WO2005095273A1 - Method for producing lithium-iron composite oxide - Google Patents

Method for producing lithium-iron composite oxide Download PDF

Info

Publication number
WO2005095273A1
WO2005095273A1 PCT/JP2005/006703 JP2005006703W WO2005095273A1 WO 2005095273 A1 WO2005095273 A1 WO 2005095273A1 JP 2005006703 W JP2005006703 W JP 2005006703W WO 2005095273 A1 WO2005095273 A1 WO 2005095273A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
iron
lithium
compound
volume cumulative
Prior art date
Application number
PCT/JP2005/006703
Other languages
French (fr)
Japanese (ja)
Inventor
Ryoji Yamada
Original Assignee
Seimi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seimi Chemical Co., Ltd. filed Critical Seimi Chemical Co., Ltd.
Publication of WO2005095273A1 publication Critical patent/WO2005095273A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium iron composite oxide having an olivine type structure and an electrode active material for a non-aqueous electrolyte secondary battery containing the produced lithium iron composite oxide.
  • lithium-ion secondary batteries have been recognized as energy sources for mopile equipment, and have rapidly been replaced by conventional Al-Lini batteries and nickel-metal hydride batteries.
  • lithium-ion rechargeable batteries which are medium-sized and large-sized batteries, are expected to be one solution that can alleviate the seriousness of environmental and energy problems, but safety concerns have not been resolved until now.
  • L i F e P 0 4 Challenges conventional L i F e P 0 4 faced is that L i F e P 0 4 no crystals were only lifting poor electronic conductivity. As a result, the insertion of lithium into the crystal and the elimination of lithium from the crystal did not easily proceed, the diffusion in the crystal was slow, and the charge and discharge could not be repeated smoothly. Also, Since L i F e P 0 4 is a compound of divalent iron, but had use divalent iron compounds so easy as an iron source, easy to handle bivalent iron compound is expensive poor limited versatility.
  • Non-Patent Document 2 One method for overcoming the above problems is to atomize the active material (Non-Patent Document 2). As a result, the surface that can contribute to the charge transfer reaction can be increased, and the electron transfer distance in the crystal can be reduced.
  • Non-Patent Document 2 it has been reported that achieved L i F e P 0 4 The prepared discharge capacity 1 6 O mAh / g containing particle size 1 0 zm following particle.
  • this is an iron compound having a valence of 2 and using extremely expensive iron acetate as an iron source, and it is difficult to develop load characteristics in which sintered particles are generated frequently.
  • Non-Patent Document 3 by using L i F e P 0 4 obtained by firing a mixture of phenolic resins derived from carbon and the raw material has been reported to be able to exhibit a high discharge capacity even at a high load. However, also in this case, expensive iron acetate is used as the iron source.
  • Patent Document 2 a method for compounding a carbon material particles to L i F e P_ ⁇ 4 particles having an average particle diameter of 0. 2 to 5 m has been proposed.
  • the initial discharge capacity of the battery assembled using the active material thus prepared can exhibit only a low characteristic of 88 mA hZg, despite the fact that iron oxalate, a ferrous compound, is used as the iron source. . This is considered to be because the battery performance of difficult-to-handle fine particles could not be brought out well.
  • Non-Patent Document 4 N b Z r such L i F e P 0 4 of the electronic conductivity 8 digits enhanced by 1 mol% doping, it is broadcast capable of expressing excellent battery performance in the high load characteristics It has been tell. However, these were also studied using the iron (II) oxalate, a ferrous compound, as an iron source, and are not economically practical.
  • Non-Patent Document 5 with a F e 2 ⁇ 3 which is a compound of inexpensive trivalent iron readily available iron source, a reducing agent for the divalent iron carbonaceous material from trivalent iron Synthesized i Fe 0. 9 Mg. iPO is reported to exhibit good battery performance.
  • XRD profiles of L i FeP_ ⁇ 4 in the report intended to residual diffraction peaks of unreacted iron oxide, indicating that the reaction was not complete.
  • Patent Document 1 Japanese Patent No. 3319258
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-36889
  • Non-Patent Document 1 J. Electrochem Soc. 144, 1188 (1997)
  • Non-Patent Document 2 J. Electrochem Soc. 148.A224 (2001)
  • Non-Patent Document 3 ElectrocheE Sol id-State Lett. 4, A170 (2001)
  • Non-Patent Document 4 Nature Mater.% 123 (2002)
  • Non-Patent Document 5 ElectrocheE Sol id-State Lett. 6, A53 (2003) Disclosure of the Invention
  • the present invention overcomes the above-mentioned problems of the prior art, and uses a general-purpose and inexpensive iron compound containing trivalent iron as a raw material, and can perform a synthesis reaction while maintaining an optimal particle shape for expressing battery characteristics. It is an object of the present invention to provide a novel method for producing a lithium iron composite oxide, and an olivine-type lithium iron composite oxide produced by such a method and having high discharge capacity and excellent charge / discharge characteristics.
  • the inventor of the present invention has conducted intensive research to achieve the above object, and has refined a raw material component containing an iron compound having a valence of 3, an iron compound, a lithium compound, a phosphoric acid compound, and a carbon-containing compound.
  • a raw material component containing an iron compound having a valence of 3, an iron compound, a lithium compound, a phosphoric acid compound, and a carbon-containing compound After reducing the 50% volume cumulative diameter (D50) of the finely divided particles to 2m or less and the 90% volume cumulative diameter (D90) to 10m or less, the ⁇ :! Agglomeration treatment of the particles The 50% volume cumulative diameter (D 50) of the aggregated particles is 30 m or less, and 90% # ⁇ cumulative diameter
  • (D 90) is reduced to 100 m or less
  • heat treatment is performed at 300 to 1150.
  • the 50% volume cumulative diameter (D 50) is 30 m or less, and 90% or less.
  • An olivine-type structure Li Fe PO having a% volume cumulative diameter (D 90) of 100 m or less has been achieved. The invention's effect
  • the fine iron compound and the fine carbon-containing compound are homogeneously distributed in the raw material components, and the carbon is almost quantitatively converted from the adjacent trivalent iron to the divalent iron. reduced to, and acts to retain the divalent, with performing the synthesis reaction of L i F e P 0 4, functions to prevent undesirable side reactions reoxidation like.
  • Aggregated particles of raw material components with pre-controlled particle size distribution also acts to also maintain many of the features of the distribution before the heat treatment after a L i F e P 0 4 is heat treated, It functions to prevent excessive sintering of primary and secondary particles.
  • the lithium-iron composite oxide of the present invention is composed of agglomerated particles having a controlled particle diameter, in which fine primary particles are collected, and a carbonaceous particle layer derived from a carbon-containing compound is provided on the surface of the primary particles.
  • agglomerated particles having a controlled particle diameter in which fine primary particles are collected, and a carbonaceous particle layer derived from a carbon-containing compound is provided on the surface of the primary particles.
  • the non-aqueous electrolyte secondary battery using the lithium-iron composite oxide of the present invention as a positive electrode active material which reflects such a form, smoothly promotes an interfacial electrokinetic reaction and exhibits excellent battery characteristics. In other words, a large current can flow and power can be obtained, and highly reliable safety and long life can be achieved.
  • Figure 3 is a scanning electron microscope (S EM) observation photograph of L i F e P 0 4 prepared in Example 1 (A).
  • S EM scanning electron microscope
  • the present invention is the synthesis of a divalent iron compound L i F e P_ ⁇ 4, can also be achieved in the raw material or we containing trivalent iron, it is characterized in that compatible with expression of the high-performance battery characteristics .
  • the iron raw material that can be used in the present invention is not limited at all, and can be used by selecting from a wide range of iron compounds.
  • it is preferable to use iron oxide as an iron raw material component in the present invention because it is easy to obtain and handle and is inexpensive. Is an iron oxide not only F e 2 ⁇ 3, F e 3 0 4 or F e OOH like are also suitably used. Needle-like iron oxide having strong anisotropy is also preferably used.
  • lithium compound used in the present invention any compound containing lithium can be used.
  • lithium oxides, hydroxides, salts, or a mixture of two or more of these compounds are preferable from the viewpoint of easy handling.
  • the phosphate compound used in the present invention is not limited at all. However, since they are easily available and easy to handle, phosphate esters such as phosphoric acid, iron phosphate, lithium phosphate and ammonium phosphate, and 2-ethylhexyldiphenyl phosphate triethyl diphosphate can be exemplified. It can be used preferably.
  • the carbon-containing compound that can be used in the present invention can be selected from a wide range of compounds containing carbon. However, preferably, a compound having a carbon content of at least 35% by weight and exhibiting a liquid state or a solid state at normal temperature is preferable because the reduction reaction from trivalent iron to divalent iron can efficiently proceed.
  • reducing sugars such as glucose, sucrose, and lactose
  • organic compounds such as ethylene oxide, glycerin, ascorbic acid, lauric acid, and stearic acid
  • water-soluble high-molecular compounds such as polyvinyl alcohol and polyethylene dalicol
  • polypropylene Such as polystyrene, polyacrylonitrile, cellulose, epoxy resin, and phenol resin.
  • Examples include carbonaceous materials such as racks, power pump racks, and graphite.
  • the material can be used as it is, but it can also be used in the form of a solution, emulsion, suspension or the like.
  • the raw material component including the iron compound having a valence of 3, iron compound, lithium compound, phosphoric acid compound, and carbon-containing compound is subjected to micronization treatment.
  • the micronization process is performed through the process of pulverizing and crushing the raw material components.
  • Each raw material component can be used alone, or two or more raw material components can be simultaneously subjected to micronization treatment.
  • the raw material components subjected to the micronization treatment are preferably mixed uniformly. In the present invention, the thinning treatment and the mixing step can be performed independently of each other, but two treatments can be performed almost simultaneously.
  • the dispersion medium of the slurry may be a solvent for the raw material components.
  • any of a 7-based system, a hide-type carbon system, and a halogenated carbon system can be used.
  • an aqueous dispersion medium is particularly preferable because it is easy to handle and inexpensive.
  • any method such as applying a shearing force to the slurry can be used as a method for subjecting the raw material component to the above-described slurry treatment in the form of fine particles.
  • the slurry consisting of the raw material and the dispersion medium can be efficiently separated into fine particles and the mixture of the dispersion medium can be controlled at a low speed.
  • Station-A method of miniaturization through the evening a method of jetting with high pressure from a nozzle and colliding with each other, or a method of miniaturization by colliding with a shield, or causing cavitation during slurry
  • a method such as miniaturization, a bead mill, a planetary pole mill, or a pole mill.
  • the D50 of the finely divided particles of the raw material component should be 2 m or less, preferably 1 m or less, and D90 should be 10 or less, preferably 5 m or less. I like it. If D90 is larger than 10 m, the synthesis reaction cannot be completed, and the battery characteristics will be greatly impaired. On the other hand, if D50 is larger than 2, the cycle characteristics and load characteristics are impaired, which is not preferable.
  • the above-described slurry refinement of the raw material components can be performed for each raw material component alone, or two or more raw material components can be simultaneously processed. In the latter case, the homogenous mixing of each raw material can be completed simultaneously with the refinement treatment of each raw material component.
  • the raw material components and particles that have been subjected to the miniaturization treatment are then aggregated.
  • the method of aggregating the raw material component particles can be carried out by various means, and the agglomerated particles are preferably obtained in a dry state.
  • a method is preferred in which the slurry obtained by the micronization treatment is preferably subjected to agglomeration of the raw material components, removal of the solvent, and drying under heating and / or reduced pressure while applying a shearing force while preferably stirring.
