WO2005100453A1 - Verfahren zur kontinuierlichen herstellung von siilicon emulsionen - Google Patents

Verfahren zur kontinuierlichen herstellung von siilicon emulsionen Download PDF

Info

Publication number
WO2005100453A1
WO2005100453A1 PCT/EP2005/003960 EP2005003960W WO2005100453A1 WO 2005100453 A1 WO2005100453 A1 WO 2005100453A1 EP 2005003960 W EP2005003960 W EP 2005003960W WO 2005100453 A1 WO2005100453 A1 WO 2005100453A1
Authority
WO
WIPO (PCT)
Prior art keywords
och
mixer
water
radical
emulsifier
Prior art date
Application number
PCT/EP2005/003960
Other languages
English (en)
French (fr)
Inventor
Robert SCHRÖCK
Otto Schneider
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Priority to US10/599,869 priority Critical patent/US20070203263A1/en
Priority to CN2005800111516A priority patent/CN1942509B/zh
Priority to DE502005000987T priority patent/DE502005000987D1/de
Priority to JP2007507761A priority patent/JP5154219B2/ja
Priority to EP05733302A priority patent/EP1735370B1/de
Publication of WO2005100453A1 publication Critical patent/WO2005100453A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Definitions

  • the invention relates to a process for the continuous production of aqueous silicone emulsions, wherein the
  • Silicone emulsions are commercially available as milky white macro emulsions in the form of w / o or o / w emulsions and as opaque to transparent micro emulsions. They are mixtures of at least one water-insoluble silicone oil, resin or elastomer, at least one emulsifier and water. To prepare the emulsion, these components are made using e.g. Heat and cold, mechanical shear, by means of tight
  • Columns can be generated in mixers, mixed together and dispersed.
  • the silicone component of the emulsion can be prepared in an upstream reaction outside the emulsifying unit and then dispersed in the emulsifying unit. Or the silicone component of the emulsion can be produced in the emulsifying unit itself (in-situ production). It is characteristic of the in-situ production that a chemical reaction takes place shortly before, during or shortly after the emulsion production.
  • Typical reactions for the in-situ production or polymerization of the silicone component are all reactions used in silicone chemistry that lead to chain extension or equilibration, such as polymerization, condensation or polyaddition reactions.
  • the silicone is typically first mixed with at least one emulsifier and a small amount of water and subjected to high shear, for example in a rotor-stator mixer with narrow gaps. This typically results in a w / o emulsion with a very high viscosity, which is referred to as the so-called “rigid phase”. The viscosity of this rigid phase is very strongly dependent on the shear. This rigid phase is then slowly diluted with water to the inversion point The w / o becomes an o / w emulsion
  • the formation of the rigid phase and the type of dilution with water to the desired final concentration of the emulsion determine the quality of the emulsion.
  • the quality of the emulsion is understood to mean, in particular, the particle size, the distribution of the particle size, the storage stability and the tolerance of the emulsion to heating and / or cooling, shocks, changes in the pH value, changes in the salt content, etc.
  • 17S 5 806 975 describes an apparatus and the method for emulsifying riochviscose silicones in an extruder-like device.
  • US Pat. No. 5,563,189 claims the two-stage, continuous emulsion preparation, an emulsion with a high solids content being produced in the first stage, which is then diluted to the desired final concentration in a second shear device with additional water.
  • EP 874 017 claims a method for producing silicone-in-water emulsions, at least one polysiloxane, another siloxane which reacts with the former by means of chain extension, and a metal catalyst therefor, and an emulsifier and water are continuously mixed and emulsified.
  • WO 02/42360 describes the continuous production of emulsions by means of one or more shearing mixers, the siloxane, the emulsifier and the water being fed to the mixer through a line to form a rigid phase, and the pressure at the egg outlet of the mixer being kept constant at 20% becomes.
  • the invention relates to a process for the continuous production of aqueous emulsions
  • the pressure and the temperature after the high-shear mixers determine the quality of the emulsions of organosilicon compounds and that the quality of the emulsions produced can be significantly improved by the regulation.
  • the regulation leads to microemulsions to clearer products with small particle sizes. Macro emulsions achieve significantly smaller particle sizes and improved storage and dilution stabilities. With the temperature control it is possible to control the particle sizes. This effect is supported by the pressure control.
  • the pressure and temperature are regulated to a target value for the respective products.
  • the pressure is preferably regulated by maintaining the pressure after the second high-shear mixer and by the speed or geometry of the high-shear mixer.
  • the high shear mixers have a different delivery rate depending on the speed, which affects the pressure in the downstream line.
  • the temperature is preferably regulated by the temperature of the
  • Suitable high-shear mixers are, for example, rotor-stator mixers, high-speed stirrers / dissolvers, colloid mills, microchannels, membranes, high-pressure homogenizers and jet nozzles, in particular rotor-stator mixers.
  • the pressures and temperatures after the mixers vary depending on the product and its viscosity.
  • the pressures are preferably 1 to 10 bar.
  • the temperatures are preferably 5 ° C to 100 ° C.
  • the pressure and the temperature are preferably highest in or behind the first high-shear mixer which produces the highly viscous phase.
  • At least 50, preferably at least 70% by weight of the organosilicon compound (A) is preferably mixed in the first high-shear mixer.
  • the first high shear mixers are preferably admixed with at least 60, preferably at least 80% by weight of the emulsifier (B).
  • Organosilicon compound (A), emulsifier (B) and water (C) e.g. supplied with continuously demanding pumps such as centrifugal pumps, gear pumps, rotary lobe pumps or rotary spindle pumps.
  • pumps such as centrifugal pumps, gear pumps, rotary lobe pumps or rotary spindle pumps.
  • emulsifier (B) and water (C) e.g. supplied with continuously demanding pumps such as centrifugal pumps, gear pumps, rotary lobe pumps or rotary spindle pumps.
  • Another high shear mixer can be arranged in front of the first high shear mixer.
  • further mixers preferably one or two mixers, can dilute the emulsion and make it ready.
  • organosilicon compound (A), emulsifier (B) and water (C) can be added to the first or second high-shear mixer or incorporated in other mixers.
  • Additives (Z) are preferably incorporated in the second high-shear mixer or in further mixers. It is also possible to add mixtures of (A), (B) and (C) and other additives (Z) to the first high-shear mixer, e.g. be premixed in a storage tank.
  • the mixer can also be used to produce a pre-emulsion, solution or mixture of, for example, not completely water-soluble emulsifiers or thickeners with water.
  • all silanes and organopolysiloxanes can be used as organosilicon compounds (A) and their mixtures, solutions or dispersions. Examples are linear organopolysiloxanes and silicone resins. Silicone resins are products that not only contain mono- and difunctional silicon units but also contain tri- and tetrafunctional silicon units.
  • the emulsions prepared according to the invention have an organosilicon compound (A) content of at least 1% to 98%, preferably 5% to 90%, particularly preferably 9 to 80%.
  • the particle sizes vary from 1 nm to 1000 ⁇ m, preferably from 5 nm to 300 ⁇ m, particularly preferably 10 nm to 200 ⁇ m.
  • the pH values can vary from 1 to 14, preferably 2 to 10, particularly preferably 3 to 9.
  • Organosilicon compound (A) is preferably liquid at 25 ° C. and preferably has viscosities of 0.5 to 500,000 mPa ⁇ s, in particular 2 to 80,000 mPa ⁇ s.
  • organosilicon compounds are organosilicon compounds, the units of the general formula I. included, where
  • R is a hydrogen atom or a monovalent, divalent or trivalent hydrocarbon radical having 1 to 200 carbon atoms, which can be substituted by halogen, amine, ammonium, mercapto, acrylate or maleimide groups
  • X is a chlorine atom
  • a radical of the formula -0 ⁇ with protons and / or organic or inorganic ionic substances may be present, a radical of the general formula -OR 1 or a radical of the general formula II - (R 2 ) h - [OCH 2 CH 2 ] e [0C 3 H 6 ] f [0C 4 H a ) 4 ]
  • R 1 is a hydrogen atom or a hydrocarbon radical having 1 to 200 carbon atoms, which can be interrupted by one or more identical or different heteroatoms selected from 0, - S, N and P
  • R 2 is a divalent hydrocarbon radical having 1 to 200 carbon atoms, which is represented by one or more groups of the formulas
  • R 4 is a bivalent, trivalent or tetravalent hydrocarbon radical having 1 to 200 carbon atoms per radical, which is represented by one or more groups of the formulas -C (O) -, -C (0) 0-, - C (0) NR 5 , -NR 5 -, -N + HR S -, -N + R 5 R 5 -, -0-, -S-, - (HO) P (O) - or - (NaO) P (O) - interrupted and / or can be substituted by F, Cl or Br, where R s is a hydrogen atom or a hydrocarbon radical having 1 to 200 carbon atoms per radical, which is represented by one or more groups of the formulas -C (O) -, -C (O) 0 -, -C (0) NR 5 -, - NR 5 -, -N ⁇ R 5 -, -N + R 5 R 5 -, -0- or -S- interrupted and
  • x an integer from 1-20
  • y the values 0 or 1, z depending on the value of R 4 the values 1, 2 or 3, h the values 0 or 1, m an integer from 1-20
  • a, b and c each represents the values 0, 1, 2, 3 or 4 and the sum a + b + c less than or equal to 4 and e, f and g each represent an integer from 0-200, with the proviso that the sum e + f + g> 1.
  • organosilicon compounds can optionally contain units of the general formulas (V) and (VI), O (4. I - k _ 1) / 2 R i X k Si-A i -SiX lc R : l 0 ⁇ 4 . i . k . 1) / 2 (V),
  • a a has a trivalent hydrocarbon radical 1 to 200 carbon atoms means the radicals of the formulas " - C (O) -, -C (0) 0-, -C (0) NR 5 , -NR 5 -, -N + HR 5 -, -N + R 5 R 5 -, -0-, -S-, - N- or -N + R 5 - interrupted and / or substituted with F, Cl or Br,
  • a 1 represents a divalent radical R 2 , i and kj each mean the values 0, 1, 2 or 3, with the proviso i + k ⁇ 3 and
  • R and X have the meanings given above.
  • hydrocarbon radicals R, R 1 , R 2 , R 3 , R 4 , R s , A 1 and A 2 listed above can be saturated, unsaturated, linear, cyclic, aromatic or non-aromatic.
  • hydrocarbon radicals R are alkyl radicals, such as methyl, ethyl, n-propyl, iso-propyl, 1-n-butyl, 2-n-butyl
  • Hexyl radicals such as the n-hexyl radical
  • Heptyl residues such as the n-heptyl residue
  • Octyl residues such as the n-
  • Octyl radical and iso-octyl radicals such as the 2, 2, 4-trimethylpentyl radical
  • Nonyl radicals such as the n-nonyl radical Decyl radicals, such as the n-decyl radical
  • Dodecyl radicals such as the n-dodecyl radical
  • Octadecyl radicals such as the n-octadecyl radical
  • Cycloalkyl radicals such as the cyclopentyl, cyclohexyl, cycloheptyl radical and methylcyclohexyl radicals
  • Aryl radicals such as the phenyl, ISjaphthyl, anthryl and phenanthryl radical
  • Alkaryl residues such as o-, m-, p-tolyl residues
  • aralkyl radicals such as the benzyl radical, the ⁇ -
  • the hydrogen atom or the methyl, ethyl, octyl and phenyl radical are preferred, and the hydrogen atom or the methyl and ethyl radical are particularly preferred.
