WO2000060680A1 - Active material of positive plate, nonaqueous electrolyte secondary cell, method for producing active material of positive material - Google Patents

Active material of positive plate, nonaqueous electrolyte secondary cell, method for producing active material of positive material Download PDF

Info

Publication number
WO2000060680A1
WO2000060680A1 PCT/JP2000/001916 JP0001916W WO0060680A1 WO 2000060680 A1 WO2000060680 A1 WO 2000060680A1 JP 0001916 W JP0001916 W JP 0001916W WO 0060680 A1 WO0060680 A1 WO 0060680A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
range
less
Prior art date
Application number
PCT/JP2000/001916
Other languages
French (fr)
Japanese (ja)
Inventor
Atsuo Yamada
Guohua Li
Hideto Azuma
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to CA002334003A priority Critical patent/CA2334003A1/en
Priority to US09/701,903 priority patent/US6632566B1/en
Priority to JP2000610076A priority patent/JP4749551B2/en
Priority to EP00911429A priority patent/EP1094533A1/en
Publication of WO2000060680A1 publication Critical patent/WO2000060680A1/en
Priority to US11/400,942 priority patent/US7217474B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material capable of reversibly doping / de-doping lithium, and a method for using the positive electrode active material.
  • the present invention relates to a non-aqueous electrolyte secondary battery, and a method for producing this positive electrode active material.
  • a lithium secondary battery is composed of a positive electrode having at least an active material capable of reversibly inserting and removing lithium ions, a negative electrode, and a non-aqueous electrolyte.
  • Li i 0 0: i i N i O L i M n 2 ⁇ having a positive spinel structure and a space group F d 3 m is practically used.
  • a positive electrode active material that is more economical, can be supplied stably, and realizes stability, high capacity, and good cycle characteristics is required.
  • a compound having an olivine structure as a positive electrode active material of a lithium secondary battery for example, a general formula L i .MPO, (where X is in the range of 0 ⁇ X ⁇ 2 and y force S 0. In the range of 8 ⁇ y ⁇ 1.2, M contains a 3d transition metal.)
  • the compound represented by is considered a promising material,
  • LiFePO is used in a positive electrode of a lithium ion battery, and has been proposed in Japanese Patent Application Laid-Open No. Hei 9-117187.
  • L i Fe P ⁇ has a theoretical capacity of as high as 170 mA h / g, and L i can be electrochemically dedoped in the initial state! Since it contains one atom per 7 e atom, it is a promising material as a positive electrode active material for lithium ion batteries.
  • L i F e PO 4 is conventionally used divalent salts of iron such as iron acetate F e (CH a COO) 2 as a F e source comprising a synthetic material, 8 0 0 ° under a reducing environment C c but it has been synthesized by relatively being fired at a high temperature of, in the actual battery constituted by using the L i F e PO synthesized by the synthesis method described above with the positive electrode active material, 6 O mAh Z g ⁇ 70 mAh / g
  • the actual capacity is only obtained; the above-mentioned publication (reported here); then, Journal o the Electrochemical Society , 144, 1188 (1997) reported an actual capacity of about 120 mAhZg, but considering that the theoretical capacity is 170 mAh / g, a sufficient capacity was considered. I can't say it has.
  • Li Fe P ⁇ is about 10% smaller in voltage and volume density than Li M n.
  • L i F e PO is, L i M n O 1% or more by weight energy one density than the 20% or more small and connexion want cormorant c for the volume energy density, L i F e PO in L i M 11 2
  • a capacity of 14 O m A hg or more is required, but such high capacity has never been achieved with Li Fe P ⁇ . Had not been realized.
  • An object of the present invention is to provide a positive electrode active material that achieves a high capacity when used in a battery, and a nonaqueous electrolyte secondary battery using the positive electrode active material.
  • the positive electrode active material according to the present invention has a general formula Li x MPO (where X force; 0 ⁇ X ⁇ 2, y force; 0.8 ⁇ y ⁇ 1 .2 in which M contains a 3d transition metal.) Contains a compound represented by), and L x M, .P ⁇ includes those with a particle size of 10 m or less. It is characterized by.
  • the positive electrode active material according to the present invention configured as described above contains Li, ⁇ having a particle diameter of 10 ⁇ m or less. Accordingly, the positive electrode active material has a particle size distribution that allows the charge carrier, for example, lithium to be sufficiently diffused in the positive electrode active material particles.
  • the positive electrode active material according to the present invention has a general formula Li x (F e, M,-,) ⁇ (however, the force is in the range of 0.9 ⁇ ⁇ ⁇ 1.1, the y force is 0 ⁇ y ⁇ a range of 1, containing a compound M is represented by containing 3 d transition metals), L i x (F e .. ⁇ M, -. ;,) POJ is Mossbauer spectroscopy
  • the area intensity of the spectrum in which the isomer shift value is in the range of 0.1 mm / sec or more and 0.7 mm / sec or less is A
  • the isomer shift value is A.
  • a / B is less than 0.3, where B is the area intensity of a spectrum having a range of 0.8 mm / sec or more and 1.5 mm / sec or less. .
  • the AZB of the positive electrode active material according to the present invention configured as described above is less than 0.3, the presence of electrochemically inactive impurities is small, and high capacity is realized.
  • the nonaqueous electrolyte secondary battery according to the present invention has a general formula Li x M.PO (where is 0 ⁇ x ⁇ 2), which is capable of reversibly doping and undoping lithium. 0.8 ⁇ y ⁇ 1.2, and M contains a 3d transition metal.)
  • a positive electrode having a positive electrode active material containing a compound represented by the following formula: a negative electrode having a dedoped negative electrode active material, in a non-aqueous electrolyte and the aqueous 1 solution electrolyte secondary batteries having a, L i x MVPO include those having a particle diameter of not more than 1_ 0 mu m It is characterized by the following.
  • the non-aqueous electrolyte secondary battery according to the present invention configured as described above has a positive As a polar active material, the particle size is less than 0 / m and contains iMPO.
  • This positive electrode active material has a particle size distribution that allows lithium as a charge carrier to sufficiently diffuse in the particles. Therefore, a non-aqueous electrolyte secondary battery having a high capacity is realized.
  • the nonaqueous electrolyte secondary battery according to the present invention has a general formula L (F e, M) P O. (where X force; 0.9 ⁇ x ⁇ ⁇ .1, y force; 0 ⁇ y ⁇ ], and M contains a 3d transition metal.
  • Positive electrode and reversible lithium! In a non-aqueous electrolyte secondary battery including a negative electrode having a negative electrode active material capable of removing the Z-dope and a non-aqueous electrolyte, Mixbauer spectroscopy is performed using Li x (F e M,-,).
  • the area intensity of the spectrum having an isomer shift value in the range of 0.1 mm / sec or more and 0.7 mn / sec or less is defined as A, A / B is less than 0.3, where B is the area intensity of the vector whose shift value is 0.8 mm / sec or more and 1.5 mm / sec or less.
  • the non-aqueous electrolyte secondary battery according to the present invention configured as described above contains a positive electrode active material having a value of less than 0.3 and a small amount of i-chemically inert impurities. As a result, a non-aqueous electrolyte secondary battery having a high capacity t is realized.
  • Another object of the present invention is to provide a method for producing a positive electrode active material that achieves high capacity when used in a battery.
  • a method for producing a positive electrode active material according to the present invention uses a general formula Li x MPO (where X is in the range of 0 to X 2 and V force S 0.8 ⁇ >' ⁇ 1.2 range, M force'; contains 3d transition metal You.
  • FIG. 1 is a cross-sectional view showing a configuration example of a nonaqueous electrolyte secondary battery to which the present invention is applied.
  • FIG. 2 is a characteristic diagram showing a powder X-ray diffraction pattern of LiFcPO synthesized from samples 1 to 5 of sample.
  • FIG. 3 is a characteristic diagram showing the relationship between the sintering temperature of LiFePo synthesized in samples 1 to 5 and the charge / discharge capacity of the battery.
  • FIG. 4 is a characteristic diagram showing the relationship between the sintering temperature and the volume particle size distribution of Li FePO synthesized in Samples I to 5.
  • FIG. 5 is a characteristic diagram showing the relationship between the sintering temperature and the cumulative volume diameter of Li Fe ⁇ ⁇ ⁇ synthesized in Snaps 1 to 5.
  • FIG. 6 shows the results obtained by combining samples 1 to 5 with a particle size of 0.1 u.
  • FIG. 4 is a characteristic diagram showing the relationship between the firing degree of LiFePO in the range of m to l and the cumulative volume diameter.
  • Fig. 7 is a scanning micrograph showing the particle shape of Li FeP with a firing temperature of 50 °-Fig. 8 is the particle shape of LiFeP with a firing temperature of 600C Is a scanning micrograph showing
  • Figure 9 is a scanning micrograph showing the particle shape of Li FeP ⁇ at a firing temperature of 700 ° C.
  • FIG. 10 is a characteristic diagram showing the ⁇ specific surface area of LiFePo, synthesized in Samples 1 to 5.
  • FIG. 11 is a characteristic diagram showing a powder X-ray diffraction pattern of Li FePO synthesized in Samples 1, 5, and 6.
  • FIG. 12 is a characteristic diagram showing the charge / discharge characteristics of the battery manufactured in Sample 1.
  • FIG. 13 is a characteristic diagram showing the cycle characteristics of a battery manufactured as a sample.
  • FIG. 14 is a characteristic diagram showing the charge / discharge characteristics of the battery manufactured in Sample 5.
  • FIG. 15 is a characteristic diagram showing the charge / discharge characteristics of the battery manufactured in Sample 6.
  • L i (M n u. 6 F eu.,) Is a view to characteristic diagram of the X-ray diffraction butter Ichin of PO.
  • FIG. 17 is a diagram showing the charge / discharge characteristics of a battery manufactured using Li (nu.6Feu.,) P.- FIG. 18 is obtained by firing at 600 ° C. L i (n 6 F e u .,) It is a figure which shows the particle size distribution of P.
  • Figure 1 9 is a Mesubauasu Bae-vector diagram of a L i F e P_ ⁇ Samburu 6 synthesized by the firing temperature and 3 2 0 C c
  • 2 0 is a main Sunoku Wasu Bae-vector diagram of a L i F e PO of the firing temperature 4 0 0 ° C and to the synthesized samples 2 c
  • FIG. 21 is a Mesno vector diagram of LiFePo of Samburu synthesized at a firing temperature of 600.
  • FIG. 22 is a Mesuno spectrum diagram of Fe— of LiFePo of sample 6.
  • FIG. 23 is a Mesuno-vector diagram of Fe of LiFeP ⁇ of sample 6.
  • FIG. 24 is a Mesno vector diagram of Fe ⁇ of LiFeP ⁇ of sample 2.
  • 2 5 is a Mesunoku Wasu-vector diagram of F e 3 of Sample 2 L i F e PO 4.
  • FIG. 27 is a mesh map of Fe 3 of Li Fe PO ⁇ of sample 1. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention will be described in detail with reference to the drawings.
  • a nonaqueous electrolyte battery 1 to which the present invention is applied contains a negative electrode 2, a negative electrode can 3 containing the negative electrode 2, a positive electrode 4, and a positive electrode 4. It comprises a positive electrode can 5, a separator 6 disposed between the positive electrode 4 and the negative electrode 2, and an insulating gasket 7.
  • the negative electrode can 3 and the positive electrode can 5 are filled with a non-aqueous electrolyte:
  • the negative electrode 2 is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector. Is a negative electrode current collector, that need use such as nickel foil is c
  • the negative electrode active material a material capable of doping / de-doping lithium is used. Specifically, metallic lithium, a lithium alloy, a conductive polymer doped with lithium, a layered compound (carbon Materials and gold oxides).
  • a known resin material or the like which is generally used as a binder for the negative electrode active material layer of this type of nonaqueous electrolyte battery can be used.
  • the negative electrode 2 for example, a metal lithium foil serving as a negative electrode active material may be used.
  • the negative electrode can 3 houses the negative electrode 2 and serves as an external negative electrode of the nonaqueous electrolyte battery 1.
  • the positive electrode 4 is formed by forming a positive electrode active material layer containing a positive electrode active material on a positive electrode current collector.
  • the production method of the positive electrode active material will be described later, it has an olivine structure, and has a general formula of L x M, .PO (where X force) and X ⁇ 2 and y force S 0 8 ⁇ y ⁇ 1.2, where M contains a 3d transition metal. ) Is used.
  • Li x M v P include, for example, Li Fe PO ⁇ !, Li x M n POL i x Co PO, Li x N i, PO and i . C uv PO 4 L i. (F e, M n) ⁇ POL i x (F e, C o), POL i (F e, N i), L i s (C u, M n) to PO PO PO ;, L i (C u, C o), PO to L i, (C u, N i). PO, L
  • composition ratio in () is arbitrary :. ).
  • the 10% volume cumulative diameter is preferably 1 m or less. If the 10% volume cumulative diameter is larger than 1 ⁇ m, Li X M and .PO have a large amount of giant particles due to excessive crystallization. For this reason, there is a concern that lithium, which is the I carrier, cannot be diffused smoothly in the particles of the positive electrode active material.
  • L i ⁇ 4 has a Brunauer-Emmett's tailor (BET) specific surface area. 0.5 m 2 Zg or more is preferable: In the case of a positive electrode active material having a large particle diameter, the surface area is reduced. In such a situation, when a large current is passed, that is, a large amount of lithium ion is used in a short time.
  • a compound in which ⁇ contains Fe as a 3 d transition metal that is, (F e ⁇ ) ⁇ ⁇ (where ⁇ Force; 0.9 ⁇ ⁇ ⁇ 1.1, y force; 0 ⁇ y ⁇ l, and M contains a 3d transition metal.)
  • the area intensity of a vector whose isomer shift value is in the range of 0.1 mm Z sec or more and 0.7 mn / sec or less is A
  • Body shift, ⁇ .8 mm Z sec or more, 1.5 mm / sec or less ii ' When the area intensity of the spectrum enclosed by Li is B, A / B is less than 0.3. Use something.
  • L i F e P ⁇ which is x force; 1 and y force S 0 is, according to Mesbauer spectrometry, a Mesbauer ⁇ equivalent to F e.
  • a doublet having an isomer shift value of about 1.2 mm / sec and a quadrupole splitting of about 2.9 mm / sec is observed.
  • F e is oxidized F e are present in the L i F e ⁇ ⁇ ⁇ » , as the F e 3 ⁇ this corresponding menu
  • Subauasu Bae click Bok Le isomers shift value 0. Doublet in the range of 1 mm / sec or more and 0.7 mm / sec or less is observed
  • the initial charge capacity determines the subsequent battery capacity. Further, the lithium ion secondary battery, even when using a material containing L i in the negative electrode, the phase containing F c 3 'is electrochemically inactive, the presence of the inert phase There is a possibility that the battery capacity is reduced. For this reason, it is preferable that the amount of Fe 3 present in LiFePO be as small as possible before the initial charging.
  • the area intensity A is proportional to the presence ft of Fe present in LiFeP
  • the area intensity B is proportional to the amount of Fe present in LiFePO. Accordingly, A / B is 0. Less than 3 L i F e PO has less abundance of F e 3 +, a non-aqueous electrolyte secondary you containing the L i F e P as a positive electrode active material High capacity batteries are realized.
  • a positive electrode current collector for example, as a secondary aluminum ⁇ binders beam foil is contained in the c positive electrode active material layer used, the binding of the positive active material layer of nonaqueous electrolyte batteries of this type
  • the agent a known resin material or the like generally used can be used.
  • the positive electrode can 5 accommodates the positive electrode 4 and serves as an external positive electrode of the nonaqueous electrolyte battery 1.
  • the separator 6 separates the positive electrode 4 and the negative electrode 2 from each other, and can use a known material that is generally used as a separator of this type of nonaqueous electrolyte battery.
  • a polymer film such as polypropylene is used.
  • the thickness of the separator should be as small as possible due to the relationship between lithium ion conductivity and energy density. It is. Specifically, the thickness of the separator is preferably, for example, 50 m or less.
  • the insulating gasket 7 is incorporated into and integrated with the negative electrode can 3.
  • the insulating gasket 7 is for preventing the leakage of the nonaqueous electrolyte filled in the negative electrode can 3 and the positive electrode can 5.
  • the non-aqueous electrolyte use a solution in which an electrolyte is dissolved in a non-protonic non-aqueous solvent.
  • Non-aqueous solvents include, for example, propylene carbonate, ethylene-carbonate, butylene carbonate, vinylene-force, ⁇ -butynolactone, sulfolane, 1,2-dimethoxetane, 1,2-diethoxyxetane , 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl propionate, methyl butyrate, dimethyl alcohol, getylcabonate, lipstick hillcarbonate, etc. it can.
  • annular force such as pyrene carbonate, vinylene carbonate, and the like, dimethinocarbonate, jetinore carbonate, jib mouth pillcarbonate, etc.
  • chain carbonates such as
  • such a non-aqueous solvent may be used alone or as a mixture of two or more.
  • the electrolyte to be dissolved in the nonaqueous solvent for example, L i PF 6, L i C 1 OL i A s F 6, L i BF, L i CF 3 SO 3, L i N (CF a SO ,) And the like can be used.
  • L i PF 6, L i C 1 OL i A s F 6, L i BF, L i CF 3 SO 3, L i N (CF a SO ,) And the like can be used.
  • Li PF ⁇ and Li BF it is preferable to use Li PF ⁇ and Li BF.
  • Non-aqueous electrolyte battery using ix MPO as positive electrode active material 1 is produced, for example, as follows.
  • the negative electrode 2 As the negative electrode 2, first, a negative electrode active material and a binder are dispersed in a solvent to prepare a negative electrode mixture of a slurry. Next, the obtained negative electrode mixture is uniformly applied on a current collector and dried to form a negative electrode active material layer, whereby negative electrode 2 is produced.
  • a binder for the negative electrode mixture a known binder can be used, and a known additive or the like can be added to the negative electrode mixture. Further, metallic lithium as the negative electrode active material can be used as it is as negative electrode 2c
  • Li x M ... PO as a positive electrode active material and a binder are dispersed in a solvent to prepare a slurry positive electrode mixture.
  • the positive electrode 4 is produced by uniformly applying the positive electrode mixture on the current collector and drying to form a positive electrode active material layer.
  • a known binder can be used, and a known additive or the like can be added to the positive electrode mixture.
  • a non-aqueous electrolyte is prepared by dissolving an electrolyte salt in a non-aqueous solvent.
  • the negative electrode 2 is accommodated in the negative electrode can 3
  • the positive electrode 4 is accommodated in the positive electrode can 5
  • a separator 6 made of a porous film made of polypropylene is disposed between the negative electrode 2 and the positive electrode 4.
  • a non-aqueous electrolyte is poured into the negative electrode can 3 and the positive electrode can 5, and the negative electrode can 3 and the positive electrode can 5 are caulked and fixed via the insulating gasket 7, thereby completing the non-aqueous electrolyte battery 1. .
  • the positive electrode active material has an olivine structure, and has a general formula L i X M, -P (X force; 0.9 ⁇ X ⁇ 1.1). Yes, y force; 0 ⁇ y ⁇ 1 and contains M force 3 d transition gold bending.)
  • the compound represented by, for example, Li Fe P ⁇ is shown below. Combine as before.
  • a raw material for synthesis for example, iron acetate (Fe (CH, COO)), ammonium hydrogen phosphate (NimPOj), and lithium carbonate (Li, CO) are mixed at a predetermined ratio to form a precursor.
  • the raw materials for synthesis are sufficiently mixed
  • the raw materials are uniformly mixed and the number of contact points is increased, so that the L i F is lower than before.
  • e PO ⁇ ⁇ can be synthesized.
  • the precursor is calcined at a predetermined temperature in an atmosphere of an inert gas such as nitrogen to synthesize LiFeP ⁇ .
  • LiFe has been fired at a relatively high temperature of 800 ° C., for example.
  • a relatively high temperature 800 ° C., for example.
  • energy was consumed correspondingly, and the load on the reactor and the like was large.
  • the raw materials for synthesis are sufficiently mixed to form a precursor, and the precursor is calcined in a nitrogen stream, so that L is obtained at a temperature of, for example, 300 ° C, which is much lower than the conventional temperature of 8 ° C.
  • L is obtained at a temperature of, for example, 300 ° C, which is much lower than the conventional temperature of 8 ° C.
  • i FeP ⁇ it has become possible to synthesize LiFeP ⁇ ⁇ ⁇ over a wider temperature range than in the past, and the range of selection of the precursor firing temperature (hereinafter referred to as firing temperature) has been broadened.
  • the present inventor has a firing temperature for firing the precursor, L i F e P_ ⁇ focused on relationship between the capacitance of the battery using as an active material, sintering of the optimal L i F e P 0 4
  • the firing temperature of LiFePO is specifically set in a range of 400 ° C. or more and 700 ° C. or less.
  • the firing temperature of LiFePO is preferably in the range of 400 ° C. or more and 600 ° C. or less.
  • the sintering temperature of LiFePO is lower than 400 ° C, a trivalent iron compound or the like as an impurity, that is, a phase containing Fe exists, and a uniform LiFe If PO cannot be obtained. Also, if the firing temperature of LiFeO is higher than 700 , crystallization proceeds excessively, and the precipitation of impurities may not be suppressed.
  • iron acetate which is a divalent iron compound
  • F e ⁇ in iron acetate is oxidized by oxygen in the air when Li Fe P ⁇ is calcined. It becomes F e 3 .
  • an impurity of 3 ⁇ iron compound is mixed into the product LiFePO.
  • Oxidation of F e 2 can be prevented. As a result, a single-phase LiFePO can be obtained without the trivalent iron compound being mixed into the product LiFe e.
  • L i is the F e P 0 4 starting materials for synthesis, in addition to compounds described above, lithium hydroxide, lithium nitrate, lithium acetate,-phosphate lithium, ferrous-phosphate, cuprous oxide
  • various raw materials such as iron can be used, in order to perform firing at a relatively low temperature of 400 ° C. or more and 700 ° C. or less, it is preferable to use a highly reactive raw material.
  • Non-aqueous electrolyte secondary battery 1 which is manufactured as described above contain i x M y P_ ⁇ to as the positive electrode active substance.
  • this positive electrode active material contains L x M and P ⁇ having a particle size of not more than] ⁇ , it has a particle size distribution suitable for sufficiently diffusing lithium as a charge carrier. Therefore, as the non-aqueous electrolyte secondary battery 1, lithium doping / de-doping is performed favorably, so that it is excellent. With excellent cycle characteristics and high capacity
  • the positive electrode active material contains Li x M and P ⁇ having a 10% volume cumulative diameter of 1 ⁇ m or less, diffusion of lithium as a charge carrier occurs more smoothly. Therefore, the non-aqueous electrolyte secondary battery has a better cycle characteristic because the lithium doping / de-doughing is performed better. And high capacity.
  • a compound represented by the general formula Li MPO for example, a raw material obtained by mixing a synthesis raw material of LiFePO is used as a precursor. Since calcination is performed at a temperature in the range of 0 ° C. or more and 700 ° C. or less, chemical reaction and crystallization proceed uniformly, and crystallization does not excessively proceed. As a result, as the positive electrode active material, a single-phase LiFePo is obtained without any impurities. Therefore, this positive electrode active material can realize a high capacity exceeding the 12 OmAh / g of the conventional nonaqueous electrolyte secondary battery.
  • the positive electrode active material according to the present invention is not limited to the above-mentioned L i F e PO, also applies to the compounds represented by the general formula L i M y PO.
  • the configuration of the non-aqueous electrolyte secondary battery according to the present invention is not limited to the configuration described above, and a solid electrolyte or a gel solid electrolyte containing a swelling solvent may be used as the non-aqueous electrolyte.
  • the shape of the non-aqueous electrolyte secondary battery according to the present invention is not particularly limited, such as cylindrical, square, coin, and button types. 8 Also, various sizes such as thin and large: can be rubbed:
  • a method based on a solid phase reaction in which powder of a compound as a raw material for synthesis of LiFeP ⁇ ; is mixed and fired has been described as an example. is not limited to, can be synthesized general formula L i, 1 P 0 4 represented by compound by applying the solid-phase reaction or a solid-phase reaction various chemical synthesis methods other than.
  • the sintering temperature was changed to synthesize the positive electrode active material.
  • a test cell was fabricated using this.
  • LiFe e as a positive electrode active material was synthesized at a firing temperature of 600 °.
  • this positive electrode mixture was applied on an aluminum mesh serving as a current collector, and dried at 10 ° C. for 1 hour under a dry argon atmosphere to form a positive electrode active material layer.
  • the aluminum mesh on which the positive electrode active material layer was formed was punched into a disk having a diameter of 15 mm to form a pellet-shaped positive electrode.
  • One positive electrode carries 60 mg of an active material.
  • a lithium metal foil was punched into the same shape as the positive electrode to form a negative electrode.
  • the positive electrode obtained as described above was accommodated in a positive electrode can, the negative electrode was accommodated in a negative electrode can, and a separator was disposed between the positive electrode and the negative electrode.
  • a non-aqueous electrolyte solution was injected into the positive and negative electrode cans, and the positive and negative electrode cans were caulked and fixed, whereby a coin-type 250-inch test cell was manufactured.
  • Sample 2 A positive electrode active material was synthesized in the same manner as in Sample 1, except that the firing temperature was set at 400 ° C, and a test cell was prepared using this positive electrode active material.
  • a positive electrode active material was synthesized in the same manner as in Sample 1, except that the firing temperature was set to 500 ° C., and a test cell was prepared using this positive electrode active material.
  • a positive electrode active material was synthesized in the same manner as in Sample 1 except that the firing temperature was set at 700 ° C., and a test cell was prepared using this positive electrode active material.
  • a positive electrode active material was synthesized in the same manner as in Sample 1 except that the firing temperature was 800 ° C, and a test cell was prepared using this positive electrode active material.
  • the positive electrode active material Li Fe 4 the powder X-ray diffraction pattern was measured. The measurement conditions of powder X-ray diffraction are shown below.
  • Goniometer Vertical standard, radius 18.5 mm
  • Measurement method Reflection method, continuous scan
  • Scan range: 2 G 10 to 80
  • Fig. 3 shows the relationship between the firing temperature of LiFePO4 synthesized in Samples 1 to 5 and the charge / discharge capacity of the battery.
  • the firing temperature of the precursor is not less than 400 ° C and not more than 600 ° C. It was found that the sample had a very high capacity.
  • the volumetric particle size distribution of the cathode active materials synthesized in Samples 1 to 5 was measured.
  • a microphone mouth track particle size analyzer LA-920 manufactured by Horiba Ltd.
  • the measurement results of the volume particle size distribution obtained by measuring the scattering of the laser beam using this measuring device are shown in Fig. 4.- As can be seen from Fig. 4, the firing temperature was 600 ° C. If it is larger, the volume distribution of Li FeP with a particle size larger than 10 m increases while shifting the center of the distribution to the large particle side.
  • volume distribution of Li FPO with a particle size of 10 m or less is remarkably reduced, while when the firing temperature is 600 ° C or less, the particle size is 10 ⁇ m. volume distribution of at which L i F e ⁇ ⁇ below, c are increased while shifting the center of the distribution to smaller particles
  • the nonaqueous electrolyte secondary battery has a very high capacity by containing LiFeP ⁇ with a particle size of 10 ⁇ m or less as the positive electrode active material. I'm sorry.
  • FIG. 5 shows the relationship between the firing temperature of LiFePO and the volume cumulative diameter. From FIG. 5, it can be seen that there is a clear correlation between the question of the particle size of LiFePO and the firing temperature of LiFePO. Therefore, in FIG. 5, those in which the range in particle diameter of 0. 1 ⁇ ] 0 ⁇ m , c shown in FIG. 6
  • the sintering temperature of LiFePO was 600 ° C or less.
  • Li F c PO having a particle diameter of 1 ⁇ m or less accounts for 10% or more.
  • the firing temperature of LiFePO is higher than 60 ° C, the LiFePO having a particle size of LiFePO of less than] / im is less than 10%.
  • the non-aqueous electrolyte secondary battery contains, as a positive electrode active material, Li Fe PO ⁇ > having a 10% volume cumulative diameter of 1 ⁇ m or less.
  • Li Fe PO ⁇ > having a 10% volume cumulative diameter of 1 ⁇ m or less.
  • the BET specific surface area monotonically changes as the sintering temperature of LiFePO increases, and the range of change is from 20 m2Zg or more. It turns out to be very large, up to 0.5 mg or less:
  • a positive electrode active material was synthesized at a lower firing temperature than before, and a test cell was prepared as sample 6 using this.
  • Figure 12 shows the charge and discharge characteristics of the sample 1 battery.
  • the battery of Sample 1 in which the precursor was fired at 600 ° C and iFePO was used as the positive electrode active material had a flat potential around 3.4 V. You can see that there is.
  • this battery has a reversible charge of 63 mAh / g. Discharge capacity is generated: This value of 163 mAh / g is close to the theoretical capacity of LiFePO, which is 170 mAhZg.
  • Figure 1.3 shows the relationship with the capacity. From Fig. 13, it can be seen from Fig. 13 that the cycle deterioration of the charge / discharge capacity is extremely small at 1% / cycle, and that stable battery characteristics are obtained.
  • the obtained charge / discharge capacity is very small. This is because the sintering temperature of LiFePO is as high as 800 ° C, so that crystallization proceeds excessively, and lithium does not diffuse sufficiently in the LiFePO particles. Probably because of.
  • the battery of sample 6 does not have sufficient charge / discharge capacity. This is presumably because when the firing temperature is as low as 320 ° C., a trivalent iron compound or the like as an impurity, that is, a phase containing Fe ⁇ is present in LiFePO.
  • LiFeP ⁇ as a positive electrode active material can achieve high capacity when the firing temperature is in the range of 400 or more and 700 ° 0 or less. .
  • LiFeP ⁇ By firing LiFeP ⁇ in the range of 400 ° C or more and 600 ° C or less, the 120 mAh / g of the conventional nonaqueous electrolyte secondary battery can be increased. It was found that a high actual capacity was realized.
  • n C_ ⁇ 3 to starting material was prepared was i (n F e) ⁇ ⁇ firing by the same method.
  • Fig.1 6 obtained L i (M n F e u .) PO ⁇ ⁇ of an X-ray diffraction diagram "1 6 force ⁇ al, L i (M n F e 0.,) P is an impurity And a single-phase olivine structure You can see how it works.
  • FIG. 18 shows the results of measuring the particle size distribution of Li (nF e) PO obtained by firing at 600 ° C.
  • Figures 1 8, L i (M n F e u,) PO include those particle size of less than 1 0 mu m, it is seen that contained in the range 1 0% volume cumulative Seki ⁇ be 1 m
  • Li Fe PO was used as a sample in a hole of a lead plate having a thickness of 0.5 mm and a hole having a diameter of 15 mm. mg justified, the both sides of the hole portion to which was sealed with tape and shines irradiation to 5 C o of 1. 8 5 GB q as a ⁇ -ray.
  • FIG. 19 shows the LiF PO PO, spectrum measurement results of Sample 6 obtained by Mossbauer spectroscopy, and Figure 20 shows the LiFe PO spectrum measurement results of Sample 2
  • Figure 21 shows the spectrum measurement results of LiFePO in [1].
  • L i F e P_ ⁇ Huy 4 of Mesubauasu Bae-vector Tsu Sorted allowed F e 2 + a scan base-vector obtained by the sample 6 shown in FIG. 1 9, the F e spectrum the torque shown in FIG. 2 3 - further, FIG. 4 F e 2 + a bitch torr obtained by Huy tool preparative L i F e P_ ⁇ 4 Mesubauasu Bae-vector of the sample 2 shown in FIG. 2 0
  • the 3 3+ vector is shown in Figure 25:
  • the original spectrum of LiFePC has an isomer shift corresponding to Fe2 + of about :! Doublet with 2 mmZ sec and quadrupole splitting of about 2.9 mmZ sec.
  • the area intensity of the doublet corresponding to F e : '+ that is, the area intensity of the spectrum whose direct isomer shift is within the range of 0.1 mmZsec or more and 0.7 mmZsec or less is calculated as
  • A be the area intensity of the doublet corresponding to Fe 2 + , that is, the area intensity of the spectrum whose isomer shift value is in the range of 0.8 mmZ sec or more and 1.5 mm / sec or less.
  • Table B shows AZB when B is used.
  • a / B is Ri Contact depending on the firing temperature of the L i F e PO 4, as the firing temperature is low, L i F e P_ ⁇ is contained in 4 F e: it is often I understood.
  • the AZB shown in Table 1, comparing FIG. 3 shows the relationship between L i F e P_ ⁇ baking temperature and the discharge capacity of 4, as AZB is small, i.e., L i F e P 0 It was found that the smaller the amount of the trivalent iron compound containing F e + in 4 , the higher the capacity of the lithium ion secondary battery.
  • the positive electrode active material according to the present invention has the general formula Li x M : , P ⁇ 4 (where X force is in the range of 0 ⁇ X ⁇ 2, y force is in the range of 0.8 ⁇ y ⁇ 1.2, and M contains a 3d transition metal.) contain, L i x M:, P0 4 include those having a particle diameter of not more than 1 0 mu m, there is a further BET specific surface area of 0.
  • the positive electrode active material realizes excellent cycle characteristics and high capacity when used in a non-aqueous electrolyte secondary battery.
  • the positive electrode active material according to the present invention has a general formula Li x (F e, M,- ,) ⁇ 0 4 (except ⁇ is in the range of 0.9 ⁇ ⁇ ⁇ 1.1, y force is in the range of 0 ⁇ y ⁇ 1, and M contains the compound represented by 3) i x (F e:, M :,) P 0 4 , the ratio of B to the area intensity a of the scan base-vector obtained Ri by the Mossbauer spectroscopy, AZB is less than 0.3.
  • the L i F e P 0 4 obtained by defining the firing temperature and the particle shape by using as the cathode active material has a large capacity
  • the AZB of the non-aqueous electrolyte secondary battery according to the present invention is not more than 0.3.
  • a single-phase L i X M: .. PC ⁇ can be obtained without impurities, so that 120 mA Ah It is possible to achieve high capacities in excess of / g:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

