WO2005097861A1 - Verfahren zur herstellung von polyurethan-prepolymeren - Google Patents

Verfahren zur herstellung von polyurethan-prepolymeren Download PDF

Info

Publication number
WO2005097861A1
WO2005097861A1 PCT/EP2005/002205 EP2005002205W WO2005097861A1 WO 2005097861 A1 WO2005097861 A1 WO 2005097861A1 EP 2005002205 W EP2005002205 W EP 2005002205W WO 2005097861 A1 WO2005097861 A1 WO 2005097861A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyol
weight
groups
polyisocyanate
component
Prior art date
Application number
PCT/EP2005/002205
Other languages
English (en)
French (fr)
Inventor
Holger Eichelmann
Hans-Georg Kinzelmann
Marion Wortmann
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to EP05728218A priority Critical patent/EP1732966A1/de
Priority to BRPI0509703-7A priority patent/BRPI0509703A/pt
Priority to CN2005800107277A priority patent/CN1938353B/zh
Publication of WO2005097861A1 publication Critical patent/WO2005097861A1/de
Priority to US11/539,728 priority patent/US20070129525A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/797Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing carbodiimide and/or uretone-imine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6607Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes

Definitions

  • the present invention relates to a process for the preparation of polyurethane prepolymers with terminal isocyanate groups by stepwise reaction of polyisocyanates with polyols, and the use thereof.
  • Polyurethane prepolymers with terminal isocyanate groups which are prepared by stepwise reaction of polyisocyanates with polyols, are known. With suitable hardeners - mostly polyfunctional alcohols - they can be converted into higher molecular weight polymers. Polyurethane prepolymers have gained importance in many areas of application, such as sealants, paints and adhesives.
  • EP 0150444 describes a process for the preparation of polyurethane prepolymers with terminal isocyanate groups from diisocyanates of different reactivity and polyfunctional alcohols, the diisocyanates with NCO groups of different reactivity with polyfunctional alcohols in a ratio OH.NCO between 4 and 0 being in a first reaction step, 55 implemented and after reaction of practically all fast NCO groups with some of the OH groups present in a second reaction step compared to the less reactive NCO groups of the isocyanate from reaction step 1 equimolar or in excess, based on still free OH -Groups, adds.
  • EP 0118065 describes a process for the preparation of polyurethane prepolymers with terminal isocyanate groups from mono- and dicyclic diisocyanates, the first step being a monocyclic diisocyanate with a polyfunctional alcohol in the ratio OH groups: NCO groups converts less than 1 and in the resulting prepolymer a dicyclic diisocyanate with polyfunctional alcohols in the ratio OH groups: NCO groups less than 1 reacts.
  • the ratio of OH groups: NCO groups in the first reaction is in particular between 0.4 and 0.8.
  • WO 98/29466 describes a process for producing a low-monomer.
  • PU prepolymers with free NCO groups in a first reaction step reacting a diisocyanate with NCO groups of different reactivity (asymmetrical diisocyanate) with polyfunctional alcohols in the ratio OH: NCO between 4 and 0.55 and after reaction of practically all fast NCO Groups with some of the OH groups present in a second reaction step, compared to the less reactive NCO groups of the isocyanate from reaction step 1, add a more reactive diisocyanate (symmetrical diisocyanate) in deficit, based on free OH groups.
  • WO 99/24486 describes a process for the preparation of a low-viscosity, isocyanate group-containing polyurethane binder, comprising at least two stages, in which a polyurethane prepolymer is prepared in a first stage from an at least difunctional isocyanate and at least one polyol component, and in a second stage another at least difunctional isocyanate or another at least difunctional isocyanate and another polyol component is reacted in the presence of the polyurethane prepolymer, the predominant proportion of the isocyanate groups present after completion of the first stage being less reactive towards groups reactive with isocyanates, especially towards OH groups , has as the isocyanate groups of the at least difunctional isocyanate added in the second stage and in the second stage the ratio OH: NCO is 0.2 to 0.6. In the first stage, the OH: NCO ratio is less than 1, in particular 0.4 to 0.7.
  • the polyurethane prepolymers known from the prior art sometimes already have a content of less than 0.1% by weight of monomeric, slightly volatile diisocyanates, especially free TDI, and save the user from having to set up expensive suction devices to keep the air clean.
  • the 4,4'-MDI content is generally well above 0.1% by weight.
  • Such systems are covered by the Ordinance on Hazardous Substances and must be labeled accordingly. Special labeling and transport measures are associated with the labeling requirement.
  • the term migration is understood to mean the migration of low molecular weight compounds from the polyurethane prepolymers or the systems based on polyurethane prepolymer into the environment.
  • the main causes of migration are primarily the monomeric, generally less volatile diisocyanates.
  • the migration of such monomeric diisocyanates can lead to production disturbances, for example to a reduced seal seam strength in laminates.
  • migration-capable compounds or their degradation products can pose a health hazard, so that longer storage times and increased controls, particularly for products that are exposed to food, are necessary to ensure freedom from migratory substances.
  • the known polyurethane prepolymers are often highly viscous, which under certain circumstances can lead to processing difficulties, particularly in the case of solvent-free film lamination.
  • polyurethane prepolymers which preferably do not have any free TDI and / or MDI monomers and which enable the provision of adhesives with the lowest possible processing viscosity. As far as possible, they should not release or contain any volatile or migrable substances in the environment. Complex and costly cleaning steps to achieve freedom from monomers should be avoided if possible. Furthermore, there is a requirement for such polyurethanes that, immediately after application to at least one of the materials to be joined, after joining them together, they have a sufficiently have grip that prevents the composite material from splitting into its original components or prevents the bonded materials from shifting as far as possible.
  • such an adhesive bond should, however, also have a sufficient degree of flexibility to withstand the various tensile and tensile loads to which the composite material still in the processing stage is usually exposed, without damage to the adhesive bond and without damage to the bonded material to survive.
  • component (A) is prepared by using a) as Polyisocyanate (X) at least one asymmetrical polyisocyanate, preferably from the group: tolylene diisocyanate (TDI) with a content> 99% by weight 2,4-TDI, 2,4'-diphenylmethane diisocyanate (MDI) with a proportion of 2,4 ' isomers of at least 95% by weight, preferably at least 97.5% by weight, b) the polyol used is at least one polyol with an average molecular weight (M n ) of 60 to 3000 g / mol, c) the ratio of hydroxyl Groups to isocyanate groups ⁇ 1, preferably in the range between 0.4: 1 to 0.8: 1, particularly preferably in
  • a further polyol of component (A) is added, the reaction ratio of the hydroxyl groups of the further polyol to isocyanate groups of component (A) being in the range from 1.1: 1 to 2.0 : 1, preferably 1 ⁇ 3: 1 to 1.8-: 1 and particularly preferably in the range from 1.45: 1 to 1.75: 1.
  • at least one further at least difunctional polyisocyanate is preferably added, particularly preferably another, at least trifunctional polyisocyanate.
  • the polyurethane prepolymers with terminal isocyanate groups produced by the process according to the invention are low in monomers.
  • Low-monomer is to be understood as a low concentration of the asymmetrical starting polyisocyanates, in particular the starting polyisocyanates of the first synthesis stage, such as 2,4-TDP, 2,4'-MDI 'or TMXDI in the polyurethane prepolymer produced according to the invention.
  • the polyurethane prepolymers produced according to the invention are solvent-free or contain solvents.
  • the monomer concentration is below 1, preferably below 0.5, in particular below 0.3 and particularly preferably below 0.1% by weight, based on the total weight of the solvent-free or solvent-containing polyurethane prepolymer according to the invention with terminal isocyanate groups.
  • the proportion by weight of the monomeric diisocyanate is determined by gas chromatography (GC), by means of high pressure liquid chromatography (HPLC) or by means of gel permeation chromatography (GPC).
  • the polyurethane prepolymers with terminal isocyanate groups produced by the process according to the invention are notable in particular for their low viscosity.
  • the polyurethane prepolymers with terminal NCO groups produced according to the invention have a viscosity at 40 ° C. of 800 mPas to 10,000 mPas, preferably from 1000 mPas to 5000 mPas and particularly preferably from 1200 mPas to 3000 mPas (measured according to Brookfield, ISO 2555 ).
  • Such polyurethane prepolymers are sufficiently liquid at room temperature for further processing. You can advantageously at temperatures from 25 to 100 ° C, preferably from 35 to 75 ° C and particularly preferably from 40 to 55 ° C for bonding temperature-sensitive substrates, especially polyolefin films, can be used.
  • the polyurethane prepolymers with terminal isocyanate groups produced according to the invention are particularly suitable as a resin component in two-component (2K) adhesives.
  • Oiigomeric or polymeric compounds which have at least two groups which are reactive toward isocyanate groups, in particular hydroxyl groups, are used as the hardener component.
  • the corresponding two-component adhesives are distinguished by very short curing times with regard to the migration of monomeric, in particular monomeric, aromatic diisocyanates or corresponding amines, since the isocyanate groups in the polyurethane prepolymer according to the invention react quickly and almost completely with the hardener component.
  • the molecular weight data relating to polymeric compounds in the further text relate to the number average molecular weight (M ⁇ ). Unless otherwise stated, all molecular weight data relate to values as can be obtained by gel permeation chromatography (GPC).
  • Toluene diisocyanate has been known for a long time. They are produced by nitrating toluene, reducing and reacting the toluenediamines formed with phosgene or directly from dinitrotoluenes and carbon monoxide.
  • the technically most important diisocyanates 2,4-TDI and 2,6-TDI are used as a mixture in the isomer ratio 2,4-TDI to 2,6-TDI of 80:20 and more rarely in the isomer ratio of 65:35 for the production of polyurethanes.
  • Toluene diisocyanate is commercially available under the names TDI-65, TDI-80 and TDI-100, for example Desmodur® T100 from Bayer; the numbers indicate the percentage of more reactive 2,4-isomer compared to the less reactive 2,6-isomer.
  • TDI TDI is used in particular for the production of flexible polyurethane foams. It plays a minor role in reactive adhesive systems because it has a high vapor pressure compared to MDI (methylene bisphenyl diisocyanate). MDI with a proportion of 2,4'-isomers of at least 97.5% by weight is available, for example, from Elastogran under the trade name Lupranat® MCI.
  • At least one asymmetrical polyisocyanate from the group: tolylene diisocyanate (TDI) with a content> 99% by weight of 2,4-TDI, 2,4'-MDI with a proportion of 2.4 is preferred as polyisocyanate (X) '- Isomers of at least 95 wt .-%, preferably at least 97.5 wt .-% used.
  • the NCO groups of the polyisocyanates must have different reactivities towards compounds bearing functional groups reactive with isocyanates. This applies in particular to diisocyanates with NCO groups in different chemical environments, that is to say to asymmetrical diisocyanates. It is known that the reaction rate of dicyclic diisocyanates or generally symmetrical diisocyanates is higher than that of the second isocyanate group of unsymmetrical or monocyclic diisocyanates.
  • the asymmetrical diisocyanate is selected from the group of aromatic, aliphatic or cycloaliphatic diisocyanates.
  • the polyisocyanate is preferably selected from the group: all isomers of tolylene diisocyanate (TDI) either in isomerically pure form or as a mixture of several isomers, naphthalene-1,5-diisocyanate (NDI) from the group of aromatic diisocyanates with differently reactive NCO groups. , 1, 3-phenylene diisocyanate and or 2,4'-diphenylmethane diisocyanate (2,4 ' ⁇ MDI). 2,4 ' -MDI with a purity of> 97% by weight of 2,4 ' -MDI is particularly preferred.
  • Preferred aliphatic diisocyanates with differently reactive NCO groups are 1,6-diisocyanato-2,2,4-trimethylhexane, 1,6-diisocyanato-2,4,4-trimethylhexane and lysine diisocyanate.
  • Preferred cycloaliphatic diisocyanates having different reactivity NCO GTuppen “include 1-isocyanatomethyl-3-isocyanato-A5.5-trimethyl-cyclohexane (isophorone diisocyanate, IPDI) and 1-methyl-2,4-diisocyanato-cyclohexane.
  • the term polyisocyanate is understood to mean a compound with two or more isocyanate groups.
  • a difunctional polyisocyanate has two free NCO groups, a trifunctional polyisocyanate has three free NCO groups. At least one further at least difunctional polyisocyanate is preferably added in a third synthesis stage.
  • Suitable polyisocyanates are selected from the group: 1,5-naphthylene diisocyanate, 2,4- or 4,4'-diphenylmethane diisocyanate (MDI), hydrogenated MDI (H ⁇ 2 MDI), xylylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI), 4,4 '-Diphenyldimethylmethane diisocyanate, di- and tetraalkylene diphenylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, the isomers of tolylene diisocyanate (TDI), 1-methyl-2,4-diisocyanato-cyclohexane, 1,6-diisocyanato-2,2,4-trimethylhexane, 1,6-diisocyanato-2,
  • methylene triphenyl triisocyanate is used in the third synthesis step from the group of aromatic polyisocyanates.
  • Aromatic diisocyanates are defined in that the isocyanate group is located directly on the benzene ring.
  • Aromatic diisocyanates which can be used are 2,4- or 4,4-diphenylmethane diisocyanate (MDI), the isomers of tolylene diisocyanate (TDI), naphthalene-1,5-diisocyanate (NDI).
  • Sulfur-containing polyisocyanates are obtained, for example, by reacting 2 mol of hexamethylene diisocyanate with 1 mol of thiodiglycol or dihydroxydihexyl sulfide.
  • Other usable diisocyanates are trimethylhexamethylene diisocyanate, 1,4-diisocyanatobutane, 1,2-diisocyanatododecane and dimer fatty acid diisocyanate.
  • tetramethylene hexamethylene, undecane, dodecamethylene
  • 2,2,4-trimethylhexane-2,3,3-trimethyl-hexamethylene- 1,3-cyclohexane, 1,4-cyclohexane, 1 , 3- or 1
  • 4-tetramethylxylene isophorone, 4,4-dicyclohexylmethane, tetramethylxylylene (TMXDI) and lysine ester diisocyanate.
  • Suitable at least trifunctional isocyanates are polyisocyanates which are formed by trimerization or oligomerization of diisocyanates or by reaction of diisocyanates with polyfunctional compounds containing hydroxyl or amino groups.
  • Isocyanates suitable for the production of trimers are those already mentioned above
  • Diisocyanates the trimerization products of the isocyanates HDI, MDI or IPDI being particularly preferred.
  • polymeric isocyanates such as those obtained as a residue in the distillation bottoms from the distillation of diisocyanates.
  • polymeric MDI as is available in the distillation of MDI from the distillation residue, is particularly suitable.
  • Desmodur N 3300 Desmodur N 100 (manufacturer: Bayer AG) or the IPDI-trimeric isocyanurate T 1890 (manufacturer Degussa) is used in the third stage.
  • a triisocyanate is used as the further polyisocyanate in the third reaction stage.
  • Preferred triisocyanates are adducts of diisocyanates and low molecular weight triols, in particular the adducts of aromatic diisocyanates and triols, such as. B. trimethylolpropane or glycerin.
  • Aliphatic triisocyanates such as the biuretization product of hexamethylene diisocyanate (HDI) or the isocyanuration product of HDI or the same trimerization products of isophorone diisocyanate (IPDI) are also suitable for the polyurethane prepolymers according to the invention, provided that the proportion of diisocyanates is ⁇ 1% by weight and the proportion of tetra- or higher-functional isocyanates is not greater than 25% by weight.
  • HDI hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • trimerization products of the HDI and the IPDI are particularly preferred.
  • a mixture of a diisocyanate, preferably an aromatic diisocyanate, with carbodiimide is used as a further polyisocyanate in the third synthesis stage.
  • Carbodiimide groups can easily be obtained from two isocyanate groups with the elimination of carbon dioxide. Starting from di-isocyanates, oligomeric compounds with several carbodiimide groups and preferably terminal isocyanate groups can be obtained. Oiigomeric carbodiimides and their preparation are described in WO 03/068703 on page 3, line 37 to page 5, line 41.
  • the mixture of diisocyanate and carbodiimide contains 5 to 95% by weight, preferably 20 to 90% by weight and particularly preferably 40 to 85% by weight, based on the total weight of the mixture.
  • Commercially available mixtures of diisocyanate and carbodiimide are available, for example, under the trade names Isonate® 143 L or M from DOW Chemical Company, Desmodur CD from Bayer AG or as Suprasec 2020 from Huntsman.
  • polyisocyanate preferably from the group: TDI with a content> 99% by weight 2,4-TDI, 2,4-diphenylmethane diisocyanate with a proportion of 2
  • TDI polyisocyanate
  • 4'-isomers of at least 95% by weight, preferably at least 97.5% by weight, and to initiate the second synthesis stage only when all hydroxyl groups have been reacted.
