WO2005095922A1 - ナノギャップ列物質捕捉検出同定方法および装置 - Google Patents

ナノギャップ列物質捕捉検出同定方法および装置 Download PDF

Info

Publication number
WO2005095922A1
WO2005095922A1 PCT/JP2005/005796 JP2005005796W WO2005095922A1 WO 2005095922 A1 WO2005095922 A1 WO 2005095922A1 JP 2005005796 W JP2005005796 W JP 2005005796W WO 2005095922 A1 WO2005095922 A1 WO 2005095922A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
cantilever
array
detecting
nanogap
Prior art date
Application number
PCT/JP2005/005796
Other languages
English (en)
French (fr)
Inventor
Hideki Kawakatsu
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to JP2006511650A priority Critical patent/JPWO2005095922A1/ja
Priority to US10/594,514 priority patent/US20070140905A1/en
Priority to EP05727720A priority patent/EP1739404A1/en
Publication of WO2005095922A1 publication Critical patent/WO2005095922A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/02Monitoring the movement or position of the probe by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/06Probe tip arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures

Definitions

  • the present invention relates to a method and an apparatus for detecting and detecting a substance in a nanogap array.
  • the inventors of the present application have proposed the following mechanical oscillator of nanometer order and a measuring device using the same.
  • a method and an apparatus for mapping a physical property distribution of a sample using a cantilever are disclosed.
  • a cantilever for detecting a sample surface, a scanning probe microscope using the same, a homodyne laser interferometer, a laser Doppler interferometer having a sample excitation function, and the like are disclosed! Reference 3).
  • Non-Patent Documents 3 to 5 Examples of optical tweezers are disclosed in Non-Patent Documents 3 to 5 below.
  • Patent Document 1 JP 2001-0091441 A Patent Document 2: Japanese Patent Application Laid-Open No. 2001-0298768
  • Patent Document 3 JP 2003-01114182 A
  • Non-Patent Document 1 MK Bailer, HP Lang, J. Fritz, Ch. Gerber, JK Gimzew ski, U. Drechsler, H. Rothuizen, M. Despont, P. Vettiger, FM Battist on, JP Ramseyer, P. Fornaro, E. Meyer, and H. —J. Guentherodt: A cantilever array— based artificial nose, Ultramicroscopy, (2000) 1. Neuzil, C. Campagnolo and C. Batt: single cell detection with micromechanical oscillators, J. Vac. Sci. Technol. B19, (2001), 2825.
  • Non-Patent Document 3 R. Gussgard and T. Lindmo: Journal Optics Society of A merican, Vol. 9, No. 10
  • Non-Patent Document 4 Tachibana and Ukita: “Manipulation of fine particles by vertically incident light", Optics, Vol. 26, No. 9, pp. 524-529, 1998
  • Non-Patent Document 5 H. Ukita and T. Saitoh: "Optical Micro-Manipulation of Beads in Axial and Lateral Directions with Upward and Downward-Directed Laser Beams", LEOS '99 (IEEE Lasers and Electro- Optics Society 1999 Annual Meeting), pp. 169—170, 8—11, November 1999, San Francisco USA
  • the effect is not so great that the entire cantilever is warped, and the change cannot be detected unless a forceful amount of the molecule is adsorbed. Also, since quasi-static warpage is detected, it is difficult to distinguish it from drift such as temperature change.
  • the present invention provides a nanogap array material that can measure a substance as a substance to be detected with high sensitivity even when the substance is present in a liquid. It is an object of the present invention to provide a method and an apparatus for detecting and identifying capture.
  • the present invention provides:
  • a cantilever array in which cantilevers each having a probe are arranged in a row, and a modified surface corresponds to the probe of the cantilever below the cantilever array. To locate, detect, and identify unknown material at the nanometer order gap between the modified surface of the substrate and the tip of the cantilever probe.
  • the gap length is set to be constant.
  • the cantilever force is directed toward the tip of the probe by using a probe that transmits light.
  • the light field is concentrated in the nanogap, and the gradient of the light draws nearby substances to be captured into the gap.
  • nanogap array material capture detection identification method primary laser incident light is irradiated from the back surface of the substrate, and this primary laser incident light is incident on the vicinity of the material gap at an angle smaller than the critical angle, An excitation by an evanescent field is generated, and a target substance to be captured nearby is drawn into a gap by using a gradient of a field of a propagating light generated by a probe tip placed in the evanescent field.
  • a cantilever array in which cantilevers having an array of probes are arranged; and a cantilever array arranged below the cantilever array, and a modified surface of the cantilever is provided.
  • a substrate disposed corresponding to the probe, and capturing, detecting, and identifying an unknown substance in a nanometer order gap between the modified surface of the substrate and the tip of the probe of the cantilever. It is characterized by the following.
  • the captured material causes the cantilever to vibrate, and a change in mass and a change in damping of the cantilever accompanying the material capturing are detected by a vibration frequency. And changes in vibration amplitude are detected and identified.
  • the apparatus uses a laser Doppler interferometer having an optical excitation function to detect and identify characteristics of the captured substance. It is characterized by the following.
  • the apparatus uses a cantilever array and a supporting member thereof as a transparent member, and uses the distance between each cantilever and this member to form a cantilever. It is characterized by measuring the displacement, amplitude, and frequency of light by optical interferometry, and detecting and identifying the characteristics of the captured material.
  • a cantilever array in which cantilevers having an array of probes are arranged, and a substance arranged below the cantilever array and set on a modified surface
  • a plurality of disc-shaped substrates having a plurality of circular grooves to which an unknown substance is captured by a gap on the order of nanometers between the modified surface of the substrate and the tip of the tip of the cantilever. Characterized by detecting and identifying
  • a transparent substrate on which a sample is set a nanogap array of cantilevers arranged corresponding to the sample on the transparent substrate, and a search for the cantilever It is characterized by comprising a substance trapped between a needle and the transparent substrate, irradiating primary laser incident light from the back surface of the transparent substrate, capturing the substance at the nanogap, and performing optical measurement.
  • the primary laser incident light is incident on the set portion of the substance at an angle shallower than a critical angle and excited by an evanescent field. It is generated.
  • the transparent substrate is a disk-shaped substrate, and is disposed radially in front of the transparent substrate.
  • a cantilever having a series of probes is arranged.
  • the transparent substrate has a circular groove through which a substance to be set is supplied. It is characterized by
  • FIG. 1 is a schematic diagram of a nanogap array molecular capture detection identification device showing a first embodiment of the present invention.
  • FIG. 2 is an enlarged view of a portion A in FIG. 1.
  • FIG. 3 is an enlarged view of a part A showing a modification of the first embodiment of the present invention.
  • Fig. 4 is a plan view of a nanogap array molecular capture detection identification device showing a second embodiment of the present invention.
  • FIG. 5 is a sectional view taken along line BB of FIG. 4.
  • FIG. 6 is a schematic diagram of a nanogap array molecular capture detection identification device showing a third embodiment of the present invention.
  • FIG. 7 is an enlarged view of a portion C in FIG. 6.
  • FIG. 8 is a configuration diagram of a molecule measuring apparatus using a laser Doppler interferometer having a molecular light excitation function according to the present invention.
  • FIG. 9 is a schematic diagram showing an optical system focused on a nanogap array for performing molecular capture and optical measurement according to the present invention.
  • a cantilever array in which cantilevers each having a probe in a row are arranged, and a substrate whose modification surface is arranged corresponding to the probe of the cantilever is arranged below the cantilever array. Substances are captured, detected and identified at the nanometer order gap between the modified surface of the substrate and the tip of the cantilever tip. Therefore, it is possible to detect single molecules, which has been difficult with conventional cantilever-type substance sensors.
  • FIG. 1 is a schematic view of a nanogap array molecular capture detection / identification device showing a first embodiment of the present invention
  • FIG. 2 is an enlarged view of a part A of the nanogap array molecular capture / identification device.
  • 1 is a flat substrate
  • 2 is a modified surface arranged at a predetermined position on the substrate
  • 3 is a cantilever array
  • 4 is a cantilever provided on the cantilever array
  • 5 is a cantilever provided on the cantilever array 3.
  • a probe formed at the tip of the cantilever 4 is a molecule as an unknown substance (protein or functional substance of a living body) set on the modified surface 2
  • 8 is a liquid
  • 9 is a measuring device.
  • the unknown substance is defined to include a substance whose concentration is unknown even though the substance is known.
  • FIG. 3 is an enlarged view of a part A of a nanogap array molecular capture detection / identification device showing another modification.
  • the probe 5 has a modified substance for previously capturing a specific substance. 7 (for example, apply proteins or biologically functional substances).
  • a cantilever array 3 having a row of cantilevers 4 is used to detect the displacement and frequency change of each cantilever 4 while bringing the cantilevers 14 close to the flat substrate 1.
  • the approach direction is the normal direction of the flat substrate 1 and this is defined as the Z axis.
  • the Z-axis coordinate of the cantilever array 3 when the probe 5 of each cantilever 4 comes in contact with the flat substrate 1 is detected by using a conventional AFM (atomic force microscope) interaction detection method.
  • the cantilever array 3 is retracted in the Z-axis direction. Since the Z-axis coordinate when the probe 5 of each cantilever 4 comes into contact with the flat substrate 1 is measured, the distance between the probe 5 of the cantilever 4 and the flat substrate 1 after retreating is measured. (Gap length) is known.
  • a nanogap array on the order of 1 million pieces per square centimeter can be prepared.
  • various gap lengths can be prepared. In other words, in a sense, it is preferable that there is variation in the gap length. If there is no variation in the gap length during manufacturing, it is necessary to intentionally provide a gradient to the substrate or cantilever, and prepare a gap row in which the gap length changes.
  • the distance between the substrate and the cantilever may be set to be constant.
  • FIG. 4 is a plan view of a nanogap array molecular capture detection / identification apparatus showing a second embodiment of the present invention.
  • FIG. 5 is a sectional view taken along line BB of FIG.