An active material of a positive plate containing particles made of a compound the composition of which is expressed by a general formula LixMyPO4 (wherein 0∫x≤2, 0.8≤y≤1.2, and M is an element out of the 3d transition metals) and having a particle size of 10νm or less. The active material can be used for a nonaqueous electrolyte secondary cell, and contributes to achieving an excellent cycle characteristic and a high capacity.

Description

明細書 正極活物質及び非水電解質二次電池、 正極活物質の製造方法 技術分野 本発明は、 リチウムを可逆的に ドーブ /脱ド一ブ可能な正極活物 質、 及びこの正極活物質を用いた非水電解質二次電池、 この正極活 物質の製造方法に関する。 背景技術 近年、 種々の電子機器の飛躍的進歩と ともに、 長時問便利に、 か つ経済的に使用できる電池と して、 再充電可能な二次電池の研究が 進められている。 代表的な二次電池と しては、 鉛蓄電池、 アルカ リ 蓄電池、 リチウムニ次電池等が知られている  Technical Field The present invention relates to a positive electrode active material capable of reversibly doping / de-doping lithium, and a method for using the positive electrode active material. The present invention relates to a non-aqueous electrolyte secondary battery, and a method for producing this positive electrode active material. BACKGROUND ART In recent years, along with the dramatic progress of various electronic devices, rechargeable secondary batteries have been studied as batteries that can be used conveniently and economically for a long time. Lead-acid batteries, alkaline batteries, lithium secondary batteries, etc. are known as typical secondary batteries.
上記のような二次電池の中でも特に、 リチウム二次電池は、 高出 力、 高工ネルギ一密度などの利点を有している。 リチウム二次電池 は、 少なく ともリチゥムイオンを可逆的に脱挿入可能な活物質を有 する正極と負極と、 非水電解質とから構成される。  Among the above secondary batteries, lithium secondary batteries have advantages such as high output and high energy density. A lithium secondary battery is composed of a positive electrode having at least an active material capable of reversibly inserting and removing lithium ions, a negative electrode, and a non-aqueous electrolyte.
このリチウム二次電池の正極活物質と しては、 L i じ 0 0 :ゃし i N i O 正スピネル型構造を持ち、 空間群 F d 3 mを有する L i M n 2〇 等が実用化されている- しかしながら、 より経済的で、 安定 供給が可能であり、 且つ安定性、 高容量及び良好なサイクル特性を 実現する正極活物質が求められている。 現在、 リチウム二次電池の正極活物質と してオリ ビン構造を有す る化合物、 例えば一般式 L i . M P O, (ただし、 Xが 0 < X ≤ 2の 範囲であり、 y力 S 0. 8≤ y≤ 1. 2の範囲であり、 Mが 3 d遷移 金属を含有する。 ) で表される化合物が有望な材料とされている,As the positive electrode active material of this lithium secondary battery, Li i 0 0: i i N i O L i M n 2構造 having a positive spinel structure and a space group F d 3 m is practically used. However, a positive electrode active material that is more economical, can be supplied stably, and realizes stability, high capacity, and good cycle characteristics is required. Currently, a compound having an olivine structure as a positive electrode active material of a lithium secondary battery, for example, a general formula L i .MPO, (where X is in the range of 0 <X ≤ 2 and y force S 0. In the range of 8≤y≤1.2, M contains a 3d transition metal.) The compound represented by is considered a promising material,
L i M、. P ^で表される化合物のうち、 例えば L i F e P O を リチゥムイオン電池の正極に用いる二と力 、 特開平 9— 1 7 1 8 2 7号公報において提案されている。 Among the compounds represented by LiM and .P ^, for example, LiFePO is used in a positive electrode of a lithium ion battery, and has been proposed in Japanese Patent Application Laid-Open No. Hei 9-117187.
L i F e P〇 は、 理論容量が 1 7 0 mA h/ g ご大きく、 初期状 態において電気化学的に脱ドープ可能な L i を!7 e原子 1個当たり に 1個含んでいるので、 リチウムイオン電池の正極活物質と して有 望な材料である。 L i Fe P〇 has a theoretical capacity of as high as 170 mA h / g, and L i can be electrochemically dedoped in the initial state! Since it contains one atom per 7 e atom, it is a promising material as a positive electrode active material for lithium ion batteries.
L i F e P O 4は、 従来、 合成原料となる F e源と して酢酸鉄 F e ( C H a C O O ) 2などの 2価の鉄の塩を用い、 還元環境下にて 8 0 0 °Cという比較的高温で焼成されることにより合成されていた c しかし、 上述した合成方法により合成された L i F e P O を正極 活物質と して用いて構成された実際の電池では、 6 O mA h Z g〜 7 0 m A h / g程度の実容量しか得られていないこと力;、 上記公報 (こおレヽて報告さ; てレヽる。 その後、 Journal o the El ec trochemi c al Society, 144, 1188 (1997) において 1 2 0 m A h Z g程度の実容 量が報告されているが、 理論容量が 1 7 0 m A h / gであることを 考えると、 十分な容量を有しているとはいえない。 L i F e PO 4 is conventionally used divalent salts of iron such as iron acetate F e (CH a COO) 2 as a F e source comprising a synthetic material, 8 0 0 ° under a reducing environment C c but it has been synthesized by relatively being fired at a high temperature of, in the actual battery constituted by using the L i F e PO synthesized by the synthesis method described above with the positive electrode active material, 6 O mAh Z g ~ 70 mAh / g The actual capacity is only obtained; the above-mentioned publication (reported here); then, Journal o the Electrochemical Society , 144, 1188 (1997) reported an actual capacity of about 120 mAhZg, but considering that the theoretical capacity is 170 mAh / g, a sufficient capacity was considered. I can't say it has.
また、 L i F e P〇 と L i M n 2 O■!とを比較すると、 L i F e P O, は体積密度が 3. 6 g Z c m であり、 平均電圧が 3. 4 Vであ るのに対し、 L i M n 2 O 4は、 体積密度が 4. 2 g Z c m 3であり、 平均電圧が 3. 9 Vであり、 1 2 0 m A h Z gの容量を有している ことから、 L i F e P〇 は L i M n より も電圧、 体積密度と もに 1割程度小さレ、ことになる ΰ このため、 同じ 1 2 0 m A h / g の容量だと、 L i F e P O は、 L i M n O より も重量エネルギ一 密度で 1割以上、 体積エネルギー密度で 2割以上小さくなつてしま う c このため、 L i F e P O で L i M 11 2 O と同等レベルあるいは それ以上のエネルギー密度を実現するためには、 1 4 O m A h g あるいはそれ以上の容量が要求されるが、 L i F e P〇 でこのよ う な高容量はこれまで実現されていなかった。 Further, when the L i F e P_〇 and L i M n 2 O ■! Compared, and a L i F e PO, the volume density of 3. 6 g Z cm, the average voltage is 3. 4 V der that whereas, L i M n 2 O 4 is the volume density of 4. 2 g Z cm 3, the average voltage is 3. 9 V, has a capacity of 1 2 0 m a h Z g ing Therefore, Li Fe P〇 is about 10% smaller in voltage and volume density than Li M n. Therefore, if the capacity is the same, 120 mA Ah / g, L i F e PO is, L i M n O 1% or more by weight energy one density than the 20% or more small and connexion want cormorant c for the volume energy density, L i F e PO in L i M 11 2 In order to achieve an energy density equal to or higher than O, a capacity of 14 O m A hg or more is required, but such high capacity has never been achieved with Li Fe P〇. Had not been realized.
また、 8 0 0 °Cという比較的高温で焼成されることにより合成さ れた L i F e よ、 結晶化が過剰に進行して、 リ チウムの拡散が 妨げられることがあった。 このため、 非水電解質二次電池は、 十分 に高い容量を得ることができなかった。 更に、 焼成時の温度が高い と、 その分エネルギーを消費することになり、 また、 反応装置等に 与える負荷も大きかった。 発明の開示 本発明は、 電池に用いられると高容量を実現する正極活物質及び その正極活物質を用いた非水電解質二次電池を提供することを目的 とする。  In addition, LiFe synthesized by baking at a relatively high temperature of 800 ° C. sometimes excessively crystallized and hindered the diffusion of lithium. For this reason, a nonaqueous electrolyte secondary battery could not obtain a sufficiently high capacity. Furthermore, if the temperature at the time of firing is high, energy is consumed correspondingly, and the load applied to the reaction device and the like is also large. DISCLOSURE OF THE INVENTION An object of the present invention is to provide a positive electrode active material that achieves a high capacity when used in a battery, and a nonaqueous electrolyte secondary battery using the positive electrode active material.
上述の目的を達成するために、 本発明に係る正極活物質は、 一般 式 L i x M P O (ただし、 X力; 0 < X ≤ 2の範囲であり、 y力; 0 . 8≤ y≤ 1 . 2の範囲であり、 Mが 3 d遷移金属を含有する。 ) で 表される化合物を含有し、 L i x M、. P〇 は、 粒子径が 1 0 m以下 であるものを含むことを特徴とする。 以上のように構成された本発明に係る正極活物質では、 粒子径が 1 0 μ m以下である L i ,Μν Ρ Ο を含有する。 これによ り、 正極活 物質は、 電荷担体である例えばリチウムが正極活物質粒子内におい て十分に拡散することが可能となる粒度分布を備えたものとなる。 また、 本発明に係る正極活物質は、 一般式 L i X ( F e , M , - , ) Ρ (ただし、 χ力; 0. 9 ≤ χ ≤ 1 . 1 の範囲であり、 y力; 0 < y ≤ 1 の範囲であり、 Mが 3 d遷移金属を含有する。 ) で表される化合 物を含有し、 L i x ( F e ..· M , -;, ) P O Jは、 メスバウア分光法によ り得られるスぺク トルにおいて、 異性体シフ ト値が 0. 1 m m / s e c以上、 0. 7 mm/ s e c以下の範囲にあるスペク トルの面積 強度を Aと し、 異性体シフ ト値が 0. 8 mm/ s e c以上、 1 . 5 mm/ s e c以下の範囲にあるスぺク トルの面積強度を Bとすると き、 A/Bは 0. 3未満であることを特徴とする。 In order to achieve the above object, the positive electrode active material according to the present invention has a general formula Li x MPO (where X force; 0 <X ≤ 2, y force; 0.8 ≤ y ≤ 1 .2 in which M contains a 3d transition metal.) Contains a compound represented by), and L x M, .P〇 includes those with a particle size of 10 m or less. It is characterized by. The positive electrode active material according to the present invention configured as described above contains Li, {νΡ} having a particle diameter of 10 μm or less. Accordingly, the positive electrode active material has a particle size distribution that allows the charge carrier, for example, lithium to be sufficiently diffused in the positive electrode active material particles. Further, the positive electrode active material according to the present invention has a general formula Li x (F e, M,-,) Ρ (however, the force is in the range of 0.9 ≤ χ ≤ 1.1, the y force is 0 <y ≤ a range of 1, containing a compound M is represented by containing 3 d transition metals), L i x (F e .. · M, -. ;,) POJ is Mossbauer spectroscopy In the spectrum obtained by the method, the area intensity of the spectrum in which the isomer shift value is in the range of 0.1 mm / sec or more and 0.7 mm / sec or less is A, and the isomer shift value is A. A / B is less than 0.3, where B is the area intensity of a spectrum having a range of 0.8 mm / sec or more and 1.5 mm / sec or less. .
以上のように構成された本発明に係る正極活物質は、 AZBは 0. 3未満であるので、 電気化学的に不活性である不純物の存在力 ^少な く、 高容量を実現する。  Since the AZB of the positive electrode active material according to the present invention configured as described above is less than 0.3, the presence of electrochemically inactive impurities is small, and high capacity is realized.
また、 本発明に係る非水電解質二次電池は、 リチウムを可逆的に ドープノ脱ドープ可能な、 一般式 L i xM . P O (ただし、 が 0 < x ≤ 2の範图であり、 y力; 0. 8 ≤ y ≤ 1 . 2の範囲であり、 Mが 3 d遷移金属を含有する。 ) で表される化合物を含有する正極活物 質を有する正極と、 リチウムを可逆的に ドープ/脱ドープ可能な負 極活物質を有する負極と、 非水電解質とを備えた非水 1解質二次電 池において、 L i x M V P O は、 粒子径が 1_ 0 μ m以下であるものを 含むことを特徴とする。 Further, the nonaqueous electrolyte secondary battery according to the present invention has a general formula Li x M.PO (where is 0 <x ≤ 2), which is capable of reversibly doping and undoping lithium. 0.8 ≤ y ≤ 1.2, and M contains a 3d transition metal.) A positive electrode having a positive electrode active material containing a compound represented by the following formula: a negative electrode having a dedoped negative electrode active material, in a non-aqueous electrolyte and the aqueous 1 solution electrolyte secondary batteries having a, L i x MVPO include those having a particle diameter of not more than 1_ 0 mu m It is characterized by the following.
以上のように構成された本発明に係る非水電解質二次電池は、 正 極活物質と して粒子径が 】 0 / m以下である し i M P O を含有す る。 この正極活物質は、 電荷担体である リチウムが粒子内において 十分に拡散することが可能となる粒度分布を備えている。 従って、 高容量を有する非水電解質二次電池が実現される。 The non-aqueous electrolyte secondary battery according to the present invention configured as described above has a positive As a polar active material, the particle size is less than 0 / m and contains iMPO. This positive electrode active material has a particle size distribution that allows lithium as a charge carrier to sufficiently diffuse in the particles. Therefore, a non-aqueous electrolyte secondary battery having a high capacity is realized.
また、 本発明に係る非水電解質二次電池は、 リチウムを可逆的に ド一ブ /脱ド一プ可能な、 一般式 L ( F e , M , ) P O. (ただ し、 X力; 0. 9 ≤ x ≤ 丄 . 1 の範囲であり、 y力; 0く y ≤ ] の範囲 であり、 Mが 3 d遷移金属を含有する。 ) で表される化合物を含有 する正極活物質を有する正極と、 リチウムを可逆的!こ ド一ブ Z脱ド ープ可能な負極活物質を有する負極と、 非水電解質とを備えた非水 電解質二次電池において、 L i x ( F e M , - , ) よ、 メスバウ ァ分光法により得られるスぺク 卜ルにおいて、 異性体シフ 卜値が 0. 1 m mノ s e c以上、 0. 7 m n / s e c以下の範囲にあるスぺク トルの面積強度を Aと し、 異性体シフ ト値が 0. 8 m m / s e c以 上、 1 . 5 mm/ s e c以下の範囲にあるスベタ トルの面積強度を Bとするとき、 A/Bは 0. 3未満であることを特徴とする ΰ In addition, the nonaqueous electrolyte secondary battery according to the present invention has a general formula L (F e, M) P O. (where X force; 0.9 ≤ x ≤ 丄 .1, y force; 0 ≤ y ≤], and M contains a 3d transition metal. Positive electrode and reversible lithium! In a non-aqueous electrolyte secondary battery including a negative electrode having a negative electrode active material capable of removing the Z-dope and a non-aqueous electrolyte, Mixbauer spectroscopy is performed using Li x (F e M,-,). In the spectrum obtained by the method, the area intensity of the spectrum having an isomer shift value in the range of 0.1 mm / sec or more and 0.7 mn / sec or less is defined as A, A / B is less than 0.3, where B is the area intensity of the vector whose shift value is 0.8 mm / sec or more and 1.5 mm / sec or less. ΰ
以上のように構成された本発明に係る非水電解質二次電池は、 Λ ΖΒが 0. 3未満であり、 i気化学的に不活性である不純物の存在 が少ない正極活物質を含有する。 これによ り、 高容 tを有する非水 電解質二次電池が実現される。  The non-aqueous electrolyte secondary battery according to the present invention configured as described above contains a positive electrode active material having a value of less than 0.3 and a small amount of i-chemically inert impurities. As a result, a non-aqueous electrolyte secondary battery having a high capacity t is realized.
また、 本発明は、 電池に用いられると高容量を実現する正極活物 質の製造方法を提供することを目的とする。  Another object of the present invention is to provide a method for producing a positive electrode active material that achieves high capacity when used in a battery.
上述の目的を達成するために、 本発明に係る正極活物質の製造方 法は、 一般式 L i x M P O (ただし、 Xが 0く X 2の範囲であり、 V力 S 0. 8 ≤ >' ≤ 1 . 2の範囲であり、 M力'; 3 d遷移金属を含有す る。 ) で表される化合物の合成原料を混合して前駆体とする混合ェ 程と、 混合工程で得られた前駆体を焼成して反応させる焼成工程と を有し、 焼成工程で、 4 0 0 ° 以上、 7 0 0 t以下の範囲の温度で 前駆体を焼成することを特徴とする。 In order to achieve the above object, a method for producing a positive electrode active material according to the present invention uses a general formula Li x MPO (where X is in the range of 0 to X 2 and V force S 0.8 ≤>'≤ 1.2 range, M force'; contains 3d transition metal You. A mixing step of mixing the raw materials for synthesis of the compound represented by the formula (1) to form a precursor, and a firing step of firing and reacting the precursor obtained in the mixing step. It is characterized in that the precursor is fired at a temperature in the range of not less than ° and not more than 700 t.
以上のように構成された本発明に係る正極活物質の製造方法では、 焼成工程で、 4 0 0 °C以上、 7 0 0 以下の範匪の温度で L i 、 λ] Ρ〇 の前駆体を焼成している。 これにより、 化学反応と結晶化とが 均一に進行し、 且つ結晶化が過度に進行せず、 不純物のない単相の L i x M P〇 が得られる。 また、 焼成工程で L i X M 、 P〇 の前駆 体を焼成する温度の違いによって、 L i Χ Μ 、· P の粉体特性が劇的 に変化する。 図面の簡単な説明 図 1 は、 本発明を適用した非水電解質二次電池の一構成例を示す 断面図である。 In the method for producing a positive electrode active material according to the present invention configured as described above, in the firing step, the precursor of Li, λ] Ρ〇 is used at a temperature of not less than 400 ° C. and not more than 700. Has been fired. As a result, the chemical reaction and the crystallization proceed uniformly, and the crystallization does not proceed excessively, so that a single-phase Li x MP〇 without impurities can be obtained. The firing step is L i X M, the temperature difference of firing the precursor of P_〇, L i chi Micromax, powder characteristics · P changes dramatically. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a configuration example of a nonaqueous electrolyte secondary battery to which the present invention is applied.