  • the reaction surprisingly proceeds very well under the specified reaction conditions, in particular in the selected range of the OH: NCO reaction ratio selective and leads to the fact that component (A) already has a low viscosity and a very low content of monomeric polyisocyanate (X) at the end of the first process stage.
  • polyol encompasses a single polyol or a mixture of two or more polyols which can be used for the production of polyurethanes.
  • a polyol is understood to mean a polyfunctional alcohol, i. H. a compound with more than one OH group in the molecule.
  • Suitable polyols are aliphatic alcohols with 2 to 6, preferably 2 to 4, OH groups per molecule.
  • the OH groups can be either primary or secondary.
  • Suitable aliphatic alcohols include, for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1, 6-hexanediol, 1-heptanediol, 7, octanediol-1, 8 and their higher homologues or isomers, such as for the person skilled in the art they result from a gradual extension of the hydrocarbon chain by one CH 2 group each or by introducing branches into the carbon chain.
  • Highly functional alcohols such as, for example, glycerol, trimethylolpropane, pentaerythritol and oligomeric ethers of the substances mentioned with themselves or in a mixture of two or more of the ethers mentioned are also suitable.
  • Reaction products of low molecular weight polyfunctional alcohols with alkylene oxides are preferably used as the polyol component.
  • the alkylene oxides preferably have 2 to 4 carbon atoms.
  • the reaction products of ethylene glycol, propylene glycol, the isomeric butanediols, hexanediols or 4,4'-dihydroxydiphenylpropane with ethylene oxide, propylene oxide or butylene oxide, or mixtures of two or more thereof are suitable.
  • reaction products of polyfunctional alcohols such as glycerol, trimethylolethane or trimethylolpropane, pentaerythritol or sugar alcohols, or mixtures of two or more thereof, with the alkylene oxides mentioned to form polyether polyols are also suitable.
  • polyfunctional alcohols such as glycerol, trimethylolethane or trimethylolpropane, pentaerythritol or sugar alcohols, or mixtures of two or more thereof
  • alkylene oxides mentioned to form polyether polyols are also suitable.
  • addition products of only a few moles of ethylene oxide and / or propylene oxide per mole or of more than a hundred moles of ethylene oxide and / or propylene oxide with low molecular weight more functional alcohols can be used.
  • Further polyether polyols can be produced by condensation of, for example, glycerol or pentaerythritol with elimination of water.
  • poly-THF tetrahydrofuran
  • reaction products of polyfunctional low molecular weight alcohols with propylene oxide under conditions in which at least some secondary hydroxyl groups are formed are particularly suitable for the first synthesis stage.
  • polyether polyols are reacted in a manner known to those skilled in the art by reacting the starting compound with a reactive hydrogen atom with alkylene oxides, for example ethylene oxide, propylene oxide, butylene oxide, styrene oxide, tetrahydrofuran or epichlorohydrin or mixtures of two or more thereof.
  • alkylene oxides for example ethylene oxide, propylene oxide, butylene oxide, styrene oxide, tetrahydrofuran or epichlorohydrin or mixtures of two or more thereof.
  • Suitable starting compounds are, for example, water, ethylene glycol, propylene glycol-1, 2 or -1, 3, butylene glycol, 4 or -1, 3, hexanediol-1, 6, octanediol-1, 8, neopentylglycol, 1, 4-hydroxymethylcyclohexane, 2-methyl-1, 3-propanediol, glycerin, trimethylolpropane, hexanetriol-1, 2,6, butanetriol-1, 2,4 trimethylolethane, pentaerythritol, mannitol, sorbitol, methylglycosides, sugar, phenol, isononylphenol, resorcinol, hydroquinone, 1 , 2,2- or 1, 1-2-tris (hydroxyphenyl) ethane, ammonia, methylamine, ethylenediamine, tetra- or hexamethyleneamine, triethanolamine, aniline, pheny
  • polyethers which have been modified by vinyl polymers. Such products are available, for example, in which styrene or acrylonitrile, or a mixture thereof, is polymerized in the presence of polyethers.
  • At least one polyester polyol is preferably used as the polyol. Polyester polyols which are formed by reacting low molecular weight alcohols, in particular ethylene glycol, diethylene glycol, neopentyl glycol, hexanediol, butanediol, propylene glycol, glycerol or trimethylolpropane with caprolactone, are suitable.
  • polyester polyols can preferably be prepared by polycondensation.
  • polyester polyols preferably include the reaction products of polyfunctional, preferably difunctional alcohols (optionally together with small amounts of trifunctional alcohols) and polyfunctional, preferably difunctional and / or trifunctional carboxylic acids.
  • polyfunctional, preferably difunctional alcohols optionally together with small amounts of trifunctional alcohols
  • polyfunctional, preferably difunctional and / or trifunctional carboxylic acids instead of free polycarboxylic acids, the corresponding polycarboxylic acid anhydrides or corresponding polycarboxylic acid esters with alcohols with preferably 1 to 3 C atoms can also be used (if possible).
  • polyester polyols Particularly suitable for the production of such polyester polyols are hexanediol, 1,4-hydroxymethylcyclohexane, 2-methyl-1,3-propanediol, butanetriol-1, 2,4, triethylene glycol, tetraethylene glycol, ethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol, dibutylene glycol and polybutylene glycol.
  • the polycarboxylic acids can be aliphatic, cycloaliphatic, aromatic or heterocyclic or both. They can optionally be substituted, for example by alkyl groups, alkenyl groups, ether groups or halogens.
  • Examples of polycarboxylic acids are succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic acid, anhydrous acid, malefic acid, malefic acid anhydride, malefic acid anhydride, malefic acid anhydride, malefic acid anhydride, malefic acid anhydride, malefic acid anhydride, malefic acid anhydride, maleic acid anhydride, Trimer fatty acid or mixtures of two or more of them are suitable. If necessary, minor amounts of monofunctional fatty acids can be present in the reaction mixture.
  • Polyester polyols from at least one of the dicarboxylic acids and glycerol mentioned which have a residual OH group content are particularly suitable within the scope of the invention.
  • polyesters can optionally have a small proportion of carboxyl end groups.
  • Polyesters obtainable from lactones, for example based on ⁇ -caprolactone, also called “poly caprolactone”, or hydroxycarboxylic acids, for example ⁇ -hydroxycaproic acid, can also be used.
  • polyester polyols of oleochemical origin can also be used.
  • polyester polyols can, for example, by completely ring opening epoxidized triglycerides of an at least partially olefinically unsaturated fatty acid-containing fat mixture with one or more alcohols with 1 to 12 carbon atoms and then partial transesterification of the triglyceride derivatives to alkyl ester polyols with 1 to 12 carbon atoms be produced in the alkyl radical.
  • suitable polyols are polycarbonate polyols and dimer diols (from Henkel) and castor oil and its derivatives.
  • the hydroxy-functional polybutadienes, such as those e.g. available under the trade name "Poly-bd" can be used as polyols for the compositions according to the invention.
  • Polyacetals are also suitable as polyol components.
  • Polyacetals are understood to mean compounds such as are obtainable from glycols, for example diethylene glycol or hexanediol or their mixture with formaldehyde.
  • Polyacetals which can be used in the context of the invention can likewise be obtained by the polymerization of cyclic acetals.
  • Polycarbonates are also suitable as polyols.
  • Polycarbonates can be obtained, for example, by the reaction of diols, such as propylene glycol, butanediol-1, 4 or hexanediol-1, 6, diethylene glycol, triethylene glycol or tetraethylene glycol, or mixtures of two or more thereof with diaryl carbonates, for example diphenyl carbonate or phosgene.
  • Polyacrylates bearing OH groups are also suitable as polyol components. These polyacrylates can be obtained, for example, by the polymerization of ethylenically unsaturated monomers which carry an OH group.
  • Such monomers can be obtained, for example, by the esterification of ethylenically unsaturated carboxylic acids and difunctional alcohols, the alcohol usually being in a slight excess.
  • Suitable ethylenically unsaturated carboxylic acids are, for example, acrylic acid, methacrylic acid, crotonic acid or maleic acid.
  • Corresponding esters carrying OH groups are, for example, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypropyl methacrylate, 3-hydroxypropyl acrylate or 3-hydroxypropyl methacrylate or mixtures of two or more thereof.
  • Particularly preferred in the first synthesis stage is at least one polyether polyol with a molecular weight (M n ) of 100 to 3,000 g / mol, preferably 150 to 2,000 g / mol, and / or at least one polyester polyol with a molecular weight of 100 to 3,000 g / mol, preferably 250 to 2500 g / mol, used.
  • At least one polyol which has differently reactive hydroxyl groups is used in the first synthesis stage.
  • polyols to be used according to the invention with differently reactive hydroxyl groups are 1, 2-propanediol, 1, 2-butanediol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, the higher homologues of polypropylene glycol with an average molecular weight (number average M n ) of up to 3,000, in particular up to 2,500 g / mol, and copolymers of polypropylene glycol, for example block or statistical copolymers of ethylene and propylene oxide.
  • component (A) By reacting polyisocyanate (X) with a polyol, which has an average molecular weight of 60 to 3000 g / mol, component (A) is produced in the first synthesis step, the ratio of hydroxyl groups to isocyanate groups being adjusted in this way that a product which is still flowable at least at the reaction temperature is formed.
  • Component (A) is sufficiently low-viscosity if the ratio of hydroxyl groups to isocyanate groups is ⁇ 1, preferably in the range from 0.4: 1 to 0.8: 1 and particularly preferably from 0.45: 1 to 0.6: 1 established.
  • the reaction in the first synthesis stage takes place at 35 to 50 ° C. or at room temperature.
  • the calculated NCO value which theoretically results from complete reaction of the hydroxyl groups with the more reactive NCO group of polyisocyanate (X), is decisive for this. In practice, this can be determined analytically by titration of the isocyanate groups and the second synthesis step is initiated when the calculated NCO value is reached.
  • the reaction time depends on the temperature. At 40 ° C to 75 ° C the reaction time is 2 to 20 hours. At room temperature, the reaction time is 2 to 5 days.
  • Component (A) has an NCO value of 4% by weight to 16% by weight, preferably 4% by weight to 12% by weight and particularly preferably 4% by weight to 10% by weight ( according to Spiegelberger, EN ISO 11909).
  • the reaction mixture of the first and / or second synthesis stage contains a catalyst.
  • Suitable catalysts according to the invention are phosphoric acid, organometallic compounds and / or tertiary amines in concentrations between 0.1 and 5% by weight, preferably between 0.3 and 2% by weight and particularly preferably between 0.5 and 1% by weight. -%.
  • Organometallic compounds of tin, iron, titanium, bismuth or zirconium are preferred.
  • organometallic compounds such as tin (II) salts or titanium (IV) salts of carboxylic acids, strong bases such as alkali hydroxides, alcoholates and phenolates, e.g. B. Di-n-octyl
  • Tin mercaptide dibutyl tin maleate, diacetate, dilaurate, dichloride, bisdodecyl marcaptide, tin ll acetate, ethyl hexoate and diethyl hexoate, tetraisopropyl titanate or lead phenyl ethyl dithiocarbaminate.
  • tertiary amines are used as catalysts, alone or in combination with at least one of the above catalysts: diazabicyclo-octane (DABCO), triethylamine, dimethylbenzylamine (Desmorapid DB, Bayer).
  • DABCO diazabicyclo-octane
  • Desmorapid DB dimethylbenzylamine
  • Combinations of organometallic compounds and amines are particularly preferred according to the invention, the ratio of amine to organometallic compound being 0.5: 1 to 10: 1, preferably 1: 1 to 5: 1 and particularly preferably 1.5: 1 to 3: 1.
  • ⁇ -caprolactam is used in particular in the first synthesis stage to increase the selectivity, ie to increase the preferred reaction of one of the two NCO groups of the polyisocyanate (X).
  • the amount of ⁇ -caprolactam used is 0.05 to 6% by weight, preferably 0.1 to 3% by weight, particularly preferably 0 , 2 to 0.8 wt%.
  • the ⁇ -caprolactam can be used as powder, as granules or in liquid form.
  • a polyether or polyether mixture with a molecular weight (M n ) of about 100 to 10,000 g / mol, preferably from about 200 to about 5,000 g / mol and / or a polyester polyol or polyester polyol mixture is preferred as the further polyol with a molecular weight (M n ) of about 200 to 10,000 g / mol.
  • a polyol with a molecular weight (M n ) of 60 to 400, preferably 80 to 200 g / mol is used as the further polyol in the second synthesis step.
  • the ratio of hydroxyl groups to isocyanate groups of component (A) is 1.1: 1 to 2: 1, preferably 1.3: 1 to 1.8: 1 and particularly preferably 1.45 : 1 to 1.75: 1.
  • the at least one further polyol is added in the second synthesis stage at a temperature between 25 ° C. to 100 ° C., preferably between 35 ° C. to 85 ° C., particularly preferably between 45 and 70 ° C. and allows it to react with the isocyanate groups of component (A) and any excess polyisocyanate (X) still present until the number of isocyanate groups does not decrease further. This can be determined analytically by titration of the isocyanate groups.
  • the content of monomeric 2,4-TDI and 2,4'-MDI at the end of the second stage is less than 0.5% by weight, preferably less than 0.1% by weight, based on the total weight of the component ( A).
  • At least one further at least difunctional polyisocyanate is added at the end of the second synthesis stage in a third synthesis stage.
  • the synthesis is carried out in an aprotic solvent.
  • Halogenated organic solvents are preferably used as the aprotic solvent; acetone, methyl ethyl ketone, methyl isobutyl ketone or ethyl acetate are particularly preferably used.
  • the proportion by weight of the total reaction mixture in the mixture with the aprotic solvent is 30 to 90% by weight, preferably 40 to 85% by weight and particularly preferably 60 to 80% by weight.
  • the end product is preferably a solvent-free polyurethane prepolymer, which is why the solvent is distilled off after the reaction has ended and after stirring for a period of 30 to 90 minutes.
  • the polyurethane prepolymer according to the invention with terminal NCO groups has a viscosity at 40 ° C. of 800 mPas to 10,000 mPas, preferably from 1000 mPas to 5000 mPas and particularly preferably from 1200 mPas to 3000 mPas (measured according to Brookfield, ISO 2555).
  • the NCO content in the polyurethane prepolymer produced according to the invention is 6% by weight to 22% by weight and particularly preferably 8% by weight to 15% by weight (according to Spiegelberger, EN ISO 11909).
  • the polyurethane prepolymers according to the invention with terminal isocyanate groups are suitable in bulk or as a solution in organic solvents as an adhesive / sealant or adhesive / sealant component, preferably for producing one- or two-component adhesives / sealants.
  • the polyurethane prepolymers produced according to the invention are particularly suitable as one- or two-component laminating adhesives for laminating textiles, metals, especially aluminum, and plastic films and Metal or oxide vapor-coated foils and papers.
  • Common hardeners such as multi-functional, higher molecular weight polyols, can be added (two-component systems) or surfaces with a defined moisture content can be glued directly to the products produced according to the invention (one-component adhesives).
  • the polyurethane prepolymers produced according to the invention are notable for an extremely low proportion of monomeric, highly volatile diisocyanates with a molecular weight below 500 g / mol, which are hazardous to occupational hygiene.
  • the process has the economic advantage that the monomer poverty is achieved without complex and costly work steps.
  • the polyurethane prepolymers produced in this way are moreover free of the by-products usually obtained in thermal workup steps, such as crosslinking or depolymerization products.
  • the group of temperature-sensitive plastic films includes polyolefin films, in particular films made of polyethylene or polypropylene.
  • Film composites produced on the basis of the polyurethane prepolymers produced according to the invention show high processing reliability when heat-sealing. This is due to the greatly reduced proportion of low molecular weight products capable of migration in the polyurethane.
  • the polyurethane prepolymers according to the invention are particularly suitable for the production of film composites for the food sector.
  • the invention therefore also relates to film composites, in particular for the packaging of foods, which contain laminating adhesives based on the polyurethane prepolymers according to the invention.
  • the ⁇ NCO groups ⁇ according to the invention containing Tnonomerenarme polyurethane - Prepolymers can also be used in extrusion, printing and metallization primers as well as for heat sealing.
  • the mixture of trifunctional polyol and PPG is reacted with TDI at 75 to 80 ° C. until OH has reacted completely (8% by weight NCO). It is cooled to approx. 60 ° C. and DEG is slowly added dropwise. At this temperature, the DEG reacts completely to constant NCO (6% by weight NCO). In the cooling phase, the liquid MDI oligomer isonate is added and an NCO value of 14.2% by weight is set.
  • Viscosity 7300 mPas (Brookfield, LVT) at 20 ° C 2400 mPas (Brookfield, LVT) at 40 ° C free TDI: ⁇ 0.1% by weight
  • the two-component laminating adhesive is obtained by mixing the above PU prepolymer with a polyester-based hardener (functionality 2-3, OH number 170, viscosity ⁇ 10,000 mPas at RT) in a ratio of 1.25: 1.