  • halogenated radicals R are haloalkyl radicals, such as the 3,3,3-rifluoro-n-propyl radical, the 2 " , 2, 2, 2 ', 2', 2'-hexafluoro-isopropyl radical, the heptafluoroisopropyl radical and halogenaryl radicals, such as the o-, m- and p-chlorophenyl.
  • radical R 1 examples are the examples given for radical R equal to alkyl radicals as well as the methoxyethyl and ethoxyethyl radical, the radical R 1 preferably being alkyl radicals having 1 to 50 carbon atoms which can be interrupted by oxygen atoms, particularly preferably methyl - and deals with the ethyl radical.
  • Alkali and alkaline earth metal ions, ammonium and phosphonium ions and mono- or trivalent metal ions are preferred.
  • Alkali ions particularly preferably Na + and K + .
  • radicals X are the methoxy or ethoxy radical and the general formula (II), such as
  • radicals R 2 are linear or branched, substituted or unsubstituted hydrocarbon radicals with preferably 2 to 10 carbon atoms, where saturated or unsaturated alkylene radicals are preferred and the ethylene or propylene radical are particularly preferred.
  • radicals R 3 are the examples and radicals of the formula —C (0) R 1 or —Si (R 1 ) 3 , given for R equal to the alkyl radical or aryl radical, the methyl, ethyl, propyl and butyl and trialkylsilyl - and -C (0) -alkyl radical are preferred and the methyl, butyl -, —C (0) -CH 3 and the trimethylsilyl radical are particularly preferred.
  • R 4 is preferably a radical of the formula - (CH 2 ) 3 -
  • R 4 are - (CH 2 ) 3 - and - (CH 2 ) 3 -NH- (CH 2 ) 2 -.
  • R s are the alkyl and aryl radicals listed above for R and radicals of the formulas -C (0) -CH 3
  • the hydrogen atom and the examples given for R are preferred, and the hydrogen atom and alkyl radicals are particularly preferred.
  • Examples of A 1 are linear or branched, divalent alkyl radicals having preferably 2 to 20 carbon atoms, or radicals of the formulas - (CH 2 ) 3 -NH- (CH 2 ) 3 -, - (CH 2 ) 3 -NR 5 - (CH 2 ) 3 - - (CH 2 ) 3 - (CH 2 -CH 2 0) f - (CH 2 ) 3 - -0- (CH 2 -CH 2 0) f -
  • Example of A 2 is N [(CH 2 ) 3 -]
  • Organosilicon compounds (A) can also be formed from raw products during the process.
  • organosilicon compounds (A) are linear trimethylsilyl or hydroxydiethylsilyl terminals
  • Oils with a viscosity of 50 mPas Oils with a viscosity of 50 mPas
  • resinous organosilicon compounds (A) are methyl ethoxy resins, e.g. of the formula
  • organosilicon compound (A) itself acts as an emulsifier, then organosilicon compound (A) and emulsifier can
  • the component (B) of the emulsions is preferably commercially available and well-studied emulsifiers, such as, for example, sorbitan esters of fatty acids having 10 to 22 carbon atoms; Polyoxyethylene sorbitan esters of fatty acids with 10 to 22 carbon atoms and up to 35 percent ethylene oxide; Polyoxyethylene sorbitol esters of fatty acids with 10 to 22 carbon atoms, • Polyoxyethylene derivatives of phenols with 6 to 20 carbon atoms on the aromatic and up to 95 percent
  • ethylene oxide Fatty amino and amido betaines having 10 to 22 carbon atoms; Polyoxyethylene condensates of fatty acids or fatty alcohols with 8 to 22 carbon atoms with up to 95 Percent ethylene oxide content; ionic emulsifiers, such as alkylarylsulfonates having 6 to 20 carbon atoms in the alkyl group; Fatty acid soaps with 8 to 22 carbon atoms; Fatty sulfates having 8 to 22 carbon atoms; Alkylene sulfonates having 10 to 22 carbon atoms; Alkali metal salts of dialkyl sulfosuccinates; Fatty amine oxides having 10 to 22 carbon atoms; Fatty imidazolines having 6 to 20 carbon atoms; Fatty amido sulfobetaines having 10 to 22 carbon atoms; quaternary emulsifiers, such as fatty ammonium compounds having 10 to 22 carbon atoms; Fat morpholine oxides with 10 to 22 carbon atoms
  • Organosilicon compounds (A) which have units of the general formula I in which X is a radical of the general formula II and c is at least 1.
  • the counterions in the case of anionic emulsifiers can be alkali metals, ammonia or substituted amines such as trimethanolamine or triethanolamine. Usually ammonium, sodium and potassium ions are preferred.
  • the counter ion is a halide, sulfate or methyl sulfate. Chlorides are the mostly industrially available compounds.
  • the above-mentioned fat structures usually represent the lipophilic half of the emulsifiers.
  • a common fat group is an alkyl group of natural or synthetic origin. Known unsaturated groups are the oleyl, linoleyl, Decenyl, hexadecenyl and dodecenyl residues. Al alkyl groups can be cyclic, linear or branched. Other possible emulsifiers are sorbitol mon ⁇ laurate ethylene oxide condensates; Sorbitol monomyristate ethylene oxide condensates; Sorbitolmonostearat-
  • Ethylene oxide condensates Dodecylphenol ethylene oxide condensates; Myristylphenol-ethylene oxide condensates; Octylpt ⁇ enyl ethylene oxide condensates; Stearylphenol ethylene oxide condensates; Lauryl alcohol ethylene oxide condensates; Stearyl alcohol ethylene oxide condensates; decyl amino; Cocoamidsulfobetain; Olylamidobetain; Cocoi idazolin; Cocosulfoimidazolin; Cetylimidazolin; l-hydroxyethyl-2-heptadecen; yl-imidazoline; n-cocomorpholine oxide; Decyldimeth; ylaminoxid; '' Cocoamidodimethylamine oxide; Sorbitan tristearate with condensed ethylene oxide groups; Sorbitan trioleate with condensed
  • Ethylene oxide groups Sodium or potassium dodecyl sulfate; Sodium or potassium stearyl sulfate; Sodium or potassium dodecylbenzenesulfonate; Sodium or potassium stearyl sulfonate; Triethanolan ⁇ insalz des Dodecylsulfates; trimethyldodecylammonium;
  • Trimethylstearylammonium methosulfate Sodium laurate; Sodium or potassium myristate.
  • inorganic solids can also be used as emulsifiers (B).
  • B emulsifiers
  • the nonionic emulsifiers are preferred.
  • the component (B) can from an o. g. Emulsifiers or from a mixture of two or more o. g. Emulsifiers exist, it can be in pure form or as solutions of one or more Emulsifiers can be used in water or organic solvents.
  • Emulsifiers (B) are used in amounts of preferably 0.1 to 60% by weight, particularly preferably 1 to 30% by weight, in each case based on the total weight of organosilicon compounds. (A) used.
  • additives such as silanes, acids, alkalis, biocides, thickeners, silicas and water-soluble polysiloxians, can be added in addition to water and emulsifiers.
  • silanes examples include vinyltris (methoxyethoxy) silane, tetraethoxysilane, anhydrolyzed tetraethoxysilane, methyltriethoxysilane, anhydrolyzed methyltriethoxysilane, aminoethylaminopropyltrimethoxysilane, aminoethylaminopropyl (methyl) dimethoxysilane.
  • Lines A, B, C, D feed at least one emulsifier (B) or a solution of an emulsifier (B) and optionally water (C), optionally one or more organosilicon compounds (A) and additives (Z) into line 1 dosed continuously.
  • a static mixing element can optionally be installed in the feed line 1 in order to improve the mixing of the components upstream of the first high-shear mixer 2. After the first mixer 2, a rigid phase is generated. After mixer 2 are one
  • the predetermined temperature and the predetermined pressure in line 5 are controlled by the pressure control valve 22 and Speed of the high shear mixer 2 set.
  • the temperature is regulated by the temperature of the raw materials, which are tempered according to the specifications, and by the speed of the mixer.
  • One or more emulsifiers (B), one or more, can again be fed continuously into the feed line 5
  • Organosilicon compounds (A), water (C) and additives (Z) are added.
  • the mixture or solid phase can also be transferred into the second high-shear mixer 6 without metering.
  • the temperature after mixer 6 is measured by the temperature sensor 7 and with the temperature de x
  • Raw materials and the speed of the mixer 6 regulated.
  • the pressure downstream of the mixer 6 is measured by the pressure sensor 8 and regulated with the pressure holding valve 22 and the speed of the mixer 6.
  • one or more emulsifiers (B), one or more organosilicon compounds (A), water (C) and additives (Z) can be metered in again.
  • the product can then be passed in line 24 to the mixer 13 via an optionally available valve 9 and an optionally available line 10 or further fed to the high-shear mixer 18 in line 24 via an optionally available valve 17.
  • 13 raw materials can be dosed in front of the mixer.
  • the temperatures and pressures downstream of mixer 13 and mixer 18 are detected by the temperature controllers 14 and 19 and the pressure sensors 15 and 20, as described above, and are regulated as described previously. If the route of the product via line 10 is not used, premixes or premulsions can be produced in the mixer in the manner described and fed to the product in front of mixer 18.
  • the temperature and pressure control is analog. After mixer 18, further emulsifiers (B),
  • Organosilicon compounds (A), water (C), additives (Z) are added. Furthermore, there is the possibility of further adding the emulsion with water after the pressure-maintaining valve 22 dilute before filling the finished product into a tank or sales container.
  • Example 1 Preparation of a clear emulsion of an amino functional polysiloxane.
  • Mixer 2 (4000 rpm) is mixed with 16.25% amino-functional silicone oil (Wacker® Finish WR 1300) at a temperature of 40 ° C (the temperature is regulated to + 2 K) ⁇ 1.60% isotridecyl alcohol ethoxylate with an average of 8 EO (Arlypon ® IT 8), 4.14% isotridecyl alcohol ethoxylate with an average of 5 EO (Lutensol® TO 5), 0.2% acetic acid (80%) and 3.93% deionized water (temperature 12 ° C, the temperature is increased to + 2 K regulated).
  • the pressure control valve 22 is set to 4.5 bar.
  • the product produced shows a significantly larger particle size of 42 nm and a turbidity of 23 ppm.
  • Example 2 Preparation of a polyvinyl alcohol stabilized silicone resin emulsion
  • Mixer 2 (4000 RPM) is 35.3% polyvinyl alcohol solution (10%) (25 ° C, the temperature is kept constant at + 2 K) and 48.4% of a mixture of silicone resin (80 mol% T units 20 Mol% D units, 20 ° C) with one. OH terminated polydimethylsiloxane with a viscosity of 30 mPas and 4.7% deionized water (12 ° C). This mixture is fed to mixer 6 and sheared again in mixer 6 (3000 rpm). After mixer 6, 11.36% deionized water (12 ° C) and 0.24% preservative (Roci a® 523) was added and the mixture was fed to mixer 18 (3000 rpm). The pressure control valve 22 is set to 2 bar.
  • the temperature after mixer 2 increases to about 45 ° C. and accordingly. Temperature after mixer 6 and 22 to 46 ° C.
  • the product obtained shows a clear deposition of silicone resin after 2 weeks of storage at room temperature.
  • Mixer 2 (4000 rpm) is mixed with 34.88% of an OH-functional polydimethylsiloxane (15 ° C.) with a viscosity of about 30 mPas and 3.7% of an isotridecyl alcohol ethoxylate with 10 EO units (80% solution in water) and 4. 5% deionized water and 3% dodecylbenzenesulfonic acid.
  • This mixture is fed to mixer 6 (3000 rpm) and worked through there again.
  • the mixture is fed to mixer 18 and 40.43% demineralized water and 0.08% preservative (Kathon® LXE) are metered in before mixer 18 (3000 rpm).
  • the pressure control valve 22 is set to 3 bar.
  • This mixture is then stored in a container for an average residence time of 7.5 hours. An acid-catalyzed condensation of the polydimethylsiloxane takes place there. After 7.5 hours, 2.1% triethanohamine (80%) and 11.27% deionized water are added. This neutralizes the acid and ends the reaction.
  • polydimethylsiloxane is operated at 25 ° C, an emulsion results which has a comparable particle size (154 nm) but only an oil viscosity of 60,000 mPas which is too low.