  • a means for simultaneously aggregating and drying the raw material component particles by supplying the micronized slurry into the dry air stream is also preferably used. Furthermore, by coagulating and drying the raw material components by spray-drying the micronized slurry, it is suitable for the present invention.
  • the D50 of the agglomerated particles of the raw material component is 30 Aim or less, preferably 20 m or less, and D90 is 100 m or less, preferably It is preferred to be 60 m or less. If D50 is larger than 30, cycle characteristics and load characteristics will be impaired. On the other hand, if D90 is larger than 100 / m, the synthesis reaction cannot be completed, and the battery characteristics are greatly impaired, which is not preferable.
  • the raw material components are agglomerated and the particles are heat-treated at 300 to 115 ° C., preferably 350 to 110 ° C. 0 4 is synthesized.
  • Particle size of the olivine emission structure of L i F e P_ ⁇ 4 also, for the same reason, 50% volume cumulative diameter (D 5 0) is 3 0 m or less, or less preferably 2 0 m, and 9
  • the 0% volume cumulative diameter (D90) is preferably 100 m or less, more preferably 60 m or less. If the heat treatment temperature is lower than 300 ° C., the synthesis reaction is difficult to complete, and if it is higher than 115 ° C., an undesired reactant is generated, making it difficult to repair.
  • the preferred treatment time for the heat treatment varies greatly depending on the degree of miniaturization of each raw material component, the uniformity of mixing, the heating system, the treatment temperature, and the like.
  • the heat treatment is performed within a range of several seconds to 48 hours. L i F e synthesis of P_ ⁇ 4, the order of seconds one Can also be completed.
  • the above heat treatment of the present invention are those which proceed essentially trivalent L i F synthesis of e P 0 4 of reduced to olivine structure iron compound bivalent, the oxygen concentration in the treatment atmosphere control also affect the synthesis reaction of L i F e P 0 4.
  • the carbon-containing compound in the raw material component functions as a reducing agent in the vicinity of the raw iron compound, the heat treatment can be completed as it is in the air atmosphere.
  • the ratio of the atmosphere gas in the heat treatment atmosphere is small relative to the raw material, there is no problem even if the atmosphere is left as it is.
  • the heat treatment can be performed in an inert atmosphere or in an inert gas stream. By making the heat treatment atmosphere inactive, it is preferable because restrictions on equipment and processing conditions are reduced and various heat treatment methods can be adopted. Further, in the present invention, the heat treatment can be performed in a reducing gas atmosphere such as hydrogen or carbon monoxide. In order to prevent excessive reduction of raw materials, it is effective to dilute the reducing gas with an inert gas such as nitrogen. In the present invention, a method of spray pyrolysis directly L i F e P 0 4 may be the synthesized from the slurry of starting components used.
  • Atmosphere control during spray pyrolysis can be adjusted by using compressed air, inert gas or reducing gas for spraying. Furthermore, it is also possible to use a method of using a combustion furnace to spray the slurry into a reducing flame to advance the reduction reaction.
  • the olivine-type structure lithium-iron composite oxide produced by the present invention may contain other substances for the purpose of improving powder properties and electrochemical properties.
  • other substances for the purpose of improving powder properties and electrochemical properties.
  • zinc, aluminum, sulfur, indium, cadmium, gallium, calcium, chromium, copalile, zirconia, tin, strontium, cerium, tungsten, tantalum, titanium, copper, thorium, lead, niobium, nickel, vanadium , Norium, bismuth, fluorine, beryllium, boron, magnesium, manganese, molybdenum and the like are preferably used. They are It is used alone or in the form of various compounds, alone or in combination of two or more kinds, and is blended into the inside and / or the surface of the lithium iron composite oxide of the present invention.
  • auxiliary substances may be used alone or in the form of powders, liquids, solutions, and dispersions of oxidants, hydroxides, peroxides, salts, alkoxides, acylates, chelates, and the like. Used in form. These substances may be added to the raw material components in the above-described production process of the lithium iron composite oxide, or may be added to the lithium iron composite oxide after the lithium iron composite oxide is synthesized. You can also.
  • the olivine-type structure lithium-iron composite oxide produced by the method of the present invention is effectively used as a positive electrode active material for battery electrodes and secondary battery electrodes.
  • it is extremely effective as a positive electrode active material for non-aqueous electrolyte secondary batteries such as lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries, including lithium primary batteries.
  • the non-aqueous electrolyte secondary battery using the electrode active material of the present invention has a large charge / discharge capacity and a high energy density, and exhibits excellent cycle characteristics, high load characteristics, low temperature characteristics, high temperature characteristics, and safety.
  • the lithium-iron composite oxide of the present invention which achieves both high energy density and high load characteristics, as well as highly reliable safety, is a positive electrode active material for medium and large-sized secondary batteries and secondary batteries for vehicles. Can be applied effectively.
  • the capacity retention rate was determined by the following equation.
  • a raw material component slurry was obtained in which 0 was 0.64 m and D90 was 0.99 m. This slurry As a result of being supplied with a large amount of hot air during the high-speed rotation of the cutlet and dried, a raw material component powder of 050 4.37 and D90 of 10.1 m was obtained.
  • N-methylpyrrolidone 20 parts by weight of N-methylpyrrolidone were added to 90 parts by weight of this (A), 5 parts by weight of carbon dioxide, and 5 parts by weight of polyvinylidene fluoride, and kneaded to obtain a paste.
  • This paste was applied to an aluminum foil, dried, rolled and punched into a predetermined size to obtain a positive electrode plate.
  • 95 parts by weight of nylon and 5 parts by weight of polyvinylidene fluoride were mixed with 20 parts by weight of N-methylpyrrolidone to obtain a paste.
  • This paste was applied to a copper foil, dried, rolled and punched into a predetermined size to obtain a negative electrode plate.
  • Electrode wires were attached to the thus obtained positive electrode plate and negative electrode plate, respectively, and housed in a stainless steel cell case via a polyolefin-based separator. Subsequently, an electrolyte solution in which lithium hexafluorophosphate was dissolved at a concentration of 1 mol / L was injected into a mixed solution of ethylene carbonate and diethylene nitrate, to obtain a model cell. Battery characteristics a charge-discharge measuring instrument was used, 2 5 ° battery voltage with a charging current 0. 6 A / cm 2 at C 4. 3 discharge current was charged to a V 2. 0mA / cm 2 1 ( 1. (Equivalent to 25 C rate) Discharging until the voltage reaches 2.0 V The charge and discharge were repeated, and the initial discharge capacity and the discharge capacity after 100 cycles were obtained and evaluated. The results are shown in Table 1.
  • An iron oxide having an iron content of 69.5% by weight and an average aggregated particle diameter of 2.1 in which sub-micron-order pseudo-spherical particles were collected was obtained.
  • 79.8 g of this iron oxide, 115.0 g of ammonium dihydrogen phosphate and 36.9 g of lithium carbonate were weighed in a stainless steel vat, and pure water was added to make 3 kg. This was bead milled for 1 hour using a 0.5 mm zirconia pole, and 90 g of a 13.3% by weight aqueous solution of polyvinyl alcohol (carbon content: 54.5% by weight) was added, followed by stirring and mixing.
  • a raw material component slurry having a D50 of 0.72 nm and a D90 of 1.29 m was obtained.
  • the slurry was fed into a large amount of hot air flowing at high speed and dried to obtain a raw material component powder having a D50 of 5.17 zm and a D90 of 12.2 xm.
  • the ingredients powder was heat-treated for 5 hours at the 0.8 liters Z content of nitrogen gas flow 700 ° C, D50 is 6. 21 urn, D90 of 20. 8 m L i F e P0 4 (C) 134.6 g were obtained.
  • the raw material Ingredient powder was heat-treated at 0.8 liters / min nitrogen gas stream 650 for 12 hours, D 50 is 5. 27 urn, D90 of 10.4 / 111 1 ⁇ 1 6? ⁇ 4 ( D) 129.8 g were obtained.
  • Example 5 Except that this (D) was used in place of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results.
  • Example 5 Except that this (D) was used in place of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results.
  • Example 5 Except that this (D) was used in place of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results. Example 5
  • D50 was 0.64 m and D90 was 1.00 in the same manner as in Example 4, except that the slurry was discharged from the two nozzles facing each other at high pressure and collided with each other instead of bead milling. Thus, m raw material component slurries were obtained. The slurry was heat-treated while spraying with nitrogen gas into the furnace set at 875 ° C, D 50 is 10. 6 m, D 90 is 23. 2 ⁇ m of L i FeP0 4 (E) 115 . 2 g were obtained.
  • Example 5 When the same raw material component slurry as in Example 5 was spray-dried, a raw material component powder having a D50 of 8.03 m and a D90 of 13.5 m was obtained. This raw material component powder is spread on an alumina tray, covered with an alumina plate, and heat-treated in a microwave oven at 600 ° C for 2 minutes in an air atmosphere. D50 is 8.15 ⁇ and D90 is 12.7 1? 6? 4 (F) 13 0.2 g of 111 were obtained.
  • D50 was 0.68 m and D90 was 1.05 X in the same manner as in Example 4, except that the slurry was passed through the gap between the disk rotating at high speed and the fixed disk instead of bead milling.
  • m raw material component slurry was obtained.
  • the slurry was dried in the same manner as in Example 1, and as a result, a raw material component powder having a D50 of 5.44 m and a D90 of 10.8 xm was obtained.
  • This raw material powder was heat-treated using a low-temperature kiln while flowing nitrogen gas for 1.5 liters Z, and the D50 was 5.58 rn, 090 10.8 to 1? 0 4 (G) 140.5 was obtained.
  • the heat treatment applied to the raw material component powder at this time was 1 minute at 1085 ° C.
  • Example 8 Fe3 e4 formed by agglomeration of pseudo-spherical primary particles having an average particle diameter of 0.6 and iron oxide of Example 3 were mixed to prepare an iron oxide mixture having an iron content of 70.4% by weight.
  • Example 4 In the same manner as in Example 4, except that sucrose (carbon content: 42.1% by weight) was used instead of the oxidation in Example 1, D 50 was 0.57 im, and D 90 was 1.1 xm. A raw material component slurry having a D50 of 4.96 m and a D90 of 11.3 m was obtained. The ingredients powder for 30 hours heat set at a 0.8 l Z content of nitrogen gas flow 450 ° C, D50 is 5. 04 ⁇ m, D90 of 11. 0 m L i FeP_ ⁇ 4 (H ) 130.3 g were obtained.
  • Example 4 In the same manner as in Example 4, except that 87.4 g of the iron oxide mixture was used instead of 79.8 g of the iron oxide of Example 1, the raw material components in which 050 was 0.45 mm and 090 was 0.75 m A slurry was obtained, and a raw material powder having a D50 of 4.63 m and a D90 of 9.57 / xm was obtained.
  • the ingredients powder was 24 hours heat treatment at 0.8 liters Z content of nitrogen gas flow 550 of this, D50 is 4. 85 rn, D90 is 9. 88 m of L i FeP0 4 (J) 127. 4g Was obtained.
  • Example 2 200 g of the iron oxide of Example 1 was weighed into a stainless steel vat, and purified water was added to make 3 kg. This was subjected to a bead mill treatment in the same manner as in Example 4 to obtain an iron oxide slurry in which 050 was 0.40 mm and 090 was 0.66 / m. When this slurry was spray-dried, iron oxide powder having a D50 of 5.3 m and a D90 of 10.7 m was obtained.
  • a model cell was prepared in the same manner as in Example 1 except that this (L) was used instead of (A), and the charging and discharging characteristics were examined. Table 1 shows the results.
  • a raw material component slurry was obtained in the same manner as in Example 4.
  • the slurry was dried under reduced pressure at an evaporator, and pulverized with a cutlet mill to obtain a raw material powder having a D50 of 12.5 m and a D90 of 140.9 m.
  • This was heat-treated in the same manner as Example 4, D 50 was obtained L i FeP_ ⁇ 4 ( ⁇ ) 121. 5g of 25. 9 ⁇ , D 90 ⁇ 1 50. 6 ⁇ m.
  • Example 14 D 50 was 4.47 ⁇ , ⁇ , and D90 were 9.81 zm, as in Example 4, except that the heat treatment, which was 12 hours at 650, was replaced with 48 hours at 250 ° C. ⁇ 0 4 ( ⁇ ) 1 30.5 g was obtained.
  • This raw material powder was heat-treated at 550 ° C for 5 hours while supplying 0.8 liters of nitrogen gas containing 10 V o 1% of hydrogen, and D 50 was 2.67 m and D 90 was 4. 53 was obtained L i Fe P0 4 (R) 130. 2g of zm.