Abstract

Es wird ein Verfahren zur Herstellung von Polyurethan-Prepolymeren mit end­ständigen Isocyanat-Gruppen offenbart, bei dem man Polyisocyanate mit Polyolen umsetzt, wobei man (I) in einer ersten Synthese-Stufe eine Komponente (A) herstellt, indem man a) als Polyisocyanat (X) mindestens ein unsymmetrisches Polyisocyanat, bevor­zugt aus der Gruppe: Toluylendiisocyanat (TDI) mit einem Gehalt ≥ 99 Gew.-% 2,4-TDI, 2,4'-Diphenylmethandiisocyanat mit einem Anteil an 2,4‘-Isomeren von mindestens 95 Gew.-%, vorzugsweise mindestens 97 Gew.-% einsetzt, b) als Polyol mindestens ein Polyol mit einem durchschnittlichen Molekulargewicht (Mn) von 60 bis 3000 g/mol einsetzt, c) das Verhältnis Hydroxyl-Gruppen zu Isocyanat-Gruppen < 1, bevorzugt im Be­reich zwischen 0,4 : 1 bis 0,8 : 1, insbesondere bevorzugt im Bereich zwischen 0,45: 1 bis 0,6 : 1 einstellt, d) gegebenenfalls einen Katalysator zusetzt, und nach Umsetzung aller Hydroxyl­-Gruppen (II) in einer zweiten Synthese-Stufe ein weiteres Polyol der Komponente (A) hinzu­fügt, wobei man das Reaktionsverhältnis der Hydroxyl-Gruppen des weiteren Polyols zu Isocyanat-Gruppen von Komponente A im Bereich von 1,1 : 1 bis 2,0 : 1, bevorzugt 1,3 : 1 bis 1,8 : 1 und insbesondere bevorzugt im Bereich von 1,45 : 1 bis 1,75 : 1 einstellt. Derartig hergestellte Polyurethan-Prepolymere eignen sich zur Herstellung von ein- und zweikomponentigen Kleb- und Dichtstoffen, insbesondere Kaschierkleb­stoffen. Die erfindungsgemäss hergestellten Polyurethan-Prepolymeren sind nied­rigviskos und monomerenarm.