図 2は、 サンブル :1 〜サンプル 5で合成された L i F c P O の粉 末 X線回折パターンを示す特性図である。  FIG. 2 is a characteristic diagram showing a powder X-ray diffraction pattern of LiFcPO synthesized from samples 1 to 5 of sample.
図 3は、 サンブル 1〜サンプル 5で合成された L i F e P O の焼 成温度と電池の充放電容量との関係を示す特性図である。  FIG. 3 is a characteristic diagram showing the relationship between the sintering temperature of LiFePo synthesized in samples 1 to 5 and the charge / discharge capacity of the battery.
図 4は、 サンプル 〗 〜サンブル 5で合成された L i F e P O の焼 成温度と体積粒度分布との関係を示す特性図である。  FIG. 4 is a characteristic diagram showing the relationship between the sintering temperature and the volume particle size distribution of Li FePO synthesized in Samples I to 5.
図 5は、 サンブル 1〜サンブル 5で合成された L i F e Ρ Ο の焼 成温度と体積累積径との関係を示す特性図である。  FIG. 5 is a characteristic diagram showing the relationship between the sintering temperature and the cumulative volume diameter of Li Fe Ρ サ ン synthesized in sembles 1 to 5.
図 6は、 サンブル 1 〜サンプル 5で合成され、 粒子径が 0 . 1 u m〜 l の範囲である L i F e P O の焼成 ll度と体積累積径と の関係を示す特性図である。 Fig. 6 shows the results obtained by combining samples 1 to 5 with a particle size of 0.1 u. FIG. 4 is a characteristic diagram showing the relationship between the firing degree of LiFePO in the range of m to l and the cumulative volume diameter.
図 7は、 焼成温度が 5 0 Ο である L i F e P の粒子形状を表 す走査顕微鏡写真である- 図 8は、 焼成温度が 6 0 0 Cである L i F e P の粒子形状を表 す走査顕微鏡写真である  Fig. 7 is a scanning micrograph showing the particle shape of Li FeP with a firing temperature of 50 °-Fig. 8 is the particle shape of LiFeP with a firing temperature of 600C Is a scanning micrograph showing
図 9は、 焼成温度が 7 0 0 Cである L i F e P〇 の粒子形状を表 す走査顕微鏡写真である  Figure 9 is a scanning micrograph showing the particle shape of Li FeP〇 at a firing temperature of 700 ° C.
図 1 0は、 サンプル 1 〜サンプル 5で合成された L i F e P O ,の Β Ε Τ比表面積を示す特性図である。  FIG. 10 is a characteristic diagram showing the {Τ} specific surface area of LiFePo, synthesized in Samples 1 to 5.
図 1 1は、 サンブル 1 、 5、 6で合成された L i F e P O の粉末 X線回折パターンを示す特性図である  FIG. 11 is a characteristic diagram showing a powder X-ray diffraction pattern of Li FePO synthesized in Samples 1, 5, and 6.
図 1 2は、 サンプル 1で作製された電池の充放電特性を示す特性 図である。  FIG. 12 is a characteristic diagram showing the charge / discharge characteristics of the battery manufactured in Sample 1.
図 1 3は、 サンプル〗 で作製された電池のサイクル特性を示す特 性図である。  FIG. 13 is a characteristic diagram showing the cycle characteristics of a battery manufactured as a sample.
図 1 4は、 サンプル 5で作製された電池の充放電特性を示す特性 図である。  FIG. 14 is a characteristic diagram showing the charge / discharge characteristics of the battery manufactured in Sample 5.
図 1 5は、 サンプル 6で作製された電池の充放電特性を示す特性 図である。  FIG. 15 is a characteristic diagram showing the charge / discharge characteristics of the battery manufactured in Sample 6.
図 1 6は、 L i ( M n u . 6 F e u . , ) P O の X線回折バタ一ンを示 す特性図である。 1 6, L i (M n u. 6 F eu.,) Is a view to characteristic diagram of the X-ray diffraction butter Ichin of PO.
図 1 7は、 L i ( n u . 6 F e u . , ) P を用いて作製された電池 の充放電特性を示す図である- 図 1 8は、 6 0 0 °Cで焼成して得られた L i ( n 6 F e u . , ) P の粒度分布を示す図である。 FIG. 17 is a diagram showing the charge / discharge characteristics of a battery manufactured using Li (nu.6Feu.,) P.- FIG. 18 is obtained by firing at 600 ° C. L i (n 6 F e u .,) It is a figure which shows the particle size distribution of P.
図 1 9は、 焼成温度を 3 2 0 Cと して合成されたサンブル 6の L i F e P〇 のメスバウアスぺク トル図である c Figure 1 9 is a Mesubauasu Bae-vector diagram of a L i F e P_〇 Samburu 6 synthesized by the firing temperature and 3 2 0 C c
図 2 0は、 焼成温度を 4 0 0 °Cと して合成されたサンプル 2の L i F e P O のメ スノくゥァスぺク トル図である c 2 0 is a main Sunoku Wasu Bae-vector diagram of a L i F e PO of the firing temperature 4 0 0 ° C and to the synthesized samples 2 c
図 2 1 は、 焼成温度を 6 0 0 と して合成されたサンブル 】 の L i F e P O のメスノくゥァスぺク トル図である。  FIG. 21 is a Mesno vector diagram of LiFePo of Samburu synthesized at a firing temperature of 600.
図 2 2は、 サンプル 6の L i F e P O の F e —のメスノくゥァス ク トル図である。  FIG. 22 is a Mesuno spectrum diagram of Fe— of LiFePo of sample 6.
図 2 3は、 サンプル 6の L i F e P〇 の F e のメ スノくゥァス ク トル図である。  FIG. 23 is a Mesuno-vector diagram of Fe of LiFeP〇 of sample 6. FIG.
図 2 4は、 サンプル 2の L i F e P〇 の F e ^のメスノくゥァス ク トル図である。  FIG. 24 is a Mesno vector diagram of Fe ^ of LiFeP〇 of sample 2.
図 2 5は、 サンプル 2の L i F e P O 4の F e 3 のメスノくゥァス ク トル図である。 2 5 is a Mesunoku Wasu-vector diagram of F e 3 of Sample 2 L i F e PO 4.
図 2 6は、 サンプル 1 の L i F e P O 4の F e 2 のメスノくゥァス ク トル図である = 2 6 is a Mesunoku Wasu-vector diagram of F e 2 of the sample 1 of L i F e PO 4 =
図 2 7は、 サンブル 1 の L i F e P O ^の F e 3 のメ スノくゥァス ク トル図である。 発明を実施するための最良の形態 以下、 本発明について、 図面を参照して詳細に説明する。 FIG. 27 is a mesh map of Fe 3 of Li Fe PO ^ of sample 1. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the drawings.
本発明を適用した非水電解液電池 1 は、 図 1 に示すように、 負極 2 と、 負極 2を収容する負極缶 3 と、 正極 4 と、 正極 4を収容する 正極缶 5 と、 正極 4 と負極 2 との問に配されたセパレータ 6 と、 絶 縁ガスケッ ト 7 とを備え、 負極缶 3及び正極缶 5内に非水電解液が 充填されてなる: As shown in FIG. 1, a nonaqueous electrolyte battery 1 to which the present invention is applied contains a negative electrode 2, a negative electrode can 3 containing the negative electrode 2, a positive electrode 4, and a positive electrode 4. It comprises a positive electrode can 5, a separator 6 disposed between the positive electrode 4 and the negative electrode 2, and an insulating gasket 7. The negative electrode can 3 and the positive electrode can 5 are filled with a non-aqueous electrolyte:
負極 2は、 負極集電体上に、 負極活物質を含有する負極活物質層 が形成されてなる。 負極集電体と しては、 例えばニッケル箔等が用 いら る c The negative electrode 2 is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector. Is a negative electrode current collector, that need use such as nickel foil is c
負極活物質と しては、 リチウムを ド―ァ /脱ド一プ可能なものを 用い、 具体的には、 金属リチウム、 リチウム合金、 リチウムが ドー プされた導電性高分子、 層状化合物 (炭素材料や金屈酸化物など) 等を用いる。  As the negative electrode active material, a material capable of doping / de-doping lithium is used. Specifically, metallic lithium, a lithium alloy, a conductive polymer doped with lithium, a layered compound (carbon Materials and gold oxides).
負極活物質層に含有される結合剤と しては、 この種の非水電解液 電池の負極活物質層の結合剤と して通常用いられている公知の樹脂 材料等を用いることができる。  As the binder contained in the negative electrode active material layer, a known resin material or the like which is generally used as a binder for the negative electrode active material layer of this type of nonaqueous electrolyte battery can be used.
また、 負極 2 と しては、 負極活物質となる例えば金属リチウム箔 を用いても良い。  Further, as the negative electrode 2, for example, a metal lithium foil serving as a negative electrode active material may be used.
負極缶 3は、 負極 2を収容するものであり、 また、 非水電解液電 池 1 の外部負極となる。  The negative electrode can 3 houses the negative electrode 2 and serves as an external negative electrode of the nonaqueous electrolyte battery 1.
正極 4は、 正極集電体上に、 正極活物質を含有する正極活物質層 が形成されてなる。  The positive electrode 4 is formed by forming a positive electrode active material layer containing a positive electrode active material on a positive electrode current collector.
正極活物質と しては、 製造方法は後述するが、 オリ ビン構造を有 し、 一般式 L i x M、. P O (ただし、 X力 )く X ≤ 2の範囲であり、 y力 S 0 . 8≤ y≤ 1 . 2の範囲であり、 Mが 3 d遷移金属を含有す る。 ) で表される化合物を用いる。 Although the production method of the positive electrode active material will be described later, it has an olivine structure, and has a general formula of L x M, .PO (where X force) and X ≤ 2 and y force S 0 8≤y≤1.2, where M contains a 3d transition metal. ) Is used.
L i x M v P で表される化合物と しては、 例えば、 L i F e P O■!、 L i x M n P O L i x C o P O 、 L i x N i , P O し i . C u v P O 4 L i . ( F e , M n ) ■ P O L i x ( F e , C o ) , P O L i ( F e , N i ) , P Oへ L i s ( C u , M n ) P O ;、 L i ( C u , C o ) 、 P Oへ L i 、 ( C u , N i ) . P O 、 LCompounds represented by Li x M v P include, for example, Li Fe PO ■ !, Li x M n POL i x Co PO, Li x N i, PO and i . C uv PO 4 L i. (F e, M n) ■ POL i x (F e, C o), POL i (F e, N i), L i s (C u, M n) to PO PO ;, L i (C u, C o), PO to L i, (C u, N i). PO, L
(M n , T i ) 、 P Oへ L ( n , Z n ) 、 P〇■;、 L i ( M n, g ) 、 〇4等 (なお、 ( ) 内の組成比は任意である:. ) が挙げ られる。 (M n, T i), to PO L (n, Z n), P〇 ■ ;, L i (M n, g), 〇4, etc. (The composition ratio in () is arbitrary :. ).
このし i M、 P O は、 粒子径が .1 0 μ m以下であるものを含む = 正極活物質が含有する L i M , P O と して、 粒子径が 1 0 μ m以下 である L i ΧΜ、· P O 4を含まない場合には、 粒度分布が適切でないた め、 電荷担体である リチウムが正極活物質の粒子内;こおいて十分に 拡散することができない。 Here, i M and PO include those having a particle diameter of .10 μm or less = L i M and PO contained in the positive electrode active material, and L i having a particle diameter of 10 μm or less. ( 4) When PO 4 is not contained, lithium as the charge carrier cannot be sufficiently diffused in the particles of the positive electrode active material because the particle size distribution is not appropriate.
また、 L i xM> P〇4は、 1 0 %体積累積径が 1 m以下であるこ とが好ましい。 1 0 %体積累積径が 1 μ mより大きい場合には、 L i XM、. P O は、 結晶化が過度に進行して巨大粒子なつたものが大部 分を占めている虡がある。 このため、 I 荷担体である リチウムが、 正極活物質の粒子内において円滑に拡散することができない虞があ さらに、 L i 〇4は、 ブルナウア一 · エメ ッ ト ' テーラー (B E T) 比表面積が 0. 5 m2Z g以上であることが好ましい: 粒 子径の大きな正極活物質の場合、 表面積が小さくなる- このよ うな 状況下で大電流を流す場合、 すなわち短時間に大量のリチウムィォ ンを活物質中に導入する場合、 活物質中のリチウムの拡散が外部か らのリチウムの供給に追いつかなくなり、 見かけ上容量が減少する:. 従って、 大電流下でも十分な容量を確保するためには、 比表面積を 大きくする、 ひいては上述したように粒径を小さくするべく技術的 な施策が必要となってく る-Further, when L x M> P〇4, the 10% volume cumulative diameter is preferably 1 m or less. If the 10% volume cumulative diameter is larger than 1 μm, Li X M and .PO have a large amount of giant particles due to excessive crystallization. For this reason, there is a concern that lithium, which is the I carrier, cannot be diffused smoothly in the particles of the positive electrode active material.L i 〇4 has a Brunauer-Emmett's tailor (BET) specific surface area. 0.5 m 2 Zg or more is preferable: In the case of a positive electrode active material having a large particle diameter, the surface area is reduced. In such a situation, when a large current is passed, that is, a large amount of lithium ion is used in a short time. When lithium is introduced into the active material, the diffusion of lithium in the active material cannot catch up with the supply of lithium from the outside, and the capacity apparently decreases: Therefore, in order to secure sufficient capacity even under a large current Is to increase the specific surface area and, as mentioned above, to reduce the particle size. Measures are needed-
L i x M ., P O の B E T比表面積を 0. 5 m;/ g以上とすること で、 活物質中でのリチウムの拡散を速やかにし、 大電流下でも十分 な容量を確保することができる By setting the BET specific surface area of Li x M., PO to 0.5 m ; / g or more, diffusion of lithium in the active material is accelerated, and sufficient capacity can be secured even under a large current.
また、 一般式 L i ΧΜ P〇 で表される化合物において、 Μが 3 d 遷移金属と して F e を含有する化合物、 即ち一般式 L に、 ( F e Μ ) Ρ Ο (ただし、 χ力; 0. 9≤ χ ≤ 1. 1の範图であり、 y力; 0 < y≤ lの範囲であり、 Mが 3 d遷移金属を含有する。 ) で表さ れる化合物と しては、 メスバウア分光法により得られるスぺク トル において、 異性体シフ ト値が 0. 1 m m Z s e c以上、 0. 7 m nつ / s e c以下の範囲にあるスベタ トルの面積強度を Aと し、 異性体 シフ トィ直カ、◦ . 8 m m Z s e c以上、 1. 5 m m / s e c以下の ii':Li 囲にあるスペク トルの面積強度を Bとするとき、 A/Bは 0. 3未 満であるものを用いる。 Further, in the compound represented by the general formula L i Χ Μ P〇, a compound in which Μ contains Fe as a 3 d transition metal, that is, (F e Μ) Ρ Ο (where Ρ Force; 0.9 ≤ ≤ ≤ 1.1, y force; 0 < y ≤ l, and M contains a 3d transition metal.) In the spectrum obtained by Mossbauer spectroscopy, the area intensity of a vector whose isomer shift value is in the range of 0.1 mm Z sec or more and 0.7 mn / sec or less is A, Body shift, ◦ .8 mm Z sec or more, 1.5 mm / sec or less ii ': When the area intensity of the spectrum enclosed by Li is B, A / B is less than 0.3. Use something.
例えば L i ( F e M , ) P〇 において、 x力; 1であり、 且つ y力 S 0である L i F e P〇 は、 メ スバウア分光測定により、 F e Ίこ相当するメ スバウアスぺク トルと して、 異性体シフ ト値が約 1. 2 mm/ s e cであり、 4重極分裂が約 2. 9 m m / s e cである ダブレッ トが観察される。 また、 F e が酸化されて F e が L i F e Ρ Ο·»中に存在する場合、 F e 3Ίこ相当するメ スバウアスぺク 卜 ルと して、 異性体シフ ト値が 0. 1 mm/ s e c以上、 0. 7 mm / s e c以下の範囲にあるダブレツ 卜が観察される For example, in L i (F e M,) P〇, L i F e P〇 which is x force; 1 and y force S 0 is, according to Mesbauer spectrometry, a Mesbauer ぺ equivalent to F e. As a vector, a doublet having an isomer shift value of about 1.2 mm / sec and a quadrupole splitting of about 2.9 mm / sec is observed. Also, if F e is oxidized F e are present in the L i F e Ρ Ο · » , as the F e 3 Ί this corresponding menu Subauasu Bae click Bok Le, isomers shift value 0. Doublet in the range of 1 mm / sec or more and 0.7 mm / sec or less is observed
L i F e P〇 は、 初期充電の過程において L i が抜けると同時に. F e が F e 3Ίこ酸化される。 初期充電する前の状態で L i F e Ρ 04中に が含有されていると、 電池反応に寄与する電子数が減 少するので、 結果と してリチウムイオン二次電池における充電容量 の低下を招く ことになる。 L i F e P_〇 and simultaneously L i escapes in the course of the initial charge. F e 2 ÷ is F e 3 Ί this oxidation. If is contained in Li Fe 4 04 before the initial charge, the number of electrons contributing to the battery reaction decreases. As a result, the charge capacity of the lithium ion secondary battery is reduced as a result.
リチウムイオン二次電池は、 負極にカーボン等の L i を含まない 材料を使用しているため、 初期の充電容量がその後の電池容量を決 定する。 また、 リチウムイオン二次電池は、 負極に L i を含む材料 を使用した場合であっても、 F c 3 'を含む相が電気化学的に不活性 であると、 この不活性相の存在により電池容量が低下する虞がある。 このため、 初期充電する前の状態において、 L i F e P O 中に存在 する F e 3 まできるだけ少ないことが好ましい。 Since the lithium ion secondary battery uses a material that does not contain Li, such as carbon, for the negative electrode, the initial charge capacity determines the subsequent battery capacity. Further, the lithium ion secondary battery, even when using a material containing L i in the negative electrode, the phase containing F c 3 'is electrochemically inactive, the presence of the inert phase There is a possibility that the battery capacity is reduced. For this reason, it is preferable that the amount of Fe 3 present in LiFePO be as small as possible before the initial charging.
上述した面積強度 Aは L i F e P 中に存在する F e の存在 ft に、 面積強度 Bは L i F e P O 中に存在する F e の存在量に比例 する。 従って、 A / Bが 0 . 3未満である L i F e P O は、 F e 3 +の存在量が少なく、 この L i F e P を正極活物質と して含有す る非水電解質二次電池は、 高容量が実現される。 The area intensity A is proportional to the presence ft of Fe present in LiFeP, and the area intensity B is proportional to the amount of Fe present in LiFePO. Accordingly, A / B is 0. Less than 3 L i F e PO has less abundance of F e 3 +, a non-aqueous electrolyte secondary you containing the L i F e P as a positive electrode active material High capacity batteries are realized.
正極集電体と しては、 例えばアルミ二ゥム箔等が用いられる c 正極活物質層に含有される結合剤と しては、 この種の非水電解液 電池の正極活物質層の結合剤と して通常用いられている公知の樹脂 材料等を用いることができる。 It is a positive electrode current collector, for example, as a secondary aluminum © binders beam foil is contained in the c positive electrode active material layer used, the binding of the positive active material layer of nonaqueous electrolyte batteries of this type As the agent, a known resin material or the like generally used can be used.
正極缶 5は、 正極 4を収容するものであり、 また、 非水電解液電 池 1 の外部正極となる。  The positive electrode can 5 accommodates the positive electrode 4 and serves as an external positive electrode of the nonaqueous electrolyte battery 1.