Abstract

A novel method for producing a lithium-iron composite oxide, characterized in that it comprises finely pulverizing a raw material component containing an iron compound containing a trivalent iron, a lithium compound, a phosphoric acid derivative and a carbon-containing compound into pulverized particles having a 50 % volume cumulative diameter (D50) of 2 μm or less and a 90 % volume cumulative diameter (D90) of 10 μm or less, and then coagulating said pulverized particles into coagulated particles having a 50 % volume cumulative diameter (D50) of 30 μm or less and a 90 % volume cumulative diameter (D90) of 100 μm or less, and then heating the resultant particles at 300 to 1150°C, to thereby prepare LiFePO4 having an olivine type structure; and an electrode active material for a non-aqueous electrolyte secondary cell having a high discharge capacity and excellent charge-discharge characteristics which uses the lithium-iron composite oxide produced by the above method. The above method allows the production of an olivine type lithium-iron composite oxide exhibiting excellent electric cell characteristics, through the use of a non-expensive iron compound as a raw material.

Description

明 細 書 リチウム鉄複合謝匕物の製造方法 技術分野  Description Manufacturing method of lithium iron composite material
本発明はォリビン型構造のリチウム鉄複合酸化物の製造方法及び製造されたリチウム 鉄複合酸化物を含有する非水電解質二次電池用電極活物質に関する。 背景技術  The present invention relates to a method for producing a lithium iron composite oxide having an olivine type structure and an electrode active material for a non-aqueous electrolyte secondary battery containing the produced lithium iron composite oxide. Background art
モパイル機器用エネルギ源として高出力で高工ネルギ密度のリチウムイオン二次電池 が認知され、 従来のアル力リニ次電池やニッケル水素電池と急速に置き換えられてきた。 その一方、 中型 .大型電池のリチウムイオン二次電池は環境問題 .エネルギ問題の深刻 化を緩和できる一つの解答として期待されているが、 安全性に関する不安が解消されな いままで進行していない。  High power and high energy density lithium ion secondary batteries have been recognized as energy sources for mopile equipment, and have rapidly been replaced by conventional Al-Lini batteries and nickel-metal hydride batteries. On the other hand, lithium-ion rechargeable batteries, which are medium-sized and large-sized batteries, are expected to be one solution that can alleviate the seriousness of environmental and energy problems, but safety concerns have not been resolved until now.
安全で安価な正極活物質材料としては、 これまでにも Mn系や F e系を中心とした検 討が進められてきた。 特にスピネル型 L i Mn 204« f力的に検討された材料ではあつ たが、 高温貯蔵時の安定性が乏しいといった欠点を克服できず、 秘的実用化には至つ ていない。 層状岩塩構造 L i F e 02も長年に渡って検討されてきたが、 未だ満足な電 気化学特性を発現できない状況にある。 As a safe and inexpensive cathode active material, Mn-based and Fe-based studies have been conducted. In particular there was filed in the spinel L i Mn 2 0 4 «f force to study material can not overcome the disadvantages such poor stability during storage at a high temperature, not Itaritsu the secret practical application. Layered rock salt structure L i F e 0 2 has also been studied for many years, but the situation that is unable to express still satisfactory electrical chemical properties.
これに対し、 特許文献 1によって提案された L i F e P〇4は、 安全性にかかわる正 極活物質中の酸素が全てリンと共有結合して強固に固定されていることから、 極めて安 全で、 安定性に優れた正極活物質であると期待された。 しかしながらその電気化学特性 は、 理論量の高々 7 0 %しか発現できないといった課題を有するものであった (非特許 文献 1 ) 。 In contrast, since the L i F e P_〇 4 proposed by Patent Document 1, the oxygen of the positive electrode active substance involved in safety is firmly fixed covalently bound to all the phosphorus, very cheap In all, it was expected to be a cathode active material with excellent stability. However, its electrochemical properties have a problem that only 70% of the theoretical amount can be expressed (Non-Patent Document 1).
従来の L i F e P 04が抱える課題は、 L i F e P 04結晶が乏しい電子伝導性しか持 たないことである。 そのためリチウムの結晶内への挿入と結晶からの脱離が進行し難い うえ結晶内での拡散が遅く、 スムースに充放電を繰り返すことができなかった。 また、 L i F e P 04が 2価鉄の化合物であることから、 鉄源として 2価鉄化合物を安易に用 いたが、 取り扱い容易な 2価鉄化合物は限られ 汎用性が乏しく高価である。 Challenges conventional L i F e P 0 4 faced is that L i F e P 0 4 no crystals were only lifting poor electronic conductivity. As a result, the insertion of lithium into the crystal and the elimination of lithium from the crystal did not easily proceed, the diffusion in the crystal was slow, and the charge and discharge could not be repeated smoothly. Also, Since L i F e P 0 4 is a compound of divalent iron, but had use divalent iron compounds so easy as an iron source, easy to handle bivalent iron compound is expensive poor limited versatility.
上記の課題克服のための一つの は活物質の微粒化である (非特許文献 2 ) 。 これ により電荷移動反応に寄与できる表面を増やせ、 結晶中の電子移動距離を短縮できる。 非特許文献 2には、 粒径 1 0 zm以下の粒子を含有する L i F e P 04を調製して放電 容量 1 6 O mAh/gを達成したことが報告されている。 しかし、 これは価数 2の鉄化 合物であって極めて高価な酢酸鉄を鉄源とし、 焼結粒子を多発させた負荷特性の発現し 難いものであった。 One method for overcoming the above problems is to atomize the active material (Non-Patent Document 2). As a result, the surface that can contribute to the charge transfer reaction can be increased, and the electron transfer distance in the crystal can be reduced. Non-Patent Document 2, it has been reported that achieved L i F e P 0 4 The prepared discharge capacity 1 6 O mAh / g containing particle size 1 0 zm following particle. However, this is an iron compound having a valence of 2 and using extremely expensive iron acetate as an iron source, and it is difficult to develop load characteristics in which sintered particles are generated frequently.
活物質粒子表面に導電性コ一ティングを施して粒子表面と電極コンポジットの導電性 を高めることによつても電気化学特性カ 善されることが報告されている。 コンポジッ トの導電助剤として使用される炭素質材料を、 粒子の導電性コ一ティングに用いること も有効である。 非特許文献 3には、 フエノール樹脂由来カーボンと原料の混合物を焼成 して得た L i F e P 04を用いることにより、 高負荷時においても高い放電容量を発現 できることが報告されている。 しかし、 この場合も、 鉄源としては高価な酢酸鉄が使用 されている。 It has been reported that the electrochemical properties can also be improved by applying a conductive coating to the surface of the active material particles to increase the conductivity between the particle surface and the electrode composite. It is also effective to use a carbonaceous material used as a conductive additive for composites for conductive coating of particles. Non-Patent Document 3, by using L i F e P 0 4 obtained by firing a mixture of phenolic resins derived from carbon and the raw material has been reported to be able to exhibit a high discharge capacity even at a high load. However, also in this case, expensive iron acetate is used as the iron source.
特許文献 2には、 平均粒径 0. 2〜5 mの L i F e P〇4粒子に炭素物質微粒子を 複合化させる方法が提案されている。 しかしながら、 こうして調製された活物質を用い て組まれた電池の初期放電容量は、 2価鉄化合物である蓚酸鉄を鉄源としているにもか かわらず、 8 8 mA hZgと低い特性しか発現できない。 これは取り扱い困難な微細粒 子の電池性能を、 うまく引き出せなかったためと判断される。 Patent Document 2, a method for compounding a carbon material particles to L i F e P_〇 4 particles having an average particle diameter of 0. 2 to 5 m has been proposed. However, the initial discharge capacity of the battery assembled using the active material thus prepared can exhibit only a low characteristic of 88 mA hZg, despite the fact that iron oxalate, a ferrous compound, is used as the iron source. . This is considered to be because the battery performance of difficult-to-handle fine particles could not be brought out well.
結晶自体の導電性を高めて活物質の電気化学特性を改善しょうとする試みも検討され ている。 非特許文献 4には、 N b Z r等を 1モル%ドープすることにより L i F e P 04の電子伝導性を 8桁高められ、 高負荷特性に優れた電池性能を発現できることが報 告されている。 しかし、 これらも 2価鉄化合物の蓚酸鉄を鉄源として検討されたもので あって、 経済的には実用性が乏しい。 Attempts are being made to improve the electrochemical properties of the active material by increasing the conductivity of the crystal itself. Non-Patent Document 4, N b Z r such L i F e P 0 4 of the electronic conductivity 8 digits enhanced by 1 mol% doping, it is broadcast capable of expressing excellent battery performance in the high load characteristics It has been tell. However, these were also studied using the iron (II) oxalate, a ferrous compound, as an iron source, and are not economically practical.
汎用性が高く、 安価な鉄化合物を用いて L i F e P〇4を合成する試みも検討されて いる。 非特許文献 5には、 容易に入手できて安価な 3価鉄の化合物である F e 23を 鉄源に、 炭素質材料を 3価鉄から 2価鉄に するための還元剤に用いて合成した、 L i Fe0.9Mg。. iPO は、 良好な電池性能を発現することが報告されている。 しかし、 その報告にある L i FeP〇4の XRDプロファイルは未反応酸化鉄の回折ピークを残 すもので、 反応が完結していないことを示す。 Versatile, it has also been studied attempts to synthesize L i F e P_〇 4 using inexpensive iron compound. Non-Patent Document 5, with a F e 23 which is a compound of inexpensive trivalent iron readily available iron source, a reducing agent for the divalent iron carbonaceous material from trivalent iron Synthesized i Fe 0. 9 Mg. iPO is reported to exhibit good battery performance. However, XRD profiles of L i FeP_〇 4 in the report intended to residual diffraction peaks of unreacted iron oxide, indicating that the reaction was not complete.
上記のように従来も良好な電池性能を発現する L i F e P04の合成は可能ではあつ たが、 それらは 2価の鉄化合物を原料とした合成方法によるものであって、 安価な L i F e P04を豊富に安定して供給しょうとする点からは、 実用的ではない。 Synthesis of L i F e P0 4 that also express good battery performance conventional as described above but was filed possible, they be those divalent iron compounds by synthesis method as a raw material, cheap L i F e P0 4 from a point to be cane abundantly and stably supplied is not practical.
一方、 安価で取り扱い勝手が良く、 容易に入手可能な鉄化合物としては酸化鉄が有利 であるため、 酸化鉄を鉄源として L i F e P〇4を合成する手法も従来から知られてい た。 しかしながら、 反応を完結させることができず、 高負荷特性を大きく低下させてし まうことから実用に供されなかつた。 On the other hand, good freely handled at low cost, as the readily available iron compounds for iron oxide is advantageous, technique for synthesizing L i F e P_〇 4 iron oxide as an iron source was also known in the art . However, the reaction could not be completed and the high-load characteristics were greatly reduced, so that it was not practically used.
[特許文献 1] 特許第 3319258号公報  [Patent Document 1] Japanese Patent No. 3319258
[特許文献 2] 特開 2003— 36889号公報  [Patent Document 2] Japanese Patent Application Laid-Open No. 2003-36889
[非特許文献 1 ] J. Electrochem Soc. 144, 1188(1997)  [Non-Patent Document 1] J. Electrochem Soc. 144, 1188 (1997)
[非特許文献 2] J. Electrochem Soc. 148.A224 (2001)  [Non-Patent Document 2] J. Electrochem Soc. 148.A224 (2001)
[非特許文献 3] ElectrocheE Sol id-State Lett. 4, A170 (2001)  [Non-Patent Document 3] ElectrocheE Sol id-State Lett. 4, A170 (2001)
[非特許文献 4] Nature Mater. % 123 (2002)  [Non-Patent Document 4] Nature Mater.% 123 (2002)
[非特許文献 5] ElectrocheE Sol id-State Lett. 6, A53 (2003) 発明の開示  [Non-Patent Document 5] ElectrocheE Sol id-State Lett. 6, A53 (2003) Disclosure of the Invention
本発明は、 前記従来技術の課題を克服し、 3価鉄を含有する汎用で安価な鉄化合物を 原料として、 電池特性発現に最適な粒子形状を保持させながら合成反応を遂行できる、 オリビン型構造のリチウム鉄複合酸化物の新規な製造方法と、 かかる方法により製造さ れた、 高い放電容量及び優れた充放電特性を有するオリビン型リチウム鉄複合酸化物の 提供を目的とする。  The present invention overcomes the above-mentioned problems of the prior art, and uses a general-purpose and inexpensive iron compound containing trivalent iron as a raw material, and can perform a synthesis reaction while maintaining an optimal particle shape for expressing battery characteristics. It is an object of the present invention to provide a novel method for producing a lithium iron composite oxide, and an olivine-type lithium iron composite oxide produced by such a method and having high discharge capacity and excellent charge / discharge characteristics.