Description

"Verfahren zur Herstellung von Polyurethan-Prepolymeren"
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyurethan- Prepolymeren mit endständigen Isocyanat-Gruppen durch stufenweise Reaktion von Polyisocyanaten mit Polyolen, sowie deren Verwendung.
Polyurethan-Prepolymere mit endständigen Isocyanat-Gruppen, die durch stufenweise Reaktion von Polyisocyanaten mit Polyolen hergestellt werden, sind bekannt. Sie können mit geeigneten Härtern - meist polyfunktionellen Alkoholen - zu höhermolekularen Polymeren umgesetzt werden. Polyurethan-Prepolymere haben auf vielen Anwendungsgebieten Bedeutung erlangt, so bei Dichtungsmassen, Lacken und Klebstoffen.
Die EP 0150444 beschreibt ein Verfahren zur Herstellung von Polyurethan- Prepolymeren mit endständigen Isocyanatgruppen aus Diisocyanaten unterschiedlicher Reaktivität und mehrfunktionellen Alkoholen, wobei man in einem ersten Reaktionsschritt die Diisocyanate mit NCO-Gruppen unterschiedlicher Reaktivität mit mehrfunktionellen Alkoholen im Verhältnis OH.NCO zwischen 4 und 0,55 umsetzt und nach Abreaktion praktisch aller schnellen NCO-Gruppen mit einem Teil der vorhandenen OH-Gruppen in einem zweiten Reaktionsschritt ein im Vergleich zu den weniger reaktiven NCO-Gruppen des Isocyanats aus Reaktionsschritt 1 reaktiveres Diisocyanat äquimolar oder im Überschuss, bezogen auf noch freie OH-Gruppen, zusetzt.
Die EP 0118065 beschreibt ein Verfahren zur Herstellung von Polyurethan- Präpolymeren mit endständigen Isocyanatgruppen aus mono- und dicyclischen Diisocyanaten, wobei man in einer ersten Stufe ein monocyclisches Diisocyanat mit einem mehrfunktionellen Alkohol im Verhältnis OH-Gruppen : NCO-Gruppen kleiner 1 umsetzt und in dem so entstandenen Präpolymeren ein dicyclisches Diisocyanat mit mehrfunktionellen Alkoholen im Verhältnis OH-Gruppen : NCO- Gruppen kleiner 1 zur Reaktion bringt. Das Verhältnis OH-Gruppen : NCO- Gruppen liegt bei der ersten Umsetzung insbesondere zwischen 0,4 und 0,8.
Die WO 98/29466 beschreibt ein Verfahren zur Herstellung eines monomerenar- men. PU-Prepolymeren mit freien NCO-Gruppen, wobei man in einem ersten Reaktionsschritt ein Diisocyanat mit NCO-Gruppen unterschiedlicher Reaktivität (unsymmetrisches Diisocyanat) mit mehrfunktionellen Alkoholen im Verhältnis OH:NCO zwischen 4 und 0,55 umsetzt und nach Abreaktion praktisch aller schnellen NCO-Gruppen mit einem Teil der vorhandenen OH-Gruppen in einem zweiten Reaktionsschritt ein im Vergleich zu den weniger reaktiven NCO-Gruppen des Isocyanats aus Reaktionsschritt 1 ein reaktiveres Diisocyanat (symmetrisches Diisocyanat) im Unterschuss, bezogen auf noch freie OH-Gruppen, zusetzt.
Die WO 99/24486 beschreibt ein Verfahren zur Herstellung eines niedrig viskosen, Isocyanatgruppen tragenden Polyurethanbindemittels, umfassend mindestens zwei Stufen, bei dem in einer ersten Stufe aus einem mindestens difunktionellen Isocyanat und mindestens einer Polyolkomponente ein Polyurethan-Präpolymeres hergestellt wird und in einer zweiten Stufe ein weiteres mindestens difunktionelles Isocyanat oder ein weiteres mindestens difunktionelles Isocyanat und eine weitere Polyolkomponente, in Gegenwart des Polyurethan-Präpolymeren umgesetzt wird, wobei der überwiegende Anteil der nach Abschluss der ersten Stufe vorliegenden Isocyanatgruppen eine geringere Reaktivität gegenüber mit Isocyanaten reaktiven Gruppen, insbesondere gegenüber OH-Gruppen, aufweist als die Isocyanatgruppen des in der zweiten Stufe zugesetzten mindestens difunktionellen Isocyanats und in der zweiten Stufe das Verhältnis OH:NCO 0,2 bis 0,6 beträgt. In der ersten Stufe beträgt das Verhältnis OH:NCO weniger als 1 , insbesondere 0,4 bis 0,7.
Die aus dem Stand der Technik bekannten Polyurethan-Prepolymeren- weisen teilweise bereits einen Gehalt von weniger als 0,1 Gew.-% an monomeren, leicht- flüchtigen Diisocyanaten, insbesondere freiem TDI, auf und ersparen dem Anwender die Einrichtung kostspieliger Absaugvorrichtungen zur Reinhaltung der Luft. Der Gehalt an 4,4'-MDI liegt aber in der Regel deutlich über 0,1 Gew.-%. Derartige Systeme fallen unter die Gefahrstoffverordnung und sind entsprechend zu kennzeichnen. Mit der Kennzeichnungspflicht sind spezielle Maßnahmen zur Verpackung und dem Transport verbunden.
Auch sind einige der bekannten Polyurethan-Prepolymeren nicht vollständig migrationsfrei. Unter dem Begriff der Migration wird die Wanderung von niedermolekularen Verbindungen aus den Polyurethan-Prepolymeren oder den Polyu- rethan-Prepolymer basierenden Systemen in die Umgebung verstanden. Als Hauptverursacher für die Migration werden primär die monomeren, in der Regel weniger flüchtigen Diisocyanate angesehen. Die Migration derartiger monomerer Diisocyanate kann zu Produktionsstörungen führen, beispielsweise zu einer reduzierten Siegelnahtfestigkeit in Laminaten. Darüber hinaus kann von migrationsfähigen Verbindungen oder deren Abbauprodukten eine gesundheitliche Gefährdung ausgehen, so dass insbesondere bei Produkten, die dem Kontakt mit Lebensmitteln ausgesetzt sind, erhöhte Lagerzeiten und verstärkte Kontrollen bis zur Migratfreiheit notwendig sind.
Desweiteren sind die bekannten Polyurethan-Prepolymeren oft hochviskos, was unter Umständen zu Verarbeitungsschwierigkeiten, insbesondere bei der lösemittelfreien Folienkaschierung, führen kann.
Es besteht in der Industrie daher nach wie vor der Wunsch nach Polyurethan- Prepolymeren, die möglichst keine freien TDI- und/oder MDI-Monomeren aufweisen und die Bereitstellung von Klebstoffen mit einer möglichst geringen Verarbeitungsviskosität ermöglichen. Sie sollen möglichst keine flüchtigen oder migrationsfähige Stoffe in die Umgebung freisetzen bzw. enthalten. Aufwendige und kostenintensive Reinigungsschritte zur Erzielung der Monomerenfreiheit sollten nach Möglichkeit vermieden werden. Weiterhin besteht an solche Polyurethane die Anforderung, dass sie direkt nach dem Auftrag auf mindestens eines der zu verbindenden Materialien nach deren Zusammenfügen über eine ausreichend gute An- fangshaftung verfügen, die ein Auftrennen des Verbundmaterials in seine ursprünglichen Bestandteile verhindert bzw. eine Verschiebung der verklebten Materialien gegeneinander möglichst verhindert. Darüber hinaus soll eine solche Verklebung jedoch auch über ein ausreichendes Maß an Flexibilität verfügen, um die verschiedenen Zug- und Dehnbelastungen, denen das noch im Ver arbeitungsstadium befindliche Verbundmaterial in der Regel ausgesetzt ist, ohne Schaden für die Klebeverbindung und ohne Schaden für das verklebte Material zu überstehen.
Die erfindungsgemäße Lösung der Aufgabe ist den Patentansprüchen zu entnehmen.
Sie besteht im wesentlichen in einem Verfahren zur Herstellung von Polyurethan- Prepolymeren mit endständigen Isocyanat-Gruppen, bei dem man Polyisocyanate mit Polyolen umsetzt, wobei man (I) in einer ersten Synthese-Stufe eine Komponente (A) herstellt, indem man a) als Polyisocyanat (X) mindestens ein unsymmetrisches Polyisocyanat, bevorzugt aus der Gruppe: Toluylendiisocyanat (TDI) mit einem Gehalt > 99 Gew.-% 2,4-TDI, 2,4'-Diphenylmethandiisocyanat (MDI) mit einem Anteil an 2,4'-lsomeren von mindestens 95 Gew.-%, vorzugsweise mindestens 97,5 Gew.-% einsetzt, b) als Polyol mindestens ein Polyol mit einem durchschnittlichen Molekulargewicht (Mn) von 60 bis 3000 g/mol einsetzt, c) das Verhältnis Hydroxyl-Gruppen zu Isocyanat-Gruppen < 1 , bevorzugt im Bereich zwischen 0,4 : 1 bis 0,8 : 1 , insbesondere bevorzugt im Bereich zwischen 0,45 : 1 bis 0,6 : 1 einstellt, d) gegebenenfalls einen Katalysator zusetzt, und nach Umsetzung aller Hydroxyl-Gruppen
II) in einer zweiten Synthese-Stufe ein weiteres Polyol der Komponente (A) hinzufügt, wobei man das Reaktionsverhältnis der Hydroxyl-Gruppen des weiteren Polyols zu Isocyanat-Gruppen von Komponente (A) im Bereich von 1 ,1 : 1 bis 2,0 : 1 , bevorzugt 1τ3 : 1 bis 1 ,8-: 1 und insbesondere bevorzugt im Bereich von 1 ,45 : 1 bis 1 ,75 : 1 einstellt. Bevorzugt wird in einer dritten Synthese-Stufe mindestens ein weiteres mindestens difunktionelles Polyisocyanat, insbesondere bevorzugt ein weiteres, mindestens trifunktionelles Polyisocyanat, hinzugefügt.
Die nach dem erfindungsgemäßen Verfahren hergestellten Polyurethan- Prepolymere mit endständigen Isocyanat-Gruppen sind monomerenarm.
Unter "monomerenarm" ist eine niedrige Konzentration der unsymmetrischen Ausgangs-Polyisocyanate, insbesondere der Ausgangs-Polyisocyanate der ersten Synthese-Stufe, wie 2,4-TDP, 2,4'-MDI' oder TMXDI im erfindungsgemäß hergestellten Polyurethan-Prepolymeren zu verstehen.
Die erfindungsgemäß hergestellten Polurethan-Prepolymeren sind lösemittelfrei oder lösemittelhaltig.
Die Monomerenkonzentration liegt unter 1 , vorzugsweise unter 0,5, insbesondere unter 0,3 und insbesondere bevorzugt unter 0,1 Gew.-%, bezogen auf das Gesamtgewicht des erfindungsgemäßen lösemittelfreien oder lösemittelhaltigen Polyurethan-Prepolymeren mit endständigen Isocyanat-Gruppen. Der Gewichtsanteil des monomeren Diisocyanates wird gaschromatografisch (GC), mittels Hochdruckflüssigkeitschromatografie (HPLC) oder mittels Gelper- meationschromatografie (GPC) bestimmt.
Die nach dem erfindungsgemäßen Verfahren hergestellten Polyurethan- Prepolymeren mit endständigen Isocyanat-Gruppen zeichnen sich insbesondere durch eine niedrige Viskosität aus. So weisen die erfindungsgemäß hergestellten Polyurethan-Prepolymeren mit endständigen NCO-Gruppen bei 40 °C eine Viskosität von 800 mPas bis 10.000 mPas, bevorzugt von 1000 mPas bis 5000 mPas und insbesondere bevorzugt von 1200 mPas bis 3000 mPas auf (gemessen nach Brookfield, ISO 2555).
Derartige Polyurethan-Prepolymere sind bei Raumtemperatur für die weitere Verarbeitung ausreichend flüssig. Sie können vorteilhafterweise bei Temperaturen von 25 bis 100 °C, bevorzugt von 35 bis 75 °C und insbesondere bevorzugt von 40 bis 55 °C zum Verkleben temperaturempfindlicher Substrate, insbesondere Polyolefinfolien, eingesetzt werden.
Die erfindungsgemäß hergestellten Polyurethan-Prepolymeren mit endständigen Isocyanat-Gruppen eignen sich insbesondere als Harz-Komponente in Zwei- Komponenten-(2K)-Klebstoffen. Als Härter-Komponente werden oiigomere oder polymere Verbindungen eingesetzt, die mindestens zwei gegenüber Isocyanat- Gruppen reaktive Gruppen, insbesondere Hydroxyl-Gruppen, aufweisen. Die entsprechenden 2K-Klebstoffe zeichnen sich durch sehr kurze Aushärtezeiten bezüglich der Migration monomerer, insbesondere monomerer aromatischer Diisocyanate, beziehungsweise entsprechender Amine aus, da die entständigen Isocyanat-Gruppen des erfindungsgemäßen Polyurethan-Prepolymeren schnell und nahezu vollständig mit der Härter-Komponente reagieren. Die im weiteren Text auf polymere Verbindungen bezogenen Molekulargewichtsangaben beziehen sich, soweit nicht anders angegeben, auf das Zahlenmittel des Molekulargewichts (Mπ). Alle Molekulargewichtsangaben beziehen sich, soweit nicht anders angegeben ist, auf Werte, wie sie durch Gelpermeationschroma- tographie (GPC) erhältlich sind).
Toluylendiisocyanat (TDI) ist seit langem bekannt. Die Herstellung erfolgt durch Nitrierung von Toluol, Reduktion und Umsetzung der entstandenen Toluoldiamine mit Phosgen oder direkt aus Dinitrotoluolen und Kohlenmonoxid. Die technisch wichtigsten Diisocyanate 2,4-TDI und 2,6-TDI werden als Gemisch im Isomerenverhältnis 2,4-TDI zu 2,6-TDI von 80:20 und seltener im Isomerenverhältnis von 65:35 zur Herstellung von Polyurethanen eingesetzt. Toluylendiisocyanat ist im Handel unter den Bezeichnungen TDI-65, TDI-80 und TDI-100, beispielsweise Desmodur® T100 von der Fa. Bayer, erhältlich; die Zahlen kennzeichnen dabei den Gehalt in % an reaktiverem 2,4-lsomeren gegenüber dem weniger reaktiven 2,6-lsomeren.
TDI wird insbesondere zur Herstellung von Polyurethan-Weichschäumen verwendet. Bei reaktiven Klebstoffsystemen spielt es eher eine untergeordnete Rolle, da es einen im Vergleich zu MDI (Methylenbisphenyldiisocyanat)-hohen Dampfdruck besitzt. MDI mit einem Anteil an 2,4'-lsomeren von mindestens 97,5 Gew.-% ist beispielsweise von der Fa. Elastogran unter dem Handelsnamen Lupranat® MCI erhältlich.
Im erfindungsgemäßen Verfahren wird als Polyisocyanat (X) mindestens ein unsymmetrisches Polyisocyanat bevorzugt aus der Gruppe: Toluylendiisocyanat (TDI) mit einem Gehalt >99 Gew.-% 2,4-TDI, 2,4'-MDl mit einem Anteil an 2,4'- Isomeren von mindestens 95 Gew.-%, vorzugsweise mindestens 97,5 Gew.-% eingesetzt.
Bei der Auswahl der Polyisocyanate für die erste Synthese-Stufe ist zu beachten, dass die NCO-Gruppen der Polyisocyanate unterschiedliche Reaktivität gegenüber mit Isocyanaten reaktive funktionelle Gruppe tragenden Verbindungen besitzen müssen. Dies trifft insbesondere auf Diisocyanate mit NCO-Gruppen in unterschiedlicher chemischer Umgebung, also auf unsymmetrische Diisocyanate zu. Es ist bekannt, dass dicyclische Diisocyanate oder allgemein symmetrische Diisocyanate in ihrer Reaktionsgeschwindigkeit höher liegen als die zweite Isocyanatgruppe unsymmetrischer bzw. monocyclischer Diisocyanate.
Das unsymmetrische Diisocyanat wird aus der Gruppe der aromatischen, aliphati- schen oder cycloaliphatischen Diisocyanate ausgewählt. Aus der Gruppe der aromatischen Diisocyanate mit unterschiedlich reaktiven NCO-Gruppen ist das Polyisocyanat bevorzugt ausgewählt aus der Gruppe: alle Isomeren des Toluylendiiso- cyanats (TDI) entweder in isomerenreiner Form oder als Mischung mehrerer Isomerer, Naphthalin-1 ,5-diisocyanat (NDI), 1 ,3-Phenylendiisocyanat und oder 2,4'- Diphenylmethandiisocyanat (2,4'^MDI). Insbesondere bevorzugt ist 2,4'-MDI mit einer Reinheit von > 97 Gew.-% an 2,4'-MDI.
Bevorzugte aliphatische Diisocyanate mit unterschiedlich reaktiven NCO-Gruppen sind 1 ,6-Diisocyanato-2,2,4-trimethylhexan, 1 ,6-Diisocyanato-2,4,4-trimethylhexan und Lysindiisocyanat.
