WO2005095282A1 - Elektrodenanordnung für eine elektrochemische behandlung von flüssigkeiten mit einer geringen leitfähigkeit - Google Patents

Elektrodenanordnung für eine elektrochemische behandlung von flüssigkeiten mit einer geringen leitfähigkeit Download PDF

Info

Publication number
WO2005095282A1
WO2005095282A1 PCT/DE2005/000556 DE2005000556W WO2005095282A1 WO 2005095282 A1 WO2005095282 A1 WO 2005095282A1 DE 2005000556 W DE2005000556 W DE 2005000556W WO 2005095282 A1 WO2005095282 A1 WO 2005095282A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
electrode arrangement
arrangement according
solid electrolyte
electrode
Prior art date
Application number
PCT/DE2005/000556
Other languages
English (en)
French (fr)
Inventor
Manuela Stadelmann
Manfred Blaschke
Maja WÜNSCHE
Helmut Petzer
Alexander Kraft
Thorsten Matthée
Matthias Fryda
Original Assignee
Condias Gmbh
G.E.R.U.S. Gesellschaft für elektrochemisches Recycling Umwelt- und Solartechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Condias Gmbh, G.E.R.U.S. Gesellschaft für elektrochemisches Recycling Umwelt- und Solartechnologie mbH filed Critical Condias Gmbh
Priority to US10/599,267 priority Critical patent/US7704353B2/en
Priority to EP05736207A priority patent/EP1730080B1/de
Priority to JP2007504250A priority patent/JP2007530250A/ja
Priority to CA002560910A priority patent/CA2560910A1/en
Priority to DE502005002572T priority patent/DE502005002572D1/de
Publication of WO2005095282A1 publication Critical patent/WO2005095282A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/036Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46195Cells containing solid electrolyte

Definitions

  • the invention relates to an electrode arrangement for the electrochemical treatment of liquids with a low conductivity, with electrodes between which a polymeric solid electrolyte is arranged, which are pressed against one another by means of a pressure device and which are designed such that the liquid can flow through the arrangement.
  • a main area of application for such an electrode arrangement is in water systems in which pure water or ultrapure water are to be made, in particular, germ-free and algae-free.
  • the water system can consist of pipes, catch basins, open baths, etc.
  • Electrode arrangements of the type mentioned at the outset are used in particular for the disinfection of rainwater, the disinfection of ultrapure water circuits in the semiconductor and pharmaceutical industries, the elimination of organic pollution in rinsing water, the treatment of water for the food industry and cosmetics industry and for use in all types of industrial cooling water circuits to prevent the growth of algae or bacteria or to break them down in the event of high contamination.
  • Such an electrode arrangement can be used to generate oxidizing agents which oxidize the germs and thus kill or inactivate them.
  • the electrochemical generation of oxidizing agents has the advantage that adaptation to the respective application is possible in principle. This means that there is a high need for oxidizing agents if a water system has already been contaminated or is biologically infected and needs to be cleaned and disinfected. On the other hand, if this process is finished, the water system can be kept permanently in the disinfected and cleaned state, for which purpose only occasionally and only a small need for oxidizing agents is required.
  • electrochemical processes are suitable to meet the different requirements for the production of oxidizing agents. Because oxidant production can be controlled by supplying electricity.
  • the electrical potential of one electrode is brought very close to the other electrode, with the surface of the polymeric solid electrolyte and the immediately adjacent electrode is a film of water, which is thus exposed to high current densities.
  • the Fischer cells were originally built with lead oxide electrodes.
  • the use of a lead oxide anode has the further disadvantage that the electrode decomposes in the water if it is not kept at a protective potential.
  • the use of an electrode arrangement with a lead oxide anode is therefore only possible in continuous operation, so that there is no option to use the corresponding cell only when required.
  • an electrode arrangement of the type mentioned at the outset is characterized in that the pressure device is supported on the electrodes.
  • the electrode arrangement according to the invention therefore does not require a special housing arrangement with complex pressure plates for pressing the electrodes against the polymeric solid electrolyte used between the electrodes, but only a pressure device that is directly connected to the electrodes and derives the pressure force from the rather relatively low mechanical stability of the electrodes ,
  • the invention is based on the knowledge that an effective electrode arrangement — in contrast to the idea that has existed for decades in the specialist world — can also be realized without a very high contact pressure of the electrodes against the polymeric solid electrolyte.
  • an expanded metal grid as the carrier material of an electrode, which is coated, for example, with a doped diamond layer.
  • a plastic screw can be inserted through the grid openings of the expanded metal grid until the head of the plastic screw lies against the electrode.
  • the two electrodes can then be braced in the direction of the polymeric solid electrolyte by screwing a nut onto the screw bolt which projects through the two electrodes and the solid electrolyte lying between them.
  • an intensive flow through the electrode arrangement can be ensured in that the polymeric solid electrolyte, which is preferably in the form of a membrane, also has flow openings.
  • the polymeric solid electrolyte can also be arranged in the interspaces in spaced-apart areas on all sides, so that the interspace can be flowed through in different directions.
  • the polymeric solid electrolyte can be inserted in the form of a membrane between the electrodes.
  • the polymeric solid electrolyte is applied to one of the electrodes as a surface layer.
  • the electrode arrangement according to the invention does not require any complex contact pressure generation, it is readily possible to build up a stack with the electrode arrangement which enables an effective electrolysis device even for higher flow rates. Since the pressure device is supported on the electrodes themselves, it is easily possible to arrange numerous electrodes with a polymer solid electrolyte arranged between them in a stack. It is particularly expedient if the electrodes are provided with the aid of contact tabs for electrical contact which project beyond their common surface.
  • the contact lugs of the anodes in the stack, on the one hand, and the cathodes in the stack, on the other hand, can be in alignment with one another in order to simplify common contacting, for example by means of a contact rod inserted through openings in the contact lugs.
  • the electrode arrangement according to the invention also allows, in a surprisingly simple manner, to move away from the flat electrodes which have been customary to date.
  • the strip can be applied around the two electrodes in the form of an eight, the wrapping being carried out with a certain pre-tension in order to ensure intimate contact.
  • the two electrodes can be pressed against the strip sections of the polymer solid electrolyte located between the electrodes, for example, by means of a wire-shaped material wrapped around the electrodes with ends twisted together to produce the pressure.
  • the wire-shaped material can preferably be an insulating material or rest against the electrodes via an insulating layer.
  • Figure 1 a schematic representation of two electrodes and an intermediate membrane made of a solid electrolyte
  • Figure 3 is a perspective view of the stack of Figure 2
  • Figure 4 another embodiment of two electrodes with a solid electrolyte in the form of stiffeners arranged parallel to each other
  • FIG. 5 shows a plan view of a stack formed with the arrangement according to FIG. In which each electrode is contacted
  • Figure 6 - a stack formed with the arrangement of Figure 4 with contacting only the outer electrodes
  • Figure 7 - a variant of the arrangement according to Figure 4, in which the electrode plates are provided with slot-shaped passage openings
  • Figure 8 - a stack formed with the arrangement of Figure 7
  • Figure 9 an arrangement of two electrodes, one of which is coated on its surface facing the other electrode with applied surface portions of the polymeric solid electrolyte.
  • Figure 10 - a stack formed with the arrangement of Figure 9
  • Figure 11 - a perspective view similar to Figure 3 with contact tabs on the differently polarized electrodes
  • Figure 12 - a schematic representation of a treatment cell loaded with an electrode stack
  • Figure 13 - a view of an electrode arrangement with two rod-shaped electrodes.
  • FIG. 1 shows two electrodes 1, 2 in the form of expanded metal grids 11, 21.
  • a first electrode 1 serves as a cathode, while the second electrode 2 functions as an anode.
  • Both electrodes 1, 2 are flat with a rectangular cross section and have the same surface shape.
  • the membrane 31 is provided with a through opening 4 in each of its four corner regions.
  • the membrane has a thickness of between 0.4 and 0.8 mm, for example.
  • the electrodes 1, 2 are provided outside the rectangular area of the expanded metal grids 11, 21 with a contact tab 5, 6 protruding from the area. Both contact lugs have a through opening 7, 8.
  • FIG. 2 illustrates that the electrodes 1, 2 formed from the expanded metal grids 11, 21, each with a solid electrolyte 3 in between, are pressed against one another by means of a tensioning device 9, the tensioning device 9 extending over four electrode arrangements 1, 2, 3 joined to form a stack ,
  • the bracing is carried out by means of nuts 10, which can be clamped against the electrodes 1, 2 on the threaded bolt 9.
  • four threaded bolts 9 are provided which are inserted through spaces between the expanded metal grids 11, 21 and through the through openings 4 of the polymeric solid electrolyte 3.
  • FIGS. 1 to 3 illustrates in a perspective view that the electrodes 1, 2 are each connected to different poles of the supply voltages.
  • the electrodes 1, 2 are formed with a carrier in the form of an expanded metal grid 11, 21 and coated with a doped diamond layer. It is also possible to apply differently large supply voltages to the electrodes 1, 2.
  • FIG. 4 shows a modified exemplary embodiment in which the electrodes 1, 2 are formed with metal plates 12, 22 which are coated with a doped diamond layer.
  • the electrodes have through openings 41 in their corner regions, through which threaded bolts 9 can be inserted in the manner described with reference to FIGS. 2 and 3.
  • the polymeric electrolyte 3 is formed by vertically standing strips 32 arranged parallel and at a distance from one another.
  • the top view in FIG. 5 illustrates that the electrodes 32 in the stack formed can be flowed through perpendicularly to the plane of the drawing due to the strips 32.
  • the stack arrangement shown in FIG. 6 consists of four identical electrodes 1, each separated by a solid electrolyte 3, here in the form of strips 32. The contact is made with different polarities only on the two outer electrodes 1, whereby the middle electrodes assume correspondingly graduated potentials.
  • Such an arrangement, in which the middle electrodes act both as an anode (to one side) and as a cathode is also referred to as a bipolar arrangement.
  • the exemplary embodiment shown in FIG. 7 differs from the exemplary embodiment according to FIG. 4 only in that metal plates 13, 23 are used as supports for the electrodes 1, 2, which are provided with horizontal slot-shaped through openings 42 which flow through the electrodes 1, 2. 2 enable. Accordingly, the arrows in FIG. 8 show that in addition to the vertical flow (perpendicular to the plane of the drawing), flow through the electrode arrangements in the stacking direction is possible.
  • the polymeric solid electrolyte 3 is applied in the form of circular surface sections 33 to the surface of the second electrode 2, which faces the first electrode 1.
  • the polymeric electrolyte 3 is thus laminated directly onto the electrode 2.
  • the top view of a multiple electrode arrangement in FIG. 10 shows that the space between the electrodes 1, 2 can be flowed through horizontally and vertically, since the surface sections 33 are spaced apart from one another on all sides, as a result of which flow-through regions result in the distances.
  • FIG. 11 illustrates in an enlarged schematic representation the contacting of the electrodes 1, 2 with the aid of the contact tabs 5, 6 and the through openings 7, 8 located therein.
  • the contact tabs 5, 6 of the electrodes 1, 2, each with the same polarity, are aligned with one another (In FIG. 11, contact tabs 5, 6 are shown only for the two rear electrodes 1, 2 of the stack).
  • the contact tabs 5 of the first electrodes 1 can be contacted with one another by a contact bolt (not shown) which is inserted through the aligned through openings 7 and therefore together with one pole of the supply voltage can be connected.
  • the other electrodes 2 are contacted in the same way via the contact lugs 6 and the through openings 8 located therein, which are aligned with one another.
  • FIG. 12 illustrates the structure of a treatment cell 100, for the sake of clarity only the anodes 2 of the electrode arrangements which are contacted via their mutually aligned contact tabs 5 are shown.
  • the 100 has a housing 101 which has an inlet opening 102 for the water to be cleaned.
  • the water to be cleaned flows in the housing 101 from the bottom upwards into the region of the electrodes 2 and emerges laterally from the region of the electrodes 2 in order to pass the housing via the outlet openings 103
  • Ventilation slots 104 are located in the upper area of the housing 101.
  • FIG. 13 shows a different arrangement of the electrodes 1, 2, which in this exemplary embodiment are designed as rod-shaped electrodes 14, 24.
  • the solid electrolyte 3 serves as a spacer between the electrodes 1, 2.
  • it forms the shape of an “eight” in a meandering manner, around which the electrodes 1, 2 are wound with a pretension, so that the strip 34 electrodes 1, 2
  • the electrodes are pressed against one another or against the sections of the solid electrolyte 3 lying between them by means of two loops 91 made of a wire-shaped, insulating material, which are drawn around the electrodes 1, 2 and which can be contracted by means of twisted ends, so as to remove the electrodes 1, 2 to pull against each other.
  • the electrodes 1, 2 are contacted at the front ends with contact pieces 51, 61.
  • Such a configuration of the electrode arrangement is particularly suitable for water purification in pipe systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Eine Elektrodenanordnung für eine elektrochemische Behandlung von Flüssigkei­ten mit einer geringen Leitfähigkeit, mit Elektroden (1, 2), zwischen denen ein po­lymerer Festelektrolyt (3) angeordnet ist, die mittels einer Andruckeinrichtung (9, 10; 91) gegeneinander gepresst sind und die so ausgebildet sind, dass die Anord­nung von der Flüssigkeit durchströmbar ist, lässt sich dadurch einfach herstellen, flexibel ausbilden und einfach handhaben, dass sich die Andruckeinrichtung (9, 10; 91) auf den Elektroden (1, 2) abstützt.

Description

Elektrodenanordnung für eine elektrochemische Behandlung von Flüssigkeiten mit einer geringen Leitfähigkeit
Die Erfindung betrifft eine Elektrodenanordnung für eine elektrochemische Behandlung von Flüssigkeiten mit einer geringen Leitfähigkeit, mit Elektroden, zwischen denen ein polymerer Festelektrolyt angeordnet ist, die mittels einer Andruckeinrichtung gegeneinander gepresst sind und die so ausgebildet sind, dass die Anordnung von der Flüssigkeit durchströmbar ist.
Ein Hauptanwendungsgebiet für eine derartige Elektrodenanordnung besteht in Wassersystemen, in denen Reinwasser oder Reinstwasser insbesondere keimfrei und algenfrei gemacht werden sollen. Das Wassersystem kann dabei aus Rohrleitungen, Auffangbecken, offene Bäder usw. bestehen.
Elektrodenanordnungen der eingangs erwähnten Art werden insbesondere für die Desinfektion von Regenwasser, die Desinfektion von Reinstwasserkreisläufen in der Halbleiter- und Pharmaindustrie, die Beseitigung organischer Belastungen in Spülwässern, die Aufbereitung von Wasser für die Lebensmittelindustrie und Kosmetikindustrie sowie zum Einsatz in allen Arten von industriellen Kühlwasserkreisläufen verwendet, um Algenwachstum oder Wachstum von Bakterien zu verhindern oder bei hohen Kontaminationen einen Abbau zu erreichen.
Mittels einer solchen Elektrodenanordnung können Oxidationsmittel erzeugt werden, die Keime oxidieren und damit abtöten oder inaktivieren. Die elektrochemische Erzeugung von Oxidationsmitteln hat den Vorteil, dass eine Anpassung an den jeweiligen Anwendungsfall prinzipiell möglich ist. So ergibt sich ein hoher Bedarf an Oxidationsmitteln, wenn ein Wassersystem bereits veraigt oder biologisch befallen ist und gereinigt und desinfiziert werden soll. Ist dieser Vorgang hingegen beendet, kann das Wassersystem dauerhaft in dem desinfizierten und gereinigten Zustand gehalten werden, wozu nur zeitweise und nur ein geringer Bedarf an Oxidationsmitteln erforderlich ist.
Ein variierender Bedarf an Oxidationsmitteln ergibt sich ferner, wenn ein Wassersystem durch einen Unfall mit einem hohen Anfall von organischer Fracht belastet wird. Ähnliches gilt für die Befüllung eines Tanks, bei dem zunächst eine hohe Oxidationsmittelproduktion erforderlich ist, um die Anfangsdesinfektion zu bewerkstelligen, während anschließend nur noch geringere Mengen an Oxidationsmittel ausreichen, um den desinfizierten Zustand aufrecht zu erhalten.
Grundsätzlich sind elektrochemische Verfahren geeignet, die unterschiedlichen Anforderungen an die Produktion von Oxidationsmitteln zu erfüllen. Da die Oxidationsmittelproduktion durch die Zuführung von Strom gesteuert werden kann.
Für die Behandlung von Flüssigkeiten mit einer geringen Leitfähigkeit, beispielsweise Reinstwasser, ist es erforderlich, aufgrund des hohen Widerstands des Wassers hohe Spannungen einsetzen zu müssen, um die benötigten Stromdichten für die Produktion der Oxidationsmittel zu erzeugen. Eine Teillösung dieses Problems gelingt durch die Verwendung von polymeren Festelektrolyten, die, vorzugsweise in Form einer Membran mit einer Stärke von einigen Zehntel Millimetern bis zu einigen Millimetern, den Abstand zwischen den Elektroden aufgrund ihrer lonenleitfähigkeit überbrücken und als Zwischenlage zwischen den Elektroden zur Vermeidung eines Kurzschlusses geeignet sind. Aufgrund der relativ guten lonenleitfähigkeit des polymeren Festelektrolyten wird das elektrische Potential der einen Elektrode sehr nahe an die andere Elektrode herangeführt, wobei sich zwischen der Oberfläche des polymeren Festelektrolyten und der unmittelbar be- nachbarten Elektrode ein Wasserfilm befindet, der somit hohen Stromdichten ausgesetzt ist.
Die Realisierung derartiger Elektrodenanordnungen ist seit Jahrzehnten in prinzipiell gleicher Weise mit dem Aufbau einer „Fischer-Zelle" realisiert worden. Die flächig ausgebildeten Elektroden werden dabei mit einer durch ein umgebendes Gehäuse gebildeten Andruckeinrichtung flächig gegen die zwischen den Elektroden befindliche Membran aus einem polymeren Festelektrolyten gepresst. Die Herstellung eines ausreichenden Anpressdrucks erfolgt mit einer Verschraubung von flächigen Anpressplatten des Gehäuses, die mit einem Mindest-Drehmoment erfolgen muss.
Der Aufbau einer derartigen Zelle ist aufgrund der benötigten hohen Stabilität der Anpressplatten des Gehäuses hoch und bedingt eine umständliche Handhabung. Darüber hinaus ist eine Anpassung an höhere Durchsatzmengen problematisch, da hierfür die wirksame Elektrodenfläche der Zelle vergrößert werden müsste oder der Flüssigkeitsstrom aufgeteilt durch mehrere Zellen geleitet werden müsste.
Die Fischer-Zellen sind ursprünglich mit Bleioxid-Elektroden aufgebaut worden. Die Verwendung einer Bleioxid-Anode weist dabei den weiteren Nachteil auf, dass sich die Elektrode im Wasser zersetzt, wenn sie nicht auf einem Schutzpotential gehalten wird. Die Verwendung einer Elektrodenanordnung mit einer Bleioxid- Anode ist daher nur im kontinuierlichen Betrieb möglich, sodass die Option entfällt, die entsprechende Zelle nur bei Bedarf einzusetzen.
Es ist beispielsweise durch DE 1 00 25 167 A1 bekannt, eine Elektrode zu verwenden, die von einer Flüssigkeit aufgrund von zahlreichen ausgebildeten nutförmigen Kanälen durchströmbar ist und eine Oberfläche aus einer dotierten Diamantschicht aufweist. Derartige Elektroden sind ebenfalls in einer Zelle angeordnet worden, die nach Art einer Fischer-Zelle aufgebaut war (vgl. DE 295 04 323 U1). Die damit verbundenen Handhabungsnachteile sind von der Fachwelt seit Jahrzehnten als unabänderlich akzeptiert worden. Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Elektrodenanordnung der eingangs erwähnten Art so auszubilden, dass sie einen effektiven Aufbau einer entsprechenden Elektrolysezelle ermöglicht und trotzdem einfach aufzubauen und handzuhaben ist.
Zur Lösung dieser Aufgabe ist erfindungsgemäß eine Elektrodenanordnung der eingangs erwähnten Art dadurch gekennzeichnet, dass sich die Andruckeinrichtung auf den Elektroden abstützt.
Die erfindungsgemäße Elektrodenanordnung benötigt somit für den Andruck der Elektroden gegen den zwischen den Elektroden eingesetzten polymeren Festelektrolyten keine besondere Gehäuseanordnung mit aufwändigen Andruckplatten, sondern lediglich eine Andruckeinrichtung, die mit den Elektroden unmittelbar verbunden ist und die Andruckkraft aus der eher relativ geringen mechanischen Stabilität der Elektroden bezieht. Der Erfindung liegt die Erkenntnis zugrunde, dass eine effektive Elektrodenanordnung - im Gegensatz zu der seit Jahrzehnten bestehenden Vorstellung der Fachwelt - auch ohne eine sehr hohe Anpresskraft der Elektroden gegen den polymeren Festelektrolyten realisierbar ist. Für geeignete Elektroden ist es ausreichend, wenn nur eine gewisse, relativ niedrige Andruckkraft der Elektroden auf den polymeren Festelektrolyten ausgeübt wird, sodass die entsprechende Andruckkraft nicht aufwändig mit speziell konstruierten Gehäuseteilen erzeugt werden muss, sondern in einfacher Weise unmittelbar an den Elektroden selbst ausgeübt werden kann.
So ist es beispielsweise möglich, als Trägermaterial einer Elektrode ein Streckmetallgitter zu verwenden, das beispielsweise mit einer dotierten Diamantschicht beschichtet ist. Durch die Gitteröffnungen des Streckmetallgitters kann eine Kunststoffschraube hindurchgesteckt werden, bis der Kopf der Kunststoffschraube an der Elektrode anliegt. Die Verspannung der beiden Elektroden in Richtung auf den polymeren Festelektrolyten kann dann durch Aufschrauben einer Mutter auf den Schraubenbolzen erfolgen, der durch die beiden Elektroden und den dazwischen liegenden Festelektrolyten hindurch ragt. Dabei kann eine intensive Durchströmung der Elektrodenanordnung dadurch sichergestellt werden, dass auch der vorzugsweise in Form einer Membran ausgebildete polymere Festelektrolyt Durchströmungsöffnungen aufweist. Möglich ist ferner, die Durchströmung des Zwischenraumes zwischen den Elektroden dadurch zu gewährleisten, dass der polymere Festelektrolyt in voneinander beabstandeten Streifen in dem Zwischenraum zwischen den Elektroden angeordnet ist. In einer Weiterbildung dieses Gedankens kann der polymere Festelektrolyt auch in allseitig voneinander beabstandeten Flächenstücken in dem Zwischenraum angeordnet sein, sodass eine Durchströmbarkeit des Zwischenraums in unterschiedlichen Richtungen gewährleistet ist.
Der polymere Festelektrolyt kann in Form einer Membran zwischen den Elektroden eingelegt sein. Insbesondere bei der Ausbildung in Form von allseitig voneinander beabstandeten Flächenstücken wird es jedoch zweckmäßig sein, wenn der polymere Festelektrolyt auf eine der Elektroden als Oberflächenschicht aufgebracht ist.
Da die erfindungsgemäße Elektrodenanordnung keine aufwändige Anpressdruckerzeugung benötigt, ist es ohne weiteres möglich, mit der Elektrodenanordnung einen Stapel aufzubauen, der eine wirksame Elektrolyseeinrichtung auch für höhere Durchflussraten ermöglicht. Da sich die Andruckeinrichtung an den Elektroden selbst abstützt, ist es ohne weiteres möglich, zahlreiche Elektroden mit einem zwischen ihnen angeordneten polymeren Festelektrolyt zu einem Stapel anzuordnen. Dabei ist es besonders zweckmäßig, wenn die Elektroden mit Hilfe über ihre gemeinsame Fläche hinausragenden Kontaktfahnen zur elektrischen Kontaktierung versehen sind. Dabei können die Kontaktfahnen der Anoden in dem Stapel einerseits und der Katoden in dem Stapel andererseits miteinander fluchtend ausgebildet sein, um eine gemeinsame Kontaktierung, beispielsweise durch eine durch Öffnungen der Kontaktfahnen hindurchgesteckten Kontaktstab, zu vereinfachen.
Die erfindungsgemäße Elektrodenanordnung erlaubt in überraschend einfacher Weise auch die Abkehr von den bisher üblichen flächigen Elektroden. So ist es beispielsweise möglich, zwei Elektroden stabförmig auszubilden und den polyme- ren Festelektrolyten zwischen den Elektroden dadurch zu realisieren, dass der Festelektrolyt in Form eines Streifens unter Vorspannung abwechselnd die Elektroden umschlingt. Der Streifen kann dabei um die beiden Elektroden jeweils in Form einer Acht umschlingend angebracht werden, wobei die Umschlingung mit einer gewissen Vorspannung erfolgt, um den innigen Kontakt zu gewährleisten. Das Andrücken der beiden Elektroden gegen die zwischen den Elektroden befindlichen Streifenabschnitte des polymeren Festelektrolyten kann beispielsweise durch ein um die Elektroden geschlungenes drahtförmiges Material mit zur Erzeugung des Andrucks miteinander verdrillten Enden erfolgen. Das drahtförmige Material kann dabei vorzugsweise ein isolierendes Material sein oder über eine isolierende Schicht an den Elektroden anliegen.
Die Erfindung soll im Folgenden anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert werden. Es zeigen:
Figur 1 - eine schematische Darstellung zweier Elektroden und einer dazwischen angeordneten Membran aus einem Festelektrolyten
Figur 2 - einen mit der Anordnung gemäß Figur 1 gebildeten Stapel
Figur 3 - eine perspektivische Darstellung des Stapels gemäß Figur 2
Figur 4 - eine weitere Ausführungsform zweier Elektroden mit einem Festelektrolyten in Form von parallel zueinander angeordneten Steifen
Figur 5 - eine Draufsicht auf einen mit der Anordnung gemäß Figur gebildeten Stapel, in dem jede Elektrode kontaktiert ist
Figur 6 - einen mit der Anordnung gemäß Figur 4 gebildeten Stapel mit einer Kontaktierung nur der äußeren Elektroden Figur 7 - eine Variante der Anordnung gemäß Figur 4, bei der die Elektrodenplatten mit schlitzförmigen Durchlassöffnungen versehen sind
Figur 8 - einen mit der Anordnung gemäß Figur 7 gebildeten Stapel
Figur 9 - eine Anordnung aus zwei Elektroden, von denen die eine auf ihrer zur anderen Elektrode zeigenden Oberfläche mit aufgebrachten Flächenabschnitten des polymeren Festelektrolyten beschichtet ist.
Figur 10 - einen mit der Anordnung gemäß Figur 9 gebildeten Stapel
Figur 11 - eine perspektivische Darstellung ähnlich der Figur 3 mit Kontaktfahnen an den unterschiedlich gepolten Elektroden
Figur 12 - eine schematische Darstellung einer mit einem Elektrodenstapel beschickten Behandlungszelle
Figur 13 - eine Ansicht einer Elektrodenanordnung mit zwei stabför- migen Elektroden.
Figur 1 zeigt zwei Elektroden 1 , 2 in Form von Streckrnetallgittern 11 , 21. Eine erste Elektrode 1 dient als Katode, während die zweite Elektrode 2 als Anode fungiert. Beide Elektroden 1 , 2 sind flächig mit einem rechteckigen Querschnitt ausgebildet und weisen die gleiche Flächenform auf. Zwischen den beiden Elektroden 1 , 2 befindet sich ein polymerer Festelektrolyt 3 in Form einer Membran 31 , deren Fläche der Fläche der Elektroden 1, 2 entspricht. Die Membran 31 ist in ihren vier Eckbereichen mit jeweils einer Durchgangsöffnung 4 versehen. Die Membran weist beispielsweise eine Stärke zwischen 0,4 und 0,8 mm auf. Die Elektroden 1 , 2 sind außerhalb der rechteckigen Fläche der Streckmetallgitter 11 , 21 mit jeweils einer aus der Fläche herausragenden Kontaktfahne 5, 6 versehen. Beide Kontaktfahnen weisen eine Durchgangsöffnung 7, 8 auf.
Figur 2 verdeutlicht, dass die aus den Streckmetallgittern 11, 21 gebildeten Elektroden 1 , 2 mit jeweils einem dazwischen liegenden Festelektrolyten 3 mittels einer Spanneinrichtung 9 gegeneinander gedrückt werden, wobei die Spanneinrichtung 9 sich über vier zu einem Stapel zusammengefügte Elektrodenanordnungen 1 , 2, 3 erstreckt. Die Verspannung erfolgt mittels Muttern 10, die auf dem Gewindebolzen 9 gegen die Elektroden 1 , 2 spannbar sind.
Gemäß Figur 1 sind vier Gewindebolzen 9 vorgesehen, die durch Zwischenräume der Streckmetallgitter 11, 21 und durch die Durchgangsöffnungen 4 des polymeren Festelektrolyten 3 hindurchgesteckt sind.
Figur 3 verdeutlicht in einer perspektivischen Darstellung, dass die Elektroden 1 , 2 jeweils an unterschiedliche Pole der Versorgungsspannungen angeschlossen werden. Die Elektroden 1 , 2 sind bei dem in den Figuren 1 bis 3 dargestellten Ausführungsbeispiel mit einem Träger in Form eines Streckmetallgitters 11 , 21 gebildet und mit einer dotierten Diamantschicht beschichtet. Es ist auch möglich, an die Elektroden 1 , 2 unterschiedlich große Versorgungsspannungen anzulegen.
Figur 4 zeigt ein modifiziertes Ausführungsbeispiel, bei dem die Elektroden 1 , 2 mit Metallplatten 12, 22 gebildet sind, die mit einer dotierten Diamantschicht beschichtet sind. Die Elektroden weisen Durchgangsöffnungen 41 in ihren Eckbereichen auf, durch die Gewindebolzen 9 in der anhand der Figuren 2 und 3 beschriebenen Weise hindurchsteckbar sind.
Der polymere Elektrolyt 3 ist in diesem Ausführungsbeispiel durch vertikal stehende, parallel mit Abstand zueinander angeordnete Streifen 32 gebildet. Die Draufsicht der Figur 5 verdeutlicht, dass die Elektrodenanordnungen in dem gebildeten Stapel senkrecht zur Zeichenebene aufgrund der Streifen 32 durchströmbar sind. Die in Figur 6 dargestellte Stapelanordnung besteht aus vier gleichen Elektroden 1 , die durch jeweils einen Festelektrolyten 3, hier in Form der Streifen 32 voneinander getrennt sind. Die Kontaktierung erfolgt hierbei mit unterschiedlichen Polaritäten lediglich an den beiden äußeren Elektroden 1 , wodurch die mittleren Elektroden entsprechend abgestufte Potentiale einnehmen. Eine derartige Anordnung, bei der die mittleren Elektroden sowohl als Anode (zu der einen Seite) als auch als Katode wirken, wird auch als bipolare Anordnung bezeichnet.
Das in Figur 7 dargestellte Ausführungsbeispiel unterscheidet sich von dem Ausführungsbeispiel gemäß Figur 4 nur dadurch, dass als Träger der Elektroden 1 , 2 mit metallische Platten 13, 23 verwendet sind, die mit horizontalen schlitzförmigen Durchgangsöffnungen 42 versehen sind, die ein Durchströmen der Elektroden 1 , 2 ermöglichen. Demgemäß zeigen die Pfeile in Figur 8, dass neben der vertikalen Durchströmung (senkrecht zur Zeichenebene) eine Durchströmung der Elektrodenanordnungen in Stapelrichtung möglich ist.
Bei dem in Figur 9 dargestellten Ausführungsbeispiel ist der polymere Festelektrolyt 3 in Form von kreisrunden Flächenabschnitten 33 auf die Oberfläche der zweiten Elektrode 2 aufgebracht, die zur ersten Elektrode 1 zeigt. Der polymere Elektrolyt 3 ist somit unmittelbar auf die Elektrode 2 auflaminiert. Die Draufsicht einer mehrfachen Elektrodenanordnung in Figur 10 zeigt, dass der Zwischenraum zwischen den Elektroden 1 , 2 horizontal und vertikal durchströmbar ist, da die Flächenabschnitte 33 allseitig voneinander beabstandet sind, wodurch sich Durchströmbereiche in den Abständen ergeben.
Figur 11 verdeutlicht in einer vergrößerten schematischen Darstellung die Kontaktierung der Elektroden 1 , 2 mit Hilfe der Kontaktfahnen 5, 6 und der darin befindlichen Durchgangsöffnungen 7, 8. Die Kontaktfahnen 5, 6 der jeweils gleichgepol- ten Elektroden 1 , 2, sind miteinander fluchtend ausgerichtet (in Figur 11 sind Kontaktfahnen 5, 6 nur für die beiden hinteren Elektroden 1 , 2 des Stapels eingezeichnet). Die Kontaktfahnen 5 der ersten Elektroden 1 sind durch einen durch die miteinander fluchtenden Durchgangsöffnungen 7 hindurchgesteckten (nicht dargestellten) Kontaktbolzen miteinander kontaktierbar und daher gemeinsam mit einem Pol der Versorgungsspannung verbindbar. In gleicher Weise erfolgt die Kontaktierung der anderen Elektroden 2 über die Kontaktfahnen 6 und die darin befindlichen, miteinander fluchtenden Durchgangsöffnungen 8.
Figur 12 verdeutlicht den Aufbau einer Behandlungszelle 100, wobei der Übersichtlichkeit halber nur die Anoden 2 der Elektrodenanordnungen dargestellt sind, die über ihre miteinander fluchtenden Kontaktfahnen 5 kontaktiert sind. Die Zelle
100 weist ein Gehäuse 101 auf, das eine Einlassöffnung 102 für das zu reinigende Wasser aufweist. Das zu reinigende Wasser strömt in dem Gehäuse 101 von unten nach oben in den Bereich der Elektroden 2 hinein und tritt aus dem Bereich der Elektroden 2 seitlich aus, um über die Auslassöffnungen 103 das Gehäuse
101 in gereinigter Form zu verlassen. Im oberen Bereich des Gehäuses 101 befinden sich Lüftungsschlitze 104.
Figur 13 zeigt eine andersartige Anordnung der Elektroden 1 , 2, die in diesem Ausführungsbeispiel als stabförmige Elektroden 14, 24 ausgebildet sind. Als Abstandshalter zwischen den Elektroden 1 , 2 dient der Festelektrolyt 3, der in Form eines langen Streifens 34 mäanderförmig die Form einer „Acht" ausbilden, um die Elektroden 1 , 2 mit einer Vorspannung gewickelt ist, sodass der Streifen 34 die Elektroden 1, 2 bereits gegeneinander zieht. Das Andrücken der Elektroden gegeneinander bzw. gegen die zwischen ihnen liegenden Abschnitte des Festelektrolyten 3 erfolgt durch zwei um die Elektroden 1 , 2 gelegten Schlingen 91 aus einem drahtförmigen, isolierenden Material, die mittels verdrillter Enden zusammenziehbar sind, um so die Elektroden 1 , 2 gegeneinander zu ziehen.
Die Kontaktierung der Elektroden 1 , 2 erfolgt an stirnseitigen Enden mit Kontaktstücken 51, 61. Eine derartige Ausbildung der Elektrodenanordnung ist besonders für eine Wasserreinigung in Rohrsystemen geeignet.

Claims

Ansprüche
1. Elektrodenanordnung für eine elektrochemische Behandlung von Flüssigkeiten mit einer geringen Leitfähigkeit, mit Elektroden (1 , 2), zwischen denen ein polymerer Festelektrolyt (3) angeordnet ist, die mittels einer Andruckeinrichtung (9, 10; 91) gegeneinander gepresst sind und die so ausgebildet sind, dass die Anordnung von der Flüssigkeit durchströmbar ist, dadurch gekennzeichnet, dass sich die Andruckeinrichtung (9, 10; 91) auf den Elektroden (1 , 2) abstützt.
2. Elektrodenanordnung nach Anspruch 1 , dadurch gekennzeichnet, dass wenigstens eine Elektrode (1 , 2) einen mit einer dotierten Diamantschicht beschichteten Träger aufweist.
3. Elektrodenanordnung nach Anspruch 2, dadurch gekennzeichnet, dass der Träger aus Metall besteht.
4. Elektrodenanordnung nach Anspruch 3, dadurch gekennzeichnet, dass der Träger durch ein Streckmetallgitter (11, 21) gebildet ist.
5. Elektrodenanordnung nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Elektroden (1 , 2) Durchgangsöffnungen (42) zum polymeren Festelektrolyten (3) aufweisen.
6. Elektrodenanordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Festelektrolyt (3) Durchgangsöffnungen aufweist.
7. Elektrodenanordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der polymere Festelektrolyt (3) den Zwischenraum zwischen den Elektroden (1 , 2) nur teilweise ausfüllt.
8. Elektrodenanordnung nach Anspruch 7 , dadurch gekennzeichnet, dass der polymere Festelektrolyt (3) in voneinander beabstandeten Streifen in dem Zwischenraum zwischen den Elektroden (1 , 2) angeordnet ist.
9. Elektrodenanordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der polymere Festelektrolyt (3) in allseitig voneinander beabstandeten Flächenstücken (33) in dem Zwischenraum zwischen den Elektroden (1 , 2) angeordnet ist.
10. Elektrodenanordnung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der polymere Festelektrolyt (3) auf einer der Elektroden (2) als Oberflächenschicht aufgebracht ist.
11. Elektrodenanordnung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass sie aus einem Stapel aus mehreren Elektroden (1 , 2) und mehreren zwischen jeweils zwei E lektroden (1 , 2) angeordneten polymeren Festelektrolyten (3) gebildet ist, die gemeinsam durch die Andruckeinrichtung (9, 10) gegeneinander gedrückt sind.
12. Elektrodenanordnung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass mehrere aus jeweils zwei Elektroden (1 , 2) und einem polymeren Festelektrolyten (3) gebildete Einzelanordnungen mit der Andruckeinrichtung (9, 10) zu einem Stape l verbunden sind.
13. Elektrodenanordnung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Elektroden (1 , 2) flächig ausgebildet sind.
14. Elektrodenanordnung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Andruckeinrichtung (9, 10) aus mehreren, durch die Elektroden hindurchgeführten Verschraubungen aus isolierendem Material bestehen.
15. Elektrodenanordnung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Andruckeinrichtung (91 ) durch um die Elektroden (1 , 2) geschlungenes drahtförmiges Material mit zur Erzeugung des Andrucks miteinander verdrillten Enden gebildet ist.
16. Elektrodenanordnung nach einem der Ansprüche 1 bis 12 und 15, dadurch gekennzeichnet, dass zwei Elektroden (1 , 2) stabförmig ausgebildet sind und dass der polymere Festelektrolyt (3) in Form eines Streifens (34) unter Vorspannung abwechselnd die Elektroden (1 , 2) umschlingt.
PCT/DE2005/000556 2004-03-26 2005-03-24 Elektrodenanordnung für eine elektrochemische behandlung von flüssigkeiten mit einer geringen leitfähigkeit WO2005095282A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/599,267 US7704353B2 (en) 2004-03-26 2005-03-24 Electrode assembly for the electrochemical treatment of liquids with a low conductivity
EP05736207A EP1730080B1 (de) 2004-03-26 2005-03-24 Elektrodenanordnung für eine elektrochemische behandlung von flüssigkeiten mit einer geringen leitfähigkeit
JP2007504250A JP2007530250A (ja) 2004-03-26 2005-03-24 低導電体の液体を電気化学的に処理するための電極アセンブリ
CA002560910A CA2560910A1 (en) 2004-03-26 2005-03-24 Electrode assembly for the electrochemical treatment of liquids with a low conductivity
DE502005002572T DE502005002572D1 (de) 2004-03-26 2005-03-24 Elektrodenanordnung für eine elektrochemische behandlung von flüssigkeiten mit einer geringen leitfähigkeit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004015680A DE102004015680A1 (de) 2004-03-26 2004-03-26 Elektrodenanordnung für eine elektrochemische Behandlung von Flüssigkeiten mit einer geringen Leitfähigkeit
DE102004015680.8 2004-03-26

Publications (1)

Publication Number Publication Date
WO2005095282A1 true WO2005095282A1 (de) 2005-10-13

Family

ID=34965869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000556 WO2005095282A1 (de) 2004-03-26 2005-03-24 Elektrodenanordnung für eine elektrochemische behandlung von flüssigkeiten mit einer geringen leitfähigkeit

Country Status (8)

Country Link
US (1) US7704353B2 (de)
EP (1) EP1730080B1 (de)
JP (1) JP2007530250A (de)
AT (1) ATE384026T1 (de)
CA (1) CA2560910A1 (de)
DE (2) DE102004015680A1 (de)
ES (1) ES2301008T3 (de)
WO (1) WO2005095282A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056337A1 (en) * 2006-11-10 2008-05-15 Element Six Limited Electrochemical apparatus having a forced flow arrangement
US8361289B2 (en) 2006-11-10 2013-01-29 Andrew John Whitehead Diamond electrode
US9440866B2 (en) 2011-06-06 2016-09-13 Axine Water Technologies Efficient treatment of wastewater using electrochemical cell
US9890064B2 (en) 2012-12-02 2018-02-13 Axine Water Technologies Inc. Method for imparting filtering capability in electrolytic cell for wastewater treatment
US10266429B2 (en) 2012-12-03 2019-04-23 Axine Water Technologies Inc. Efficient treatment of wastewater using electrochemical cell
US10696570B2 (en) 2016-01-15 2020-06-30 Axine Water Technologies Inc. Electrochemical cell for wastewater treatment with increased removal rates of pollutants

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005003720U1 (de) * 2005-03-04 2006-07-13 Condias Gmbh System zur Desinfektion von Flüssigkeiten mit einer geringen Leitfähigkeit
DE102006038557A1 (de) * 2006-08-17 2008-04-17 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Verfahren und Vorrichtung zur oxidativen elektrochemischen Behandlung wässriger Lösungen
JP4460590B2 (ja) * 2007-06-22 2010-05-12 ペルメレック電極株式会社 導電性ダイヤモンド電極構造体及びフッ素含有物質の電解合成方法
DE102007042171A1 (de) 2007-09-05 2009-03-12 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Elektrolysezelle mit hoher Stromkapazität zur Herstellung eines Ozon-Sauerstoffgemisches
US20100101010A1 (en) * 2008-10-24 2010-04-29 Watkins Manufacturing Corporation Chlorinator for portable spas
DE102009005011A1 (de) 2009-01-17 2010-07-22 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Verfahren und Vorrichtung zur elektrochemischen Desinfektion von Trink- und Brauchwasser mit hohen Härtegehalten
US8266736B2 (en) * 2009-07-16 2012-09-18 Watkins Manufacturing Corporation Drop-in chlorinator for portable spas
DE102009039290A1 (de) 2009-08-31 2011-03-03 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Verfahren und Vorrichtung zur Herstellung von Ozon und/oder zum oxidativen Abbau von Wasserinhaltsstoffen in natürlichen, elektrisch leitenden Wässern
JP5113892B2 (ja) * 2010-04-30 2013-01-09 アクアエコス株式会社 膜−電極接合体、これを用いる電解セル、オゾン水製造装置、オゾン水製造方法、殺菌方法及び廃水・廃液処理方法
JP5113891B2 (ja) 2010-04-30 2013-01-09 アクアエコス株式会社 オゾン水製造装置、オゾン水製造方法、殺菌方法及び廃水・廃液処理方法
EP2646601B1 (de) 2010-12-03 2017-11-22 Electrolytic Ozone Inc. Elektrolysezelle zur ozonherstellung
US20130240458A1 (en) 2010-12-03 2013-09-19 Brita Gmbh Electrolysis cell for generating ozone for treating a liquid
WO2012142435A2 (en) 2011-04-15 2012-10-18 Advanced Diamond Technologies, Inc. Electrochemical system and method for on-site generation of oxidants at high current density
DE102012011314A1 (de) 2012-06-06 2013-12-12 Manfred Völker Elektrochemischer Ozonerzeuger undWasserstoff-Generator
DE102012020495A1 (de) 2012-10-13 2014-04-17 Peter Weißbach Elektrolysezelle und Einrichtung zur Zerlegung von Wasser
US9222178B2 (en) 2013-01-22 2015-12-29 GTA, Inc. Electrolyzer
US8808512B2 (en) 2013-01-22 2014-08-19 GTA, Inc. Electrolyzer apparatus and method of making it
DE102014203376B4 (de) 2014-02-25 2018-05-03 Condias Gmbh Verfahren und Elektrodenanordnung zum Herstellen von ozonisiertem Wasser
DE102014002450A1 (de) 2014-02-25 2015-08-27 Areva Gmbh Verfahren zum oxidativen Abbau von stickstoffhaltigen Verbindungen in Abwässern
DE102014203372A1 (de) 2014-02-25 2015-08-27 Condias Gmbh Elektrodenanordnung für eine elektrochemische Behandlung einer Flüssigkeit
US11085122B2 (en) 2014-06-26 2021-08-10 Vapor Technologies, Inc. Diamond coated electrodes for electrochemical processing and applications thereof
US10239772B2 (en) 2015-05-28 2019-03-26 Advanced Diamond Technologies, Inc. Recycling loop method for preparation of high concentration ozone
DE102015122486A1 (de) 2015-12-22 2017-06-22 Coulomb Water Technology GmbH Elektrodenanordnung für eine Elektrolysezelle
WO2018075920A1 (en) 2016-10-20 2018-04-26 Advanced Diamond Technologies, Inc. Ozone generators, methods of making ozone generators, and methods of generating ozone
EP3434650A1 (de) 2017-07-24 2019-01-30 Geberit International AG Elektrodenanordnung
US12012661B2 (en) 2020-06-27 2024-06-18 Aquamox Inc. Electrolytic generators
CN111646607A (zh) * 2020-07-07 2020-09-11 上海博丹环境工程技术股份有限公司 一种可适用于低盐条件的有机废水电化学氧化处理的方法以及系统
DE102020133770A1 (de) 2020-12-16 2022-06-23 Forschungszentrum Jülich GmbH Anordnung elektrochemischer Zellen
WO2022135731A1 (en) 2020-12-24 2022-06-30 Framatome Gmbh Mineralization of organic compounds with boron-doped-diamond electrode during radionuclides stripping process
US11401181B1 (en) * 2021-03-02 2022-08-02 Phosphorus Free Water Solutions, Llc Galvanic process for treating aqueous compositions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1038993A1 (de) * 1997-12-10 2000-09-27 Shinko Plant Construction Co., Ltd. Verfahren und vorrichtung zur herstellung von ozonwasser
WO2002048431A2 (en) * 2000-12-12 2002-06-20 Lynntech International, Ltd. Electrochemical apparatus with retractable electrode
DE20318754U1 (de) * 2003-12-04 2004-02-19 Schulze, Dirk Elektrochemischer Ozonerzeuger

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244802A (en) * 1979-06-11 1981-01-13 Diamond Shamrock Corporation Monopolar membrane cell having metal laminate cell body
DE4227732C2 (de) * 1992-08-21 1996-05-02 Fischer Labor Und Verfahrenste Elektrolysezelle, insbesondere zur Erzeugung von Ozon, mit einer den Anoden- und Kathodenraum voneinander trennenden Feststoffelektrolytmembran
US5635039A (en) * 1993-07-13 1997-06-03 Lynntech, Inc. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
US5972196A (en) * 1995-06-07 1999-10-26 Lynntech, Inc. Electrochemical production of ozone and hydrogen peroxide
US5527436A (en) * 1994-11-21 1996-06-18 Arco Chemical Technology, L.P. Akylene oxide production
DE29504323U1 (de) * 1995-03-17 1996-07-25 Beyer, Wolfgang, 53359 Rheinbach Elektrolysezelle zum Herstellen von Ozon bzw. Sauerstoff
US5876575A (en) * 1995-09-05 1999-03-02 Kump; Joseph A. Method and apparatus for treatment of water
US5795450A (en) * 1997-03-04 1998-08-18 Shinko Pantec Co., Ltd. Apparatus for producing hydrogen and oxygen
SK7672001A3 (en) * 1998-12-07 2001-12-03 Zappi Water Purification Syste Electrolytic apparatus, methods for purification of aqueous solutions and synthesis of chemicals
DE10025167B4 (de) * 2000-05-24 2004-08-19 Dirk Schulze Elektrode für die elektrolytische Erzeugung von Ozon und/oder Sauerstoff, diese enthaltende Elektrolysezelle sowie Verfahren zur Herstellung einer solchen Elektrode
US6860976B2 (en) * 2000-06-20 2005-03-01 Lynntech International, Ltd. Electrochemical apparatus with retractable electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1038993A1 (de) * 1997-12-10 2000-09-27 Shinko Plant Construction Co., Ltd. Verfahren und vorrichtung zur herstellung von ozonwasser
WO2002048431A2 (en) * 2000-12-12 2002-06-20 Lynntech International, Ltd. Electrochemical apparatus with retractable electrode
DE20318754U1 (de) * 2003-12-04 2004-02-19 Schulze, Dirk Elektrochemischer Ozonerzeuger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MILLET P ET AL: "Design and performance of a solid polymer electrolyte water electrolyzer", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, ELSEVIER SCIENCE PUBLISHERS B.V., BARKING, GB, vol. 21, no. 2, February 1996 (1996-02-01), pages 87 - 93, XP004041042, ISSN: 0360-3199 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056337A1 (en) * 2006-11-10 2008-05-15 Element Six Limited Electrochemical apparatus having a forced flow arrangement
US8323461B2 (en) 2006-11-10 2012-12-04 Electrolytic Ozone, Inc. Electrochemical apparatus having a forced flow arrangement
US8361289B2 (en) 2006-11-10 2013-01-29 Andrew John Whitehead Diamond electrode
US9440866B2 (en) 2011-06-06 2016-09-13 Axine Water Technologies Efficient treatment of wastewater using electrochemical cell
US9890064B2 (en) 2012-12-02 2018-02-13 Axine Water Technologies Inc. Method for imparting filtering capability in electrolytic cell for wastewater treatment
US10266429B2 (en) 2012-12-03 2019-04-23 Axine Water Technologies Inc. Efficient treatment of wastewater using electrochemical cell
US10696570B2 (en) 2016-01-15 2020-06-30 Axine Water Technologies Inc. Electrochemical cell for wastewater treatment with increased removal rates of pollutants

Also Published As

Publication number Publication date
US20070095655A1 (en) 2007-05-03
EP1730080A1 (de) 2006-12-13
US7704353B2 (en) 2010-04-27
EP1730080B1 (de) 2008-01-16
ES2301008T3 (es) 2008-06-16
CA2560910A1 (en) 2005-10-13
JP2007530250A (ja) 2007-11-01
ATE384026T1 (de) 2008-02-15
DE102004015680A1 (de) 2005-11-03
DE502005002572D1 (de) 2008-03-06

Similar Documents

Publication Publication Date Title
EP1730080B1 (de) Elektrodenanordnung für eine elektrochemische behandlung von flüssigkeiten mit einer geringen leitfähigkeit
WO2006092125A1 (de) System zur desinfektion von flüssigkeiten mit einer geringen leitfähigkeit
DE3000313A1 (de) Elektrolysezelle mit gesteuerter anolytstroemungsverteilung
DE202020102153U1 (de) Erweiterte Elektrolysezelle mit Ionenaustauschermembran
DE4206843A1 (de) Elektrochemische zellen zur durchfuehrung elektrochemischer prozesse
DE2727973A1 (de) Verfahren zum abscheiden hochohmiger staeube aus gas
DE102012111229B4 (de) Bipolarplatte für einen PEM-Stapelreaktor und PEM-Stapelreaktor
DE4003516C2 (de) Elektrodenelement für elektrolytische Zwecke und dessen Verwendung
DE102009005766A1 (de) Bipolare Platte mit variablen Oberflächeneigenschaften für eine Brennstoffzelle
AT519236B1 (de) Reinigungsverfahren für eine Elektrolytflüssigkeit einer Redox-Durchflussbatterie
DE102007033042B4 (de) Wiederholeinheit für einen Brennstoffzellenstapel und Brennstoffzellenstapel
EP1433520A1 (de) Elektrodialysevorrichtung
DE1596131A1 (de) Elektrische Energiequelle
DE2440619C3 (de) Wiederaufladbare Zink-Cholor-Zelle
DE19853458C2 (de) Polymerelektrolytmembran-Elektrolysezellenmodul und Polymerelektrolytmembran-Elektrolysevorrichtung mit einem solchen Modul
EP4263907A2 (de) Anordnung elektrochemischer zellen
DE102021206594A1 (de) Brennstoffzellenstapel mit einer Vielzahl von Einzelzellen
WO2010000355A1 (de) Vorrichtung zum erzeugen eines sauerstoff-/wasserstoffgemisches
EP2263279B1 (de) Gasverteilerfeldplatte mit verbesserter gasverteilung für eine brennstoffzelle und eine solche enthaltende brennstoffzelle
DE102009010148A1 (de) Galvanische Zelle und Kontaktelement zu ihrer Kontaktierung
DE1211595B (de) Rahmen zum Zusammenbau einer Vielkammerzelle fuer die Elektrodialyse
AT515926B1 (de) Endrahmen für Durchflussbatterie
DE20005681U1 (de) Elektrolysezelle zur Desinfektion von Wässern
AT43323B (de) Plattenförmige Elektrode für elektrolytische Zwecke.
DE29520117U1 (de) Vorrichtung zur Entkeimung von Schwimmbadwasser

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2560910

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007504250

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005736207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007095655

Country of ref document: US

Ref document number: 10599267

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005736207

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10599267

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2005736207

Country of ref document: EP