本発明者は、 上記課題を達成すべく鋭意研究を進めたところ、 原子価数 3の鉄を含有 する鉄化合物、 リチウム化合物、 リン酸化合物、 及び炭素含有化合物を含む原料成分を 微細化処理し、 該微細化粒子の 50%体積累積径 (D50) を 2^m以下で、 かつ 9 0 %体積累積径 (D 90) を 10 m以下にせしめた後、 該^:!田化粒子を凝集処理し、 該凝集粒子の 5 0 %体積累積径 (D 5 0 ) が 3 0 m以下で、 かつ 9 0 %# ^累積径The inventor of the present invention has conducted intensive research to achieve the above object, and has refined a raw material component containing an iron compound having a valence of 3, an iron compound, a lithium compound, a phosphoric acid compound, and a carbon-containing compound. After reducing the 50% volume cumulative diameter (D50) of the finely divided particles to 2m or less and the 90% volume cumulative diameter (D90) to 10m or less, the ^ :! Agglomeration treatment of the particles The 50% volume cumulative diameter (D 50) of the aggregated particles is 30 m or less, and 90% # ^ cumulative diameter
(D 9 0 ) が 1 0 0 m以下にせしめた後に 3 0 0〜 1 1 5 0 で熱処理し、 好ましく は、 5 0 %体積累積径 (D 5 0 ) として 3 0 m以下、 及び 9 0 %体積累積径 (D 9 0 ) として 1 0 0 m以下を有する、 オリビン型構造 L i F e P O ;:せしめることを 特徴とするリチウム鉄複合酸化物の製造方法に到達した。 発明の効果 After (D 90) is reduced to 100 m or less, heat treatment is performed at 300 to 1150. Preferably, the 50% volume cumulative diameter (D 50) is 30 m or less, and 90% or less. An olivine-type structure Li Fe PO having a% volume cumulative diameter (D 90) of 100 m or less has been achieved. The invention's effect
かかる本発明の製造方法によれば、 原料成分中には微細な鉄化合物と微細な炭素含有 化合物が均質に分布しており、 炭素は近接する 3価の鉄を 2価の鉄にほぼ定量的に還元 し、 かつ 2価を保持するように作用し、 L i F e P 04の合成反応を遂行すると共に、 再酸化等の好ましくない副反応を防止するよう機能する。 また予め制御された粒径分布 を持つ原料成分の凝集粒子は、 熱処理されて L i F e P 04となった後も熱処理前の分 布の多くの特徴を維持するように作用して、 一次粒子、 二次粒子の過剰な焼結を防止す るように機能する。 According to the production method of the present invention, the fine iron compound and the fine carbon-containing compound are homogeneously distributed in the raw material components, and the carbon is almost quantitatively converted from the adjacent trivalent iron to the divalent iron. reduced to, and acts to retain the divalent, with performing the synthesis reaction of L i F e P 0 4, functions to prevent undesirable side reactions reoxidation like. Aggregated particles of raw material components with pre-controlled particle size distribution also acts to also maintain many of the features of the distribution before the heat treatment after a L i F e P 0 4 is heat treated, It functions to prevent excessive sintering of primary and secondary particles.
かくして、 本発明のリチウム鉄複合酸化物は、 微細な一次粒子が集まった、 粒径の制 御された凝集粒子からなり、 その一次粒子の表面には炭素含有化合物由来の炭素質粒子 層が設けられている。 このような形態が反映された本発明のリチウム鉄複合酸化物を正 極活物質とした非水電解液二次電池は、 界面電 動反応をスムースに進行させ、 優れ た電池特性を発現する。 すなわち大電流を流すことができてパワーが取れ、 しかも信頼 性高い安全性と長寿命を達成できる。  Thus, the lithium-iron composite oxide of the present invention is composed of agglomerated particles having a controlled particle diameter, in which fine primary particles are collected, and a carbonaceous particle layer derived from a carbon-containing compound is provided on the surface of the primary particles. Have been. The non-aqueous electrolyte secondary battery using the lithium-iron composite oxide of the present invention as a positive electrode active material, which reflects such a form, smoothly promotes an interfacial electrokinetic reaction and exhibits excellent battery characteristics. In other words, a large current can flow and power can be obtained, and highly reliable safety and long life can be achieved.
これに対して従来のリチウム鉄複合酸化物は、 比重の大きく異なる原料成分のミク口 な混合が不十分であったため、 未反応部分や再酸化部分を残してしまっていた。 加えて 熱処理時に独立した一次粒子や微細な二次粒子がバインダーとなり、 大きな一次粒子や 凝集粒子を多発させていた。 このような不具合が従来のリチウム鉄複合酸化物を非水電 解質二次電池用電極活物質に使用した場合にサイクル特性や負荷特性の劣ィ匕を引き起こ していたものと推視 I]される。 図面の簡単な説明 図 1は、 例 1で調製した L i F e P 04 (A) の X線回折パターン図。 On the other hand, in the conventional lithium-iron composite oxide, the unreacted portion and the reoxidized portion were left because of insufficient mixing of raw materials having greatly different specific gravities. In addition, independent primary particles and fine secondary particles became a binder during heat treatment, and large primary particles and aggregated particles were frequently generated. It is presumed that such a problem caused the cycle characteristics and load characteristics to deteriorate when the conventional lithium iron composite oxide was used as an electrode active material for a non-aqueous electrolyte secondary battery I] Is done. Brief Description of Drawings 1, X-rays diffraction pattern diagram of the L i F e P 0 4 prepared in Example 1 (A).
図 2は、 例 1で調製した L i F e P 04 (A) 及びその原料成分スラリー、 原料成分 粉体の粒径分布図。 2, L i F e P 0 4 (A) and the particle size distribution diagram of its ingredients slurry ingredients powder prepared in Example 1.
図 3は、 例 1で調製した L i F e P 04 (A) の走査電子顕微鏡 (S EM) 観察写真。 発明を実施するための最良の形態 Figure 3 is a scanning electron microscope (S EM) observation photograph of L i F e P 0 4 prepared in Example 1 (A). BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 2価鉄化合物である L i F e P〇4の合成を、 3価の鉄を含有する原料か らでも達成でき、 高性能な電池特性の発現と両立できるところに特徴がある。 従って、 本発明に使用可能な鉄原料としては何ら限定されることなく、 広範囲な鉄化合物の中か ら選択して用いることができる。 しかしながら入手と取り扱いが容易で、 しかも安価で あることから、 本発明には酸化鉄を鉄原料成分として用いるのが好ましい。 酸化鉄とし ては F e 23のみでなく、 F e 304あるいは F e OOH等も好適に用いられる。 異方 性の強い針状酸化鉄も好適に用いられる。 The present invention is the synthesis of a divalent iron compound L i F e P_〇 4, can also be achieved in the raw material or we containing trivalent iron, it is characterized in that compatible with expression of the high-performance battery characteristics . Accordingly, the iron raw material that can be used in the present invention is not limited at all, and can be used by selecting from a wide range of iron compounds. However, it is preferable to use iron oxide as an iron raw material component in the present invention because it is easy to obtain and handle and is inexpensive. Is an iron oxide not only F e 2 3, F e 3 0 4 or F e OOH like are also suitably used. Needle-like iron oxide having strong anisotropy is also preferably used.
本発明に用いられるリチウム化合物としてはリチウムを含有するものであればいずれ も使用可能である。 しかし、 取り扱い容易な点からリチウムの酸化物、 水酸化物、 塩類、 又はこれら化合物 2種以上の混合物等が好ましい。  As the lithium compound used in the present invention, any compound containing lithium can be used. However, lithium oxides, hydroxides, salts, or a mixture of two or more of these compounds are preferable from the viewpoint of easy handling.
本発明に用いられるリン酸化合物も何ら限定されるものではない。 しかしながら入手 し易く取り扱い容易なことから、 リン酸、 リン酸鉄、 リン酸リチウム及びリン酸アンモ ニゥム類、 リン酸トリェチルゃリン酸 2—エヂルへキシルジフエニルといったリン酸ェ ステル類が例示でき、 いずれも好ましく使用できる。  The phosphate compound used in the present invention is not limited at all. However, since they are easily available and easy to handle, phosphate esters such as phosphoric acid, iron phosphate, lithium phosphate and ammonium phosphate, and 2-ethylhexyldiphenyl phosphate triethyl diphosphate can be exemplified. It can be used preferably.
本発明に使用できる炭素含有化合物も炭素を含有する広範囲な化合物の中から選択し て用いることができる。 しかしながら好ましくは、 炭素含有量が少なくとも 3 5重量% の常温で液体状態か固体状態を呈する化合物が、 3価の鉄から 2価の鉄への還元反応を 効率良く進行させ得ることから好ましい。 具体的には、 グルコース、 ショ糖、 ラクトー スといった還元糖類;エチレンオキサイド、 グリセリン、 ァスコルビン酸、 ラウリン酸、 ステアリン酸といった有機化合物;ポリビニルアルコール、 ポリエチレンダリコールと いった水溶性高^?類;ポリプロピレン、 ポリスチレン、 ポリアクリロニトリル、 セル ロース、 エポキシ樹脂、 フエノール樹脂といった樹月旨 'プラスチック類、 アセチレンブ ラック、 力一ポンプラック、 グラフアイトといった炭素質材料を例示できる。 また炭素 含有化合物は、 材料をそのまま用いることも可能であるが、 溶液、 エマルシヨン、 サス ペンション等といった形態で用いることも可能である。 The carbon-containing compound that can be used in the present invention can be selected from a wide range of compounds containing carbon. However, preferably, a compound having a carbon content of at least 35% by weight and exhibiting a liquid state or a solid state at normal temperature is preferable because the reduction reaction from trivalent iron to divalent iron can efficiently proceed. Specifically, reducing sugars such as glucose, sucrose, and lactose; organic compounds such as ethylene oxide, glycerin, ascorbic acid, lauric acid, and stearic acid; water-soluble high-molecular compounds such as polyvinyl alcohol and polyethylene dalicol; polypropylene , Such as polystyrene, polyacrylonitrile, cellulose, epoxy resin, and phenol resin. Examples include carbonaceous materials such as racks, power pump racks, and graphite. As the carbon-containing compound, the material can be used as it is, but it can also be used in the form of a solution, emulsion, suspension or the like.
上記の原子価数 3の鉄を含有する鉄化合物、 リチウム化合物、 リン酸化合物、 及び、 炭素含有化合物を含む原料成分は、 微細化処理される。 微細化処理は、 原料成分を粉砕 や解碎の工程を通じて成される。 各原料成分を単独で、 あるいは 2種以上の原料成分を 同時に微細化処理することができる。 微細化処理された各原料成分は好ましくは均一に 混合される。 本発明において 細化処理と混合工程はそれぞれ独立に行うことも可能で あるが、 ほぼ同時に 2つの処理を行うこともできる。  The raw material component including the iron compound having a valence of 3, iron compound, lithium compound, phosphoric acid compound, and carbon-containing compound is subjected to micronization treatment. The micronization process is performed through the process of pulverizing and crushing the raw material components. Each raw material component can be used alone, or two or more raw material components can be simultaneously subjected to micronization treatment. The raw material components subjected to the micronization treatment are preferably mixed uniformly. In the present invention, the thinning treatment and the mixing step can be performed independently of each other, but two treatments can be performed almost simultaneously.
上記原料成分の微細化処理は、 原料成分と分散媒から形成されたスラリ一にて行うの が、 散逸を防止しながら充分な微細化が可能である点で好ましい。 スラリーの分散媒は 原料成分の溶媒であってもよい。 分散媒としては、 7性系、 ハイド口カーボン系、 又は ハロゲン化カーボン系のいずれも使用可能である。 なかでも、 取り扱い容易で安価であ ることから、 水系分散媒が特に好ましい。  It is preferable to perform the above-mentioned fine processing of the raw material components by using a slurry formed from the raw material components and the dispersion medium, since sufficient fineness can be achieved while preventing dissipation. The dispersion medium of the slurry may be a solvent for the raw material components. As the dispersing medium, any of a 7-based system, a hide-type carbon system, and a halogenated carbon system can be used. Among them, an aqueous dispersion medium is particularly preferable because it is easy to handle and inexpensive.