Bevorzugte cycloaliphatische Diisocyanate mit unterschiedlich reaktiven NCO- GTuppen" sind z.B. 1-lsocyanatomethyl-3-isocyanato-A5,5-trimethyl-cyclohexan (Isophorondiisocyanat, IPDI) und 1-Methyl-2,4-diisocyanato-cyclohexan. Unter dem Merkmal Polyisocyanat wird eine Verbindung mit zwei oder mehr Isocyanat-Gruppen verstanden. Ein difunktionelles Polyisocyanat besitzt zwei freie NCO-Gruppen, ein trifunktionelles Polyisocyanat entsprechend drei freie NCO- Gruppen. Bevorzugt wird in einer dritten Synthese-Stufe mindestens ein weiteres mindestens difunktionelles Polyisocyanat hinzugefügt. Als difunktionelles Polyisocyanat wird ein Polyisocyanat mit der allgemeinen Struktur 0=C=N-Y-N=C=0 eingesetzt, wobei Y ein aliphatischer, alicyclischer oder aromatischer Rest ist, vorzugsweise ein alicyclischer oder aromatischer Rest mit 4 bis 18 C-Atomen. Geeignete Polyisocyanate sind ausgewählt aus der Gruppe: 1 ,5- Naphthylendiisocyanat, 2,4-oder 4,4'-Diphenylmethandiisocyanat (MDI), hydriertes MDI (Hι2MDI), Xylylendiisocyanat (XDI), Tetramethylxylylendiisocyanat (TMXDI), 4,4'-Diphenyldimethylmethandiisocyanat, Di- und Tetraalkylendiphenylmethandiiso- cyanat, 4,4'-Dibenzyldiisocyanat, 1,3-Phenylendiisocyanat, 1 ,4- Phenylendiisocyanat, die Isomeren des Toluylendiisocyanats (TDI), 1-Methyl-2,4- diisocyanato-cyclohexan, 1 ,6-Diisocyanato-2,2,4-trimethylhexan, 1 ,6-Diisocyanato- 2,4,4-trimethylhexan, 1-lsocyanatomethyl-3-isocyanato-1,5,5-trimethylcyclohexan (IPDI), chlorierte und bromierte Diisocyanate, phosphorhaltige Diisocyanate, 4,4'-Di- isocyanatophenylperfluorethan, Tetramethoxybutan-1 ,4-diisocyanat, Butan-1 ,4- diisocyanat, Hexan-1 ,6-diisocyanat (HDI), Dicyclohexylmethandiisocyanat, Cyclohe- xan-1 ,4-diisocyanat, Ethylen-diisocyanat, Phthalsäure-bis-isocyanato-ethylester, ferner Diisocyanate mit reaktionsfähigen Halogenatomen, wie 1-Chiormethylphenyl-2,4- diisocyanat, 1-Brommethylphenyl-2,6-diisocyanat,3,3-Bis-chlormethylether-4,4'- diphenyldiisocyanat.
Aus der Gruppe der aromatischen Polyisocyanate wird in einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens in der dritten Synthese-Stufe Methylentriphenyltriisocyanat (MIT) eingesetzt. Aromatische Diisocyanate sind dadurch definiert, dass die Isocyanatgruppe direkt am Benzolring angeordnet ist. Einsetzbare aromatische Diisocyanate sind 2,4-oder 4,4 -Diphenyl- methandiisocyanat (MDI), die Isomeren des Toluylendiisocyanats (TDI), Naphthalin- 1 ,5-diisocyanat (NDI).
Schwefelhaltige Polyisocyanate erhält man beispielsweise durch Umsetzung von 2 mol Hexamethylendiisocyanat mit 1 mol Thiodiglykol oder Dihydroxydihexylsulfid. Weitere einsetzbare Diisocyanate sind Trimethylhexamethylendiisocyanat, 1 ,4-Dii- socyanatobutan, 1 ,12-Diisocyanatododecan und Dimerfettsäurediisocyanat. Besonders geeignet sind: Tetramethylen-, Hexamethylen-, Undecan-, Dodecamethylen-, 2,2,4-Trimethylhexan-2,3,3-Trimethyl-hexamethylen-, 1 ,3-Cyclohexan-, 1 ,4- Cyclohexan-, 1,3- bzw. 1 ,4-Tetramethylxylol-, Isophoron-, 4,4-Dicyclohexylmethan-, Tetramethylxylylen-(TMXDI) und Lysinesterdiisocyanat.
Als mindestens trifunktionelle Isocyanate geeignet sind Polyisocyanate, die durch Trimerisation oder Oligomerisation von Diisocyanaten oder durch Reaktion von Diisocyanaten mit polyfunktionellen hydroxyl- oder aminogruppenhaltigen Verbindungen entstehen.
Zur Herstellung von Trimeren geeignete Isocyanate sind die bereits oben genannten
Diisocyanate, wobei die Trimerisierungsprodukte der Isocyanate HDI, MDI oder IPDI besonders bevorzugt sind.
Weiterhin geeignet sind blockierte, reversibel verkappte Polykisisocyanate wie 1,3,5-
Tris[6-(1-methyl-propyliden-aminoxycarbonyl-amino)-hexyl]-2,4,6-trixo-hexahydro-
1 ,3,5-triazin.
Ebenfalls zum Einsatz geeignet sind die polymeren Isocyanate, wie sie beispielsweise als Rückstand im Destillationssumpf bei der Destillation von Diisocyanaten anfallen. Besonders geeignet ist hierbei das polymere MDI, wie es bei der Destillation von MDI aus dem Destillationsrückstand erhältlich ist.
Im Rahmen einer bevorzugten Ausführungform der Erfindung wird in der dritten Stufe Desmodur N 3300, Desmodur N 100 (Hersteller: Bayer AG) oder das IPDI-trimere Isocyanurat T 1890 (Hersteller Fa. Degussa) eingesetzt.
In einer weiteren bevorzugten Ausführungsform der Erfindung wird in der dritten Reaktionsstufe als weiteres Polyisocyanat ein Triisocyanat eingesetzt. Als Triisocyanat bevorzugt sind Addukte aus Diisocyanaten und niedermolekularen Triolen, insbesondere die Addukte aus aromatischen Diisocyanaten und Trio- len, wie z. B. Trimethylolpropan oder Glycerin. Auch aliphatische Triisocyanate wie zum Beispiel das Biuretisierungsprodukt des Hexamethylendiisocyanates (HDI) oder das Isocyanuratisierungsprodukt des HDI oder auch die gleichen Trimerisierungsprodukte des Isophorondiisocyanats (IPDI) sind für die erfindungsgemäßen Polyurethan-Prepolymeren geeignet, sofern der Anteil an Diisocyanaten <1 Gew.-% beträgt und der Anteil an tetra- bzw. höher- funktionellen Isocyanaten nicht größer als 25 Gew.-% ist.
Wegen ihrer guten Verfügbarkeit sind dabei die vorgenannten Trimerisierungsprodukte des HDI und des IPDI besonders bevorzugt.
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird in der dritten Synthese-Stufe als weiteres Polyisocyanat eine Mischung eines Diisocyanats, bevorzugt eines aromatischen Diisocyanats, mit Carbodiimid eingesetzt. Carbodiimid-Gruppen sind in einfacher Weise aus zwei Isocyanatgruppen unter Abspaltung von Kohlendioxid erhältlich. Ausgehend von Di-isocyanaten sind so oiigomere Verbindungen mit mehreren Carbodiimidgruppen und bevorzugt endständigen Isocyanatgruppen erhältlich. Oiigomere Carbodiimide und deren Herstellung sind in der WO 03/068703 auf Seite 3, Zeile 37 bis Seite 5, Zeile 41 , beschrieben. In der Mischung aus Diisocyanat und Carbodiimid liegt das Diisocyanat zu 5 bis 95 Gew.-%, bevorzugt zu 20 bis 90 Gew.-% und insbesondere bevorzugt zu 40 bis 85 Gew.-% vor, bezogen auf das Gesamtgewicht der Mischung. Kommerziell verfügbare Mischungen aus Diisocyanat und Carbodiimid sind beispielsweise unter dem Handelsnamen Isonate ® 143 L oder M von der Firma DOW Chemical Company, Desmodur CD von der Firma Bayer AG oder als Suprasec 2020 von der Firma Huntsman erhältlich.
Es ist wichtig, in der ersten Synthese-Stufe als Polyisocyanat (X) ein unsymmetrisches Polyisocyanat, bevorzugt aus der Gruppe: TDI mit einem Gehalt > 99 Gew.-% 2,4-TDI, 2,4-Diphenylmethandiisocyanat mit einem Anteil von 2,4'-lsomeren von mindestens 95 Gew.-%, vorzugsweise mindestens 97,5 Gew.-% einzusetzen und erst bei Umsetzung aller Hydroxyl-Gruppen die 2. Synthese-Stufe einzuleiten. Trotz der hohen Reaktivität, insbesondere des 2,4-TDI und 2,4'-MDI-lsomeren verläuft die Reaktion unter_den angegebenen Reaktionsbedingungen, insbesondere im ausgewählten Bereich des OH:NCO-Reaktionsverhältnisses, überraschenderweise sehr selektiv und führt dazu, dass Komponente (A) bereits am Ende der ersten Verfahrensstufe eine niedrige Viskosität und einen sehr geringen Gehalt an monomeren Polyisocyanat (X) aufweist.
Der Begriff "Polyol" umfaßt im Rahmen des vorliegenden Textes ein einzelnes Polyol oder ein Gemisch von zwei oder mehr Polyolen, die zur Herstellung von Polyurethanen herangezogen werden können. Unter einem Polyol wird ein polyfunkti- oneller Alkohol verstanden, d. h. eine Verbindung mit mehr als einer OH-Gruppe im Molekül.
Geeignete Polyole sind aliphatische Alkohole mit 2 bis 6, vorzugsweise 2 bis 4, OH-Gruppen pro Molekül. Die OH-Gruppen können sowohl primär als auch sekundär sein.
Zu den geeigneten aliphatischen Alkoholen zählen beispielsweise Ethylenglykol, Propylenglykol, Butandiol-1,4, Pentandiol-1 ,5, Hexandiol-1 ,6, Heptandiol-1 ,7, Octan- diol-1 ,8 und deren höhere Homologen oder Isomeren, wie sie sich für den Fachmann aus einer schrittweisen Verlängerung der Kohlenwasserstoffkette um jeweils eine CH2-Gruppe oder unter Einführung von Verzweigungen in die Kohlenstoffkette ergeben. Ebenfalls geeignet sind höherfunktionelle Alkohole wie beispielsweise Gly- cerin, Trimethylolpropan, Pentaerythrit sowie oiigomere Ether der genannten Substanzen mit sich selbst oder im Gemisch aus zwei oder mehr der genannten Ether untereinander.
Bevorzugt werden als Polyolkomponente Umsetzungsprodukte niedermolekularer polyfunktioneller Alkohole mit Alkylenoxiden, sogenannte Polyether, eingesetzt. Die Alkylenoxide weisen vorzugsweise 2 bis 4 C-Atome auf. Geeignet sind beispielsweise die Umsetzungsprodukte von Ethylenglykol, Propylenglykol, den isomeren Butandiolen, Hexandiolen oder 4,4'-Dihydroxy-diphenylpropan mit Ethylenoxid, Propylenoxid oder Butylenoxid, oder Gemischen aus zwei oder mehr davon. Ferner sind auch die Umsetzungsprodukte polyfunktioneller Alkohole, wie Glycerin, Tri- methylolethan oder Trimethylolpropan, Pentaerythrit oder Zuckeralkohole, oder Gemischen aus zwei oder mehr davon, mit den genannten Alkylenoxiden zu Polyether- polyolen geeignet. So können - je nach gewünschtem Molekulargewicht - Anlagerungsprodukte von nur wenigen Mol Ethylenoxid und/oder Propylenoxid pro Mol oder aber von mehr als hundert Mol Ethylenoxid und/oder Propylenoxid an niedermolekulare mehr funktionelle Alkohole eingesetzt werden. Weitere Polyetherpolyole sind durch Kondensation von z.B. Glycerin oder Pentaerythrit unter Wasserabspaltung herstellbar.
Weitere, im Rahmen der Erfindung gebräuchliche Polyole entstehen weiterhin durch Polymerisation von Tetrahydrofuran (Poly-THF).
Unter den genannten Polyetherpolyolen sind die Umsetzungsprodukte von mehrfunktionellen niedermolekularen Alkoholen mit Propylenoxid unter Bedingungen, bei denen zumindest teilweise sekundäre Hydroxylgruppen entstehen, insbesondere für die erste Synthese-Stufe besonders geeignet.
Die Polyetherpolyole werden in dem Fachmann bekannter Weise durch Umsetzung der Startverbindung mit einem reaktiven Wasserstoffatom mit Alkylenoxiden, beispielsweise Ethylenoxid, Propylenoxid, Butylenoxid, Styroloxid, Tetrahydrofuran oder Epichlorhydrin oder Gemischen aus zwei oder mehr davon, umgesetzt. Geeignete Startverbindungen sind beispielsweise Wasser, Ethylenglykol, Propy- lenglykol-1 ,2 oder -1 ,3, ButylenglykoM ,4 oder -1 ,3, Hexandiol-1 ,6, Octandiol-1 ,8, Neopentylglykol, 1 ,4-Hydroxymethylcyclohexan, 2-Methyl-1 ,3-propandiol, Glycerin, Trimethylolpropan, Hexantriol-1 ,2,6, Butantriol-1 ,2,4 Trimethylolethan, Pentaerythrit, Mannitol, Sorbitol, Methylglykoside, Zucker, Phenol, Isononylphenol, Resorcin, Hydrochinon, 1 ,2,2- oder 1 ,1 ,2-Tris-(hydroxyphenyl)-ethan, Ammoniak, Methylamin, Ethylendiamin, Tetra- oder Hexamethylenamin, Triethanolamin, Anilin, Phe- nylendiamin, 2,4- und 2,6-Diaminotoluol und Polyphenylpolymethylenpolyamine, wie sie sich durch Anilin-Formaldehydkondensation erhalten lassen, oder Gemische aus zwei oder mehr davon.
Ebenfalls zum Einsatz als Polyolkomponente geeignet sind Polyether, die durch Vi nylpolymere modifiziert wurden. Derartige Produkte sind beispielsweise erhältlich, in dem Styrol- oder Acrylnitril, oder deren Gemisch, in der Gegenwart von Polyethern polymerisiert werden. - Bevorzugt wird als Polyol mindestens ein Polyesterpolyol eingesetzt. Geeignet sind Polyesterpolyole, die durch Umsetzung von niedermolekularen Alkoholen, insbesondere von Ethylenglykol, Diethylenglykol, Neopentylglykol, He- xandiol, Butandiol, Propylenglykol, Glycerin oder Trimethylolpropan mit Caprolac- ton entstehen.
Weitere geeignete Polyesterpolyole sind bevorzugt durch Polykondensation herstellbar.
Derartige Polyesterpolyole umfassen bevorzugt die Umsetzungsprodukte von polyfunktionellen, vorzugsweise difunktionellen Alkoholen (gegebenenfalls zusammen mit geringen Mengen an trifunktionellen Alkoholen) und polyfunktionellen, vorzugsweise difunktionellen und/oder trifunktionellen Carbonsäuren. Anstatt freier Po- lycarbonsäuren können (wenn möglich) auch die entsprechenden Polycarbonsäu- reanhydride oder entsprechende Polycarbonsäureester mit Alkoholen mit vorzugsweise 1 bis 3 C-Atomen eingesetzt werden. Zur Herstellung derartiger Polyesterpolyole geeignet sind insbesondere Hexandiol, 1 ,4-Hydroxymethylcyclohexan, 2- Methyl-1 ,3-propandiol, Butantriol-1 ,2,4, Triethylenglykol, Tetraethylenglykol, Ethylenglykol, Polyethylenglykol, Dipropylenglykol, Polypropylenglykol, Dibutylenglykol und Polybutylenglykol.
Die Polycarbonsäuren können aliphatisch, cycloaliphatisch, aromatisch oder hetero- cyclisch oder beides sein. Sie können gegebenenfalls substituiert sein, beispielsweise durch Alkylgruppen, Alkenylgruppen, Ethergruppen oder Halogene. Als Polycarbonsäuren sind beispielsweise Bernsteinsäure, Adipinsäure, Korksäure, Azelainsäu- re, Sebacinsäure, Phthalsäure, Isophthalsäure, Terephthalsäure, Trimellithsäure, Phthalsäureanhydrid, Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäure- anhydrid, Tetrachlorphthalsäureanhydrid, Endomethylentetrahydrophthal- säureanhydrid, Glutarsäureanhydrid, Maleinsäure, Maleinsäureanhydrid, Fumarsäu- re, Dimerfettsäure oder Trimerfettsäure oder Gemische aus zwei oder mehr davon geeignet. Gegebenenfalls können untergeordnete Mengen an monofunktionellen Fettsäuren im Reaktionsgemisch vorhanden sein. Als Tricarbonsäuren sind bevorzugt Zitronensäure oder Trimellithsäure geeignet. Die genannten Säuren können einzeln oder als Gemische aus zwei oder mehr davon eingesetzt werden.
Im Rahmen der Erfindung besonders geeignet sind Polyesterpolyole aus mindestens einer der genannten Dicarbonsäuren und Glycerin, welche einen Restgehalt an OH- Gruppen aufweisen.
Die Polyester können gegebenenfalls einen geringen Anteil an Carboxylendgruppen aufweisen. Aus Lactonen, beispielsweise auf Basis von ε-Caprolacton, auch "Poly caprolactone" genannt, oder Hydroxycarbonsäuren, beispielsweise ω- Hydroxycapronsäure, erhältliche Polyester, können ebenfalls eingesetzt werden. Es können aber auch Polyesterpolyole oleochemischer Herkunft verwendet werden. Derartige Polyesterpolyole können beispielsweise durch vollständige Ringöffnung von epoxidierten Triglyceriden eines wenigstens teilweise olefinisch ungesättigte Fettsäure-enthaltenden Fettgemisches mit einem oder mehreren Alkoholen mit 1 bis 12 C-Atomen und anschließender partieller Umesterung der Triglyce- rid-Derivate zu Alkylesterpolyolen mit 1 bis 12 C-Atomen im Alkylrest hergestellt werden. Weitere geeignete Polyole sind Polycarbonat-Polyole und Dimerdiole (Fa. Henkel) sowie Rizinusöl und dessen Derivate. Auch die Hydroxy-funktionellen Po- lybutadiene, wie sie z.B. unter dem Handelsnamen "Poly-bd" erhältlich sind, können für die erfindungsgemäßen Zusammensetzungen als Polyole eingesetzt werden.
Ebenfalls als Polyolkomponente geeignet sind Polyacetale. Unter Polyacetalen werden Verbindungen verstanden, wie sie aus Glykolen, beispielsweise Diethylenglykol oder Hexandiol oder deren Gemisch mit Formaldehyd erhältlich sind. Im Rahmen der Erfindung einsetzbare Polyacetale können ebenfalls durch die Polymerisation cyclischer Acetale erhalten werden.
