WO2005099020A1 - 鉛蓄電池 - Google Patents

鉛蓄電池 Download PDF

Info

Publication number
WO2005099020A1
WO2005099020A1 PCT/JP2005/006869 JP2005006869W WO2005099020A1 WO 2005099020 A1 WO2005099020 A1 WO 2005099020A1 JP 2005006869 W JP2005006869 W JP 2005006869W WO 2005099020 A1 WO2005099020 A1 WO 2005099020A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lead
grid
positive electrode
ears
Prior art date
Application number
PCT/JP2005/006869
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Sugie
Kazuhiko Shimoda
Shozo Murochi
Tsunenori Yoshimura
Shinichi Iwasaki
Shoji Horie
Michio Kurematsu
Koichi Yonemura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004113827A external-priority patent/JP2005302395A/ja
Priority claimed from JP2004142041A external-priority patent/JP2005327491A/ja
Priority claimed from JP2004350914A external-priority patent/JP2006164598A/ja
Priority claimed from JP2004350913A external-priority patent/JP5044888B2/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to KR1020067017135A priority Critical patent/KR101128586B1/ko
Priority to EP05728390A priority patent/EP1737062B1/en
Priority to DE602005009814T priority patent/DE602005009814D1/de
Priority to US10/587,186 priority patent/US8071239B2/en
Publication of WO2005099020A1 publication Critical patent/WO2005099020A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • H01M50/541Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges for lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lead storage battery, and more particularly, to an improvement in the life characteristics of a lead storage battery used in a vehicle equipped with an idle stop system.
  • lead storage batteries have been used for starting an engine of a vehicle, for a backup power supply, and the like.
  • the lead storage battery for starting the engine has a role of supplying electric power to various electric and electronic devices mounted on the vehicle together with the cell motor for starting the engine.
  • the lead-acid battery is charged by the alternator.
  • the output voltage and output current of the alternator are set so that the lead-acid battery's soc (charge state) is maintained at 90 ⁇ : LOO%.
  • the lead storage battery In vehicles equipped with an idle stop system, the lead storage battery is not charged during idle stop. In such a state, the lead storage battery may supply electric power to the mounted device. For this reason, the SOC of the lead-acid battery is necessarily lower than that of the conventional lead-acid battery for starting the engine. In vehicles equipped with a regenerative braking system, the electrical energy is stored by the lead storage battery during regeneration (deceleration), so the SOC of the lead storage battery must be controlled to a low level of about 50 to 90%.
  • Deterioration factors of the lead storage battery in such a use mode mainly include insufficient charging due to a decrease in charge acceptability of the lead storage battery. Since the charging system in vehicles is based on constant voltage control, if the charge acceptability of the negative electrode plate decreases, the negative electrode potential drops at the beginning of charging, the voltage immediately rises to the set voltage value, and the current becomes faster. To decrease. As a result, it is not possible to secure a sufficient amount of electricity for charging the lead storage battery, resulting in insufficient charging.
  • Patent Document 1 As a method for suppressing such deterioration, for example, it has been proposed to form a lead alloy layer containing Sn and Sb on the surface of a positive electrode lattice of a Pb—Ca—Sn alloy (Patent Document 1) This suppresses the deterioration of the positive electrode active material and the formation of a passive layer at the interface between the positive electrode active material and the positive electrode lattice.
  • Sb present on the surface of the positive electrode grid is eluted into the electrolytic solution and is deposited on the negative electrode plate.
  • Sb deposited on the negative electrode active material raises the charging potential of the negative electrode plate and lowers the charging voltage, thereby improving the charge acceptability of the lead-acid battery. As a result, deterioration of the lead storage battery due to insufficient charging during the charge / discharge cycle is suppressed.
  • This method is very effective for start-up lead-acid batteries that are used with SOC exceeding 90%, and the life characteristics are dramatically improved.
  • a reduction in the thickness of the ears of the negative grid causes not only a reduction in current collection efficiency but also a reduction in the strength of the ears.
  • the battery mounted on the vehicle is constantly subjected to vibration and impact while the vehicle is running, and the ears of the negative electrode grid are deformed, causing the negative electrode plate to be displaced, causing the negative electrode plate to come into contact with the positive electrode plate. May cause internal short circuit.
  • the positive electrode grid, the positive electrode connection member, the lugs of the negative electrode grid, and the negative electrode connection member are made of Pb or a Pb alloy that does not contain Sb, and the portion excluding the lugs of the negative electrode grid or the negative electrode active material layer
  • a lead storage battery containing a trace amount of Sb without increasing the amount of liquid reduction has been proposed. This configuration suppresses the elution of Sb present in the positive electrode plate into the electrolyte and the precipitation of Sb at the ears of the negative electrode grid, and improves the deep discharge life, such as battery charge acceptance, to some extent. Being done.
  • Patent Document 1 JP-A-3-37962
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-346888
  • the present invention provides a long life having high reliability in a use mode in which charge and discharge are frequently repeated in a low SOC region by improving charge acceptability and suppressing corrosion of ears of a negative electrode grid.
  • An object of the present invention is to provide a lead-acid battery.
  • the present invention provides a plurality of negative plates having a negative electrode grid having ears holding a negative electrode active material layer, a plurality of positive plates having a positive electrode grid having ears holding a positive electrode active material layer, and An electrode plate group including a plurality of separators for separating the negative electrode plate,
  • a positive electrode shelf to which ears of each positive electrode plate of the electrode plate group are connected, and a positive electrode connecting member comprising a positive pole or a positive electrode connecting member provided on the positive electrode shelf;
  • the present invention relates to a lead-acid battery provided with a negative pole or a negative connecting member that also has a negative connecting strength.
  • the positive electrode grid, the negative electrode grid, the positive electrode connecting member, and the negative electrode connecting member are Pb alloys containing at least one of Ca and Sn, and the negative electrode grid further includes Sb in a portion excluding the ear.
  • the separator is characterized by containing silica.
  • the separator is a microporous synthetic resin sheet and silica particles dispersed in the synthetic resin sheet, and the separator contains 40 to 85% by mass of silica particles.
  • the separator also has a fiber mat and a silica particle force supported on the fiber mat, and the separator contains 10 to 40% by mass of silica particles.
  • the negative electrode lattice may contain the Sb in an amount of 0.1% by weight per 100 parts by weight of the negative electrode active material.
  • the negative electrode lattice includes a base material layer made of a Pb alloy containing at least one of the Ca and Sn, and a lead alloy layer containing the Sb formed at least partially on the base material layer. Is preferred.
  • the lead alloy layer containing Sb is preferably formed in a region below the negative electrode plate.
  • the positive electrode lattice preferably includes a base material layer containing at least one of Ca and Sn, which is a Pb alloy, and a lead alloy layer containing Sn formed at least partially on the base material layer. preferable.
  • the separator is in the shape of a bag and that the negative electrode plate be stored therein.
  • the charge acceptability is improved and the corrosion of the ears of the negative electrode grid is suppressed, so that the SOC is relatively low, and high reliability is obtained in a use mode in which charge and discharge are repeated frequently in a region.
  • a long-life lead-acid battery can be obtained.
  • the battery in the use mode described above, the battery may be in an over-discharged state. Even during over-discharge, corrosion of the ears of the negative electrode grid can be suppressed.
  • FIG. 1 is a partially cutaway perspective view of a lead storage battery according to an embodiment of the present invention.
  • FIG. 2 is a front view of a negative electrode plate in the lead storage battery.
  • FIG. 3 is a front view of a positive electrode plate in the lead storage battery.
  • FIG. 4 is a view showing a step of expanding a base material sheet.
  • FIG. 5 is a view showing a step of obtaining a composite sheet for forming a lattice.
  • FIG. 6 is a longitudinal sectional view showing a part of a negative electrode plate using a negative electrode lattice body having a lead alloy layer on a part of the surface.
  • the present invention relates to a lead-acid battery for a vehicle equipped with an idle stop system or a regenerative braking system.
  • the lead-acid battery has a positive electrode grid, a positive electrode connecting member, a negative electrode grid lug, and a negative electrode grid lubricating material.
  • Sb is added to the portion of the negative electrode grid except for the ears, that is, the expanded mesh and the frame bone, and silica is contained in the separator.
  • FIG. 1 is a perspective view in which a part of a lead storage battery of the present invention is cut away.
  • the battery case 12 of the lead storage battery 1 is partitioned into a plurality of cell chambers 14 by partition walls 13, and each cell chamber 14 accommodates one electrode plate group 11 one by one.
  • the electrode plate group 11 is configured by stacking a plurality of positive electrode plates 3 and negative electrode plates 2 with a separator 4 interposed therebetween. Positive electrode plate 3 is connected to positive electrode connecting member 10, and negative electrode plate 2 is connected to negative electrode connecting member 9.
  • ears 32 of the positive electrode grid of the positive electrode plate 3 are connected to the positive electrode shelf 6, and ears 22 of the negative electrode grid of the negative electrode plate 2 are connected to the negative electrode shelf 5.
  • the positive electrode connector 8 connected to the positive electrode shelf 6 of the electrode group 11 in one cell chamber 14 is connected to the electrode group 11 in the adjacent cell chamber 14 through a through hole provided in the partition wall 13. Is connected to a negative electrode connector continuously provided on the negative electrode shelf of.
  • the electrode group 11 is connected in series with the electrode group 11 in the adjacent cell chamber 14.
  • a positive pole is formed on the positive shelf at one end of the battery case 12, and a negative pole 7 is formed on the negative shelf 5 at the other end.
  • the positive electrode connecting member 10 includes a positive electrode shelf 6 to which the lugs 32 of the positive electrode grid are connected, and a positive pole or a positive electrode connector 8 provided on the positive electrode shelf 6, and the negative electrode connecting member 9 It is composed of a negative electrode shelf 5 to which a grid ear 22 is connected, and a negative pole 7 or a negative electrode connector provided on the negative electrode shelf 5.
  • a lid 15 provided with a positive electrode terminal 16 and a negative electrode terminal 17 is attached to the opening of the battery case 12.
  • the positive pole and the negative pole are connected to a positive terminal 16 and a negative terminal 17, respectively.
  • An exhaust plug 18 having an exhaust port for discharging gas generated inside the battery to the outside of the battery is attached to a liquid inlet provided in the lid 15.
  • FIG. 2 shows a front view of the negative electrode plate 2.
  • the negative electrode plate 2 includes a negative electrode grid 21 having ears 22 and a negative electrode active material layer 24 held by the negative electrode grid 21.
  • the negative electrode active material layer 24 is mainly composed of a negative electrode active material (Pb) .
  • a shrinkproofing agent such as lignin or barium sulfate, a conductive agent such as carbon, Alternatively, a small amount of a binder may be contained.
  • the negative grid 21 is an expanded grid including an expanded mesh 25 holding the negative electrode active material layer 24, a frame 23 provided at the upper end of the expanded mesh 25, and ears 22 connected to the frame 23. .
  • the negative electrode grid 21 and the negative electrode connecting member 9 also basically have a Pb alloy force containing at least one of Ca and Sn. From the viewpoints of corrosion resistance and mechanical strength, Pb-Sn alloys containing 0.05 to 3.0% by mass of Sn, Pb-Ca alloys containing 0.01 to 0.10% by mass of Ca, Alternatively, a Pb—Ca—Sn alloy containing Ca and Sn can be used.
  • a Pb alloy containing at least one of Ca and Sn contains substantially no Sb.
  • the Pb alloy may contain a small amount of Sb of less than 0.0001% by mass as an impurity.
  • pure Pb may be used for the negative electrode grid 21 and the negative electrode connecting member 9.
  • the negative electrode grid 21 further includes Sb in portions other than the ears 22, that is, in the expanded mesh 25 and the frame bone 23. Since the portion of the negative electrode grid other than the ears contains Sb, which has a lower hydrogen overvoltage than Pb, the charge potential of the negative electrode plate increases, so that the charge acceptability of the negative electrode plate is greatly improved.
  • the lead-acid battery of the present invention has Sb It is a configuration including
  • the life characteristics are improved when the Sb content in the negative electrode grid is 0.0002 parts by mass or more per 100 parts by mass of the negative electrode active material, and the life is increased when the amount is 0.0004 parts by mass or more.
  • the properties are greatly improved.
  • the Sb content in the negative electrode grid exceeds 0.006 parts by weight per 100 parts by weight of the negative electrode active material, corrosion of the ears of the negative electrode grid gradually progresses. Therefore, the Sb content in the negative electrode lattice is preferably 0.0002 to 0.006 parts by mass per 100 parts by mass of the negative electrode active material. More preferably, the content of Sb in the negative electrode lattice is 0.0004 to 0.006 parts by mass per 100 parts by mass of the negative electrode active material.
  • the negative electrode grid including Sb in the portion excluding the ears is such that the entire negative electrode grid including the ears does not include the same Sb as the positive electrode grid described above! / ⁇ Pb alloy, that is, includes at least one of Ca and Sn. It is preferable that the base material layer be made of a Pb alloy color, and that a lead alloy layer containing Sb be formed on at least a part of the surface of the base material layer excluding the ears.
  • an intermetallic compound of Ca and Sb may be formed in the alloy.
  • this alloy is used for the negative electrode grid and the intermetallic compound of Ca and Sb comes into contact with sulfuric acid, the negative electrode grid is easily corroded. Therefore, when a Pb-Ca alloy is used for the negative electrode lattice, the intermetallic compound of Ca and Sb can be obtained by using the Pb-Ca alloy for the base material layer and the Pb-Sb alloy for the lead alloy layer as described above. Generation can be prevented.
  • the negative electrode grid composed of the base material layer and the lead alloy layer can be produced, for example, by the following method.
