten eines elektrischen Verbrauchers
DE502006007296D1 (de) 2005-08-02 2010-08-05 Phoenix Contact Gmbh & Co Sicherheitsvorrichtung zum mehrkanaligen Steuern einer sicherheitstechnischen Einrichtung
DE102008060004B4 (de) * 2008-11-25 2021-09-02 Pilz Gmbh & Co. Kg Sicherheitsschalter zum Erzeugen eines Anlagenfreigabesignals in Abhängigkeit von der Position einer beweglichen Schutztür
DE102009038721A1 (de) * 2009-08-25 2011-03-03 Kuka Roboter Gmbh Anordnung und Verfahren zur sicheren Steuerung eines Manipulators
EP2375636A1 (de) * 2010-03-29 2011-10-12 Sick Ag Vorrichtung und Verfahren zum Konfigurieren eines Bussystems
DE102010025675B3 (de) * 2010-06-25 2011-11-10 Pilz Gmbh & Co. Kg Sicherheitsschaltungsanordnung zum fehlersicheren Ein- und Ausschalten einer gefährlichen Anlage
EP2461342B1 (de) * 2010-12-06 2015-01-28 Siemens Aktiengesellschaft Fehlersicheres Schaltmodul
US8862425B2 (en) 2010-12-09 2014-10-14 Toyota Motor Engineering & Manufacturing North America, Inc. Failure sensing and control system for cycle testing
DE102011016137A1 (de) * 2011-03-30 2012-10-04 Pilz Gmbh & Co. Kg Sicherheitsschaltungsanordnung zum fehlersicheren Ein- oder Ausschalten einer gefährlichen Anlage
JP5794116B2 (ja) * 2011-11-08 2015-10-14 オムロン株式会社 安全制御システム
JP5068394B1 (ja) * 2011-11-30 2012-11-07 三菱電機株式会社 制御システム、制御装置、接続線および駆動装置
US9160174B2 (en) * 2011-12-02 2015-10-13 Hamilton Sundstrand Corporation Control architecture for power switching controller
DE102012101516A1 (de) * 2012-02-24 2013-08-29 Pilz Gmbh & Co. Kg Sicherheitsschaltvorrichtung mit Netzteil
DE102012103015B4 (de) * 2012-04-05 2013-12-05 Pilz Gmbh & Co. Kg Sicherheitsschaltvorrichtung mit Schaltelement im Hilfskontaktstrompfad
DE102013101050B4 (de) * 2013-02-01 2023-02-16 Pilz Gmbh & Co. Kg Sicherheitsschaltvorrichtung mit sicherem Netzteil
DE102013101932A1 (de) * 2013-02-27 2014-08-28 Pilz Gmbh & Co. Kg Sicherheitsschaltvorrichtung zum Ein- und fehlersicheren Ausschalten einer technischen Anlage
US9446517B2 (en) * 2013-10-17 2016-09-20 Intuitive Surgical Operations, Inc. Fault reaction, fault isolation, and graceful degradation in a robotic system
ES2900820T3 (es) * 2015-08-06 2022-03-18 Euchner Gmbh Co Kg Interruptor de seguridad
EP3374832B1 (de) 2015-11-09 2019-10-16 Otis Elevator Company Elektrische schaltung mit selbstdiagnose
DE102016109915A1 (de) * 2016-05-30 2017-11-30 Pilz Gmbh & Co. Kg Vorrichtung zum fehlersicheren Abschalten eines Verbrauchers
WO2019092555A1 (en) * 2017-11-08 2019-05-16 Pizzato Elettrica S.R.L. Safety switch for controlling the access to industrial machines or plants
ES2847399T3 (es) * 2018-04-20 2021-08-03 Euchner Gmbh Co Kg Interruptor de seguridad

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570109A (en) * 1983-02-03 1986-02-11 U.S. Philips Corporation Irradiation device
EP1363306A2 (de) * 2002-05-18 2003-11-19 K.A. SCHMERSAL GmbH & Co. Sicherheitsschalter, Sicherheitskreis mit Sicherheitsschaltern und Verfahren zum Betrieb eines Sicherheitsschalters
WO2004105067A1 (de) * 2003-05-23 2004-12-02 Pilz Gmbh & Co. Sicherheitsschaltgerät zum fehlersicheren abschalten eines elektrischen verbrauchers sowie entsprechendes verfahren