Weiterhin als Polyole geeignet sind Polycarbonate. Polycarbonate können beispielsweise durch die Reaktion von Diolen, wie Propylenglykol, Butandiol-1 ,4 oder Hexan- diol-1 ,6, Diethylenglykol, Triethylenglykol oder Tetraethylenglykol oder Gemischen aus zwei oder mehr davon mit Diärylcärbönaten, beispielsweise Diphenylcarbonat, oder Phosgen, erhalten werden. Ebenfalls als Polyolkomponente geeignet sind OH-Gruppen tragende Polyacrylate. Diese Polyacrylate sind beispielsweise erhältlich durch die Polymerisation von ethy- lenisch ungesättigten Monomeren, die eine OH-Gruppe tragen. Solche Monomeren sind beispielsweise durch die Veresterung von ethylenisch ungesättigten Carbonsäuren und difunktionellen Alkoholen, wobei der Alkohol in der Regel in einem leichten Überschuss vorliegt, erhältlich. Hierzu geeignete ethylenisch ungesättigte Carbonsäuren sind beispielsweise Acrylsäure, Methacrylsäure, Crotonsäure oder Maleinsäure. Entsprechende OH-Gruppen tragende Ester sind beispielsweise 2- Hydroxyethylacrylat, 2-Hydroxyethylmethacrylat, 2-Hydroxypropylacrylat, 2-Hydro xypropylacrylat, 2-Hydroxypropylmethacrylat, 3-Hydroxypropylacrylat oder 3-Hydro- xypropylmethacrylat oder Gemische aus zwei oder mehr davon.
Als Polyol wird in der ersten Synthese-Stufe mindestens ein Polyol mit einem durchschnittlichen Molekulargewicht (Mn) von 60 bis 3000 g/mol, bevorzugt 100 bis 2.000 g/mol und insbesondere bevorzugt 200 bis 1.200 g/mol, einsetzt. Insbesondere bevorzugt wird in der ersten Synthese-Stufe mindestens ein Polye- therpolyol mit einem Molekulargewicht (Mn) von 100 bis 3.000 g/mol, bevorzugt 150 bis 2.000 g/mol, und /oder mindestens ein Polyesterpolyol mit einem Molekulargewicht von 100 bis 3.000 g/mol, bevorzugt 250 bis 2.500 g/mol, eingesetzt.
In einer weiteren bevorzugten Ausführungsform wird in der ersten Synthese-Stufe mindestens ein Polyol eingesetzt, welches unterschiedlich reaktive Hydroxyl- Gruppen besitzt.
Ein Unterschied in der Reaktivität liegt beispielsweise zwischen primären und sekundären Hydroxyl-Gruppen vor.
Konkrete Beispiele für die erfindungsgemäß zu verwendenden Polyole mit unterschiedlich reaktiven Hydroxyl-Gruppen sind 1 ,2-Propandiol, 1 ,2-Butandiol, Dipro- pylenglycol, Tripropylenglycol, Tetrapropylenglykol, die höheren Homologen des Polypropylenglykols mit einem durchschnittlichen Molekulargewicht (Zahlenmittel Mn) von bis 3.000, insbesondere bis 2.500 g/mol, sowie Copolymere des Polypropylenglykols, beispielsweise Block- oder-statistische Copolymere aus Ethylen- und Propylenoxid. Durch Umsetzung von Polyisocyanat (X) mit einem Polyol, welches ein durchschnittliches Molekulargewicht von 60 bis 3000 g/mol aufweist, wird in der ersten Synthese-Stufe Komponente (A) hergestellt, wobei man das Verhältnis Hydroxyl - Gruppen zu Isocyanat -Gruppen so einstellt, dass ein zumindest bei Reaktionstemperatur noch fließfähiges Produkt entsteht.
Komponente (A) ist ausreichend niedrigviskos, wenn man das Verhältnis Hydroxyl-Gruppen zu Isocyanat-Gruppen < 1 , bevorzugt im Bereich 0,4:1 bis 0,8:1 und insbesondere bevorzugt 0,45:1 bis 0,6:1 einstellt.
Zur Durchführung des erfindungsgemäßen Verfahrens ist es bevorzugt, wenn in der ersten Synthese-Stufe die Umsetzung von Polyisocyanat (X) mit dem mindestens einen Polyol mit einem durchschnittlichen Molekulargewicht (Mn) von 60 bis 3000 g/mol bei einer Temperatur von 20 °C bis 90 °C, bevorzugt von 40 bis 85 °C, insbesondere bevorzugt von 60 bis 80 °C erfolgt. In einer besonderen Ausführungsform erfolgt die Umsetzung in der ersten Synthese-Stufe bei 35 bis 50 °C oder bei Raumtemperatur.
Wichtig ist es, die Reaktion in der ersten Synthese-Stufe so lange fortzuführen, bis alle Hydroxyl-Gruppen umgesetzt sind. Hierzu ist der berechnete NCO-Wert maßgeblich, der sich theoretisch bei einer vollständigen Umsetzung der Hydroxyl- Gruppen mit der reaktiveren NCO-Gruppe von Polyisocyanat (X) ergibt. Praktisch kann dies in analytischer Weise durch Titration der Isocyanatgruppen festgestellt werden und die zweite Synthese-Stufe wird eingeleitet, wenn der errechnete NCO-Wert erreicht ist.
Die Reaktionszeit ist abhängig von der Temperatur. Bei 40°C bis 75 °C beträgt die Reaktionszeit 2 bis 20 Stunden. Bei Raumtemperatur beträgt die Reaktionszeit 2 bis 5 Tage.
Komponente (A) weist einen NCO-Wert von 4-Gew.-% bis 16 Gew.-%, bevorzugt 4 Gew.-% bis 12 Gew.-% und insbesondere bevorzugt 4 Gew.-% bis 10 Gew.-% (nach Spiegelberger, EN ISO 11909) auf. In einer besonders bevorzugte Ausführungsform der Erfindung enthält das Reaktionsgemisch der ersten und/oder zweiten Synthese-Stufe einen Katalysator. Als erfindungsgemäß einsetzbare Katalysatoren eignen sich Phosphorsäure, metallorganische Verbindungen und/oder tertiäre Amine in Konzentrationen zwischen 0,1 und 5 Gew.-%, vorzugsweise zwischen 0,3 und 2 Gew.-% und insbesondere bevorzugt zwischen 0,5 bis 1 Gew.-%. Bevorzugt sind metallorganische Verbindungen des Zinns, Eisens, Titans, Bismuts oder Zirkoniums. Vor allem bevorzugt sind metallorganische Verbindungen wie Zinn(ll)salze oder Titan(IV)salze von Carbonsäuren, starke Basen wie Alkali-Hydroxide, -Alkoholate und -Phenolate, z. B. Di-n-octyl-
Zinn-mercaptid, Dibutylzinn-maleat, -diacetat, -dilaurat, dichlorid, -bisdodecyl- marcaptid, Zinn-ll-acetat, -ethylhexoat und -diethylhexoat, Tetraisopropyltitanat oder Blei-Phenyl-Ethyl-Dithiocarbaminat.
Insbesondere werden die folgenden tertiären Amine als Katalysator, allein oder in Kombination mit mindestens einem der oben genannten Katalysatoren, eingesetzt: Diazabicyclo-octan (DABCO), Triethylamin, Dimethylbenzylamin (Desmorapid DB, Bayer).
Erfindungsgemäß werden Kombinationen aus metallorganischen Verbindungen und Aminen besonders bevorzugt, wobei das Verhältnis Amin zu metallorganischer Verbindung 0,5:1 bis 10:1 , bevorzugt 1 :1 bis 5:1 und insbesondere bevorzugt 1 ,5:1 bis 3:1 beträgt.
In einer besonders bevorzugten Ausführungsform der Erfindung wird insbesondere zur Erhöhung der Selektivität, d. h. zur Erhöhung der bevorzugten Reaktion einer der beiden NCO-Gruppen des Polyisocyanats (X) in der ersten Synthese-Stufe als Katalysator ε-Caprolactam eingesetzt. Bezogen auf die Geamtmenge an eingesetztem Polyisocyanat (X) und Polyol in der ersten Synthese-Stufe beträgt die Menge an eingesetztem ε-Caprolactam 0,05 bis 6 Gew.-%, bevorzugt 0,1 bis 3 Gew.-%, insbesondere bevorzugt 0,2 bis 0,8 Gew.-%. Das ε-Caprolactam kann als Pulver, als Granulat oder in flüssiger Form eingesetzt werden. Bevorzugt wird in der zweiten Synthese-Stufe als weiteres Polyol ein Polyether oder Polyethergemisch mit einem Molekulargewicht (Mn) von etwa 100 bis 10.000 g/mol, vorzugsweise von etwa 200 bis etwa 5.000 g/mol und/oder ein Polyesterpo- lyol oder Polyesterpolyolgemisch mit einem Molekulargewicht (Mn) von etwa 200 bis 10.000 g/mol eingesetzt.
In einer besonders bevorzugten Ausführungsform der Erfindung wird in der zweiten Synthese-Stufe als weiteres Polyol ein Polyol mit einem Molekulargewicht (Mn) von 60 bis 400, bevorzugt 80 bis 200 g/mol eingesetzt.
In der zweiten Synthese-Stufe beträgt das Verhältnis Hydroxyl-Gruppen zu Isocyanat-Gruppen der Komponente (A) 1 ,1 : 1 bis 2 : 1 , bevorzugt 1 ,3 : 1 bis 1 ,8 : 1 und insbesondere bevorzugt von 1 ,45 : 1 bis 1 ,75 : 1.
Für die Reaktion über alle Synthese-Stufen ergibt sich ein Gesamtverhältnis NCO- Gruppen zu Hydroxyl-Gruppen von 1 ,6 bis 1 ,8:1.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens gibt man in der zweiten Synthese-Stufe bei einer Temperatur zwischen 25 °C bis 100°C, bevorzugt zwischen 35 °C bis 85 °C, insbesondere bevorzugt zwischen 45 und 70 °C das mindestens eine weitere Polyol zu und läßt es mit den Isocyanat- Gruppen von Komponente (A) und eventuell noch vorhandenen überschüssigem Polyisocyanat (X) reagieren, bis die Anzahl der Isocyanat-Gruppen nicht weiter absinkt. Dies kann analytisch durch Titration der Isocyanat-Gruppen festgestellt werden.
Der Gehalt an monomeren 2,4-TDI und 2,4'-MDI beträgt am Ende der zweiten Stufe weniger als 0,5 Gew.-%, bevorzugt weniger als 0,1 Gew.-%, bezogen auf das Gesamtgewicht der Komponente (A).
In einer besonders bevorzugten Ausführungsform der Erfindung wird am Ende der zweiten Synthese-Stufe in-einer dritten Synthese-Stufe mindestens ein weiteres mindestens difunktinonelles Polyisocyanat hinzugegeben. In einer besonderen Ausführungsform wird die Synthese in einem aprotischen Lösemittel durchgeführt. Als aprotisches Lösemittel werden bevorzugt halogenhaltige organische Lösemittel eingesetzt, insbesondere bevorzugt werden Aceton, Methylethylketon, Methylisobutylketon oder Ethylacetat eingesetzt.
Der gewichtsmäßige Anteil des gesamten Reaktionsgemisches in der Mischung mit dem aprotischen Lösemittel liegt bei 30 bis 90 Gew.-%, bevorzugt 40 bis 85 Gew.-% und insbesondere bevorzugt 60 bis 80 Gew.-%. Bevorzugt ist das Endprodukt ein lösemittelfreies Polyurethan-Prepolymer, daher wird nach Abschluss der Reaktion und nach einem Zeitraum von 30 bis 90 Minuten Nachrührens das Lösemittel abdestilliert.
Das erfindungsgemäße Polyurethan-Prepolymer mit endständigen NCO-Gruppen hat bei 40 °C eine Viskosität von 800 mPas bis 10.000 mPas, bevorzugt von 1000 mPas bis 5000 mPas und insbesondere bevorzugt von 1200 mPas bis 3000 mPas (gemessen nach Brookfield, ISO 2555).
Der NCO-Gehalt im erfindungsgemäß hergestellten Polyurethan-Prepolymeren beträgt 6 Gew.-% bis 22 Gew.-% und insbesondere bevorzugt 8 Gew.-% bis 15 Gew.-% (nach Spiegelberger, EN ISO 11909).
Die erfindungsgemässen Polyurethan-Prepolymeren mit endständigen Isocyanat- Gruppen eignen sich in Substanz oder als Lösung in organischen Lösemitteln als Kleb-/Dichtstoff oder Kleb-/Dichtstoff-Komponente, bevorzugt zur Herstellung ein- oder zweikomponentiger Kleb-/Dichtstoffe.
Aufgrund des extrem niedrigen Anteils an migrationsfähigen monomeren unsymmetrischen Diisocyanaten, insbesondere des leichtflüchtigen 2,4-TDI, eignen sich die erfindungsgemäß hergestellten Polyurethan-Prepolymeren insbesondere als ein- oder zweikomponentige Kaschierklebstoffe zum Kaschieren von Textilien, Metalien, insbesondere Aluminium, und Kunststoff-Folien sowie Metall- bzw. Oxidbedampften Folien und Papieren. Hierbei können übliche Härter, etwa mehrfunkti- onelle höhermolekulare Polyole zugesetzt werden (Zweikomponentensysteme) oder aber Oberflächen mit definiertem Feuchtigkeitsgehalt mit den erfindungsgemäß hergestellten Produkten direkt verklebt werden (Einkomponentenklebstoffe). Die erfindungsgemäß hergestellten Polyurethan-Prepolymeren zeichnen sich durch einen extrem niedrigen Anteil an arbeitshygienisch bedenklichen monome- ren leichtflüchtigen Diisocyanaten mit einem Molekulargewicht unterhalb von 500 g/mol aus. Das Verfahren hat den wirtschaftlichen Vorteil, daß die Monomerenar- mut ohne aufwendige und kostspielige Arbeitsschritte erzielt wird.
Die so hergestellten Polyurethan-Prepolymeren sind darüberhinaus frei von den üblicherweise bei thermischen Aufarbeitungsschritten anfallenden Nebenprodukten wie Vernetzungs- oder Depolymerisationsprodukten.
Durch das erfindungsgemäße Verfahren werden kürzere Reaktionszeiten erzielt, trotzdem bleibt die Selektivität zwischen den unterschiedlichen reaktiven NCO- Gruppen des unsymmetrischen Diisocyanats soweit bestehen, das Polyurethan- Prepolymere mit niedrigen Viskositäten erhalten werden. Dadurch wird das Verkleben temperaturempfindlicher Substrate, insbesondere von Kunststoffolien ermöglicht. Zur Gruppe temperaturempfindlicher Kunststofffolien gehören Polyolefin- folien, insbesondere Folien aus Polyethylen oder Polypropylen.
Folienverbunde, hergestellt auf Basis der erfindungsgemäß hergestellten Polyurethan-Prepolymeren zeigen hohe Verarbeitungssicherheit beim Heißsiegeln. Dies ist auf dem stark vermindertem Anteil migrationsfähiger niedermolekularer Produkte in dem Polyurethan zurückzuführen.
Durch den stark vermindertem Anteil migrationsfähiger niedermolekularer Produkte eignen sich die erfindungsgemäßen Polyurethan-Prepolymeren insbesondere zur Herstellung von Folienverbunden für den Lebensmittelbereich. Gegenstand der Erfindung sind daher auch Folienverbunde, insbesondere für die Verpackung von Lebensmitteln, die Kaschierklebstoffe auf Basis der erfindungsgemäßen Polyurethan-Prepolymeren enthalten. Desweiteren können die erfindungsgemäß hergestellten ~ NCO-Gruppen ~ enthaltenden Tnonomerenarmen Polyurethan-- Prepolymeren auch in Extrusions-, Druck- und Metallisierungsprimern sowie zur Heißsiegelung verwendet werden.
Die Erfindung wird nun an Hand von Beispielen im einzelnen erläutert.
Beispiele 1. Rezepturbeispiele
1.1. Beispiel 1 :
21 ,9 % trifunktionelles Polyester-ol mit OH-Zahl 160
21 ,0 % Polypropylenglykol mit OH-Zahl 110
1 ,4 % Diethylenglykol (DEG)
19,6 % Desmodur T-100 (Bayer AG)
36,2 % Isonate M143 (modifiziertes 4,4'-MDI mit ca. 20 % Carbodiimid-Anteil; Dow
Chemical Company)
Die Mischung aus trifunktionellem Polyol und PPG wird mit TDI bei 75 bis 80°C zur Reaktion gebracht bis OH vollständig reagiert hat (8 Ge.-% NCO). Es wird auf ca. 60°C abgekühlt und DEG langsam zugetropft. Bei dieser Temperatur erfolgt die vollständige Reaktion des DEG bis zur NCO-Konstanz (6 Gew-% NCO). In der Abkühlphase wird das flüssige MDI-Oligomer Isonate zugegeben und ein NCO- Wert von 14,2 Gew.-% eingestellt.
Viskosität: 7300 mPas (Brookfield, LVT) bei 20°C 2400 mPas (Brookfield, LVT) bei 40°C freies TDI: < 0,1 Gew.-%
Den 2-Komponenten Kaschierklebstoff erhält man durch Mischung des obigen PUR-Prepolymers mit einem Härter auf Polyesterbasis (Funktionalität 2-3, OH- Zahl 170, Viskosität < 10.000 mPas bei RT) im Verhältnis 1 ,25:1.
1.2. Beispiel 2 (nicht erfindungsgemäß)
In der Rezeptur des Beispiels 1 wird Desmodur T-100 durch T-80/20 ausgetauscht und ansonsten nichts verändert. Viskosität: 11750 mPas-(Brookfield, LVT) bei 20°C 2200 mPas (Brookfield, LVT) bei 40°C freies TDI: 0,3-0,5 Gew.-% Kaschierklebstoff in Kombination mit Härter (siehe Bsp. 1) im Vergleich 1 ,25:1.
3. Ergebnisse Die Verbund- und Siegelhaftwerte nach 14 Tagen Aushärtung sind Tab.1 zu entnehmen. Die Migratwerte über die Zeit sind Tab. 2 zu entnehmen. Tab. 3 gibt die Migratwerte des erfindungsgemäßen Beispiels 1 gegenüber Beispiel 2 wieder.
Figure imgf000025_0001
1) Liofol UR 7725/Härter UR 6062-21 , MV:170:100 2) Liofol UR 7735/Härter UR 6088, MV: 100:40 Tab. 2
Figure imgf000026_0001
1) Migratwerte nach BGW Methode μg Anilinhydrochlorid/100ml 2) Liofol UR 7725/Härter UR 6062-21 , MV:170:100 3) Liofol UR 7735/Härter UR 6088, MV: 100:40
Tab. 3
Figure imgf000026_0002
Migratwerte nach BGW Methode μg Anilinhydrochlorid/100ml

Claims

Patentansprüche
1) Verfahren zur Herstellung von Polyurethan-Prepolymeren mit endständigen Isocyanat-Gruppen, bei dem man Polyisocyanate mit Polyolen umsetzt, dadurch gekennzeichnet, dass man (I) in einer ersten Synthese-Stufe eine Komponente (A) herstellt, indem man a) als Polyisocyanat (X) mindestens ein unsymmetrisches Polyisocyanat, bevorzugt aus der Gruppe: Toluylendiisocyanat (TDI) mit einem Gehalt > 99 Gew.-% 2,4-TDI, 2,4'-Diphenylmethandiisocyanat mit einem Anteil an 2,4'-lsomeren von mindestens 95 Gew.-%, vorzugsweise mindestens 97 Gew.-% einsetzt, b) als Polyol mindestens ein Polyol mit einem durchschnittlichen Molekulargewicht (Mn) von 60 bis 3000 g/mol einsetzt, . c) das Verhältnis Hydroxyl-Gruppen zu Isocyanat-Gruppen < 1 , bevorzugt im Bereich zwischen 0,4 : 1 bis 0,8 : 1 , insbesondere bevorzugt im Bereich zwischen 0,45 : 1 bis 0,6 : 1 einstellt, d) gegebenenfalls einen Katalysator zusetzt, und nach Umsetzung aller Hydroxyl-Gruppen (II) in einer zweiten Synthese-Stufe ein weiteres Polyol der Komponente (A) hinzufügt, wobei man das Reaktionsverhältnis der Hydroxyl-Gruppen des weiteren Polyols zu Isocyanat-Gruppen von Komponente A im Bereich von 1 ,1 : 1 bis 2,0 : 1 , bevorzugt 1 ,3 : 1 bis 1 ,8 : 1 und insbesondere, bevorzugt im Bereich von 1 ,45 : 1 bis 1 ,75 : 1 einstellt.
2) Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man in einer dritten Synthese-Stufe mindestens ein weiteres mindestens difunktionelles Polyisocyanat, insbesondere bevorzugt ein weiteres, mindestens trifunktionelles Polyisocyanat hinzufügt.
3) Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man in der ersten Synthesestufe mindestens ein Polyol mit einem durchschnittlichen Molekulargewicht (Mn) von 200 bis 1200 g/mol einsetzt. 4) Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man in der ersten Synthese-Stufe mindestens ein Polyetherpo- lyol mit einem Molekulargewicht (Mn) von 100 bis 3.000 g/mol und /oder mindestens ein Polyesterpolyol mit einem Molekulargewicht (Mn) von 100 bis 3.000 g/mol einsetzt.
5) Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man als Katalysator ε-Caprolactam einsetzt.
6) Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man in der zweiten Synthese-Stufe als weiteres Polyol ein Polyol mit einem Molekulargewicht (Mn) von 60 bis 400, bevorzugt 80 bis 200 g/mol einsetzt.
7) Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das mindestens eine weitere Polyol ein Polyetherpolyol mit einem Molekulargewicht von 100 bis 10.000 g/mol und/oder ein Polyesterpolyol mit einem Molekulargewicht von 200 bis 10.000 g/mol ist.
8) Verfahren nach mindestens einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass in der dritten Synthese-Stufe als weiteres Polyisocyanat ein mindestens trifunktionelles Isocyanat zugegeben wird.
9) Verfahren nach mindestens einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass man in der dritten Synthese-Stufe als weiteres Polyisocyanat eine Mischung eines Diisocyanats, bevorzugt eines aromatischen Diisocyanats, mit Carbodiimid, zugibt.
10) Polyurethan-Prepolymer mit endständigen Isocyanat-Gruppen, erhältlich durch das Verfahren nach mindestens einem der Ansprüche 1 bis 9. 11)Polyurethan-Prepolymer mit endständigen Isocyanat-Gruppen nach Anspruch 10, dadurch gekennzeichnet, dass es einen Gehalt an monomerem 2,4-TDI, 2,4'-MDI, von weniger als 1 Gew.-%, bevorzugt weniger als 0,5 Gew.-%, aufweist.
12) Polyurethan-Prepolymer mit endständigen NCO-Gruppen nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass es bei 40 °C eine Viskosität von 800 mPas bis 10.000 mPas, bevorzugt von 1000 mPas bis 5000 mPas und insbesondere bevorzugt von 1200 mPas bis 3000 mPas aufweist (gemessen nach Brookfield, ISO 2555).
13) Verwendung des nach einem der Ansprüche 1 bis 9 hergestellten Polyurethan- Prepolymeren mit endständigen Isocyanat-Gruppen als Kleb-/Dichtstoff oder Kleb-/Dichtstoff-Komponente, bevorzugt zur Herstellung ein- oder zweikomponentiger Kleb-/Dichtstoffe.
14) Verwendung nach Anspruch 13 zur Herstellung ein- oder zweikomponentiger Kaschierklebstoffe zum Kaschieren von Textilien, Metallen, insbesondere A- luminium, und Kunststoff-Folien sowie Metall- bzw. Oxid-bedampften Folien und Papieren.
15)Folienverbund, insbesondere für die Verpackung von Lebensmitteln, enthaltend einen Kaschierklebstoff auf Basis des Polyurethan-Prepolymeren mit endständigen Isocyanat-Gruppen nach einem der Ansprüche 10 bis 12.
PCT/EP2005/002205 2004-04-08 2005-03-03 Verfahren zur herstellung von polyurethan-prepolymeren WO2005097861A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05728218A EP1732966A1 (de) 2004-04-08 2005-03-03 Verfahren zur herstellung von polyurethan-prepolymeren
BRPI0509703-7A BRPI0509703A (pt) 2004-04-08 2005-03-03 processo para a produção de pré-polìmeros de poliuretano
CN2005800107277A CN1938353B (zh) 2004-04-08 2005-03-03 生产聚氨酯预聚物的方法
US11/539,728 US20070129525A1 (en) 2004-04-08 2006-10-09 Method for producing polyurethane prepolymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004018048.2 2004-04-08
DE102004018048A DE102004018048A1 (de) 2004-04-08 2004-04-08 Verfahren zur Herstellung von Polyurethan-Prepolymeren

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/539,728 Continuation US20070129525A1 (en) 2004-04-08 2006-10-09 Method for producing polyurethane prepolymers

Publications (1)

Publication Number Publication Date
WO2005097861A1 true WO2005097861A1 (de) 2005-10-20

Family

ID=34962691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/002205 WO2005097861A1 (de) 2004-04-08 2005-03-03 Verfahren zur herstellung von polyurethan-prepolymeren

Country Status (6)

Country Link
US (1) US20070129525A1 (de)
EP (1) EP1732966A1 (de)
CN (1) CN1938353B (de)
BR (1) BRPI0509703A (de)
DE (1) DE102004018048A1 (de)
WO (1) WO2005097861A1 (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008060885A1 (de) 2008-12-09 2010-06-10 Henkel Ag & Co. Kgaa PU-Klebstoffen für sterilisierbare Verbundfolien
CN102140243A (zh) * 2010-11-26 2011-08-03 山东东大一诺威聚氨酯有限公司 硅烷改性单组份湿固化聚氨酯球场用塑胶浆料及其制备方法
WO2012142148A1 (en) * 2011-04-15 2012-10-18 H.B. Fuller Company Modified diphenylmethane diisocyanate-based adhesives
EP2949677A1 (de) * 2014-05-28 2015-12-02 Bostik Sa Polyurethanzusammensetzung mit nco-enden auf der basis von nicht heissschmelzbarem 2,4-tdi und geringem gehalt an tdi-monomer, die mindestens eine isocyanat-verbindung mit spezifischem molvolumen enthält
EP2949676A1 (de) * 2014-05-28 2015-12-02 Bostik Sa Polyurethanzusammensetzung mit nco-enden auf der basis von nicht heissschmelzbarem mdi und geringem gehalt an mdi-monomer, die mindestens eine isocyanat-verbindung mit spezifischem molvolumen enthält
WO2016001265A1 (de) 2014-07-04 2016-01-07 Henkel Ag & Co. Kgaa Polyurethan-kaschierklebstoff enthaltend füllstoffe
EP3067377A1 (de) 2015-03-12 2016-09-14 Henkel AG & Co. KGaA Polyurethane mit ultrageringem monomeranteil
FR3045616A1 (fr) * 2015-12-21 2017-06-23 Bostik Sa Mastics polyurethane superelastiques
WO2018033551A1 (en) 2016-08-19 2018-02-22 Henkel Ag & Co. Kgaa Method for preparing a hydrophobically modified clay
EP3327057A1 (de) 2016-11-25 2018-05-30 Henkel AG & Co. KGaA Polyester-freie kaschierklebstoff-zusammensetzung
EP3327056A1 (de) 2016-11-25 2018-05-30 Henkel AG & Co. KGaA Niedrig-viskose, schnell härtende kaschierklebstoff-zusammensetzung
WO2018095960A1 (de) 2016-11-25 2018-05-31 Henkel Ag & Co. Kgaa Polyester-freie kaschierklebstoff-zusammensetzung
EP3670577A1 (de) 2018-12-19 2020-06-24 EMS-Patent AG Polyamid-formmassen für glasverbunde
EP3741812A1 (de) 2019-05-20 2020-11-25 Henkel AG & Co. KGaA Verfahren zur herstellung von zumindest teilweise exfoliertem ton unter verwendung eines exfolierungsmittel enthaltend einen partiellen ester eines poly(alkylenoxid)(meth)acrylates, ein zyklisches karbonat und wasser
US11091677B2 (en) 2016-01-13 2021-08-17 Henkel Ag & Co. Kgaa Reactive polyurethane hot melt adhesives containing fillers
US11198803B2 (en) 2015-07-31 2021-12-14 Dow Global Technologies Llc Aminobenzoate-terminated materials for laminated adhesives
WO2022179772A1 (en) 2021-02-26 2022-09-01 Henkel Ag & Co. Kgaa Flame-retardant adhesive composition for structural wood bonding

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006059464A1 (de) * 2006-12-14 2008-06-19 Henkel Kgaa Polyurethan-Kaschierklebstoff
DE102008009407A1 (de) * 2008-02-15 2009-08-20 Bayer Materialscience Ag Klebstoff
DE102008035947B4 (de) 2008-07-31 2015-03-26 Kraussmaffei Technologies Gmbh Verfahren zur Herstellung eines Produktes aus reaktiven Ausgangsstoffen
WO2011123492A2 (en) * 2010-04-01 2011-10-06 Henkel Corporation Methods for making aqueous polyurethane dispersions of aromatic polyisocyanate mixtures and compositions thereof
DE102010030437A1 (de) 2010-06-23 2011-12-29 Henkel Ag & Co. Kgaa TPU-Kaschierklebstoff
PL2588312T3 (pl) 2010-06-29 2021-01-25 Ashland Licensing And Intellectual Property Llc Bezrozpuszczalnikowe spoiwo laminacyjne do laminowania elastycznych opakowań i struktury laminowane wytworzone ze spoiwem
CN102286245B (zh) * 2011-08-16 2013-10-09 江阴市文明体育塑胶有限公司 塑胶地板弹性层
CN102432991B (zh) * 2011-08-16 2013-08-07 江阴市文明体育塑胶有限公司 塑胶地垫加强层
DE102011089783A1 (de) * 2011-12-23 2013-06-27 Bayer Materialscience Aktiengesellschaft Niedrigviskose reaktive Polyurethan-Zusammensetzungen
JP6171467B2 (ja) * 2013-03-27 2017-08-02 Dic株式会社 ラミネート用2液混合接着剤組成物
EP3253811B1 (de) 2015-02-03 2023-08-02 Henkel AG & Co. KGaA Polyurethanklebstoffe zum verbinden von folien mit niedriger oberflächenenergie
KR101943894B1 (ko) * 2017-11-23 2019-01-30 태광산업주식회사 항염소성 흑색 폴리우레탄우레아 탄성섬유 제조방법
KR101937697B1 (ko) * 2017-11-23 2019-01-14 태광산업주식회사 유색 폴리우레탄우레아 탄성섬유 제조 방법
JP2021004343A (ja) * 2019-06-27 2021-01-14 ヘンケルジャパン株式会社 ラミネート用接着剤
US11732083B2 (en) 2020-11-19 2023-08-22 Covestro Llc Polyisocyanate resins

