WO2005096077A1 - 進行波型光変調器及びその調整方法 - Google Patents

進行波型光変調器及びその調整方法 Download PDF

Info

Publication number
WO2005096077A1
WO2005096077A1 PCT/JP2005/006039 JP2005006039W WO2005096077A1 WO 2005096077 A1 WO2005096077 A1 WO 2005096077A1 JP 2005006039 W JP2005006039 W JP 2005006039W WO 2005096077 A1 WO2005096077 A1 WO 2005096077A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical modulator
wave optical
traveling
traveling wave
adjusting
Prior art date
Application number
PCT/JP2005/006039
Other languages
English (en)
French (fr)
Inventor
Ryo Shimizu
Taishi Maruyama
Tohru Sugamata
Original Assignee
Sumitomo Osaka Cement Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co., Ltd. filed Critical Sumitomo Osaka Cement Co., Ltd.
Priority to JP2006511712A priority Critical patent/JP4828412B2/ja
Priority to US11/547,351 priority patent/US7558444B2/en
Priority to EP05727910A priority patent/EP1742097A4/en
Publication of WO2005096077A1 publication Critical patent/WO2005096077A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure
    • G02F1/0356Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure controlled by a high-frequency electromagnetic wave component in an electric waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0327Operation of the cell; Circuit arrangements