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333358B4 (de) 1993-09-30 2004-07-15 Robert Bosch Gmbh Schaltungsanordnung zur Informationsübertragung auf einer Zweidrahtleitung
US5880954A (en) * 1995-12-04 1999-03-09 Thomson; Robert Continous real time safety-related control system
JP3234530B2 (ja) 1996-04-26 2001-12-04 株式会社ナブコ ドア用センサの自己診断装置
DE19619904C2 (de) 1996-05-20 1998-12-10 Ifm Electronic Gmbh Elektronisches, vorzugsweise berührungslos arbeitendes Schaltgerät
US6304178B1 (en) * 1997-01-20 2001-10-16 Kabushiki Kaisha Tsuden Door safety system
DE19707241C2 (de) * 1997-02-25 2000-05-31 Pilz Gmbh & Co Modulares Sicherheitsschaltgerät
DE19711588A1 (de) 1997-03-20 1998-09-24 Euchner Gmbh & Co Sicherheitsschalter
DE29806059U1 (de) 1998-04-02 1998-08-27 Helix Solarelektronik Gmbh Datenübertragung in Gleichstromsystemen
DE19917212A1 (de) * 1999-04-16 2000-11-02 Euchner Gmbh & Co Vorrichtung zum Schalten einer Verbindung in Abhängigkeit des Zustandes einer zu überwachenden Einrichtung, insbesondere Sicherheitsschalter
SE520154C2 (sv) 1999-04-19 2003-06-03 Jokab Safety Ab Närhetsbrytare, mål, system av sådana närhetsbrytare och mål samt metod för att bestämma ett måls närvaro medelst en närhetsbrytare
DE19928984A1 (de) 1999-06-24 2000-12-28 Leuze Electronic Gmbh & Co Bussystem mit abgesicherten Ausgängen
DE10000799C1 (de) 2000-01-11 2001-05-17 Euchner Gmbh & Co Vorrichtung zum Schalten einer elektrischen Verbindung in Abhängigkeit des Zustandes einer zu überwachenden Einrichtung, insbesondere Sicherheitsschalter
DE10009707A1 (de) * 2000-02-29 2001-09-06 Pilz Gmbh & Co Sicherheitsschaltvorrichtung mit einem ersten und einem zweiten Eingangsschalter
DE10011211B4 (de) * 2000-03-08 2004-08-05 Pilz Gmbh & Co. Sicherheitsschaltgerät und Sicherheitsschaltgeräte-System
DE10016712C5 (de) 2000-04-04 2004-09-16 Pilz Gmbh & Co. Sicherheitsschaltgerät und Verfahren zur Einstellung einer Betriebsart eines Sicherheitsschaltgeräts
DE10045651B4 (de) 2000-09-15 2007-08-02 Pilz Gmbh & Co. Kg Sicherheitsschaltgerät
DE10109128C1 (de) * 2001-02-24 2002-06-20 Saint Gobain Sekurit D Gmbh Betätigungseinrichtung für eine Verriegelung
US7091878B2 (en) * 2001-02-28 2006-08-15 Landis+Gyr, Inc. Electrical service disconnect having tamper detection
DE10109864A1 (de) 2001-03-01 2002-09-19 Siemens Ag Sicherheitsschaltvorrichtung
DE10127233C1 (de) * 2001-05-22 2002-11-28 Pilz Gmbh & Co Sicherheitsschaltmodul und Verfahren zur Prüfung des Abschaltvermögens eines Schaltelements in einem Sicherheitsschaltmodul
SE521932C2 (sv) * 2002-03-19 2003-12-23 Assa Abloy Ab Låssystem, låssystemanordning och sätt att konfigurera ett låssystem
DE10216226A1 (de) * 2002-04-08 2003-10-30 Pilz Gmbh & Co Vorrichtung zum fehlersicheren Abschalten eines elektrischen Verbrauchers, insbesondere in industriellen Produktionsanlagen
JP2004156312A (ja) * 2002-11-06 2004-06-03 Omron Corp 扉開閉検出装置,扉装置,安全管理システム,扉の開閉検出方法
EP1738383B2 (de) 2004-04-19 2023-01-11 Pilz GmbH & Co. KG Meldegerät für eine sicherheitsschaltung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570109A (en) * 1983-02-03 1986-02-11 U.S. Philips Corporation Irradiation device
EP1363306A2 (de) * 2002-05-18 2003-11-19 K.A. SCHMERSAL GmbH & Co. Sicherheitsschalter, Sicherheitskreis mit Sicherheitsschaltern und Verfahren zum Betrieb eines Sicherheitsschalters
WO2004105067A1 (de) * 2003-05-23 2004-12-02 Pilz Gmbh & Co. Sicherheitsschaltgerät zum fehlersicheren abschalten eines elektrischen verbrauchers sowie entsprechendes verfahren