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839491A (en) * 1972-12-14 1974-10-01 Peritech Int Corp Low volatility polyurethane prepolymer
DE4136490A1 (de) * 1991-11-06 1993-05-13 Bayer Ag Loesungsmittelfreie beschichtungssysteme
EP0590398A1 (de) * 1992-09-24 1994-04-06 Bayer Ag Lösungsmittelfreie Zweikomponentenpolyurethanklebstoffsysteme
WO2003006521A1 (de) * 2001-07-10 2003-01-23 Henkel Kommanditgesellschaft Auf Aktien Reaktive polyurethane mit einem geringen gehalt an monomeren diisocyanaten
WO2003051951A1 (de) * 2001-12-18 2003-06-26 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur herstellung von monomerarmen polyurethan-prepolymeren

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2606419A1 (de) * 1976-02-18 1977-08-25 Basf Ag Lagerbestaendige, fluessige carbodiimidgruppen aufweisende polyisocyanate und verfahren zu ihrer herstellung
JPS5742782A (en) * 1980-08-28 1982-03-10 Asahi Chem Ind Co Ltd Preparation of organic polyisocyanate composition
DE3306559A1 (de) * 1983-02-25 1984-08-30 Henkel KGaA, 4000 Düsseldorf Verfahren zur herstellung von polyurethan-praepolymeren mit endstaendigen isocyanatgruppen und vermindertem restmonomergehalt
DE3401129A1 (de) * 1984-01-14 1985-07-18 Henkel KGaA, 4000 Düsseldorf Verfahren zur herstellung gemischter polyurethan-prepolymerer
US4952621A (en) * 1988-06-06 1990-08-28 The B. F. Goodrich Company Urethane sealants or coating admixtures having improved shelf stability
US5880167A (en) * 1994-08-22 1999-03-09 Henkel Kommanditgesellschaft Auf Aktien Polyurethane compositions with a low content of monomeric diisocyanates
DE19645659A1 (de) * 1996-11-06 1998-05-07 Bayer Ag Verfahren zur Isomerentrennung von Isocyanaten
DE19700014A1 (de) * 1997-01-02 1998-07-09 Henkel Kgaa Monomerenarmes PU-Prepolymer
US5925781A (en) * 1997-11-03 1999-07-20 Bayer Corporation Prepolymers with low monomeric TDI content
US6784242B2 (en) * 1997-11-11 2004-08-31 Henkel Kommanditgesellschaft Auf Aktien Polyurethane binding agents having a low content of highly volatile monomers
DE10157488A1 (de) * 2000-12-15 2002-06-20 Henkel Kgaa Polyurethan-Prepolymere mit NCO-Gruppen und niedrigem Gehalt an monomeren Polyisocyanat
DE10150722A1 (de) * 2001-10-13 2003-04-30 Henkel Kgaa Reaktive Polyurethan-Zusammensetzungen mit niedrigem Restmonomergehalt
DE10163857A1 (de) * 2001-12-22 2003-07-10 Henkel Kgaa Reaktive Polyurethane mit einem geringen Gehalt an monomeren Diisocyanaten
DE10206112A1 (de) * 2002-02-13 2003-08-21 Basf Ag Wässrige Dispersionen, aufgebaut aus Polycarbodiimiden
DE10358932A1 (de) * 2002-12-17 2005-07-28 Henkel Kgaa Verfahren zur Herstellung von Polyurethan-Prepolymeren in Gegenwart eines Katalysators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3839491A (en) * 1972-12-14 1974-10-01 Peritech Int Corp Low volatility polyurethane prepolymer
DE4136490A1 (de) * 1991-11-06 1993-05-13 Bayer Ag Loesungsmittelfreie beschichtungssysteme
EP0590398A1 (de) * 1992-09-24 1994-04-06 Bayer Ag Lösungsmittelfreie Zweikomponentenpolyurethanklebstoffsysteme
WO2003006521A1 (de) * 2001-07-10 2003-01-23 Henkel Kommanditgesellschaft Auf Aktien Reaktive polyurethane mit einem geringen gehalt an monomeren diisocyanaten
WO2003051951A1 (de) * 2001-12-18 2003-06-26 Henkel Kommanditgesellschaft Auf Aktien Verfahren zur herstellung von monomerarmen polyurethan-prepolymeren

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066525A1 (de) * 2008-12-09 2010-06-17 Henkel Ag & Co. Kgaa Pu-klebstoffen für sterilisierbare verbundfolien
US8500948B2 (en) 2008-12-09 2013-08-06 Henkel Ag & Co. Kgaa PU adhesives for sterilizable composite films
DE102008060885A1 (de) 2008-12-09 2010-06-10 Henkel Ag & Co. Kgaa PU-Klebstoffen für sterilisierbare Verbundfolien
CN102140243A (zh) * 2010-11-26 2011-08-03 山东东大一诺威聚氨酯有限公司 硅烷改性单组份湿固化聚氨酯球场用塑胶浆料及其制备方法
CN102140243B (zh) * 2010-11-26 2012-07-25 山东东大一诺威聚氨酯有限公司 硅烷改性单组份湿固化聚氨酯球场用塑胶浆料及其制备方法
RU2599250C2 (ru) * 2011-04-15 2016-10-10 Х.Б. Фуллер Компани Адгезивы на основе модифицированного дифенилметандиизоцианата
WO2012142148A1 (en) * 2011-04-15 2012-10-18 H.B. Fuller Company Modified diphenylmethane diisocyanate-based adhesives
AU2012242949B2 (en) * 2011-04-15 2015-09-24 H.B. Fuller Company Modified diphenylmethane diisocyanate-based adhesives
EP2697278B1 (de) 2011-04-15 2018-08-08 H. B. Fuller Company Klebstoffe auf der basis von modifiziertem diphenylmethandiisocyanat
US10370481B2 (en) 2014-05-28 2019-08-06 Bostik Sa Non-hot-melt 2,4-TDI-based polyurethane composition bearing NCO end groups and having a low content of TDI monomer, comprising at least one isocyanate compound of particular molar volume
EP2949676A1 (de) * 2014-05-28 2015-12-02 Bostik Sa Polyurethanzusammensetzung mit nco-enden auf der basis von nicht heissschmelzbarem mdi und geringem gehalt an mdi-monomer, die mindestens eine isocyanat-verbindung mit spezifischem molvolumen enthält
US10358523B2 (en) 2014-05-28 2019-07-23 Bostik Sa Non-hot-melt MDI-based polyurethane composition bearing NCO end groups and having a low content of MDI monomer, comprising at least one isocyanate compound of particular molar volume
AU2015202882C1 (en) * 2014-05-28 2019-06-06 Bostik Sa Non-hot-melt 2,4-TDI-based polyurethane composition bearing NCO end groups and having a low content of TDI monomer, comprising at least one isocyanate compound of particular molar volume
AU2015202882B2 (en) * 2014-05-28 2019-01-31 Bostik Sa Non-hot-melt 2,4-TDI-based polyurethane composition bearing NCO end groups and having a low content of TDI monomer, comprising at least one isocyanate compound of particular molar volume
FR3021659A1 (fr) * 2014-05-28 2015-12-04 Bostik Sa Composition de polyurethane a terminaisons nco a base de 2,4-tdi non thermofusible et a faible teneur en monomere tdi, comprenant au moins un compose isocyanate de volume molaire particulier.
AU2015202881B2 (en) * 2014-05-28 2019-01-24 Bostik Sa Non-hot-melt MDI-based polyurethane composition bearing NCO end groups and having a low content of MDI monomer, comprising at least one isocyanate compound of particular molar volume
EP2949677A1 (de) * 2014-05-28 2015-12-02 Bostik Sa Polyurethanzusammensetzung mit nco-enden auf der basis von nicht heissschmelzbarem 2,4-tdi und geringem gehalt an tdi-monomer, die mindestens eine isocyanat-verbindung mit spezifischem molvolumen enthält
FR3021658A1 (fr) * 2014-05-28 2015-12-04 Bostik Sa Composition de polyurethane a terminaisons nco a base mdi non thermofusible et a faible teneur en monomere mdi, comprenant au moins un compose isocyanate de volume molaire particulier.
US11078322B2 (en) 2014-05-28 2021-08-03 Bostik Sa Non-hot-melt MDI-based polyurethane composition bearing NCO end groups and having a low content of MDI monomer, comprising at least one isocyanate compound of particular molar volume
DE102014212999A1 (de) 2014-07-04 2016-01-07 Henkel Ag & Co. Kgaa Polyurethan-Kaschierklebstoff enthaltend Füllstoffe
WO2016001265A1 (de) 2014-07-04 2016-01-07 Henkel Ag & Co. Kgaa Polyurethan-kaschierklebstoff enthaltend füllstoffe
EP3067377A1 (de) 2015-03-12 2016-09-14 Henkel AG & Co. KGaA Polyurethane mit ultrageringem monomeranteil
US11198803B2 (en) 2015-07-31 2021-12-14 Dow Global Technologies Llc Aminobenzoate-terminated materials for laminated adhesives
US10875954B2 (en) 2015-12-21 2020-12-29 Bostik Sa Superelastic polyurethane mastics
WO2017109383A1 (fr) * 2015-12-21 2017-06-29 Bostik Sa Mastics polyurethane superelastiques
FR3045616A1 (fr) * 2015-12-21 2017-06-23 Bostik Sa Mastics polyurethane superelastiques
US11091677B2 (en) 2016-01-13 2021-08-17 Henkel Ag & Co. Kgaa Reactive polyurethane hot melt adhesives containing fillers
WO2018033551A1 (en) 2016-08-19 2018-02-22 Henkel Ag & Co. Kgaa Method for preparing a hydrophobically modified clay
US10920042B2 (en) 2016-08-19 2021-02-16 Henkel Ag & Co. Kgaa Method for preparing a hydrophobically modified clay
WO2018095962A1 (de) 2016-11-25 2018-05-31 Henkel Ag & Co. Kgaa Niedrig-viskose, schnell härtende kaschierklebstoff-zusammensetzung
WO2018095960A1 (de) 2016-11-25 2018-05-31 Henkel Ag & Co. Kgaa Polyester-freie kaschierklebstoff-zusammensetzung
EP3327056A1 (de) 2016-11-25 2018-05-30 Henkel AG & Co. KGaA Niedrig-viskose, schnell härtende kaschierklebstoff-zusammensetzung
EP3327057A1 (de) 2016-11-25 2018-05-30 Henkel AG & Co. KGaA Polyester-freie kaschierklebstoff-zusammensetzung
EP3670577A1 (de) 2018-12-19 2020-06-24 EMS-Patent AG Polyamid-formmassen für glasverbunde
EP3670576A1 (de) 2018-12-19 2020-06-24 EMS-Patent AG Polyamid-formmassen für glasverbunde
US11807718B2 (en) 2018-12-19 2023-11-07 Ems-Patent Ag Polyamide moulding compositions for glass composites
EP3741812A1 (de) 2019-05-20 2020-11-25 Henkel AG & Co. KGaA Verfahren zur herstellung von zumindest teilweise exfoliertem ton unter verwendung eines exfolierungsmittel enthaltend einen partiellen ester eines poly(alkylenoxid)(meth)acrylates, ein zyklisches karbonat und wasser
WO2020233867A1 (en) 2019-05-20 2020-11-26 Henkel Ag & Co. Kgaa Method for preparing an at least partially exfoliated clay using an exfoliation agent comprising an partial ester of poly(alkylene oxide) (meth)acrylate, a cyclic carbonate and water
WO2022179772A1 (en) 2021-02-26 2022-09-01 Henkel Ag & Co. Kgaa Flame-retardant adhesive composition for structural wood bonding

Also Published As

Publication number Publication date
US20070129525A1 (en) 2007-06-07
CN1938353A (zh) 2007-03-28
DE102004018048A1 (de) 2005-11-10
BRPI0509703A (pt) 2007-09-18
EP1732966A1 (de) 2006-12-20
CN1938353B (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
EP1732966A1 (de) Verfahren zur herstellung von polyurethan-prepolymeren
EP2089450B1 (de) Polyurethan-kaschierklebstoff
EP1456265A1 (de) Verfahren zur herstellung von monomerarmen polyurethan prepolymeren
EP1341832B1 (de) Polyurethan-prepolymere mit nco-gruppen und niedrigem gehalt an monomeren polyisocyanat
EP1666513B1 (de) Verfahren zur Herstellung eines Polyurethanbindemittels mit einem niedrigen Gehalt an leichtflüchtigen Monomeren
EP3402834B1 (de) Reaktive polyurethan-schmelzklebstoffe enthaltend füllstoffe
WO2001040342A1 (de) Haftungsverstärker für monomerfreie reaktive polyurethane
WO2018095962A1 (de) Niedrig-viskose, schnell härtende kaschierklebstoff-zusammensetzung
EP3327056B1 (de) Niedrig-viskose, schnell härtende kaschierklebstoff-zusammensetzung
EP2208743A1 (de) Reaktive Polyurethan Zusammensetzungen
EP1189961B1 (de) Verwendung von Polyurethanzusammensetzungen mit niedrigen Monomergehalt als Haftklebstoff
WO2018210568A1 (de) Polyurethan-basiertes bindemittel-system
DE2216112C2 (de) Verwendung von Zusammensetzungen auf der Basis von Polyurethanen, die durch Umsetzung von w,w&#39;Diisocyanaten und Diolen erhalten worden sind als Klebstoffe
EP1572772B1 (de) Verfahren zur herstellung von polyurethan-prepolymeren in gegenwart eines katalysators
EP1964868A1 (de) Migrationsarme Polyurethane
WO2000005290A1 (de) Monomerarmes polyurethanbindemittel mit verbesserter gleitmittelhaftung
DE19945831A1 (de) Isocyanatgruppen enthaltendes Prepolymer für Polyurethane mit flammhemmenden Eigenschaften
EP2386586B1 (de) PU-Klebstoff mit Fließgrenze
DE2415467A1 (de) Fluessiger klebstoff
CZ2001242A3 (cs) Polyurethanové pojivo

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005728218

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580010727.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 3660/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11539728

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005728218

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11539728

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0509703

Country of ref document: BR