本発明において、 原料成分を上記スラリーの形態で微細化処理する場合の方法は、 ス ラリーにせん断力を加えるなどの手段がいずれも使用可能である。 なかでも、 効率よく 微細化できて異物の混入を低く制御できる点で、 原料と分散媒からなるスラリーを、 回 転速度の大きく異なる 2つのロータ一間、 2つのディスク間、 あるいは口一ターとステ —夕一間に通して微細化する方法、 ノズルから高圧で噴射し、 相互に衝突させるカゝ、 又 は遮蔽物に衝突させて微細化する方法、 スラリ一中にキヤビテーションを起こして微細 化する方法、 ビーズミル、 遊星ポールミル、 又はポールミルといった方法を用いるのが 好ましい。  In the present invention, any method such as applying a shearing force to the slurry can be used as a method for subjecting the raw material component to the above-described slurry treatment in the form of fine particles. Above all, the slurry consisting of the raw material and the dispersion medium can be efficiently separated into fine particles and the mixture of the dispersion medium can be controlled at a low speed. Station-A method of miniaturization through the evening, a method of jetting with high pressure from a nozzle and colliding with each other, or a method of miniaturization by colliding with a shield, or causing cavitation during slurry It is preferable to use a method such as miniaturization, a bead mill, a planetary pole mill, or a pole mill.
このようにして、 微細化処理は、 原料成分の微細化粒子の D 5 0を 2 m以下、 好ま しくは 1 m以下、 かつ D 9 0を 1 0 以下、 好ましくは 5 m以下にするのが好ま しい。 D 9 0が 1 0 mより大きいと合成反応を完結できず、 電池特性を大きく損ねて しまう。 また、 D 5 0が 2 より大きいとサイクル特性や負荷特性を損ねてしまうこ とから、 好ましくない。 上記の原料成分のスラリ一の微細化処理は、 それぞれの原料成分について単独で行う こともできるし、 また、 2種以上の原料成分を同時に処理することもできる。 後者の場 合には各原料成分の微細化処理と同時に各原料の均質混合をも完了できる。 In this way, in the refining treatment, the D50 of the finely divided particles of the raw material component should be 2 m or less, preferably 1 m or less, and D90 should be 10 or less, preferably 5 m or less. I like it. If D90 is larger than 10 m, the synthesis reaction cannot be completed, and the battery characteristics will be greatly impaired. On the other hand, if D50 is larger than 2, the cycle characteristics and load characteristics are impaired, which is not preferable. The above-described slurry refinement of the raw material components can be performed for each raw material component alone, or two or more raw material components can be simultaneously processed. In the latter case, the homogenous mixing of each raw material can be completed simultaneously with the refinement treatment of each raw material component.
本発明は、 次いで、 微細化処理された原料成分、粒子を凝集させる。 原料成分粒子を凝 集させる方法は種々の手段で行うことができ、 また、 凝集された粒子は乾燥状態で得ら れるのが好ましい。 かくして、 例えば、 微細化処理で得られたスラリーを好ましくは攪 拌してせん断力を加えながら加熱及び/又は減圧下に、 原料成分の凝集と溶媒の除去、 乾燥を行う方法が好ましい。 これにより原料成分のほとんど全てを回収でき、 得られる 凝集粒子の粒径制御も容易にできる。  In the present invention, the raw material components and particles that have been subjected to the miniaturization treatment are then aggregated. The method of aggregating the raw material component particles can be carried out by various means, and the agglomerated particles are preferably obtained in a dry state. Thus, for example, a method is preferred in which the slurry obtained by the micronization treatment is preferably subjected to agglomeration of the raw material components, removal of the solvent, and drying under heating and / or reduced pressure while applying a shearing force while preferably stirring. As a result, almost all of the raw material components can be recovered, and the particle size of the obtained aggregated particles can be easily controlled.
また、 乾燥気流中に微細化処理されたスラリ一を供給することにより原料成分粒子の 凝集と乾燥を同時に行う手段も好適に用いられる。 さらに、 微細化処理されたスラリー を噴霧乾燥することによっても原料成分の凝集と乾燥を同時に行うことができ、 本発明 に好適である。  Further, a means for simultaneously aggregating and drying the raw material component particles by supplying the micronized slurry into the dry air stream is also preferably used. Furthermore, by coagulating and drying the raw material components by spray-drying the micronized slurry, it is suitable for the present invention.
このようにして凝集処理された原料成分;^立子は、 原料成分の凝集粒子の D 5 0が 3 0 Aim以下、 好ましくは 2 0 m以下、 かつ D 9 0が 1 0 0 m以下、 好ましくは 6 0 m以下にするのが好ましい。 D 5 0が 3 0 より大きいとサイクル特性や負荷特性を 損ねてしまう。 また、 D 9 0が 1 0 0 / mより大きいと合成反応を完結できず、 電池特 性を大きく損ねてしまい好ましくない。  The raw material component thus subjected to agglomeration treatment; ^, the D50 of the agglomerated particles of the raw material component is 30 Aim or less, preferably 20 m or less, and D90 is 100 m or less, preferably It is preferred to be 60 m or less. If D50 is larger than 30, cycle characteristics and load characteristics will be impaired. On the other hand, if D90 is larger than 100 / m, the synthesis reaction cannot be completed, and the battery characteristics are greatly impaired, which is not preferable.
本発明では、 次いで、 原料成分の凝集、粒子は 3 0 0〜1 1 5 0 °C、 好ましくは 3 5 0 〜 1 1 0 0 °Cにて熱処理され、 オリビン型構造の L i F e卩04が合成される。 オリビ ン型構造の L i F e P〇4の粒子径も、 同様な理由から、 5 0 %体積累積径 (D 5 0 ) が 3 0 m以下、 好ましくは 2 0 m以下であり、 かつ 9 0 %体積累積径 (D 9 0 ) が 1 0 0 m以下、 好ましくは 6 0 m以下であるのが好ましい。 熱処理温度は 3 0 0 °C より低いと合成反応は完結し難く、 また 1 1 5 0 °Cより高いと目的外の反応物が生成し てしまい、 修復困難となる。 In the present invention, then, the raw material components are agglomerated and the particles are heat-treated at 300 to 115 ° C., preferably 350 to 110 ° C. 0 4 is synthesized. Particle size of the olivine emission structure of L i F e P_〇 4 also, for the same reason, 50% volume cumulative diameter (D 5 0) is 3 0 m or less, or less preferably 2 0 m, and 9 The 0% volume cumulative diameter (D90) is preferably 100 m or less, more preferably 60 m or less. If the heat treatment temperature is lower than 300 ° C., the synthesis reaction is difficult to complete, and if it is higher than 115 ° C., an undesired reactant is generated, making it difficult to repair.
熱処理における処理時間は、 各原料成分の微細化の度合い、 混合の均一性、 加熱シス テム、 処理温度等により、 好ましい処理時間は大きく変化する。 本発明では数秒〜 4 8 時間の範囲で熱処理されるのが好ましい。 L i F e P〇4の合成反応は、 秒のオーダ一 で完結させることもできる。 さらに処理時間を短縮することも可能であるが、 これによ る特性向上は見られず、 また、 4 8時間を超えて熱処理を続けても特性向上にはつなが り難い。 The preferred treatment time for the heat treatment varies greatly depending on the degree of miniaturization of each raw material component, the uniformity of mixing, the heating system, the treatment temperature, and the like. In the present invention, it is preferable that the heat treatment is performed within a range of several seconds to 48 hours. L i F e synthesis of P_〇 4, the order of seconds one Can also be completed. Although it is possible to further reduce the processing time, no improvement in the characteristics is observed, and even if the heat treatment is continued for more than 48 hours, it is difficult to improve the characteristics.
本発明の上記の熱処理は、 本質的に 3価の鉄化合物を 2価に還元してオリビン型構造 の L i F e P 04の合成反応を進行させるものであるが、 処理雰囲気の酸素濃度制御も L i F e P 04の合成反応に影響を与える。 本発明においては、 原料成分中の炭素含有 化合物が原料鉄化合物近傍で還元剤として機能するため、 大気雰囲気下そのままでも熱 処理を完了させることが可能である。 特に短時間の熱処理で反応を完結できる手法を用 いた場合や、 熱処理雰囲気中に占める雰囲気ガスの比率が原料に対して小さい場合、 大 気雰囲気そのままであっても支障はない。 The above heat treatment of the present invention are those which proceed essentially trivalent L i F synthesis of e P 0 4 of reduced to olivine structure iron compound bivalent, the oxygen concentration in the treatment atmosphere control also affect the synthesis reaction of L i F e P 0 4. In the present invention, since the carbon-containing compound in the raw material component functions as a reducing agent in the vicinity of the raw iron compound, the heat treatment can be completed as it is in the air atmosphere. In particular, when a method that can complete the reaction with a short heat treatment is used, or when the ratio of the atmosphere gas in the heat treatment atmosphere is small relative to the raw material, there is no problem even if the atmosphere is left as it is.
熱処理を不活性雰囲気下、 あるいは不活性気流中で行うこともできる。 熱処理雰囲気 を不活 f生にすることにより、 設備や処理条件面での制約が少なくなり、 種々の熱処理手 法を採用することが可能となることから好ましい。 さらに、 本発明では水素や一酸化炭 素といった還元性のガス雰囲気下で熱処理することも可能である。 原料の過剰な還元を 防止するため、 窒素等の不活性ガスで還元性ガスを希釈して使用するのも有効である。 本発明においては、 噴霧熱分解の手法を用いて原料成分のスラリーから直接 L i F e P 04を合成することもできる。 微細化処理されたスラリーを、 本発明の熱処理温度に 調整された炉内に噴霧しながら供給することにより、 原料成分の凝集、 乾燥、 及び熱処 理がほぼ同時に進行し、 L i F e P 04を一つの工程で合成することができるため好ま しい。 噴霧熱分解中の雰囲気制御は、 噴霧に圧縮空気、 不活性ガスあるいは還元性ガス を用いることにより調整できる。 さらに燃焼炉を用い、 還元炎中にスラリーを噴霧して 還元反応を進行させる手法を用いることも可能である。 The heat treatment can be performed in an inert atmosphere or in an inert gas stream. By making the heat treatment atmosphere inactive, it is preferable because restrictions on equipment and processing conditions are reduced and various heat treatment methods can be adopted. Further, in the present invention, the heat treatment can be performed in a reducing gas atmosphere such as hydrogen or carbon monoxide. In order to prevent excessive reduction of raw materials, it is effective to dilute the reducing gas with an inert gas such as nitrogen. In the present invention, a method of spray pyrolysis directly L i F e P 0 4 may be the synthesized from the slurry of starting components used. By supplying the slurry subjected to the micronization treatment while spraying it into the furnace adjusted to the heat treatment temperature of the present invention, the coagulation, drying, and heat treatment of the raw material components proceed almost simultaneously, and L i Fe P 0 4 arbitrariness preferred because it can be synthesized in one step a. Atmosphere control during spray pyrolysis can be adjusted by using compressed air, inert gas or reducing gas for spraying. Furthermore, it is also possible to use a method of using a combustion furnace to spray the slurry into a reducing flame to advance the reduction reaction.
本発明で製造されるオリビン型構造のリチウム鉄複合酸化物には、 粉体特性及び電気 化学特性の改良目的でその他の物質を配合することができる。 例えば、 亜鉛、 アルミ二 ゥム、 硫黄、 インジウム、 カドミウム、 ガリウム、 カルシウム、 クロム、 コパリレ卜、 ジ ルコニゥム、 錫、 ストロンチウム、 セリウム、 タングステン、 タンタル、 チタン、 銅、 トリウム、 鉛、 ニオブ、 ニッケル、 バナジウム、 ノ リウム、 ビスマス、 フッ素、 ベリリ ゥム、 ホウ素、 マグネシウム、 マンガン、 モリブデン等が好適に用いられる。 これらは 単体あるいは種々の化合物の形態で、 また、 単独あるいは 2種以上の組み合わせで用い られ、 本発明のリチウム鉄複合酸化物の内部及び/又は表面に配合される。 The olivine-type structure lithium-iron composite oxide produced by the present invention may contain other substances for the purpose of improving powder properties and electrochemical properties. For example, zinc, aluminum, sulfur, indium, cadmium, gallium, calcium, chromium, copalile, zirconia, tin, strontium, cerium, tungsten, tantalum, titanium, copper, thorium, lead, niobium, nickel, vanadium , Norium, bismuth, fluorine, beryllium, boron, magnesium, manganese, molybdenum and the like are preferably used. They are It is used alone or in the form of various compounds, alone or in combination of two or more kinds, and is blended into the inside and / or the surface of the lithium iron composite oxide of the present invention.
これらの補助的に^)口される物質は、 単体、 あるいはその酸ィ匕物、 水酸化物、 過酸化 物、 塩類、 アルコキシド、 ァシレート、 キレート類等の粉体、 液体、 溶液、 分散液の形 態で用いられる。 これらの物質は、 上記したリチウム鉄複合酸化物の製造過程において 原料成分中に添加してもよいし、 また、 リチウム鉄複合酸化物が合成された後に、 リチ ゥム鉄複合酸化物に添加することもできる。  These auxiliary substances may be used alone or in the form of powders, liquids, solutions, and dispersions of oxidants, hydroxides, peroxides, salts, alkoxides, acylates, chelates, and the like. Used in form. These substances may be added to the raw material components in the above-described production process of the lithium iron composite oxide, or may be added to the lithium iron composite oxide after the lithium iron composite oxide is synthesized. You can also.