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2083433A1 (de) * 2008-01-24 2009-07-29 Sick Ag Sicherheitsgerät und System
WO2013164041A1 (de) * 2012-05-04 2013-11-07 Chr. Mayr Gmbh & Co. Kg Schaltgerät
CN104412192A (zh) * 2012-05-04 2015-03-11 Chr.迈尔有限公司及两合公司 开关设备
US9816576B2 (en) 2012-05-04 2017-11-14 Chr. Mayr Gmbh & Co. Kg Compact control device for failsafely controlling an electrical actuator
CN103353715A (zh) * 2013-06-26 2013-10-16 许继集团有限公司 监控系统冗余保护测控数据传输方法
WO2023011898A1 (de) * 2021-08-05 2023-02-09 Trumpf Laser Gmbh Vorrichtung und verfahren zur laserleistungsüberwachung

Also Published As

Publication number Publication date
DE502005009527D1 (de) 2010-06-17
US20070090694A1 (en) 2007-04-26
EP1738383B2 (de) 2023-01-11
JP5089378B2 (ja) 2012-12-05
ES2342543T3 (es) 2010-07-08
EP1738383B1 (de) 2010-05-05
JP2007532838A (ja) 2007-11-15
HK1099123A1 (en) 2007-08-03
EP1738383A1 (de) 2007-01-03
ATE467224T1 (de) 2010-05-15
US7948391B2 (en) 2011-05-24

Similar Documents

Publication Publication Date Title
EP1738383B1 (de) Meldegerät für eine sicherheitsschaltung
DE102004020995C5 (de) Meldegerät für eine Sicherheitsschaltung
EP1738382B2 (de) Sicherheitsschalteinrichtung für eine sicherheitsschaltung
EP1493064B1 (de) Vorrichtung zum fehlersicheren abschalten eines elektrischen verbrauchers, insbesondere in industriellen produktionsanlagen
EP2637067B1 (de) Sensoranordnung zum Detektieren eines sicheren Anlagenzustandes einer automatisiert betriebenen Anlage
EP0875810B1 (de) Verfahren und Vorrichtung zum Überwachen einer Anlage mit mehreren Funktionseinheiten
EP3069202B1 (de) Sicherheitssteuerung mit konfigurierbaren eingängen
EP1642179B1 (de) Vorrichtung zum automatisierten steuern eines betriebsablaufs bei einer technischen anlage
WO2011161158A1 (de) Sicherheitsschaltungsanordnung zum fehlersicheren ein- oder ausschalten einer gefährlichen anlage
EP1647094A2 (de) Verfahren und vorrichtung zum sicheren überwachen einer schl iessposition zweier relativ zueinander beweglicher teile
DE10320522A1 (de) Verfahren und Vorrichtug zum Steuern eines sicherheitskritischen Prozesses
EP1672446B1 (de) Sichere Eingabe-/Ausgabe-Baugruppen für eine Steuerung
EP1619565B1 (de) Verfahren und Vorrichtung zum sicheren Schalten eines Automatisierungsbussystems
DE102006027135B3 (de) Verfahren zum Betrieb einer Vorrichtung, insbesondere eines Sicherheitsschalters, und die Vorrichtung
EP2083433B2 (de) Sicherheitsgerät und System
EP3465898B1 (de) Sanftstarter, betriebsverfahren und schaltsystem
EP3704048B1 (de) Sicherheitsüberwachungsvorrichtung zum überwachen von sicherheitsrelevanten zuständen in einer personenförderanlage sowie verfahren zum betreiben derselben
EP0470441A2 (de) Verfahren zum Übertragen eines Zustimmungssignals für den Betrieb eines Roboters
EP2916182A1 (de) Sicherheitssteuermodul und steuerungseinrichtung für eine fluidisch antreibbare bearbeitungsmaschine
DE102015116100A1 (de) Sicherheitsgerichtetes Steuerungssystem zum sicheren Ansteuern eines Aktors
DE102018129899A1 (de) Schaltgerät zum gezielten Einschalten und/oder Ausschalten eines elektrischen Verbrauchers, insbesondere zum fehlersicheren Abschalten einer gefährlichen Maschinenanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507686

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580010039.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11581742

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005731057

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005731057

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11581742

Country of ref document: US