  • reference numeral 11 denotes a substrate on which comb-shaped projecting pieces 12 are formed
  • 13 denotes a modified surface set on the projecting pieces 12
  • 14 denotes a cantilever array having comb-shaped cantilevers 15
  • Reference numeral 16 denotes a probe provided at the tip of the comb-shaped cantilever
  • reference numeral 19 denotes a measuring device
  • a molecule 17 is set on the modified surface 13 and a molecule 18 is set on the probe 16 of the comb-shaped cantilever 15. Is done.
  • the nanogap array molecular capture detection / identification apparatus prepares a plurality of known gaps in the order of nanometers in a row, and captures, detects, and identifies a substance in the gap.
  • the gap is realized between the substrate 11 on which the protruding pieces 12 are formed and the cantilever array 14.
  • the molecules are set between the molecule 17 set on the modification surface 13 and the modification 18 previously applied to the tip 16 of the cantilever 15 for capturing a specific substance, and are detected by the measurement device 19. To be identified.
  • the cantilever array and its supporting member become transparent member forces, and the displacement, amplitude, and frequency of the force cantilever are determined by using the distance between each cantilever and its member. Can be measured by optical interferometry to detect and identify the properties of the captured material.
  • FIG. 6 is a schematic diagram of a nanogap array molecular capture detection identification device showing a third embodiment of the present invention
  • FIG. 7 is an enlarged view of a portion C in FIG.
  • 21 is a flat circular substrate
  • 23 is a plurality of annular grooves formed around a central portion 22 of the circular substrate
  • 24 is a supply nozzle for a liquid containing molecules
  • 2 5 is the nozzle 24 force liquid containing molecules to be supplied
  • 26 is the cantilever array
  • 27 is A row of cantilevers arranged on the cantilever array
  • 28 is a probe formed at the tip of the row of cantilevers
  • 29 is a molecule applied to the probe 28
  • 30 is a measuring device.
  • bloods a to e which are liquids 25 containing molecules, are supplied to the plurality of annular grooves 23, respectively, and are captured between the molecules 29 coated on the probe 28 and measured.
  • the apparatus 30 detects and identifies molecules of blood a to e.
  • both ends of the gap formed by the cantilever and the substrate are modified in advance to capture a specific substance.
  • Material capture is detected by detecting changes in the vibration frequency of each cantilever or changes in the history of cantilever deflection when the cantilever array is modulated in the Z-axis direction (generally called a force curve). It is possible. In other words, in the measurement by the measuring device, the cantilever is vibrated, and a change in mass due to the capture of a substance and a change in damping of the cantilever can be detected as a change in a vibration frequency and a vibration amplitude.
  • a device for measuring the characteristics of a sample using a laser Doppler interferometer having an optical excitation function for a sample (described later), a scanning force microscope using a heterodyne laser Doppler meter, and a material developed by the present inventors. Sensors and mass sensors can be used.
  • FIG. 8 is a configuration diagram of a molecule measuring apparatus using a laser Doppler interferometer having a molecular light exciting function according to the present invention.
  • an apparatus for measuring the characteristics of molecules as a sample of this embodiment includes an optical excitation unit 40, a signal processing unit 50, a laser Doppler interference unit 60, an AFM (atomic force microscope) sample stage.
  • the control unit 90 includes a network analyzer 100.
  • the optical excitation section 40 includes a laser diode (LD) driver 41, a laser diode (LD) 42 driven by the LD driver 41, and a mirror 43.
  • LD laser diode
  • LD laser diode
  • the signal processing unit 50 includes a first switch (swl) 51, a second switch (sw2) 52, a digitizer 53, a phase shifter 54, a filter 55, and an amplifier 56.
  • the laser Doppler interference unit 60 includes a He—Ne laser 61, a first PBS (polarizing beam splitter) 62, a second PBS 63, a multiplexer 64, a lens 65, a polarization-maintaining fiber 66, and a sensor head.
  • the AFM sample stage controller 90 includes a DBM 91 connected to an LO (local oscillator), a controller 92, a molecule 93 as a sample, and a piezo element 94 of the sample 93.
  • LO local oscillator
  • the network analyzer 100 has a signal input terminal 101 and an evaluation output terminal 102.
  • the output light of a laser diode (LD) 61 having a wavelength of 780 nm is converted into a laser Doppler interferometer of a He—Ne (helium neon) laser 41 having a wavelength of 632 nm.
  • the light is superimposed on the measurement light, introduced into a polarization preserving fiber 66 having a core length of 4 m, and irradiated onto a molecule 93 as a sample via a laser emission part 67 and a nanocantilever 68.
  • the wavelength is not limited to the above.
  • the output signal of the laser Doppler interference section 60 is phase-shifted, amplified, and in some cases binarized by filtering, and the signal is used to modulate the laser diode 42 having a wavelength of 780 nm.
  • This makes it possible to generate self-excitation at the natural frequency of the molecule 93 as a sample.
  • the filter characteristics it is possible to excite a specific vibration mode, and it is possible to realize self-excitation of molecules as a sample with a nanometer order force and a micron order.
  • the nanocantilever 68 which is a force detecting element of the scanning probe microscope, with light, the nanocantilever 68 was self-excited, and was placed at the tip of the nanocantilever 68 from the change in self-excitation frequency. It is possible to detect the interaction between the probe 68A and the molecule 93 as a sample and the change in mass.
  • a signal whose frequency is swept by the network analyzer 100 is generated, and the laser diode 42 having a wavelength of 780 nm is modulated using the signal.
  • the output signal of the laser Doppler interference unit 60 is connected to the signal input terminal 101 of the network analyzer 100. This makes it possible to measure the frequency characteristics of the molecule 93 as a sample using the network analyzer 100 and the laser Doppler interference unit 60 having an optical excitation function.
  • the measurement light and the vibration excitation light can be superimposed on each other and the same optical system can be used, or the molecule 93 as a sample can be irradiated using different optical paths.
  • the light generated by the LD 42 for exciting the vibration of the nano force cantilever 68 is superimposed on the He—Ne laser (optical measurement probe light) 61 of the laser Doppler interference unit 60.
  • the excitation light is subjected to processing such as phase shift, binarization, and amplification to the speed signal output of the laser Doppler interference unit 60, and the signal is used to modulate the light source such as the laser diode 42.
  • the frequency modulated by the transmitter the frequency specified by the transmitter, or the swept frequency.
  • the vibration peculiar to the measurement object to be measured by the laser Doppler interferometer is excited, and the capturing “detection” identification of a substance, particularly a single molecule, is accurately measured by the row of cantilevers. can do.
  • the present invention it is possible to detect a single molecule in a liquid, which has been difficult to detect from the conventional static deflection of a cantilever and a change in frequency, and to perform dynamic measurement of a single molecule, It enables measurement.
  • by modifying both ends of the gap formed by the probe and the substrate it becomes possible to selectively capture a specific substance.
  • FIG. 9 is a schematic diagram showing an optical system focused on a nanogap array for performing molecule capturing and optical measurement according to the present invention.
  • 110 is a transparent substrate
  • 111, 112, and 113 are cantilevers forming a nanogap array, 114, 115, and 116; those; ⁇ probe for 111, 112, and 113, and 117 are captured.
  • Captured molecules, 118, 119 are other captured molecules, 121, 122, 123 are nanogap arrays, 130 is primary laser incident light, 131 is condensing lens, 132 is incident at an angle less than the critical angle
  • the laser beam, 133 indicates a laser spot, and 134 indicates excitation by an evanescent field. Due to the gradient of the propagating light field generated by the tip of the probe placed in this evanescent field, The target substance to be captured can be drawn into the gap.
  • the molecules 117 and the proteins captured in the nanogap 121 are used. It is possible to measure the optical characteristics such as the spectrum, intensity, and polarization characteristics of such substances.
  • This optical system uses, for example, the principle of a confocal microscope, and sequentially scans a certain area in a three-dimensional space to be condensed (the laser spot 133 is scanned with the nanogap arrays 121, 122, 122). Scanning along 123) makes it possible to measure the optical information of each of the nanogap arrays. For example, a molecule with a specific fluorescent label can be captured at the nanogap, and the spectrum of light can be measured in addition to force and electrical measurements.
  • the force using the transparent substrate and the upper force of the force cantilever are simultaneously measured optically, so that the force is transferred to the nanogap on the groove.
  • the target substance (target substance, detected ⁇ substance) that has been detected can be reliably captured by the nanogap and measurement can be started.
  • this method involves capturing molecules at a three-dimensionally limited site called a nanogap, so that optical It is possible to limit the target measurement area, and there are many advantages in terms of sensitivity and resistance to background noise.
  • the amount of test material is small, and it is possible to detect minute amounts of substances from very small amounts of materials. For example, it is expected that the amount of blood required for blood tests at hospitals and the like will be dramatically reduced.
  • substances to be captured include proteins and biological substances, which contribute to the identification and detection of substances in molecular biology.
  • proteins and biological substances which contribute to the identification and detection of substances in molecular biology.
  • some cell membrane proteins are also involved in cell adhesion.
  • Mitochondria is an energy production device, in which the TCA (tricar boxylic acid) cycle increases! Energy (APT) is produced !, but it is also effective for capture detection identification of such APT.
  • Nanometer-order substances can be captured and their properties can be measured smoothly.
  • it is possible to easily and highly accurately measure the properties of many types of captured substances by using a row of cantilevers to capture the substances using laser incident light and scanning the laser incident light.
  • the nanogap array molecular capture detection and identification device of the present invention can be used for detection of proteins and functional substances in living organisms, and for drug discovery.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