セパレ一タ 6は、 正極 4と、 負極 2 とを離間させるものであり、 この種の非水電解液電池のセパレ一タと して通常用いられている公 知の材料を用いることができ、 例えばボリプロピレンなどの高分子 フィルムが用いられる。 また、 リチウムイオン伝導度とエネルギー 密度との関係から、 セバレ一タの厚みはできるだけ薄いことが必要 である。 具体的には、 セバレータの厚みは例えば 5 0 m以下が好 ましい。 The separator 6 separates the positive electrode 4 and the negative electrode 2 from each other, and can use a known material that is generally used as a separator of this type of nonaqueous electrolyte battery. For example, a polymer film such as polypropylene is used. The thickness of the separator should be as small as possible due to the relationship between lithium ion conductivity and energy density. It is. Specifically, the thickness of the separator is preferably, for example, 50 m or less.
絶縁ガスケッ ト 7は、 負極缶 3に組み込まれ一体化されている この絶縁ガスケッ 卜 7は、 負極缶 3及び正極缶 5内に充填された非 水電解液の漏出を防止するためのものである - 非水電解液と しては、 非プロ トン性非水溶媒に電解質を溶解させ た溶液を用いる。  The insulating gasket 7 is incorporated into and integrated with the negative electrode can 3. The insulating gasket 7 is for preventing the leakage of the nonaqueous electrolyte filled in the negative electrode can 3 and the positive electrode can 5. -As the non-aqueous electrolyte, use a solution in which an electrolyte is dissolved in a non-protonic non-aqueous solvent.
非水溶媒と しては、 例えばプロ ヒ レンカーボネー 卜、 エチレン力 ーボネー ト、 ブチレンカーボネー ト、 ビニレン力一ボネー ト、 γ — ブチノレラク トン、 スルホラン、 1 , 2 —ジメ 卜キシェタン、 1 , 2 ージエ トキシェタン、 2—メチルテ トラ ヒ ドロフラン、 3—メチル 1 , 3—ジォキソラン、 プロ ピオン酸メチル、 酪酸メチル、 ジメチ ノレ力一ポネー 卜、 ジェチルカ一ボネー 卜、 ジつ'口 ヒルカーボネ一 卜 等を使用することができる。 特に、 電圧安定性の点からは、 プ口ピ レンカーボネー ト、 ビニレンカーボネ一 卜等の環状力一ボネ一ト類、 ジメチノレカーボネー ト、 ジェチノレカーボネー 卜、 ジブ口 ピルカーボ ネ一 ト等の鎖状カーボネー ト類を使用することが好ましい。 また、 このような非水溶媒は、 1種類を単独で用いてもよいし、 2種類以 上を混合して用いてもよい。  Non-aqueous solvents include, for example, propylene carbonate, ethylene-carbonate, butylene carbonate, vinylene-force, γ-butynolactone, sulfolane, 1,2-dimethoxetane, 1,2-diethoxyxetane , 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl propionate, methyl butyrate, dimethyl alcohol, getylcabonate, lipstick hillcarbonate, etc. it can. In particular, from the viewpoint of voltage stability, annular force such as pyrene carbonate, vinylene carbonate, and the like, dimethinocarbonate, jetinore carbonate, jib mouth pillcarbonate, etc. It is preferable to use chain carbonates such as In addition, such a non-aqueous solvent may be used alone or as a mixture of two or more.
また、 非水溶媒に溶解させる電解質と しては、 例えば、 L i P F 6、 L i C 1 O L i A s F 6、 L i B F 、 L i C F 3 S O 3、 L i N ( C F a S O , ) 等のリチウム塩を使用することができる。 これら のリチウム塩の中でも、 L i P F π、 L i B F を使用することが好 ましい。 Further, as the electrolyte to be dissolved in the nonaqueous solvent, for example, L i PF 6, L i C 1 OL i A s F 6, L i BF, L i CF 3 SO 3, L i N (CF a SO ,) And the like can be used. Among these lithium salts, it is preferable to use Li PFπ and Li BF.
上述したし i x M P O を正極活物質と して用いた非水電解液電池 1 は、 例えば以下のようにして作製される。 Non-aqueous electrolyte battery using ix MPO as positive electrode active material 1 is produced, for example, as follows.
負極 2 と しては、 まず、 負極活物質と結着剤とを溶媒中に分散さ せてスラ リーの負極合剤を調製する。 次に、 得られた負極合剤を集 電体上に均一に塗布、 乾燥して負極活物質層を形成することによ り 負極 2が作製される。 上記負極合剤の結着剤と しては、 公知の結着 剤を用いることができるほか、 上記負極合剤に公知の添加剤等を添 加することができる。 また、 負極活物質となる金属リチウムをその まま負極 2と して用いることもできる c As the negative electrode 2, first, a negative electrode active material and a binder are dispersed in a solvent to prepare a negative electrode mixture of a slurry. Next, the obtained negative electrode mixture is uniformly applied on a current collector and dried to form a negative electrode active material layer, whereby negative electrode 2 is produced. As the binder for the negative electrode mixture, a known binder can be used, and a known additive or the like can be added to the negative electrode mixture. Further, metallic lithium as the negative electrode active material can be used as it is as negative electrode 2c
正極 4と しては、 まず、 正極活物質となる L i X M ... P O と結着剤 とを溶媒中に分散させてスラ リ一の正極合剤を調製する 次に、 得 られた正極合剤を集電体上に均一に塗布、 乾燥して正極活物質層を 形成することにより正極 4が作製される。 正極合剤の結着剤と して は、 公知の結着剤を用いることができるほか、 正極合剤に公知の添 加剤等を添加することができる。 As the positive electrode 4, first, Li x M ... PO as a positive electrode active material and a binder are dispersed in a solvent to prepare a slurry positive electrode mixture. The positive electrode 4 is produced by uniformly applying the positive electrode mixture on the current collector and drying to form a positive electrode active material layer. As the binder of the positive electrode mixture, a known binder can be used, and a known additive or the like can be added to the positive electrode mixture.
非水電解液は、 電解質塩を非水溶媒中に溶解することによ り調製 される。  A non-aqueous electrolyte is prepared by dissolving an electrolyte salt in a non-aqueous solvent.
そして、 負極 2を負極缶 3に収容し、 正極 4を正極缶 5に収容し、 負極 2 と正極 4 との間に、 ポリプ口ビレン製多孔質膜等からなるセ パレ一タ 6を配する。 負極缶 3及び正極缶 5内に非水電解液を注入 し、 絶縁ガスケッ ト 7を介して負極缶 3 と正極缶 5 とをかしめて固 定することにより、 非水電解液電池 1が完成する。  Then, the negative electrode 2 is accommodated in the negative electrode can 3, the positive electrode 4 is accommodated in the positive electrode can 5, and a separator 6 made of a porous film made of polypropylene is disposed between the negative electrode 2 and the positive electrode 4. . A non-aqueous electrolyte is poured into the negative electrode can 3 and the positive electrode can 5, and the negative electrode can 3 and the positive electrode can 5 are caulked and fixed via the insulating gasket 7, thereby completing the non-aqueous electrolyte battery 1. .
ところで、 本発明を適用した正極活物質の製造方法では、 オリ ビ ン構造を有し、 一般式 L i X M、- P (ただし、 X力; 0 . 9≤ X≤ 1 . 1 の範囲であり、 y力; 0 < y≤ 1 の範囲であり、 M力 3 d遷移金屈 を含有する。 ) で表される化合物、 例えば L i F e P〇 を以下に示 すよ うにして合成する。 By the way, in the method for producing a positive electrode active material to which the present invention is applied, the positive electrode active material has an olivine structure, and has a general formula L i X M, -P (X force; 0.9 ≤ X ≤ 1.1). Yes, y force; 0 <y ≤ 1 and contains M force 3 d transition gold bending.) The compound represented by, for example, Li Fe P〇 is shown below. Combine as before.
まず、 合成原料と して例えば酢酸鉄 ( F e ( C H , C O O ) ) と、 リ ン酸水素アンモニゥム (N im P O j と、 炭酸リチウム ( L i , C O ) とを所定比で混合して前駆体とする。 ここで、 合成原料の 混合は十分に行う。 合成原料を十分に混合することで、 各原料が均 一に混ざり合い、 接触点が増えるため、 従来より も低い温度で L i F e P O■·を合成することが可能になる。  First, as a raw material for synthesis, for example, iron acetate (Fe (CH, COO)), ammonium hydrogen phosphate (NimPOj), and lithium carbonate (Li, CO) are mixed at a predetermined ratio to form a precursor. Here, the raw materials for synthesis are sufficiently mixed In order to mix the raw materials for synthesis sufficiently, the raw materials are uniformly mixed and the number of contact points is increased, so that the L i F is lower than before. e PO ■ · can be synthesized.
次に、 この前駆体を窒素等の不活性ガス雰囲気中、 所定の温度で 焼成することにより、 L i F e P〇 が合成される。  Next, the precursor is calcined at a predetermined temperature in an atmosphere of an inert gas such as nitrogen to synthesize LiFeP〇.
従来、 L i F e ま例えば 8 0 0 °Cという比較的高温で焼成さ れていた。 焼成時の温度が高いと、 その分エネルギーを消費するこ とになり、 また、 反応装置等に与える負荷も大きかった。  Conventionally, LiFe has been fired at a relatively high temperature of 800 ° C., for example. When the temperature during firing was high, energy was consumed correspondingly, and the load on the reactor and the like was large.
そこで、 合成原料を十分に混合して前駆体と し、 窒素気流中で焼 成を行うことにより、 例えば 3 0 0 °Cという、 従来の 8 ◦ 0 Cに比 ベてはるかに低い温度で L i F e P〇 を合成することが可能となつ た。 つまり、 従来に比べてより広い温度範囲で L i F e P〇■·を合成 することが可能となり、 前駆体を焼成する温度 (以下、 焼成温度と 称する。 ) の選択の幅が広がった。 本発明者は、 前駆体を焼成する 焼成温度と、 L i F e P〇 を活物質と して用いた電池の容量との関 係に着目 し、 最適な L i F e P 0 4の焼成温度について検討した その結果、 L i F e P O の焼成温度は、 具体的には 4 0 0 °C以上、 7 0 0 °C以下の範囲とする。 又、 L i F e P O の焼成温度は 4 0 0 °C以上、 6 0 0 °C以下の範囲であることが好ましい。 Therefore, the raw materials for synthesis are sufficiently mixed to form a precursor, and the precursor is calcined in a nitrogen stream, so that L is obtained at a temperature of, for example, 300 ° C, which is much lower than the conventional temperature of 8 ° C. It has become possible to synthesize i FeP〇. In other words, it has become possible to synthesize LiFeP〇 ■ · over a wider temperature range than in the past, and the range of selection of the precursor firing temperature (hereinafter referred to as firing temperature) has been broadened. The present inventor has a firing temperature for firing the precursor, L i F e P_〇 focused on relationship between the capacitance of the battery using as an active material, sintering of the optimal L i F e P 0 4 As a result of examining the temperature, the firing temperature of LiFePO is specifically set in a range of 400 ° C. or more and 700 ° C. or less. The firing temperature of LiFePO is preferably in the range of 400 ° C. or more and 600 ° C. or less.
L i F e P O の焼成温度が 4 0 0 °Cより も低いと、 不純物である 3価の鉄化合物等、 即ち F e を含む相が存在し、 均一な L i F e P O を得ることができない ΰ また、 L i F e Ρ O の焼成温度が 7 0 0 より も高いと、 結晶化が過剰に進行してしまい、 不純物の析 出が抑えられない虞がある。 If the sintering temperature of LiFePO is lower than 400 ° C, a trivalent iron compound or the like as an impurity, that is, a phase containing Fe exists, and a uniform LiFe If PO cannot be obtained. Also, if the firing temperature of LiFeO is higher than 700 , crystallization proceeds excessively, and the precipitation of impurities may not be suppressed.
なお、 上述した正極活物質の製造方法において、 前駆体を焼成す る前に、 前駆体中に対して脱空気処理を施して、 前駆体中に含有さ れる空気を除去することが好ましい.  In the above-described method for producing a positive electrode active material, it is preferable to remove air contained in the precursor by subjecting the precursor to a deaeration treatment before firing the precursor.
前駆体中に空気が残存していると、 L i F e P〇 の焼成時に、 2 価の鉄化合物である酢酸鉄中の F e ^が、 当該空気中の酸素によつ て酸化されて F e 3 となってしまう。 その結果、 不純物である 3 ΙιΙΙί の鉄化合物が生成物の L i F e P O 中に混入してしまう。 脱空気処 理により、 前駆体中に含まれる空気を除去することで、 酢酸鉄中のIf air remains in the precursor, F e ^ in iron acetate, which is a divalent iron compound, is oxidized by oxygen in the air when Li Fe P〇 is calcined. It becomes F e 3 . As a result, an impurity of 3ΙιΙΙί iron compound is mixed into the product LiFePO. By removing the air contained in the precursor by deairing, the iron acetate
F e 2 の酸化を防ぐことができる。 その結果、 3価の鉄化合物が生 成物の L i F e Ρ〇 中に混入せず、 単相の L i F e P O を得るこ とができる。 Oxidation of F e 2 can be prevented. As a result, a single-phase LiFePO can be obtained without the trivalent iron compound being mixed into the product LiFe e.
また、 L i F e P 0 4の合成原料と しては、 上述した化合物以外に も、 水酸化リチウム、 硝酸リチウム、 酢酸リチウム、 リ ン酸リチウ ム、 リ ン酸第一鉄、 酸化第一鉄等、 種々の原料を用いることができ るが、 4 0 0 °C以上、 7 0 0 °C以下という比較的低温で焼成するた めには、 反応性の高い原料を用いることが好ましい。 Also, L i is the F e P 0 4 starting materials for synthesis, in addition to compounds described above, lithium hydroxide, lithium nitrate, lithium acetate,-phosphate lithium, ferrous-phosphate, cuprous oxide Although various raw materials such as iron can be used, in order to perform firing at a relatively low temperature of 400 ° C. or more and 700 ° C. or less, it is preferable to use a highly reactive raw material.
上述のようにして作製された非水電解液二次電池 1は、 正極活物 質と してし i x M y P〇 を含有する。 Non-aqueous electrolyte secondary battery 1 which is manufactured as described above contain i x M y P_〇 to as the positive electrode active substance.
この正極活物質は、 粒子径が ] Ο μ ΐΏ以下である L i x M 、 P〇 を 含むので、 電荷担体であるリチウムの拡散が十分に起こるために適 した粒度分布を有するものとなる。 従って、 非水電解液二次電池 1 と しては、 リチウムのド一プ /脱ド一プが良好に行われるので、 優 れたサイクル特性及び高容量を有するものとなる Since this positive electrode active material contains L x M and P〇 having a particle size of not more than] ΟμΟ, it has a particle size distribution suitable for sufficiently diffusing lithium as a charge carrier. Therefore, as the non-aqueous electrolyte secondary battery 1, lithium doping / de-doping is performed favorably, so that it is excellent. With excellent cycle characteristics and high capacity
また、 この正極活物質は、 1 0 %体積累積径が 1 μ m以下である L i xM、 P〇 を含むことによ り、 電荷担体であるリチウムの拡散が より 円滑に起こるために適した粒度分布を有するものとなる 従つ て、 非水電解液二次電池 ]. と しては、 リチウムの ド一ブ /脱ド一フ がよ り良好に行われるので、 より優れたサイクル特性及び高容量を 有するものとなる。 In addition, since the positive electrode active material contains Li x M and P〇 having a 10% volume cumulative diameter of 1 μm or less, diffusion of lithium as a charge carrier occurs more smoothly. Therefore, the non-aqueous electrolyte secondary battery has a better cycle characteristic because the lithium doping / de-doughing is performed better. And high capacity.
上述したような正極活物質の製造方法では、 一般式 L i M P O で表される化合物と して、 例えば L i F e P O の合成原料を混合 して前駆体と し、 この前駆体を 4 0 0 °C以上、 7 0 0 °C以下の範囲 である温度で焼成するので、 化学反応と結晶化とが均一に進行し、 且つ結晶化が過度に進行しない。 これにより、 正極活物質と しては、 不純物が無く、 単相の L i F e P O が得られる。 従って、 この正極 活物質は、 従来の非水電解質二次電池の 1 2 O mA h / gを上回る 高容量を実現することができる。  In the method for producing a positive electrode active material as described above, as a compound represented by the general formula Li MPO, for example, a raw material obtained by mixing a synthesis raw material of LiFePO is used as a precursor. Since calcination is performed at a temperature in the range of 0 ° C. or more and 700 ° C. or less, chemical reaction and crystallization proceed uniformly, and crystallization does not excessively proceed. As a result, as the positive electrode active material, a single-phase LiFePo is obtained without any impurities. Therefore, this positive electrode active material can realize a high capacity exceeding the 12 OmAh / g of the conventional nonaqueous electrolyte secondary battery.
また、 L i F e P〇·>の焼成温度を 4 0 0°C以上、 6 0 0°C以下の 範囲とすることによ り、 L i F e P O 理論容量である 1 7 0 m A h / gに迫る高い実容量を実現することができる。 Also, L i F e P_〇 &> sintering temperature 4 0 0 ° C or more, Ri by the fact that the 6 0 0 ° C or less in the range, L i F e PO theoretical a capacitance 1 7 0 m A High real capacity approaching h / g can be realized.
なお、 本発明に係る正極活物質は、 上述したような L i F e P O に限らず、 一般式 L i M y P O で表される化合物にも適用される。 さらに、 本発明に係る非水電解質二次電池の構成も、 上述したよ うな構成に限定されず、 非水電解質と して、 固体電解質や、 膨潤溶 媒を含有するゲル状の固体電解質を用いた場合にも適用可能である また、 本発明に係る非水電解質二次電池は、 円筒型、 角型、 コイン 型、 ボタン型等、 その形状については特に限定されることはなく、 】8 また、 薄型、 大型等の種々の大きさ:こすることができる: Incidentally, the positive electrode active material according to the present invention is not limited to the above-mentioned L i F e PO, also applies to the compounds represented by the general formula L i M y PO. Further, the configuration of the non-aqueous electrolyte secondary battery according to the present invention is not limited to the configuration described above, and a solid electrolyte or a gel solid electrolyte containing a swelling solvent may be used as the non-aqueous electrolyte. The shape of the non-aqueous electrolyte secondary battery according to the present invention is not particularly limited, such as cylindrical, square, coin, and button types. 8 Also, various sizes such as thin and large: can be rubbed:
また、 正極活物質の製造方法において、 L i F e P〇;の合成原料 となる化合物の粉末を混合して焼成する固相反応による方法を例:こ 挙げて説明したが、 本発明はこれに限定されるものではなく、 固相 反応又は固相反応以外の種々の化学合成法を適用して一般式 L i 、 1 P 0 4で表される化合物を合成することができる。 Also, in the method for producing the positive electrode active material, a method based on a solid phase reaction in which powder of a compound as a raw material for synthesis of LiFeP〇; is mixed and fired has been described as an example. is not limited to, can be synthesized general formula L i, 1 P 0 4 represented by compound by applying the solid-phase reaction or a solid-phase reaction various chemical synthesis methods other than.
以下、 本発明を適用した具体的な実施例及び比較例について、 実 験結果に基づいて説明する。  Hereinafter, specific examples and comparative examples to which the present invention is applied will be described based on experimental results.
く実験 1 〉 Experiment 1〉
実験 1では、 一般式 L i χ Μ ,. Ρ Ο で表される化合物を正極活物 と して作製し、 この正極活物質を用いた非水電解液二次電池をテス トセルと して作製し、 種々の特性を評価した。  In Experiment 1, a compound represented by the general formula L i χ,, .Ρ Ο 作 製 was prepared as a positive electrode active material, and a nonaqueous electrolyte secondary battery using this positive electrode active material was prepared as a test cell. Then, various characteristics were evaluated.
先ず、 正極活物質の粒度分布の相違による非水電解液二次電池の 特性の違いを評価するため、 焼成温度を変えて正極活物質を合成し た。 次に、 これを用いてテス トセルを作製した  First, in order to evaluate the difference in the characteristics of the nonaqueous electrolyte secondary battery due to the difference in the particle size distribution of the positive electrode active material, the sintering temperature was changed to synthesize the positive electrode active material. Next, a test cell was fabricated using this.
サンプル 1  Sample 1
まず、 正極活物質と して L i F e Ρ Ο を、 焼成温度を 6 0 0で して合成した。  First, LiFe e as a positive electrode active material was synthesized at a firing temperature of 600 °.
L i F e P〇 を合成するには、 まず、 結晶子サイズの大きい原料 のリ ン酸ニ水素アンモニゥム (Ν I-し I I , Ρ Ο , ) を予め十分に粉砕し た。 次に、 酢酸鉄 (F e ( C H C O O ) ,· ) と、 リ ン酸二水素アン モユウム ( N Iし H 2 P O ) と、 炭酸リチウム ( L C〇 ) とを、 モル比が 2 : 2 : 1 になるように十分に混合して前駆体と した c 次に、 窒素雰囲気下、 前駆体を 3 0 0 °Cで 1 2時問の仮焼きを行 つた後、 窒素雰囲気下、 前駆体を 6 0 0 °Cで 2 4時間焼成すること により L i F e P〇 を合成した c To synthesize LiFeP〇, first, ammonium dihydrogen phosphate (ΝI-ΝII, ΡΡ,) as a raw material having a large crystallite size was sufficiently pulverized in advance. Next, the molar ratio of iron acetate (F e (CHCOO),...), Ammonium dihydrogen phosphate (NI and H 2 PO), and lithium carbonate (LC〇) was changed to 2: 2: 1. made in sufficient mixed to the precursor c Next, under a nitrogen atmosphere, after one row calcining of 1 2 more hours at precursor 3 0 0 ° C, under a nitrogen atmosphere, precursor 6 0 Bake at 0 ° C for 24 hours C obtained by combining the L i F e P_〇 by
そして、 上述のようにして得られた L i F e P O 4を正極活物質と して用いて電池を作製した::  Then, a battery was prepared using Li FePO 4 obtained as described above as a positive electrode active material:
まず、 正極活物質と して乾燥したし i F e P O を 7 0重量%と、 導電剤と してアセチレンブラックを 2 5重量%と、 結着剤と してボ リ フッ化ビニリデンを 5重量%とを、 溶媒と してジメチルホルムァ ミ ド中に均一に混合してペース ト状の正極合剤を調製した。 なお、 ポリ フッ化ビニリデンには、 ァルドリ ツチ社製の # 1 3 0 0を用レヽ た。  First, 70% by weight of dried iFePO as a positive electrode active material, 25% by weight of acetylene black as a conductive agent, and 5% by weight of vinylidene fluoride as a binder % Was uniformly mixed with dimethylformamide as a solvent to prepare a paste-like positive electrode mixture. The polyvinylidene fluoride used was # 130 from Aldrich.
次に、 この正極合剤を集電体となるアルミニウムメ ッシュ上に塗 布し、 乾燥アルゴン雰囲気下、 1 0 o °cで 1時間乾燥して正極活物 質層を形成した。  Next, this positive electrode mixture was applied on an aluminum mesh serving as a current collector, and dried at 10 ° C. for 1 hour under a dry argon atmosphere to form a positive electrode active material layer.
そして、 正極活物質層が形成されたアルミニウムメ ッシュを、 直 径 1 5 m mの円板状に打ち抜く ことによりペレツ ト状の正極と した。 なお、 この正極 1個には、 6 0 m gの活物質が担持されている。 次に、 リチウム金属箔を正極と略同形に打ち抜く ことによ り負極 と した。  Then, the aluminum mesh on which the positive electrode active material layer was formed was punched into a disk having a diameter of 15 mm to form a pellet-shaped positive electrode. One positive electrode carries 60 mg of an active material. Next, a lithium metal foil was punched into the same shape as the positive electrode to form a negative electrode.
次に、 プロ ピレンカーボネ一 ト とジメチル力一ボネー ト との等容 量混合溶媒に、 L i P F 6を l m o l / ] の濃度で溶解させることに より非水電解液を調製した。 Next, the isochoric amount mixed solvent of pro Pirenkabone one preparative and dimethyl force one Bone bets, to prepare a more nonaqueous electrolytic solution L i PF 6 to be dissolved at a concentration of I mol /].
以上のようにして得られた正極を正極缶に収容し、 負極を負極缶 に収容し、 正極と負極との問にセパレータを配した。 正極缶及び負 極缶内に非水電解液を注入し、 正極缶と負極缶とをかしめて固定す るこ とによ り、 2 0 2 5型のコィン型テス トセルを作製した。  The positive electrode obtained as described above was accommodated in a positive electrode can, the negative electrode was accommodated in a negative electrode can, and a separator was disposed between the positive electrode and the negative electrode. A non-aqueous electrolyte solution was injected into the positive and negative electrode cans, and the positive and negative electrode cans were caulked and fixed, whereby a coin-type 250-inch test cell was manufactured.
サンプル 2 焼成温度を 4 0 0 °Cと したこと以外は、 サンブル 1 と同様にして 正極活物質を合成し、 この正極活物質を用いて、 テス トセルを作製 サンブ レ 3 Sample 2 A positive electrode active material was synthesized in the same manner as in Sample 1, except that the firing temperature was set at 400 ° C, and a test cell was prepared using this positive electrode active material.
焼成温度を 5 0 0 °Cと したこと以外は、 サンプル 1 と同様にして 正極活物質を合成し、 この正極活物質を用いて、 テス 卜セルを作製 した。  A positive electrode active material was synthesized in the same manner as in Sample 1, except that the firing temperature was set to 500 ° C., and a test cell was prepared using this positive electrode active material.
サ プ /ヒ 4- 焼成温度を 7 0 0 °Cと したこと以外は、 サンブル 1 と同様にして 正極活物質を合成し、 この正極活物質を用いて、 テス 卜セルを作製 した。  A positive electrode active material was synthesized in the same manner as in Sample 1 except that the firing temperature was set at 700 ° C., and a test cell was prepared using this positive electrode active material.
サンプノレ 5  Sampnolle 5
焼成温度を 8 0 0 °Cと したこと以外は、 サンプル 1 と同様にして 正極活物質を合成し、 この正極活物質を用いて、 テス トセルを作製 次に、 上述したよ うな方法により合成された正極活物質である L i F e Ρ〇4について、 粉末 X線回折バタ一ンを測定した。 粉末 X線 回折の測定条件をつぎに示す。 A positive electrode active material was synthesized in the same manner as in Sample 1 except that the firing temperature was 800 ° C, and a test cell was prepared using this positive electrode active material. For the positive electrode active material Li Fe 4 , the powder X-ray diffraction pattern was measured. The measurement conditions of powder X-ray diffraction are shown below.
使用装置 : リガク R I N T 2 5 0 0回転対陰極  Equipment used: Rigaku RINT 250
X線 : C u K tt , 4 0 k V , 1 0 0 m A  X-ray: CuK tt, 40 kV, 100 mA
ゴニォメータ : 縦型標準、 半径 1 8 5 m m  Goniometer: Vertical standard, radius 18.5 mm
カウンタモノクロメータ :使用  Counter monochromator: Used
フィルタ : 使用しなレヽ  Filter: Not used
スリ ッ ト幅 :  Slit width:
ダイバ一ジェン トスリ ッ ト ( D S ) = 1。 レシ一ビングス リ ッ ト ( R S ) = 1 ° Divergent slit (DS) = 1. Receiving slit (RS) = 1 °
スキヤッタ リ ングス リ ッ ト ( S S ) = 0. 1 o mm  Skuttering slit (S S) = 0.1 o mm
計数装置 : シンチレ一シヨ ンカ ウンタ  Counting device: Scintillation counter
測定法 : 反射法、 連続スキャン  Measurement method: Reflection method, continuous scan
走査範囲 : 2 G = 1 0 〜 8 0  Scan range: 2 G = 10 to 80
スキャンスピー ド : 4 c Z分 Scan speed de: 4 c Z min
サンブル 1〜サンプル 5で合成された L i F e P O 4の粉末 X線叵 1 折パターンを図 2に示す。 図 2から、 サンプル 1〜サンプル 5で合 成された L i F e P〇 では、 生成物中に L i F e P〇 以外の不純 物の存在は確認されず、 いずれも単相の L i F e P O が得られてい ること力 Sゎカゝる。 Powder X Sen叵1 folding pattern of Samburu. 1 to L i synthesized in samples 5 F e PO 4 shown in FIG. From Fig. 2, in Li FeP e synthesized in Samples 1 to 5, the presence of impurities other than LiFeP e in the product was not confirmed. The ability to obtain F e PO S
次に、 サンプル 1〜サンプル 5で作製されたテス トセルについて、 充放電試験を行った。 まず、 各テス トセルに対して定電流充電を行 レ、、 電池電圧が 4. 5 Vになった時点で、 定電流充電から定電圧充 電に切り替えて、 電圧を 4. 5 Vに保ったまま充電を行った。 そし て、 電流が 0. 0 1 m A/ c 以下になった時点で充電を終了させ た。 その後、 放電を行い、 電池電圧が 2. 0 Vまで低下した時点で 放電を終了させた。 なお、 充電時、 放電時ともに常温 ( 2 3 °C) で 行い、 このときの電流密度は 0. 1 2 mA/ c m2と した。 Next, charge / discharge tests were performed on the test cells fabricated in Samples 1 to 5. First, constant current charging was performed on each test cell, and when the battery voltage reached 4.5 V, switching from constant current charging to constant voltage charging was performed, and the voltage was maintained at 4.5 V. The battery was charged as it was. The charging was terminated when the current became less than 0.01 mA / c. Thereafter, discharging was performed, and the discharging was terminated when the battery voltage dropped to 2.0 V. Both charging and discharging were performed at room temperature (23 ° C), and the current density at this time was 0.12 mA / cm 2 .
充放電試験の結果と して、 サンプル 1〜サンプル 5で合成された L i F e P O 4の焼成温度と、 電池の充放電容量との関係を図 3に 示す。 図 3より、 非水電解液二次電池は、 正極活物質である L i F e P O 4を 4 0 0 °C以上、 7 0 0 °C以下の範囲で焼成することで、 高 容量を備えるものとなることがわかった。 また、 非水電解液二次電 池は、 前駆体の焼成温度が 4 0 0 °C以上、 6 0 0 °C以下である場合 には、 非常に高い容量を備えたものとなることがわかった = 次に、 サンプル 1 〜サンプル 5で合成された正極活物質について、 体積粒度分布測定を行った。 体積粒度分布の測定装置と しては、 マ イク口 トラック粒度分析計 L A— 9 2 0 (堀場製作所社製) を使用 した。 この測定装置を用い、 レーザ光の散乱を測定することで、 体 積粒度分布を測定した 体積粒度分布の測定結果を図 4に示す- 図 4からわかるよ うに、 焼成温度が 6 0 0 °Cより大きい場合には、 粒子径が 1 0 mよ り大きい L i F e P の体積分布は、 分布の中 心を大粒子側にシフ 卜 しつつ増大している。 また、 粒子径が 1 0 m以下である L i F P O の体積分布は、 顕著に減少しているし 一方、 焼成温度が 6 0 0 °C以下である場合には、 粒子径が 1 0 μ m以下である L i F e Ρ Ο の体積分布は、 分布の中心を小粒子側に シフ ト しつつ増大している c As a result of the charge / discharge test, Fig. 3 shows the relationship between the firing temperature of LiFePO4 synthesized in Samples 1 to 5 and the charge / discharge capacity of the battery. Than 3, the nonaqueous electrolyte secondary battery, the L i F e PO 4 as a positive electrode active material 4 0 0 ° C or higher, by firing in the range of 7 0 0 ° C or less, and a high capacity It turned out to be something. In the case of a nonaqueous electrolyte secondary battery, the firing temperature of the precursor is not less than 400 ° C and not more than 600 ° C. It was found that the sample had a very high capacity. = Next, the volumetric particle size distribution of the cathode active materials synthesized in Samples 1 to 5 was measured. As a device for measuring the volume particle size distribution, a microphone mouth track particle size analyzer LA-920 (manufactured by Horiba Ltd.) was used. The measurement results of the volume particle size distribution obtained by measuring the scattering of the laser beam using this measuring device are shown in Fig. 4.- As can be seen from Fig. 4, the firing temperature was 600 ° C. If it is larger, the volume distribution of Li FeP with a particle size larger than 10 m increases while shifting the center of the distribution to the large particle side. In addition, the volume distribution of Li FPO with a particle size of 10 m or less is remarkably reduced, while when the firing temperature is 600 ° C or less, the particle size is 10 μm. volume distribution of at which L i F e Ρ Ο below, c are increased while shifting the center of the distribution to smaller particles
図 4に示す体積粒度分布の結果、 及び図 3に示す焼成温度と電池 の充放電容量との関係の結果より、 電池の容量に寄与しているのは、 1 0 m以下の L i F e P O 4粒子であることがわかった。 From the results of the volume particle size distribution shown in Fig. 4 and the result of the relationship between the firing temperature and the charge / discharge capacity of the battery shown in Fig. 3, it is concluded that Li It was found to be PO 4 particles.
これより、 非水電解液二次電池は、 正極活物質と して粒子径が 1 0 μ m以下である L i F e P〇 を含有することにより、 非常に高い 容量を有するものとなることがわかつた。  Thus, the nonaqueous electrolyte secondary battery has a very high capacity by containing LiFeP〇 with a particle size of 10 μm or less as the positive electrode active material. I'm sorry.
ここで、 体積粒度分布測定の結果から、 L i F e P O の焼成温度 と体積累積径との関係を図 5に示す。 図 5から、 L i F e P O の粒 子径と、 L i F e P O の焼成温度との問に明確な相関関係があるこ とが読みとれる。 そこで、 図 5において、 粒子径が 0 . 1 〜 ] 0 μ mの範囲を拡大して表したものを、 図 6に示す c Here, from the results of the volume particle size distribution measurement, FIG. 5 shows the relationship between the firing temperature of LiFePO and the volume cumulative diameter. From FIG. 5, it can be seen that there is a clear correlation between the question of the particle size of LiFePO and the firing temperature of LiFePO. Therefore, in FIG. 5, those in which the range in particle diameter of 0. 1 ~] 0 μ m , c shown in FIG. 6
図 6からわかるよ うに、 L i F e P O の焼成温度が 6 0 0 °C以下 である場合には、 粒子径が 1 μ m以下である L i F c P O が、 1 0 %以上を占めていることが判る。 一方、 L i F e P O の焼成温度が 6 0 ◦ °Cより大きい場合には、 L i F e P O の粒子径が】 /i m以下 である L i F e P O は、 1 0 %未満である = As can be seen from Fig. 6, the sintering temperature of LiFePO was 600 ° C or less. In the case of, it is understood that Li F c PO having a particle diameter of 1 μm or less accounts for 10% or more. On the other hand, when the firing temperature of LiFePO is higher than 60 ° C, the LiFePO having a particle size of LiFePO of less than] / im is less than 10%. =
図 6に示す L i F e P O の焼成温度と体積累積径 (粒子径が 0. 1 〜 1 0 mの範囲) との関係の結果、 及び図 3に示す焼成温度と 電池の充放電容量との関係の結果より、 非水電解液二次電池は、 正 極活物質と して 1 0 %体積累積径が 1 μ m以下である L i F e P O ■>を含有することが好ましく、 これにより、 L i F e P O 理論容量 に迫る高い実容量を有するものとなることがわかつた c The results of the relationship between the firing temperature of LiFePO shown in Fig. 6 and the cumulative volume diameter (particle size in the range of 0.1 to 10 m), and the firing temperature and the charge / discharge capacity of the battery shown in Fig. 3 From the results of the relationship, it is preferable that the non-aqueous electrolyte secondary battery contains, as a positive electrode active material, Li Fe PO ■> having a 10% volume cumulative diameter of 1 μm or less. the, L i F e PO c which can become to have a high real capacity approaching to the theoretical capacity was divide
また、 L i F e P の焼成温度が 5 0 O :、 6 0 0 °C、 7 0 0 °C であるサンプル 3, サンプル 1、 サンプル 4の正極活物質に対して、 走査顕微鏡による観察を行った。 各々の走査顕微鏡写真を図 7、 図 8、 図 9に示す。 これらの図 7、 図 8、 図 9からわかるように、 L i F e P 04は、 焼成温度の上昇に伴って特異的に成長し、 巨大粒子 となることが明らかである。 これは、 図 5に示した体積粒度分布の 結果とも良く対応している。 これより、 L i F e P O は、 焼成温度 が高くなるにつれて結晶化が進行することがわかった。 Scanning microscope observations were performed on the positive electrode active materials of Sample 3, Sample 1, and Sample 4 in which the firing temperature of LiFeP was 500 O :, 600 ° C, and 700 ° C. went. Figures 7, 8, and 9 show the scanning micrographs of each. These Figures 7, 8, as can be seen from Figure 9, L i F e P 0 4 is specifically grow with increasing calcination temperature, it is clear that the macroparticles. This corresponds well with the result of the volume particle size distribution shown in Fig. 5. From this, it was found that crystallization of LiFePO4 progressed as the firing temperature increased.
また、 サンプル 1〜サンプル 5で合成された L i F e P O につい て、 B E T比表面積を測定した。 Β Ε Τ比表面積の測定結果を図 1 0に示す。 なお、 図 1 0ででは、 サンプル 1〜サンプル 5以外にも 焼成温度をさらに細かく変化させた L i F e P O こついても測定を 行い、 併記している。  The BET specific surface area of Li FePO synthesized in Samples 1 to 5 was measured. Figure 10 shows the measurement results of the specific surface area. In addition, in FIG. 10, in addition to Samples 1 to 5, measurement was also performed on LiFePO with the firing temperature changed more finely, and the results are also shown.
図 1 0より、 L i F e P O の焼成温度が高くなるにつれ、 B E T 比表面積は単調に変化しており、 その変化幅も 2 0 m2Z g以上から 0 . 5 m g以下までと非常に大きいことがわかる: As can be seen from Fig. 10, the BET specific surface area monotonically changes as the sintering temperature of LiFePO increases, and the range of change is from 20 m2Zg or more. It turns out to be very large, up to 0.5 mg or less:
そして、 図 1. 0と、 L i F e P O の焼成温度と放電容量との関係 を示した図 3 とを比較すると、 正極活物質である L i F e P〇 の B E T比表面積が 0 . 5 m 2 / g以上、 より好ましくは 2 m 2 Z g以上 のときに、 L i F e P O の理論容量に迫る高い実容量を有している こと力 っ力、る = Then, Figure 1. a 0, L i F e When PO comparing firing temperature and 3 showing the relationship between discharge capacity, L i F BET specific surface area of e P_〇 is 0 as a cathode active material. 5 m 2 / g or more, more preferably at least 2 m 2 Z g, L i F e this and force Tsu force has a high real capacity approaching to the theoretical capacity of the PO, Ru =
次に、 正極活物質の最適な焼成温度を検討するために、 従来より 低い焼成温度で正極活物質を合成し、 これを用いてテス 卜セルをサ ンプル 6 と して作製した。  Next, in order to study the optimal firing temperature of the positive electrode active material, a positive electrode active material was synthesized at a lower firing temperature than before, and a test cell was prepared as sample 6 using this.
サンプル 6  Sample 6
焼成温度を 3 2 0 ¾と したこと以外は、 サンプル 1 と同様にして L i F e P O を合成し、 得られた L i F e P 0 4を正極活物質と し て用いて、 テス トセルを作製した Except that the firing temperature and 3 2 0 ¾, the procedure of sample 1 was synthesized L i F e PO, the L i F e P 0 4 obtained using as a cathode active material, Tess Toseru Made
このサンプル 6で合成された正極活物質、 及びサンプル 1 、 5で 合成された正極活物質である L i F e P〇 ,こついて、 まず、 粉末 X 線回折パターンを測定した。 この測定結果を図 1 1 に示す。 図 1 1 より、 サンブル 1 、 5、 6で合成された L i F e P O では、 生成物 中に L i F e P〇 以外の不純物の存在は確認されず、 何れも単相の L i F e P O が得られていることがわかる。  First, the powder X-ray diffraction pattern was measured for the positive electrode active material synthesized in Sample 6 and the positive electrode active material LiFeP〇 synthesized in Samples 1 and 5. Figure 11 shows the measurement results. According to Fig. 11, the presence of impurities other than LiFeP〇 in the product of LiFePO synthesized in samples 1, 5, and 6 was not confirmed. It can be seen that e PO has been obtained.
次に、 サンプル 1 、 5、 6において作製されたテス トセルについ て、 充放電試験を行った。  Next, charge / discharge tests were performed on the test cells fabricated in Samples 1, 5, and 6.
サンプル 1の電池の充放電特性を図 1 2に示す。 図 1 2より、 前 駆体を 6 0 0 °Cで焼成したし i F e P O を正極活物質と して用いた サンプル 1 の電池では、 3 . 4 V付近に平坦な電位を有しているこ とがわかる。 また、 この電池では、 ] 6 3 m A h / g という可逆充 放電容量を発生している: この 1 6 3 m A h / g という値は、 L i F e P O 理論容量である 1 7 0 m A h Z gに迫るものである。 Figure 12 shows the charge and discharge characteristics of the sample 1 battery. According to Fig. 12, the battery of Sample 1 in which the precursor was fired at 600 ° C and iFePO was used as the positive electrode active material had a flat potential around 3.4 V. You can see that there is. In addition, this battery has a reversible charge of 63 mAh / g. Discharge capacity is generated: This value of 163 mAh / g is close to the theoretical capacity of LiFePO, which is 170 mAhZg.
サンプル 1 の電池について、 サイクル回数と充放!!容量との関係 を図 1. 3に示す。 図 1 3から、 充放電容量のサイクル劣化は◦ . 1 % /サイクルと極めて少なく、 安定した電池特性が得られているこ と力 わ力、る  Cycle times and charge / discharge for sample 1 battery! ! Figure 1.3 shows the relationship with the capacity. From Fig. 13, it can be seen from Fig. 13 that the cycle deterioration of the charge / discharge capacity is extremely small at 1% / cycle, and that stable battery characteristics are obtained.
一方、 サンプル 5の電池では、 図 1 4に示すように、 得られる充 放電容量はごく小さいことがわかる。 これは、 L i F e P O の焼成 温度が 8 0 0 °Cと高いため、 結晶化が過剰に進行してしまレ、、 L i F e P O 粒子内でのリチウムの拡散が十分に起こらないためと考え られる。  On the other hand, in the battery of Sample 5, as shown in FIG. 14, the obtained charge / discharge capacity is very small. This is because the sintering temperature of LiFePO is as high as 800 ° C, so that crystallization proceeds excessively, and lithium does not diffuse sufficiently in the LiFePO particles. Probably because of.
また、 サンプル 6の電池では、 図 1 5に示すように、 十分な充放 電容量が得られていないことがわかる。 これは、 焼成温度が 3 2 0 °Cと低い場合、 不純物である 3価の鉄化合物等、 即ち F e ^を含む 相が L i F e P O 中に存在してしまうためと考えられる。  In addition, as shown in Fig. 15, the battery of sample 6 does not have sufficient charge / discharge capacity. This is presumably because when the firing temperature is as low as 320 ° C., a trivalent iron compound or the like as an impurity, that is, a phase containing Fe ^ is present in LiFePO.
上述の結果より、 正極活物質と して L i F e P〇 は、 焼成温度を 4 0 0 以上、 7 0 0 °0以下の範囲とすることにより、 高容量を実 現し得ることがわかった。  From the above results, it was found that LiFeP〇 as a positive electrode active material can achieve high capacity when the firing temperature is in the range of 400 or more and 700 ° 0 or less. .
また、 4 0 0 °C以上、 6 0 0 °C以下の範囲で L i F e P〇 を焼成 することで、 従来の非水電解液二次電池の 1 2 0 m A h / gを上回 る高い実容量が実現されることがわかった。  By firing LiFeP〇 in the range of 400 ° C or more and 600 ° C or less, the 120 mAh / g of the conventional nonaqueous electrolyte secondary battery can be increased. It was found that a high actual capacity was realized.
さ らに、 M n C〇3を原料に加え、 同様の方法により焼成すること でし i ( n F e ) Ρ Ο を作製した。 図 .1 6に得られた L i ( M n F e u . ) P O■<の X線回折図を示す„ 図 1 6力ゝら、 L i (M n F e 0. ,) P は不純物を含まず単相のオリ ビン構造とな つてレヽることがわかる。 Et al is added M n C_〇 3 to starting material was prepared was i (n F e) Ρ Ο firing by the same method. Fig.1 6 obtained L i (M n F e u .) PO ■ < of an X-ray diffraction diagram "1 6 forceゝal, L i (M n F e 0.,) P is an impurity And a single-phase olivine structure You can see how it works.
また、 6 0 0 CCで焼成して得られた L i (M n。 · e F e u. -, ) P O を用いて同様に作製された電池の充放電特性を図 1 7に示すし 図 1 7力、ら、 丄 5 0 m A h / g とレ、う高容量が得られているだけでなく、 新たに 4 V付近での容量が観察されており、 これによりエネルギー 密度を向上させることが出来る。 Also, 6 0 0 C C in the firing-obtained L i (M n · e F e u -..,) To 1 7 charge and discharge characteristics of a battery fabricated in the same manner by using a PO Fig. 17 Not only a high capacity of about 50 mA Ah / g was obtained, but also a capacity near 4 V was newly observed, thereby improving the energy density. Can be done.
また、 6 0 0 °Cで焼成して得られた L i ( n F e ,) P O の粒度分布測定結果を図 1 8に示す。 図 1 8から、 L i (M n F e u ,) P O は粒径が 1 0 μ m以下のものを含み、 1 0 %体積累 積径も 1 m以下の範囲に入っていることがわかる FIG. 18 shows the results of measuring the particle size distribution of Li (nF e) PO obtained by firing at 600 ° C. Figures 1 8, L i (M n F e u,) PO include those particle size of less than 1 0 mu m, it is seen that contained in the range 1 0% volume cumulative Seki径be 1 m
<実験 2 > <Experiment 2>
実験 2では、 上述した実験 1で作製した正極活物質のうち、 メス バゥァ効果の観測される F eを含有し、 焼成温度が 3 2 0 °Cである サンプル 6、 焼成温度が 4 0 0 °Cであるサンブル 2、 焼成温度が 6 0 0 °Cであるサンプル ] のし i F e P O に対して、 メ スバウア分光 法を用いてメスバウアスペク トルを測定した c In Experiment 2, among the positive electrode active materials prepared in Experiment 1 described above, Sample 6 containing Fe for which the Mossbaer effect was observed and having a firing temperature of 320 ° C, and a firing temperature of 400 ° C is C Samburu 2, with respect to the firing temperature is 6 0 0 ° C sample Works i F e PO, was measured Mössbauer spectrum with main Subaua spectroscopy c
メスバウアスぺク トルを測定する際には、 厚みが 0. 5 mmであ り、 直径が 1 5 mmであるホールを有する鉛板のホール部に、 試料 と して L i F e P O を 5 0 m g詰め、 このホール部の両側をテープ でシールしたものに対し、 γ線と して 1. 8 5 G B qの5 C οを照 射した。 When measuring the Mossbauer vector, Li Fe PO was used as a sample in a hole of a lead plate having a thickness of 0.5 mm and a hole having a diameter of 15 mm. mg justified, the both sides of the hole portion to which was sealed with tape and shines irradiation to 5 C o of 1. 8 5 GB q as a γ-ray.
メスバウア分光測定により得られたサンプル 6の L i F o P O,の スぺク トル測定結果を図 1 9に、 サンプル 2の L i F e P O のスベ ク トル測定結果を図 2 0に、 サンプル ] の L i F e P O のスぺク 卜 ル測定結果を図 2 1 に示す。 また、 図 1 9に示すサンプル 6の L i F e P〇4のメスバウアスぺ ク トルをフイ ツ トさせて得られた F e 2 +のスべク トルを図 2 2に、 F e のスペク トルを図 2 3に示す- 更に、 図 2 0に示すサンプル 2の L i F e P〇4のメスバウアスぺ ク トルをフイ ツ トさせて得られた F e 2 +のスベタ トルを図 2 4に、 6 3 +のスべク トルを図 2 5に示す: Figure 19 shows the LiF PO PO, spectrum measurement results of Sample 6 obtained by Mossbauer spectroscopy, and Figure 20 shows the LiFe PO spectrum measurement results of Sample 2 Figure 21 shows the spectrum measurement results of LiFePO in [1]. Further, in FIG. 2 2 L i F e P_〇 Huy 4 of Mesubauasu Bae-vector Tsu Sorted allowed F e 2 + a scan base-vector obtained by the sample 6 shown in FIG. 1 9, the F e spectrum the torque shown in FIG. 2 3 - further, FIG. 4 F e 2 + a bitch torr obtained by Huy tool preparative L i F e P_〇 4 Mesubauasu Bae-vector of the sample 2 shown in FIG. 2 0 In addition, the 3 3+ vector is shown in Figure 25:
更にまた、 図 2 1 に示すサンプル 1 の L i F e P〇4のメスバウア スベタ トルをフイ ツ トさせて得られた F e 2 +のスベタ トルを図 2 6 に、 F e ; +のスペク トルを図 2 7に示す c Furthermore, in FIG. 2 6 F e 2 + a bitch Torr obtained by Huy tool preparative Mossbauer bitch torr L i F e P_〇 fourth sample 1 shown in FIG. 2 1, F e; + the spectrum c indicating the torque in Fig 7
L i F e P C 本来のスペク トルは、 図 2 2、 図 2 4、 図 2 6に示 すよ うに、 F e 2 +に相当する異性体シフ トが約:! . 2 mmZ s e c であり、 4重極分裂が約 2. 9 mmZ s e cであるダブレッ トであ る。 As shown in Figs. 22, 24 and 26, the original spectrum of LiFePC has an isomer shift corresponding to Fe2 + of about :! Doublet with 2 mmZ sec and quadrupole splitting of about 2.9 mmZ sec.
これに対して、 焼成温度が 3 2 0 =Cであるサンプル 6の L i F e P〇4は、 図 2 3に示すように、 F e に相当する異性体シフ トが約 0. 4 mm/ s e cであり、 4重極分裂が約 0. 8 mm/ s e cで あるブロードなダブレッ トが観察された c In contrast, L i F e P_〇 4 samples 6 firing temperature is 3 2 0 = C, as shown in FIG. 2 3, F isomer shift equivalent to e is about 0. 4 mm / sec and a quadruple split of about 0.8 mm / sec with a broad doublet c
ここで、 F e :' +に相当するダブレッ トの面積強度、 即ち異性体シ フ トイ直が 0. I mmZ s e c以上、 0. 7 mmZ s e c以下の範囲 にあるスぺク トルの面積強度を Aと し、 F e 2 +に相当するダブレツ トの面積強度、 即ち異性体シフ ト値が 0. 8 mmZ s e c以上、 1 . 5 mm/ s e c以下の範囲にあるスぺク トルの面積強度を Bとする とき、 AZBを表 1 に示す。 Here, the area intensity of the doublet corresponding to F e : '+, that is, the area intensity of the spectrum whose direct isomer shift is within the range of 0.1 mmZsec or more and 0.7 mmZsec or less is calculated as Let A be the area intensity of the doublet corresponding to Fe 2 + , that is, the area intensity of the spectrum whose isomer shift value is in the range of 0.8 mmZ sec or more and 1.5 mm / sec or less. Table B shows AZB when B is used.
(以下余白) 焼成温度 A/B (Hereinafter the margin) Firing temperature A / B
3 2 0 X: サンブル 6 0. 7 7  3 2 0 X: Samburu 6 0.7
4 0 0 CC サンプル 2 0. 3 4 4 0 0 C C Sample 2 0.3 4
6 0 0 CC サンブノレ 1 0. 1 5 実験 1 において、 サンプル 1 、 2及び 6に対して X線回折を行つ たときには、 図 2に示すように、 F e 3 +を含む相、 例えば 3価の鉄 化合物のスペク トルは検出されなかった: しかし、 サンブル 1 、 2 及び 6に対してメスバウア分光測定を上述のようにして行う と、 F e 3 +を含む相が存在することが確認された。 これは、 X線回折が結 晶の長距離の干渉によってはじめて起こるにに対し、 メスバウア分 光は原子核近傍の情報を直接検出することによる: In 6 0 0 C C Sanbunore 1 0.1 5 Experiment 1, sample 1, when having conducted the X-ray diffraction with respect to 2 and 6, as shown in FIG. 2, the phase containing the F e 3 +, for example 3 No spectra were detected for the iron compounds with the valencies: However, Moessbauer spectroscopy on samples 1, 2 and 6 as described above confirmed the presence of a phase containing Fe3 +. Was. This is because X-ray diffraction only occurs due to long-range interference of crystals, whereas Mossbauer spectroscopy directly detects information near the nucleus:
表 1 より、 焼成温度が 3 2 0 =Cと低温であるサンプル 6には、 長 距離秩序を持たない F e : を含む相が、 比較的多く存在することが わかった: From Table 1, it was found that Sample 6, which had a low firing temperature of 320 = C, had relatively many phases containing Fe : that did not have long-range order:
また、 表 1 より、 A/Bは L i F e P O 4の焼成温度に依存してお り、 焼成温度が低いほど、 L i F e P〇4に含有されている F e : は 多いことがわかった。 From Table 1, A / B is Ri Contact depending on the firing temperature of the L i F e PO 4, as the firing temperature is low, L i F e P_〇 is contained in 4 F e: it is often I understood.
ここで、 表 1 に示す AZBと、 L i F e P〇4の焼成温度と放電容 量との関係を示した図 3 とを比較すると、 AZBが小さい程、 即ち、 L i F e P 04中に F e +を含む 3価の鉄化合物等の存在量が少ない 程、 リチウムイオン二次電池は高容量を示すことがわかった。 また、 L i F e P 04は、 焼成温度が 4 0 0°C以上と して合成されると AZ Bが 0. 3未満となり、 高容量を実現することがわかった: 従って、 リチウムイオン二次電池は、 AZBが 0. 3である L i F e P〇4を正極活物質と して用いることで、 高容量が実現されるこ とがわ力 つた: 産業上の利用可能性 以上の説明からも明らかなように、 本発明に係る正極活物質は、 一般式 L i xM:, P〇4 (ただし、 X力 0 < X ≤ 2の範囲であり、 y力 S 0. 8≤ y≤ 1 . 2の範囲であり、 Mが 3 d遷移金属を含有す る。 ) で表される化合物を含有し、 L i xM:, P04は、 粒子径が 1 0 μ m以下であるものを含み、 さらに B E T比表面積が 0. 5 m2/g 以上とされている- これにより、 この正極活物質は、 非水電解質二 次電池に用いられると、 優れたサイクル特性及び高容量を実現する- また、 本発明に係る正極活物質は、 一般式 L i x ( F e , M , -,) Ρ 04 (ただし、 χが 0. 9≤ χ≤ 1. 1 の範囲であり、 y力 0 < y ≤ 1の範囲であり、 Mが 3 d遷移金属を含有する- ) で表される化合 物を含有し、 L i x (F e :,M :,) P 04は、 メスバウア分光法によ り得られるスべク トルの面積強度 Aに対する Bの比、 AZBは 0. 3未満とされている。 これにより、 この正極活物質は、 非水電解質 二次電池に用いられると、 優れた高容量を実現する。 Here, the AZB shown in Table 1, comparing FIG. 3 shows the relationship between L i F e P_〇 baking temperature and the discharge capacity of 4, as AZB is small, i.e., L i F e P 0 It was found that the smaller the amount of the trivalent iron compound containing F e + in 4 , the higher the capacity of the lithium ion secondary battery. Also, L i F e P 0 4, when the sintering temperature is synthesized as a 4 0 0 ° C or higher AZ B is less than 0.3, it was found to realize a high capacity: Therefore, the lithium ion secondary battery, the use of L i F e P_〇 4 AZB is 0.3 as a cathode active material As a result, the positive electrode active material according to the present invention has the general formula Li x M : , P〇 4 (where X force is in the range of 0 <X ≤ 2, y force is in the range of 0.8 ≤ y ≤ 1.2, and M contains a 3d transition metal.) contain, L i x M:, P0 4 include those having a particle diameter of not more than 1 0 mu m, there is a further BET specific surface area of 0. 5 m 2 / g or more - Thus, the The positive electrode active material realizes excellent cycle characteristics and high capacity when used in a non-aqueous electrolyte secondary battery.- Further, the positive electrode active material according to the present invention has a general formula Li x (F e, M,- ,) Ρ 0 4 (except χ is in the range of 0.9 ≤ χ ≤ 1.1, y force is in the range of 0 <y ≤ 1, and M contains the compound represented by 3) i x (F e:, M :,) P 0 4 , the ratio of B to the area intensity a of the scan base-vector obtained Ri by the Mossbauer spectroscopy, AZB is less than 0.3. As a result, when this positive electrode active material is used for a nonaqueous electrolyte secondary battery, an excellent high capacity is realized.
また、 本発明に係る非水電解質二次電池では、 焼成温度及び粒子 形状を規定することにより得られた L i F e P 04を正極活物質と し て用いることで、 大容量を有し、 サイクル特性に優れたものとなる c また、 本発明に係る非水電解質二次電池では、 AZBは 0. 3未 満とされた L i F e P 0 4を正極活物質と して用いることで、 大容量 を有したものとなる。 Further, in the nonaqueous electrolyte secondary battery according to the present invention, the L i F e P 0 4 obtained by defining the firing temperature and the particle shape by using as the cathode active material has a large capacity The AZB of the non-aqueous electrolyte secondary battery according to the present invention is not more than 0.3. The L i F e P 0 4, which is the full by using as a cathode active material, the one having a large capacity.
また、 本発明に係る正極活物質の製造方法では、 不純物のなく、 単相の L i X M :.. P C ^が得られるので、 従来の非水電解質二次電池の 1 2 0 m A h / gを上回る高容量を実現することが可能である: Further, in the method for producing a positive electrode active material according to the present invention, a single-phase L i X M: .. PC ^ can be obtained without impurities, so that 120 mA Ah It is possible to achieve high capacities in excess of / g:

Claims

3】 請求の範囲 3) Claims
1 . 一般式 L i xM:. P O (ただし、 Xが 0く X 2の範囲であり、 y力 S 0. 8 ≤ y ≤ 1 . 2の範囲であり、 Mが 3 d遷移金属を含有す る。 ) で表される化合物を含有し、 1. General formula L i x M :. PO (where X is in the range of 0 to X2, y force S is in the range of 0.8 ≤ y ≤ 1.2, and M contains 3d transition metal ) Containing a compound represented by the formula:
上記し i x M P O (± 粒子径が 1 0 a m以下であるものを含むこ とを特徴とする正極活物質。 Above positive electrode active material i x MPO (± particle diameter and wherein it to contain not more than 1 0 am.
2. 上記 L i ΧΜ、· Ρ〇4は、 1 0 %体積累積径が ] μ πι以下であるこ とを特徴とする請求の範囲第 1項記載の正極活物質 2. The positive electrode active material according to claim 1, wherein the Li i Χ and Μ 4 have a 10% volume cumulative diameter of not more than] μπι.
3. 上記し i M、 P O は、 ブルナウア一 ' ェメ ッ 卜 ' テーラー比表 面積が 0. 5 m 2 / g以上であることを特徴とする請求の範囲第 ].項 記載の正極活物質。 3. The positive electrode active material according to claim 1, wherein iM and PO have a Brunauer's composition's Taylor's specific surface area of 0.5 m 2 / g or more. .
4. 上記 L ί x M y P O 4は、 L i F e P O であることを特徴とする 請求の範囲第 1項記載の正極活物質。 4. the L ί x M y PO 4, the positive electrode active material ranging first claim of claim, which is a L i F e PO.
5. 一 式 L i x ( F e y M , - y ) P O (ただし、 x力'; 0. 9 ≤ x ≤ 1 . 1 の範囲であり、 y力; 0く y 1 の範囲であり、 M力; 3 d遷移 金属を含有する。 ) で表される化合物を含有し、 5. Set L i x (F e y M, -y ) PO (where x force '; 0.9 ≤ x ≤ 1.1, y force; 0 x y 1; M-force; contains 3d transition metal.)
上記 L i x ( F e v M , - ) P〇 は、 メ スバウア分光法によ り得ら れるスぺク トルにおいて、 異性体シフ ト値力; 0. 1 mm/ s e c以 上、 0. 7 mm/ s e c以下の範囲にあるスペク トルの面積強度を Aと し、 異性体シフ ト値が 0. 8 mmノ s e c以上、 1 . 5 mmZ s c c以下の範囲にあるスぺク トルの面積強度を Bとするとき、 A / Bは 0. 3未満であることを特徴とする正極活物質。 The L i x (F ev M, -) P_〇, in scan Bae-vector Ritokura is by the main Subaua spectroscopy, isomer shift value force; 0. 1 mm / sec or more on, 0.7 A is the area intensity of the spectrum within the range of mm / sec or less, and A is the area intensity of the spectrum whose isomer shift value is within the range of 0.8 mmsec or more and 1.5 mmZscc or less. A positive electrode active material, wherein B / A is less than 0.3.
6 . L i ( F e Μ,- ) は、 L i F e P O であることを特徴 とする請求の範囲第 5項記載の正極活物質。 6. The positive electrode active material according to claim 5, wherein L i (F e Μ,-) is L i Fe PO.
7 . リチウムを可逆的に ド一プ /脱ドープ可能な、 一般式 L i xM7. General formula Li x M which can reversibly dope / dedope lithium
P O (ただし、 X力 0 < X ≤ 2の範囲であり、 yが 0. 8 ≤ y ≤ 1 .P O (where X force is in the range of 0 <X ≤ 2 and y is 0.8 ≤ y ≤ 1.
2の範囲であり、 Mが 3 d遷移金属を含有する。 ) で表される化合 物を含有する正極活物質を有する正極と、 リチウムを可逆的に ドー プ /脱ドーブ可能な負極活物質を有する負極と、 非水電解質とを備 えた非水電解質二次電池において、 2, where M contains a 3d transition metal. ), A negative electrode having a negative electrode active material capable of reversibly doping / de-doping lithium, and a non-aqueous electrolyte comprising a non-aqueous electrolyte. In batteries,
上記 L i xMv P〇 4は、 粒子径が 1 0 μ m以下であるものを含むこ とを特徴とする非水電解質二次電池。 The L i XMV P_〇 4, a non-aqueous electrolyte secondary battery characterized that you including those having a particle diameter of not more than 1 0 mu m.
8. 上記し i xMv P〇 は、 1 0 %体積累積径が 1 μ m以下であるこ とを特徴とする請求の範囲第 7項記載の非水電解質二次電池。  8. The non-aqueous electrolyte secondary battery according to claim 7, wherein i xMv P〇 has a 10% volume cumulative diameter of 1 μm or less.
9. 上記し i x v P〇 は、 ブルナウア一 ' エメ ッ ト ' テーラ一比表 面積が 0. 5 m2Z g以上であることを特徴とする請求の範囲第 Ί項 記載の非水電解質二次電池。 9. The non-aqueous electrolyte secondary according to claim 特 徴, wherein the ixv P〇 has a surface area of at least 0.5 m 2 Z g in comparison with Brunauer's 'Emmet' tailor. battery.
1 0. 上記 L i x M P O は、 L i F e P O であることを特徴とす る請求の範囲第 7項記載の非水電解質二次電池。 10. The non-aqueous electrolyte secondary battery according to claim 7, wherein the Li x MPO is Li Fe PO.
1 1. リチウムを可逆的に ド一プ /脱ドープ可能な、 一般式 L i . 1 1. General formula L i, which allows reversible doping / dedoping of lithium.
( F e v M , - ) Ρ Ο (ただし、 χ力; 0. 9 ≤ χ ≤ 1 . 1 の範团であ り、 yが 0 < y 1 の範囲であり、 Mが 3 d遷移金属を含有す る。 ) で表される化合物を含有する正極活物質を有する正極と、 リ チウムを可逆的にドープ Z脱ド一プ可能な負極活物質を有する負極 と、 非水電解質とを備えた非水電解質二次電池において、 (F ev M,-) Ρ Ο (However, the force is in the range of 0.9 ≤ χ ≤ 1.1, y is in the range of 0 <y 1, and M contains 3d transition metal A positive electrode having a positive electrode active material containing the compound represented by the formula (1), a negative electrode having a negative electrode active material capable of reversibly doping with Z, and a non-aqueous electrolyte are provided. In a water electrolyte secondary battery,
上記 L i x ( F e v M , - :, ) P〇 は、 メ スバウア分光法によ り得ら れるスぺク トルにおいて、 異性体シフ トイ直力; 0. 1 mm/ s e c以 上、 0. 7 mm/ s e c以下の範囲にあるスペク トルの面積強度を Aと し、 異性体シフ ト値が 0. 8 mm/ s e c以上、 1 . 5 mm/ s e c以下の範囲にあるスぺク トルの面積強度を Bとするとき、 A / Bは 0 . 3未満であることを特徴とする非水電解質二次電池 The L i x (F ev M, -:,) P_〇, in scan Bae-vector Ritokura is by the main Subaua spectroscopy, isomer shift Toys linear force; 0. 1 mm / sec or more on, 0 The area intensity of the spectrum within the range of 7 mm / sec or less is A, and the isomer shift value is 0.8 mm / sec or more and 1.5 mm / sec. Non-aqueous electrolyte secondary battery characterized in that A / B is less than 0.3, where B is the area intensity of the spectrum in the range of sec or less.
1 2 . 上記 L i .、 ( F e 、· M】つ) P O は、 L i F e P O 4であること を特徴とする請求の範囲第 1 1項記載の非水電解質二次電池。 12. The non-aqueous electrolyte secondary battery according to claim 11, wherein the Li is a Li Fe PO 4 .
1 3 . 一般式 L i x M , P O -, (ただし、 X力; 0く X 2の範图であり、 yが 0 . 8 ≤ y ≤ 1 . 2の範囲であり、 Mが 3 d遷移金属を含有す る。 ) で表される化合物の合成原料を混合して前駆体とする混合ェ 程と、 1 3. General formula L x M, PO-, (however, X force; 0 x X 2 range, y is 0.8 ≤ y ≤ 1.2, M is 3 d transition A mixing step of mixing the raw materials for synthesizing the compound represented by the formula (1) to form a precursor;
上記混合工程で得られた上記前駆体を焼成して反応させる焼成ェ 程とを有し、  A firing step of firing and reacting the precursor obtained in the mixing step,
上記焼成工程で、 4 0 0 °C以上、 7 0 0 °C以下の範囲の温度で上 記前駆体を焼成することを特徴とする正極活物質の製造方法。  A method for producing a positive electrode active material, comprising firing the precursor at a temperature in the range of 400 ° C. or more and 700 ° C. or less in the firing step.
1 4 . 上記焼成工程で、 4 0 0 °C以上、 6 0 0 °C以下の範囲の温度 で上記前駆体を焼成することを特徴とする請求の範囲第 1 3項記載 の正極活物質の製造方法。  14. The positive electrode active material according to claim 13, wherein in the firing step, the precursor is fired at a temperature in a range of 400 ° C. or more and 600 ° C. or less. Production method.
1 5 . 上記し i x M、. P O は、 L i F e P O であることを特徴とす る請求の範囲第〗 3項記載の正極活物質の製造方法。 15. The method for producing a positive electrode active material according to claim 3, wherein i x M and .PO are Li Fe PO.
PCT/JP2000/001916 1999-04-06 2000-03-28 Active material of positive plate, nonaqueous electrolyte secondary cell, method for producing active material of positive material WO2000060680A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002334003A CA2334003A1 (en) 1999-04-06 2000-03-28 Active material of positive plate, nonaqueous electrolyte secondary cell, method for producing active material of positive material
US09/701,903 US6632566B1 (en) 1999-04-06 2000-03-28 Positive electrode active material, non-aqueous electrolyte secondary battery and method for producing positive electrode active material of positive material
JP2000610076A JP4749551B2 (en) 1999-04-06 2000-03-28 Positive electrode active material and non-aqueous electrolyte secondary battery
EP00911429A EP1094533A1 (en) 1999-04-06 2000-03-28 Active material of positive plate, nonaqueous electrolyte secondary cell, method for producing active material of positive material
US11/400,942 US7217474B2 (en) 1999-04-06 2006-04-10 Positive electrode active material, non-aqueous electrolyte secondary battery and method for producing positive electrode active material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9940899 1999-04-06
JP11/99408 1999-04-06
JP27438099 1999-09-28
JP11/274380 1999-09-28
JP2000014131 2000-01-19
JP2000/14131 2000-01-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09701903 A-371-Of-International 2000-03-28
US10/611,622 Division US7147969B2 (en) 1999-04-06 2003-06-30 Positive electrode active material, non-aqueous electrolyte secondary battery and method for producing positive electrode active material

Publications (1)

Publication Number Publication Date
WO2000060680A1 true WO2000060680A1 (en) 2000-10-12

Family

ID=27308954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001916 WO2000060680A1 (en) 1999-04-06 2000-03-28 Active material of positive plate, nonaqueous electrolyte secondary cell, method for producing active material of positive material

Country Status (8)

Country Link
US (3) US6632566B1 (en)
EP (1) EP1094533A1 (en)
JP (3) JP4749551B2 (en)
KR (1) KR100672879B1 (en)
CN (2) CN1174509C (en)
CA (1) CA2334003A1 (en)
TW (1) TW447162B (en)
WO (1) WO2000060680A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015735A (en) * 2000-06-29 2002-01-18 Toyota Central Res & Dev Lab Inc Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
JP2002151082A (en) * 2000-11-10 2002-05-24 Kansai Research Institute Iron phosphate lithium, its manufacturing method, and secondary battery using it
JP2002170567A (en) * 2000-12-04 2002-06-14 Sony Corp Nonaqueous electrolyte cell
US6528033B1 (en) 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
JP2004529059A (en) * 2001-05-23 2004-09-24 エヌ ヴェ ユミコア ソシエテ アノニム Lithium transition metal phosphate powder for storage batteries
US6815122B2 (en) 2002-03-06 2004-11-09 Valence Technology, Inc. Alkali transition metal phosphates and related electrode active materials
KR100469163B1 (en) * 2001-03-26 2005-02-02 가부시끼가이샤 도시바 Anode-activating materials and non-aqueous electrolyte secondary cells
US6884544B2 (en) 2000-01-18 2005-04-26 Valence Technology, Inc. Lithium-based active materials and preparation thereof
WO2005095273A1 (en) * 2004-03-30 2005-10-13 Seimi Chemical Co., Ltd. Method for producing lithium-iron composite oxide
JP2006190528A (en) * 2005-01-05 2006-07-20 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery and positive electrode thereof
JP2007522620A (en) * 2004-02-06 2007-08-09 エイ 123 システムズ,インク. Lithium secondary battery with fast charge / discharge performance
JP2007207637A (en) * 2006-02-03 2007-08-16 Gs Yuasa Corporation:Kk Lithium iron phosphate compound for non-aqueous electrolyte battery, and its manufacturing method
JP2009516631A (en) * 2005-08-08 2009-04-23 エイ 123 システムズ,インク. Nanoscale ion storage material
US7534408B2 (en) 2003-12-23 2009-05-19 Universite De Montreal Process for preparing electroactive insertion compounds and electrode materials obtained therefrom
JP2009120479A (en) * 1999-04-06 2009-06-04 Sony Corp Method of manufacturing positive electrode active material
JP2009302067A (en) * 2009-09-28 2009-12-24 Kri Inc Iron phosphate lithium, and secondary battery using the same
WO2011074079A1 (en) * 2009-12-15 2011-06-23 トヨタ自動車株式会社 Process for producing positive electrode active material for lithium secondary battery
US8323832B2 (en) 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials
JP2013065575A (en) * 2012-12-27 2013-04-11 Toyota Motor Corp Positive electrode mixture for lithium secondary battery and use thereof
WO2013093014A1 (en) 2011-12-21 2013-06-27 Chemische Fabrik Budenheim Kg Metal phosphate containing manganese and method for its production
DE102011056812A1 (en) 2011-12-21 2013-06-27 Chemische Fabrik Budenheim Kg Metal phosphates and process for their preparation
US8617430B2 (en) 2005-08-08 2013-12-31 A123 Systems Llc Amorphous and partially amorphous nanoscale ion storage materials
US9017875B2 (en) 2007-11-30 2015-04-28 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte secondary battery
US9172087B2 (en) 2013-03-15 2015-10-27 Sumitomo Osaka Cement Co., Ltd. Electrode material, electrode and lithium ion battery
JP2016040775A (en) * 2002-11-13 2016-03-24 イドロ−ケベックHydro−Quebec Electrode covered with film obtained from aqueous solution comprising water-soluble binder, production method thereof and uses of the same
DE102014118907A1 (en) 2014-12-17 2016-06-23 Chemische Fabrik Budenheim Kg For the preparation of cathodes for Li-ion batteries suitable phosphate compounds
USRE46187E1 (en) 2000-11-09 2016-10-25 Sony Corporation Positive electrode material and battery using the same
US9698425B2 (en) 2010-12-17 2017-07-04 Sumitomo Osaka Cement Co., Ltd. Electrode material and method for producing the same

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3826746B2 (en) * 2000-08-18 2006-09-27 ソニー株式会社 Non-aqueous electrolyte secondary battery
CA2320661A1 (en) 2000-09-26 2002-03-26 Hydro-Quebec New process for synthesizing limpo4 materials with olivine structure
JP3982165B2 (en) * 2000-10-05 2007-09-26 ソニー株式会社 Solid electrolyte battery
JP3997702B2 (en) * 2000-10-06 2007-10-24 ソニー株式会社 Nonaqueous electrolyte secondary battery
US6645452B1 (en) 2000-11-28 2003-11-11 Valence Technology, Inc. Methods of making lithium metal cathode active materials
US6720112B2 (en) 2001-10-02 2004-04-13 Valence Technology, Inc. Lithium cell based on lithiated transition metal titanates
US6706445B2 (en) 2001-10-02 2004-03-16 Valence Technology, Inc. Synthesis of lithiated transition metal titanates for lithium cells
US6908710B2 (en) 2001-10-09 2005-06-21 Valence Technology, Inc. Lithiated molybdenum oxide active materials
US7422823B2 (en) * 2002-04-03 2008-09-09 Valence Technology, Inc. Alkali-iron-cobalt phosphates and related electrode active materials
US20030190527A1 (en) 2002-04-03 2003-10-09 James Pugh Batteries comprising alkali-transition metal phosphates and preferred electrolytes
JP3661945B2 (en) * 2002-07-24 2005-06-22 ソニー株式会社 Positive electrode for secondary battery and secondary battery provided with the same
JP4620378B2 (en) * 2003-05-09 2011-01-26 日本化学工業株式会社 Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide
JP2005158673A (en) * 2003-10-31 2005-06-16 Toyota Motor Corp Electrode active material, manufacturing method therefor and non-aqueous secondary battery
US7887954B2 (en) * 2005-05-10 2011-02-15 Advanced Lithium Electrochemistry Co., Ltd. Electrochemical composition and associated technology
US20080138710A1 (en) * 2005-05-10 2008-06-12 Ben-Jie Liaw Electrochemical Composition and Associated Technology
US7700236B2 (en) * 2005-09-09 2010-04-20 Aquire Energy Co., Ltd. Cathode material for manufacturing a rechargeable battery
EP1899268B1 (en) 2005-06-29 2012-10-10 Umicore Crystalline nanometric lifepo4
CN100563047C (en) * 2006-04-25 2009-11-25 立凯电能科技股份有限公司 Be applicable to the composite material and the prepared battery thereof of the positive pole of making secondary cell
JP4413888B2 (en) * 2006-06-13 2010-02-10 株式会社東芝 Storage battery system, in-vehicle power supply system, vehicle, and method for charging storage battery system
US7824802B2 (en) * 2007-01-17 2010-11-02 The United States Of America As Represented By The Secretary Of The Army Method of preparing a composite cathode active material for rechargeable electrochemical cell
US20080241645A1 (en) * 2007-03-26 2008-10-02 Pinnell Leslie J Lithium ion secondary batteries
US20080248375A1 (en) * 2007-03-26 2008-10-09 Cintra George M Lithium secondary batteries
US20080240480A1 (en) * 2007-03-26 2008-10-02 Pinnell Leslie J Secondary Batteries for Hearing Aids
JP4336372B2 (en) * 2007-04-27 2009-09-30 Tdk株式会社 Composite particle for electrode, method for producing the same, and electrochemical device
US8168329B2 (en) * 2007-06-18 2012-05-01 Advanced Lithium Electrochemistry Co., Ltd. Electrochemical composition and associated technology
DE102008031152A1 (en) * 2007-07-06 2009-04-30 Sanyo Electric Co., Ltd., Moriguchi A device for producing active material for a lithium secondary battery and method for producing active material for a lithium secondary battery, method for producing an electrode for a lithium secondary battery, and method for producing a lithium secondary battery
JP5049680B2 (en) * 2007-07-12 2012-10-17 株式会社東芝 Nonaqueous electrolyte battery and battery pack
EP2015382A1 (en) * 2007-07-13 2009-01-14 High Power Lithium S.A. Carbon coated lithium manganese phosphate cathode material
WO2009127901A1 (en) 2008-04-14 2009-10-22 High Power Lithium S.A. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
CA2741081C (en) 2008-10-22 2014-07-15 Lg Chem, Ltd. Cathode active material providing improved efficiency and energy density of electrode
CN102177606B (en) * 2008-10-22 2014-08-13 株式会社Lg化学 Cathode composite material with improved electrode efficiency and energy density characteristics
KR100939647B1 (en) * 2009-01-22 2010-02-03 한화석유화학 주식회사 Anion-deficient non-stoichiometric lithium transition metal polyacid compound as electrode active material, method for preparing the same, and electrochemical device using the same
US8980126B2 (en) * 2010-10-08 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for manufacturing power storage device
CN103384931B (en) 2010-12-23 2016-03-30 野猫技术开发公司 There is the lithium ion accumulator material of improved performance
US20120212941A1 (en) * 2011-02-22 2012-08-23 Jomar Reschreiter Cordless, portable, rechargeable food heating lamp
US20140045069A1 (en) * 2011-04-28 2014-02-13 Tatsuji Numata Lithium secondary cell
KR101965016B1 (en) 2011-07-25 2019-04-02 에이일이삼 시스템즈, 엘엘씨 Blended cathode materials
JP2013157088A (en) * 2012-01-26 2013-08-15 Sony Corp Battery and battery pack, electronic apparatus, electric vehicle, power storage device and power system
WO2013188594A2 (en) 2012-06-12 2013-12-19 A123 Systems, LLC Non-aqueous electrolytic rechargeable batteries for extended temperature range operation
JP6538557B2 (en) 2012-07-31 2019-07-03 プリエト バッテリー インコーポレーティッド Lithium ion battery having organic-inorganic hybrid solid electrolyte
KR101895902B1 (en) 2012-08-03 2018-09-07 삼성에스디아이 주식회사 Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP6283743B2 (en) 2013-07-09 2018-02-21 ダウ グローバル テクノロジーズ エルエルシー Method for forming a cathode
US11251419B2 (en) 2014-12-18 2022-02-15 Dow Global Technologies Llc Lithium ion battery having improved thermal stability
JP6477948B1 (en) * 2018-03-29 2019-03-06 住友大阪セメント株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery
RU2727620C1 (en) * 2019-11-27 2020-07-22 Общество с ограниченной ответственностью "РУСТОР" Method of producing active material of cathode based on lithium enriched phosphate li1+xfe1-ypo4 with olivine structure, electrode mass and cathode of lithium-ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283207A (en) * 1993-03-26 1994-10-07 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolyte battery
JPH0982312A (en) * 1995-09-06 1997-03-28 Canon Inc Lithium secondary battery and manufacture of lithium secondary battery
JPH09134724A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JPH09171827A (en) * 1995-12-21 1997-06-30 Sony Corp Positive electrode active material for lithium secondary battery, and lithium secondary battery using same
JPH10312789A (en) * 1997-05-12 1998-11-24 Yuasa Corp Nonaqueous solid electrolyte battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3441107B2 (en) * 1992-05-18 2003-08-25 三菱電線工業株式会社 Lithium secondary battery
JP3484003B2 (en) * 1995-11-07 2004-01-06 日本電信電話株式会社 Non-aqueous electrolyte secondary battery
US5910382A (en) * 1996-04-23 1999-06-08 Board Of Regents, University Of Texas Systems Cathode materials for secondary (rechargeable) lithium batteries
US6085015A (en) * 1997-03-25 2000-07-04 Hydro-Quebec Lithium insertion electrode materials based on orthosilicate derivatives
JPH1125983A (en) * 1997-07-04 1999-01-29 Japan Storage Battery Co Ltd Active material for lithium battery
JP4949543B2 (en) * 1999-04-06 2012-06-13 ソニー株式会社 Method for synthesizing LiFePO4 and method for producing nonaqueous electrolyte battery
JP4749551B2 (en) * 1999-04-06 2011-08-17 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery
JP4710136B2 (en) * 1999-04-06 2011-06-29 ソニー株式会社 Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery
US6528033B1 (en) * 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
US6645452B1 (en) * 2000-11-28 2003-11-11 Valence Technology, Inc. Methods of making lithium metal cathode active materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283207A (en) * 1993-03-26 1994-10-07 Nippon Telegr & Teleph Corp <Ntt> Nonaqueous electrolyte battery
JPH0982312A (en) * 1995-09-06 1997-03-28 Canon Inc Lithium secondary battery and manufacture of lithium secondary battery
JPH09134724A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JPH09171827A (en) * 1995-12-21 1997-06-30 Sony Corp Positive electrode active material for lithium secondary battery, and lithium secondary battery using same
JPH10312789A (en) * 1997-05-12 1998-11-24 Yuasa Corp Nonaqueous solid electrolyte battery

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054574A (en) * 1999-04-06 2011-03-17 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
JP2009120479A (en) * 1999-04-06 2009-06-04 Sony Corp Method of manufacturing positive electrode active material
US6528033B1 (en) 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
US7438992B2 (en) 2000-01-18 2008-10-21 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6716372B2 (en) 2000-01-18 2004-04-06 Valence Technology, Inc. Lithium-containing materials
US6884544B2 (en) 2000-01-18 2005-04-26 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US7060206B2 (en) 2000-01-18 2006-06-13 Valence Technology, Inc. Synthesis of metal compounds under carbothermal conditions
JP2002015735A (en) * 2000-06-29 2002-01-18 Toyota Central Res & Dev Lab Inc Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
USRE46187E1 (en) 2000-11-09 2016-10-25 Sony Corporation Positive electrode material and battery using the same
USRE46667E1 (en) 2000-11-09 2018-01-09 Sony Corporation Positive electrode material and battery using the same
JP4495336B2 (en) * 2000-11-10 2010-07-07 株式会社Kri A method for producing lithium iron phosphate.
JP2002151082A (en) * 2000-11-10 2002-05-24 Kansai Research Institute Iron phosphate lithium, its manufacturing method, and secondary battery using it
JP2002170567A (en) * 2000-12-04 2002-06-14 Sony Corp Nonaqueous electrolyte cell
KR100469163B1 (en) * 2001-03-26 2005-02-02 가부시끼가이샤 도시바 Anode-activating materials and non-aqueous electrolyte secondary cells
JP4660812B2 (en) * 2001-05-23 2011-03-30 エヌ ヴェ ユミコア ソシエテ アノニム Lithium transition metal phosphate powder for storage battery
US7670721B2 (en) 2001-05-23 2010-03-02 Le Centre National de la Rocherche Scientifique Process for making lithium transition metal phosphate powder for battery electrode
JP2004529059A (en) * 2001-05-23 2004-09-24 エヌ ヴェ ユミコア ソシエテ アノニム Lithium transition metal phosphate powder for storage batteries
US7371482B2 (en) * 2001-05-23 2008-05-13 Le Centre National De La Recherche Scientifique Lithium transition-metal phosphate powder for rechargeable batteries
US6815122B2 (en) 2002-03-06 2004-11-09 Valence Technology, Inc. Alkali transition metal phosphates and related electrode active materials
US7767332B2 (en) 2002-03-06 2010-08-03 Valence Technology, Inc. Alkali/transition metal phosphates and related electrode active materials
US10923704B2 (en) 2002-11-13 2021-02-16 HYDRO-QUéBEC Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same
JP2016040775A (en) * 2002-11-13 2016-03-24 イドロ−ケベックHydro−Quebec Electrode covered with film obtained from aqueous solution comprising water-soluble binder, production method thereof and uses of the same
US11699781B2 (en) 2002-11-13 2023-07-11 HYDRO-QUéBEC Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same
US10879521B2 (en) 2002-11-13 2020-12-29 Hydro-Quebec Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same
US9692040B2 (en) 2002-11-13 2017-06-27 Hydro-Quebec Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same
US8133618B2 (en) 2003-12-23 2012-03-13 Universite De Montreal Process for preparing electroactive insertion compounds and electrode materials obtained therefrom
US8048565B2 (en) 2003-12-23 2011-11-01 Universite De Montreal Process for preparing electroactive insertion compounds and electrode materials obtained therefrom
US8647778B2 (en) 2003-12-23 2014-02-11 Laurent Gauthier Process for preparing electroactive insertion compounds and electrode materials obtained therefrom
US8273481B2 (en) 2003-12-23 2012-09-25 Universitéde Montréal Process for preparing electroactive insertion compounds and electrode materials obtained therefrom
EP2587570A1 (en) 2003-12-23 2013-05-01 Université de Montréal Process for preparing electroactive insertion compounds and electrode materials obtained therefrom
US7534408B2 (en) 2003-12-23 2009-05-19 Universite De Montreal Process for preparing electroactive insertion compounds and electrode materials obtained therefrom
JP2007522620A (en) * 2004-02-06 2007-08-09 エイ 123 システムズ,インク. Lithium secondary battery with fast charge / discharge performance
WO2005095273A1 (en) * 2004-03-30 2005-10-13 Seimi Chemical Co., Ltd. Method for producing lithium-iron composite oxide
JP2006190528A (en) * 2005-01-05 2006-07-20 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery and positive electrode thereof
JP2009516631A (en) * 2005-08-08 2009-04-23 エイ 123 システムズ,インク. Nanoscale ion storage material
US8617430B2 (en) 2005-08-08 2013-12-31 A123 Systems Llc Amorphous and partially amorphous nanoscale ion storage materials
US8323832B2 (en) 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials
JP2007207637A (en) * 2006-02-03 2007-08-16 Gs Yuasa Corporation:Kk Lithium iron phosphate compound for non-aqueous electrolyte battery, and its manufacturing method
US9017875B2 (en) 2007-11-30 2015-04-28 Sony Corporation Cathode active material, cathode, and nonaqueous electrolyte secondary battery
JP2009302067A (en) * 2009-09-28 2009-12-24 Kri Inc Iron phosphate lithium, and secondary battery using the same
US9496553B2 (en) 2009-12-15 2016-11-15 Toyota Jidosha Kabushiki Kaisha Production method of positive electrode active material for lithium secondary battery
WO2011074079A1 (en) * 2009-12-15 2011-06-23 トヨタ自動車株式会社 Process for producing positive electrode active material for lithium secondary battery
US9698425B2 (en) 2010-12-17 2017-07-04 Sumitomo Osaka Cement Co., Ltd. Electrode material and method for producing the same
US9350020B2 (en) 2011-12-21 2016-05-24 Chemische Fabrik Budenheim Kg Metal phosphate containing manganese and method for its production
DE102011056816A1 (en) 2011-12-21 2013-08-01 Chemische Fabrik Budenheim Kg Manganese-containing metal phosphates and process for their preparation
WO2013093014A1 (en) 2011-12-21 2013-06-27 Chemische Fabrik Budenheim Kg Metal phosphate containing manganese and method for its production
US9653732B2 (en) 2011-12-21 2017-05-16 Chemische Fabrik Budenheim Kg Metal phosphates and process for the preparation thereof
DE102011056812A1 (en) 2011-12-21 2013-06-27 Chemische Fabrik Budenheim Kg Metal phosphates and process for their preparation
JP2013065575A (en) * 2012-12-27 2013-04-11 Toyota Motor Corp Positive electrode mixture for lithium secondary battery and use thereof
US9172087B2 (en) 2013-03-15 2015-10-27 Sumitomo Osaka Cement Co., Ltd. Electrode material, electrode and lithium ion battery
DE102014118907A1 (en) 2014-12-17 2016-06-23 Chemische Fabrik Budenheim Kg For the preparation of cathodes for Li-ion batteries suitable phosphate compounds

Also Published As

Publication number Publication date
KR100672879B1 (en) 2007-01-23
EP1094533A1 (en) 2001-04-25
US20060188782A1 (en) 2006-08-24
JP4985640B2 (en) 2012-07-25
KR20010025117A (en) 2001-03-26
US20040002003A1 (en) 2004-01-01
US7217474B2 (en) 2007-05-15
JP2011054574A (en) 2011-03-17
JP2009120479A (en) 2009-06-04
US6632566B1 (en) 2003-10-14
JP4749551B2 (en) 2011-08-17
CN1302460A (en) 2001-07-04
CN1323447C (en) 2007-06-27
CN1549366A (en) 2004-11-24
CN1174509C (en) 2004-11-03
US7147969B2 (en) 2006-12-12
TW447162B (en) 2001-07-21
CA2334003A1 (en) 2000-10-12

Similar Documents

Publication Publication Date Title
WO2000060680A1 (en) Active material of positive plate, nonaqueous electrolyte secondary cell, method for producing active material of positive material
JP4710136B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery
JP4949543B2 (en) Method for synthesizing LiFePO4 and method for producing nonaqueous electrolyte battery
JP5344452B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte battery having a positive electrode containing the positive electrode active material
KR100809854B1 (en) Positive electrode active material and non-aqueous electrolyte cell
KR20120099375A (en) Metal oxide coated positive electrode materials for lithium-based batteries
WO2002039523A1 (en) Positive electrode material and cell comprising the same
WO2009053823A2 (en) Positive electrode active material, lithium secondary battery, and manufacture methods therefore
JP4432203B2 (en) Cathode active material and non-aqueous electrolyte battery
JP4461566B2 (en) Cathode active material and non-aqueous electrolyte battery
WO2003069701A1 (en) Production methods for positive electrode active matter and non-aqueous electrolytic battery
KR101746188B1 (en) Electrode mixture additives for secondary battery, method for manufacturing the same, elelctrode including the same for secondary battery, and secondary battery
JP5287593B2 (en) Manufacturing method of positive electrode active material.
JP5600904B2 (en) Cathode active material for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP4359977B2 (en) Nonaqueous electrolyte secondary battery
Xue et al. Synthesis and performance of hollow LiNi 0.5 Mn 1.5 O 4 with different particle sizes for lithium-ion batteries
CN107408695B (en) Positive electrode active material for secondary battery and method for producing same
JP3594232B2 (en) Method for producing particulate material for negative electrode of non-aqueous electrolyte secondary battery
JP2014002933A (en) Lithium manganese-containing oxide and method for producing the same, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00800684.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000911429

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2334003

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020007013776

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09701903

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020007013776

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000911429

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000911429

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007013776

Country of ref document: KR