Definitions

  • the present invention relates to a traveling-wave optical modulator and a method for adjusting the same, and more particularly, to a traveling-wave optical modulator when a driving driver for driving and controlling the traveling-wave optical modulator is connected to the traveling-wave optical modulator.
  • the present invention relates to an optical modulator and an adjustment method thereof.
  • Jitter is an index that indicates the temporal fluctuation of an optical signal. As shown in FIG. 1, the jitter is defined as the width of the crossing point of the signal by integrating optical eye pattern waveforms.
  • the gain has a flat frequency characteristic up to the low frequency range and high frequency range so that the input electric signal is amplified without deterioration.
  • the frequency of the electric Z light conversion response has a flat frequency characteristic up to the low frequency range and high frequency range.
  • the frequency characteristics of a driving driver are determined at the design stage, and it is difficult to improve the frequency characteristics during or after the manufacturing of the driving driver.
  • Patent Document 1 it is possible to improve the frequency characteristics of an optical modulator by adjusting the impedance at the terminal end of the modulation electrode of the optical modulator, but it is possible to improve the frequency characteristics of the optical modulator by 40 Gbps. It is difficult to make the frequency characteristics flat up to the high-frequency region where transmission is possible.
  • Patent Document 1 Japanese Patent No. 3088988
  • the problem to be solved by the present invention is to solve the above-mentioned problems and to provide a traveling-wave optical modulator which suppresses generation of jitter when driving an optical modulator using a driving driver. And a method of adjusting the driving wave.
  • a traveling wave type modulator that expands the freedom of combination of a driving driver and a traveling wave type optical modulator and can effectively suppress jitter even after the combination.
  • An optical modulator and an adjustment method thereof are provided.
  • an invention according to claim 1 provides a substrate having an electro-optic effect, an optical waveguide formed on the substrate, and modulation control of a light wave propagating in the optical waveguide.
  • a driving driver for controlling the driving of the traveling wave optical modulator is connected to the traveling wave optical modulator.
  • the frequency characteristic of the electrical-z optical conversion response of the traveling wave optical modulator is adjusted so as to correct the frequency characteristic of the gain of the driver.
  • the invention according to claim 2 is the traveling wave optical modulator according to claim 1, wherein the traveling wave optical modulator has a terminating resistor, and the electric Z optical conversion response is improved.
  • the adjustment of the frequency characteristic is characterized in that at least one of the impedance value of the modulation electrode and the impedance value of the terminating resistor is adjusted.
  • the invention according to claim 3 includes a substrate having an electro-optic effect, an optical waveguide formed on the substrate, and a modulation electrode for controlling modulation of a light wave propagating in the optical waveguide.
  • a driving driver for controlling the driving of the traveling wave optical modulator is connected to the traveling wave optical modulator at a specific frequency. The frequency characteristic of the electrical-z optical conversion response of the traveling wave optical modulator is adjusted so as to correct the frequency characteristic of the gain.
  • the invention according to claim 4 is the traveling wave optical modulator according to claim 3, wherein the adjustment of the frequency characteristic of the electrical Z light conversion response at a specific frequency is performed by the electrode according to the modulation electrode. It is characterized in that at least one of the length and the effective refractive index of the microwave applied to the modulation electrode is adjusted.
  • the invention according to claim 5 includes a substrate having an electro-optical effect, an optical waveguide formed on the substrate, and a modulation electrode for controlling modulation of a light wave propagating in the optical waveguide.
  • a driving driver for driving and controlling the traveling wave optical modulator is connected to the traveling wave optical modulator, and a frequency characteristic of a gain of the driving driver is corrected.
  • the frequency characteristic of the electrical Z optical conversion response of the traveling wave optical modulator is adjusted so as to perform the above operation.
  • the traveling wave optical modulator has a terminating resistor, and
  • the adjustment of the frequency characteristic of the Z light conversion response is characterized in that at least one of the impedance value of the modulation electrode and the impedance value of the terminating resistor is adjusted.
  • the invention according to claim 7 is the method for adjusting a traveling wave optical modulator according to claim 6, wherein the driving driver has a frequency characteristic in which a gain in a high frequency region increases.
  • the impedance value of the terminating resistor is adjusted to be higher than that of the modulating electrode, and if the gain has a frequency characteristic of decreasing, the impedance value of the terminating resistor is adjusted to be lower than the modulating electrode.
  • the invention according to claim 8 provides a substrate having an electro-optic effect, an optical waveguide formed on the substrate, and a modulation electrode for controlling modulation of a light wave propagating in the optical waveguide.
  • a driving driver for driving and controlling the traveling wave optical modulator is connected to the traveling wave optical modulator at a specific frequency, and the driving driver The frequency characteristic of the electrical-Z optical conversion response of the traveling-wave optical modulator is adjusted so as to correct the frequency characteristic of the gain.
  • the adjustment of the frequency characteristic of the electric-Z optical conversion response at a specific frequency is performed for modulation. It is characterized in that at least one of the electrode length of the electrode or the effective refractive index of the microwave applied to the modulation electrode is adjusted.
  • the electrode length becomes longer.
  • the electrode length is shortened or the effective refractive index is decreased.
  • An invention according to claim 11 is the method for adjusting a traveling wave optical modulator according to any one of claims 5 to 10, wherein the adjustment of the frequency characteristic of the electric-Z optical conversion response is performed by the driving
  • the traveling wave optical modulator is driven by the driving driver, the electric signal input from the driving driver to the electric signal in the range of 300 kHz to 3 GHz of the optical signal output from the traveling wave optical modulator is output. It is characterized in that the frequency characteristics of the light conversion response are adjusted to approach a flat state.
  • the frequency characteristic of the electrical Z-optical conversion response of the traveling wave optical modulator is adjusted so as to correct the frequency characteristic of the gain of the driving driver.
  • the traveling wave type optical modulator being driven, a proper flat frequency response of the electrical Z-optical conversion response is obtained, and the jitter is small! / ⁇ It is possible to realize good optical transmission characteristics.
  • the frequency characteristic of the electrical Z-optical conversion response is adjusted by adjusting at least one of the impedance value of the modulation electrode and the impedance value of the terminating resistor. Further, even after the combination of the driving driver and the optical modulator, the frequency characteristic of the electrical Z-optical conversion response can be easily corrected.
  • the frequency characteristic of the electrical Z-optical conversion response of the traveling wave optical modulator is adjusted so as to correct the frequency characteristic of the gain of the driving driver at a specific frequency.
  • the frequency at a specific frequency is adjusted. Since the frequency characteristic of the electrical Z-optical conversion response can be adjusted, more appropriate adjustment of the frequency characteristic of the electrical Z-optical conversion response can be realized in performing correction corresponding to the frequency characteristic of the driving driver.
  • the traveling-wave optical modulator since the frequency characteristic of the electrical Z optical conversion response of the traveling wave optical modulator is adjusted so as to correct the frequency characteristic of the gain of the driving driver, It is not necessary to optimize the frequency characteristics of the driving driver and the traveling-wave optical modulator individually, and after the driving driver and the traveling-wave optical modulator are combined, the traveling-wave optical modulator is used. In order to adjust the frequency characteristics of the electrical Z-optical conversion response of the modulator, it is possible to easily obtain an appropriate flat frequency response of the electrical Z-optical conversion response in the traveling wave optical modulator during driving. .
  • the impedance value of the terminal resistance is reduced by the modulation electrode.
  • the adjustment makes it possible to easily correct the frequency characteristic of the electrical Z-optical conversion response even after combining the driving driver and the optical modulator.
  • the frequency characteristic of the electrical Z-optical conversion response of the traveling wave optical modulator is adjusted so as to correct the frequency characteristic of the gain of the driving driver at a specific frequency. Therefore, it is not necessary to optimize the frequency characteristics of the driving driver and the traveling-wave optical modulator individually. Furthermore, after combining the driving driver and the traveling-wave optical modulator, In order to adjust the frequency characteristics of the electrical Z-optical conversion response of the wave-type optical modulator, it is possible to always easily obtain the appropriate flat frequency response of the electrical Z-optical conversion response in the driving traveling-wave optical modulator. it can.
  • the specific frequency is adjusted. Adjustment of the frequency characteristics of the electrical z-optical conversion response in terms of the number, making it possible to adjust the frequency characteristics of the electrical z-optical conversion response more appropriately when making corrections corresponding to the frequency characteristics of the driving driver it can.
  • the electrode length is longer or the effective refractive index is increased, and the specific frequency is shifted to the higher frequency side.
  • shifting it is possible to easily set a specific frequency by shortening the electrode length or making the effective refractive index smaller, so that more appropriate adjustment of the frequency characteristics of the electrical Z-optical conversion response is realized. Becomes possible.
  • the frequency characteristic of the electrical Z optical conversion response is adjusted when the driving driver drives the traveling wave optical modulator in the range of 300 kHz to 3 GHz. This is an adjustment that makes the frequency characteristic of the signal close to a flat state, so that it is easy to adjust without having to make the frequency characteristic of the electrical Z-optical conversion response flat at all signal frequencies applied to the traveling-wave optical modulator. Yes, and by adjusting the signal frequency in the above range, it is also possible to efficiently suppress jitter in high-speed transmission as a result.
  • FIG. 1 is a schematic diagram for explaining jitter.
  • FIG. 2 is a perspective view schematically showing a traveling wave optical modulator.
  • FIG. 3 is a schematic diagram showing a frequency characteristic of a gain of a driving driver.
  • FIG. 4 is a schematic diagram showing a method for adjusting the frequency characteristic of the electrical Z-optical conversion response of the traveling wave optical modulator.
  • FIG. 5 is a schematic diagram showing an example of a method for adjusting a traveling wave optical modulator according to the present invention.
  • FIG. 6 is a schematic view showing another example of the method of adjusting the traveling wave optical modulator according to the present invention.
  • FIG. 7 is a view showing a measurement result of an optical eye pattern.
  • FIG. 8 is a graph showing a relationship between a termination resistance value and jitter.
  • the present invention relates to a traveling-wave optical modulator including a substrate having an electro-optic effect, an optical waveguide formed on the substrate, and a modulation electrode for controlling modulation of a light wave propagating in the optical waveguide.
  • a driving driver for driving and controlling the traveling-wave optical modulator connected to the traveling-wave optical modulator, and correcting the frequency characteristics of the gain of the driving driver.
  • a traveling wave optical modulator characterized in that the frequency characteristic of the electrical Z optical conversion response is adjusted and a method for adjusting the same.
  • the present invention also provides a traveling-wave-type light having a substrate having an electro-optic effect, an optical waveguide formed on the substrate, and a modulation electrode for modulating and controlling a light wave propagating in the optical waveguide.