被検出物質としての分子が液中に存在しているような場合であっても、その物質を高感度で測定することができるナノギャップ列物質捕捉検出同定方法および装置を提供する。 列状の探針(5)を有するカンチレバー(4)を配置してなるカンチレバーアレー(3)と、このカンチレバーアレー(3)の下方に配置され、修飾面(2)が前記カンチレバー(4)の探針(5)に対応して配置される基板(1)とを備え、前記修飾面(2)にセットされる未知の物質(6)と前記カンチレバー(4)の探針(5)との間のナノメートルオーダーのギャップで前記未知の物質(6)を捕捉し、検出し、同定する。

Description

明 細 書
ナノギャップ列物質捕捉検出同定方法および装置
技術分野
[0001] 本発明は、ナノギャップ列物質捕捉検出同定方法および装置に関するものである。
背景技術
[0002] 従来、カンチレバーアレーを用いた物質の検出には、以下の二つの方法がある。
[0003] (1)物質と反応ないし吸着する物質をカンチレバーにあら力じめ塗布し、物質導入に 伴うカンチレバーの反りを光学的、ないし電気的に検出する(下記非特許文献 1参照
) o
[0004] (2)カンチレバーを振動させ、物質捕捉に伴う質量変化や、カンチレバーのダンピン グの変化を振動周波数や振動振幅の変化として検出する(下記非特許文献 2参照)
[0005] また、カンチレバーを用いない単分子計測方法としては、以下の方法がある。
[0006] (3)平板基板に電極間距離が数 nmの電極を 2個用意し、電極間で分子を捕捉して 電気的計測を行う。
[0007] また、本願発明者らは、以下のようなナノメートルオーダーの機械振動子およびそれ を用いた測定装置を提案して!/、る。
[0008] (4)ナノメートルオーダーの飛躍的な力や質量変化の検出分解能を有する安定で感 度の高いナノメートルオーダー機械振動子およびそれを用いた測定装置を開示して いる(下記特許文献 1参照)。
[0009] (5)カンチレバーによる試料の物性分布のマッピング方法とその装置を開示している
(下記特許文献 2参照)。
[0010] (6)試料表面の検出を行うカンチレバー、それを用いた走査型プローブ顕微鏡、ホ モダインレーザ干渉計、試料の励振機能を有するレーザドップラー干渉計などを開 示して!/ヽる(下記特許文献 3参照)。
[0011] (7)光ピンセットの例としては、下記非特許文献 3〜5において開示されている。
特許文献 1 :特開 2001— 0091441号公報 特許文献 2:特開 2001— 0298768号公報
特許文献 3 :特開 2003— 0114182号公報
非特許文献 1 : M. K. Bailer, H. P. Lang, J. Fritz, Ch. Gerber, J. K. Gimzew ski, U. Drechsler, H. Rothuizen, M. Despont, P. Vettiger, F. M. Battist on, J. P. Ramseyer, P. Fornaro, E. Meyer, and H. —J. Guentherodt: A cantilever array— based artificial nose, Ultramicroscopy, (2000) 1. 非特許文献 2 : B. Ilic, D. Czaplewski, M. Zalalutdinov, and H. G. Craighea d, P. Neuzil, C. Campagnolo and C. Batt: single cell detection with micromechanical oscillators, J. Vac. Sci. Technol. B19, (2001) , 2825. 非特許文献 3 : R. Gussgard and T. Lindmo: Journal Optics Society of A merican, Vol. 9, No. 10
非特許文献 4:橘,浮田:「上下入射光による微粒子の操作」,光学, Vol. 26, No. 9 , pp. 524- 529, 1998
非特許文献 5 :H. Ukita and T. Saitoh : "Optical Micro - Manipulation of Beads in Axial and Lateral Directions with Upward and Downwa rd— Directed Laser Beams", LEOS' 99 (lEEE Lasers and Electro― Op tics Society 1999 Annual Meeting) , pp. 169— 170, 8— 11, November 1999, San Francisco USA
発明の開示
[0012] し力しながら、上記した 3つの検出 ·計測方法は以下のような問題点を有する。
[0013] (1)に関しては、検出したい物質が例えば単分子であると、カンチレバー全体が反る ほどの影響はなく、力なりの量の分子が吸着しないと変化が検出できない。また、準 静的な反りを検出するため、温度変化等のドリフトとの区別が付け難い。
[0014] (2)に関しては、生体関連物質等、液中での計測が不可欠な環境において、カンチ レバーの振動が液によって減衰され、感度の良 、検出が難 、。
[0015] (3)に関しては、精度よく多数の間隙を実現することが困難である。特に、空隙の両 端の修飾の選択肢がきわめて限られており、力計測、電気計測、光計測が実現し難 い。 [0016] 本発明は、上記状況に鑑みて、被検出物質としての分子が液中に存在しているよう な場合であっても、その物質を高感度で測定することができるナノギャップ列物質捕 捉検出同定方法および装置を提供することを目的とする。
[0017] 本発明は、上記目的を達成するために、
〔1〕ナノギャップ列物質捕捉検出同定方法において、列状に探針を有するカンチレ バーを配置してなるカンチレバーアレーを設け、前記カンチレバーアレーの下方に、 修飾面が前記カンチレバーの探針に対応して配置される基板を配置して、未知の物 質を前記基板の修飾面と前記カンチレバーの探針の先端との間のナノメートルオー ダ一のギャップで捕捉し、検出し、同定することを特徴とする。
[0018] 〔2〕上記〔1〕記載のナノギャップ列物質捕捉検出同定方法において、前記基板の修 飾面と前記カンチレバーの探針の先端との間のギャップ長が既知であることを特徴と する。
[0019] 〔3〕上記〔2〕記載のナノギャップ列物質捕捉検出同定方法において、前記ギャップ 長が一定に設定されることを特徴とする。
[0020] 〔4〕上記〔2〕記載のナノギャップ列物質捕捉検出同定方法において、前記ギャップ 長が勾配を有することを特徴とする。
[0021] 〔5〕上記〔1〕又は〔2〕記載のナノギャップ列物質捕捉検出同定方法において、前記 物質が液中の物質であることを特徴とする。
[0022] 〔6〕上記〔1〕、〔2〕又は〔5〕記載のナノギャップ列物質捕捉検出同定方法において、 前記物質が分子であることを特徴とする。
[0023] 〔7〕上記〔6〕記載のナノギャップ列物質捕捉検出同定方法において、前記分子が単 分子であることを特徴とする。
[0024] 〔8〕上記〔1〕、〔2〕又は〔5〕記載のナノギャップ列物質捕捉検出同定方法において、 前記物質がタンパクであることを特徴とする。
[0025] 〔9〕上記〔1〕、〔2〕又は〔5〕記載のナノギャップ列物質捕捉検出同定方法において、 前記物質が生体物質であることを特徴とする。