本発明の方法で製造されたオリビン型構造のリチウム鉄複合酸化物は、 電池電極、 二 次電池用電極の正極活物質として有効に使用される。 特にリチウム一次電池を含めた、 リチウムィオン電池、 リチウムィオンポリマー電池、 リチウムポリマー電池等の非水電 解液二次電池用正極活物質として極めて有効である。 本発明の電極活物質を用いた非水 電解液二次電池は、 大きな充放電容量と高いエネルギー密度を持ち、 優れたサイクル特 性、 高負荷特性、 低温特性、 高温特性、 安全性を発現する。 特にパワーの取れるェネル ギ一密度及び高負荷特性と、 信頼性の高い安全性を両立できた本発明のリチウム鉄複合 酸化物は、 中 .大型二次電池や車載用二次電池の正極活物質として有効に適用できる。 実施例  The olivine-type structure lithium-iron composite oxide produced by the method of the present invention is effectively used as a positive electrode active material for battery electrodes and secondary battery electrodes. In particular, it is extremely effective as a positive electrode active material for non-aqueous electrolyte secondary batteries such as lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries, including lithium primary batteries. The non-aqueous electrolyte secondary battery using the electrode active material of the present invention has a large charge / discharge capacity and a high energy density, and exhibits excellent cycle characteristics, high load characteristics, low temperature characteristics, high temperature characteristics, and safety. . In particular, the lithium-iron composite oxide of the present invention, which achieves both high energy density and high load characteristics, as well as highly reliable safety, is a positive electrode active material for medium and large-sized secondary batteries and secondary batteries for vehicles. Can be applied effectively. Example
以下に実施例によって本発明を更に具体的に説明するが、 本発明はこれらによって制 限されるものではない。 なお、 実施例において、 容量維持率は以下の式で求めた。  Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto. In the examples, the capacity retention rate was determined by the following equation.
容猶佳持率 (%) = 1 0 0サイクル目の放電容 * 初期放電容量  Retention rate (%) = 100th cycle discharge capacity * Initial discharge capacity
X 1 0 0  X 1 0 0
例 1  Example 1
長軸方向の平均粒子長が 1 . C mである針状結晶の凝集した、 鉄含有量 6 9. 4重 量%の酸化鉄を入手した。 この酸化鉄の 7 9. 8 g、 リン酸二水素アンモニゥムの 1 1 An agglomerate of needle-like crystals having an average particle length in the major axis direction of 1. Cm was obtained, and iron oxide having an iron content of 69.4% by weight was obtained. 79.8 g of this iron oxide, 1 of ammonium dihydrogen phosphate
5. 0 g、 炭酸リチウムの 3 6. 9 g、 力一ボンブラック (炭素含有量 9 5. 7重 量%) の 6. l gをステンレスバットに秤量し、 純水を加えて 3 k gとした。 これを攪 拌しながら、 ステ一夕一と高速回転する口一ターからなるホモジナイザーに通し、 D 55.0 g, 36.9 g of lithium carbonate, and 6.lg of carbon black (carbon content 95.7% by weight) were weighed into a stainless steel vat, and pure water was added to make 3 kg. . This was passed through a homogenizer consisting of a high-speed rotating mouth and a stirrer while stirring.
0が 0. 6 4 m, D 9 0が 0. 9 9 mの原料成分スラリ一を得た。 このスラリ一を 高速回転するカツ夕一中に大量の熱風と共に供給して乾燥させた結果、 050カ 4. 3 7 、 D 90が 10. 1 mの原料成分粉体が得られた。 A raw material component slurry was obtained in which 0 was 0.64 m and D90 was 0.99 m. This slurry As a result of being supplied with a large amount of hot air during the high-speed rotation of the cutlet and dried, a raw material component powder of 050 4.37 and D90 of 10.1 m was obtained.
この原料成分粉体を、 0. 8リツトル/分の窒素ガス気流中 600 °Cにて 24時間熱 処理し、 D50が 5. 10 urn, D90が 11. l^mの L i FeP〇4 (A) 138. l gを得た。 図 1、 図 2、 図 3は、 それぞれ Χϋ回折パターン、 粒径分布、 SEM観察 写真である。 図より、 (Α) は、 オリビン型構造を有し、 微細な一次粒子が凝集した、 結晶性良好な L i F e P04であることがわかる。 This raw material component powder was heat-treated in a nitrogen gas flow of 0.8 liter / min at 600 ° C for 24 hours, and D 50 was 5.10 urn and D90 was 11. l ^ m Li FeP〇 4 ( A) 138. lg was obtained. Figures 1, 2, and 3 show the Χϋ diffraction pattern, particle size distribution, and SEM observation photographs, respectively. From FIG., (Alpha) has an olivine structure, fine primary particles are aggregated, it is understood that crystalline good is L i F e P0 4.
この (A) の 90重量部、 力一ボン 5重量部、 及びポリフッ化ビニリデン 5重量部に 20重量部の N—メチルピロリドンンを加えて混練りし、 ペーストとした。 このペース トをアルミ箔に塗布して乾燥後、 圧延して所定の大きさに打ち抜き、 正極板とした。 次 に 95重量部の力一ボンと 5重量部のポリフッ化ビニリデンに 20重量部の N—メチル ピロリドンを加えて混練りしてペーストとした。 このペーストを銅箔に塗布して乾燥後、 圧延して所定の大きさに打ち抜き、 負極板とした。  20 parts by weight of N-methylpyrrolidone were added to 90 parts by weight of this (A), 5 parts by weight of carbon dioxide, and 5 parts by weight of polyvinylidene fluoride, and kneaded to obtain a paste. This paste was applied to an aluminum foil, dried, rolled and punched into a predetermined size to obtain a positive electrode plate. Next, 95 parts by weight of nylon and 5 parts by weight of polyvinylidene fluoride were mixed with 20 parts by weight of N-methylpyrrolidone to obtain a paste. This paste was applied to a copper foil, dried, rolled and punched into a predetermined size to obtain a negative electrode plate.
こうして得られた正極板、 負極板にそれぞれリード線を取り付け、 ポリオレフイン系 セパレ一夕を介してステンレス製セルケースに収納した。 続いて、 エチレンカーポネ一 トとジエチレン力一ポネートの混合液に六フッ化リン酸リチウムを 1モル Zリットル溶 かした電解質溶液を注入し、 モデルセルとした。 電池特性は充放電測定装置を用い、 2 5 °Cにおいて充電電流 0. 6 A/ c m2で電池電圧 4. 3 Vになるまで充電した後放 電電流 2. 0mA/ cm21(1. 25 Cレートに相当) で 2. 0Vになるまで放電する 充放電の繰り返しを行い、 初期放電容量と 100サイクル後の放電容量を求めて評価し た。 その結果を表 1に示した。 Lead wires were attached to the thus obtained positive electrode plate and negative electrode plate, respectively, and housed in a stainless steel cell case via a polyolefin-based separator. Subsequently, an electrolyte solution in which lithium hexafluorophosphate was dissolved at a concentration of 1 mol / L was injected into a mixed solution of ethylene carbonate and diethylene nitrate, to obtain a model cell. Battery characteristics a charge-discharge measuring instrument was used, 2 5 ° battery voltage with a charging current 0. 6 A / cm 2 at C 4. 3 discharge current was charged to a V 2. 0mA / cm 2 1 ( 1. (Equivalent to 25 C rate) Discharging until the voltage reaches 2.0 V The charge and discharge were repeated, and the initial discharge capacity and the discharge capacity after 100 cycles were obtained and evaluated. The results are shown in Table 1.
例 2  Example 2
力一ボンブラック 6. l gの代わりに樹脂含有量 1.7. 3重量%のポリスチレン樹脂 (炭素含有量 92. 3重量%) エマルシヨン 50 gを用いたことを除き、 例 1と同様に してホモジナイザー処理したところ、 D 50が 0. 68 tmで D 90が 0. 98 mの 原料成分スラリーを得た。 このスラリーを高速攪拌しながら 92でにて減圧乾燥したと ころ、 D 50が 5. 41 urn, D 90が 15. 5 mの原料成分粉体が得られた。 この 原料成分粉体を 0. 8リットル/分の窒素ガス気流中 500°Cにて 24時間熱処理し、 D50が 5. 56 m、 D90が 19. 2 mの L i F e P04 (B) 152. 8gを 得た。 Ribonbon Black 6. Homogenizer treatment as in Example 1 except that instead of lg, 50 g of a polystyrene resin with a resin content of 1.7.3% by weight (carbon content of 92.3% by weight) was used. As a result, a raw material component slurry having a D50 of 0.68 tm and a D90 of 0.98 m was obtained. The slurry was dried under reduced pressure at 92 with high-speed stirring to obtain a raw material component powder having a D50 of 5.41 urn and a D90 of 15.5 m. This raw material component powder is heat-treated at 500 ° C for 24 hours in a 0.8 L / min nitrogen gas stream, D50 is 5. 56 m, D90 was obtained L i F e P0 4 (B ) 152. 8g of 19. 2 m.
(A) の代わりにこの (B) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。  Except that this (B) was used instead of (A), a model cell was prepared in the same manner as in Example 1, and the results of examining the charge / discharge characteristics are shown in Table 1.
例 3  Example 3
鉄含有量 69. 5重量%、 サブミクロンオーダ一擬似球状粒子の集合した平均凝集粒 子径 2. 1 である酸化鉄を入手した。 この酸化鉄の 79. 8g、 リン酸二水素アン モニゥムの 115. 0 g、 炭酸リチウムの 36. 9 gをステンレスバットに秤量し、 純 水を加えて 3 k gとした。 これを 0. 5 mmのジルコニァポールを用いて 1時間ビーズ ミル処理した後、 13. 3重量%のポリビニルアルコール (炭素含有量 54. 5重 量%) 水溶液 90 gを加えて攪拌 ·混合して、 D 50が 0. 72 nm、 D 90が 1. 2 9 mの原料成分スラリ一を得た。 このスラリーを高速で流動する大量の熱風中に送り 込んで乾燥させた結果、 D 50が 5. 17 zm, D 90が 12. 2 xmの原料成分粉体 が得られた。 この原料成分粉体を 0. 8リツトル Z分の窒素ガス気流中 700 °Cにて 5 時間熱処理し、 D50が 6. 21 urn, D90が 20. 8 mの L i F e P04 (C) 134. 6 gを得た。 An iron oxide having an iron content of 69.5% by weight and an average aggregated particle diameter of 2.1 in which sub-micron-order pseudo-spherical particles were collected was obtained. 79.8 g of this iron oxide, 115.0 g of ammonium dihydrogen phosphate and 36.9 g of lithium carbonate were weighed in a stainless steel vat, and pure water was added to make 3 kg. This was bead milled for 1 hour using a 0.5 mm zirconia pole, and 90 g of a 13.3% by weight aqueous solution of polyvinyl alcohol (carbon content: 54.5% by weight) was added, followed by stirring and mixing. Thus, a raw material component slurry having a D50 of 0.72 nm and a D90 of 1.29 m was obtained. The slurry was fed into a large amount of hot air flowing at high speed and dried to obtain a raw material component powder having a D50 of 5.17 zm and a D90 of 12.2 xm. The ingredients powder was heat-treated for 5 hours at the 0.8 liters Z content of nitrogen gas flow 700 ° C, D50 is 6. 21 urn, D90 of 20. 8 m L i F e P0 4 (C) 134.6 g were obtained.
(A) の代わりにこの (C) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。  Except that this (C) was used instead of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results.
例 4  Example 4
例 1の酸化鉄 79. 8g、 リン酸二水素アンモニゥム 115. 0g、 炭酸リチウム 3 6. 9g、 力一ポンプラック 6. 1 gをステンレスバットに秤量し、 純水を加えて 3 k gとした。 これを例 3と同様にしてビーズミル処理したところ、 050が0. 49 m、 D 90が 0. 83 mの原料成分スラリーを得た。 このスラリーを噴霧乾燥したところ、 D 50が 4. 59 m、 D 90力 S 9. 86 mの原料成分粉体が得られた。 この原料成 分粉体を 0. 8リツトル/分の窒素ガス気流中 650 にて 12時間熱処理し、 D 50 が 5. 27 urn, D90が 10. 4/ 111の1^ 1 6?〇4 (D) 129. 8gを得た。 79.8 g of the iron oxide of Example 1, 115.0 g of ammonium dihydrogen phosphate, 36.9 g of lithium carbonate, and 6.1 g of a power pump rack were weighed into a stainless steel vat, and pure water was added to make 3 kg. When this was subjected to a bead mill treatment in the same manner as in Example 3, a raw material component slurry having a 050 of 0.49 m and a D90 of 0.83 m was obtained. When this slurry was spray-dried, a raw material component powder having a D50 of 4.59 m and a D90 force of 9.86 m was obtained. The raw material Ingredient powder was heat-treated at 0.8 liters / min nitrogen gas stream 650 for 12 hours, D 50 is 5. 27 urn, D90 of 10.4 / 111 1 ^ 1 6? 〇 4 ( D) 129.8 g were obtained.
(A) の代わりにこの (D) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。 例 5 Except that this (D) was used in place of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results. Example 5
ビーズミル処理の代わりに対向する 2つのノズルからスラリーを高圧で放出して互い に衝突させる処理を施したことを除き、 例 4と同様にして D 50が 0. 64 m、 D9 0が 1. 00 mの原料成分スラリーを得た。 このスラリーを、 875°Cに設定した炉 内に窒素ガスを用いて噴霧しながら熱処理し、 D 50が 10. 6 m, D 90が 23. 2^mの L i FeP04 (E) 115. 2gを得た。 D50 was 0.64 m and D90 was 1.00 in the same manner as in Example 4, except that the slurry was discharged from the two nozzles facing each other at high pressure and collided with each other instead of bead milling. Thus, m raw material component slurries were obtained. The slurry was heat-treated while spraying with nitrogen gas into the furnace set at 875 ° C, D 50 is 10. 6 m, D 90 is 23. 2 ^ m of L i FeP0 4 (E) 115 . 2 g were obtained.
(A) の代わりにこの (E) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。  Except that this (E) was used in place of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results.