  • a driving driver for driving and controlling the traveling-wave optical modulator is connected to the traveling-wave optical modulator, and the frequency characteristic of the gain of the driving driver at a specific frequency is corrected.
  • a method of adjusting the traveling wave optical modulator wherein the frequency characteristic of the electrical Z light conversion response of the traveling wave optical modulator is adjusted.
  • FIG. 2 is a schematic diagram showing one embodiment of a traveling wave optical modulator to which the present invention is applied.
  • the substrate 9 is a substrate having an electro-optical effect, and is composed of, for example, lithium niobate, lithium tantalate, PLZT (lanthanum lead titanate zirconate), and a quartz-based material. These single crystal materials are composed of an X-cut plate, a Y-cut plate, and a Z-cut plate, and are particularly configured as an optical waveguide device and have a large anisotropy. For this reason, it is preferable to use lithium niobate (LN).
  • LN lithium niobate
  • the optical waveguide 3 is a so-called Matsuhatsuda-type optical waveguide, and is formed by depositing, for example, titanium (Ti) on the substrate 9 and then thermally diffusing the same.
  • titanium titanium
  • SiO 2 silicon oxide
  • a strong buffer layer such as 2 can be formed on the substrate 9.
  • the ground electrode 4 and the signal electrode 5, which are modulation electrodes, are formed of a metal such as gold (Au). Further, in FIG. 2, a polarizer 2 is provided to remove extra components of the incident light to make the polarization uniform.
  • High-speed optical transmission using the traveling-wave optical modulator shown in FIG. 2 is performed as follows.
  • the incident light is made incident from the incident-side optical fiber 1 and passed through the polarizer 2, and then travels through the optical waveguide 3 in two parts.
  • a transmission signal containing a signal component in the microwave band is applied to the signal electrode 5 from the driving driver 7 through the high-frequency cable 6.
  • This transmission signal is applied to the guided light traveling in the optical waveguide 3 as a forward electric signal in the same direction as the traveling direction of the guided light traveling in the optical waveguide 3.
  • the phase of the guided light traveling in the two divided optical waveguides changes due to the change in the refractive index. Therefore, when the guided light traveling in each of the branched optical waveguides 3 is recombined at the end of the optical waveguide 3, the combined guided light interferes with each other, and the guided light traveling in each of the optical waveguides 3 Outgoing light changes according to the phase difference of.
  • the transmission signal input from the driver 7 to the signal electrode 5 is efficiently input without being reflected.
  • the impedance (characteristic impedance) of the ground electrode 4 and the signal electrode 5 is set so as to match the impedance of the driving driver 7. Further, in order to prevent the transmission signal input into the signal electrode 5 from being reflected from the output side of the signal electrode, the output side of the traveling wave optical modulator shown in FIG. It is common to install a terminating resistor 8 that has the impedance matching.
  • the driving driver 7 differs in the frequency characteristics of the gain depending on the device. For example, as shown in Fig. 3, the gain increases in a high frequency region (see Fig. 3 (a)). Some have various characteristics, such as those with reduced profits (see Fig. 3 (b)). On the other hand, the frequency characteristics of the electrical-Z optical conversion response of the traveling-wave optical modulator have various frequency dependencies, like the frequency characteristics of the gain of the driving driver.
  • the frequency characteristic of the electrical Z-optical conversion response of the traveling wave optical modulator is represented by the relationship between the impedance value of the modulation electrode of the traveling wave optical modulator and the impedance value of the terminating resistor, as shown in FIG. Shows various frequency dependencies. Specifically, with the impedance value of the modulation electrode as a reference, as the impedance value of the terminating resistor becomes larger than the reference value, the frequency characteristic of the electrical Z-optical conversion response of the optical modulator has a higher frequency. It shows a downward trend in the area. Conversely, as the impedance value of the terminating resistor becomes smaller than the reference value, the frequency characteristic of the electrical Z-optical conversion response of the optical modulator tends to increase in a high frequency region.
  • the frequency band that changes in the vertical direction is applied to the electrode length of the modulation electrode and the modulation electrode. It can be determined by the effective refractive index of the microwave.
  • the changing frequency f is simply expressed by the following equation (1).
  • c is the speed of light
  • 1 is the electrode length of the modulation electrode (electrode length through which the microwave signal propagates)
  • ne is the refractive index of the waveguide with respect to the light wave
  • n is the effective refractive index of the microwave.
  • the electrode length in order to change in the frequency direction the frequency band that changes the frequency characteristic of the electrical Z light conversion response in the vertical direction, the electrode length, the effective refractive index of the microwave, and the light guide This can be realized by adjusting the refractive index of the wave path.
  • the present invention utilizes the fact that the frequency characteristic of the electric-Z optical conversion response of the traveling-wave optical modulator can be variably adjusted as described above, and even if any of the driving drivers having various frequency characteristics is selected, In a state where the driving driver and the traveling wave optical modulator are combined, the frequency characteristic of the electrical Z-optical conversion response of the traveling wave optical modulator is adjusted so as to compensate for the frequency characteristic of the driving driver. As a flat frequency characteristic (frequency response of electrical Z-optical conversion response).
  • the traveling wave optical modulator is adjusted so that the frequency is high! And the frequency characteristic of the electrical Z-optical conversion response decreases over the region.
  • This adjustment can be made by increasing the impedance value of the terminating resistor from that of the modulation electrode.
  • the driving driver having the characteristics shown in Fig. 5 (a) drives the traveling wave optical modulator having the characteristics shown in Fig. 5 (b), and in the high frequency region, the frequency characteristics of the driving driver are obtained.
  • the change is compensated by the change in the frequency characteristic of the electrical Z-optical conversion response of the optical modulator.As a result, as shown in Fig. 5 (c), the flat state of the electrical Z-optical conversion A traveling-wave optical modulator having frequency characteristics can be realized.
  • the traveling-wave optical modulator is adjusted so that the frequency is high and the frequency characteristic of the electrical Z-optical conversion response increases in the region. This adjustment can be made by lowering the impedance value of the terminating resistor from the impedance value of the modulation electrode.
  • the driving driver having the characteristics shown in Fig. 6 (a) drives the traveling wave optical modulator having the characteristics shown in Fig. 6 (b), and in the high frequency region, the frequency characteristic of the driving driver is obtained.
  • the change is compensated for by the change in the frequency characteristic of the electrical Z-optical conversion response of the optical modulator.As a result, as shown in FIG. A traveling-wave optical modulator having frequency characteristics can be realized.
  • a method for adjusting the impedance of the modulation electrode or the impedance of the terminating resistor for example, a method of changing the resistance value by trimming the resistance film of the terminating resistor, a method of incorporating a variable resistor in a circuit for forming the terminating resistor, a method of trimming and changing the electrode shape of the modulation electrode, an electrode or Various methods can be adopted, such as a method of attaching or removing a dielectric between the electrodes, a method of trimming an electrode pattern for forming a resistance circuit, and the like.
  • the inventor further investigated and studied in detail the relationship between frequency characteristics (frequency characteristics of electrical Z-optical conversion response) and jitter generation when a driving driver and a traveling-wave optical modulator were combined. As a result, it was found that jitter was effectively suppressed even in high-speed transmission (for example, 10 Gbps transmission) by simply bringing the frequency characteristic of the electrical Z-optical conversion response close to a flat state in the frequency range of 300 kHz to 3 GHz. Was.
  • Fig. 7 shows the measured optical eye patterns before and after the application of an lOGbps input signal to a traveling-wave optical modulator in which the frequency characteristics of the electrical Z optical conversion response were adjusted in the range of 300kHz to 3GHz. Things.
  • a driving driver is connected to the traveling-wave optical modulator, and a pulse pattern generator (MP 1761 B, manufactured by Anritsu Corporation) is used as a driving driver.
  • MP 1761 B manufactured by Anritsu Corporation
  • LOGbps NZ format, 2 31 — 1 While the input signal of (stage) was applied, laser light was incident on the optical modulator, and the light emitted from the modulator was observed with a digital sampling oscilloscope (86109B, manufactured by Agilent).
  • Figure 7 shows the result of the optical modulator before adjustment, and the jitter (RMS, root mean square) is 2. It was 4ps, but after adjustment it improved to 1.6ps.
  • Fig. 8 shows an example in which the impedance (resistance value) of the terminating resistor is variably adjusted.Jitter is degraded when the terminating resistor is 40 ⁇ , and the optimal impedance for minimizing the jitter is shown. It is understood that there is a value. This phenomenon similarly occurs in the case of a combination of another traveling wave optical modulator and a driving driver, and also when the impedance of the modulation electrode is variably adjusted.
  • the adjustment range of the difference be limited to a range of about ⁇ 20 ⁇ from the value of the matching point of the two impedances.
  • the electrode length, the effective refractive index of the microwave, and the Can be realized by adjusting the refractive index of the optical waveguide.
  • the electrode length of the modulation electrode when the electrode length is increased, the adjusted frequency band shifts to the lower frequency side, and when the electrode length is shortened, the frequency band shifts to the higher frequency side.
  • Several types of optical modulators having different electrode lengths are prepared in advance, and the optical modulator is selected according to the frequency band to be corrected for the frequency characteristics of the driving driver.
  • an electrode pattern in which a plurality of electrode lengths can be selected is formed in one optical modulator, and an electrode pad for connection to the modulation electrode can be selected, or an electrode on the substrate can be trimmed. It is also possible to use an optical modulator whose electrode length can be changed, such as changing the microwave propagation path.
  • the frequency band to be adjusted is shifted to a lower frequency side when the effective refractive index is increased, and conversely, when the effective refractive index is decreased, the frequency band is shifted to a higher frequency side.
  • optical modulators having different effective refractive indices of microwaves should be prepared in advance, and the frequency characteristics of the driving driver should be corrected.
  • the optical modulator is selected according to the frequency band.
  • the refractive index of the optical waveguide by changing the refractive index of the optical waveguide with respect to the light wave, it is possible to change the frequency band in which the frequency characteristic of the electrical Z light conversion response is changed in the vertical direction in the frequency direction.
  • the refractive index of the optical waveguide can be easily adjusted by doping the substrate with MgO or the like.
  • the present invention it is possible to provide a traveling wave optical modulator that suppresses occurrence of jitter when driving an optical modulator using a driving driver, and a method of adjusting the traveling wave optical modulator.
  • the present invention provides a traveling-wave optical modulator capable of expanding the degree of freedom of combination of a driving driver and a traveling-wave optical modulator and effectively suppressing jitter even after the combination, and a method of adjusting the traveling-wave optical modulator. be able to.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 駆動用ドライバを利用して光変調器を駆動する際のジッターの発生を抑制した進行波型光変調器及びその調整方法を提供することであり、特に、駆動用ドライバと進行波型光変調器との組合わせの自由度を拡大し、組合わせた後でもジッターを効果的に抑制可能な進行波型光変調器及びその調整方法を提供することを目的とする。  電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路中を伝搬する光波を変調制御するための変調用電極とを有する進行波型光変調器において、前記進行波型光変調器に、該進行波型光変調器を駆動制御する駆動用ドライバを接続し、該駆動用ドライバの利得の周波数特性(a)を補正するように、該進行波型光変調器の電気/光変換応答の周波数特性(b)が調整されていることを特徴とする。好ましくは、電気/光変換応答の周波数特性の調整は、変調用電極に係るインピーダンス値又は終端抵抗のインピーダンス値の少なくとも一方を調整するものであることを特徴とする。

Description

進行波型光変調器及びその調整方法
技術分野
[0001] 本発明は、進行波型光変調器及びその調整方法に関し、特に、進行波型光変調 器を駆動制御する駆動用ドライバを該進行波型光変調器に接続する場合の進行波 型光変調器及びその調整方法に関する。
背景技術
[0002] 近年、光変調器を評価する際に、光変調器を駆動した場合に得られる光信号の時 間的揺らぎを示すジッターと呼ばれる特性が、注目されて 、る。
ジッターとは、光信号の時間的揺らぎを示す指標であり、図 1に示すように、光アイ パターン波形を積算し、信号のクロスする場所の幅として定義される。
[0003] 光変調器を駆動した場合に得られる光信号のジッターを改善するためには、光変 調器ゃ該光変調器を駆動制御する駆動用ドライバに対し、以下の特性改善が必要と なる。
(1)駆動用ドライバ
入力した電気信号が劣化なく増幅されるよう利得が、低周波域力 高周波域までフ ラットな周波数特性とする。
(2)光変調器
入力した電気信号が劣化なく光信号に変換されるよう、電気 Z光変換応答の周波 数が低周波域力 高周波域までフラットな周波数特性とする。
[0004] 上記のように、駆動用ドライバと光変調器における周波数特性が、無限にフラット( 周波数依存性が無い状態)である場合には、上述したジッターは発生しないが、実際 には、駆動用ドライバも光変調器も共に、低周波域での周波数特性がフラットでなか つたり、高周波域の周波数特性は右肩下がりに劣化する傾向にあるため、ジッターが 発生する。特に、近年では、伝送速度が 40Gbpsを超える進行波型光変調器も利用 されており、このジッターの発生は重要な問題となっている。
[0005] ジッターを改善するには、駆動用ドライバ及び光変調器の個々の特性改善が必要 であるが、それぞれの特性を改善し、各周波数特性をフラットにすることは大変困難 である。
例えば、駆動用ドライバは設計の段階で、周波数特性が決まってしまうため、駆動 用ドライバの製造途中や製造後に周波数特性を改善することは難しい。
[0006] 以下の特許文献 1に示すように、光変調器の変調用電極の終端部のインピーダン スを調整することにより、光変調器の周波数特性を改善することは可能であるが、 40 Gbps伝送を可能とする高周波領域まで周波数特性をフラットにすることは困難であ る。
また、特許文献 1に開示されている終端部のインピーダンスの調整のみでは、進行 波型光変調器の電気 Z光変換応答の周波数特性の内、調整すべき周波数を変更 することが困難であった。
特許文献 1:特許第 3088988号公報
[0007] しかも、駆動用ドライバ及び光変調器の各単体での周波数特性が良好な場合でも 、両者を組み合わせるとジッターが劣化することも多ぐ駆動用ドライバと光変調器と の相'性も問題となって ヽる。
このため、ジッターが小さく良好な光伝送特性を得るためには、使用する駆動用ドラ ィバに組み合わせる光変調器の選択や、使用する光変調器に組み合わせる駆動用 ドライバの選択など、煩雑な作業が必要とされて 、る。
発明の開示
発明が解決しょうとする課題
[0008] 本発明が解決しょうとする課題は、上述したような問題を解決し、駆動用ドライバを 利用して光変調器を駆動する際のジッターの発生を抑制した進行波型光変調器及 びその調整方法を提供することであり、特に、駆動用ドライバと進行波型光変調器と の組合わせの自由度を拡大し、組合わせた後でもジッターを効果的に抑制可能な進 行波型光変調器及びその調整方法を提供することである。
課題を解決するための手段
[0009] 上記課題を解決するために、請求項 1に係る発明は、電気光学効果を有する基板 と、該基板に形成された光導波路と、該光導波路中を伝搬する光波を変調制御する ための変調用電極とを有する進行波型光変調器にお!、て、前記進行波型光変調器 に、該進行波型光変調器を駆動制御する駆動用ドライバを接続し、該駆動用ドライ バの利得の周波数特性を補正するように、該進行波型光変調器の電気 z光変換応 答の周波数特性が調整されて ヽることを特徴とする。
[0010] また、請求項 2に係る発明は、請求項 1に記載の進行波型光変調器において、該 進行波型光変調器が終端抵抗を有しており、該電気 Z光変換応答の周波数特性の 調整は、該変調用電極に係るインピーダンス値又は該終端抵抗のインピーダンス値 の少なくとも一方を調整するものであることを特徴とする。
[0011] また、請求項 3に係る発明は、電気光学効果を有する基板と、該基板に形成された 光導波路と、該光導波路中を伝搬する光波を変調制御するための変調用電極とを 有する進行波型光変調器にお!、て、特定の周波数における前記進行波型光変調器 に、該進行波型光変調器を駆動制御する駆動用ドライバを接続し、該駆動用ドライ バの利得の周波数特性を補正するように、該進行波型光変調器の電気 z光変換応 答の周波数特性が調整されて ヽることを特徴とする。
[0012] また、請求項 4に係る発明は、請求項 3に記載の進行波型光変調器において、特 定の周波数における電気 Z光変換応答の周波数特性の調整は、変調用電極に係る 電極長又は該変調用電極に印加されるマイクロ波の実効屈折率の少なくとも一方を 調整するものであることを特徴とする。
[0013] また、請求項 5に係る発明は、電気光学効果を有する基板と、該基板に形成された 光導波路と、該光導波路中を伝搬する光波を変調制御するための変調用電極とを 有する進行波型光変調器の調整方法において、前記進行波型光変調器に、該進行 波型光変調器を駆動制御する駆動用ドライバを接続し、該駆動用ドライバの利得の 周波数特性を補正するように、該進行波型光変調器の電気 Z光変換応答の周波数 特性を調整することを特徴とする。
[0014] また、請求項 6に係る発明は、請求項 5に記載の進行波型光変調器の調整方法に おいて、該進行波型光変調器が終端抵抗を有しており、該電気 Z光変換応答の周 波数特性の調整は、該変調用電極に係るインピーダンス値又は該終端抵抗のインピ 一ダンス値の少なくとも一方を調整するものであることを特徴とする。 [0015] また、請求項 7に係る発明は、請求項 6に記載の進行波型光変調器の調整方法に おいて、該駆動用ドライバの高周波数領域における利得が上昇する周波数特性を有 する場合には、該変調電極より該終端抵抗のインピーダンス値を高く調整し、該利得 が下降する周波数特性を有する場合には、該変調電極より該終端抵抗のインピーダ ンス値を低く調整することを特徴とする。
[0016] また、請求項 8に係る発明は、電気光学効果を有する基板と、該基板に形成された 光導波路と、該光導波路中を伝搬する光波を変調制御するための変調用電極とを 有する進行波型光変調器の調整方法にぉ 、て、特定の周波数における前記進行波 型光変調器に、該進行波型光変調器を駆動制御する駆動用ドライバを接続し、該駆 動用ドライバの利得の周波数特性を補正するように、該進行波型光変調器の電気 Z 光変換応答の周波数特性を調整することを特徴とする。
[0017] また、請求項 9に係る発明は、請求項 8に記載の進行波型光変調器の調整方法に おいて、特定の周波数における電気 Z光変換応答の周波数特性の調整は、変調用 電極に係る電極長又は該変調用電極に印加されるマイクロ波の実効屈折率の少なく とも一方を調整するものであることを特徴とする。
[0018] また、請求項 10に係る発明は、請求項 9に記載の進行波型光変調器の調整方法 において、該特定の周波数を低周波数側にシフトさせる場合には、電極長をより長く 又は実行屈折率をより大きくし、該特定の周波数を高周波数側にシフトさせる場合に は、電極長をより短く又は実効屈折率をより小さくすることを特徴とする。
[0019] また、請求項 11に係る発明は、請求項 5乃至 10のいずれかに記載の進行波型光 変調器の調整方法において、該電気 Z光変換応答の周波数特性の調整は、該駆動 用ドライバによる該進行波型光変調器の駆動時に、該駆動用ドライバに入力する電 気信号に対して、該進行波型光変調器から出力される光信号の 300kHzから 3GHz の範囲の電気 Z光変換応答の周波数特性をフラット状態に近づける調整であること を特徴とする。
本発明における「フラット状態に近づける」とは、完全にフラットな状態とすることのみ を意味するのではなぐ調整前の状態より調整後の状態がよりフラット状態に近いとい う意味である。 発明の効果
[0020] 請求項 1に係る発明によれば、駆動用ドライバの利得の周波数特性を補正するよう に、進行波型光変調器の電気 Z光変換応答の周波数特性が調整されているため、 結果として駆動中の進行波型光変調器においては、フラット状の適正な電気 Z光変 換応答の周波数特性が得られ、ジッターが少な!/ヽ良好な光伝送特性を実現すること が可能となる。
しカゝも、駆動用ドライバ及び進行波型光変調器に対し個々に周波数に係る特性を 最適化する必要がないため、駆動用ドライバと進行波型光変調器との組合わせの自 由度を拡大することができる。
[0021] 請求項 2に係る発明によれば、電気 Z光変換応答の周波数特性の調整が、変調用 電極に係るインピーダンス値又は終端抵抗のインピーダンス値の少なくとも一方を調 整することにより行われるため、駆動用ドライバと光変調器とを組合わせた後でも、容 易に電気 Z光変換応答の周波数特性を補正することが可能となる。
[0022] 請求項 3に係る発明によれば、特定の周波数における駆動用ドライバの利得の周 波数特性を補正するように、進行波型光変調器の電気 Z光変換応答の周波数特性 が調整されているため、結果として駆動中の進行波型光変調器においては、フラット 状の適正な電気 Z光変換応答の周波数特性が得られ、ジッターが少ない良好な光 伝送特性を実現することが可能となる。
しカゝも、駆動用ドライバ及び進行波型光変調器に対し個々に周波数に係る特性を 最適化する必要がないため、駆動用ドライバと進行波型光変調器との組合わせの自 由度を拡大することができる。
[0023] 請求項 4に係る発明によれば、変調用電極に係る電極長又は該変調用電極に印 カロされるマイクロ波の実効屈折率の少なくとも一方を調整することにより、特定の周波 数における電気 Z光変換応答の周波数特性の調整が可能となるため、駆動用ドライ バの周波数特性に対応する補正を行う上で、より適切な電気 Z光変換応答の周波 数特性の調整が実現できる。
[0024] 請求項 5に係る発明によれば、駆動用ドライバの利得の周波数特性を補正するよう に、進行波型光変調器の電気 Z光変換応答の周波数特性が調整されているため、 駆動用ドライバ及び進行波型光変調器に対し個々に周波数に係る特性を最適化す る必要がなぐしかも、駆動用ドライバと進行波型光変調器とを組合わせた後で、進 行波型光変調器の電気 Z光変換応答の周波数特性を調整するため、駆動中の進 行波型光変調器において、常にフラット状の適正な電気 Z光変換応答の周波数特 性を容易に得ることができる。
このため、使用する駆動用ドライバに合わせて進行波型光変調器を設計することな ぐしかも使用できる駆動用ドライバと進行波型光変調器との組合わせに係る制限が ないため、製造コストを大幅に削減することも可能となる。
[0025] 請求項 6に係る発明によれば、電気 Z光変換応答の周波数特性の調整は、変調用 電極に係るインピーダンス値又は終端抵抗のインピーダンス値の少なくとも一方を調 整するものであるため、駆動用ドライバと光変調器とを組合わせた後でも、容易に電 気 Z光変換応答の周波数特性を補正することが可能となる。
[0026] 請求項 7に係る発明によれば、駆動用ドライバの高周波数領域における利得が上 昇あるいは下降する周波数特性を有する場合であっても、該変調電極より該終端抵 抗のインピーダンス値を調整することにより、駆動用ドライバと光変調器とを組合わせ た後でも、容易に電気 Z光変換応答の周波数特性を補正することが可能となる。
[0027] 請求項 8に係る発明によれば、特定の周波数における駆動用ドライバの利得の周 波数特性を補正するように、進行波型光変調器の電気 Z光変換応答の周波数特性 が調整されているため、駆動用ドライバ及び進行波型光変調器に対し個々に周波数 に係る特性を最適化する必要がなぐしかも、駆動用ドライバと進行波型光変調器と を組合わせた後で、進行波型光変調器の電気 Z光変換応答の周波数特性を調整 するため、駆動中の進行波型光変調器において、常にフラット状の適正な電気 Z光 変換応答の周波数特性を容易に得ることができる。
このため、使用する駆動用ドライバに合わせて進行波型光変調器を設計することな ぐしかも使用できる駆動用ドライバと進行波型光変調器との組合わせに係る制限が ないため、製造コストを大幅に削減することも可能となる。
[0028] 請求項 9に係る発明によれば、変調用電極に係る電極長又は該変調用電極に印 カロされるマイクロ波の実効屈折率の少なくとも一方を調整することにより、特定の周波 数における電気 z光変換応答の周波数特性の調整が可能となるため、駆動用ドライ バの周波数特性に対応する補正を行う上で、より適切な電気 Z光変換応答の周波 数特性の調整が実現できる。
[0029] 請求項 10に係る発明によれば、特定の周波数を低周波数側にシフトさせる場合に は、電極長をより長く又は実行屈折率をより大きくし、該特定の周波数を高周波数側 にシフトさせる場合には、電極長をより短く又は実効屈折率をより小さくすることで、容 易に特定の周波数を設定できるため、より適切な電気 Z光変換応答の周波数特性 の調整を実現することが可能となる。
[0030] 請求項 11に係る発明によれば、電気 Z光変換応答の周波数特性の調整は、駆動 用ドライバによる進行波型光変調器の駆動時に、 300kHzから 3GHzの範囲の電気 Z光変換応答の周波数特性をフラット状態に近づける調整であるため、進行波型光 変調器に印加される全ての信号周波数において、電気 Z光変換応答の周波数特性 をフラット状態とする必要が無ぐ調整が容易であり、しかも、上記範囲の信号周波数 を調整することにより、結果として高速伝送におけるジッターを効率よく抑制することも 可能となる。
図面の簡単な説明
[0031] [図 1]ジッターを説明するための概略図である。
[図 2]進行波型光変調器の概略を示す斜視図である。
[図 3]駆動用ドライバの利得の周波数特性を示す模式図である。
[図 4]進行波型光変調器の電気 Z光変換応答の周波数特性の調整方法を示す概略 図である。
[図 5]本発明に係る進行波型光変調器の調整方法の例を示す概略図である。
[図 6]本発明に係る進行波型光変調器の調整方法の他の例を示す概略図である。
[図 7]光アイパターンの測定結果を示す図である。
[図 8]終端抵抗値とジッターとの関係を示すグラフである。
符号の説明
[0032] 1 入射側光ファイバ
2 偏光子 3 光導波路
4 接地電極
5 信号電極
6 高周波ケーブル
7 駆動ドライバ
8 終端抵抗
9 基板
10 出射側光ファイバ
11 電極パッド
発明を実施するための最良の形態
[0033] 以下、本発明を好適例を用いて詳細に説明する。
本発明は、電気光学効果を有する基板と、該基板に形成された光導波路と、該光 導波路中を伝搬する光波を変調制御するための変調用電極とを有する進行波型光 変調器において、前記進行波型光変調器に、該進行波型光変調器を駆動制御する 駆動用ドライバを接続し、該駆動用ドライバの利得の周波数特性を補正するように、 該進行波型光変調器の電気 Z光変換応答の周波数特性が調整されていることを特 徴とする進行波型光変調器及びその調整方法である。
[0034] また本発明は、電気光学効果を有する基板と、該基板に形成された光導波路と、 該光導波路中を伝搬する光波を変調制御するための変調用電極とを有する進行波 型光変調器において、前記進行波型光変調器に、該進行波型光変調器を駆動制御 する駆動用ドライバを接続し、特定の周波数における該駆動用ドライバの利得の周 波数特性を補正するように、該進行波型光変調器の電気 Z光変換応答の周波数特 性が調整されていることを特徴とする進行波型光変調器及びその調整方法である。
[0035] 図 2は、本発明が適用される進行波型光変調器の一実施例を示す概略図である。
基板 9は、電気光学効果を有する基板であり、例えば、ニオブ酸リチウム、タンタル 酸リチウム、 PLZT (ジルコン酸チタン酸鉛ランタン)、及び石英系の材料カゝら構成さ れ、具体的には、これら単結晶材料の、 Xカット板、 Yカット板、及び Zカット板力ゝら構 成され、特に、光導波路デバイスとして構成されやすぐかつ異方性が大きいという理 由から、ニオブ酸リチウム (LN)を用いることが好ま 、。
[0036] 光導波路 3は、いわゆるマツハツ ンダ型光導波路であり、基板 9上に、例えばチタ ン (Ti)などを堆積させた後、熱拡散させて形成する。また、図 2には示していないが、 光導波路 3中を伝搬する光の電極層への吸収を少なくするため、酸化シリコン (SiO )
2 など力もなるノ ッファ層を、基板 9上に形成することもできる。変調用電極である接地 電極 4及び信号電極 5は、金 (Au)などの金属から形成する。また、図 2では、入射光 の余分な成分を除去して偏光を揃えるために、偏光子 2を設けて 、る。
[0037] 図 2に示す進行波型光変調器を用いた高速光伝送は、以下のようにして行う。
入射光は、入射側光ファイバ 1から入射させ、偏光子 2を通過させた後、光導波路 3 中を 2分割して進行させる。一方、信号電極 5には、駆動ドライバ 7から高周波ケープ ル 6を通して、マイクロ波帯域の信号成分を含んだ伝送信号を印加する。この伝送信 号は、光導波路 3中を進行する導波光の進行方向と同方向の順方向電気信号として 、光導波路 3中を進行する導波光に印加される。
[0038] 電気信号の印加により光導波路の屈折率が変化するため、 2分割した光導波路中 を進行する導波光の位相がこの屈折率変化に起因して変化する。したがって、分岐 した各光導波路 3中を進行してきた導波光は、光導波路 3の終端において再び結合 すると、その合成された導波光は互いに干渉し合い、各光導波路 3中を進行してきた 導波光の位相差に対応して出射光が変化する。
[0039] 通常、マイクロ波帯域の信号成分を含んだ高速光伝送の場合にお!、ては、駆動用 ドライバ 7から信号電極 5に入力する伝送信号が反射されずに効率よく入力されるよう に、接地電極 4及び信号電極 5のインピーダンス (特性インピーダンス)を、駆動用ドラ ィバ 7のインピーダンスに整合するように設定する。また、信号電極 5中に入力された 伝送信号が信号電極の出力側から反射されないように、図 2に示す進行波型光変調 器の出力側には、前記特性インピーダンスと同じ値の抵抗値を有する終端抵抗 8を 設置し、インピーダンス整合を取るのが一般的である。
ただし、進行波型光変調器の電気 Z光変換応答の周波数特性を調整する際には 、むしろ変調用電極に係るインピーダンスと終端抵抗のインピーダンスとに差を設け る状態も含めて、両者を調整し、変調用電極と終端抵抗との接続部におけるマイクロ 波の反射を積極的に活用するものである。
[0040] 駆動用ドライバ 7は、利得の周波数特性が機器により異なり、例えば、図 3に示すよ うに、周波数が高い領域においては利得が上昇するもの(図 3 (a)参照)や、逆に利 得が減少するもの(図 3 (b)参照)のように、各種の特性を有するものが存在する。 他方、進行波型光変調器の電気 Z光変換応答の周波数特性は、駆動用ドライバ の利得の周波数特性と同様に、各種の周波数依存性を有している。
このため、進行波型光変調器のジッターを改善するために、駆動用ドライバ又は光 変調器単体の周波数特性を個々に調整することは非常に困難である。しかしながら 、本発明者は、鋭意研究した結果、駆動用ドライバと進行波型光変調器とを組み合 わせた場合の周波数特性 (電気 Z光変換応答の周波数特性)をフラット状態に調整 することで、このような問題を解消することを見出したものである。
[0041] 進行波型光変調器の電気 Z光変換応答の周波数特性は、進行波型光変調器の 変調用電極に係るインピーダンス値と終端抵抗のインピーダンス値との関係で、図 4 に示すように、様々な周波数依存性を示す。具体的には、変調用電極に係るインピ 一ダンス値を基準として、終端抵抗のインピーダンス値が該基準値より大きくなるに 従い、光変調器の電気 Z光変換応答の周波数特性は、周波数の高い領域において 低下傾向を示す。逆に、終端抵抗のインピーダンス値が該基準値より小さくなるに従 い、光変調器の電気 Z光変換応答の周波数特性は、周波数の高い領域において上 昇傾向を示す。
[0042] また、進行波型光変調器の電気 Z光変換応答の周波数特性にぉ 、て、上下方向 に変化する周波数帯域は、変調用電極に係る電極長及び該変調用電極に印加され るマイクロ波の実効屈折率により決めることが可能である。
つまり、変化する周波数 fは、次式(1)により簡易的に表現される。
f=c/l(n +η ) · · · · (1)
e m
ここで、 cは光速、 1は変調用電極の電極長(マイクロ波信号が伝搬する電極長)、 n e は光波に対する導波路の屈折率、 n はマイクロ波の実効屈折率である。
したがって、電気 Z光変換応答の周波数特性を上下方向に変化させる周波数帯を 周波数方向に変化させるためには、電極長、マイクロ波の実効屈折率、さらには光導 波路の屈折率を調整することで実現できる。
[0043] 本発明では、このように進行波型光変調器の電気 Z光変換応答の周波数特性が 可変調整できることを利用し、多様な周波数特性を有する駆動用ドライバのいずれを 選択しても、駆動用ドライバと進行波型光変調器とを組み合わせた状態において、該 駆動用ドライバの周波数特性を補償するように、進行波型光変調器の電気 Z光変換 応答の周波数特性を調整し、結果としてフラットな周波数特性 (電気 Z光変換応答の 周波数特性)を実現している。
[0044] 例えば、図 3 (a)や図 5 (a)に示すような、周波数が高い領域において利得が上昇 する周波数特性を有する駆動用ドライバを利用する場合には、図 5 (b)のように、周 波数が高!、領域にぉ ヽて電気 Z光変換応答の周波数特性が減少するように、進行 波型光変調器を調整する。この調整は、変調用電極に係るインピーダンス値より終端 抵抗のインピーダンス値を上げることにより可能である。
その結果、図 5 (a)の特性を有する駆動用ドライバで図 5 (b)の特性を有する進行波 型光変調器を駆動することとなり、周波数の高い領域において、駆動用ドライバの周 波数特性変化を、光変調器の電気 Z光変換応答の周波数特性の変化が補償するこ ととなり、結果として、図 5 (c)に示すように、駆動中にフラット状態な電気 Z光変換応 答の周波数特性を有する進行波型光変調器を実現することが可能となる。
[0045] また、図 3 (b)や図 6 (a)に示すような、周波数が高い領域において利得が減少する 周波数特性を有する駆動用ドライバを利用する場合においても、図 5と同様に、図 6 ( b)のように、周波数が高!、領域にぉ 、て電気 Z光変換応答の周波数特性が増加す るように、進行波型光変調器を調整する。この調整は、変調用電極に係るインピーダ ンス値より終端抵抗のインピーダンス値を下げることにより可能である。
その結果、図 6 (a)の特性を有する駆動用ドライバで図 6 (b)の特性を有する進行波 型光変調器を駆動することとなり、周波数の高い領域において、駆動用ドライバの周 波数特性変化を、光変調器の電気 Z光変換応答の周波数特性の変化が補償するこ ととなり、結果として、図 6 (c)に示すように、駆動中にフラット状態な電気 Z光変換応 答の周波数特性を有する進行波型光変調器を実現することが可能となる。
[0046] 変調用電極に係るインピーダンス又は終端抵抗のインピーダンスを調整する方法と しては、例えば、終端抵抗の抵抗膜をトリミングして抵抗値を変える方法、終端抵抗 を形成する回路に可変抵抗を組み込む方法、変調用電極の電極形状をトリミングし て変更する方法、電極又は電極間に誘電体を付着あるいは除去する方法、抵抗回 路を形成する電極パターンをトリミングする方法など、各種の方法を採用することがで きる。
[0047] 本発明者は、さらに、駆動用ドライバと進行波型光変調器を組み合わせた場合の 周波数特性 (電気 Z光変換応答の周波数特性)と、ジッター発生との関係を詳細に 調査研究した結果、周波数が 300kHzから 3GHzの範囲において電気 Z光変換応 答の周波数特性をフラット状態に近づけるだけで、高速伝送 (例えば、 lOGbps伝送 )においても、ジッターが効果的に抑制されていることを見出した。特に、フラット状態 に近づける上で重要なことは、上記範囲を低周波範囲(例えば、 300kHz〜数 10M Hz程度)と高周波範囲 (数十 MHz〜3GHz程度)とに分け、両者の範囲の特性を比 較した場合に、ほぼ同じレベルとなるように調整することである。
[0048] 図 7は、 300kHzから 3GHzの範囲で電気 Z光変換応答の周波数特性を調整した 進行波型光変調器に、 lOGbpsの入力信号を印加した場合の光アイパターンを調整 前後で測定したものである。
具体的な調整方法を以下に示す。まず、駆動用ドライバ (TGA4953、 TriQuint社 製)の利得の周波数特性と進行波型光変調器 (住友大阪セメント社製)の電気 Z光 変換応答の周波数特性をそれぞれ光コンポーネントアナライザ (8702D、 Agilent社 製)により測定した。次にこの測定を参考に、光変調器に接続した終端抵抗の抵抗値 を可変し、 300kHzから 3GHzの範囲で駆動用ドライバと進行波型光変調器の組み 合わせの電気 Z光変換応答の周波数特性がほぼフラットになるように調整した。
[0049] 調整前後において、進行波型光変調器に駆動用ドライバを接続し、駆動用ドライバ にパルスパターンジェネレータ(MP 1761 B、アンリツ社製)力ら lOGbps (NRZフォ 一マット、 231— 1段)の入力信号を印加すると共に、レーザー光を光変調器に入射し 、該変調器からの出射光をデジタルサンプリングオシロスコープ(86109B、 Agilent 社製)で観察した。
図 7は、調整前の光変調器の結果であり、ジッター (RMS,平方二乗平均)は、 2. 4psであったが、調整後には、 1. 6psに改善していた。
このこと力 、 300kHzから 3GHzの範囲における電気 Z光変換応答の周波数特 性の改善が、 lOGbpsの伝送信号の高周波に対しても、ジッターを効果的に抑制し ていることが理解される。
[0050] さらに、変調用電極や終端抵抗のインピーダンスを可変調整した場合のジッターの 変化について説明する。
図 8は、終端抵抗のインピーダンス (抵抗値)を可変調整した場合の例であるが、終 端抵抗が 40 Ωを境に、ジッターが劣化しており、ジッターを最小にする最適なインピ 一ダンス値があることが理解される。この現象は、他の進行波型光変調器と駆動用ド ライバとの組み合わせにおいても、また、変調用電極側のインピーダンスを可変調整 した場合でも、同様に発生する。
このため、駆動用ドライバと進行波型光変調器を組み合わせた場合の電気 Z光変 換応答の周波数特性をフラット状態に近づける調整を行う代わりに、最小ジッターを 与える適正インピーダンス値を選定し調整することも可能である。
[0051] 変調用電極に係るインピーダンスと終端抵抗のインピーダンスとの差は、差が大き いほど、変調用電極と終端抵抗との接続部におけるマイクロ波の反射量が増大する 。このため、マイクロ波の反射量が大きくなり過ぎると、進行波型光変調器の光変調 効率が低下し、駆動電圧の増加や、進行波型光変調器の電気反射特性 (S11)が劣 化する。
これらを避けるためには、上記差の調整範囲は、両者のインピーダンスの一致点の 値から ± 20 Ω程度の範囲に制限することが、より好ましい。
[0052] 次に、進行波型光変調器の電気 Z光変換応答の周波数特性を上下方向に変化さ せる周波数帯を、周波数方向に変化させる調整方法について説明する。
上記の式(1)でも示したように、電気 Z光変換応答の周波数特性を上下方向に変 化させる周波数帯を周波数方向に変化させるためには、電極長、マイクロ波の実効 屈折率、さらには光導波路の屈折率を調整することで実現できる。
[0053] 変調用電極の電極長に関しては、電極長を長くすると調整される周波数帯域は低 周波数側にシフトし、逆に電極長を短くすると周波数帯域は高周波数側にシフトする 予め電極長の異なる数種類の光変調器を用意しておき、駆動用ドライバの周波数 特性の補正すべき周波数帯域に対応して、光変調器を選択すると共に、上述した変 調用電極に係るインピーダンスと終端抵抗のインピーダンスとの調整を行うことにより
、駆動用ドライバと進行波型光変調器を組み合わせた場合の電気 Z光変換応答の 周波数特性をフラット状態に近づける調整が可能となる。
また、一つの光変調器内に複数の電極長を選択可能な電極パターンを形成してお き、変調用電極に結線する際の電極パッドを選択可能としたり、基板上の電極をトリミ ングしマイクロ波の伝搬経路を変更するなど、電極長が変更可能な光変調器を利用 することも可會である。
[0054] マイクロ波の実効屈折率に関しては、実効屈折率を大きくすると調整される周波数 帯域は低周波数側にシフトし、逆に実効屈折率を小さくすると周波数帯域は高周波 数側にシフトする。
マイクロ波の実効屈折率を変更するには、変調用電極の信号電極の幅を変更する 方法、信号電極と接地電極とのギャップを変更する方法、光変調器のバッファ層の厚 みを変更する方法など、各種の方法が利用可能である。
これらの方法を利用するには、電極長の変更の場合と同様に、予めマイクロ波の実 効屈折率の異なる数種類の光変調器を用意しておき、駆動用ドライバの周波数特性 の補正すべき周波数帯域に対応して、光変調器を選択する。また、電極をトリミングし て電極の形状を変更する方法や、信号電極と接地電極との間に誘電体を付着又は 充填する方法など、進行波型光変調器の製造後に、調整可能とすることもできる。
[0055] また、光波に対する光導波路の屈折率を変更することによつても、電気 Z光変換応 答の周波数特性を上下方向に変化させる周波数帯を周波数方向に変化させること が可能であり、光導波路の屈折率は MgOなどを基板にドープすることにより容易に 調整ができる。
ただし、導波路の屈折率を変更すると、光波の光路長が変化することとなる。このた め、予め光変調器毎に厳密に設定されている光路長が、設計値から外れる原因とも なり、この方法を利用する際には注意が必要である。 産業上の利用可能性
以上説明したように、本発明によれば、駆動用ドライバを利用して光変調器を駆動 する際のジッターの発生を抑制した進行波型光変調器及びその調整方法が提供可 能であり、特に、駆動用ドライバと進行波型光変調器との組合わせの自由度を拡大し 、組合わせた後でもジッターを効果的に抑制可能な進行波型光変調器及びその調 整方法を提供することができる。

Claims

請求の範囲
[1] 電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路中を 伝搬する光波を変調制御するための変調用電極とを有する進行波型光変調器にお いて、
前記進行波型光変調器に、該進行波型光変調器を駆動制御する駆動用ドライバ を接続し、
該駆動用ドライバの利得の周波数特性を補正するように、該進行波型光変調器の 電気 Z光変換応答の周波数特性が調整されていることを特徴とする進行波型光変 調^。
[2] 請求項 1に記載の進行波型光変調器にお!、て、該進行波型光変調器が終端抵抗 を有しており、該電気 Z光変換応答の周波数特性の調整は、該変調用電極に係るィ ンピーダンス値又は該終端抵抗のインピーダンス値の少なくとも一方を調整するもの であることを特徴とする進行波型光変調器。
[3] 電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路中を 伝搬する光波を変調制御するための変調用電極とを有する進行波型光変調器にお いて、
前記進行波型光変調器に、該進行波型光変調器を駆動制御する駆動用ドライバ を接続し、
特定の周波数における該駆動用ドライバの利得の周波数特性を補正するように、 該進行波型光変調器の電気 Z光変換応答の周波数特性が調整されていることを特 徴とする進行波型光変調器。
[4] 請求項 3に記載の進行波型光変調器において、特定の周波数における電気 Z光 変換応答の周波数特性の調整は、変調用電極に係る電極長又は該変調用電極に 印加されるマイクロ波の実効屈折率の少なくとも一方を調整するものであることを特徴 とする進行波型光変調器。
[5] 電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路中を 伝搬する光波を変調制御するための変調用電極とを有する進行波型光変調器の調 整方法において、 前記進行波型光変調器に、該進行波型光変調器を駆動制御する駆動用ドライバ を接続し、
該駆動用ドライバの利得の周波数特性を補正するように、該進行波型光変調器の 電気 Z光変換応答の周波数特性を調整することを特徴とする進行波型光変調器の 調整方法。
[6] 請求項 5に記載の進行波型光変調器の調整方法において、該進行波型光変調器 が終端抵抗を有しており、該電気 Z光変換応答の周波数特性の調整は、該変調用 電極に係るインピーダンス値又は該終端抵抗のインピーダンス値の少なくとも一方を 調整するものであることを特徴とする進行波型光変調器の調整方法。
[7] 請求項 6に記載の進行波型光変調器の調整方法において、該駆動用ドライバの高 周波数領域における利得が上昇する周波数特性を有する場合には、該変調電極よ り該終端抵抗のインピーダンス値を高く調整し、該利得が下降する周波数特性を有 する場合には、該変調電極より該終端抵抗のインピーダンス値を低く調整することを 特徴とする進行波型光変調器の調整方法。
[8] 電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路中を 伝搬する光波を変調制御するための変調用電極とを有する進行波型光変調器の調 整方法において、
前記進行波型光変調器に、該進行波型光変調器を駆動制御する駆動用ドライバ を接続し、
特定の周波数における該駆動用ドライバの利得の周波数特性を補正するように、 該進行波型光変調器の電気 Z光変換応答の周波数特性を調整することを特徴とす る進行波型光変調器の調整方法。
[9] 請求項 8に記載の進行波型光変調器の調整方法において、特定の周波数におけ る電気 Z光変換応答の周波数特性の調整は、変調用電極に係る電極長又は該変 調用電極に印加されるマイクロ波の実効屈折率の少なくとも一方を調整するものであ ることを特徴とする進行波型光変調器の調整方法。
[10] 請求項 9に記載の進行波型光変調器の調整方法において、該特定の周波数を低 周波数側にシフトさせる場合には、電極長をより長く又は実効屈折率をより大きくし、 該特定の周波数を高周波数側にシフトさせる場合には、電極長をより短く又は実行 屈折率をより小さくすることを特徴とする進行波型光変調器の調整方法。
請求項 5乃至 10のいずれかに記載の進行波型光変調器の調整方法において、該 電気 Z光変換応答の周波数特性の調整は、該駆動用ドライバによる該進行波型光 変調器の駆動時に、該駆動用ドライバに入力する電気信号に対して、該進行波型光 変調器から出力される光信号の 300kHzから 3GHzの範囲の電気 Z光変換応答の 周波数特性をフラット状態に近づける調整であることを特徴とする進行波型光変調器 の調整方法。
PCT/JP2005/006039 2004-03-30 2005-03-30 進行波型光変調器及びその調整方法 WO2005096077A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006511712A JP4828412B2 (ja) 2004-03-30 2005-03-30 進行波型光変調器及びその調整方法
US11/547,351 US7558444B2 (en) 2004-03-30 2005-03-30 Traveling-wave-type optical modulator and method of adjusting the same
EP05727910A EP1742097A4 (en) 2004-03-30 2005-03-30 PROGRESSIVE WAVE OPTICAL MODULATOR AND ITS CONTROL METHOD

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004101174 2004-03-30
JP2004100149 2004-03-30
JP2004-100149 2004-03-30
JP2004-101174 2004-03-30

Publications (1)

Publication Number Publication Date
WO2005096077A1 true WO2005096077A1 (ja) 2005-10-13

Family

ID=35063939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006039 WO2005096077A1 (ja) 2004-03-30 2005-03-30 進行波型光変調器及びその調整方法

Country Status (4)

Country Link
US (1) US7558444B2 (ja)
EP (1) EP1742097A4 (ja)
JP (1) JP4828412B2 (ja)
WO (1) WO2005096077A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559768B2 (en) 2006-09-28 2013-10-15 Sumitomo Osaka Cement Co., Ltd. Traveling wave optical modulator
US8655116B2 (en) 2010-10-06 2014-02-18 Mitsubishi Electric Corporation Optical modulator
WO2020090579A1 (ja) * 2018-10-30 2020-05-07 日本電気株式会社 光送信器及び光送信方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090687A1 (ja) * 2008-01-18 2009-07-23 Anritsu Corporation 光変調器
US8426798B2 (en) * 2009-08-19 2013-04-23 Jds Uniphase Corporation Electrical termination circuit for a traveling-wave optoelectronic device
GB2614523A (en) * 2021-11-09 2023-07-12 Smart Photonics Holding B V Electro-optical modulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054961A (ja) * 1996-08-09 1998-02-24 Nippon Telegr & Teleph Corp <Ntt> 光制御デバイスおよび光制御装置
JPH11183858A (ja) * 1997-12-24 1999-07-09 Sumitomo Osaka Cement Co Ltd 進行波型光変調器及び光変調方法
JP2002287103A (ja) * 2001-03-28 2002-10-03 Fujitsu Ltd 光変調器
JP2003329987A (ja) * 2002-05-10 2003-11-19 Ntt Electornics Corp 光変調装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580840B1 (en) * 1999-05-11 2003-06-17 Jds Uniphase Corporation High efficiency electro-optic modulator with equalized frequency response
JP3936858B2 (ja) * 2001-11-01 2007-06-27 日本オプネクスト株式会社 光変調装置
JP2004170931A (ja) * 2002-11-05 2004-06-17 Ngk Insulators Ltd 光変調器
JP2005037547A (ja) * 2003-07-17 2005-02-10 Fujitsu Ltd 光変調器
KR100668410B1 (ko) * 2004-11-30 2007-01-16 한국전자통신연구원 광 모듈

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054961A (ja) * 1996-08-09 1998-02-24 Nippon Telegr & Teleph Corp <Ntt> 光制御デバイスおよび光制御装置
JPH11183858A (ja) * 1997-12-24 1999-07-09 Sumitomo Osaka Cement Co Ltd 進行波型光変調器及び光変調方法
JP2002287103A (ja) * 2001-03-28 2002-10-03 Fujitsu Ltd 光変調器
JP2003329987A (ja) * 2002-05-10 2003-11-19 Ntt Electornics Corp 光変調装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1742097A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559768B2 (en) 2006-09-28 2013-10-15 Sumitomo Osaka Cement Co., Ltd. Traveling wave optical modulator
US8655116B2 (en) 2010-10-06 2014-02-18 Mitsubishi Electric Corporation Optical modulator
WO2020090579A1 (ja) * 2018-10-30 2020-05-07 日本電気株式会社 光送信器及び光送信方法
CN112913160A (zh) * 2018-10-30 2021-06-04 日本电气株式会社 光发送器和光发送方法
JPWO2020090579A1 (ja) * 2018-10-30 2021-09-16 日本電気株式会社 光送信器及び光送信方法
US11381316B2 (en) 2018-10-30 2022-07-05 Nec Corporation Optical transmitter and optical transmission method
JP7192875B2 (ja) 2018-10-30 2022-12-20 日本電気株式会社 光送信器、光送信システム及び光送信方法
CN112913160B (zh) * 2018-10-30 2023-12-19 日本电气株式会社 光发送器和光发送方法

Also Published As

Publication number Publication date
EP1742097A1 (en) 2007-01-10
US7558444B2 (en) 2009-07-07
JPWO2005096077A1 (ja) 2008-02-21
JP4828412B2 (ja) 2011-11-30
EP1742097A4 (en) 2009-11-11
US20080240644A1 (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4899356B2 (ja) 光変調器
US8559768B2 (en) Traveling wave optical modulator
US6867901B2 (en) Optical modulator and design method therefor
JP4599434B2 (ja) 光導波路素子モジュール
US8086078B2 (en) Electronic device
JPH05196902A (ja) 進行波光変調器
JP4828412B2 (ja) 進行波型光変調器及びその調整方法
US8774566B2 (en) Optical waveguide element module
JP3695717B2 (ja) 光変調器
JP3088988B2 (ja) 進行波型光変調器及び光変調方法
JP4128510B2 (ja) 光導波路素子
JP4430114B2 (ja) 光導波路素子モジュール
JP3669999B2 (ja) 光変調素子
JP3924289B2 (ja) 光変調素子及びその製造方法
JP5291764B2 (ja) 光デバイスおよび光変調装置
JP2000267056A (ja) 導波路型光デバイス
JP3695708B2 (ja) 光変調器
JP5532038B2 (ja) 光変調器
JP2007033793A (ja) 光変調器
JP2007025369A (ja) 光変調器
JP2000249995A (ja) 導波路型光デバイス
JP2008152206A (ja) 光変調器
JP2012032438A (ja) 光パルス発生装置及び光パルス発生方法
JP2010211060A (ja) 光変調器
JP2004037695A (ja) 光変調器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511712

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580010317.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005727910

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005727910

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11547351

Country of ref document: US