[0026] 〔10〕上記〔1〕から〔9〕の何れか 1項記載のナノギャップ列物質捕捉検出同定方法に おいて、前記カンチレバー探針の先端に予め特定の物質を捕捉するための修飾を 施すことを特徴とする。
[0027] 〔11〕上記〔1〕から〔10〕の何れか 1項記載のナノギャップ列物質捕捉検出同定方法 において、光を透過する探針を用いて、カンチレバー力 探針先端に向けて光を導 入し、ナノギャップにおいて光の場を集中させ、その光の勾配によって近傍の捕捉対 象すべき物質をギャップへ引き込むことを特徴とする。
[0028] 〔12〕ナノギャップ列物質捕捉検出同定方法において、基板の背面より 1次レーザ入 射光を照射し、この 1次レーザ入射光を臨界角より浅い角度で物質のギャップ近傍に 入射し、エバネッセント場による励起を生成させ、このエバネッセント場に置かれた探 針先端が発生する伝搬光の場の勾配を用いて、近傍の捕捉すべき対象物質をギヤ ップへ引き込むことを特徴とする。
[0029] 〔13〕ナノギャップ列物質捕捉検出同定装置において、列状の探針を有するカンチレ バーを配置してなるカンチレバーアレーと、このカンチレバーアレーの下方に配置さ れ、修飾面が前記カンチレバーの探針に対応して配置される基板とを備え、未知の 物質を前記基板の修飾面と前記カンチレバーの探針の先端との間のナノメートルォ ーダ一のギャップで捕捉し、検出し、同定することを特徴とする。
[0030] 〔14〕上記〔13〕記載のナノギャップ列物質捕捉検出同定装置において、前記カンチ レバーの探針に修飾を施すことを特徴とする。
[0031] 〔 15〕上記〔 13〕記載のナノギャップ列物質捕捉検出同定装置において、前記捕捉 された物質は、カンチレバーを振動させ、物質捕捉に伴う質量変化やカンチレバー のダンピングの変化を、振動周波数や振動振幅の変化として検出し、同定することを 特徴とする。
[0032] 〔 16〕上記〔 13〕記載のナノギャップ列物質捕捉検出同定装置において、前記装置 は、光励振機能を有するレーザドップラー干渉計を用い、捕捉された物質の特性を 検出し、同定することを特徴とする。
[0033] 〔 17〕上記〔 13〕記載のナノギャップ列物質捕捉検出同定装置において、前記装置 はカンチレバーアレーとその支持部材が透明部材力 なり、各カンチレバーとこの部 材がなす間隔を用いてカンチレバーの変位、振幅、周波数を光干渉法で計測し、捕 捉された物質の特性を検出し、同定することを特徴とする。 [0034] 〔18〕ナノギャップ列物質捕捉検出同定装置において、列状の探針を有するカンチ レバーを配置してなるカンチレバーアレーと、このカンチレバーアレーの下方に配置 され、修飾面にセットされる物質が供給される複数の円形状の溝を有する円盤状の 基板とを備え、未知の物質を前記基板の修飾面と前記カンチレバーの探針の先端と の間のナノメートルオーダーのギャップで捕捉し、検出し、同定することを特徴とする
[0035] 〔 19〕上記〔 18〕記載のナノギャップ列物質捕捉検出同定装置において、前記複数 の円形状の溝のそれぞれにそれぞれ異なる物質をセットし、複数の物質を一度に捕 捉し、検出し、同定することを特徴とする。
[0036] 〔20〕ナノギャップ列物質捕捉検出同定装置において、試料がセットされる透明基 板と、この透明基板の試料に対応して配置されるナノギャップ列をなすカンチレバー と、このカンチレバーの探針と前記透明基板間に捕捉される物質を備え、前記透明 基板の背面より 1次レーザ入射光を照射し、前記ナノギャップで物質を捕捉し、光学 計測を行うことを特徴とする。
[0037] 〔21〕上記〔20〕記載のナノギャップ列物質捕捉検出同定装置において、前記 1次 レーザ入射光を臨界角より浅 、角度で前記物質のセット部に入射し、エバネッセント 場による励起を生成させることを特徴とする。
[0038] [22]上記〔20〕又は〔21〕記載のナノギャップ列物質捕捉検出同定装置にぉ 、て、 前記 1次レーザ入射光を前記セットされる試料に順次照射するように走査することを 特徴とする。
[0039] 〔23〕上記〔20〕から〔22〕の何れか一項記載のナノギャップ列物質捕捉検出同定 装置において、前記透明基板が円盤状の基板であり、該透明基板の半径方向に前 記列状の探針を有するカンチレバーを配置してなることを特徴とする。
[0040] 〔24〕上記〔20〕から〔23〕の何れか一項記載のナノギャップ列物質捕捉検出同定 装置において、前記透明基板にはセットされる物質が供給される円形状の溝を有す ることを特徴とする。
[0041] 〔25〕上記〔24〕記載のナノギャップ列物質捕捉検出同定装置において、前記円形 状の溝にそれぞれ異なる物質をセットし、複数の物質を一度に捕捉し、検出し、同定 することを特徴とする。
図面の簡単な説明
[0042] [図 1]本発明の第 1実施例を示すナノギャップ列分子捕捉検出同定装置の模式図で ある。
[図 2]図 1の A部拡大図である。
[図 3]本発明の第 1実施例の変形例を示す A部拡大図である。
圆 4]本発明の第 2実施例を示すナノギャップ列分子捕捉検出同定装置の平面図で ある。
[図 5]図 4の B— B線断面図である。
[図 6]本発明の第 3実施例を示すナノギャップ列分子捕捉検出同定装置の模式図で ある。
[図 7]図 6の C部拡大図である。
[図 8]本発明にかかる分子の光励起機能を有するレーザドップラー干渉計を用いた 分子の計測装置の構成図である。
[図 9]本発明のナノギャップによる分子捕捉と、光学計測を行うナノギャップ列に焦点 をあわせた光学系を示す模式図である。
発明を実施するための最良の形態
[0043] 列状に探針を有するカンチレバーを配置してなるカンチレバーアレーを設け、前記 カンチレバーアレーの下方に修飾面が前記カンチレバーの探針に対応して配置され る基板を配置して、未知の物質を前記基板の修飾面と前記カンチレバーの探針の先 端との間のナノメートルオーダーのギャップで捕捉し、検出し、同定する。よって、今 までのカンチレバー式物質センサーで困難であった単分子検出を可能とする。
[0044] また、 1個ないし数 100万個の、空隙が既知のギャップを用いて、多種の物質の検 出を行う。平面上のナノギャップの制御が困難であつたのを、カンチレバーアレーと 基板を用いることにより容易に実現する。また、空隙の両端の修飾の選択肢が広いた め、多種の物質の、精度よい検出と同定が可能となる。
実施例
[0045] 以下、本発明の実施の形態について詳細に説明する。 [0046] 図 1は本発明の第 1実施例を示すナノギャップ列分子捕捉検出同定装置の模式図 、図 2はそのナノギャップ列分子捕捉検出同定装置の A部拡大図である。
[0047] これらの図において、 1は平板状の基板、 2はその基板 1の所定位置に配置される 修飾面、 3はカンチレバーアレー、 4はそのカンチレバーアレー 3に設けられるカンチ レバー、 5はそのカンチレバー 4の先端に形成される探針、 6は修飾面 2にセットされ た未知の物質としての分子 (タンパクや生体の機能性物質)、 8は液、 9は計測装置を 示している。ここで未知の物質としては、物質としては既知であっても濃度が未知であ るような物質も含むものと定義する。
[0048] 図 3は他の変形例を示すナノギャップ列分子捕捉検出同定装置の A部拡大図であ り、この変形例では、探針 5には予め特定の物質を捕捉するための修飾物 7を施して いる(例えば、タンパクや生体の機能性物質などを塗る)。