  • a lead alloy foil containing Sb is supplied between a pair of rolling rollers and rolled together with a base material sheet having a Pb alloy strength containing at least one of Ca and Sn, and the lead alloy foil is pressed on the base material sheet. Then, a composite sheet including a base material layer and a lead alloy layer is obtained. At this time, a lead alloy foil is pressure-bonded to a portion (excluding a portion for forming an ear) of the base material sheet, which is to be described later, by an expandable kneader to form an expanded mesh and a frame bone. Next, the composite sheet is subjected to an expansive processing to obtain a negative electrode grid (expanded grid).
  • the preferred thickness of the base material layer in the composite sheet is 0.5 to 1.3 mm, and the preferred thickness of the lead alloy layer is 0.1 to 20 ⁇ m.
  • Another method of obtaining a composite sheet is to spray a lead alloy containing Sb on the surface of a base material sheet. Method.
  • a structured grid may be used in addition to the above expanded grid.
  • a structure element can be obtained by punching the above composite sheet.
  • the lead alloy foil containing Sb preferably further contains Sn.
  • the mechanical strength is improved, and cutting of the lead alloy foil in the manufacturing process can be prevented. Since the tension of the lead alloy foil is improved, meandering of the lead alloy foil on the base material sheet during crimping is suppressed, and dimensional accuracy can be secured.
  • the lead alloy layer containing Sb is preferably formed in a region below the negative electrode plate in the direction of gravity, that is, below a region constituting an expanded mesh of the negative electrode grid.
  • a stratification phenomenon occurs in which the concentration of sulfuric acid in the electrolytic solution increases in the lower part in the direction of gravity and decreases in the upper part in the direction of gravity.
  • lead sulfate easily accumulates, and the life characteristics are lowered. Such accumulation of lead sulfate is particularly remarkable in the negative electrode plate.
  • the negative electrode lattice since the negative electrode lattice has a lead alloy layer containing Sb in the region below the negative electrode plate, the generation of hydrogen gas at the lower portion of the electrode plate becomes remarkable. Since the generation of hydrogen gas stirs the electrolyte, the occurrence of stratification is suppressed, and the life characteristics are improved.
  • the negative electrode active material layer containing Sb can be obtained by adding Sb or antimony sulfate or the like at the time of kneading the negative electrode paste.
  • a single kneading machine can be used to It is common to knead the paste. In such a case, there is a possibility that Sb in the negative electrode paste remaining in the kneading machine may be mixed into other types of negative electrode paste that does not contain Sb.
  • the water used to wash the kneading machine and the waste paste generated in the step of filling the negative electrode grid with the negative electrode paste are collected, and the amount of water is adjusted. Reuse as a negative electrode paste is generally performed. Therefore, when producing a negative electrode paste containing Sb and a negative electrode paste containing no Sb, it is necessary to separately collect and reuse the waste paste containing Sb and the waste paste containing no Sb. For this reason, equipment and process management become complicated. On the other hand, the configuration of the present invention in which only the negative electrode grid contains Sb does not cause the above-described problems, and is more preferable in terms of equipment cost and process management.
  • FIG. 1 a front view of the positive electrode plate 3 is shown in FIG.
  • the positive electrode plate 3 includes a positive electrode grid 31 having lugs 32, and a positive electrode active material layer 34 held by the positive electrode grid 31.
  • the positive electrode active material layer 34 is mainly composed of the positive electrode active material (PbO),
  • the porous layer 34 may contain, for example, a small amount of a conductive agent such as carbon or a binder in addition to the positive electrode active material.
  • the positive electrode grid 31 is an expanded grid including an expanded network 35 holding the positive electrode active material layer 34, a frame 33 provided at an upper end of the expanded network 35, and an ear 32 connected to the frame 33.
  • the positive electrode grid 31 and the positive electrode connecting member 10 are made of Pb alloy containing at least one of Ca and Sn.
  • the Pb alloy containing at least one of Ca and Sn used for the positive electrode grid and the positive electrode connecting member does not substantially contain Sb.
  • the lead alloy may contain about 0.001 to 0.002% by mass of Sb as an impurity so as not to adversely affect the battery performance due to the reduced amount of liquid and the increased amount of self-discharge.
  • the lead alloy of the positive electrode grid is preferably 0.01 to 0.0. 8 Weight 0/0 of Ba and 0.001 to 0.05 mass 0/0 may contain Ag. When a lead alloy containing Ca is used, about 0.001 to 0.05 mass% of A1 may be added to suppress the loss of Ca by the molten lead alloy. Further, about 0.0005 to 0.005% by mass of Bi may be contained as an impurity. The effects of the present invention are impaired without impairing the effects of the present invention.
  • Positive electrode plate 3 and negative electrode plate 2 are obtained by the following method.
  • An unformed positive electrode plate is obtained, for example, by filling a positive electrode grid with a positive electrode paste obtained by mixing raw material lead powder (a mixture of lead and lead oxide), sulfuric acid, water, and the like, and then aging and drying. .
  • An unformed negative electrode plate is filled, for example, with a negative electrode grid filled with a negative electrode paste obtained by mixing raw material lead powder (lead and lead oxide), sulfuric acid, water, and a shrink-preventing agent such as lignin or barium sulfate. It is obtained by doing.
  • the lignin include synthetic lignin such as natural lignin (for example, Vanilex N manufactured by Nippon Paper Chemicals Co., Ltd.) and bisphenolsulfonic acid condensate (for example, Bispers P215 manufactured by Nippon Paper Chemicals Co., Ltd.). Used.
  • the above-mentioned positive electrode plate 3 and negative electrode plate 2 are obtained by forming the unformed positive and negative electrode plates. Chemical formation may be performed in a battery case of a lead storage battery manufactured using an unformed positive electrode plate and a negative electrode plate, or may be performed before forming an electrode plate group for manufacturing a lead storage battery.
  • the separator 4 contains silica (SiO 2).
  • the lead storage battery of the present invention is premised on overdischarge as described above and frequent repetition of charge and discharge in a low SOC region. In such a use mode, the corrosion of the ears of the negative electrode grid cannot be sufficiently suppressed only by limiting the addition force of Sb to the negative electrode grid except for the ears.
  • silica contained in the separator converts Sb. Due to the adsorption, it is possible to suppress the deposition of Sb on the ears of the negative electrode grid and the corrosion of the ears of the negative electrode grid.
  • the inclusion of Sb in the negative electrode plate improves the charge acceptability, and the inclusion of silica in the separator suppresses the corrosion of the ears of the negative electrode grid.
  • the life characteristics of lead-acid batteries in batteries are greatly improved.
  • the first preferred embodiment of the separator 4 is that the separator has a microporous synthetic resin sheet and the power of silica particles dispersed in the synthetic resin sheet, and the content of the silica particles in the separator is 40 to 85. % By mass. If the content of the silica particles in the separator made of the synthetic resin sheet containing the silica particles is less than S40% by mass, the effect of suppressing the corrosion of the ears of the negative electrode grid is slightly reduced. On the other hand, if the content of silica particles in the separator made of a synthetic resin sheet containing silica particles exceeds 85% by mass, the separator becomes brittle, cracks and holes are easily generated, and an internal short circuit of the battery occurs. It will be easier.
  • the silica content of the synthetic resin sheet-containing separator containing silica particles is 40 to 65 mass0 / 0 . 0 is more preferred.
  • Examples of the synthetic resin include polyethylene and polypropylene. Carbon may be included in the synthetic resin to improve ionic conductivity.
  • silica particles it is preferable to use, for example, porous silica having pores having an average pore diameter of 20 m or less, in order to easily adsorb Sb on the surface. It is preferable to use porous silica having a large specific surface area of about 200 m 2 / g.
  • the particle size of the silica particles is preferably from 5 to 40 m.
  • the microporous synthetic resin sheet has pores having a pore diameter of about 0.01 to 1 ⁇ m through which an electrolyte solution can pass. When the pore size exceeds 1 ⁇ m, the active material easily passes through the separator.
  • a separator can be obtained, for example, by adding silica particles when producing a microporous sheet made of a synthetic resin.
  • the separator also has a force of silica particles supported on the fiber mat and the fiber mat, and the content of the silica particles in the separator is 10 to 40% by mass.
  • the content of the silica particles in the separator composed of the fiber mat supporting the silica particles is less than 10% by mass, the effect of suppressing the corrosion of the ears of the negative electrode grid is slightly reduced.
  • the separator strength is reduced due to a decrease in the bonding force between the fibers, and the battery internal resistance is increased. , A decrease in the discharge voltage occurs.
  • a glass fiber having a fiber diameter of 0.1 to 2 m, a polypropylene resin fiber having a fiber diameter of 1 to 10 m, or the like is used as the fiber.
  • Such a separator can be obtained, for example, by adding silica particles in a papermaking process for producing a fiber mat.
  • Each cell contains an electrolytic solution, and the entirety of the positive electrode shelf, the negative electrode shelf, and the electrode plate group is immersed in the electrolytic solution.
  • the negative electrode plate and the negative electrode shelf are hardly oxidized because they do not come into contact with the atmosphere.
  • the present invention is not applied to a control valve type lead storage battery because the negative electrode grid contains Sb having a hydrogen overvoltage lower than that of Pb.
  • the present invention is applied to a control valve type lead storage battery, the internal pressure of the battery increases due to the generation of a small amount of gas, and the control valve is opened for a long time. As a result, the air flows into the battery, the negative electrode plate is oxidized, and the battery is easily deteriorated.
  • Positive electrode lattice 31 is composed of a base material layer containing at least one of Ca and Sn and also having a lead alloy force, and a lead alloy layer containing Sn formed at least partially on the base material layer. Is preferred. This lead alloy layer improves the charge acceptance of the positive electrode plate after deep discharge or after overdischarge, and improves the life characteristics. Further, generation of a passivation layer at the interface between the positive electrode active material and the positive electrode lattice is suppressed.
  • the Sn content in the lead alloy layer is larger than the Sn content in the base material layer.
  • the lead alloy layer preferably contains at least 1.6% by mass of Sn, and furthermore, the Sn content in the lead alloy layer is 3. More preferably, it is 0 to 6.0% by mass. If the Sn content is lower in the lead alloy layer than in the base material layer, the presence of the lead alloy layer having a lower Sn content than the base material layer at the interface between the positive electrode grid and the positive electrode active material causes The effect of Sn is reduced.
  • the positive electrode grid composed of the base material layer and the lead alloy layer containing Sn is obtained by the same method as in the case of producing the negative electrode lattice composed of the base material layer and the lead alloy layer containing Sb.
  • the preferable thickness of the base material layer in the obtained composite sheet is 0.7 to 1.3 mm, and the preferable thickness of the lead alloy layer is 1 to 20 m.
  • the lead alloy layer containing Sn is formed on the ear by pressing the lead alloy foil over the entire base material sheet.
  • Separator 4 is a bag-shaped separator arranged with the opening facing upward, and accommodates negative electrode plate 2 so that ear 22 of the negative grid is positioned on the opening side.
  • the bag-shaped separator is obtained, for example, by folding a polyethylene sheet or a glass fiber mat into two pieces, heat-welding the left and right edges, and opening only the upper part.
  • the negative electrode plate is housed in the bag-shaped separator, even if Sb in the negative electrode grid excluding the ears elutes into the electrolytic solution, the Sb is quickly and reliably captured by the bag-shaped separator. Therefore, corrosion of the ears of the negative electrode grid due to the deposition of Sb at the ears of the negative electrode grid is suppressed.
  • Separator 4 must be in direct contact with the positive electrode active material composed of PbO, which has strong oxidizing power.
  • a material having acid resistance is used for the linear rib, and the same material as the separator is preferably used.
  • a configuration in which the bag-shaped separator accommodates the negative electrode plate may be configured such that a polyethylene sheet or a glass fiber mat is folded into two (U-shape), and the negative electrode plate is sandwiched therebetween.
  • Polyethylene with an average molecular weight of 800,000, silica particles, mineral oil, and carbon powder are added, kneaded, extruded, and then the mineral oil is removed with a solvent such as hexane to form pores containing silica particles.
  • a 0.2 mm thick polyethylene sheet having micropores of 1.0 m or less was obtained. This polyethylene sheet was folded in two, and both side edges were heat-sealed to produce a bag-like separator having an open top only.
  • porous particles (average particle diameter: 20 m) having pores having an average pore diameter of 20 m or less were used as silica.
  • a negative electrode plate 2 shown in FIG. 2 was produced as follows. (A) In the case of a negative electrode lattice body without Sb added
  • the base sheet made of Pb-0.07% by mass Ca-0.25% by mass Sn alloy obtained by the casting method is rolled to a thickness of 0.7mm, and a predetermined slit is formed in this base material sheet 27. After that, the slit was developed to form an expanded mesh 25 ((a) in FIG. 4), and an expanded lattice was obtained (expanded). Note that the central portion of the base material sheet 27 was used for forming the ears 22 and the frame bones 26 of the negative electrode grid, which will be described later.
  • the expanded mesh 25 was filled with the negative electrode paste 24a (FIG. 4 (b)), and cut into an electrode plate having ears 22 of the negative electrode grid (FIG. 4 (c)). This was aged and dried to obtain an unformed negative electrode plate 2a (length: 115 mm, width: 137.5 mm). Then, a negative electrode plate 2 in which the negative electrode active material layer 24 was held on the negative electrode grid 21 was obtained by formation in a battery case described later.
  • a lead alloy foil 27a is supplied together with the base material sheet 27 between a pair of rolling rollers 45, and the base material sheet 27 and the lead alloy foil 27a are supplied by the rolling rollers 45. Were rolled simultaneously. As a result, the lead alloy foil 27a was pressed onto the base material sheet 27, and a composite sheet having a 0.7 mm thick base material layer having a lead alloy layer on one surface was obtained. As the lead alloy foil 27a, a Pb-1.0 mass% Sb alloy was used.
  • the lead alloy foil 27a is press-bonded to the base material sheet 27 only at a portion where an expanded mesh and a frame bone are formed in an expanded caroe described later, and the positive electrode in the base material sheet 27 shown in FIG. O A lead alloy foil was not crimped on the center part forming the ears 22 of the lattice o
  • a negative electrode plate is prepared in the same manner as described above except that the composite sheet is subjected to an expanding force.
  • the expanded mesh 25 having a rhombic cross section is composed of a base material layer 25b made of a Pb-O.07 mass% Ca—0.25 mass% Sn alloy, and a base material layer 25b. It is composed of a lead alloy layer 25a made of Pb-1.0 mass% Sb formed on the surface of the alloy.
  • the positive electrode plate 3 shown in FIG. 3 was manufactured as follows.
  • a positive electrode paste was obtained by kneading the raw material lead powder (a mixture of lead and lead oxide), water and dilute sulfuric acid in a weight ratio of 100: 15: 5.
  • a base material sheet made of Pb—0.07% by mass Ca—1.3% by mass Sn alloy obtained by the sintering method was rolled to a thickness of 1.1 mm.
  • the expanded mesh was filled with the positive electrode paste, and an unformed positive electrode plate (length: 115 mm, width: 137.5 mm) was obtained in the same manner as described above.
  • a positive electrode plate 3 in which the positive electrode active material layer 34 was held on the positive electrode grid 31 was obtained by chemical conversion in a battery case described later.
  • the positive electrode grid, the positive electrode active material, the negative electrode active material, and the negative electrode grid were used.
  • the Sb concentration was below the detection limit (0.0001% by mass).
  • FIG. 1 is a perspective view showing a part of a lead storage battery cut away.
  • the six negative electrode plates 2 obtained above are each stored in a bag-shaped separator 4 and the five positive electrode plates 3 obtained above are alternately laminated to form a positive electrode plate 3 and a negative electrode plate.
  • the plates 2 were laminated via the bag-shaped separator 4 to obtain an electrode plate group 11.
  • the same-polarity grid lugs 22 and 32 were collectively welded, respectively, to form the positive electrode shelf 6 and the negative electrode shelf 5.
  • the electrode group 11 is housed one in each of the six cell chambers 14 defined by the partition walls 13 of the battery case 12, and the positive electrode connector 8 connected to the positive electrode shelf 6 is connected to the negative electrode shelf of the adjacent electrode group.
  • adjacent electrode groups were connected in series. In the present example, the connection between the electrode groups was performed through a through hole (not shown) provided in the partition wall 13.
  • a positive pole was provided on one of the positive electrode shelves of the electrode group housed in the cell chambers 14 at both ends, and a negative pole 7 was provided on the other negative electrode shelf 5.
  • the lid 15 was attached to the opening of the battery case 12, and the positive electrode terminal 16 and the negative electrode terminal 17 provided on the lid 15 were welded to the positive electrode pole and the negative electrode pole 7, respectively.
  • sulfuric acid having a concentration of 34% by mass as an electrolytic solution was injected in an amount of 700 ml per cell from an injection port provided in the lid 15, and the solution was subjected to iridescence in a battery case.
  • JIS D5301 55D23 type (12V-48Ah) lead storage battery
  • the silica content in the bag-shaped separator made of a polyethylene sheet containing silica particles was 0% by mass, 35% by mass, 40% by mass, 65% by mass, or 85% by mass.
  • the Sb content in the negative electrode grid was 0.0002 parts by mass, 0.0004 parts by mass, 0.006 parts by mass, or 0.007 parts by mass per 100 parts by mass of the negative electrode active material.
  • the thickness of the lead alloy foil to be pressed against the base material sheet was changed variously so that At this time, the thickness of the lead alloy layer in the obtained composite sheet was 0.46 m, 0.92 m, 13.8 m, and J and 16.2 ⁇ m, respectively.
  • the positive electrode connecting member and the negative electrode connecting member include Pb-2.5 mass% Sn alloy or Pb-2.
  • a separator made of a polyethylene sheet containing silica particles having different silica particle contents, positive and negative electrode connecting members having different alloy compositions, and a negative electrode lattice having different Sb contents were provided.
  • A1 to A5, B1 to: B5, C1 to C5, D1 to D5, E1 to E5, F1 to F5, G1 to G5, H1 to H5, I1 to I5, and J1 to J5 were prepared.
  • Batteries B2 to B1 in Table 1 B5, C2 to C5, D2 to D5, and E2 to E5 are examples, and the other batteries in Table 1 and the batteries in Table 2 are comparative examples. .
  • the batteries in Table 1 show the case where a Pb-2.5% by mass Sn alloy was used for the positive and negative electrode connection members, and the batteries in Table 2 used the Pb-2.5% by mass Sb alloy for the positive and negative electrode connection members. Shows the case when used.
  • the Sb content was less than the detection limit (0.0001% by mass) in all cases.
  • the battery was discharged at a current value of 1 OA under a 25 ° C atmosphere until the battery voltage reached 10.5 V. Thereafter, the battery was left over for 48 hours with a 12W light bulb connected between the battery terminals to overdischarge the battery. Thereafter, the battery was charged at a constant voltage of 14.5V (maximum current 25A) for 8 hours.
  • the battery weight was measured before the cycle life test. 20 at 25 A under 25 ° C A charge / discharge cycle was repeated in which the battery was discharged for 7 seconds and charged at a constant voltage of 14 V for 40 seconds (maximum charging current: 25 A) for 7,200 times. After that, the weight of the battery was measured again, and the reduction (WL) of the battery weight before and after the charge / discharge cycle was obtained. Then, the battery was discharged at a current value of 300 A for 30 seconds, and after a discharge voltage at 30 seconds (hereinafter, referred to as V30) was obtained, the battery was replenished with an amount of water whose weight was reduced.
  • V30 discharge voltage at 30 seconds
  • V30 was determined every 7,200 cycles, and the point in time when V30 dropped to 7.0 V was defined as the life.
  • a light-load life test (specified in JIS D5301) is repeated for a starting lead-acid battery, in which the battery is discharged at a current value of 25 A for 4 minutes and then charged at a constant voltage (maximum current 25 A) for 10 minutes.
  • the test conditions were based on the assumption that charging and discharging would be performed more frequently with a lower SOC than the normal light load life test.
  • the number of life cycles was determined by the following method.
  • the battery after the end of the life test was disassembled and the thickness of the thinnest part of the ear of the negative electrode grid was measured to determine the corrosion rate of the ear of the negative electrode grid.
  • the thickness of the thinnest part of the ear of the negative electrode grid was determined by cutting the center of the ear in the width direction and measuring the thickness of the thinnest part using a microscope. Then, the corrosion rate (%) of the ears of the negative electrode grid is expressed as T, the thickness of the ears of the negative electrode grid in the initial state before the life test, and ⁇ as the thickness of the ears of the negative electrode grid after the life test. ) Calculated from the formula of / ⁇ 100.
  • a positive / negative electrode connecting member having a Pb-2.5 mass% Sn alloy strength, a negative electrode grid containing Sb in portions other than the ears, and a separator comprising a polyethylene sheet containing silica particles.
  • the batteries B2 to B5 of the present invention using: B5, C2 to C5, D2 to D5, and E2 to E5, compared with the batteries A1 to A5, B1, Cl, Dl, and El of the comparative example, The corrosion rate decreased and the life cycle life number increased.
  • Corrosion of the ears of the negative electrode grid is suppressed because Sb ions eluted in the electrolytic solution are captured by silica contained in the separator, so that diffusion of Sb ions near the ears of the negative electrode grid is suppressed. This is probably because the deposition of Sb on the ears of the negative electrode grid was suppressed.
  • the Sb ions adsorbed on the silica surface precipitate on the surface of the negative electrode active material close to the separator during charging of the battery, so that the effect of improving the charge acceptability by including Sb of the negative electrode plate can be obtained continuously.
  • the corrosion rate of the negative electrode grid ears increased due to the progress of the negative electrode grid ears.
  • the number of life cycles was less than 30,000 cycles, because of a remarkable increase and a decrease in the current collecting performance of the negative electrode plate. This is because Sb eluted from the lead alloy layer formed on the surface of the negative electrode grid excluding the ears due to overdischarge before the life test precipitates on the ears of the negative electrode grid, and deposits on the ears of the negative electrode grid with repeated charging and discharging. This is considered to be due to the corrosion of the ears of the negative electrode grid caused by the Sb.
  • the life characteristics were greatly improved.
  • the corrosion rate of the ears of the negative electrode grid increased at 0.007 parts by mass per 100 parts by mass of the Sb content force in the negative electrode grid excluding the ears. From the above, it is preferable that the Sb content in the negative electrode grid excluding the ears is 0.0004 to 0.006 parts by mass per 100 parts by mass of the negative electrode active material.
  • the content of the silica particles in the separator made of the polyethylene sheet containing the silica particles was 35% by mass or more, the life characteristics were improved and the corrosion of the ears of the negative electrode grid was suppressed.
  • the content of the silica particles in the separator made of the polyethylene sheet containing the silica particles was 40 to 85 mass, the effect of improving the life characteristics and suppressing the corrosion of the ears of the negative electrode grid was remarkably obtained.
  • the content of the silica particles in the separator made of the polyethylene sheet containing the silica particles exceeds 85% by mass, the above-described effects are obtained, the strength of the obtained separator is reduced, and the handling property in the manufacturing process is deteriorated.
  • the content of silica particles in the separator made Polje Chirenshito containing silica particles is preferably 40 to 85 mass 0/0.
  • the glass fiber was made in an acidic aqueous solution in which silica particles were dispersed to obtain a glass fiber mat having a thickness of 1. Omm and supporting silica. Then, the glass fiber mat was folded in two, and the left and right edges were heat-welded to produce a bag-like separator having an opening only at the top. At this time, the content of the silica particles in the separator made of the glass fiber mat supporting the silica particles was 0% by mass, 5% by mass, 10% by mass, 40% by mass, and 50% by mass. The same silica particles as in Example 1 were used.
  • the batteries in Table 3 show the case where a Pb-2.5% by mass Sn alloy was used for the positive and negative electrode connection members, and the batteries in Table 4 show the case where the Pb-2.5% by mass Sb alloy was used for the positive and negative electrode connection members. The case where an alloy is used is shown.
  • the Pb-2.5 mass% Sn alloy strength positive and negative electrode joining members The batteries L2 to L5, M2 to M5, N2 to N5, and 02 to 05 of the present invention using a negative electrode grid containing Sb per minute and a separator made of glass fiber Compared with K1 to K5, Ll, Ml, Nl, and Ol, the corrosion rate of the negative grid ears was reduced and the number of life cycles was increased. As a result of disassembling these batteries and performing quantitative analysis of Sb in the ears of the negative electrode grid, Sb exceeding the detection limit (0.0001% by mass) was not detected from the ears of the negative electrode grid.
  • the corrosion rate of the negative electrode grid ears increased due to the progress of the negative electrode grid ears.
  • the number of life cycles was less than 30,000 cycles, because of a remarkable increase and a decrease in the current collecting performance of the negative electrode plate.
  • the content of the silica particles in the separator made of the glass fiber mat supporting the silica particles was 5% by mass or more, the life characteristics were improved, and the corrosion of the ears of the negative electrode grid was suppressed.
  • the content of the silica particles in the separator made of the glass fiber mat supporting the silica particles is 10 to 40% by mass, the effect of improving the life characteristics and suppressing the corrosion of the ears of the negative electrode grid is remarkably obtained.
  • the number of life cycles was slightly reduced in the battery containing 50% by mass of the silica particles in the separator composed of the glass fiber mat supporting the silica particles. From the above, the content of the silica particles in the glass fiber-supporting separator carrying the silica particles is preferably 10 to 40% by mass.
  • the Sb content force in the negative electrode grid excluding the ears When the amount was 0.0002 parts by mass or more per 100 parts by mass of the negative electrode active material, the life characteristics were improved. In particular, when the Sb content in the negative electrode grid excluding the ear was 0.0004 parts by mass or more per 100 parts by mass of the negative electrode active material, the life characteristics were significantly improved. However, when the Sb content in the negative electrode grid excluding the ears was 0.007 parts by weight per 100 parts by weight of the negative electrode active material, the corrosion rate of the ears of the negative electrode grid increased. From the above, it is preferable that the Sb content in the negative electrode lattice excluding the ear is 0.0004 to 0.006 parts by mass per 100 parts by mass of the negative electrode active material.
  • silica particles are dispersed in the polyethylene sheet. For this reason, the silica particles are covered with polyethylene in many parts, and the parts cannot adsorb Sb ions.
  • the silica particles are dispersed on the fiber surface. For this reason, many of the surfaces of the silica particles can adsorb Sb ions.
  • a lead alloy foil was pressure-bonded onto the base material sheet to form a single-sided base material layer having a thickness of 1.1 mm.
  • a composite sheet having a lead alloy layer having a thickness of 20 m was obtained.
  • the lead alloy foil, Pb- 5. Using 0 mass 0/0 Sn alloy.
  • the same base material sheet as the positive electrode grid of Example 1 was used.
  • Example 1 As in Example 1, the portion where the lead alloy foil is pressed on the base material sheet is only the portion that forms the expanded mesh and the frame bone in the expansive caster described later.
  • a positive electrode plate was obtained in the same manner as in Example 1 except that the composite sheet obtained by pressing the lead alloy foil to the center portion forming the ears was subjected to an expanding force.
  • the base material layer of the expanded mesh 25 having a rhombic cross section shown in FIG. 6 is made of a Pb-0.07 mass% Ca-1.3 mass% Sn alloy
  • the lead alloy layer 25a is made of Pb-5. 0 mass% Sn alloy force.
  • a battery C8 having the same configuration as the battery C3 was prepared except that the positive electrode plate obtained above was used.
  • the battery C7 having the structure described above was produced.
  • Battery C3 was used except that the bag-shaped separator contained the positive electrode plate instead of the negative electrode plate.
  • Battery C6 having a similar configuration was produced.
  • Batteries M6 to M8 having the same configuration as batteries C6 to C8 were used, except that a separator made of a glass fiber mat supporting silica particles of battery M3 was used instead of a separator made of a polyethylene sheet containing silica particles of battery C3. Each was produced.
  • Table 5 shows the test results of these batteries.
  • the lead sheet is formed on the base material sheet so that the negative electrode grid has a lead alloy layer containing Sb.
  • the alloy foil was pressed.
  • the widths W, W, and W are equal in height except the ear
  • the lead storage battery of the present invention has excellent life characteristics in a use mode in which charge and discharge are repeated in a low SOC region, and is therefore suitably used for vehicles equipped with an idle stop system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