Abstract

Gegenstand der Erfindung ist ein Verfahren zur kontinuierlichen Herstellung von wässrigen Emulsionen, die Organosiliciumverbindung (A), Emulgator (B) und Wasser (C) umfassen, bei dem jeweils ein Teil der Komponenten Organosiliciumverbindung (A), Emulgator (B) und Wasser (C) kontinuierlich einem ersten hochscherenden Mischer zugeführt werden in welchem eine hochviskose Phase einer Siliconemulsion gebildet wird, und in einem zweiten hochscherenden Mischer weitere Komponenten, die ausgewählt werden aus Organosiliciumverbindung (A), Emulgator (B) und Wasser (C) zugemischt werden, wobei das Verfahren über die Drücke und Temperaturen geregelt wird, die direkt nach den Mischern gemessen werden.

Description

Verfahren zur kontinuierlichen Herstellung von Silicon Emulsionen
Die Erfindung betrifft ein Verfahren zur kontinuierlichen Herstellung von wässrigen Silicon Emulsionen, wobei das
Verfahren über die Drücke und Temperaturen geregelt wird, die direkt nach den Mischern gemessen werden.
Silicon Emulsionen sind als milchig-weiße Makro emulsionen in Form w/o oder o/w Emulsionen sowie als opake bis transparente Mikroe ulsionen im Handel. Es sind Mischungen aus zumindest einem wasserunlöslichen Siliconöl, -harz oder -elastomer, mindestens einem Emulgator und Wasser. Zur Herstellung der Emulsion werden diese Komponenten unter Anwendung von z.B. Wärme und Kälte, mechanischer Scherung, die mittels engen
Spalten in Mischern erzeugt werden kann, miteinander vermischt und dispergiert.
Die Silicon-Komponente der Emulsion kann in einer vorgeschalteten Reaktion außerhalb der E ulgierreinheit hergestellt werden und dann in der Emulgierein eit dispergiert werden. Oder die Silicon-Komponente der Emulsion kann in der Emulgiereinheit selbst erzeugt werden (in-situ—Herstellung) . Kennzeichnend für die in-situ-Herstellung ist, dass kurz vor, während oder kurz nach der Emulsionsherstellung- eine chemische Reaktion abläuft.
Typische Reaktionen zur in-situ-Herstellung bzw. Polymerisation der Silicon-Komponente sind alle in der Siliconchemie angewendeten Reaktionen, die zu Kettenverlängeirung oder Äquilibrierung führen, wie z.B. Polymerisations-, Kondensations-, oder Polyadditionsreaktionen. Bei der Herstellung von Silicon-Emulsionen unter Anwendung von Scherung wird typischerweise zuerst das Silicon mit mindestens einem Emulgator und einer kleinen Menge Wasser vermischt und einer hohen Scherung, z.B. in einem Rotor-Stator Mischer mit engen Spalten, ausgesetzt. Dabei entsteht typischerweise eine w/o-Emulsion mit sehr hoher Viskosität, die als so genannte „steife Phase" bezeichnet wird. Die Viskosität dieser steifen Phase ist sehr stark scherabhangig. Diese steife Phase wird dann langsam mit Wasser bis zum Inversionspunkt verdünnt. Am ∑nversionspunkt wird aus der w/o eine o/w Emulsion. Die
Ausbildung der steifen Phase, sowie die Art der Verdünnung mit Wasser bis zur gewünschten Endkonzentration der Emulsion bestimmt die Qualität der Emulsion. Unter Qualität der Emulsion s nd insbesondere die Teilchengrόße, die Verteilung der Teilchengrόße, die Lagerstabilitat sowie die Toleranz der Emulsion gegenüber Erwärmung und/oder Abkühlung, Erschütterungen, Änderung des pH-Wertes, Änderung des Salzgehaltes usw. zu verstehen.
Die o.g. Herstellung von Siliconemulsionen mittels Scherung kann Batch-weise oder kontinuierlich erfolgen.
17S 5 806 975 beschreibt eine Apparatur und die Methode, um riochviskose Silicone in einem Extruder-artigen Gerat zu emulgieren.
US 5 563 189 beansprucht die 2-stufige, kontinuierliche Emulsionsherstellung, wobei in der ersten Stufe eine Emulsion m t hohem Festgehalt hergestellt wird, die dann in einem 2. Schergerat mit zusätzlichem Wasser auf die gewünschte Endkonzentration verdünnt wird. EP 874 017 beansprucht eine Methode zur Herstellung von Silicon-in-Wasser-Emulsionen, wobei zumindest ein Polysiloxan, ein weiteres Siloxan das mit dem zuerst genannten mittels Kettenverlängerung reagiert sowie einem Metallkatalysator dafür, ferner ein Emulgator und Wasser kontinuierlich vermischt und emulgiert werden.
WO 02/42360 beschreibt die kontinuierliche Herstellung von Emulsionen mittels eines oder mehreren scherenden Mixern, wobei das Siloxan, der Emulgator und das Wasser zur Ausbildung einer steifen Phase dem Mixer durch eine Leitung zugeführt wird und der Druck am Eirilass des Mixers auf 20% konstant gehalten wird.
Gegenstand der Erfindung ist ein Verfahren zur kontinuierlichen Herstellung von wässrigen Emulsionen, die
Organosiliciumverbindung (A) , Emulgator (B) und Wasser (C) umfassen, bei dem jeweils ein Teil der Komponenten Organosiliciumverbindung (A) , Emulgator (B) und Wasser (C) kontinuierlich einem ersten hochscherenden Mischer zugeführt werden in welchem eine hochviskose Phase einer Siliconemulsion gebildet: wird, und in einem zweiten hochscherenden Mischer weitere Komponenten, die ausgewählt werden aus Organosiliciumverbindung (A) , Emulgator (B) und Wasser (C) zugemischt werden, wobei das Verfahren über die Drücke und Temperaturen geregelt wird, die direkt nach den Mischern gemessen werden.
Es wurde gefunden, dass für die Qualität der Emulsionen von Organosiliciumverbindungen der Druck und die Temperatur nach den hochscherenden Mischern bestimmend sind und durch die Regelung die Qualität der hergestellten Emulsionen deutlich verbessert werden kann. Die Regelung führt bei Mikroemulsionen zu klareren Produkten mit kleinen Teilchengrößen. Bei Makroemulsionen werden deutlich geringere Teilchengrößen und verbesserte Lager- und Verdünnungsstabilitäten erreicht. Mit der Temperatursteuerung ist eine Steuerung der Teilchengrößen möglich. Dieser Effekt wird durch die Druckregelung unterstützt .
Der Druck und die Temperatur werden für die jeweiligen Produkte auf einen Zielwert geregelt. Die Regelung des Drucks erfolgt bevorzugt durch eine Druckhaltung nach dem zweiten hochscherenden Mischer und durch die Drehzahl bzw. Geometrie der hochscherenden Mischer. Die hochscherenden Mischer haben je nach Drehzahl eine unterschiedliche Förderleistung, was den Druck in der nachfolgenden Leitung beeinflusst. Die Regelung der Temperatur erfolgt bevorzugt durch die Temperatur der
Rohstoffe und die Drehzahl der Mischer. Je höher die Drehzahl- der Mischer desto mehr Energie in Form von Mischenergie und Wärme wird zugeführt und umgekehrt. Als hochscherende Mischer sind beispielsweise geeignet Rotor-Stator-Mischer, Hochgeschwindigkeitsrührer/Dissolver, Kolloidmühlen, Mikrokanäle, Membrane, Hochdruckhomogenisatoren und Strahldüsen, insbesondere Rotor-Stator-Mischer.
Für die Drücke und Temperaturen nach den Mischern ergeben sich je nach Produkt und dessen Viskosität unterschiedliche Werte.
Die Drücke betragen vorzugsweise 1 bis 10 bar. Die Temperaturen betragen vorzugsweise 5°C bis 100°C. Vorzugsweise sind Druck und die Temperatur im bzw. hinter dem ersten hochscherenden Mischer am höchsten, der die hochviskose Phase erzeugt.
Im ersten hochscherenden Mischer werden vorzugsweise mindestens 50, vorzugsweise mindestens 70 Gew.-% der Organosiliciumverbindung (A) zugemischt. Im ersten hochscherenden Mischer werden vorzugsweise mindestens 60, vorzugsweise mindestens 80 Gew.-% des Emulgators (B) zugemischt .
Im Verfahren werden dem ersten hochscherenden Mischer
Organosiliciumverbindung (A) , Emulgator (B) und Wasser (C) z.B. mit stetig fordernden Pumpen wie Zentrifugalpumpen, Zahnradpumpen, Drehkolben- oder Drehspindelpumpen zugeführt. Für manche Emulsionen kann es vorteilhaft sein, dem ersten hochscherenden Mischer bereits ein Gemisch von Emulgator (B) und Wasser (C) zuzuführen. Dazu kann ein weiterer hochscherender Mischer vor dem ersten hochscherenden Mischer angeordnet werden. Weiterhin können nach dem zweiten hochscherenden Mischer weitere Mischer, vorzugsweise ein oder zwei Mischer die Emulsion verdünnen und fertig konfektionieren.
Neben Organosiliciumverbindung (A) , Emulgator (B) und Wasser (C) können weitere Zusatzstoffe (Z) dem ersten oder zweiten hochscherenden Mischer zugeführt werden oder in weiteren Mischern eingearbeitet werden. Vorzugsweise werden Zusatzstoffe (Z) im zweiten hochscherenden Mischer oder in weiteren Mischern eingearbeitet. Es ist auch möglich dem ersten hochscherenden Mischer, Mischungen von (A) , (B) und (C) und sonstigen Zusatzstoffen (Z) zuzuführen, die z.B. in einem Vorratstank vorgemischt werden .
Für bestimmte Produkte ist es vorteilhaft, einen weiteren hochscherenden Mischer nach dem zweiten hochscherenden Mischer in den Produktstrom einzubauen um eine höhere Scherung der Emulsionen zu erreichen. Auch kann der Mischer zur Herstellung einer Voremulsion, Losung oder Mischung von z.B. nicht vollständig wasserlöslichen Emulgatoren oder Verdickern mit Wasser verwendet werden. In dem Verfahren können alle Silane und Organopolysiloxane als Organosiliciumverbindung (A) sowie deren Mischungen, Lösungen oder Dispersionen eingesetzt werden. Beispiele sind lineare Organopolysiloxane und Siliconharze. Unter Siliconharzen versteht man Produkte die nicht nur mono- und difunktionelle Siliciumeinheiten enthalten sondern auch tri- und tetrafunktionelle Siliciumeinheiten aufweisen.
Die erfindungsgeraaß hergestellten Emulsionen haben einen Gehalt an Organosiliciumverbindung (A) von mindestens 1% bis 98%, bevorzugt 5% bis 90%, besonders bevorzugt 9 bis 80%. Die Teilchengrößen variieren von 1 nm bis 1000 μm, bevorzugt von 5 nm bis 300 μm, besonders bevorzugt 10 nm bis 200 μm. Die pH- Werte können von 1 bis 14 variieren, bevorzugt 2 bis 10, besonders bevorzugt 3 bis 9.
Organosiliciumverbindung (A) ist vorzugsweise bei 25°C flüssig und weist vorzugsweise Viskositäten von 0,5 bis 500 000 mPa-s, insbesondere 2 bis 80 000 mPa s auf.
Beispiele für Organosiliciumverbindungen sind Organosiliciumverbindungen, die Einheiten der allgemeinen Formel I
Figure imgf000007_0001
enthalten, wobei
R ein Wasserstoffatom oder einen einwertigen, zweiwertigen oder dreiwertigen Kohlenwasserstoffrest mit 1 bis 200 Kohlenstoffatomen, der mit Halogen-, Amin-, Ammonium-, Mercapto-, Acrylat- oder Maleinimidgruppen substituiert sein kann, X ein Chloratom, einen Rest der Formel -0~, wobei als Ausgleich der Ladungen Protonen und/oder organische bzw. anorganische ionische Substanzen vorhanden sein können, einen Rest der allgemeinen Formel -OR1 oder einen Rest der allgemeinen Formel II -(R2)h-[OCH2CH2]e[0C3H6]f[0C4Ha)4]gOR3 (II), wobei R1 ein Wasserstoffatom oder einen Kohlenwasserstoffrest mit 1 bis 200 Kohlenstoffatomen, der durch ein oder mehrere gleiche oder verschiedene Heteroatome, die ausgewählt werden aus 0,- S, N und P, unterbrochen sein kann, R2 einen zweiwertigen Kohlenwasserstoffrest mit 1 bis 200 Kohlenstoffatomen, der durch ein oder mehrere Gruppen der Formeln -C(O)-, -C(0)0-, -C(0)NR1, -NR1-, -N+HR1-, -0-, -S- unterbrochen und/oder mit F, Cl oder Br substituiert sein kann, R3 eine Bedeutung von R1 haben kann, oder einen Rest der Formeln -CtO^oder -Si(R1)3, A einen Rest der allgemeinen Formel IV
- R"(B) (IV)
wobei R4 einen zwei- drei- oder vierwertigen Kohlenwasserstoffrest mit 1 bis 200 Kohlenstof fatomen j e Rest , der durch ein oder mehrere Gruppen der Formeln -C ( O ) - , -C (0 ) 0- , - C ( 0 ) NR5, -NR5- , -N+HRS- , -N+R5R5- , -0- , -S- , - ( HO ) P (O) - oder -(NaO)P(O)- unterbrochen und/oder mit F, Cl oder Br substituiert sein kann, wobei Rs ein Wasserstoffatom oder einen Kohlenwasserstoffrest mit 1 bis 200 Kohlenstoffatomen je Rest, der durch ein oder mehrere Gruppen der Formeln -C(O)-, -C(O)0-, -C(0)NR5-, - NR5-, -NΗR5-, -N+R5R5-, -0- oder -S- unterbrochen und/ oder mit F, Cl oder Br substituiert sein kann, B eine Bedeutung von Rs haben kann oder einen Rest, der ausgewählt wird aus -C00", -S03-, -0P03Hy.-»-, -N+R5R5R5, - P+R5R5R5, -NR5R5, -OH, -SH, F, Cl, Br, -C(0)H, -COOH, -S03H, -C6H„-OH und -C„F.
Figure imgf000009_0001
Figure imgf000009_0002
-C AH-CH 2.' -CCOJ-CR^CH,, -0-C(0)-CR"-=CH 2' "C6H4- (CH2) -CR^CH,,
Figure imgf000009_0003
x eine ganze Zahl von 1-20, y die Werte 0 oder 1, z je nach Wertigkeit von R4 die Werte 1, 2 oder 3, h die Werte 0 oder 1, m eine ganze Zahl von 1-20, a, b und c jeweils die Werte 0, 1, 2, 3, oder 4 und die Summe a + b + c kleiner oder gleich 4 und e, f und g jeweils eine ganze Zahl von 0-200 bedeuten, mit der Maßgabe, daß die Summe e + f + g > 1 ist. Als Ausgleich der Ladungen in den Resten A., R und X können gegebenenfalls Protonen und/oder organische bzw. anorganische ionische Substanzen vorhanden sein, wie z.B. Alkalimetall-, Erdalkalimetall-, Ammonium-Ionen, Halogenid-, Sulfat-, Phosphat-, Carboxylat-, Sulfonat-, Phosphonat-Ionen. Weiterhin können die Organosiliciumverbindungen gegebenenfalls Einhei-ten der allgemeinen Formeln (V) und (VI) enthalten, O(4.i-k_1)/2RiXkSi-Ai-SiXlcR:l0{4.i.k.1)/2 (V),
Ol4.1.k.1)/2 1Xι;'si-Az-SiXIeR10(4.i.k.1)/2 (VI) , SiXkR10(4_L_k_1)/2 wobei Aa einen dreiwertigen Kohlenwasserstof frrest mit 1 bis 200 Kohlenstoffatomen bedeutet, der durch Reste der Formeln "- C (O) -, -C (0) 0- , -C (0) NR5, -NR5-, -N+HR5- , -N+R5R5-, -0-, -S- , — N- oder -N+R5- unterbrochen und/oder mit F, Cl oder Br substituiert sein kann, A1 einen zweiwertigen Rest R2 darstellt , i und k j eweils die Werte 0 , 1 , 2 oder 3 bedeuten, mit der Maßgabe i + k < 3 und
R und X die oben angegebenen Bedeutungen haben .
Die vorstehend aufgeführten Kohlenwasserstoffreste R, R1, R2, R3, R4 , Rs, A1 und A2 können gesättigt , ungesättigt , linear, cyclisch, aromatisch oder nichtaromatisch sein .
Beisp±ele für Kohlenwasserstof freste R sind Alkylreste, wie der Methyl- , Ethyl- , n-Propyl-, iso-Propyl-, l-n-Butyl- , 2-n-Butyl-
, iso— Butyl- , tert . -Butyl-, n-Pentyl- , iso-Pentyl- , neo-Pentyl-
, ter . -Pentylrest; Hexylreste, wie der n— Hexylrest ;
Heptylreste , wie der n-Heptylrest ; Octylreste, wie der n-
Octyljcest und iso-Octylreste , wie der 2 , 2 , 4- Trimethylpentylrest ; Nonylreste, wie der n-Nonylrest Decylreste, wie der n-Decylrest; Dodecylreste, wie der n- Dodecylrest ; Octadecylreste, wie der n-Octadecylrest; Cycloalkylreste, wie der Cyclopentyl-, Cyclohexyl-, Cycloheptylrest und Methylcyclohexylreste; Arylreste, wie der Phenyl-, ISJaphthyl-, Anthryl- und Phenanthrylrest ; Alkarylreste, wie o-, m— , p-Tolylreste; Xylylreste und Ethylphenylreste; und Aralkylreste, wie der Benzylrest, der α- und der ß- Phenylethylrest .
Bevorzugt sind das Wasserstoffatom oder der Methyl-, Ethyl-, Octyl- unci Phenylrest, besonders bevorzugt sind das Wasserstoffatom oder der Methyl-und Ethylrest.
Beispiele für halogenierte Reste R sind Halogenalkylreste, wie der 3,3, 3— rifluor-n-propylrest, der 2", 2, 2, 2', 2', 2'- Hexafluor-Lsopropylrest, der Heptafluorisopropylrest und Halogenarylreste, wie der o-, m- und p-Chlorphenylrest .
Beispiele für Rest R1 sind die für Rest R gleich Alkylreste angegebenen Beispiele sowie der Methoxyethyl- und der Ethoxyethylrest, wobei es sich bei Rest R1 bevorzugt um Alkylreste mit 1 bis 50 Kohlenstoffatomen, die durch Sauerstoffatome unterbrochen sein können, besonders bevorzugt um den Methyl- und den Ethylrest handelt.
Beispiele für organische oder anorganische Substanzen zum
Ausgleich der Ladungen für X = -0" sind,
Alkali- und Erdalkaliionen, Ammonium- und Phosphoniumionen sowie ein— zwei- oder dreiwertige Metallionen, bevorzugt sind
Alkaliionen, besonders bevorzugt Na+ und K+.
Beispiele für Reste X sind der Methoxy- bzw. der Ethoxyrest und der allgemeinen Formel (II) , wie
- (CH2) 3- (OCH2CH2) 3-OCH3, - (CH2) 3- (OCH2CH2) 6-OCH3,
- (CH2) 3- (OCH2CH2) 35-OCH3, -(CH2)3-(OCH(CH3)CH2)3-OCH3, - (CH2) 3- (OCH (CH3) CH2) 6-OCH3,
- (CH2) 3-(OCH(CH3) CH2) 35-OCH3, - (CH2) -,- (OCH2CH2) 3- (OCH (CH3) CH2) 3-OCH3, - (CHZ) 3- (OCH2CH2) 6- (OCH (CH3) CH2) g-OCH3,
- (CH2) 3- (OCH2CH2) 3S- (OCH (CH3) CH2) 35-OCH3,
- (CH2) 3- (OCH2CH2) 3-OSi (CH3) 3, - (CH2) 3- (OCH2CH2) 5-OSi (CH3) 3,
- (CH2) 3- (OCH2CH2) 35-OSi (CH3) 3, -(CH2)3-(OCH2CH2)3-OC(0)CH3, - (CH2) 3- (OCH2CH2) 6-OC (0) CH3,
- (CH2) 3- (OCH2CH2) 35-OC (0) CH3,
-(OCH2CH2)3-OH, -(0CH2CH2) s-OH, - (OCH2CH2) 35-0H, -(OCH(CH3)CH2) 3-OH, -(OCH(CH3)CH2)6-OH,
- (OCH (CH3) CH.) 33-OH,. - (OCH2CH2) 3- (OCH (CH3) CH2) 3-OH, - (OCH2CH2) 6- (OCH (CH3) CH2) 6-OH,
- (OCH2CH2) 35- (OCH (CH3) CH2) 35-OH;
- (OCH2CH2) - (O (CH2) 4) -0H
-(OCH2CH2)3-OCH3, -(OCH2CH2)s-OCH3, - (OCH2CH2) 35-OCH3,
- ( OCH ( CH3 ) CH2 ) 3-OCH3 , - ( OCH ( CH3 ) CH2 ) 6-OCH3 , -(OCH(CH3)CH2)3S-OCH3, - (OCH2CH2) 3- (OCH (CH3) CH2) 3-0CH3 ,
- (OCHzCH2) 6- (OCH (CH3) CH2) 6-OCH3,
- (OCH2CH2) 35- ( OCH (CH3) CH2) 35-OCH3,
- (OCH2CH2) 3-0Si (CH3) 3, - (OCH2CH2) 6-0Si (CH3) 3, -(OCH2CH2)35-OSi(CH3)3, -(OCH2CH2)3-OC (0)CH3, - (OCH2CH2) 6-0C (0) CH3,
- (OCH2CH2) 3.-OC (O) CH3,
-(OCH2CH2)3-OH, -(OCH2CH2)6-OH, - (OCH2CH2) 35-0
- (OCH (CH3) CH2 ) 3-OH, - (OCH (CH3) CH2) g-0H,
- (OCH (CH3) CH2 ) 35-OH, - (OCH2CH2) 3- (OCH (CH3) CH2) 3-OH, - (OCH2CH2) 6- (OCH (CH3) CH2) 6-OH,
- (OCH2CH2) 3S- ( OCH (CH3) CH2) 35-OH und
- (OCH2CH2) 18- ( O (CH2) 4) 18-OH .
Beispiele füur Reste R2 sind lineare oder verzweigte, substituierte oder unsubstituierte Kohlenwasserstof freste mit vorzugsweise 2 bis 10 Kohlenstoffatomen, wobei gesättigte oder ungesättigte Alkylenreste bevorzugt sind und der Ethylen- oder der Propylenrest besonders bevorzugt sind.
Beispiele für Reste R3 sind die für R gleich Alkylrest oder Arylrest angegebenen Beispiele und Reste der Formel -C (0)R1oder -Si(R1)3, wobei der Methyl-, Ethyl-, Propyl- und Butyl- sowie Trialkylsilyl- und -C (0) -Alkylrest bevorzugt und der Methyl, Butyl -, —C(0)-CH3 und der Trimethylsilylrest besonders bevorzugt sind.
Beispiele für R4 sind Reste der Formeln (CH2) (CH2) 3-0-CH2- (CH2) 3-0-(CH2-CH20)n- (CH2) 3-0-CH2-CH(OH)-CH2- (CH2) 3-NH-(CH2)2- (CH2) 3-NH-C(0)- (CH2) 3-NH-(CH2)2-C(0)-O- (CH2) 3-NH- (CH2) 2-C (0) -O- (CH2) 2- (CH2) 3-NH- (CH2) 2-NH-C ( O) -CH=CH- (CH2) ,-NH-C(0)-CH=CH- (CH.) 3~C6H4~
Figure imgf000014_0001
^CH2 — (OC H2CH2)n— 'C II H' ^CH2 — (OCH2CH2)n
Figure imgf000014_0002
Figure imgf000014_0003
Bevorzugt für R4 sind Reste der Formeln -(CH2)3-
-(CH2)3-NH-(CH2)2-
- (CH2) 3-0-CH2-CH (OH) -CHj-
Figure imgf000015_0001
^CHz— (OCH2CH2)n-
H CH2— (OCH2CH2)n
Besonders bevorzugt als R4 sind — (CH2)3- und - (CH2) 3-NH- (CH2) 2- .
Beispiele für Rs sind die vorstehend bei R aufgeführten Alkyl- und Arylreste und Reste der Formeln -C(0)-CH3
-(CH2CH20)3-CH3, -(CH2CH20)s-CH3, - CH2CH20) 35-CH3, -(CH(CH3)CH20)3-CH3, -(CH(CH3)CH20) 6-CH3, -(CH(CH3)CH20)3S-CH3, - (CH2CH20) 3- (CH (CH3) CH20) 3-CH3,
- (CH2CH20) 5- (CH2-CH (CH3) 0) 5-CH3,
- (CH2CH20) 10- (CH2-CH (CH3) O) 10-CH3,
- (CH2CH20) 3-Si (CH3) 3, - (CH2CH20) .-Si. (CH3) 3, - (CH2CH20) 35-Si (CH3) 3,
- (CH2CH20) 5- (CH2-CH (CH3) O) 5-Si (CH3) 3 , - (CH2CH20) 10- (CH2-CH (CH3) O) 10-Si (CH3 ) 3,
-(CH2CH20)3-C(0)CH3, -(CH2CH20)β-C(O)CH3, - (CH2CH20) 35-C (0) CH3,
- (CH2CH20) 5- (CH2-CH (CH3) 0) S-C (0) CH3,
- (CH2CH20) 10- (CH2-CH (CH3) 0) 10-C (0) CH3, -(CH2CH20)3-H, -(CH2CH20)6-H, - (CH2CH20) 35-H, -(CH(CH3)CH20)3-H, - (CH (CH3) CH20) 6- H,
-(CH(CH3)CH20)35-H, -(CH2CH20)3-(CH (CH3) CH20) 3-H,
- (CH2CH20) s- (CH2-CH (CH3) 0) 5-H,
- (CH2CH20) 10- (CH2-CH (CH3) 0) 10-H und - ( CH2CH20 ) 18- ( ( CH2 ) 40 ) 18-H .
Bevorzugt sind das Wasserstoffatom und die für R angegebenen Beispiele, besonders bevorzugt sind das Wasserstoffatom und Alkylreste.
Beispiele für Reste B sind -COON , -S03Na, -COOH, -SH und insbesondere -OH, -NH2, -NH-CH3, -NH-(C5H ) und -N-(CH2-CH=CH2)2 , wobei -NH2, -NH-CH3 und -NH- (C6HU) besonders bevorzugt sind.
Beispiele für A1sind lineare oder verzweigte, zweiwertige Alkylreste mit vorzugsweise 2 bis 20 Kohlenstoffatomen, oder Reste der Formeln -(CH2)3-NH-(CH2)3-, -(CH2)3-NR5-(CH2)3- - (CH2) 3- (CH2-CH20) f- (CH2) 3- -0-(CH2-CH20)f-
Beispiel für A2 ist N[(CH2)3-]
Organosiliciumverbindungen (A) können auch während des Verfahrens aus Rohprodukten gebildet werden.
Bevorzugte Beispiele für Organosiliciumverbindungen (A) sind lineare Trimethylsilyl- oder Hydroxy-Di ethylsilyl-endständige
Polydimethylsiloxane, wie z.B
Öle der Viskosität 50 mPas mit
96,5 Mol% (CH3)2Si022 und 3,5 Mol% (CH3)3Si01 2 oder
96,5 Mol% (CH3)2Si022 und 3,5 Mol% (CH3) 2 (OH) Si01 2; Öle der Viskosität 100 mPas mit
98 Mol% (CH3)2Si02 2 und 2 Mol% (CH3)3Si01/2 oder
98 Mol% (CH3)2Si02/2 und 2 Mol% (CH3) z (OH) Si01/2;
Öle der Viskosität 1000 mPas mit 99,2 Mol% (CH3)2Si02/2 und 0,8 Mol% (CH3)3Si01/2 oder 99,2 Mol% (CH3)2Si02/2 und 0,8 Mol% (CH3) 2 ( OH) Si01/2; Öle der Viskosität 12500 mPas mit
99,63 Mol% (CH3)2Si02/2 und 0,37 Mol% (CH3) 3Si01/2 oder 99,63 Mol% (CH3)2Si02/2 und 0,37 Mol% (CH3) 2 (OH) Si01/2; Öle der Viskosität 100000 mPas mit
99,81 Mol% (CH3)2Si02/2 und 0,19 Mol% (CH3) 3SiOι/2 oder 99,81 Mol% (CH3)2Si02 2 und 0,19 Mol% (CH3> 2 (OH) SiOι/2.
Bevorzugte Beispiele für harzartige Organosiliciumverbindungen (A) sind Methyl-Ethoxy-Harze, z.B. der Formel
CH3Si (OC2H5)o,8 (0)ι#1; Methylharze, z.B. mit 80 Mol% CH3Si03/2 und 20 Mol% (CH3)2Si02 2 und einer Molmasse von ca. 5000g/Mol oder 98 Mol% CH3Si03/2 und 2 Mol% (CH3)2Si02/2 und einer Molmasse von ca. 5000g/Mol.
Falls die Organosiliciumverbindung (A) selbst als Emulgator wirkt, dann können Organosiliciumverbindi ng (A) und Emulgator
(B) identisch sein. Dann kann auf den Zusatz von separatem Emulgator (B) verzichtet werden.
Bei dem Bestandteil (B) der Emulsionen handelt es sich bevorzugt um kommerziell erwerbbare und gut untersuchte Emulgatoren, wie z.B. Sorbitanester von Fettsäuren mit 10 bis 22 Kohlenstoffatomen; Polyoxyethylensorbitanestern von Fettsäuren mit 10 bis 22 Kohlenstoffatomen und bis zu 35 Prozent Ethylenoxidgehalt; Polyoxyethylensorbitolestern von Fettsäuren mit 10 bis 22 Kohlenstoffatomen, Polyoxyethylenderivate von Phenolen mit 6 bis 20 Kohlenstoffatomen am Aromaten und bis zu 95 Prozent
Ethylenoxidgehalt; Fettamino- und Amidobetaine mit 10 bis 22 Kohlenstoffatomen; Polyoxyethylenkondensate von Fettsäuren oder Fettalkoholen mit 8 bis 22 Kohlenstoffatomen mit bis zu 95 Prozent Ethylenoxidgehalt; ionische Emulgatoren', wie Alkylarylsulfonate mit 6 bis 20 Kohlenstoffatomen in der Alkylgruppe; Fettsäureseifen mit 8 bis 22 Kohlenstoffatomen; Fettsulfate mit 8 bis 22 Kohlenstoffatome; Alk^lsulfonate mit 10 bis 22 Kohlenstoffatomen; Alkalimetallsalze von Dialkylsulfosuccinaten; Fettaminoxide mit 10 bis 22 Kohlenstoffatomen; Fettimidazoline mit 6 bis 20 Kohlenstoffatomen; Fettamidosulfobetaine mit 10 bis 22 Kohlenstoffatomen; quarternäre Emulgatoren, wie Fettammoniumverbindungen mit 10 bis 22 Kohlenstoffatomen; Fettmorpholinoxide mit 10 bis 22 Kohlenstoffatomen; Alkalimetallsalze von carboxylierten, ethoxylierten Alkoholen mit 10 bis 22 Kohlenstoffatomen und bis zu 95 Prozent Ethylenoxid; Ethylenoxidkondensate von Fettsäuremonoestern des Glycerins mit 10 bis 22 Kohlenstoffatomen und bis zu 95 Prozent Ethylenoxid; Mono- oder Diethanolamide von Fettsäuren mit 10 bis 22 Kohlenstoffatomen; Phosphatester;
Organosiliciumverbindungen (A) , die Einheiten der allgemeinen Formel I aufweisen, bei denen X einen Rest der allgemeinen Formel II bedeutet und c mindestens 1 ist.
Wie auf dem Gebiet der Emulgatoren wohl bekannt , können die Gegenionen im Falle von anionischen Emulgatoren Alkalimetalle, Ammoniak oder substituierte Amine, wie Trimeth}rlamin oder Triethanolamin, sein. Normalerweise sind Ammonium-, Natrium- und Kaliumionen bevorzugt. Im Falle von kationische Emulgatoren ist das Gegenion ein Halogenid, Sulfat oder Methylsulfat. Chloride sind die zumeist industriell verfügbaren Verbindungen.
Die obengenannten Fettstrukturen stellen üblich-erweise die lipophile Hälfte der Emulgatoren dar. Eine übliche Fettgruppe ist eine Alkylgruppe natürlichen oder synthetischen Ursprungs. Bekannte ungesättigte Gruppen sind die Oleyl-, Linoleyl-, Decenyl- , Hexadecenyl- und Dodecenylreste . Al kylgruppen können dabei cyclisch, linear oder verzweigt sein . Andere mögliche Emulgatoren sind Sorbitolmonσlaurat- Ethylenoxidkondensate ; Sorbitolmonomyristat- Ethylenoxidkondensate ; Sorbitolmonostearat-
Ethylenoxidkondensate ; Dodecylphenol-Ethylenoxidkondensate ; Myristylphenol-Ethylenoxidkondensate; Octylptαenyl- Ethylenoxidkondensate ; Stearylphenol-Ethylenσxidkondensate ; Laurylakohol-Ethylenoxidkondensate ; Stearylalkohol- Ethylenoxidkondensate ; Decylaminobetain; Cocoamidsulfobetain; Olylamidobetain; Cocoi idazolin ; Cocosulfoimidazolin; Cetylimidazolin; l-Hydroxyethyl-2-heptadecen;yl- imidazolin ; n-Cocomorpholinoxid; Decyldimeth;ylaminoxid; ' Cocoamidodimethylaminoxid; Sorbitantristearat mit kondensierten Ethylenoxidgruppen ; Sorbitantrioleat mit kondensierten
Ethylenoxidgruppen ; Natrium- oder Kaliumdodecylsulfat ; Natriumoder Kaliumstearylsulf at; Natrium- oder Kaliumdodecylbenzolsulfonat ; Natrium- oder Kaliumstearylsulf onat ; Triethanolanαinsalz des Dodecylsulfates ; Trimethyldodecylammoniumchlorid;
Trimethylstearylammoniummethosulf at ; Natriumlaurat ; Natriumoder Kaliummyristat .
Ebenso können bekanntermaßen anorganische Feststoffe als Emulgatoren ( B ) eingesetzt werden . Dies sind z . B . Kieselsäuren oder Bentonite wie in EP 1017745 A oder DE 19742759 A beschrieben .
Bevorzugt sind die nicht ionischen Emulgatoren . Der Bestandteil ( B ) kann aus einem o . g . Emulgatoren oder aus einem Gemisch zweier oder mehrerer o . g . Emulgatoren bestehen, er kann in reiner Form oder als Lösungen eines oder mehrerer Emulgatoren in Wasser oder organischen LösungsmitteLn eingesetzt werden.
Emulgatoren (B) werden in Mengen von vorzugsweise 0, 1 bis 60 Gew.-%, besonders bevorzugt 1 bis 30 Gew.-%, jeweils bezogen auf das Gesamtgewicht an Organosiliciumverbindungen. (A) eingesetzt .
Zwischen dem zweiten und dritten Rotor Stator Mischer, sowie nach dem dritten Mischer können neben Wasser und Emαlgatoren weitere Zusatzstoffe (Z) , wie Silane, Säuren, Laugen, Biozide, Verdicker, Kieselsäuren und wasserlösliche Polysiloxiane zugegeben werden.
Beispiele für Silane sind Vinyltris (methoxyethoxy) si lan, Tetraethoxysilan, anhydrolysiertes Tetraethoxysilan, Methyltriethoxysilan, anhydrolysiertes Methyltriethoxysilan, Aminoethylaminopropyltrimethoxysilan, Aminoethylaminopropyl (methyl) dimethoxysilan .
Das Verfahren wird beispielhaft anhand Figur 1 erläutert. Durch die Zuleitungen A, B, C, D werden mindestens ein Emulgator (B) oder eine Lösung eines Emulgators (B) und gegebenenf lls Wasser (C) , gegebenenfalls ein oder mehrere Organosiliciumverbindungen (A) und Zusatzstoffe (Z) in die Zuleitung 1 kontinuierlich dosiert. In der Zuleitung 1 kann gegebenenfalls ein statisches Mischelement eingebaut sein um die Vermischung der Komponenten vor dem ersten hochscherenden Mischer 2 zu verbessern. Nach dem ersten Mischer 2 wird eine steife Phase erzeugt. Nach dem Mischer 2 sind ein
Temperaturfühler 3 und ein Drucksensor 4 in die Leitung 5 eingebaut. Die vorgegebene Temperatur und der vorgegebene Druck in der Leitung 5 werden durch das Druckhalteventil 22 und die Drehzahl des hochscherenden Mischers 2 festgelegt. Die Temperatur wird durch die Temperatur der Rohstoffe, die je nach Vorgabe temperiert werden, und durch die Drehzahl des Mischers geregelt. In die Zuleitung 5 können wieder kontinuierlich ein oder mehrere Emulgatoren (B) , ein oder mehrere
Organosiliciumverbindungen (A) , Wasser (C) und Zusatzstoffe (Z) zugegeben werden. Auch kann die Mischung bzw. feste Phase ohne Dosierung in den zweiten hochscherenden Mischer 6 übe rführt werden. Die Temperatur nach Mischer 6 wird durch den Temperaturfühler 7 gemessen und mit der Temperatur de x
Rohstoffe und der Drehzahl des Mischers 6 geregelt. Der Druck nach Mischer 6 wird durch den Drucksensor 8 gemessen -und mit dem Druckhalteventil 22 sowie der Drehzahl des Mischers 6 geregelt. Nach dem Mischer 6 können wieder ein oder mehrere Emulgatoren (B) , ein oder mehrere Organosiliciumverbindungen (A) , Wasser (C) und Zusatzstoffe (Z) dosiert werden. Anschließend kann das Produkt in Leitung 24 über ein optional vorhandenes Ventil 9 und eine optional vorhandene Leitung 10 zum Mischer 13 geleitet werden oder weiter in Leitung 24 über ein optional vorhandenes Ventil 17 dem hochscherenden Mischer 18 zugeführt werden. Auch hier können vor Mischer 13 -Rohstoffe dosiert werden. Die Temperaturen und Drücke nach Mischer 13 und Mischer 18 werden wie vorher beschrieben von den Temperaturreglern 14 und 19 und den Ducksensoren 15 und 20 erfasst und wie vorher beschrieben geregelt. Wird der Weg des Produkts über Leitung 10 nicht genutzt, können im Mischer 13 Vormischungen oder Voremulsionen auf die beschriebene Weise hergestellt werden und dem Produkt vor Mischer 18 zugeführt werden. Die Temperatur und Druckregelung läuft analog . Nach Mischer 18 können weitere Emulgatoren (B) ,
Organosiliciumverbindungen (A) , Wasser (C) , Zusatzstoffe (Z) zugegeben werden. Desweiteren besteht die Möglichkeit nach dem Druckhalteventil 22 die Emulsion weiter mit Wasser zu verdünnen, bevor das fertige Produkt in einen Tank oder ein Verkaufsgebinde gefüllt wird.
Alle vorstehenden Symbole der vorstehenden Foirmeln weisen ihre Bedeutungen jeweils unabhängig voneinander auf. In allen Formeln ist das Siliciumatom vierwertig.
In den folgenden Beispielen sind, falls jeweils nicht anders angegeben, alle Mengen- und Prozentangaben auf das Gewicht bezogen, alle Temperaturen 20°C und alle Drüc-ke 1,013 bar (abs.). Alle Viskositäten werden bei 25°C bestimmt.
Beispiele
Beispiel 1 : Herstellung einer klaren Emulsion eines aminof nktionellen Polysiloxans .
Dem Mischer 2 (4000 UPM) werden 16,25% aminofunktionelles Siliconöl (Wacker® Finish WR 1300) mit einer Temperatur von 40°C (die Temperatur wird auf + 2 K geregelt)^ 1,60% Isotridecylalkoholethoxylat mit durchschnittlich 8 EO (Arlypon® IT 8), 4,14% Isotridecylalkoholethoxylat mit durchschnittlich 5 EO (Lutensol® TO 5), 0,2% Essigsäure (80%ig) und 3,93% VE- Wasser (Temperatur 12 °C, die Temperatur wird auf + 2 K geregelt ) zugeführt. Das Druckhalteventil 22 wird auf 4,5 bar eingestellt. Zum Mischer 6 (3000 UPM) werden 3,6% vollentsalztes Wasser (VE-Wasser) (12°C, die Temperatur wird auf _+ 2 K geregelt) dosiert. Mischer 13 wird nicht verwendet, das Produkt wird nach Mischer 6 dem Mischer IS zugeführt. Nach Mischer 6 werden 66,9% VE-Wasser (12°C) und Konservierungsmittel 0,08% (Kathon® LXE) zugegeben und Mischer 18 zugeführt (3000 UPM). Nach Mischer 18 werden 3,5% Glycerin dosiert . Durch die gewählten Temperaturen und Prozessp ameter ergibt sich nach Mischer 2 ein Druck von 3 bar und eine Temperatur von 43,5°C, nach Mischer 6 ein Druck von 3,1 bar und eine Temperatur von 50 °C nach Mischer 18 ein Druck von 4,5 bar und eine Temperatur von 23 °C. Diese Prozessparameter werden über ein Prozessleitsystem kontrolliert, dokumentiert und gesteuert und führen zu einer klaren Siliconemulsion mit einer Teilchengröße von 20 nm und einer Trübung von 10 ppm. Die Emulsion bleibt bei einer Lagertemperatur von 50 °C über mehrere Monate stabil.
Vergleichsbeispiel 1 b:
Wählt man die analogen Prozessbedingungen wie unter Beispiel 1 angegeben, führt aber den Prozess nicht erfindungsgemäß durch, sondern dosiert das aminofunktionelle Siliconöl bei
Raumtemperatur (20 °C) so führt dies zu einem deutlichen
Temperaturabfall am Mischer 2 (20 °C) und Mischer 6 (25°C), der
Druck bleibt weitgehend unverändert.
Das hergestellte Produkt zeigt eine deutlich größere Teilchengröße von 42 nm und eine Trübung von 23 ppm. In der
Lagerung bei 50°C zeigt sich nach 3 Wochen eine
Phasenseparation.
Beispiel 2 : Herstellung einer PolyvinylalkohoL stabilisierten Siliconharzemulsion
Zum Mischer 2 (4000 UPM) werden 35,3% Polyvinylalkohollösung (10%ig) (25°C, die Temperatur wird auf + 2 K konstant gehalten ) und 48,4 % einer Mischung aus Siliconharz (80 Mol% T- Einheiten 20 Mol% D-Einheiten, 20°C) mit einem. OH terminierten Polydimethylsiloxan der Viskosität 30 mPas und 4,7% VE-Wasser (12°C) dosiert. Diese Mischung wird dem Mischer 6 zugeführt und im Mischer 6 (3000 UPM) nochmals geschert. Nach dem Mischer 6 werden 11,36% VE-Wasser (12°C) und 0,24% Konservierer (Roci a® 523) zugesetzt und die Mischung dem Mischer 18 (3000 UPM) zugeführt. Das Druckhalteventil 22 wi-rd auf 2 bar eingestellt. Diese Prozessparameter führen nach Mischer 2 zu einem Druck von 2 bar und einer Temperatur von 33 °C, nach Mischer 6 werden ebenfalls 2 bar und 35 °C gemessen und nach Mischer 18 werden 2 bar und 36°C registriert. Mit den vorgegebenen Prozessparametern wird eine Emulsion erzeugt, die bei Raumtemperatur eine Lagerstabilität von 1 Jahr ohne Phasentrennung besitzt.
Vergleichsbeispiel 2b
Werden obige Prozessparameter ansonsten nicht verändert nur die Temperatur der Polyvinylalkohollösung nicht kontrolliert und nicht erfindungsgemäß auf 50 °C erhöht wird, erhöht sich die Temperatur nach Mischer 2 auf etwa 45 °C und entsprechend die. Temperatur nach Mischer 6 und 22 auf 46°C. Das erhaltene Produkt zeigt schon nach 2 Wochen Lagerung bei Raumtemperatur eine deutliche Abscheidung von Siliconharz.
Beispiel 3: Polykondensation in Emulsion
Dem Mischer 2 (4000UPM) werden 34,88% eines OH funktioneilen Polydimethylsiloxans (15 °C) mit einer Viskosität von etwa 30 mPas und 3,7% eines Isotridecylalkohol ethoxylates mit 10 EO Einheiten (80%ige Lösung in Wasser) und 4,5% VE-Wasser und 3% Dodecylbenzolsulfonsäure zugeführt. Diese Mischung wird dem Mischer 6 (3000 UPM) zugeführt und dort nochmals durchgearbeitet. Die Mischung wird Mischer 18 zugeführt und vor dem Mischer 18 (3000 UPM) werden 40,43% VE-Wasser und 0,08% Konservierer (Kathon® LXE) dosiert. Das Druckhalteventil 22 wird auf 3 bar eingestellt.
Diese Mischung wird anschließend für e ne mittlere Verweilzeit von 7,5 Stunden in einem Behälter gelagert. Dort findet eine sauer katalysierte Kondensation des Polydimethylsiloxans statt. Nach 7,5 Stunden werden 2,1% Triethanohamin (80%ig) und 11,27% VE-Wasser zugegeben. Damit wird die Säuire neutralisiert und die Reaktion beendet.
Bei dem erfindungsgemäß geführten Verfahren werden nach Mischer 2, 3 bar und 26°C gemessen. Nach Mischer 6 werden 2 bar und 37 °C erreicht und nach Mischer 18, 27 °C. Dies führt zu einer feinteiligen Siliconemulsion (150 nm) in.it einer Ölviskosität von 100.000 mPas. Die Lagerstabilität der Emulsion ist länger als 2 Jahre.
Vergleichsbeispiel 3b
Werden in dem nicht erfindungsgemäßen Verfahren alle Parameter unverändert belassen und die Temperatur- des
Polydimethylsiloxans bei 25 °C gefahren, so ergibt sich eine Emulsion, welche eine vergleichbare Te lchengröße (154 nm) , aber nur eine zu niedrige Ölviskosität von 60.000 mPas hat.

Claims

Patentansprüche :
1. Verfahren zur kontinuierlichen Herstellung von wässrigen Emulsionen, die Organosiliciumverbindung (A) , Emulgator (B) und Wasser (C) umfassen, bei dem jeweils ein Teil der Komponenten Organosiliciumverϊoindung (A) , Emulgator (B) und Wasser (C) kontinuierlich einem ersten hochscherenden Mischer zugeführt werden in welchem eine hochviskose Phase einer Siliconemulsion gebildet wird, und in einem zweiten hochscheirenden Mischer weitere Komponenten, die ausgewählt werden aus Organosiliciumverbindung (A) , Emulgator (B) und Wasser (C) zugemischt werden, wobei das Verfahren über die Drücke und Temperaturen geregelt wird, die direkt nach den Mischern gemessen werden.
2. Verfahren nach Anspruch 1, bei dem die Regelung des Drucks durch eine Druckhaltung nach dem zweiten hochscherenden Mischer und durch die Drehzahl der hochscherenden Mischer erfolgt.
3. Verfahren nach Anspruch 1 und 2, bei dem die Regelung der Temperatur durch die Temperatur der Rohstoffe und die Drehzahl der Mischer erfolgt.
4. Verfahren nach Anspruch 1 bis 3, bei dem die Organosiliciumverbindung (A) bei 25 °C flüssig ist und Viskositäten von 0,5 bis 500 O00 mPa-s aufweist.
PCT/EP2005/003960 2004-04-15 2005-04-14 Verfahren zur kontinuierlichen herstellung von siilicon emulsionen WO2005100453A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/599,869 US20070203263A1 (en) 2004-04-15 2005-04-14 Process For The Continuous Preparation Of Silicone Emulsions
CN2005800111516A CN1942509B (zh) 2004-04-15 2005-04-14 连续制备聚硅氧烷乳液的方法
DE502005000987T DE502005000987D1 (de) 2004-04-15 2005-04-14 Verfahren zur kontinuierlichen herstellung von siilicon emulsionen
JP2007507761A JP5154219B2 (ja) 2004-04-15 2005-04-14 シリコーンエマルジョンを連続的に製造する方法
EP05733302A EP1735370B1 (de) 2004-04-15 2005-04-14 Verfahren zur kontinuierlichen herstellung von siilicon emulsionen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004018283A DE102004018283A1 (de) 2004-04-15 2004-04-15 Verfahren zur kontinuierlichen Herstellung von Silicon Emulsionen
DE102004018283.3 2004-04-15

Publications (1)

Publication Number Publication Date
WO2005100453A1 true WO2005100453A1 (de) 2005-10-27

Family

ID=34964811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/003960 WO2005100453A1 (de) 2004-04-15 2005-04-14 Verfahren zur kontinuierlichen herstellung von siilicon emulsionen

Country Status (7)

Country Link
US (1) US20070203263A1 (de)
EP (1) EP1735370B1 (de)
JP (1) JP5154219B2 (de)
KR (1) KR100782441B1 (de)
CN (1) CN1942509B (de)
DE (2) DE102004018283A1 (de)
WO (1) WO2005100453A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304023B2 (en) 2006-11-08 2012-11-06 Wacker Chemie Ag Treatment of fiberfill fibers with aqueous dispersions of organopolysiloxanes

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394753B2 (en) 2010-04-01 2013-03-12 The Procter & Gamble Company Three dimensional feel benefits to fabric
JP2013539485A (ja) * 2010-08-03 2013-10-24 ダウ コーニング コーポレーション シリコーンゴムエマルション
CN102961987A (zh) * 2012-12-18 2013-03-13 江南大学 具有预混合的连续化高粘硅油乳化工艺及其设备
CN103665395B (zh) * 2013-12-04 2016-01-20 济南开发区星火科学技术研究院 一种硅油的制备方法
CA2956081C (en) 2014-08-27 2021-03-16 The Procter & Gamble Company Detergent composition comprising a cationic polymer
JP6400837B2 (ja) 2014-08-27 2018-10-03 ザ プロクター アンド ギャンブル カンパニー 布地の処理方法
US9951297B2 (en) 2014-08-27 2018-04-24 The Procter & Gamble Company Detergent composition compromising a cationic polymer containing a vinyl formamide nonionic structural unit
WO2016032992A1 (en) 2014-08-27 2016-03-03 The Procter & Gamble Company Detergent composition comprising a cationic polymer
JP6430632B2 (ja) 2014-09-25 2018-11-28 ザ プロクター アンド ギャンブル カンパニー ポリエーテルアミンを含有する布地ケア組成物
US20170015948A1 (en) 2015-07-16 2017-01-19 The Procter & Gamble Company Cleaning compositions containing a cyclic amine and a silicone
DE102015217551A1 (de) * 2015-09-14 2017-03-16 Wacker Chemie Ag Verfahren zur kontinuierlichen Herstellung von stabilen Siliconemulsionen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915122A1 (de) * 1997-10-09 1999-05-12 Dow Corning Corporation Verfahren zur Herstellung von Siliconlatexen
WO2002042360A2 (en) * 2000-11-24 2002-05-30 Dow Corning Corporation Process for making silicone emulsions

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3234143A (en) * 1962-05-21 1966-02-08 Socony Mobil Oil Co Inc Water-in-oil emulsion and method for the preparation thereof
FR1483928A (fr) * 1966-04-27 1967-06-09 Saviem Perfectionnements aux suspensions oléopneumatiques
CH505678A (de) * 1968-12-10 1971-04-15 Henrik Dipl Ing Nielaender Vorrichtung zum Mischen und Plastifizieren von Kunststoffen, Kautschuk und gegebenenfalls anderen Materialien unter Einwirkung von regelbaren Druck-, Friktions- und Scherkräften
US3903202A (en) * 1973-09-19 1975-09-02 Monsanto Co Continuous mass polymerization process for polyblends
US3926413A (en) * 1975-01-20 1975-12-16 Sonic Corp Apparatus for producing acoustic vibrations in liquids
US4117550A (en) * 1977-02-14 1978-09-26 Folland Enertec Ltd. Emulsifying system
US4123403A (en) * 1977-06-27 1978-10-31 The Dow Chemical Company Continuous process for preparing aqueous polymer microsuspensions
US4352572A (en) * 1980-01-09 1982-10-05 Hwang-Chuan Chen Continuous and automatic oil-water mixing method and its installation
JPS5951565B2 (ja) * 1980-01-31 1984-12-14 信越化学工業株式会社 シリコ−ン水性液の連続製造方法
DE3024870C2 (de) * 1980-07-01 1985-01-10 Th. Goldschmidt Ag, 4300 Essen Verfahren zur Herstellung einer stabilen Emulsion
US4908154A (en) * 1981-04-17 1990-03-13 Biotechnology Development Corporation Method of forming a microemulsion
JPS6168131A (ja) * 1984-09-11 1986-04-08 Pola Chem Ind Inc 多段分散室を有する連続乳化装置
US5296166A (en) * 1987-04-10 1994-03-22 Jerry Leong Method of manufacturing emulsions
DE3723697A1 (de) * 1987-04-24 1988-11-17 Pfersee Chem Fab Waessrige, feinteilige bis optisch klare, thermisch und mechanisch stabile silikonemulsionen, verfahren zu deren herstellung und deren verwendung
US5019311A (en) * 1989-02-23 1991-05-28 Koslow Technologies Corporation Process for the production of materials characterized by a continuous web matrix or force point bonding
US4910369A (en) * 1989-04-10 1990-03-20 W. R. Grace & Co.-Conn. Conditioning system for water based can sealants
JPH0328287A (ja) * 1989-06-26 1991-02-06 Shin Etsu Chem Co Ltd エマルジョン型シリコーン消泡剤の連続製造方法
DE4004946A1 (de) * 1990-02-16 1991-08-22 Wacker Chemie Gmbh Feinteilige organopolysiloxanemulsionen
US5250576A (en) * 1991-08-12 1993-10-05 The Procter & Gamble Company Process for preparing emulsions that are polymerizable to absorbent foam materials
US5302658A (en) * 1992-07-14 1994-04-12 Dow Corning Corporation Method of manufacturing silicone emulsions
ZA9510847B (en) * 1994-12-23 1997-06-20 Unilever Plc Process for the production of liquid compositions
IL116709A (en) * 1995-01-10 2000-02-29 Procter & Gamble Continuous process for the preparation of high internal phase emulsion
JP3439860B2 (ja) * 1995-01-24 2003-08-25 東レ・ダウコーニング・シリコーン株式会社 オルガノポリシロキサンエマルジョンの連続的製造方法
JP3549955B2 (ja) * 1995-08-30 2004-08-04 東レ・ダウコーニング・シリコーン株式会社 オルガノポリシロキサンエマルジョンの連続的製造方法
JPH09124797A (ja) * 1995-11-01 1997-05-13 Toray Dow Corning Silicone Co Ltd オルガノポリシロキサン生ゴムの連続的乳化方法
JP3976813B2 (ja) * 1996-04-08 2007-09-19 日鉄鉱業株式会社 液混合装置及び方法
FR2747321B1 (fr) * 1996-04-16 1998-07-10 Centre Nat Rech Scient Procede de preparation d'une emulsion
US7683098B2 (en) * 1996-09-03 2010-03-23 Ppg Industries Ohio, Inc. Manufacturing methods for nanomaterial dispersions and products thereof
US5837272A (en) * 1996-12-13 1998-11-17 Colgate Palmolive Company Process for forming stable gelled aqueous composition
FR2764894B1 (fr) * 1997-06-24 1999-09-24 Rhodia Chimie Sa Procede de preparation d'une suspension de silice dans une matrice silicone vulcanisable a temperature ambiante et a chaud pour former des elastomeres
IL135151A0 (en) * 1997-09-25 2001-05-20 Ge Bayer Silicones Gmbh & Co Device and method for producing silicone emulsions
US6194472B1 (en) * 1998-04-02 2001-02-27 Akzo Nobel N.V. Petroleum hydrocarbon in water colloidal dispersion
US6306345B1 (en) * 1998-05-06 2001-10-23 Universal Preservation Technologies, Inc. Industrial scale barrier technology for preservation of sensitive biological materials at ambient temperatures
FR2780065B1 (fr) * 1998-06-17 2000-09-15 Rhodia Chimie Sa Emulsion aqueuse de resine silicone pour l'hydrofugation de materiaux de construction
US6083901A (en) * 1998-08-28 2000-07-04 General Electric Company Emulsions of fragrance releasing silicon compounds
US6211267B1 (en) * 1998-11-02 2001-04-03 Dow Corning Toray Silicone, Ltd. Method for the continuous production of organopolysiloxane gum solution
IL143104A (en) * 1998-11-13 2005-09-25 Optime Therapeutics Inc Method and apparatus for liposome production
US6087317A (en) * 1998-12-10 2000-07-11 Dow Corning Corporation Particle size stable silicone emulsions
DE19904496A1 (de) * 1999-02-04 2000-08-10 Wacker Chemie Gmbh Wäßrige Cremes von Organosiliciumverbindungen
DE19911776A1 (de) * 1999-03-17 2000-09-21 Merck Patent Gmbh Verpackungssysteme für kosmetische Formulierungen
US6346583B1 (en) * 1999-08-25 2002-02-12 General Electric Company Polar solvent compatible polyethersiloxane elastomers
FR2798133B1 (fr) * 1999-09-03 2003-06-13 Rhodia Chimie Sa Procede d'emulsification sans broyage de silicones et emulsion thermosensible resultante
FR2798601B1 (fr) * 1999-09-20 2001-12-21 Centre Nat Rech Scient Emulsion double polydisperse, emulsion double monodisperse correspondante et procede de preparation de l'emulsion monodisperse
JP4663838B2 (ja) * 2000-01-28 2011-04-06 東レ・ダウコーニング株式会社 環状シロキサンの製造方法
ATE269301T1 (de) * 2001-01-24 2004-07-15 Kuraray Co Verfahren zur herstellung von carotinoid emulsionen
JP4098967B2 (ja) * 2001-04-18 2008-06-11 花王株式会社 ダイラタンシー組成物
US7338924B2 (en) * 2002-05-02 2008-03-04 Exxonmobil Upstream Research Company Oil-in-water-in-oil emulsion
US7435707B2 (en) * 2002-05-23 2008-10-14 The Lubrizol Corporation Oil-in-water emulsions and a method of producing
US7351749B2 (en) * 2002-12-16 2008-04-01 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Process for manufacture of personal care products utilizing a concentrate water phase
DE10313941A1 (de) * 2003-03-27 2004-10-14 Wacker-Chemie Gmbh Verfahren zur kontinuierlichen Herstellung von hochviskosen Siliconmassen
US7229486B2 (en) * 2003-04-17 2007-06-12 Saralee/De N.V. Shoe and leather care product
US7485671B2 (en) * 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
DE102004023911A1 (de) * 2004-05-13 2005-12-01 Wacker-Chemie Gmbh Verfahren zur diskontinuierlichen Herstellung von Silicon-Emulsionen
US7144148B2 (en) * 2004-06-18 2006-12-05 General Electric Company Continuous manufacture of high internal phase ratio emulsions using relatively low-shear and low-temperature processing steps
AU2005316051A1 (en) * 2004-12-13 2006-06-22 Accelergy Corporation An apparatus for processing materials
EP1838761A1 (de) * 2004-12-15 2007-10-03 Wacker Chemie AG Herstellung einer stabilen silikonemulsion
DE102005004871A1 (de) * 2005-02-03 2006-08-10 Degussa Ag Hochviskose wässrige Emulsionen von funktionellen Alkoxysilanen, deren kondensierten Oligomeren, Organopolysiloxanen, deren Herstellung und Verwendung zur Oerflächenbehandlung von anorganischen Materialien

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915122A1 (de) * 1997-10-09 1999-05-12 Dow Corning Corporation Verfahren zur Herstellung von Siliconlatexen
WO2002042360A2 (en) * 2000-11-24 2002-05-30 Dow Corning Corporation Process for making silicone emulsions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304023B2 (en) 2006-11-08 2012-11-06 Wacker Chemie Ag Treatment of fiberfill fibers with aqueous dispersions of organopolysiloxanes

Also Published As

Publication number Publication date
DE102004018283A1 (de) 2005-11-03
CN1942509A (zh) 2007-04-04
JP5154219B2 (ja) 2013-02-27
CN1942509B (zh) 2010-07-14
JP2007532736A (ja) 2007-11-15
US20070203263A1 (en) 2007-08-30
EP1735370A1 (de) 2006-12-27
KR100782441B1 (ko) 2007-12-05
KR20060129464A (ko) 2006-12-15
EP1735370B1 (de) 2007-07-04
DE502005000987D1 (de) 2007-08-16

Similar Documents

Publication Publication Date Title
EP1735370B1 (de) Verfahren zur kontinuierlichen herstellung von siilicon emulsionen
EP2478055B1 (de) Siliconemulsionen und verfahren zu deren herstellung
EP0442098B1 (de) Verfahren zur Herstellung feinteiliger Organopolysiloxanemulsionen
EP1879956B1 (de) Verfahren zur herstellung von dispersionen von vernetzten organopolysiloxanen
EP1773920B1 (de) Verfahren zur herstellung von emulsionen von hochviskosen organopolysiloxanen
EP0093310A2 (de) Verfahren zur Herstellung von feinteiligen, stabilen O/W-Emulsionen von Organopolysiloxanen
EP2491071B1 (de) Verfahren zur herstellung von organopolysiloxanen
EP0291941A2 (de) Verfahren zur Herstellung kolloidaler Suspensionen von Organopolysiloxanen
EP1745088B1 (de) Verfahren zur diskontinuierlichen herstellung von silicon-emulsionen
EP2598556B1 (de) Verfahren zur herstellung von siloxan-copolymeren mit urethansulfonamidoverbindungsgruppen
EP2885353B1 (de) Verfahren zur herstellung von siliconemulsionen
EP1558670B1 (de) Hochkonzentrierte öl-in-wasser-emulsionen von siliconen
EP1988116B1 (de) Verfahren zur Herstellung von Aminoalkylpolysiloxanen
WO2020030288A1 (de) Wässrige emulsionen aus oxamidoester-funktionalisierten organopolysiloxanen
KR100887267B1 (ko) 실리콘 에멀젼의 비연속식 제조 방법
EP0996661A1 (de) Wässrige organowasserstoffpolysiloxane enthaltende emulsionen
DE102014212725A1 (de) Verfahren zur Herstellung von Polysiloxan-Emulsionen unter Verwendung von Alkylpolyglycosiden
WO2017148546A1 (de) Verfahren zur herstellung von hydroxygruppen und alkoxygruppen aufweisenden siliconharzen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005733302

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067018809

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10599869

Country of ref document: US

Ref document number: 2007203263

Country of ref document: US

Ref document number: 3787/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200580011151.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007507761

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020067018809

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005733302

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2005733302

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10599869

Country of ref document: US