例 6  Example 6
例 5と同様の原料成分スラリーを噴霧乾燥したところ、 D50が 8. 03 m, D9 0が 13. 5 mの原料成分粉体が得られた。 この原料成分粉体をアルミナトレーに敷 き詰めた後アルミナ板を被せ、 マイクロ波炉を用いて大気雰囲気下 600°Cにて 2分間 熱処理し、 D50が 8. 15 τ , D90が 12. 7 111の 1 ? 6 ?〇4 (F) 13 0. 2 gを得た。 When the same raw material component slurry as in Example 5 was spray-dried, a raw material component powder having a D50 of 8.03 m and a D90 of 13.5 m was obtained. This raw material component powder is spread on an alumina tray, covered with an alumina plate, and heat-treated in a microwave oven at 600 ° C for 2 minutes in an air atmosphere. D50 is 8.15 τ and D90 is 12.7 1? 6? 4 (F) 13 0.2 g of 111 were obtained.
(A) の代わりにこの (F) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。  Except that this (F) was used instead of (A), a model cell was prepared in the same manner as in Example 1, and the results of examining the charge / discharge characteristics are shown in Table 1.
例 7  Example 7
ビーズミル処理の代わりに高速で回転するディスクと固定されたディスクの隙間にス ラリーを通す処理を施したことを除き、 例 4と同様にして D50が 0. 68 m、 D9 0が 1. 05 X mの原料成分スラリ一を得た。 このスラリーを例 1と同様にして乾燥さ せた結果、 D 50が 5. 44 m, D 90が 10. 8 xmの原料成分粉体が得られた。 この原料成分粉体を 1. 5リツトル Z分の窒素ガスを流しながらロー夕リ一キルンを用 いて熱処理し、 D50が 5. 58 rn, 090カ 10. 8^1!1の 1 ? 6?04 (G) 140. 5 を得た。 たこの時原料成分粉体に施された熱処理は 1085 °Cにて 1分で あった。 D50 was 0.68 m and D90 was 1.05 X in the same manner as in Example 4, except that the slurry was passed through the gap between the disk rotating at high speed and the fixed disk instead of bead milling. m raw material component slurry was obtained. The slurry was dried in the same manner as in Example 1, and as a result, a raw material component powder having a D50 of 5.44 m and a D90 of 10.8 xm was obtained. This raw material powder was heat-treated using a low-temperature kiln while flowing nitrogen gas for 1.5 liters Z, and the D50 was 5.58 rn, 090 10.8 to 1? 0 4 (G) 140.5 was obtained. The heat treatment applied to the raw material component powder at this time was 1 minute at 1085 ° C.
(A) の代わりにこの (G) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。  Except that this (G) was used in place of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results.
例 8 平均粒子径 0. 6 の擬似球状一次粒子が凝集して成る F e3〇4と例 3の酸化鉄 を混合して、 鉄含有量 70. 4重量%の酸化鉄混合物を調製した。 Example 8 Fe3 e4 formed by agglomeration of pseudo-spherical primary particles having an average particle diameter of 0.6 and iron oxide of Example 3 were mixed to prepare an iron oxide mixture having an iron content of 70.4% by weight.
例 1の酸化代わりにショ糖 (炭素含有量 42. 1重量%) 14. 3gを用いたことを 除き、 例 4と同様にして、 D 50が 0. 57 im、 D 90が 1 · 01 xmの原料成分ス ラリーを得、 さらに D 50が 4. 96 m、 D 90が 11. 3 mの原料成分粉体を得 た。 この原料成分粉体を 0. 8リットル Z分の窒素ガス気流中 450°Cにて 30時間熱 処理し、 D50が 5. 04^m、 D90が 11. 0 mの L i FeP〇4 (H) 130. 3 gを得た。 In the same manner as in Example 4, except that sucrose (carbon content: 42.1% by weight) was used instead of the oxidation in Example 1, D 50 was 0.57 im, and D 90 was 1.1 xm. A raw material component slurry having a D50 of 4.96 m and a D90 of 11.3 m was obtained. The ingredients powder for 30 hours heat set at a 0.8 l Z content of nitrogen gas flow 450 ° C, D50 is 5. 04 ^ m, D90 of 11. 0 m L i FeP_〇 4 (H ) 130.3 g were obtained.
(A) の代わりにこの (H) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。  Except that this (H) was used instead of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results.
例 9  Example 9
長軸方向平均粒子長が 0. 8 である針状結晶の凝集した F e OOHを入手した。 この F e OOHと例 1の酸化鉄を混合し、 F e含有量 63. 9重量%の酸化鉄混合物を 調製した。  An agglomerate of needle-like crystals having a long-axis average particle length of 0.8 was obtained. This FeOOH and the iron oxide of Example 1 were mixed to prepare an iron oxide mixture having an Fe content of 63.9% by weight.
例 1の酸化鉄 79. 8 gの代わりにこの酸化鉄混合物 87. 4 gを用いたことを除き、 例 4と同様にして、 050が0. 45 ΠΙ、 090が0, 75 mの原料成分スラリー を得、 さらに D 50が 4. 63 m, D 90が 9. 57 /xmの原料成分粉体を得た。 こ の原料成分粉体を 0. 8リツトル Z分の窒素ガス気流中 550 にて 24時間熱処理し、 D50が 4. 85 rn, D90が 9. 88 mの L i FeP04 (J) 127. 4gを 得た。 In the same manner as in Example 4, except that 87.4 g of the iron oxide mixture was used instead of 79.8 g of the iron oxide of Example 1, the raw material components in which 050 was 0.45 mm and 090 was 0.75 m A slurry was obtained, and a raw material powder having a D50 of 4.63 m and a D90 of 9.57 / xm was obtained. The ingredients powder was 24 hours heat treatment at 0.8 liters Z content of nitrogen gas flow 550 of this, D50 is 4. 85 rn, D90 is 9. 88 m of L i FeP0 4 (J) 127. 4g Was obtained.
(A) の代わり.にこの (J) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。  Except that this (J) was used instead of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results.
例 10  Example 10
平均粒径が 0. 03 mの超微粒子酸化鉄 79. 8 g、 リン酸ニ水素ァンモニゥム 1 15. 0g、 炭酸リチウム 36. 9g、 力一ポンプラック 6. l gを乳鉢混合した後、 例 4と同様にして熱処理し、 050が29. 8 rn, 090が97. 4 ΠΙの L i Fe P〇4 (K) 154. 0 gを得た。 (A) の代わりにこの (K) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。 79.8 g of ultrafine iron oxide with an average particle size of 0.03 m, 11.50 g of ammonium dihydrogen phosphate, 36.9 g of lithium carbonate, 6.19 g of power pump rack Heat treatment was conducted in the same manner to obtain 154.0 g of LiFeP ( 4 (K) having 050 of 29.8 rn and 090 of 97.4ΠΙ. Except that this (K) was used in place of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results.
例 11  Example 11
例 1の酸化鉄 200 gをステンレスバットに秤量し、 純水を加えて 3 k gとした。 こ れを例 4と同様にしてビーズミル処理し、 050が0. 40 ΠΙ、 090が0. 66 / mの酸化鉄スラリーを得た。 このスラリーを噴霧乾燥したところ、 D50が 5. 3 m、 D 90が 10. 7 mの酸化鉄粉体が得られた。  200 g of the iron oxide of Example 1 was weighed into a stainless steel vat, and purified water was added to make 3 kg. This was subjected to a bead mill treatment in the same manner as in Example 4 to obtain an iron oxide slurry in which 050 was 0.40 mm and 090 was 0.66 / m. When this slurry was spray-dried, iron oxide powder having a D50 of 5.3 m and a D90 of 10.7 m was obtained.
この酸化鉄粉体 79. 8g、 リン酸二水素アンモニゥム 115. 0 g、 炭酸リチウム 36. 9 g、 力一ポンプラック 6. 1 gを乳鉢混合して原料成分粉体を得た。 これを例 4と同様にして熱処理し、 D 50が 30. 7 m、 D90が 107. 5 mの L i Fe P04 (L) 152. 8gを得た。 79.8 g of this iron oxide powder, 115.0 g of ammonium dihydrogen phosphate, 36.9 g of lithium carbonate, and 6.1 g of power pump rack were mixed in a mortar to obtain a raw material component powder. This was heat-treated in the same way as Example 4, D 50 is 30. 7 m, D90 was obtained L i Fe P0 4 (L) 152. 8g of 107. 5 m.
(A) の代わりにこの (L) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。  A model cell was prepared in the same manner as in Example 1 except that this (L) was used instead of (A), and the charging and discharging characteristics were examined. Table 1 shows the results.
例 12  Example 12
(L) の 50 gをエタノール媒体のボールミル粉砕し、 D 50が 6. 72 , D 9 0が 31. 1 /111の 1 6?〇4 (M) 48. 3 gを得た。 The 50 g of (L) was ball milled in ethanol media, D 50 is 6. 72, D 9 0 got 1 6? 〇 4 (M) 48. 3 g of 31.1 / 111.
(A) の代わりにこの (M) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。  Except that this (M) was used instead of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results.
例 13  Example 13
例 4と同様にして原料成分スラリ一を得た。 このスラリ一をエバポレー夕一で減圧乾 燥し、 カツ夕一ミルで解碎して、 D50が 12. 5 m, D90が 140. 9 mの原 料成分粉体を得た。 これを例 4と同様に熱処理し、 D 50が 25. 9 πι, D 90 ^ 1 50. 6^mの L i FeP〇4 (Ν) 121. 5gを得た。 A raw material component slurry was obtained in the same manner as in Example 4. The slurry was dried under reduced pressure at an evaporator, and pulverized with a cutlet mill to obtain a raw material powder having a D50 of 12.5 m and a D90 of 140.9 m. This was heat-treated in the same manner as Example 4, D 50 was obtained L i FeP_〇 4 (Ν) 121. 5g of 25. 9 πι, D 90 ^ 1 50. 6 ^ m.
(A) の代わりにこの (N) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。  Except that this (N) was used in place of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results.
例 14 650での 12時間であった熱処理を 250°Cの 48時間に代えたことを除き、 例 4 と同様にして D 50が 4. 47 μ,πι, D90が 9. 81 zmの L i F e Ρ 04 (Ρ) 1 30. 5 gを得た。 Example 14 D 50 was 4.47 μ, πι, and D90 were 9.81 zm, as in Example 4, except that the heat treatment, which was 12 hours at 650, was replaced with 48 hours at 250 ° C. Ρ 0 4 (Ρ) 1 30.5 g was obtained.
(A) の代わりにこの (P) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べようとしたが充放電ができなかった。  Except that this (P) was used instead of (A), a model cell was created in the same manner as in Example 1 and charge / discharge characteristics were examined, but charging / discharging was not possible.
例 15  Example 15
650°Cの 12時間であった熱処理を 1250°Cの 12時間に代えたことを除き、 例 4と同様にして D 50が 59. 2 m, D 90が 257 mの L i F e P 04 (Q) 1 23. 6gを得た。 LiFeP0 with a D50 of 59.2 m and a D90 of 257 m in the same manner as in Example 4, except that the heat treatment was changed from 12 hours at 650 ° C to 12 hours at 1250 ° C. 4 (Q) 1 23.6 g was obtained.
(A) の代わりにこの (Q) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。  Except that this (Q) was used in place of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results.
例 16 Example 16
例 1の酸化鉄 79. 8g、 リン酸二水素アンモニゥム 115. 0g、 炭酸リチウム 3 6. 9 g、 力一ポンプラック 6. 1 g及びイソプロピルアルコール 200 gをステンレ スパットに枰量し、 純水を加えて 3kgとした。 これを 1時間、 ビーズミル処理し、 D 50が 0. 59 m、 D 90が 0. 98 imの原料成分スラリ一を得た。 このスラリー を噴霧乾燥したところ、 D 50が 1. 92 rn, D 90が 4. 49 mの原料成分粉体 が得られた。 この原料成分粉体に、 水素 10 V o 1 %含有の窒素ガス 0. 8リツトル Z 分を供給しながら 550 °Cにて 5時間熱処理し、 D 50が 2. 67 m、 D 90が 4. 53 zmの L i Fe P04 (R) 130. 2gを得た。 79.8 g of the iron oxide of Example 1, 115.0 g of ammonium dihydrogen phosphate, 36.9 g of lithium carbonate, 6.1 g of power pump rack and 200 g of isopropyl alcohol were weighed into a stainless steel spat, and pure water was added. In addition, the weight was 3 kg. This was subjected to bead milling for 1 hour to obtain a raw material component slurry having a D50 of 0.59 m and a D90 of 0.98 im. When this slurry was spray-dried, a raw material component powder having a D50 of 1.92 rn and a D90 of 4.49 m was obtained. This raw material powder was heat-treated at 550 ° C for 5 hours while supplying 0.8 liters of nitrogen gas containing 10 V o 1% of hydrogen, and D 50 was 2.67 m and D 90 was 4. 53 was obtained L i Fe P0 4 (R) 130. 2g of zm.
(A) の代わりにこの (R) を用いたことを除き、 実施例 1と同様にしてモデルセル を作成して、 充放電特性を調べた結果を表 1に示した。 表 1 Except that this (R) was used instead of (A), a model cell was prepared in the same manner as in Example 1, and the charging and discharging characteristics were examined. Table 1 shows the results. table 1
Figure imgf000018_0001
なお、 本出願の優先権主張の基礎となる日本特許願 2004— 100021号 (20 04年 3月 30日に日本特許庁に出願) の全明細書の内容をここに引用し、 本発明の明 細書の開示として、 取り入れるものである。
Figure imgf000018_0001
The contents of the entire specification of Japanese Patent Application No. 2004-100021 (filed with the Japan Patent Office on March 30, 2004), which is the basis of the priority claim of the present application, are cited here, and It is incorporated as disclosure of the detailed text.