明 細 書
鉛蓄電池
技術分野
[0001] 本発明は、鉛蓄電池に関し、さらに詳しくは、アイドルストップシステムを搭載した車 両に用いられる鉛蓄電池の寿命特性の改善に関する。
背景技術
[0002] 従来から、鉛蓄電池は、車両のエンジン始動用やバックアップ電源用などに用いら れている。その中でもエンジン始動用の鉛蓄電池は、エンジン始動用セルモータとと もに車両に搭載された各種電気 ·電子機器へ電力を供給する役割を有する。ェンジ ン始動後、鉛蓄電池はオルタネータによって充電される。そして、鉛蓄電池の soc( 充電状態)が 90〜: LOO%に維持されるよう、オルタネータの出力電圧および出力電 流が設定されている。
[0003] 近年、環境保全の観点から車両の燃費向上に対する要求が高まって 、る。これに 対しては、例えば、車両の一時的な停車中にエンジンを停止するアイドルストップシ ステムを搭載した車両や、車両の減速時に車両の運動エネルギーを電気工ネルギ 一に変換し、この電気エネルギーを蓄える回生ブレーキシステムを搭載した車両など が検討されている。
[0004] アイドルストップシステムを搭載した車両では、アイドルストップ時には鉛蓄電池は 充電されない。このような状態において、鉛蓄電池は、搭載機器へ電力を供給する 場合がある。このため、従来のエンジン始動用鉛蓄電池と比較して、必然的に鉛蓄 電池の SOCは低くなる。回生ブレーキシステムを搭載した車両では、回生 (減速)時 に鉛蓄電池によって電気エネルギーが蓄えられるため、鉛蓄電池の SOCを 50〜90 %程度に低めに制御しておく必要がある。
[0005] V、ずれのシステムにお 、ても、従来よりも SOCが低 、領域で頻繁に充電と放電が 繰り返される。さらに、車両部品の電動化に伴う暗電流の増加により、長期間の停車 中に鉛蓄電池の放電が進行し、過放電する可能性がある。
従って、これらのシステムを搭載した車両に用いられる鉛蓄電池に対しては、 SOC が低い領域において頻繁に充放電を繰り返す使用モードでの寿命特性を向上させ る必要がある。
[0006] このような使用モードでの鉛蓄電池の劣化要因は、主に鉛蓄電池の充電受入性の 低下による充電不足が挙げられる。車両における充電システムは、定電圧制御を基 本としているため、負極板の充電受入性が低下すると、充電初期に負極電位が低下 して、設定電圧値まで電圧がすぐに上昇し、電流が早めに減少する。そのため、鉛蓄 電池の充電電気量を十分確保することができなくなり、充電不足となる。
[0007] このような劣化を抑制する方法としては、例えば、 Pb— Ca— Sn合金の正極格子表 面に Snおよび Sbを含有する鉛合金層を形成することが提案されて ヽる(特許文献 1 ) oこれにより、正極活物質の劣化および正極活物質と正極格子との界面における不 働態層の形成が抑制される。
[0008] また、正極格子の表面に存在する Sbは、その一部が電解液に溶出し、負極板上に 析出する。負極活物質上に析出した Sbにより負極板の充電電位が上昇して、充電 電圧が低下するため、鉛蓄電池の充電受入性が向上する。その結果、充放電サイク ル中の充電不足による鉛蓄電池の劣化が抑制される。
この方法は、 SOCが 90%を超える状態で用いられる始動用鉛蓄電池において非 常に有効であり、寿命特性は飛躍的に改善される。
[0009] し力し、鉛蓄電池を、上記のアイドルストップシステムや回生ブレーキシステムを搭 載した車両に用いる場合は、すなわち、 SOCが低い領域で充放電を繰り返す使用 モードにおいては、充電受入性を確保することはできるが、負極格子の耳で腐食が 進行し易いという問題があった。負極格子の耳の腐食が進行すると、その耳の厚さが 減少することにより負極板の集電効率が低下し、寿命が低下する。
[0010] 負極格子の耳の厚さの減少は、集電効率の低下だけでなく耳の強度の低下を引き 起こす。特に車両に搭載される電池は、車両の走行中、絶えず振動'衝撃が電池に カロわるため、負極格子の耳が変形することによって負極板の位置ずれが生じ、負極 板が正極板と接触して内部短絡を引き起こす場合がある。
[0011] 従来、負極格子の耳の腐食に関しては、負極棚と負極格子の耳が電解液から露出 し、大気中の酸素に曝露されることによって、その棚と耳との溶接部が腐食し、断線 することが知られていた。しかし、負極棚および負極格子の耳が電解液に浸漬した状 態であっても、正極格子中に含まれる Sb、および正極棚と、正極柱または正極接続 体とからなる正極接続部材中に含まれる Sbが電解液中に溶出し、負極格子の耳の 表面に微量の Sbが析出することにより、負極格子の耳が腐食しやすくなる。
[0012] 特許文献 2では、正極格子、正極接続部材、負極格子の耳、および負極接続部材 を、 Sbを含まない Pbまたは Pb合金で構成し、負極格子の耳を除く部分または負極 活物質層の!/、ずれか一方に、減液量が増大しな 、程度の微量の Sbを含む鉛蓄電 池が提案されている。このような構成により、正極板中に存在する Sbの電解液中への 溶出と負極格子の耳における Sbの析出を抑制し、電池の充電受入性ど深放電寿命 をある程度まで改善することが示されて 、る。
[0013] しかし、上記の鉛蓄電池においても、 SOCが低い領域で頻繁に充放電を繰り返す 使用モードにおいては、耳を除く負極格子中の Sbが電解液中に溶出し、この Sbが 負極格子の耳に析出することにより、負極格子の耳が腐食してしまうという問題があつ た。
特許文献 1:特開平 3— 37962号公報
特許文献 2:特開 2003 - 346888号公報
発明の開示
発明が解決しょうとする課題
[0014] そこで、本発明は、充電受入性を改善し、かつ負極格子の耳の腐食を抑制すること により、 SOCが低い領域で充放電を頻繁に繰り返す使用モードにおいて高い信頼 性を有する長寿命の鉛蓄電池を提供することを目的とする。
課題を解決するための手段
[0015] 本発明は、耳を有する負極格子に負極活物質層が保持された複数の負極板、耳を 有する正極格子に正極活物質層が保持された複数の正極板、および前記正極板と 負極板とを隔離する複数のセパレータからなる極板群と、
前記極板群の各正極板の耳が接続された正極棚、および前記正極棚に設けられ た正極柱または正極接続体力ゝらなる正極接続部材と、
前記極板群の各負極板の耳が接続された負極棚、および前記負極棚に設けられ た負極柱または負極接続体力もなる負極接続部材とを具備する鉛蓄電池に関する。 そして、前記正極格子、前記負極格子、前記正極接続部材、および前記負極接続 部材は Caおよび Snの少なくとも 1つを含む Pb合金力 なり、前記負極格子は前記耳 を除く部分においてさらに Sbを含み、前記セパレータはシリカを含むことを特徴とす る。
[0016] 前記セパレータの第 1の好ましい態様は、前記セパレータは微多孔性の合成樹脂 シートおよび前記合成樹脂シート中に分散したシリカ粒子力 なり、前記セパレータ はシリカ粒子を 40〜85質量%含む。
前記セパレータの第 2の好ましい態様は、前記セパレータは繊維マット、および前 記繊維マットに担持されたシリカ粒子力もなり、前記セパレータはシリカ粒子を 10〜4 0質量%含む。
[0017] 前記負極板において、前記負極格子は前記 Sbを負極活物質 100重量部あたり 0.
0002〜0. 006質量咅含むの力好まし!/ヽ。
前記負極格子は、前記 Caおよび Snの少なくとも 1つを含む Pb合金カゝらなる母材層 、および前記母材層上の少なくとも一部に形成された前記 Sbを含む鉛合金層からな るのが好ましい。
前記 Sbを含む鉛合金層は、前記負極板の下部の領域において形成されているの が好ましい。
[0018] 前記正極格子は、前記 Caおよび Snの少なくとも 1つを含む Pb合金力 なる母材層 、および前記母材層上の少なくとも一部に形成された Snを含む鉛合金層からなるの が好ましい。
前記セパレータが袋状であり、前記負極板を収納して!/、るのが好ま 、。 発明の効果
[0019] 本発明によれば、充電受入性が改善され、かつ負極格子の耳の腐食が抑制される ため、 SOCが比較的低 、領域で頻繁に充放電を繰り返す使用モードにおいて高い 信頼性を有する長寿命の鉛蓄電池が得られる。また、上記の使用モードにおいては 電池が過放電状態となる場合があるが、過放電時にお!、ても負極格子の耳の腐食を 抑帘 Uすることができる。 図面の簡単な説明
[0020] [図 1]本発明の実施例における鉛蓄電池の一部を切り欠いた斜視図である。
[図 2]同鉛蓄電池における負極板の正面図である。
[図 3]同鉛蓄電池における正極板の正面図である。
[図 4]母材シートをエキスパンド加工する工程を示す図である。
[図 5]格子体を作るための複合シートを得る工程を示す図である。
[図 6]表面の一部に鉛合金層を有する負極格子体を用いた負極板の一部を示す縦 断面図である。
発明を実施するための最良の形態
[0021] 本発明は、アイドルストップシステムまたは回生ブレーキシステムを搭載した車両用 の鉛蓄電池に関し、正極格子、正極接続部材、負極格子の耳、および負極接続部 材に、負極格子の耳の腐食を進行させる Sbを実質上含まない Pb合金を用いる。そし て、負極格子の耳を除く部分、すなわちエキスパンド網目および枠骨に Sbを添加し、 セパレータ中にシリカを含有させる。これにより、 SOCが低い領域で頻繁に充放電を 繰り返す上記システムの使用モードに対する電池寿命を大幅に延ばすことができる。
[0022] 以下、本発明の実施の形態を詳細に説明する。図 1は、本発明の鉛蓄電池の一部 を切り欠!、た斜視図である。
鉛蓄電池 1の電槽 12は隔壁 13により複数のセル室 14に仕切られており、各セル 室 14には極板群 11が 1つずつ収納されている。極板群 11は、複数枚の正極板 3お よび負極板 2をセパレータ 4を介して積層することにより構成されている。正極板 3は 正極接続部材 10に接続され、負極板 2は負極接続部材 9に接続されている。
[0023] 極板群 11における正極板 3の正極格子の耳 32は正極棚 6に接続され、負極板 2の 負極格子の耳 22は負極棚 5に接続されている。 1つのセル室 14内の極板群 11の正 極棚 6に連設された正極接続体 8は、隔壁 13に設けられた透孔を介して隣接するセ ル室 14内の極板群 11の負極棚に連設された負極接続体と接続されている。これに より、極板群 11は隣接するセル室 14内の極板群 11と直列に接続されている。電槽 1 2の一方の端部の正極棚には正極柱が形成され、他方の端部の負極棚 5には負極 柱 7が形成されている。 [0024] すなわち、正極接続部材 10は、正極格子の耳 32が接続された正極棚 6、および正 極棚 6に設けられた正極柱または正極接続体 8からなり、負極接続部材 9は、負極格 子の耳 22が接続された負極棚 5、および負極棚 5に設けられた負極柱 7または負極 接続体からなる。
電槽 12の開口部には、正極端子 16および負極端子 17が設けられた蓋 15が装着 されている。正極柱および負極柱は、それぞれ正極端子 16および負極端子 17に接 続されている。蓋 15に設けられた注液口には、電池内部で発生したガスを電池外に 排出するための排気口を有する排気栓 18が装着されて ヽる。
[0025] ここで、負極板 2の正面図を図 2に示す。
負極板 2は、耳 22を有する負極格子 21、および負極格子 21に保持された負極活 物質層 24で構成される。負極活物質層 24は主に負極活物質 (Pb)カゝらなり、負極活 物質層 24中には負極活物質以外に、例えば、リグニンや硫酸バリウム等の防縮剤、 カーボン等の導電剤、または結着剤が少量含まれていてもよい。負極格子 21は、負 極活物質層 24が保持されたエキスパンド網目 25、エキスパンド網目 25の上端部に 設けられた枠骨 23、および枠骨 23に連接された耳 22からなるエキスパンド格子であ る。
[0026] 負極格子 21および負極接続部材 9は、基本的には、 Caおよび Snの少なくとも 1つ を含む Pb合金力もなる。 Pb合金としては、耐食性および機械的強度の観点から、 0. 05〜3. 0質量%の Snを含む Pb— Sn合金、 0. 01〜0. 10質量%の Caを含む Pb— Ca合金、または Caおよび Snを含む Pb— Ca—Sn合金を用いることができる。
Caおよび Snの少なくとも 1つを含む Pb合金は、実質上 Sbを含まない。ただし、 Pb 合金中に 0. 0001質量%未満の微量の Sbを不純物として含んでいてもよい。また、 負極板 2においては、正極板 3に比べて耐酸ィ匕性は要求されないため、負極格子 21 や負極接続部材 9には、純 Pbを用いてもよい。
[0027] そして、負極格子 21は、耳 22を除く部分、すなわちエキスパンド網目 25および枠 骨 23において、さらに Sbを含む。負極格子の耳を除く部分が、 Pbよりも水素過電圧 の低い Sbを含むことにより、負極板の充電電位が上昇するため、負極板の充電受入 性が大幅に改善される。本発明の鉛蓄電池は、負極格子の耳を除く部分にのみ Sb を含む構成である。
[0028] 特に、負極板において、負極格子中の Sb含有量力 負極活物質 100質量部あたり 0. 0002質量部以上であると寿命特性が改善され、さらに 0. 0004質量部以上であ ると寿命特性は大幅に向上する。一方、負極格子中の Sb含有量が、負極活物質 10 0質量部あたり 0. 006質量部を超えると、負極格子の耳の腐食が徐々に進行する。 このため、負極格子中の Sb含有量は、負極活物質 100質量部あたり 0. 0002-0. 006質量部であるのが好ましい。さらに好ましくは、負極格子中の Sbの含有量は、負 極活物質 100質量部あたり 0. 0004〜0. 006質量部である。
[0029] 耳を除く部分において Sbを含む負極格子は、耳を含む負極格子全体が、上記の 正極格子と同様の Sbを含まな!/ヽ Pb合金、すなわち Caおよび Snの少なくとも 1つを含 む Pb合金カゝらなる母材層で構成され、母材層の耳部を除く表面の少なくとも一部に Sbを含む鉛合金層が形成されて ヽるのが好ま ヽ。
[0030] Pb— Ca合金中に Sbを添加すると、合金中に Caと Sbの金属間化合物が生成する 場合がある。この合金を負極格子に用いて、 Caと Sbの金属間化合物が硫酸と接触 すると、負極格子が腐食しやすくなる。したがって、負極格子に Pb— Ca合金を用い る場合は、上記のように母材層に Pb— Ca合金を用い、鉛合金層に Pb— Sb合金を 用いることにより、 Caと Sbの金属間化合物の生成を防ぐことができる。
[0031] 上記の母材層および鉛合金層からなる負極格子は、例えば以下の方法により作製 することができる。
Caおよび Snの少なくとも 1つを含む Pb合金力もなる母材シートとともに Sbを含む鉛 合金箔を一対の圧延ローラー間に供給して圧延し、鉛合金箔を母材シート上に圧着 させること〖こより、母材層と鉛合金層からなる複合シートを得る。このとき、母材シート における後述するエキスパンドカ卩ェによりエキスパンド網目および枠骨を形成する部 分 (耳を形成する部分以外)に鉛合金箔を圧着させる。次に、この複合シートをェキ スパンド加工することにより負極格子 (エキスパンド格子)を得る。複合シートにおける 母材層の好ましい厚さは 0. 5〜1. 3mmであり、鉛合金層の好ましい厚さは 0. 1〜2 0 μ mである。
[0032] 複合シートを得る他の方法としては、母材シートの表面に Sbを含む鉛合金を溶射 する方法が挙げられる。
負極格子には、上記のエキスパンド格子以外に、铸造格子を用いてもよい。铸造格 子は、上記の複合シートをパンチンダカ卩ェすることにより得られる。
[0033] 上記の鉛合金箔と母材シートとを圧着させて一体化させる方法は、鉛合金箔中の S bと母材シート中の Caとが溶融 ·混合しな!、ため、腐食の要因となる Sbと Caとの金属 間化合物の生成を抑制することができる点で、極めて好ましい。また、溶射による鉛 合金層の形成方法と比較して、製造工程の大幅な変更を要さず、比較的簡便に実 施可能である点でも好まし 、。
Sbを含む鉛合金箔は、さらに Snを含むのが好ましい。機械的強度が向上し、製造 工程における鉛合金箔の切断を防止することができる。鉛合金箔の張力が向上する ため、圧着時の鉛合金箔の母材シート上での蛇行を抑制し、寸法精度を確保するこ とがでさる。
[0034] 上記の Sbを含む鉛合金層は、負極板の重力方向の下部の領域、すなわち負極格 子のエキスパンド網目を構成する領域の下部において形成されるのが好ましい。 SO Cが低い領域で充放電を繰り返すと、電解液の硫酸濃度が重力方向の下部におい て高くなり、重力方向の上部において低くなる成層化現象が発生する。そして、硫酸 濃度が高い正極板および負極板の下部において、硫酸鉛が蓄積しやすくなり、寿命 特性の低下をもたらす。このような硫酸鉛の蓄積は、特に負極板において顕著にみら れる。
これに対しては、上述したように、負極板の下部の領域において負極格子が Sbを 含む鉛合金層を有することにより、極板下部での水素ガスの発生が顕著になる。この 水素ガスの発生により電解液が攪拌されるため、成層化現象の発生が抑制され、寿 命特性が改善される。
[0035] 負極格子の耳を除く部分が Sbを含む構成以外に、負極活物質層が Sbを含む構成 としても、 Sbによる効果は得られる。しかし、負極格子の耳を除く部分に Sbを含ませ る本発明の構成の方が、以下の点で有効である。
Sbを含む負極活物質層は、負極ペーストの練合時に Sbまたは硫酸アンチモン等 を添加することにより得られる。鉛蓄電池の製造では、 1台の練合機で多品種の負極 ペーストを練合することが一般的である。そのような場合、練合機中に残留した負極 ペースト中の Sbが他品種の Sbを含まない仕様の負極ペースト中に混入してしまう可 能性がある。
[0036] また、鉛蓄電池の製造工程では、練合機を洗浄した水、および負極格子への負極 ペーストの充填工程にぉ 、て発生した屑ペーストを回収し、水分量を調整してこれら を負極ペーストとして再利用することが一般的に行われている。したがって、 Sbを含 む負極ペーストおよび Sbを含まな 、負極ペーストを作製する場合、 Sbを含む屑ぺー ストと、 Sbを含まない屑ペーストとを分けて回収し、再利用する必要がある。このため 、設備や工程管理が複雑となる。これに対して、負極格子のみが Sbを含む本発明の 構成では、上記のような問題が発生しないため、設備コストや工程管理の面でより好 ましい。
[0037] ここで、正極板 3の正面図を図 3に示す。
正極板 3は、耳 32を有する正極格子 31、および正極格子 31に保持された正極活 物質層 34からなる。正極活物質層 34は主に正極活物質 (PbO )からなり、正極活物
2
質層 34中には正極活物質以外に、例えば、カーボン等の導電剤や結着剤などが少 量含まれていてもよい。正極格子 31は、正極活物質層 34を保持するエキスパンド網 目 35、エキスパンド網目 35の上端部に設けられた枠骨 33、および枠骨 33に連接さ れた耳 32からなるエキスパンド格子である。
[0038] 正極格子 31および正極接続部材 10は、 Caおよび Snの少なくとも 1つを含む Pb合 金からなる。
Pb合金としては、耐食性および機械的強度の観点から、 0. 05〜3. 0質量%の Sn を含む Pb— Sn合金、 0. 01〜0. 10質量0 /0の Caを含む Pb— Ca合金、または Caお よび Snを含む Pb— Ca— Sn合金を用 、ることができる。
なお、正極格子および正極接続部材に用いられる Caおよび Snの少なくとも 1つを 含む Pb合金は、実質上 Sbを含まない。ただし、鉛合金中に、減液量および自己放 電量の増大による電池性能への悪影響がな 、程度の Sbを不純物として 0. 001-0 . 002質量%程度含んでいてもよい。
[0039] また、正極格子の耐食性を改善するために、正極格子体の鉛合金が 0. 01〜0. 0 8質量0 /0の Baや 0. 001〜0. 05質量0 /0の Agを含んでいてもよい。 Caを含む鉛合金 を用いる場合、溶融鉛合金力もの Caの酸ィ匕消失を抑制するために 0. 001〜0. 05 質量%程度の A1を添カ卩してもよい。また、 0. 0005〜0. 005質量%程度の Biを不純 物として含んでいてもよい。本発明の効果を損なうものでなぐ許容しうるものである。
[0040] 正極板 3および負極板 2は次のような方法で得られる。
未化成の正極板は、例えば、正極格子に原料鉛粉 (鉛と鉛酸化物との混合物)、硫 酸、および水等を混合した正極ペーストを充填した後、熟成乾燥することにより得ら れる。
また、未化成の負極板は、例えば、負極格子に原料鉛粉 (鉛と鉛酸化物)、硫酸、 水、およびリグニンや硫酸バリウムなどの防縮剤を混合した負極ペーストを充填した 後、熟成乾燥することにより得られる。リグニンには、例えば、天然リグニン (例えば、 日本製紙ケミカル (株)製のバニレックス N)やビスフエノールスルホン酸系縮合物(例 えば、 日本製紙ケミカル (株)製のビスパーズ P215)等の合成リグニンが用いられる。 そして、未化成の正極板および負極板を化成することにより、上記の正極板 3およ び負極板 2が得られる。化成は、未化成の正極板および負極板を用いて作製した鉛 蓄電池の電槽内で行ってもよぐ鉛蓄電池作製時の極板群を構成する前に行っても よい。
[0041] セパレータ 4はシリカ(SiO )を含む。
2
本発明の鉛蓄電池では、上記のように過放電したり、 SOCが低い領域で充放電を 頻繁に繰り返すことが前提となっている。このような使用モードでは、 Sbの添力卩を耳を 除く負極格子のみに限定するだけでは、負極格子の耳の腐食を十分に抑制すること ができない。
[0042] これに対しては、セパレータ中にシリカを含ませることにより、上記の使用モードに おいて耳を除く負極格子から Sbが溶出しても、セパレータ中に含有されるシリカが S bを吸着するため、負極格子の耳において Sbが析出して、負極格子の耳が腐食する のを抑制することができる。
このように、負極板中に Sbを含むことにより充電受入性が改善され、かつセパレー タ中にシリカを含むことにより負極格子の耳の腐食が抑制されるため、上記の使用モ ードにおける鉛蓄電池の寿命特性が大幅に向上する。
[0043] セパレータ 4の好ましい第 1の態様は、セパレータカ 微多孔性の合成樹脂シート および前記合成樹脂シート中に分散したシリカ粒子力もなり、当該セパレータ中のシ リカ粒子の含有量が 40〜85質量%である。シリカ粒子を含む合成樹脂シートからな るセパレータ中のシリカ粒子の含有量力 S40質量%未満であると、負極格子の耳の腐 食を抑制する効果が若干低下する。一方、シリカ粒子を含む合成樹脂シートからなる セパレータ中のシリカ粒子の含有量が 85質量%を超えると、セパレータが脆くなり、 容易に亀裂や穴あきが発生しやすくなり、電池の内部短絡を起こしやすくなる。
[0044] 寿命特性を改善する効果とともに負極格子の耳の腐食を抑制する効果が顕著に得 られるため、シリカ粒子を含む合成樹脂シートからなるセパレータ中のシリカ含有量 は、 40〜65質量0 /0がより好ましい。
[0045] 合成樹脂としては、例えば、ポリエチレンやポリプロピレンが挙げられる。イオン伝導 性を向上させるために、合成樹脂にカーボンを含ませてもょ ヽ。
シリカ粒子には、表面に Sbを吸着させやすくするために、例えば平均孔径が 20 m以下の細孔を有する多孔質シリカを用いるのが好ましい。また、 200m2/g程度の 比表面積の大きな多孔質シリカを用いるのが好ましい。シリカ粒子の粒径は 5〜40 mであるのが好ましい。
[0046] 微多孔性の合成樹脂シートは、電解液が透過可能な、孔径が 0. 01〜1 μ m程度 の細孔を有する。孔径が 1 μ mを超えると、活物質がセパレータを通過し易くなる。こ のようなセパレータは、例えば、合成樹脂からなる微多孔性シート作製時にシリカ粒 子を添加することにより得られる。
[0047] セパレータ 4の好ましい第 2の態様は、セパレータが繊維マットおよび前記繊維マツ トに担持されたシリカ粒子力もなり、当該セパレータ中のシリカ粒子の含有量が 10〜 40質量%である。シリカ粒子を担持した繊維マットからなるセパレータ中のシリカ粒 子の含有量が 10質量%未満であると、負極格子の耳の腐食を抑制する効果が若干 低下する。一方、シリカ粒子を担持した繊維マットからなるセパレータ中のシリカ粒子 の含有量が 40質量%を超えると、繊維同士の結合力が低下することによるセパレー タ強度の低下および電池内部抵抗の増大による電池の放電電圧の低下が生じる。 [0048] 繊維には、繊維径が 0. 1〜2 mであるガラス繊維、または繊維径が 1〜10 μ mで あるポリプロピレン榭脂繊維等が用いられる。このようなセパレータは、例えば、繊維 マットを作製する際の抄紙工程においてシリカ粒子を添加することにより得られる。
[0049] 各セルには電解液が含まれ、正極棚、負極棚、および極板群の全体が電解液に浸 漬されている。負極板や負極棚は、大気と接触しないため、酸化されにくい。なお、 本発明は、負極格子が Pbよりも水素過電圧の低い Sbを含むため、制御弁式鉛蓄電 池には適用されない。本発明を制御弁式鉛蓄電池に適用すると、微量のガス発生に より、電池内圧が増加し、制御弁が長時間開弁した状態となる。その結果、電池内に 大気が流入し、負極板が酸化されて電池が劣化しやすくなる。
[0050] 正極格子 31は、 Caおよび Snの少なくとも 1つを含む鉛合金力もなる母材層、およ び前記母材層上の少なくとも一部に形成された Snを含む鉛合金層からなるのが好ま しい。この鉛合金層により、深い放電後または過放電後における正極板の充電受入 性が改善され、寿命特性が向上する。また、正極活物質と正極格子との界面におけ る不働態層の生成が抑制される。
[0051] 母材層が Snを含む場合は、鉛合金層中の Sn含有量は母材層中の Sn含有量より も多いのが好ましい。例えば、母材層が Snを 1. 6質量%含む場合、鉛合金層は少な くとも 1. 6質量%を超える Snを含むのが好ましぐさらに鉛合金層中の Sn含有量は 3 . 0〜6. 0質量%であるのがより好ましい。母材層中よりも鉛合金層中のほうが Sn含 有量が少ないと、正極格子と正極活物質との界面において母材層よりも Sn含有量の 少ない鉛合金層が存在することにより、上記の Snによる効果が小さくなる。
[0052] 母材層および Snを含む鉛合金層からなる正極格子は、母材層および Sbを含む鉛 合金層からなる負極格子を作製する場合と同様の方法により得られる。母材シートと 、 Snを含む鉛合金箔とを圧着させる場合、得られる複合シートにおける母材層の好 ましい厚さは 0. 7〜1. 3mmであり、鉛合金層の好ましい厚さは 1〜20 mである。 なお、 Snを含む鉛合金層は、母材シート全体に鉛合金箔を圧着させて、耳の部分に 形成してちょい。
[0053] セパレータ 4は、開口部を上向きにして配された袋状のセパレータであり、開口部側 に負極格子の耳 22が位置するように、負極板 2が収納されて 、る。 袋状のセパレータは、例えば、ポリエチレンシートまたはガラス繊維マットを 2つ折り にし、左右端縁部を熱溶着させて、上部のみを開口することにより得られる。
[0054] 負極板が袋状セパレータに収納されているため、耳を除く負極格子中の Sbが電解 液中に溶出しても、その Sbは袋状セパレータによりすみやかに、かつ確実に捕捉さ れるため、負極格子の耳での Sbの析出による負極格子の耳の腐食が抑制される。 また、セパレータ 4は、酸化力の強い PbOからなる正極活物質と直接接触すること
2
によるセパレータの酸ィ匕劣化を抑制するため、正極板に対向する面において、複数 の線状リブを上下方向に平行に設けるのが好ましい。線状リブには耐酸性を有する 材料が用いられ、好ましくはセパレータと同じ材料が用いられる。
[0055] 上記では、袋状セパレータが負極板を収納する構成とした力 ポリエチレンシートま たはガラス繊維マットを 2つ折り(U字状)にし、その間に負極板を挟み込む構成とし てもよい。
以下、本発明の実施例を詳細に説明する。
実施例
[0056] 実施例 1
(1)袋状セパレータの作製
平均分子量 8000000のポリエチレン〖こ、シリカ粒子、鉱物油、およびカーボン粉末 を加えて練合し、押し出し成形した後、へキサン等の溶媒で鉱物油を取り除くことによ り、シリカ粒子を含む、孔径が 1. 0 m以下の微孔を有する厚さ 0. 2mmのポリェチ レンシートを得た。このポリエチレンシートを 2つ折りにし、両側端縁部を熱溶着させて 、上部のみが開口した袋状セパレータを作製した。
なお、シリカには、平均孔径が 20 m以下の細孔を有する多孔質の粒子(平均粒 径:20 m)を用いた。
[0057] (2)負極板の作製
原料鉛粉、水、希硫酸、ならびに防縮剤として天然リグニン(日本製紙ケミカル (株) 製、バニレックス N)および硫酸バリウムを重量比 100 : 15 : 3. 5 : 2. 5 : 2. 5の割合で 加えて混練することにより、負極ペーストを得た。
上記の負極ペーストを用いて、図 2に示す負極板 2を以下のように作製した。 [0058] (A) Sb無添加の負極格子体の場合
铸造法により得られた Pb— 0. 07質量%Ca— 0. 25質量%Sn合金からなる母材シ ートを厚さ 0. 7mmまで圧延し、この母材シート 27に所定のスリットを形成した後、こ のスリットを展開してエキスパンド網目 25 (図 4の(a) )を形成し、エキスパンド格子体 を得た (エキスパンド加工)。なお、母材シート 27の中央部分は、後述する負極格子 の耳 22や枠骨 26を形成する部分に用いられるため、エキスパンドカ卩ェしな力つた。
[0059] エキスパンド網目 25に負極ペースト 24aを充填し(図 4の(b) )、負極格子の耳 22を 有する極板形状に切断加工し(図 4の(c) )た。これを熟成、乾燥し、未化成の負極板 2a (縦: 115mm、横: 137. 5mm)を得た。そして、後述する電槽内で化成することに より、負極格子 21に負極活物質層 24が保持された負極板 2を得た。
[0060] (B)耳を除く部分に Sbを含む負極格子体の場合
負極格子作製時の圧延工程において、図 5に示すように一対の圧延ローラー 45間 に、母材シート 27とともに鉛合金箔 27aを供給し、圧延ローラー 45により母材シート 2 7および鉛合金箔 27aが同時に圧延された。これにより、母材シート 27上に鉛合金箔 27aが圧着され、厚さ 0. 7mmの母材層の片面に鉛合金層を有する複合シートが得 られた。鉛合金箔 27aには、 Pb— 1. 0質量%Sb合金を用いた。
[0061] なお、母材シート 27に鉛合金箔 27aを圧着させる部位は、後述するエキスパンドカロ ェにおけるエキスパンド網目および枠骨を形成する部分のみとし、図 4に示す母材シ ート 27における正極格子の耳 22を形成する中央部分には鉛合金箔を圧着させなか つた o
この複合シートにエキスパンド力卩ェを施す以外は、上記と同様の方法により負極板
2を得た。この負極板では、図 6に示すように、断面が菱形のエキスパンド網目 25は、 Pb-O. 07質量%Ca— 0. 25質量%Sn合金からなる母材層 25b、および母材層 25 bの表面に形成された Pb— 1. 0質量%Sbからなる鉛合金層 25aからなる。
[0062] (3)正極板の作製
図 3に示す正極板 3を以下のように作製した。
原料鉛粉 (鉛と鉛酸化物との混合物)と水と希硫酸とを重量比 100 : 15 : 5の割合で 混練することにより、正極ペーストを得た。 [0063] 一方、铸造法により得られた Pb— 0. 07質量%Ca— 1. 3質量%Sn合金からなる 母材シートを厚さ 1. 1mmまで圧延し、この母材シートを上記と同様の方法によりェキ スパンドカ卩ェした。エキスパンド網目に正極ペーストを充填し、上記と同様の方法によ り未化成の正極板 (縦: 115mm、横: 137. 5mm)を得た。そして、後述する電槽内 で化成することにより、正極格子 31に正極活物質層 34が保持された正極板 3を得た なお、正極格子、正極活物質、負極活物質、および負極格子に用いられる母材シ ート中の Sbについて定量分析した結果、 Sb濃度はいずれも検出限界 (0. 0001質 量%)未満であった。
[0064] (4)鉛蓄電池の作製
以下の方法により、図 1に示す構造の鉛蓄電池 1を作製した。図 1は、鉛蓄電池の 一部を切り欠!、た斜視図である。
上記で得られた 6枚の負極板 2をそれぞれ袋状セパレータ 4内に収納し、これらと上 記で得られた 5枚の正極板 3とを交互に積層することにより、正極板 3および負極板 2 を袋状セパレータ 4を介して積層し、極板群 11を得た。その後、同極性の格子耳 22 および 32をそれぞれ集合溶接して、正極棚 6および負極棚 5を形成した。極板群 11 を、電槽 12の隔壁 13によって区画された 6つのセル室 14にそれぞれ 1つずつ収納 し、正極棚 6に連設された正極接続体 8を隣接する極板群の負極棚に連設された負 極接続体と接続することにより、隣接する極板群を直列に接続した。なお、本実施例 では、極板群間の接続は、隔壁 13に設けられた透孔(図示せず)を介して行った。
[0065] 両端のセル室 14に収納された極板群の一方の正極棚に正極柱を設け、他方の負 極棚 5に負極柱 7を設けた。そして、電槽 12の開口部に蓋 15を装着するとともに、蓋 15に設けられた正極端子 16および負極端子 17と、正極柱および負極柱 7とを溶接 した。その後、蓋 15に設けられた注液口より、電解液として濃度が 34質量%の硫酸 を 1セル当たり 700ml注液し、電槽内でィ匕成を行った。化成後、電池内部で発生した ガスを電池外に排出するための排気口を有する排気栓 18を注液口に装着し、 JIS D5301に規定する 55D23形(12V—48Ah)の鉛蓄電池(以下、電池と表す)を作 製した。なお、化成後は、極板群 11、正極棚 6、および負極棚 5の全体が電解液に 浸漬された状態であった。
[0066] 上記のセパレータ作製時において、シリカ粒子を含むポリエチレンシートからなる袋 状セパレータ中のシリカ含有量は 0質量%、 35質量%、 40質量%、 65質量%または 85質量%とした。
上記の負極格子における複合シートの作製時において、負極格子中の Sb含有量 負極活物質 100質量部あたり、 0. 0002質量部、 0. 0004質量部、 0. 006質量 部または 0. 007質量部となるように、母材シートに圧着させる鉛合金箔の厚さを種々 変更した。このとき、得られた複合シートにおける鉛合金層の厚さは、それぞれ 0. 46 m、 0. 92 m、 13. 8 m、お Jび 16. 2 μ mであった。
[0067] 正極接続部材および負極接続部材には、 Pb— 2. 5質量%Sn合金または Pb— 2.
5質量%Sb合金を用いた。なお、 Pb— 2. 5質量%Sn合金中の Sbについて定量分 祈した結果、 Sb含有量は検出限界 (0. 0001質量%)未満であった。
[0068] そして、表 1および 2に示すように、シリカ粒子の含有量の異なる、シリカ粒子を含む ポリエチレンシートからなるセパレータと、合金組成の異なる正負極接続部材と、 Sb 含有量の異なる負極格子を有する負極板とを種々に組み合わせて、電池 A1〜A5、 B1〜: B5、 C1〜C5、 D1〜D5、 E1〜E5、 F1〜F5、 G1〜G5、 H1〜H5、 I1〜I5、 および J1〜J5を作製した。
[0069] 表 1中の電池 B2〜: B5、 C2〜C5、 D2〜D5、および E2〜E5が実施例であり、表 1 中のそれ以外の電池および表 2中の電池は比較例である。表 1中の電池は、正負極 接続部材に Pb— 2. 5質量%Sn合金を用いた場合を示し、表 2中の電池は、正負極 接続部材に Pb - 2. 5質量%Sb合金を用いた場合を示す。
[0070] [表 1]
Figure imgf000019_0001
2]
Figure imgf000020_0001
[0072] 正極格子、正極活物質層、および負極格子中の Sb量について定量分析した結果 、いずれも Sb含有量は検出限界 (0. 0001質量%)未満であった。
上記で得られた各電池にっ ヽて、以下に示す評価を行った。
[0073] (5)過放電後のサイクル寿命特性の評価
25°C雰囲気下で、電池電圧が 10. 5 Vとなるまで 1 OAの電流値で電池を放電した 。その後、電池端子間に 12W電球を接続した状態で 48時間放置して電池を過放電 させた。その後、電池を 14. 5Vの定電圧(最大電流 25A)で 8時間充電した。
[0074] 次に、過放電後の電池について以下の条件でサイクル寿命試験を行った。
サイクル寿命試験前に電池重量を測定した。 25°C雰囲気下、 25 Aの電流値で 20 秒間放電し、っ 、で 14Vの定電圧で 40秒間充電 (最大充電電流 25A)する工程を 7 200回繰り返す充放電サイクルを行った。その後、再度電池重量を測定し、充放電 サイクル前後における電池重量の減少量 (WL)を求めた。そして、 300Aの電流値で 30秒間放電し、 30秒目の放電電圧(以下、 V30と表す)を求めた後、電池重量が減 少した分量の水を電池に補充した。
[0075] 7200サイクル毎に V30を求め、 V30が 7. 0Vまで低下した時点を寿命とした。通 常、始動用鉛蓄電池では、 25Aの電流値で 4分間放電し、ついで定電圧 (最大電流 25A)で 10分間充電する工程を繰り返す軽負荷寿命試験 (JIS D5301に規定)が 行われる。しかし、本サイクル寿命試験では、通常の軽負荷寿命試験よりも SOCが低 い状態で充放電が頻繁に行われることを想定した試験条件とした。
[0076] 寿命サイクル数は以下の方法で求めた。 n回目に計測した V30 (充放電サイクル数 は 7200 X n)力 初めて 7. OV以下となったとき、その V30を Vnとし、前回(n— 1回 目)の V30を Vn— 1とする。そして、縦軸を V30とし、横軸を充放電サイクル数とした グラフにおいて、座標(7200 (n— 1)、 Vn— 1)と座標(7200n、 Vn)間を直線で結 び、この直線と V30 = 7. 0との交点における横軸の値を寿命サイクル数とした。
[0077] (6)負極格子の耳の腐食率の測定
寿命試験が終了した電池を分解し、負極格子の耳の最薄部の厚さを測定すること により、負極格子の耳の腐食率を求めた。負極格子の耳の最薄部の厚さは、耳の幅 方向の中央部を切断し、マイクロスコープを使用して最薄部の厚さを測定することに より求められた。そして、負極格子の耳の腐食率 (%)は、寿命試験前の初期状態の 負極格子の耳の厚さを T、寿命試験後の負極格子の耳の厚さを ΤΕとし、 (Τ-ΤΕ) /ΤΧ 100の式より算出された。
上記の試験結果を表 1および表 2に示す。
[0078] 表 2に示すように、正負極接続部材に Pb— 2. 5質量%Sb合金を用いた場合は、い ずれの電池でも、負極格子の耳の腐食率が高ぐ寿命サイクル数力 0000〜3000 0サイクルであった。これは、正負極接続部材に含まれる Sbが電解液中に溶出し、こ の溶出した Sbが負極格子の耳に析出したためであると考えられる。これらの電池を 分解し、負極格子の耳について Sbの定量分析を行った結果、負極格子の耳中に 0. 0006質量%程度の Sbの存在が確認された。
[0079] 表 1に示すように、 Pb- 2. 5質量%Sn合金力 なる正負極接続部材、耳を除く部 分に Sbを含む負極格子、およびシリカ粒子を含むポリエチレンシートからなるセパレ ータを用いた本発明の電池 B2〜: B5、 C2〜C5、 D2〜D5、 E2〜E5では、比較例の 電池 A1〜A5、 Bl、 Cl、 Dl、 Elと比較して、負極格子の耳の腐食率が低下すると ともに、寿命サイクル寿命数が増大した。
[0080] サイクル寿命特性の向上は、負極格子の耳を除く部分が Sbを含むことにより、負極 板の充電受入性が向上したためであると考えられる。また、これらの電池を分解し、 負極格子の耳の Sbの定量分析を行った結果、負極格子の耳から検出限界値 (0. 0 001質量0 /0)を超える量の Sbは検出されな力つた。
[0081] 負極格子の耳の腐食の抑制は、電解液中に溶出した Sbイオンがセパレータ中に 含まれるシリカに捕捉されることにより、 Sbイオンの負極格子の耳近傍への拡散が抑 制され、負極格子の耳への Sbの析出が抑制されたためであると考えられる。
シリカ表面に吸着した Sbイオンは、電池の充電時にセパレータに近接する負極活 物質の表面に析出することにより、負極板の Sbを含むことによる充電受入性向上の 効果が持続的に得られる。
[0082] シリカ粒子を含まないセパレータ、および耳を除く部分に Sbを含む負極格子を用い た比較例の電池 A2〜A5では、負極格子の耳の腐食の進行により負極格子の耳の 腐食率が著しく増大し、負極板の集電性が低下したため、寿命サイクル数が 30000 サイクル未満であった。これは、寿命試験前の過放電により耳を除く負極格子の表面 に形成された鉛合金層より溶出した Sbが負極格子の耳に析出し、充放電の繰り返し にともない、負極格子の耳に析出した Sbにより負極格子の耳の腐食が進行したため と考えられる。
[0083] シリカ粒子を含むセパレータ、および Sbを含まない負極格子を用いた比較例の電 池 Bl、 Cl、 D1および Elでは、負極格子の耳の腐食はほとんど進行しなかったが、 寿命特性が低下した。寿命試験終了後の電池を分解したところ、正極板および負極 板では、放電により生成する硫酸鉛が蓄積していることがわ力つた。これにより、電池 が寿命に至った原因力 S、充電受入性の低下であることが確かめられた。 [0084] 耳を除く負極格子中の Sb含有量力 負極活物質 100質量部あたり 0. 0002質量 部以上のとき、寿命特性が向上したが、耳を除く負極格子中の Sb含有量が、負極活 物質 100質量部あたり 0. 0004質量部以上で、寿命特性が大幅に向上した。しかし 、耳を除く負極格子中の Sb含有量力 負極活物質 100質量部あたり 0. 007質量部 では、負極格子の耳の腐食率が増大した。以上のことから、耳を除く負極格子中の S b含有量が、負極活物質 100質量部あたり 0. 0004-0. 006質量部であるのが好ま しい。
[0085] シリカ粒子を含むポリエチレンシートからなるセパレータ中のシリカ粒子の含有量が 35質量%以上のとき、寿命特性が向上し、負極格子の耳の腐食が抑制された。特に 、シリカ粒子を含むポリエチレンシートからなるセパレータ中のシリカ粒子の含有量が 40〜85質量のとき、寿命特性の向上と負極格子の耳の腐食抑制の効果が顕著に 得られた。シリカ粒子を含むポリエチレンシートからなるセパレータ中のシリカ粒子の 含有量が 85質量%を超えると、上記の効果は得られた力 セパレータ強度が低下し 、製造工程でのハンドリング性が悪くなつた。以上のことから、シリカ粒子を含むポリェ チレンシートからなるセパレータ中のシリカ粒子の含有量は 40〜85質量0 /0であるの が好ましい。
[0086] 実施例 2
シリカ粒子を分散させた酸性水溶液中においてガラス繊維を抄紙することにより、シ リカが担持された厚さ 1. Ommのガラス繊維マットを得た。そして、このガラス繊維マツ トを 2つ折りにし、左右端縁部を熱溶着させて上部のみが開口した袋状セパレータを 作製した。このとき、シリカ粒子を担持したガラス繊維マットからなるセパレータ中のシ リカ粒子の含有量は、 0質量%、 5質量%、 10質量%、 40質量%および 50質量%と した。なお、シリカ粒子には、実施例 1と同じのものを用いた。
[0087] 表 3および表 4に示すように、シリカ粒子の含有量の異なる、シリカ粒子を担持した ガラス繊維マットからなるセパレータと、 Sb含有量の異なる負極活物質層と、合金組 成の異なる正負極接続部材とを組み合わせて、実施例 1と同様の方法により電池 K1 〜K5、 L1〜L5、 M1〜M5、 N1〜N5、 01〜05、 P1〜P5、 Q1〜Q5、 R1〜R5、 S1〜S5、および T1〜T5を作製した。。 なお、表 3中の電池 L2〜L5、 M2〜M5、 N2〜N5、および 02〜05が実施例で あり、表 3中のそれ以外の電池および表 4中の電池は比較例である。なお、表 3中の 電池は、正負極接続部材に Pb— 2. 5質量%Sn合金を用いた場合を示し、表 4中の 電池は、正負極接続部材に Pb— 2. 5質量%Sb合金を用いた場合を示す。
[0088] [表 3]
Figure imgf000024_0001
[0089] [表 4]
Figure imgf000025_0001
[0090] 各電池につ 、て、実施例 1と同様の試験条件で、過放電後のサイクル寿命試験お よび負極格子の耳の腐食率を測定した。これらの試験結果を表 3および表 4に示す。 表 4に示すように、正負極接合部材に Pb— 2. 5質量%Sb合金を用いた場合は、い ずれの電池も、負極格子の耳の腐食率が高ぐ寿命サイクル数は 30000サイクル未 満程度であり、負極格子の耳の腐食が進行した。これは実施例 1と同様に、正負極 接合部材に含まれる Sbが電解液中に溶出し、溶出した Sbが負極格子の耳に析出し たためと考えられる。これらの電池を分解し、負極格子の耳の Sbの定量分析を行つ た結果、負極格子の耳中に 0. 0005質量%程度の Sbの存在が確認された。
[0091] 表 3に示すように、 Pb- 2. 5質量%Sn合金力 なる正負極接合部材、耳を除く部 分で Sbを含む負極格子、およびシリカ粒子を担持したガラス繊維カゝらなるセパレータ を用いた本発明の電池 L2〜L5、 M2〜M5、 N2〜N5、および 02〜05は、比較例 の電池 K1〜K5、 Ll、 Ml、 Nl、および Olと比較して、負極格子の耳の腐食率が低 下するとともに、寿命サイクル数が増大した。これらの電池を分解し、負極格子の耳 の Sbの定量分析を行った結果、負極格子の耳から検出限界値 (0. 0001質量%)を 超える量の Sbは検出されな力つた。
[0092] シリカ粒子を含まないセパレータ、および耳を除く部分で Sbを含む負極格子を用い た比較例の電池 K2〜K5では、負極格子の耳の腐食の進行により負極格子の耳の 腐食率が著しく増大し、負極板の集電性が低下したため、寿命サイクル数が 30000 サイクル未満であった。
シリカ粒子を含むセパレータ、および Sbを含まな 、負極格子を用いた比較例の電 池 Ll、 Ml、 N1および Olでは、負極格子の耳の腐食はほとんど進行しなかったが、 充電受入性が低下したため、寿命特性が低下した。
[0093] シリカ粒子を担持したガラス繊維マットからなるセパレータ中のシリカ粒子の含有量 は 5質量%以上のとき、寿命特性が向上し、負極格子の耳の腐食が抑制された。特 に、シリカ粒子を担持したガラス繊維マットからなるセパレータ中のシリカ粒子の含有 量が 10〜40質量%のとき、寿命特性の向上および負極格子の耳の腐食抑制の効 果が顕著に得られた。シリカ粒子を担持したガラス繊維マットからなるセパレータ中の シリカ粒子の含有量が 50質量%の電池では、寿命サイクル数が若干減少した。以上 のことから、シリカ粒子を担持したガラス繊維力もなるセパレータ中のシリカ粒子の含 有量は 10〜40質量%が好ましい。
[0094] 耳を除く負極格子中の Sb含有量力 負極活物質 100質量部あたり 0. 0002質量 部以上のとき、寿命特性が向上した。特に、耳を除く負極格子中の Sb含有量が、負 極活物質 100質量部あたり 0. 0004質量部以上のとき、寿命特性が大幅に向上した 。しかし、耳を除く負極格子中の Sb含有量力 負極活物質 100質量部あたり 0. 007 質量部のとき、負極格子の耳の腐食率が増大した。以上のことから、耳を除く負極格 子中の Sb含有量が、負極活物質 100質量部あたり 0. 0004-0. 006質量部である のが好ましい。 [0095] 実施例 1のシリカ粒子を含むポリエチレンシートからなるセパレータを用いた本発明 の電池に比べて、実施例 2のシリカを担持させたガラス繊維マットからなるセパレータ を用いた本発明の電池のほうが、シリカ粒子の量が少なくても、負極格子の耳の腐食 を抑制する効果が得られた。
これは、以下のように推察される。シリカ粒子を含むポリエチレンシートからなるセパ レータでは、ポリエチレンシート中にシリカ粒子が分散している。このため、シリカ粒子 がポリエチレンで覆われて 、る部分が多く、その部分では Sbイオンを吸着することは できない。これに対して、シリカ粒子を担持したガラス繊維マットからなるセパレータで は、繊維表面上にシリカ粒子が分散している。このため、シリカ粒子の表面の多くが S bイオンを吸着することが可能である。
[0096] 実施例 3
実施例 1の負極格子の場合と同様の方法により、正極格子作製時の圧延工程にお いて、母材シート上に鉛合金箔を圧着して、厚さ 1. 1mmの母材層の片面に厚さ 20 mの鉛合金層を有する複合シートを得た。鉛合金箔には、 Pb— 5. 0質量0 /0Sn合 金を用いた。母材シートには、実施例 1の正極格子と同じものを用いた。
[0097] なお、母材シートに鉛合金箔を圧着させる部位は、実施例 1と同様に、後述するェ キスパンドカ卩ェにおけるエキスパンド網目および枠骨を形成する部分のみとし、母材 シートにおける正極格子の耳を形成する中央部分には鉛合金箔を圧着させな力つた この複合シートにエキスパンド力卩ェを施す以外は、実施例 1と同様の方法により正 極板を得た。この正極板では、図 6に示す断面が菱形のエキスパンド網目 25の母材 層が、 Pb— 0. 07質量%Ca— 1. 3質量%Sn合金からなり、鉛合金層 25aが Pb— 5 . 0質量%Sn合金力 なる。
[0098] 上記で得られた正極板を用いた以外は電池 C3と同様の構成の電池 C8を作製した 袋状セパレータが負極板を収納する代わりに正極板を収納した以外は、電池 C8と 同様の構成の電池 C7を作製した。
袋状セパレータが負極板を収納する代わりに正極板を収納した以外は、電池 C3と 同様の構成の電池 C6を作製した。
電池 C3のシリカ粒子を含むポリエチレンシートからなるセパレータの代わりに電池 M3のシリカ粒子を担持したガラス繊維マットからなるセパレータを用いた以外は、電 池 C6〜C8と同様の構成の電池 M6〜M8をそれぞれ作製した。
これらの電池の試験結果を表 5に示す。
[0099] [表 5]
Figure imgf000028_0001
[0100] 正極格子の表面の一部に Snを含む鉛合金層を有する場合には、正極格子と活物 質との界面における不動態層の形成が抑制され、正極板の充電受入性が改善され、 寿命サイクル数が増大した。
また、袋状セパレータが正極板を収納するよりも負極板を収納したほうが、 Sbの拡 散が抑制されるため、負極格子の耳への Sbの析出による負極格子の耳の腐食率が 低かった。
[0101] 実施例 4
負極板の上部(図 2中の幅 W )、中央部(図 2中の幅 W )、および下部(図 2中の幅
1 2
W )の領域において負極格子が Sbを含む鉛合金層を有するように、母材シートに鉛
3
合金箔を圧着させた。幅 W 、 W、および Wの寸法は等しぐ耳を除く負極板の高さ
1 2 3
寸法の 1Z3とした。
上記以外は実施例 1と同様の方法により複合シートを作製した。これらの複合シート を負極格子の材料に用いて、電池 C3と同様の構成の電池 C9〜: L 1をそれぞれ作製 した。また、これらの複合シートを負極格子の材料に用いて、電池 M3と同様の構成 の電池 M9〜 11をそれぞれ作製した。これらの電池の試験結果を表 6に示す。 [0102] [表 6]
Figure imgf000029_0001
[0103] 表 6より、 Sbを含む鉛合金層が形成される位置により、寿命特性が変わることがわ かった。負極板の下部の領域にぉ ヽて負極格子が Sbを含む鉛合金層を有する場合 は、耳を除く負極板全体の領域において負極格子が Sbを含む鉛合金層を有する場 合と同様の寿命特性が得られた。負極板の下部の領域において負極格子が Sbを含 む鉛合金層を有する場合は、 Sbの存在により、極板下部において水素ガスの発生 が顕著になり、発生した水素ガスにより電解液が攪拌され、電解液の成層化現象によ る寿命特性の低下を抑制することができる。また、負極板の下部の領域においての み Sbを含む鉛合金層を有していればよいため、材料費を削減でき、電池の製造コス トを低減することができる。
産業上の利用可能性
[0104] 本発明の鉛蓄電池は、 SOCが低い領域で充放電を繰り返す使用モードにおいて 、優れた寿命特性を有するため、アイドルストップシステムを搭載した車両等に好適 に用いられる。

Claims

請求の範囲
[1] 耳を有する負極格子に負極活物質層が保持された複数の負極板、耳を有する正 極格子に正極活物質層が保持された複数の正極板、および前記正極板と負極板と を隔離する複数のセパレータからなる極板群と、
前記極板群の各正極板の耳が接続された正極棚、および前記正極棚に設けられ た正極柱または正極接続体力ゝらなる正極接続部材と、
前記極板群の各負極板の耳が接続された負極棚、および前記負極棚に設けられ た負極柱または負極接続体力もなる負極接続部材とを具備する鉛蓄電池であって、 前記正極格子、前記負極格子、前記正極接続部材、および前記負極接続部材は
Caおよび Snの少なくとも 1つを含む Pb合金からなり、
前記負極格子は前記耳を除く部分においてさらに Sbを含み、
前記セパレータはシリカを含むことを特徴とする鉛蓄電池。
[2] 前記セパレータは、微多孔性の合成樹脂シート、および前記合成樹脂シート中に 分散したシリカ粒子力 なり、前記セパレータは前記シリカ粒子を 40〜85質量%含 む請求項 1記載の鉛蓄電池。
[3] 前記セパレータは、繊維マット、および前記繊維マットに担持されたシリカ粒子から なり、前記セパレータは前記シリカ粒子を 10〜40質量%含む請求項 1記載の鉛蓄 電池。
[4] 前記負極板において、前記負極格子は前記 Sbを負極活物質 100重量部あたり 0.
0002〜0. 006質量部含む請求項 1記載の鉛蓄電池。
[5] 前記負極格子は、前記 Caおよび Snの少なくとも 1つを含む Pb合金力もなる母材層
、および前記母材層上の少なくとも一部に形成された前記 Sbを含む鉛合金層からな る請求項 1記載の鉛蓄電池。
[6] 前記鉛合金層は、前記負極板の下部の領域にお!ヽて形成されて!ヽる請求項 5記 載の鉛蓄電池。
[7] 前記正極格子は、前記 Caおよび Snの少なくとも 1つを含む Pb合金力もなる母材層 、および前記母材層上の少なくとも一部に形成された Snを含む鉛合金層からなる請 求項 1記載の鉛蓄電池。 [8] 前記セパレータが袋状であり、前記負極板を収納している請求項 1記載の鉛蓄電 池。
PCT/JP2005/006869 2004-04-08 2005-04-07 鉛蓄電池 WO2005099020A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020067017135A KR101128586B1 (ko) 2004-04-08 2005-04-07 납축전지
EP05728390A EP1737062B1 (en) 2004-04-08 2005-04-07 Lead storage battery
DE602005009814T DE602005009814D1 (de) 2004-04-08 2005-04-07 Bleiakkumulator
US10/587,186 US8071239B2 (en) 2004-04-08 2005-04-07 Long life and low corrosion lead storage battery

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004113827A JP2005302395A (ja) 2004-04-08 2004-04-08 鉛蓄電池
JP2004-113827 2004-04-08
JP2004142041A JP2005327491A (ja) 2004-05-12 2004-05-12 鉛蓄電池
JP2004-142041 2004-05-12
JP2004-350913 2004-12-03
JP2004-350914 2004-12-03
JP2004350914A JP2006164598A (ja) 2004-12-03 2004-12-03 鉛蓄電池
JP2004350913A JP5044888B2 (ja) 2004-12-03 2004-12-03 液式鉛蓄電池

Publications (1)

Publication Number Publication Date
WO2005099020A1 true WO2005099020A1 (ja) 2005-10-20

Family

ID=35125393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006869 WO2005099020A1 (ja) 2004-04-08 2005-04-07 鉛蓄電池

Country Status (6)

Country Link
US (1) US8071239B2 (ja)
EP (1) EP1737062B1 (ja)
KR (1) KR101128586B1 (ja)
DE (1) DE602005009814D1 (ja)
TW (1) TWI254478B (ja)
WO (1) WO2005099020A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031263A1 (ja) * 2011-09-01 2013-03-07 新神戸電機株式会社 鉛蓄電池
JP2016171018A (ja) * 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 鉛蓄電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI251365B (en) * 2004-04-02 2006-03-11 Matsushita Electric Ind Co Ltd Lead-acid battery
KR20220071298A (ko) * 2013-03-07 2022-05-31 다라믹 엘엘씨 적층 산화 보호 분리막
WO2015148305A1 (en) 2014-03-22 2015-10-01 Hollingsworth & Vose Company Battery separators having a low apparent density
US9293748B1 (en) 2014-09-15 2016-03-22 Hollingsworth & Vose Company Multi-region battery separators
WO2016134222A1 (en) 2015-02-19 2016-08-25 Hollingsworth & Vose Company Battery separators comprising chemical additives and/or other components
US9786885B2 (en) 2015-04-10 2017-10-10 Hollingsworth & Vose Company Battery separators comprising inorganic particles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262257A (ja) * 1989-03-31 1990-10-25 Matsushita Electric Ind Co Ltd 鉛蓄電池
JPH0432165A (ja) * 1990-05-25 1992-02-04 Japan Storage Battery Co Ltd 密閉形鉛蓄電池
JPH0869811A (ja) * 1994-08-29 1996-03-12 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2001291527A (ja) * 2000-04-05 2001-10-19 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2002164080A (ja) * 2000-11-27 2002-06-07 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2003142147A (ja) * 2001-10-31 2003-05-16 Japan Storage Battery Co Ltd 鉛蓄電池
JP2003346888A (ja) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd 鉛蓄電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2932491B2 (ja) 1989-03-31 1999-08-09 松下電器産業株式会社 鉛蓄電池
JP3099330B2 (ja) 1989-06-30 2000-10-16 松下電器産業株式会社 鉛蓄電池
JPH10106526A (ja) * 1996-09-26 1998-04-24 G S Kasei Kogyo Kk 鉛電池用セパレータ及びその製造方法
CN1524303A (zh) * 2001-05-23 2004-08-25 ̩ 提高了电性和机械性能的铅酸电池隔离膜

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262257A (ja) * 1989-03-31 1990-10-25 Matsushita Electric Ind Co Ltd 鉛蓄電池
JPH0432165A (ja) * 1990-05-25 1992-02-04 Japan Storage Battery Co Ltd 密閉形鉛蓄電池
JPH0869811A (ja) * 1994-08-29 1996-03-12 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2001291527A (ja) * 2000-04-05 2001-10-19 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2002164080A (ja) * 2000-11-27 2002-06-07 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2003142147A (ja) * 2001-10-31 2003-05-16 Japan Storage Battery Co Ltd 鉛蓄電池
JP2003346888A (ja) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd 鉛蓄電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1737062A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031263A1 (ja) * 2011-09-01 2013-03-07 新神戸電機株式会社 鉛蓄電池
JP2016171018A (ja) * 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 鉛蓄電池

Also Published As

Publication number Publication date
TW200541144A (en) 2005-12-16
EP1737062A1 (en) 2006-12-27
US20070160903A1 (en) 2007-07-12
TWI254478B (en) 2006-05-01
DE602005009814D1 (de) 2008-10-30
EP1737062A4 (en) 2007-06-27
KR20070001152A (ko) 2007-01-03
KR101128586B1 (ko) 2012-03-26
US8071239B2 (en) 2011-12-06
EP1737062B1 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
KR101139665B1 (ko) 납축전지
JP5079324B2 (ja) 鉛蓄電池
CN100446330C (zh) 铅蓄电池
RU2460180C2 (ru) Усовершенствованное устройство аккумулирования энергии
KR101068378B1 (ko) 납축전지
KR101128586B1 (ko) 납축전지
CN100583534C (zh) 铅蓄电池
JP5044888B2 (ja) 液式鉛蓄電池
JP4904686B2 (ja) 鉛蓄電池
JP4857894B2 (ja) 鉛蓄電池
JP4904674B2 (ja) 鉛蓄電池
WO2024043226A1 (ja) 水系電解液二次電池
KR20070023674A (ko) 납축전지
JP2006164598A (ja) 鉛蓄電池
JP2005302302A (ja) 鉛蓄電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580010427.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007160903

Country of ref document: US

Ref document number: 10587186

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005728390

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067017135

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005728390

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10587186

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2005728390

Country of ref document: EP