[0049] この実施例では、列を形成するカンチレバー 4を有するカンチレバーアレー 3を用 いて、個々のカンチレバー 4の変位や周波数変化を検出しながら、それらカンチレバ 一 4を平板状の基板 1に近接させていく。ここで、近接させる方向は平板状の基板 1 の法線方向とし、これを Z軸と定義する。各カンチレバー 4の探針 5が平板状の基板 1 と接触したときのカンチレバーアレー 3の Z軸座標を従来からの AFM (原子間力顕微 鏡)の相互作用検出手法を用いて検出する。複数のカンチレバー 4の探針 5が平板 状の基板 1と接触した後で、カンチレバーアレー 3を Z軸方向に後退させる。各カンチ レバー 4の探針 5が平板状の基板 1と接触したときの Z軸座標が計測されているため、 後退した後のカンチレバー 4の探針 5と平板状の基板 1のなす空隙の距離 (ギャップ 長)が既知となる。
[0050] この手法を用いると、仮にカンチレバー 4の有する探針 5の高さが不均一であったり 、カンチレバー 4に予め反りがあつたとしても、既知の距離のギャップ列を実現するこ とが可能となる。一般的に想定される誤差として、仮に数 lOnm程度のカンチレバー 4の反りや探針 5の高さの不均一があつたとしても、十分に大きい数の空隙を用意す ることにより、サブオングストローム力 数 nmのギャップ列を実現可能である。
[0051] 要は、カンチレバー 4の lOnmオーダの加工上のばらつきが見込まれても、 1平方 センチメートノレ当たり 100万個、といったオーダのナノギャップ列が準備できるので、 様々なギャップ長が用意できるということになる。換言すれば、ある意味では、ギヤッ プ長のばらつきがあること力 好ましいと言える。製造上のギャップ長のばらつきがな い場合は、基板、ないしカンチレバーに勾配を意図的に持たせ、ギャップ長が変化 するギャップ列を用意する必要がある。
[0052] なお、基板とカンチレバーとの間の距離を一定に設定するようにしてもよい。
[0053] 図 4は本発明の第 2実施例を示すナノギャップ列分子捕捉検出同定装置の平面図
、図 5は図 4の B— B線断面図である。
[0054] これらの図においては、 11は櫛歯状の突起片 12が形成された基板、 13はその突 起片 12にセットされる修飾面、 14は櫛歯状のカンチレバー 15を有するカンチレバー アレー、 16は櫛歯状のカンチレバー 15の先端に設けられる探針、 19は計測装置で あり、修飾面 13には分子 17が、櫛歯状のカンチレバー 15の探針 16には分子 18が それぞれセットされる。
[0055] このナノギャップ列分子捕捉検出同定装置は、ナノメートルオーダーの既知のギヤ ップを列状に複数用意し、そのギャップで物質の捕捉、検出、同定を行うものである。 ギャップは突起片 12が形成された基板 11と、カンチレバーアレー 14との間で実現す る。
[0056] ここでは、例えば、修飾面 13にセットされた分子 17とカンチレバー 15の探針 16に 予め特定の物質を捕捉するために施された修飾物 18間で捕捉され、計測装置 19で 検出され、同定されるようにしている。
[0057] また、本発明のナノギャップ列分子捕捉検出同定装置は、カンチレバーアレーとそ の支持部材が透明部材力 なり、各カンチレバーとその部材がなす間隔を用いて力 ンチレバーの変位、振幅、周波数を光干渉法で計測し、捕捉された物質の特性を検 出し、同定することができる。
[0058] 図 6は本発明の第 3実施例を示すナノギャップ列分子捕捉検出同定装置の模式図 、図 7は図 6の C部拡大図である。
[0059] これらの図において、 21は平板状の円形基板、 23はその円形基板 21の中心部 22 を中心にして形成される複数の円環状の溝、 24は分子を含む液体の供給ノズル、 2 5はそのノズル 24力 供給される分子を含む液体、 26はカンチレバーアレー、 27は そのカンチレバーアレー 26に配置される列状のカンチレバー、 28はその列状のカン チレバー 27の先端部に形成される探針、 29はその探針 28に塗られる分子、 30は計 測装置である。
[0060] この実施例では、例えば、分子を含む液体 25である血液 a〜eを複数の円環状の 溝 23にそれぞれ供給し、探針 28に塗られる分子 29との間で捕捉させ、計測装置 30 で血液 a〜eの分子を検出し、同定するようにしている。
[0061] また、上記したように、カンチレバーと基板のなす空隙の両端には、予め特定の物 質を捕捉するための修飾を施しておくことが望ましい。物質捕捉の検出は、各カンチ レバーの振動周波数の変化や、カンチレバーアレーを Z軸方向に位置変調させたと きのカンチレバーのたわみの履歴の変化(一般的にフォースカーブと呼ばれている) 力 検出可能である。つまり、計測装置による測定は、カンチレバーを振動させ、物 質捕捉に伴う質量変化や、カンチレバーのダンピングの変化を振動周波数や振動振 幅の変化として検出することができる。特に、本願発明者らによって開発された、試料 の光励振機能を有するレーザドップラー干渉計を用いた試料の特性の計測装置 (後 述)やへテロダインレーザドップラー計を用いた走査型力顕微鏡や物質センサ、質量 センサを用いることができる。
[0062] 図 8は本発明にかかる分子の光励振機能を有するレーザドップラー干渉計を用い た分子の計測装置の構成図である。
[0063] この図において、この実施例の試料としての分子の特性の計測装置は、光学的励 起部 40、信号処理部 50、レーザドップラー干渉部 60、 AFM (原子間力顕微鏡)試 料ステージ制御部 90、ネットワークアナライザ 100からなる。
[0064] 光学的励起部 40は、レーザダイオード(LD)ドライバー 41、その LDドライバー 41 によって駆動されるレーザダイオード (LD) 42、ミラー 43からなる。
[0065] また、信号処理部 50は、第 1スィッチ(swl) 51、第 2スィッチ(sw2) 52、デイジタイ ザ一 53、位相シフター 54、フィルター 55、増幅器 56からなる。
[0066] レーザドップラー干渉部 60は、 He— Neレーザ 61、第 1の PBS (ポラライジングビー ムスプリッタ) 62、第 2の PBS63、合波器 64、レンズ 65、偏波面保存ファイバ 66、セ ンサヘッド (レーザ出射部) 67 (レンズ一え Z4波長板-レンズ組み立て体)、ナノ力 ンチレバー 68、探針 (プローブ) 68A、ミラー 69、 AOM (音響.光変調器) 70、 λ /2 波長板 71、第 3の PBS72、偏光子 73、ホトダイオード 74、 BPF (バンドパスフィルタ) 75、アンプ 76, 78, 83、デイジタイザ一 77, 79、遅延ライン 80、 DBM (Double Ba lanced Mixer;ダブルバランスドミキサ) 81、 LPF (ローパスフィルタ) 82力らなる。
[0067] さらに、 AFM試料ステージ制御部 90は、 LO (ローカルオシレータ)に接続される D BM91、コントローラ 92、試料としての分子 93、その試料 93のピエゾ素子 94からなる
[0068] ネットワークアナライザ 100は、信号入力端子 101、評価出力端子 102を有してい る。
[0069] そこで、この実施例では、例えば、 780nmの波長を有するレーザダイオード (LD) 61の出力光を、 632nmの波長を有する He—Ne (ヘリウム ネオン)レーザ 41のレ 一ザドップラー干渉計の計測光に重畳させ、それを 4 mコアの偏波面保存ファイバ 66に導入し、レーザ出射部 67、ナノカンチレバー 68を経て試料としての分子 93に 照射する。ただし、波長は、上記に限定されない。
[0070] 計測方法によって以下の用い方ができる。
[0071] (1)レーザドップラー干渉部 60の出力信号を移相、増幅、場合によってはフィルタリ ングゃ 2値化し、その信号を用いて 780nmの波長を有するレーザダイオード 42の変 調を行う。これにより、試料としての分子 93の固有振動数において自励を生じさせる ことが可能となる。つまり、フィルター特性を選択することにより、特定の振動モードを 励振することが可能となり、ナノメートルオーダ力 ミクロンオーダの試料としての分子 の自励を実現することが可能となる。
[0072] また、走査型プローブ顕微鏡の力検出素子であるナノカンチレバー 68に光を照射す ることにより、ナノカンチレバー 68の自励を生じさせ、自励周波数の変化からナノカン チレバー 68先端に配置した探針 68Aと試料としての分子 93の相互作用や質量変化 を検出することが可能となる。
[0073] (2)ネットワークアナライザ 100で周波数を掃引した信号を発生させ、その信号を用 V、て 780nmの波長を有するレーザダイオード 42の変調を行う。レーザドップラー干 渉部 60の出力信号をネットワークアナライザ 100の信号入力端子 101に接続する。 これにより、試料としての分子 93の周波数特性を、ネットワークアナライザ 100と、光 励振機能を有するレーザドップラー干渉部 60を用いて計測することが可能となる。
[0074] なお、計測光と振動励起光は重畳させて同一の光学系を用いることも、異なる光路を 用いて試料としての分子 93に照射させることも可能である。
[0075] また、レーザドップラー干渉部 60の He— Neレーザ(光計測プローブ光) 61にナノ力 ンチレバー 68の振動を励振するための LD42で発生した光を重畳させる。その際、 励振のための光は、レーザドップラー干渉部 60の速度信号出力に移相、 2値化、増 幅等の処理を行!ヽ、その信号を用いてレーザダイオード 42等の光源の変調を行った ものカゝ、発信器によって指定された周波数、もしくは掃引された周波数で変調したも のを用いる。
[0076] 以上により、レーザドップラー干渉計で計測しょうとする測定対象に固有の振動が励 起され、列状のカンチレバーにより、物質、特に、単分子の捕捉 '検出'同定を高精 度に測定することができる。
[0077] 本発明によれば、従来のカンチレバーの静的たわみや、振動数変化からは検出が困 難であった液中での単分子検出を可能とするとともに、単分子の力学計測、電気計 測を可能とするものである。また、探針と基板のなす空隙の両端を修飾することによつ て、特定の物質の捕捉を選択的に行うことが可能となる。
[0078] 本願発明者によれば、今までに、一平方センチメートルあたり数 100万個の探針を有 するカンチレバーアレーが実現可能となっている(上記特許文献 2参照)ため、それ を用いて、多数の、空隙が既知のナノギャップアレーを実現することが可能である。
[0079] 図 9は本発明のナノギャップによる分子捕捉と、光学計測を行うナノギャップ列に焦点 をあわせた光学系を示す模式図である。
[0080] この図において、 110は透明基板、 111, 112, 113はナノギャップ列をなすカンチレ ノ一、 114, 115, 116ί¾それらの; ^ンチレノ ー 111, 112, 113の探金†、 117ί¾捕 捉された分子、 118, 119は他の捕捉された分子、 121, 122, 123はナノギャップ列 、 130は 1次レーザ入射光、 131は集光レンズ、 132は臨界角より浅い角度での入射 レーザ光、 133はレーザスポット、 134はエバネッセント場による励起を示している。こ のエバネッセント場におかれた探針先端が発生する伝搬光の場の勾配により、近傍 の捕捉すべき対象物質をギャップへ引き込むことが可能となる。
[0081] この図 9に示すように、光学計測を加えることにより、ナノギャップによる分子捕捉と、 光学計測を行うことが可能になる。以下、詳細に説明する。
[0082] ナノギャップ列 121, 122, 123に焦点を合わせた光学系(もしくは、ナノギャップから 伝搬する光を受光する光学系)を用いることにより、ナノギャップ 121において捕捉さ れた分子 117、タンパクなどの物質のスペクトラムや強度、偏光特性などの光学的特 性を計測することが可能となる。
[0083] この光学系としては、例えば、共焦点顕微鏡の原理を用いたもので、集光すべき 3次 元空間内のある領域を順次走査する(レーザスポット 133をナノギャップ列 121, 122 , 123に沿って走査する)ことによって、ナノギャップ列のそれぞれの光情報を計測す ることが可能となる。例えば、特定の蛍光標識のついた分子をナノギャップで捕捉し、 力や電気的計測に加え、光のスペクトラム計測を行うことが可能となる。
[0084] また、光を透過する探針を用いて、カンチレバー力 探針先端に向けて光を導入し、 ナノギャップにおいて光の場を集中させ、その光の勾配により近傍の捕捉対象物質 をギャップへ引き込むことも可能となる。
[0085] また、図 6および図 7に示したような回転円盤式においても、透明基板を用いる力、力 ンチレバーの上側力 光学的に計測を同時に行うことにより、溝に乗ってナノギャップ まで移送されてきた目的物質 (ターゲット物質、検出した ヽ物質)を確実にナノギヤッ プで捕捉し、計測に入ることが可能となる。
[0086] 現在、一般的な方法となりつつある、表面プラズモン法と比べ、この手法は、ナノギヤ ップという、 3次元的に位置が限定された部位での分子の捕捉が行われるため、予め 光学的計測部位を限定することが可能で、感度、背景ノイズに対する耐性という点で 利点が多い。結果的に試験材料の量も少量で済み、ごく微量な材料からの微量な物 質の検出が可能となる。例えば、病院等での血液検査等に必要となる血液の量が飛 躍的に少なくなることが期待される。
[0087] また、本発明のナノギャップ列分子捕捉検出同定方法及び装置では、捕捉すべき 物質としては、タンパク、生体物質が挙げられ、分子生物学での物質の捕捉検出同 定に寄与する。つまり、生命現象を分子のレベルで明らかにするために重要なツー ルとなり得る。例えば、細胞膜タンパク質の中には、このほか細胞の接着に関与する ものがある。ミトコンドリアムはエネルギー生産装置であり、この中では、 TCA (tricar boxylic acid)サイクルにより高!、エネルギー(APT)が生産されて!、るが、かかる A PTの捕捉検出同定にも有効である。
[0088] 本発明によれば、以下のような効果を奏することができる。
[0089] (1)単分子オーダーの検出分解能を実現することができる。
[0090] (2)簡便にサブナノメートルオーダーからナノメートルオーダーのギャップ列を実現 することができる。
[0091] (3)探針と基板とのギャップの両端の修飾の選択肢を広くすることができる。
[0092] (4)ナノメートルオーダーの物質の捕捉と特性の計測を円滑に行うことができる。特 に列状のカンチレバーによる物質のレーザ入射光による捕捉とそのレーザ入射光の 走査による多くの種類の捕捉された物質の特性の測定を高精度で、容易に行うこと ができる。
[0093] なお、本発明は上記実施例に限定されるものではなぐ本発明の趣旨に基づき種々 の変形が可能であり、これらを本発明の範囲から排除するものではない。
産業上の利用可能性
[0094] 本発明のナノギャップ列分子捕捉検出同定装置は、タンパクや生体の機能性物質 の検出、創薬への利用が可能である。

Claims

請求の範囲
[I] 列状に探針を有するカンチレバーを配置してなるカンチレバーアレーを設け、前記 カンチレバーアレーの下方に、修飾面が前記カンチレバーの探針に対応して配置さ れる基板を配置して、未知の物質を前記基板の修飾面と前記カンチレバーの探針の 先端との間のナノメートルオーダーのギャップで捕捉し、検出し、同定することを特徴 とするナノギャップ列物質捕捉検出同定方法。
[2] 請求項 1記載のナノギャップ列物質捕捉検出同定方法において、前記基板の修飾 面と前記カンチレバーの探針の先端との間のギャップ長が既知であることを特徴とす るナノギャップ列物質捕捉検出同定方法。
[3] 請求項 2記載のナノギャップ列物質捕捉検出同定方法において、前記ギャップ長 が一定に設定されることを特徴とするナノギャップ列物質捕捉検出同定方法。
[4] 請求項 2記載のナノギャップ列物質捕捉検出同定方法において、前記ギャップ長 が勾配を有することを特徴とするナノギャップ列物質捕捉検出同定方法。
[5] 請求項 1又は 2記載のナノギャップ列物質捕捉検出同定方法において、前記物質 が液中の物質であることを特徴とするナノギャップ列物質捕捉検出同定方法。
[6] 請求項 1、 2又は 5記載のナノギャップ列物質捕捉検出同定方法において、前記物 質が分子であることを特徴とするナノギャップ列物質捕捉検出同定方法。
[7] 請求項 6記載のナノギャップ列物質捕捉検出同定方法において、前記分子が単分 子であることを特徴とするナノギャップ列物質捕捉検出同定方法。
[8] 請求項 1、 2又は 5記載のナノギャップ列物質捕捉検出同定方法において、前記物 質がタンパクであることを特徴とするナノギャップ列物質捕捉検出同定方法。
[9] 請求項 1、 2又は 5記載のナノギャップ列物質捕捉検出同定方法において、前記物 質が生体物質であることを特徴とするナノギャップ列物質捕捉検出同定方法。
[10] 請求項 1から 9の何れか 1項記載のナノギャップ列物質捕捉検出同定方法において
、前記カンチレバー探針の先端に予め特定の物質を捕捉するための修飾を施すこと を特徴とするナノギャップ列物質捕捉検出同定方法。
[II] 請求項 1から 10の何れか 1項記載のナノギャップ列物質捕捉検出同定方法におい て、光を透過する探針を用いて、カンチレバー力 探針先端に向けて光を導入し、ナ ノギャップにおいて光の場^^中させ、その光の勾配によって近傍の捕捉対象すベ き物質をギャップへ引き込むことを特徴とするナノギャップ列物質捕捉検出同定方法
[12] 基板の背面より 1次レーザ入射光を照射し、該 1次レーザ入射光を臨界角より浅い 角度で物質のギャップ近傍に入射し、エバネッセント場による励起を生成させ、該ェ バネッセント場に置かれた探針先端が発生する伝搬光の場の勾配を用いて、近傍の 捕捉すべき対象物質をギャップへ引き込むことを特徴とするナノギャップ列物質捕捉 検出同定方法。
[13] (a)列状の探針を有するカンチレバーを配置してなるカンチレバーアレーと、
(b)該カンチレバーアレーの下方に配置され、修飾面が前記カンチレバーの探針に 対応して配置される基板とを備え、
(c)未知の物質を前記基板の修飾面と前記カンチレバーの探針の先端との間のナノ メートルオーダーのギャップで捕捉し、検出し、同定することを特徴とするナノギャップ 列物質捕捉検出同定装置。
[14] 請求項 13記載のナノギャップ列物質捕捉検出同定装置において、前記カンチレバ 一の探針に修飾を施すことを特徴とするナノギャップ列物質捕捉検出同定装置。
[15] 請求項 13記載のナノギャップ列物質捕捉検出同定装置において、前記捕捉され た物質は、カンチレバーを振動させ、物質捕捉に伴う質量変化やカンチレバーのダ ンビングの変化を、振動周波数や振動振幅の変化として検出し、同定することを特徴 とするナノギャップ列物質捕捉検出同定装置。
[16] 請求項 13記載のナノギャップ列物質捕捉検出同定装置において、前記装置は、 光励振機能を有するレーザドップラー干渉計を用い、捕捉された物質の特性を検出 し、同定することを特徴とするナノギャップ列物質捕捉検出同定装置。
[17] 請求項 13記載のナノギャップ列物質捕捉検出同定装置において、前記装置は力 ンチレバーアレーとその支持部材が透明基板力 なり、各カンチレバーと該部材がな す間隔を用いてカンチレバーの変位、振幅、周波数を光干渉法で計測し、捕捉され た物質の特性を検出し、同定することを特徴とするナノギャップ列物質捕捉検出同定 装置。
[18] (a)列状の探針を有するカンチレバーを配置してなるカンチレバーアレーと、
(b)該カンチレバーアレーの下方に配置され、修飾面にセットされる物質が供給さ れる複数の円形状の溝を有する円盤状の基板とを備え、
(c)未知の物質を前記基板の修飾面と前記カンチレバーの探針の先端との間のナ ノメートルオーダーのギャップで捕捉し、検出し、同定することを特徴とするナノギヤッ プ列物質捕捉検出同定装置。
[19] 請求項 18記載のナノギャップ列物質捕捉検出同定装置において、前記複数の円 形状の溝のそれぞれにそれぞれ異なる物質をセットし、複数の物質を一度に捕捉し 、検出し、同定することを特徴とするナノギャップ列物質捕捉検出同定装置。
[20] (a)試料がセットされる透明基板と、
(b)該透明基板の試料に対応して配置されるナノギャップ列をなすカンチレバーと、
(c)該カンチレバーの探針と前記透明基板間に捕捉される物質を備え、
(d)前記透明基板の背面より 1次レーザ入射光を照射し、前記ナノギャップで物質を 捕捉し、光学計測を行うことを特徴とするナノギャップ列物質捕捉検出同定装置。
[21] 請求項 20記載のナノギャップ列物質捕捉検出同定装置において、前記 1次レーザ 入射光を臨界角より浅 、角度で前記物質のセット部に入射し、エバネッセント場によ る励起を生成させることを特徴とするナノギャップ列物質捕捉検出同定装置。
[22] 請求項 20又は 21記載のナノギャップ列物質捕捉検出同定装置において、前記 1 次レーザ入射光を前記セットされる試料に順次照射するように走査することを特徴と するナノギャップ列物質捕捉検出同定装置。
[23] 請求項 20から 22の何れか一項記載のナノギャップ列物質捕捉検出同定装置にお いて、前記透明基板が円盤状の基板であり、該透明基板の半径方向に前記列状の 探針を有するカンチレバーを配置してなることを特徴とするナノギャップ列物質捕捉 検出同定装置。
[24] 請求項 20から 23の何れか一項記載のナノギャップ列物質捕捉検出同定装置にお いて、前記透明基板にはセットされる物質が供給される円形状の溝を有することを特 徴とするナノギャップ列物質捕捉検出同定装置。
[25] 請求項 24記載のナノギャップ列物質捕捉検出同定装置において、前記円形状の 溝にそれぞれ異なる物質をセットし、複数の物質を一度に捕捉し、検出し、同定する ことを特徴とするナノギャップ列物質捕捉検出同定装置。
PCT/JP2005/005796 2004-03-30 2005-03-29 ナノギャップ列物質捕捉検出同定方法および装置 WO2005095922A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006511650A JPWO2005095922A1 (ja) 2004-03-30 2005-03-29 ナノギャップ列物質捕捉検出同定方法および装置
US10/594,514 US20070140905A1 (en) 2005-03-29 2005-03-29 Nanogap series substance capturing, detecting and identifying method and device
EP05727720A EP1739404A1 (en) 2004-03-30 2005-03-29 Nanogap series substance capturing, detecting and identifying method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-100735 2004-03-30
JP2004100735 2004-03-30

Publications (1)

Publication Number Publication Date
WO2005095922A1 true WO2005095922A1 (ja) 2005-10-13

Family

ID=35063889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005796 WO2005095922A1 (ja) 2004-03-30 2005-03-29 ナノギャップ列物質捕捉検出同定方法および装置

Country Status (5)

Country Link
EP (1) EP1739404A1 (ja)
JP (1) JPWO2005095922A1 (ja)
KR (1) KR100849874B1 (ja)
RU (1) RU2330262C1 (ja)
WO (1) WO2005095922A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150074A (ja) * 2011-01-21 2012-08-09 Foundation For The Promotion Of Industrial Science 気液界面で共振するマイクロカンチレバーセンサ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101366347B1 (ko) * 2012-06-18 2014-02-24 국립대학법인 울산과학기술대학교 산학협력단 정전 구동형 캔틸레버 센서

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202788A (ja) * 1999-01-13 2000-07-25 Matsushita Electric Ind Co Ltd 微細物体の操作装置
JP2000258442A (ja) * 1999-03-08 2000-09-22 Canon Inc 近視野光学系用光源装置、その製造方法、その使用方法、及びそれを用いた装置
JP2003114182A (ja) * 2001-06-19 2003-04-18 Japan Science & Technology Corp カンチレバーアレイ、その製造方法及びそれを用いた走査型プローブ顕微鏡、案内・回転機構の摺動装置、センサ、ホモダインレーザ干渉計、試料の光励振機能を有するレーザドップラー干渉計ならびにカンチレバーの励振方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202788A (ja) * 1999-01-13 2000-07-25 Matsushita Electric Ind Co Ltd 微細物体の操作装置
JP2000258442A (ja) * 1999-03-08 2000-09-22 Canon Inc 近視野光学系用光源装置、その製造方法、その使用方法、及びそれを用いた装置
JP2003114182A (ja) * 2001-06-19 2003-04-18 Japan Science & Technology Corp カンチレバーアレイ、その製造方法及びそれを用いた走査型プローブ顕微鏡、案内・回転機構の摺動装置、センサ、ホモダインレーザ干渉計、試料の光励振機能を有するレーザドップラー干渉計ならびにカンチレバーの励振方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAWAKATSU H.: "Nano Shindoshi to 100 Man Probe no Sosa Keiryoku Kenbikyo", 2004 NENDO SEIMITSU KOGAKUKAI SHUNKI TAIKAI SYMPOSIUM SIRYO, 1 March 2004 (2004-03-01), pages 14 - 20, XP002994445 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150074A (ja) * 2011-01-21 2012-08-09 Foundation For The Promotion Of Industrial Science 気液界面で共振するマイクロカンチレバーセンサ

Also Published As

Publication number Publication date
EP1739404A1 (en) 2007-01-03
RU2330262C1 (ru) 2008-07-27
KR100849874B1 (ko) 2008-08-01
JPWO2005095922A1 (ja) 2008-02-21
KR20060134187A (ko) 2006-12-27

Similar Documents

Publication Publication Date Title
JP4076792B2 (ja) カンチレバーアレイ、その製造方法及びその装置
US8402819B2 (en) High frequency deflection measurement of IR absorption
TWI754649B (zh) 判定重疊誤差之方法、用以製造多層半導體裝置之方法、原子力顯微鏡裝置、微影系統及半導體裝置
US9739798B2 (en) Multiple probe detection and actuation
KR102484671B1 (ko) 헤테로다인 원자력 현미경 장치, 방법 및 리소그래피 시스템
JP2017521655A (ja) 高アスペクト比を有する面を検査するための走査プローブ顕微鏡及び方法
JP2005331509A (ja) 固有振動可変型のカンチレバーによる測定対象物の計測方法および装置
US20160377609A1 (en) Test system and method
JP2008107358A (ja) 光ファイバ式ホモダインレーザ干渉計
RU2313141C2 (ru) Способ и устройство для измерения частоты колебаний мультикантилевера
US20110231966A1 (en) Scanning probe microscopy with spectroscopic molecular recognition
WO2005095922A1 (ja) ナノギャップ列物質捕捉検出同定方法および装置
JPH0949851A (ja) ワークピースの物理的特性を引き出す方法
JPH0949849A (ja) ワークピースのニア・フィールド測定を行うのに適した装置
US10261107B2 (en) Scanning resonator microscopy
JP4560627B2 (ja) 散乱光検出方法及び走査型プローブ顕微鏡
US20070140905A1 (en) Nanogap series substance capturing, detecting and identifying method and device
Ulčinas et al. Detection and photothermal actuation of microcantilever oscillations in air and liquid using a modified DVD optical pickup
WO2002075261A2 (en) Method for monitoring the oscillatory characteristics of a microfabricated resonant mass sensor
Sone et al. Pico-gram mass deviation detected by resonance frequency shift of AFM cantilever
JP3450460B2 (ja) 走査型プローブ顕微鏡
JP2004513341A (ja) 機械式マイクロオシレータの動きを平行検知するための装置
Ivaldi et al. New approach for a multi-cantilever arrays sensor system with advanced MOEMS readout
JP5538852B2 (ja) 近接場光学顕微鏡
WO2010068482A1 (en) Laser interferometer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511650

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005727720

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006138049

Country of ref document: RU

Ref document number: 1020067022751

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067022751

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005727720

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007140905

Country of ref document: US

Ref document number: 10594514

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10594514

Country of ref document: US