Claims

請 求 の 範 囲 The scope of the claims
1. 原子価数 3の鉄を含有する鉄化合物、 リチウム化合物、 リン酸化合物、 及び、 炭 素含有化合物を含む原料成分を微細化処理し、 該微細化粒子の 50%体積累積径 (D5 0 ) を 2 /im以下で、 かつ 90 %体積累積径 (D 90 ) を 10 m以下にせしめた後、 該微钿化粒子を凝集処理し、 該凝集粒子の 50 %体積累積径 (D50) を 30 以下 で、 かつ 90%体積累積径 (D90) を 100 m以下にせしめて 300〜1150°C で熱処理し、 オリビン型構造の L i FeP04を得ることを特徴とする、 リチウム鉄複 合酸化物の製造方法。 1. A raw material component containing an iron compound having a valence of 3 and containing an iron compound, a lithium compound, a phosphate compound, and a carbon-containing compound is refined, and a 50% volume cumulative diameter (D50 ) Is set to 2 / im or less, and the 90% volume cumulative diameter (D 90) is reduced to 10 m or less. Then, the micronized particles are subjected to aggregating treatment, and the 50% volume cumulative diameter (D50) of the agglomerated particles is determined. 30 or less and 90% volume cumulative diameter (D90) was heat treated at 300 to 1,150 ° C in brought below 100 m, and wherein the obtaining a L i FeP0 4 of olivine structure, lithium Tetsufuku if oxide Method of manufacturing a product.
2. 前記オリビン型構造の L i FeP 04が、 50 %体積累積径 (D 50 ) として 3 0 /xm以下、 及び 90 %体積累積径 (D 90) として 100 m以下を有する請求項 1 に記載の製造方法。 2. The olivine-type L i FeP 0 4 structures, 50% volume cumulative diameter (D 50) as a 3 0 / xm or less, and a 90% volume cumulative diameter (D 90) in claim 1 having a 100 m or The manufacturing method as described.
3. 前記炭素含有化合物が、 炭素含有量が 35重量%以上であり、 常温で液体状態又 は固体状態を呈する請求項 1又は 2に記載の製造方法。  3. The production method according to claim 1, wherein the carbon-containing compound has a carbon content of 35% by weight or more and exhibits a liquid state or a solid state at ordinary temperature.
4. 前記原料成分の微細化処理が、 前記原料成分と分散媒から形成されたスラリ一に 施される請求項 1〜 3のいずれかに記載の製造方法。  4. The production method according to any one of claims 1 to 3, wherein the raw material component is finely treated on a slurry formed from the raw material component and a dispersion medium.
5. 前記微細粒子の凝集処理が、 微細化処理後のスラリ一から原料成分を分離 ·回収 して成される請求項 1〜4のいずれかに記載の製造方法。  5. The production method according to any one of claims 1 to 4, wherein the aggregation of the fine particles is performed by separating and recovering raw material components from the slurry after the fine processing.
6. 前記熱処理が、 大気下、 不活性雰囲気下、 又は還元雰囲気下で成される請求項 1 ~ 5のいずれかに記載の製造方法。  6. The production method according to claim 1, wherein the heat treatment is performed in the air, in an inert atmosphere, or in a reducing atmosphere.
7. 前記微細粒子の凝集処理と熱処理が、 微細化処理後のスラリーを加熱炉中に噴霧 する噴霧熱分解法で成される請求項 1〜 6のいずれかに記載の製造方法。  7. The production method according to any one of claims 1 to 6, wherein the aggregation treatment and heat treatment of the fine particles are performed by a spray pyrolysis method of spraying the slurry after the fine treatment into a heating furnace.
8. 請求項 1〜 7のいずれかに記載の製造方法で得られたリチウム鉄複合酸化物を含 有する非水電解質二次電池用電極活物質。  8. An electrode active material for a non-aqueous electrolyte secondary battery, comprising the lithium iron composite oxide obtained by the production method according to claim 1.
PCT/JP2005/006703 2004-03-30 2005-03-30 Method for producing lithium-iron composite oxide WO2005095273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-100021 2004-03-30
JP2004100021A JP2007230784A (en) 2004-03-30 2004-03-30 Manufacturing process of lithium-iron complex oxide

Publications (1)

Publication Number Publication Date
WO2005095273A1 true WO2005095273A1 (en) 2005-10-13

Family

ID=35063660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006703 WO2005095273A1 (en) 2004-03-30 2005-03-30 Method for producing lithium-iron composite oxide

Country Status (2)

Country Link
JP (1) JP2007230784A (en)
WO (1) WO2005095273A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250417A (en) * 2006-03-17 2007-09-27 Sumitomo Osaka Cement Co Ltd Electrode material, its manufacturing method and lithium ion battery
CN100361893C (en) * 2006-03-30 2008-01-16 上海交通大学 Method of preparing carbon cladded ferrous lithium phosphate by using ironic phosphate
CN100385713C (en) * 2005-11-30 2008-04-30 重庆大学 Method for preparing ferrous lithium phosphate
CN100389062C (en) * 2006-09-07 2008-05-21 上海交通大学 Method for preparing composite material of carbon coated lithium ferrous phosphate through iron phosphate
WO2009127674A1 (en) 2008-04-17 2009-10-22 Basf Se Process for the preparation of crystalline lithium-, iron- and phosphate-comprising materials
CN102173402A (en) * 2011-01-17 2011-09-07 深圳科雷拉能源科技有限公司 Low-temperature continuous production process for lithium iron phosphate and dedicated device therefor
CN103391897A (en) * 2010-12-24 2013-11-13 昭荣化学工业株式会社 Manufacturing method and manufacturing device for multiple oxide
WO2019243614A1 (en) * 2018-06-21 2019-12-26 Cambridge Enterprise Limited Electrode active materials and method for their manufacture

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804045B2 (en) * 2005-06-15 2011-10-26 Agcセイミケミカル株式会社 Method for producing lithium iron composite oxide
JP4829557B2 (en) * 2005-07-21 2011-12-07 Agcセイミケミカル株式会社 Method for producing lithium iron composite oxide
EP2209925A4 (en) * 2007-11-14 2017-11-22 Chun-Chieh Chang Method and devices for producing air sensitive electrode materials for lithium ion battery applications
EP2277828B1 (en) * 2008-03-31 2018-08-08 Toda Kogyo Corp. Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
JP5517032B2 (en) * 2008-03-31 2014-06-11 戸田工業株式会社 Non-aqueous electrolyte secondary battery olivine-type composite oxide particle powder, method for producing the same, and secondary battery
TW200951066A (en) * 2008-04-17 2009-12-16 Basf Se Process for the preparation of crystalline lithium-, iron-and phosphate-comprising materials
US8435677B2 (en) * 2008-08-05 2013-05-07 Dow Global Technologies Llc Lithium metal phosphate/carbon nanocomposites as cathode active materials for rechargeable lithium batteries
TWI440597B (en) 2008-08-26 2014-06-11 Basf Se Synthesis of lifepo4 under hydrothermal conditions
JP5509598B2 (en) * 2009-01-09 2014-06-04 住友大阪セメント株式会社 Electrode material and method for producing the same, and electrode and battery
JP5436896B2 (en) * 2009-03-17 2014-03-05 日本化学工業株式会社 Lithium phosphorus composite oxide carbon composite, method for producing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
KR101748406B1 (en) 2009-08-07 2017-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method for positive electrode active material
EP2355214B1 (en) * 2010-01-28 2013-12-25 Prayon Lithium accumulators based on lithiated iron phosphate and carbon
US8486296B2 (en) * 2010-07-15 2013-07-16 Clariant (Canada) Inc. Battery grade cathode coating formulation
JP2012204079A (en) * 2011-03-24 2012-10-22 Nichia Chem Ind Ltd Olivine-type lithium transition metal oxide and method for producing the same
CN102255078B (en) * 2011-05-27 2012-07-18 丁建民 Coordinated method for preparing nanometer spherical iron phosphate and then using carbon fusion method to prepare nanometer spherical lithium iron phosphate
JP5859548B2 (en) * 2011-08-18 2016-02-10 三井化学株式会社 Method for producing porous positive electrode material
JP2013163618A (en) * 2012-02-13 2013-08-22 Nippon Kagaku Kikai Seizo Kk Liquid phase high speed synthesis method for olivine type compound or carbon composite thereof
JP6089896B2 (en) * 2013-04-03 2017-03-08 株式会社村田製作所 Method for producing lithium iron phosphate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060680A1 (en) * 1999-04-06 2000-10-12 Sony Corporation Active material of positive plate, nonaqueous electrolyte secondary cell, method for producing active material of positive material
JP2002117837A (en) * 2000-10-04 2002-04-19 Sony Corp Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte battery
JP2003292309A (en) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
JP2004079276A (en) * 2002-08-13 2004-03-11 Sony Corp Positive electrode activator and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060680A1 (en) * 1999-04-06 2000-10-12 Sony Corporation Active material of positive plate, nonaqueous electrolyte secondary cell, method for producing active material of positive material
JP2002117837A (en) * 2000-10-04 2002-04-19 Sony Corp Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte battery
JP2003292309A (en) * 2002-01-31 2003-10-15 Nippon Chem Ind Co Ltd Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
JP2004079276A (en) * 2002-08-13 2004-03-11 Sony Corp Positive electrode activator and its manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100385713C (en) * 2005-11-30 2008-04-30 重庆大学 Method for preparing ferrous lithium phosphate
JP2007250417A (en) * 2006-03-17 2007-09-27 Sumitomo Osaka Cement Co Ltd Electrode material, its manufacturing method and lithium ion battery
CN100361893C (en) * 2006-03-30 2008-01-16 上海交通大学 Method of preparing carbon cladded ferrous lithium phosphate by using ironic phosphate
CN100389062C (en) * 2006-09-07 2008-05-21 上海交通大学 Method for preparing composite material of carbon coated lithium ferrous phosphate through iron phosphate
CN102066241B (en) * 2008-04-17 2013-11-13 巴斯夫欧洲公司 Process for the preparation of crystalline lithium-, iron- and phosphate-comprising materials
WO2009127674A1 (en) 2008-04-17 2009-10-22 Basf Se Process for the preparation of crystalline lithium-, iron- and phosphate-comprising materials
CN102066241A (en) * 2008-04-17 2011-05-18 巴斯夫欧洲公司 Process for the preparation of crystalline lithium-, iron- and phosphate-comprising materials
US9147877B2 (en) 2008-04-17 2015-09-29 Basf Se Process for the preparation of crystalline lithium-, iron- and phosphate-comprising materials
US9073760B2 (en) 2010-12-24 2015-07-07 Shoei Chemical Inc. Manufacturing method and manufacturing device for multiple oxide
CN103391897A (en) * 2010-12-24 2013-11-13 昭荣化学工业株式会社 Manufacturing method and manufacturing device for multiple oxide
CN103391897B (en) * 2010-12-24 2016-05-18 昭荣化学工业株式会社 The manufacture method of double oxide and manufacturing installation
CN102173402A (en) * 2011-01-17 2011-09-07 深圳科雷拉能源科技有限公司 Low-temperature continuous production process for lithium iron phosphate and dedicated device therefor
WO2019243614A1 (en) * 2018-06-21 2019-12-26 Cambridge Enterprise Limited Electrode active materials and method for their manufacture

Also Published As

Publication number Publication date
JP2007230784A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
WO2005095273A1 (en) Method for producing lithium-iron composite oxide
JP4829557B2 (en) Method for producing lithium iron composite oxide
JP4804045B2 (en) Method for producing lithium iron composite oxide
JP5205424B2 (en) Positive electrode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
JP5505608B2 (en) Li-Ni composite oxide particle powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5293936B2 (en) Non-aqueous electrolyte secondary battery olivine-type composite oxide, method for producing the same, and secondary battery
KR101939415B1 (en) Process for production of (vanadium phosphate)-lithium-carbon complex
JP5610205B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN113148969B (en) Doped lithium iron manganese phosphate-carbon composite material and preparation method thereof
CN101980956A (en) Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
JP5165515B2 (en) Lithium ion secondary battery
JP2009146773A (en) Olivine type lithium iron phosphorus composite oxide and its manufacturing method
JP6231966B2 (en) Electrode material and manufacturing method thereof, electrode, and lithium ion battery
JP5604216B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP5604217B2 (en) Method for producing lithium vanadium phosphate carbon composite
WO2013146207A1 (en) Electrode active material, lithium-ion battery, electrode active material discharge state detection method, and electrode active material manufacturing method
JP2012018832A (en) Cathode active material for lithium secondary battery, manufacturing method thereof, precursor of cathode active material, manufacturing method thereof, and lithium secondary battery using cathode active material
Zhu et al. Effect of the stirring rate on physical and electrochemical properties of LiMnPO4 nanoplates prepared in a polyol process
US9960426B2 (en) Electrode material for lithium-ion secondary battery, method for manufacturing same, electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6394391B2 (en) Method for producing polyanionic positive electrode active material composite particles
JP5769140B2 (en) Method for producing positive electrode active material for lithium secondary battery
Choi et al. Synthesis and electrochemical properties of LiFePO4/carbon nanocomposites in polyol medium
JP2023047468A (en) Positive electrode active material composite particle for lithium ion secondary battery
JP2024517471A (en) Precursor of electrode active material, preparation method thereof, electrode active material and battery
JP2023047466A (en) Positive electrode active material nanoparticle mixture for lithium ion secondary battery, and method of manufacturing lithium ion secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP