WO2005092946A1 - ナフチレン系重合体及びその合成方法、並びにその用途 - Google Patents

ナフチレン系重合体及びその合成方法、並びにその用途 Download PDF

Info

Publication number
WO2005092946A1
WO2005092946A1 PCT/JP2005/003635 JP2005003635W WO2005092946A1 WO 2005092946 A1 WO2005092946 A1 WO 2005092946A1 JP 2005003635 W JP2005003635 W JP 2005003635W WO 2005092946 A1 WO2005092946 A1 WO 2005092946A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
naphthylene
based polymer
formula
Prior art date
Application number
PCT/JP2005/003635
Other languages
English (en)
French (fr)
Inventor
Hirotoshi Ishii
Takanori Owada
Mikiya Hayashi
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2006511414A priority Critical patent/JPWO2005092946A1/ja
Publication of WO2005092946A1 publication Critical patent/WO2005092946A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene

Definitions

  • Naphthylene-based polymer method for synthesizing the same, and use thereof
  • the present invention relates to a novel naphthylene-based polymer useful as a low-dielectric material, a high-strength material, and a heat-resistant material in the field of electricity and electronics, a method for synthesizing the same, and uses thereof.
  • Low dielectric materials are widely used as materials for electric and electronic parts in order to solve problems such as charging and increase in resistance.
  • low-dielectric materials are often used in areas that generate heat or are used as thin films. Therefore, improvements in heat resistance and strength are required at the same time.
  • low-dielectric materials are useful as interlayer insulating film materials for semiconductors, and materials with low dielectric constant, high heat resistance, high strength, and economic efficiency are being actively developed.
  • siloxane compounds are mainly used as interlayer insulating film materials for semiconductors, which are the main applications of low dielectric materials.
  • the present invention solves various problems caused by an increase in the amount of holes introduced into an interlayer insulating film material using a conventionally known low dielectric material, and is excellent as an interlayer insulating film material that does not require the introduction of holes. It is intended to provide a low dielectric material, a high strength material, and a heat resistant material.
  • Patent Document 1 JP-A-2002-359240
  • R 1 is a substituted or unsubstituted alicyclic bifunctional group having 5 to 50 carbon atoms, A substituted or unsubstituted heteroatom-containing alicyclic bifunctional group having 4 to 50 carbon atoms, or a group formed by combining one or more of these groups;
  • R 2 may be the same or different and a single bond, (CR 3 ) OS — NR 3 — (C
  • Base strength is a bifunctional group selected, or a group formed by combining one or more of these groups,
  • R 3 may be the same or different and may be an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkynyl group having 1 to 20 carbon atoms, a substituted or unsubstituted An aromatic group, a fluorine-containing group, a borazyl group, or a substituent formed by combining two or more of these substituents;
  • R 4 may be the same or different and may be an alkyl group having 1-20 carbon atoms, an aromatic group having 6-20 carbon atoms, an alkoxy group having 112 carbon atoms, a silyl group, a siloxy group, a fluorine-containing group, or A substituent formed by combining one or more of these substituents,
  • a is an integer from 0 to 6, which may be the same or different,
  • n 1 to 50
  • n is an integer between 2 and 1 million.
  • R 2 is a single bond which may be the same or different, — (CR 3 )-, -0-, -S-, -NR-,
  • R 3 may be the same or different and may be an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkynyl group having 1 to 20 carbon atoms, a substituted or unsubstituted An aromatic group, a fluorine-containing group, a borazyl group, or a substituent formed by combining two or more of these substituents;
  • R 4 may be the same or different and may be an alkyl group having 1-20 carbon atoms, an aromatic group having 6-20 carbon atoms, an alkoxy group having 112 carbon atoms, a silyl group, a siloxy group, a fluorine-containing group, or A substituent formed by combining one or more of these substituents,
  • a is an integer from 0 to 6, which may be the same or different,
  • b is an integer from 0 to 14, which may be the same or different,
  • n 1 to 50
  • n is an integer between 2 and 1 million
  • n is an integer of 1 to 10.
  • R 2 is a single bond which may be the same or different, — (CR 3 )-
  • R 3 may be the same or different and may be an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkynyl group having 1 to 20 carbon atoms, a substituted or unsubstituted An aromatic group, a fluorine-containing group, a borazyl group or a substituent formed by combining two or more of these substituents;
  • R 4 may be the same or different and may be an alkyl group having 1-20 carbon atoms, an aromatic group having 6-20 carbon atoms, an alkoxy group having 112 carbon atoms, a silyl group, a siloxy group, a fluorine-containing group, or A substituent formed by combining one or more of these substituents,
  • a is an integer from 0 to 6, which may be the same or different,
  • b is an integer from 0 to 14, which may be the same or different,
  • n 1 to 50
  • n is an integer of 1 to 10.
  • R 1 (> is the same or different and is a substituted or unsubstituted group represented by the following formula (22) and a substituted or unsubstituted adamantane-containing group represented by the following formula (23)
  • n is an integer from 3 to 1 million.
  • R 1 and R 1 are hydrogen, which may be the same or different, or a linear or branched alkyl group having 120 carbon atoms, and R 1G1 and R 1G2 are bonded to form a monocycloalkyl group.
  • R 1 may be cyclohexylene or divalent adamantane, and t is 0 or 1. 5.
  • Naphthylene-based polymer according to 1, 2 or 4 Partially hydrogenated partially hydrogenated naphthylene-based polymer.
  • the low-dielectric material according to 1, 2, or 4 which is a naphthylene-based polymer.
  • the low-dielectric material according to 6. which is a partially hydrogenated naphthylene-based polymer.
  • An interlayer insulating film material for a semiconductor comprising the low dielectric material according to 7. 10.
  • An interlayer insulating film material for a semiconductor comprising the low dielectric material according to item 8.
  • a high-strength material which also has a naphthylene-based polymer power according to 1, 2, or 4.
  • a high-strength material as described in 16 having a hardness of 0.2 GPa or more and a Z or modulus of 4 GPa or more.
  • a semiconductor device including the thin film according to 20.
  • An image display device comprising the thin film according to 19.
  • An image display device including the thin film according to 20.
  • a surface protective film comprising the thin film according to 19.
  • a surface protective film comprising the thin film according to 20.
  • a novel naphthylene-based polymer and excellent low-dielectric, heat-resistant, and high-strength materials can be provided.
  • the low-dielectric, heat-resistant, and high-strength materials comprising the naphthylene-based polymer of the present invention can be used as interlayer insulating film materials without introducing holes.
  • the performance of semiconductors such as LSIs can be dramatically improved.
  • FIG. 1 is a view showing one embodiment of a semiconductor device of the present invention.
  • FIG. 2 is a 1 H NMR chart of 1,3 bis [4- (1-naphthoxy) phenyl] adamantane obtained in Production Example 1.
  • FIG. 3 is a chart of 13 C NMR of 1,3 bis [4- (1-naphthoxy) phenyl] adamantane obtained in Production Example 1.
  • FIG. 4 is a 1 H NMR chart of 2,2 bis [4- (1-naphthoxy) phenyl] adamantane obtained in Production Example 2.
  • FIG. 5 is a chart of 13 C NMR of 2,2 bis [4- (1-naphthoxy) phenyl] adamantane obtained in Production Example 2.
  • FIG. 6 is a 1 H-NMR chart of the naphthylene-based polymer having an adamantane structure obtained in Example 1.
  • FIG. 7 is a chart of 13 C-NMR of a naphthylene-based polymer having an adamantane structure obtained in Example 1.
  • FIG. 8 is a 1 H-NMR chart of a naphthylene-based polymer having an adamantane structure obtained in Example 2.
  • FIG. 9 is a chart of 13 C-NMR of a naphthylene-based polymer having an adamantane structure obtained in Example 2.
  • FIG. 10 is a 1 H-NMR chart of a monomer for synthesizing a naphthylene-based polymer obtained in Production Example 3.
  • FIG. 11 is a 1 H-NMR chart of a monomer for synthesizing a naphthylene-based polymer obtained in Production Example 4.
  • FIG. 12 is a 1 H-NMR chart of a monomer for synthesizing a naphthylene-based polymer obtained in Production Example 5.
  • FIG. 13 is a 1 H-NMR chart of a monomer for synthesizing a naphthylene-based polymer obtained in Production Example 6.
  • FIG. 14 shows a 1 H-NMR spectrum of a monomer for synthesizing a naphthylene-based polymer obtained in Production Example 7.
  • FIG. 15 is a 1 H-NMR chart of a monomer for synthesizing a naphthylene-based polymer obtained in Production Example 8.
  • FIG. 16 is a 1 H-NMR chart of a monomer for synthesizing a naphthylene-based polymer obtained in Production Example 9.
  • FIG. 17 is a 1 H-NMR chart of a monomer for synthesizing a partially hydrogenated polymer obtained in Production Example 10.
  • FIG. 18 is a 1 H-NMR chart of the naphthylene-based polymer obtained in Example 3.
  • FIG. 19 is a 1 H-NMR chart of a naphthylene-based polymer obtained in Example 4.
  • FIG. 20 is a 1 H-NMR chart of the naphthylene-based polymer obtained in Example 5.
  • FIG. 21 is a 1 H-NMR chart of a naphthylene-based polymer obtained in Example 6.
  • FIG. 22 is a 1 H-NMR chart of a naphthylene-based polymer obtained in Example 7.
  • FIG. 23 is a 1 H-NMR chart of the naphthylene-based polymer obtained in Example 8.
  • FIG. 24 is a 1 H-NMR chart of the naphthylene-based polymer obtained in Example 9.
  • FIG. 25 is a 1 H-NMR chart of a partially hydrogenated polymer obtained in Example 10.
  • FIG. 26 is a 1 H-NMR chart of a naphthylene-based copolymer obtained in Example 11. BEST MODE FOR CARRYING OUT THE INVENTION
  • the alicyclic structure-containing naphthylene-based polymer according to the first embodiment of the present invention is represented by Formula (1).
  • R 1 is a substituted or unsubstituted alicyclic bifunctional group having 5 to 50 carbon atoms, a substituted or unsubstituted heteroatom-containing alicyclic bifunctional group having 4 to 50 carbon atoms, Or a group formed by combining one or more of these groups,
  • R 2 is a single bond which may be the same or different, — (CR 3 ) one,-(SIR 3 ) one, — (OSiR 3 O) ⁇ ,-(SiR 3 0) ⁇ , ⁇ (GeR 3 ) ⁇ , ⁇ (SnR 3 ) ⁇ , ⁇ BR 3 ⁇ , ⁇ AIR 3 ⁇ , ⁇ NR 3 ⁇ , 1 m 1.5 m 2 m 2 m
  • R 3 may be the same or different and may be an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkynyl group having 1 to 20 carbon atoms, a substituted or unsubstituted Aromatic group, ether group, thioether group, ester group, epoxy group-containing group, silyl group-containing group, siloxy group-containing group, fluorine-containing group, borazyl group, or a combination of two or more of these substituents A substituent,
  • R 4 may be the same or different and may be an alkyl group having 1-20 carbon atoms, an aromatic group having 6-20 carbon atoms, an alkoxy group having 112 carbon atoms, a silyl group, a siloxy group, a fluorine-containing group, or A substituent formed by combining one or more of these substituents,
  • a is an integer from 0 to 6, which may be the same or different,
  • n 1 to 50
  • n is an integer between 2 and 1 million.
  • the number of carbon atoms in the alicyclic bifunctional groups are preferably 5- 30. Specific examples of the alicyclic bifunctional group are shown below.
  • the heteroatom-containing alicyclic bifunctional group preferably has 429 carbon atoms. Specific examples of the heteroatom-containing alicyclic bifunctional group are shown below.
  • R 1 The substituent on R 1, for example, a methyl group, Echiru group, cyclopropyl group, n- butyl group, tert- butyl group, Adamanchiru group, biadamantyl group; Bulle group, isopropenyl group, Ariru Group, ethur group; phenyl group, naphthyl group, anthracel group, phenyl group; methoxy group, phenoxy group, adamantyloxy group, biadamantyloxy group, buroxy group, aryloxy group; adamantylthio Groups, vinylthio groups; atarioxy groups, methacryloxy groups; trimethylsilyl groups, trifluorosilyl groups; trimethylsiloxy groups; fluorine, trifluoromethyl groups, trifluoromethoxy groups and the like.
  • the structure of the R 1, double bond may be included one or more. Further, the bonding position of R 1 to R 2 and the substitution position of the substituent on R 1 are not particularly limited !.
  • R 2 is not particularly limited.
  • R 2 the carbon number of the aromatic group is preferably 6-12. Specific examples include a phenylene group, a naphthylene group, a biphenylene group and the like.
  • the aromatic group containing hetero atoms preferably has 5 to 9 carbon atoms. Specific examples include a pyridylene group, a pyrimidylene group, and a quinolylene group.
  • Specific examples of the group formed by combining one or more of the above groups include a substituted or unsubstituted oxyphenylene group and a phenylpyridylene group.
  • the substituent on R 2 include the same groups as substituents on R 1.
  • the bonding position of R 2 to R 1 and the substitution position of the substituent on R 2 are not particularly limited.
  • R 3 is preferably an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkynyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted 6 to 20 carbon atoms.
  • R 3 specifically, methyl, ethyl, n-propyl, iso-propyl, cyclopropyl, n-butyl, iso-butyl, tert-butyl, 2-ethylhexyl
  • An alkyl group having 1 to 20 carbon atoms such as a group, n-decyl group, n-dodecyl group, cyclohexyl group, norbornyl group, adamantyl group, biadamantyl group; carbon such as vinyl group, isopropenyl group, and aryl group
  • Alkyl group having 1 to 20 carbon atoms alkyl group having 1 to 20 carbon atoms such as ethur group; aromatic group having 6 to 20 carbon atoms such as phenyl group, naphthyl group, anthracel group and phenanthrenyl group Groups; alkoxy groups having 120 carbon atoms such as methoxy group, ethoxy group,
  • 1 to 20 carbon atoms such as fluorinated alkenyl group, trifluoromethoxy group, etc. with 1-20 fluorinated alkoxy group, 1-20 carbon atoms such as hexafluoroisoproponoxy group Alkenyl-, pentafluorophenyl, p-trifluoromethylphenyl, pentafluorophenoxy, p-trifluoromethylphenoxy; buradamantyl, burua
  • the substituent include a combination of two or more of the above substituents such as a damantholoxy group and a burbia damantholoxy group.
  • R 3 is a methyl group, an ethyl group, a cyclopropyl group, an n-butyl group, a tert-butyl group, an adamantyl group, a biadamantyl group; a butyl group, an isopropyl group, an aryl group, an ethynyl Groups; phenyl, naphthyl, anthracenyl, phenanthrenyl; methoxy, phenoxy, adamantyloxy, biadamantyloxy, buroxy, aryloxy; adamantylthio, vinylthio; ataryloxy A methacryloxy group; a trimethylsilyl group, a triphenylsilyl group; a trimethylsiloxy group; a fluorine, a trifluoromethyl group, and a trifluoromethoxy group.
  • an alkyl group having 1 to 20 carbon atoms, an aromatic group having 6 to 20 carbon atoms, an alkoxy group, a silyl group, a siloxy group, and a fluorine-containing group having 1 to 20 carbon atoms for R 4 Is the same as R 3 .
  • the substituent formed by combining one or more of these substituents include a methylcyclohexyl group.
  • a is preferably an integer of 0-4, more preferably 0-2.
  • m is preferably an integer of 110, more preferably 110.
  • n is preferably an integer of 2 to 100,000, more preferably 2 to 100,000.
  • the terminal structure of the repeating unit is not particularly limited, but is, for example, 1 naphthyl group or 1 naphthyloxy group.
  • Examples of the alicyclic structure-containing naphthylene-based polymer include an adamantane structure-containing naphthylene-based polymer represented by the formula (2) or (3).
  • R 2 , R 4 , a, and n are the same as those in formula (1), b is an integer of 0-14, which may be the same or different, and n ′ is an integer of 1-10 Is an integer. ]
  • b is preferably an integer of 0-8, more preferably 0-2.
  • n ′ is preferably an integer of 115, more preferably 113.
  • the polymers of the formulas (1), (2) and (3) can be produced by polymerizing the monomers represented by the formulas (4), (5) and (6), respectively. Preferably, it is an acid polymerization.
  • the monomers of the formulas (4), (5) and (6) are selected from bifunctional adamantanes represented by the formulas (7), (8) and (9), respectively, or their equivalent physical properties in organic synthesis.
  • a conventionally known reaction such as a dehydration reaction, a Williamson reaction, a Ullmann reaction, and a Mitsunobu reaction.
  • RR 2 , R 4 , & , 1) and 11 ′ are the same as in formulas (1), (2) and (3), and X and Y are hydroxyl groups, bromine, chlorine, iodine, etc. It is a substituent active in the ether synthesis reaction. ]
  • bifunctional adamantane examples include 1,3 bis (4-hydroxyphenyl) adamantane, 2,2bis (4-hydroxyphenyl) adamantane, 1,3-dihydroxyadamantane, 1 , 3 Jib mouth Moadamantan and 2, 2 Jib mouth Moadamantan.
  • examples of their equivalents in organic synthesis include bifunctional adamantanes such as 2-adamantanone and acetal of 2-adamantanone. Further, there may be mentioned bifunctional adamantanes having 114 of R 4 .
  • naphthalenes specifically, 1-naphthol, 1-chloronaphthalene, 1 Buromona Futaren, -1-tio over de naphthalene and naphthalene and the like having 1 one six R 4 to thereof.
  • the method of oxidizing polymerization of the above monomer is not particularly limited, but is generally known, for example, a method of carrying out a suspension of ferric chloride in a nitrogen gas atmosphere in a trifluoroacetic acid solution.
  • a method of using a vanadyl oxide compound as a catalyst, trifluoroacetic anhydride as a dehydrating agent, and introducing oxygen gas can be suitably used.
  • the naphthylene-based polymer according to the second embodiment of the present invention is represented by the following formula (21). [Formula 14]
  • R 1 represents a substituted or unsubstituted group represented by the following formula (22) which may be the same or different, and a substituted or unsubstituted adamantane-containing group represented by the following formula (23): A bifunctional group of choice, where n is an integer from 3 to 1 million.
  • R is hydrogen, which may be the same or different, or a straight-chain or branched alkyl group having 120 carbon atoms, and R 1G1 and R 1G2 combine to form a monocycloalkyl group.
  • R 103 may be cyclohexylene or divalent adamantane, and t is 0 or 1.
  • R 1C may be all the same or different in the polymer represented by the formula (21). That is, the polymer may be a homopolymer or a copolymer.
  • a copolymer preferably at least one of the substituted or unsubstituted groups of the formula (22) and a group of the formula (23) Is a random copolymer containing at least one of the following groups: Preferably, it is a random copolymer having two types of strength.
  • N in the formula (21) is preferably an integer of 3 to 100,000, more preferably an integer of 3 to 1000
  • the terminal structure of the repeating unit is not particularly limited, and is, for example, a 1-naphthyl group or a 1-naphthyloxy group.
  • R 10 ⁇ R 1G2 is a monocycloalkyl group
  • the monocycloalkyl group preferably has 6 to 20 carbon atoms, more preferably Has 6-14 carbon atoms.
  • an aromatic hydrocarbon group having 5 to 20 carbon atoms, a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, and 3 carbon atoms Linear aliphatic hydrocarbon group with 20 branches, cyclic aliphatic hydrocarbon group with 3-20 carbon atoms, oxygen atom, nitrogen atom, sulfur atom, silicon atom, boron nuclear atom at any position of these substituents
  • the substituent includes a selected heteroatom-containing substituent, or a substituent formed by combining one or more of these substituents or combining two or more of them as appropriate.
  • the substitution position is not particularly limited.
  • the number of substitution is an integer of 0 to 38, and the substituents may be the same or different.
  • the substituted or unsubstituted formulas (22) and (23) are preferably a bifunctional group represented by the following formula.
  • R is an alkyl group having 1-10 carbon atoms which may be the same or different, or a cycloalkyl group, and c is an integer of 0-3 which may be the same or different.
  • R 10 ⁇ R 102 , R 103 and t are the same as in the formula (22).
  • R is preferably an alkyl group having 16 to 16 carbon atoms, a cyclohexyl group or an adamantyl group, and c is preferably an integer of 0 to 2.
  • the naphthylene-based polymer represented by the formula (21) may be partially hydrogenated.
  • the naphthylene-based polymer of the present invention can partially convert an aromatic structure into an aliphatic structure by a hydrogenation reaction of a polymer or a polymerization reaction after a hydrogenation reaction of a monomer.
  • the naphthalene ring represented by the formula (21) is partially hydrogenated.
  • the hydrogenation rate in the hydrogenation reaction can be 0.1-99%.
  • the hydrogenation reaction method is not particularly limited as long as a conventionally known aromatic ring hydrogenation catalyst such as Raney nickel or a noble metal catalyst supported on activated carbon is used.
  • the alicyclic structure-containing naphthylene-based polymer represented by the formula (1) which is the first embodiment of the present invention, is also subjected to a hydrogenation reaction of a polymer or a monomer, similarly to the second embodiment of the present invention.
  • the aromatic structure can be partially converted to an aliphatic structure.
  • the naphthalene ring represented by the formula (1)-(3) is partially hydrogenated.
  • the polymer of the formula (21) can be produced by polymerizing a monomer represented by the following formula (25). Preferably, it is an acid polymerization.
  • a part (0.1-99%) of the monomer used may be hydrogenated to partially convert the naphthalene ring into an aliphatic ring structure.
  • the monomer of the formula (25) is selected from the group consisting of one or more selected from the group consisting of a bifunctional compound represented by the following formula (26) and naphthalenes represented by the following formula (27): Naphthalenes having a substituent Y at the 1-position represented by the following formula (28): Using at least one selected raw material, a conventionally known dehydration reaction, Williamson reaction, Ullmann reaction, Mitsunobu reaction, etc. Can be synthesized by the following reaction.
  • R 1C> is the same as in the formula (21), and X and Y are substituents active in an ether synthesis reaction of a hydroxyl group, bromine, fluorine, chlorine, iodine or the like. ]
  • naphthalenes of the formula (28) include 1 naphthol, 1 chloronaphthalene, 1-bromonaphthalene, 1-odonaphthalene, and the same substituents as those for R 1G in the formula (26).
  • examples include naphthalenes having a group.
  • the method of polymerization of the monomer is not particularly limited, but a generally known method can be applied. Specific examples thereof include a method in which a ferric chloride suspension is carried out in a nitrogen gas atmosphere, a method in which an oxygen-containing gas is introduced using a Cu complex as a catalyst, and a method in which vanadyl oxide is dissolved in trifluoroacetic acid.
  • a method of introducing an oxygen-containing gas using a compound as a catalyst and a dehydrating agent in trifluoroacetic anhydride can be preferably used.
  • the partially hydrogenated polymer is prepared by subjecting a monomer represented by the formula (25) to a hydrogenation treatment to obtain a monomer in which a naphthalene ring has a partially aliphatic ring structure by an oxidation polymerization method. It can be obtained by using it.
  • the polymer obtained by subjecting the monomer represented by the formula (25) to oxidative polymerization is hydrogenated using a conventionally known aromatic ring hydrogenation catalyst such as Raney nickel or a noble metal catalyst supported on activated carbon. It can also be obtained by a processing method.
  • the hydrogenation rate at that time can be 0.1-99%.
  • the naphthylene-based polymer of the present invention has a low dielectric constant, it can be used as a low-dielectric material for various electric and electronic parts, particularly as an interlayer insulating film material for semiconductors used for semiconductor devices and the like.
  • the material of the interlayer insulating film of the ULSI multilayer wiring structure in semiconductor manufacturing includes dielectric constant, heat resistance Properties such as properties, strength, substrate adhesion, and stability are required. Since these characteristics change depending on the hierarchy of the multilayer wiring used and the design node, specific values cannot be defined unconditionally.
  • the naphthylene-based polymer of the present invention which is desired to have a low dielectric constant and the like, and to have a high heat resistance, strength, substrate adhesion, stability and the like, has these properties. Since the required performance of the interlayer insulating film material varies depending on the purpose and site used, at least one of the dielectric constant, heat resistance, strength, substrate adhesion, and stability should be satisfied.
  • the dielectric constant of the naphthylene-based polymer of the present invention varies depending on its structure, but the value of k is in the range of 3.0 or less, preferably 2.8 or less, more preferably 2.5 or less. Below, more preferably 2.3 or less.
  • the dipole moment is randomized and canceled by the main chain twist due to the steric repulsion of the naphthyl structure, so the dipole moment of the molecule as a whole is reduced, and it is geometrically larger than the steric repulsion and the twisted structure of the naphthyl structure Since it has an intermolecular free volume, it has a lower dielectric constant than ordinary polyarylene such as polyphenylene.
  • the steric repulsion and dipole moment of the naphthyl structure can be appropriately adjusted by the main chain structure, molecular weight, type of substituent, substitution position, and substitution number.
  • the naphthylene-based polymer of the present invention has a low dielectric constant and thus can be suitably used as an interlayer insulating film of a semiconductor device. It can be used as other members in devices, image display devices, electronic circuit devices, and the like.
  • the naphthylene-based polymer of the present invention has high heat resistance, and thus can be used as a heat-resistant material for various electric and electronic components.
  • the heat resistance can be evaluated by a general thermophysical property evaluation such as a differential scanning calorimeter (DSC) and a differential thermogravimetric simultaneous analyzer (TGZDTA).
  • the shape of the evaluation sample whether in the form of a thin film or in the form of a powder or a block as a precursor thereof, can be appropriately selected within the limits of the equipment used in the evaluation method.
  • the heat resistance temperature includes the glass transition temperature, the melting temperature or the thermal decomposition onset temperature (5% weight loss temperature) determined by the above method. That is, it is defined by two kinds of temperatures, that is, a difference or a low temperature.
  • the glass transition temperature varies depending on the main chain structure, molecular weight, type of substituent, substitution position, and substitution number, but is preferably in the range of 300 ° C to 700 ° C, more preferably in the range of 350 ° C to 700 ° C. Range.
  • the lower of the melting temperature or the pyrolysis onset temperature varies depending on the main chain structure, molecular weight, type of substituent, substitution position, and substitution number, but is preferably in the range of 300 ° C to 700 ° C, It is preferably in the range of 350 ° C to 700 ° C.
  • the naphthylene-based polymer of the present invention has high heat resistance due to the naphthalene skeleton and the structure of R 1 in formula (1) and R 1G in formula (21). Therefore, the naphthylene-based polymer of the present invention can be suitably used as a heat-resistant material in addition to an interlayer insulating film for a semiconductor circuit.
  • the naphthylene-based polymer of the present invention can be used as a high-strength material for various electric and electronic parts.
  • high-strength material of the present invention By using the high-strength material of the present invention, high strength is imparted to various articles including semiconductors such as ULSI without heat treatment. As a result, it is possible to dramatically improve performance and reliability.
  • the strength varies depending on the main chain structure, the molecular weight, the type of the substituent, the substitution position, and the number of substitutions.
  • the hardness (hardness) by the nanoindentation method is preferably 0.2 GPa or more and lOGPa or less, and Z or modulus. (Elastic modulus) is 4 GPa or more and 100 GPa or less. More preferably, the hardness is 0.25 GPa or more and 8 GPa or less, and the Z or modulus is 5 GPa or more and 8 OGPa or less.
  • the naphthylene-based polymer of the present invention has sufficient strength as an interlayer insulating film material of a ULSI multilayer wiring structure in semiconductor manufacturing. Furthermore, since a thin film having a thickness of lOnm-10 m can be formed by a method such as spin coating or CVD, it can be suitably used as a high-strength material in addition to an interlayer insulating film for a semiconductor circuit.
  • the naphthylene-based polymer of the present invention can be prepared by purification such as washing, ion-exchange resin treatment, reprecipitation, recrystallization, fine filtration, and drying, for example, Fe 3+ , Cl—, Na +, Ca 2+ By removing the ionic impurities such as, the reaction solvent, the post-treatment solvent, and the moisture, the dielectric constant, heat resistance or strength is improved.
  • the naphthylene-based polymer of the present invention is amorphous and therefore has a thickness lOnm-10 ⁇ m Can be made thinner. Therefore, it can be used as a heat-resistant thin film for semiconductor devices, image display devices, electronic circuit devices, surface protective films, and the like.
  • the film thickness of the thin film can be measured by an optical film thickness measurement using an ellipsometer or the like, or a mechanical film thickness measurement using a stylus-type film thickness measurement device or AFM.
  • a thin film forming method such as a spin coating method, a casting method, a bar coating method, and a CVD method can be suitably used.
  • the conditions for forming the thin film are appropriately set because the solubility in a solvent and the solution viscosity vary depending on the type of the substituent, the substitution position, the number of substitution and the like.
  • the solvent is removed by heating at a temperature higher than the boiling point of the solvent under normal pressure, or by heating at a pressure lower than the boiling point of the solvent under reduced pressure or a dry gas stream. Thereby, a thin film can be easily formed. There is no need for heat treatment at high temperature after removing the solvent required for the thermally crosslinked material.
  • conventionally known additives such as a crosslinking agent may be appropriately added.
  • the naphthylene-based polymer thin film of the present invention does not require polymerization (thermal curing) at a high temperature after the thin film is formed, and has a simple chemical structure and can be manufactured from inexpensive raw materials. It is economical for the proposed or proposed thermosetting organic interlayer insulating film material, and does not require a catalyst or a cross-linking agent necessary for thermosetting, so that the interlayer between these residues can be eliminated. It can be suitably used as an insulating film material.
  • the naphthylene-based polymer of the present invention may be used in the form of an ester such as ethyl acetate and ethyl lactate, an ether such as ethanol, an amide such as NMP and DMF, an aromatic such as nitrobenzene and toluene, and a chlorohonolem.
  • Paints dissolved in organic solvents such as DMSO and halogen solvents such as dichloromethane and trichloroethane can be used as a surface protective film by applying them on painted surfaces or the surfaces of plastic products. For example, when this paint is applied to a painted surface or the surface of a plastic product, and the organic solvent is evaporated, a painted surface protective film or a plastic hard coat film can be formed.
  • the naphthylene-based polymer of the present invention can be suitably used in various fields such as fibers and molded products in addition to the above-mentioned applications due to its excellent properties.
  • it can be used as sheets, tubes, films, fibers, laminates, coating materials, various containers, and various parts such as machinery Parts, automotive parts (Bumpers, fenders, aprons, hood panels, fascias, car panels, rocker panel reinforcements, floor panels, rear quarter panels, door panels, door supports, roof tops, trunk lids, fuel lids, etc.
  • Instrument panel console box, glove box, shift knob, pillar garment, door trim, handle, armrest, wind drone, headrest, seat velvet, seats and other interior parts, distributor cap, air cleaner, radiator tank, battery case, radiator Engine room components such as shrouds, washer tanks, cooling fans, heater cases, etc., mirror bodies, wheel covers, trunk mats
  • FIG. 1 shows an embodiment of a semiconductor device including an interlayer insulating film of a naphthylene-based polymer according to the present invention.
  • An ultra-large-scale integrated circuit (ULSI) multilayer wiring structure which is a kind of a semiconductor device as shown in this figure, includes a silicon wafer 10, a transistor 20, a multilayer wiring 30, and a passivation film 40. By increasing the number of layers of the multilayer wiring 30, high integration is achieved.
  • the multilayer wiring 30 is composed of a Cu wiring 34 for connecting a hard mask and / or a non-metal 32, and an interlayer insulating film 36 between the Cu wirings 34.
  • the interlayer insulating film 36 is made of the naphthylene-based polymer of the present invention.
  • the naphthylene-based polymer constituting the interlayer insulating film 36 has high heat resistance, high-temperature processing such as photolithography, etching, Cu wiring formation, vapor deposition, sputtering, etc.
  • high-temperature processing such as photolithography, etching, Cu wiring formation, vapor deposition, sputtering, etc.
  • the semiconductor device is subjected to fine processing, for example, photolithography, etching, Cu wiring formation, CMP (chemical mechanical polishing), vapor deposition, sputtering, etc.
  • fine processing for example, photolithography, etching, Cu wiring formation, CMP (chemical mechanical polishing), vapor deposition, sputtering, etc.
  • the solubility of the naphthylene-based polymer of the present invention in an organic solvent varies depending on its structure, the type of the organic solvent to be used cannot be unconditionally defined, but a known organic solvent or a known organic compound which can be an organic solvent is used. Can be suitably used.
  • the concentration of the naphthylene-based polymer or naphthylene-based copolymer at that time cannot be similarly defined, but it is generally 0.01 to 90%.
  • These polymers may be used alone or as a mixture of a plurality of polymers. If necessary, one or more third components such as additives may be added.
  • the present invention is not limited at all by these Examples.
  • the catalysts and reagents used in the following examples are commercially available products or those prepared according to methods described in known literature.
  • a 1-liter flask containing toluene (200 milliliters) is charged with a bisphenol compound represented by the following formula.
  • n is an integer between 3 and 1 million. The same applies hereinafter. ]
  • Example 3 a naphthylene polymer represented by the following formula was obtained in the same manner as in Example 3, except that the monomer synthesized in Production Example 4 was used instead of the monomer synthesized in Production Example 3. Yield 46%).
  • Example 3 a naphthylene-based polymer represented by the following formula was obtained in the same manner as in Example 3 except that the monomer synthesized in Production Example 5 was used instead of the monomer synthesized in Production Example 3. Yield 75%).
  • Example 3 a naphthylene-based polymer represented by the following formula was obtained in the same manner as in Example 3 except that the monomer synthesized in Production Example 6 was used instead of the monomer synthesized in Production Example 3. Yield 75%).
  • Example 3 a naphthylene-based polymer represented by the following formula was obtained in the same manner as in Example 3, except that the monomer synthesized in Production Example 7 was used instead of the monomer synthesized in Production Example 3. Yield 82%).
  • Example 3 a naphthylene-based polymer represented by the following formula was obtained in the same manner as in Example 3, except that the monomer synthesized in Production Example 8 was used instead of the monomer synthesized in Production Example 3. Yield 29%).
  • Example 3 a naphthylene-based polymer represented by the following formula was obtained in the same manner as in Example 3, except that the monomer synthesized in Production Example 9 was used instead of the monomer synthesized in Production Example 3. Yield 78%).
  • Example 3 a naphthylene-based polymer represented by the following formula was obtained in the same manner as in Example 3, except that the monomer synthesized in Production Example 10 was used instead of the monomer synthesized in Production Example 3. Yield 35%).
  • Example 3 in place of the monomer synthesized in Production Example 3, 2,2 bis [4 (1-naphthoxy) phenyl] adamantane obtained by the method described in Production Example 10 and 9 obtained in Production Example 5 were used.
  • a naphthylene-based copolymer represented by the following formula was obtained in the same manner as in Example 3 except that 0.25 mol of each of, 9 bis [4- (1 naphthoxy) phenyl] fluorene was used (yield: 88%).
  • the monomer sequence of the copolymer was random and the yield was 95%.
  • the structure and molecular weight were confirmed by 1 H-NMR (FIG. 26) and GPC as in Example 1. The results are shown in Table 1.
  • Example 2 Using the polymer synthesized in Example 1, a 1,1,2,2-tetrachloro ethane solution having a concentration of 10 wt% was prepared. This was applied on a silicon wafer by spinning at 3000 rpm for 100 seconds using a spin coater, and heated on a hot plate at 80 ° C for 5 minutes to obtain a viscous solution. An adhesive thin film was formed. The non-adhesive thin film having a uniform surface shape was formed by heating the silicon wafer on which the adhesive thin film was formed at 180 ° C. for 300 minutes. The thickness was measured to be 0.73 ⁇ m by spectroscopic ellipsometry.
  • a capacitor was created by depositing a circular gold electrode on the thin film surface and an aluminum electrode on the entire surface of the silicon wafer, and the dielectric constant was calculated by CV measurement. 2.3 was measured.
  • a 5% weight loss temperature was observed at 515 ° C by measurement using a simultaneous differential thermogravimeter, and a glass transition temperature was not observed by measurement using a differential scanning calorimeter.
  • Hardness (hardness) was measured at 0.28 GPa, and modulus representing elasticity was measured at 6.3 GPa.
  • Table 1 shows the measured values.
  • this polymer can be suitably used as an interlayer insulating film material for semiconductors, a heat-resistant material, and a high-strength material.
  • Example 2 Using the polymer synthesized in Example 2, a 1,1,2,2-tetrachloroethane solution having a concentration of 5 wt% was prepared. In the same manner as in Evaluation Example 1, a non-adhesive thin film having a uniform surface shape was formed on a silicon wafer. This film thickness was measured as 0.20; ⁇ ⁇ by spectroscopic ellipsometry.
  • a tetrachloroethane solution of the polymer synthesized in Examples 3-11 was prepared, and this solution was applied on a silicon wafer using a spin coater to form an adhesive thin film.
  • the non-adhesive thin film was formed by heating the silicon wafer on which the adhesive thin film was formed at 250 ° C for 60 minutes.
  • the dielectric constant of this thin film is determined by the mercury probe method, the heat resistance is determined by the 5% weight loss temperature using a differential thermogravimeter, and the thin film strength is determined by the hardness and elastic modulus of the nanoindentation method.
  • the uniformity was evaluated based on the average surface roughness obtained using a reflection spectral thickness gauge. The results are shown in Table 1.
  • the force can be suitably used as an interlayer insulating film material for semiconductors, a heat resistant material or a high strength material.
  • a thin film was prepared in the same manner as in Evaluation Example 3 except that was used.
  • the prepared thin film was evaluated in the same manner as in Evaluation Example 3. The results are shown in Table 1.
  • this polymer was insufficient as an interlayer insulating film material for semiconductors, a heat-resistant material, and a high-strength material.
  • the naphthylene-based polymer of the present invention is useful as a low-dielectric material, a high-strength material, a heat-resistant material, and the like in the electric and electronic fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 式(1)で表わされる脂環構造含有ナフチレン系重合体。 【化58】 [式中、R1は脂環式二官能性基、含ヘテロ原子脂環式二官能性基、又はこれらが組合わさった基、R2は単結合、−(CR3 2)m−、−O−、−S−、−NR3−、−CO−、−COO−、−NH−CO−、芳香族基、含ヘテロ原子芳香族基から選ばれる二官能性基、又はこれらが組合わさった基、R3はアルキル基、アルケニル基、アルキニル基、芳香族基、シロキシ基含有基、フッ素含有基、ボラジル基、又はこれらが組み合わさった置換基、R4はアルキル基、芳香族基、アルコキシ基、シリル基、シロキシ基、フッ素含有基、又はこれらが組合わさった置換基、aは0~6、mは1~50、nは2~100万である。]

Description

明 細 書
ナフチレン系重合体及びその合成方法、並びにその用途
技術分野
[0001] 本発明は、電気'電子分野における低誘電材料、高強度材料、耐熱材料として有 用な、新規なナフチレン系重合体及びその合成方法、並びにその用途に関する。 背景技術
[0002] 低誘電材料は、電機 ·電子部品における材料として、帯電や抵抗値上昇等の問題 点を解消するために広く用いられている。低誘電材料は、経済性向上、誘電率低下 以外に、発熱を伴う部分に用いられたり、薄膜として使用されることが多いため、耐熱 性向上、強度向上等も同時に求められている。特に、低誘電材料は、半導体の層間 絶縁膜材料として有用であり、低誘電率、高耐熱性、高強度、経済性を具備した材 料の開発が活発に行われている。
[0003] 低誘電材料の主な用途である半導体の層間絶縁膜材料としては、現在シロキサン 系化合物が中心に用いられている。シロキサン系化合物は、主にケィ素、酸素から構 成されている。分子の双極子モーメントが大きいほど誘電率は高くなるため、非共有 電子対を多く有するシロキサン系化合物等は低誘電材料として不利である。しかし、 今までは誘電率の要求値力 ¾=4一 3程度であったため、強度、シリコンウェハに対 する密着性のバランスから、シロキサン系化合物が用いられて 、た。
[0004] 近年、半導体高性能化の要求から半導体回路幅の微細化が求められており、誘電 率をさらに低くすることが必要になってきた。その際には、半導体チップ全体の強度 や物理的ストレス等による絶縁破壊の問題も深刻になるため、薄膜としての強度も維 持する必要がある。低誘電率ィ匕の観点力もシロキサン系化合物は、無機シロキサン 系化合物から有機シロキサン系化合物に、さらにコントロールされたナノメートルレべ ルの空孔の導入と技術が進展してきた。
[0005] しかし、さらなる低誘電率化に対応するには、空孔の導入量を増やすと強度の低下 を招くことが問題になる。そこで有機系ポリマー等の新規材料が提案されてきたが、 絶縁性、低誘電率と高強度に加えて、特に、半導体製造時にかかる熱負荷に耐える 高耐熱性を具備する材料は見当たらない。また、特許文献 1に例示されるボラジン ケィ素系高分子のような有機 Z無機重合体も提案されているが、低誘電率、高強度 、高耐熱性を具備するが、重合に必要なプラチナ触媒を除去する工程がないため、 残留プラチナ原子により生じる絶縁破壊や低安定性の点で問題が残っている。
[0006] このように、従来公知の層間絶縁膜材料に見られる誘電率ィ匕のためにはナノメート ルレベルの空孔導入量を増加する手法が取られて 、るが、空孔導入量の増加は強 度低下を引き起こす。即ち、強度低下を伴わず誘電率を低下させるのには限界があ る。
そこで、本発明は、従来公知の低誘電材料を用いる層間絶縁膜材料への空孔導 入量の増加により生ずる種々の問題点を解消し、空孔導入を必要としない層間絶縁 膜材料として優れた低誘電材料、高強度材料、耐熱材料を提供することを目的とす るものである。
現状のナノメートルレベルの空孔導入手法では、強度低下せずに誘電率を低下さ せるのには限界があるため、オングストロームレベルの空孔を導入する必要があり、 それは原子レベルのサイズの空孔、即ち、分子間自由体積を増カロさせることに他なら ない。そのような材料の具体的な構造として、本発明者らは、ァダマンタン構造等の 特定構造を導入することを考案し、その結果、誘電率低下、耐熱性向上、強度向上 が可能となることを見出し、本発明を完成させた。
特許文献 1:特開 2002— 359240号公報
発明の開示
[0007] 本発明によれば、以下のナフチレン系重合体等が提供される。
1.式 (1)で表わされる脂環構造含有ナフチレン系重合体。
[化 1]
Figure imgf000004_0001
[式中、 R1は、置換又は非置換の炭素数 5— 50の脂環式二官能性基、置換又は非 置換の炭素数 4一 50の含へテロ原子脂環式二官能性基、又はこれらの基が 1種以 上組み合わさって形成される基であり、
R2は、同一でも異なってもよく、単結合、 (CR3 ) O S — NR3— (C
2 m
= 0)—、— (C = 0) 0— NH— CO—、置換又は非置換の炭素数 6— 20の芳香族基 、置換又は非置換の炭素数 4一 20の含へテロ原子芳香族基力 選ばれる二官能性 基、又はこれらの基が 1種以上組み合わさって形成される基であり、
R3は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 1一 20のアル ケニル基、炭素数 1一 20のアルキニル基、置換又は非置換の炭素数 6— 20の芳香 族基、フッ素含有基、ボラジル基、又はこれらの置換基が 2種以上組み合わさって形 成される置換基であり、
R4は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 6— 20の芳香 族基、炭素数 1一 20のアルコキシ基、シリル基、シロキシ基、フッ素含有基、又はこれ らの置換基が 1種以上組み合わさって形成される置換基であり、
aは、同一でも異なってもよぐ 0— 6の整数であり、
mは、 1一 50の整数であり、
nは、 2— 100万の整数である。 ]
2.式(2)又は(3)で表わされるァダマンタン構造含有ナフチレン系重合体。
[化 2]
Figure imgf000005_0001
[式中、 R2は、同一でも異なってもよぐ単結合、— (CR3 ) -、 -0-、 -S -、 -NR -,
2 m
-(C = 0)- — (C = 0) 0-、 -NH-CO-,置換又は非置換の炭素数 6— 20の芳香 族基、置換又は非置換の炭素数 4一 20の含へテロ原子芳香族基力 選ばれるニ官 能性基、又はこれらの基が 1種以上組み合わさって形成される基であり、
R3は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 1一 20のアル ケニル基、炭素数 1一 20のアルキニル基、置換又は非置換の炭素数 6— 20の芳香 族基、フッ素含有基、ボラジル基、又はこれらの置換基が 2種以上組み合わさって形 成される置換基であり、
R4は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 6— 20の芳香 族基、炭素数 1一 20のアルコキシ基、シリル基、シロキシ基、フッ素含有基、又はこれ らの置換基が 1種以上組み合わさって形成される置換基であり、
aは、同一でも異なってもよぐ 0— 6の整数であり、
bは、同一でも異なってもよぐ 0— 14の整数であり、
mは、 1一 50の整数であり、
nは、 2— 100万の整数であり、
n,は、 1一 10の整数である。 ]
3.式 (4)又は(5)で表わされるモノマーを重合する 2に記載のァダマンタン構造含有 ナフチレン系重合体の合成方法。
[化 3]
Figure imgf000006_0001
[式中、 R2は、同一でも異なってもよぐ単結合、— (CR3 ) -
2 m 、 -0-、 -S -、 -NR -,
-(C = 0)- — (C = 0) 0-、 -NH-CO-,置換又は非置換の炭素数 6— 20の芳香 族基、置換又は非置換の炭素数 4一 20の含へテロ原子芳香族基力 選ばれるニ官 能性基、又はこれらの二官能性基が 1種以上組み合わさって形成される基であり、
R3は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 1一 20のアル ケニル基、炭素数 1一 20のアルキニル基、置換又は非置換の炭素数 6— 20の芳香 族基、フッ素含有基、ボラジル基又はこれらの置換基が 2種以上組み合わさって形成 される置換基であり、
R4は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 6— 20の芳香 族基、炭素数 1一 20のアルコキシ基、シリル基、シロキシ基、フッ素含有基、又はこれ らの置換基が 1種以上組み合わさって形成される置換基であり、
aは、同一でも異なってもよぐ 0— 6の整数であり、
bは、同一でも異なってもよぐ 0— 14の整数であり、
mは、 1一 50の整数であり、
n,は、 1一 10の整数である。 ]
4.下記式(21)で表わされるナフチレン系重合体。
[化 4]
Figure imgf000007_0001
[式中、 R1(>は、同一でも異なっていてもよぐ置換又は無置換の下記式(22)に示さ れる基、及び置換又は無置換の下記式(23)に示されるァダマンタン含有基、力 選 択される二官能性基であり、 nは 3— 100万の整数である。 ]
Figure imgf000008_0001
Figure imgf000008_0002
Figure imgf000008_0003
[式中、 R皿、 R1 は同一でも異なってもよぐ水素、又は炭素数 1一 20の直鎖又は 分枝アルキル基であり、 R1G1と R1G2は結合してモノシクロアルキル基を形成してもよく 、 R1 は、シクロへキシレン又は 2価のァダマンタンであり、 tは 0又は 1である。 ] 5.下記式(25)で表わされるモノマーを重合する 4記載のナフチレン系重合体の合 成方法。
Figure imgf000008_0004
[式中、 R1Uは式 (21)と同様である。 ]
6. 1、 2又は 4に記載のナフチレン系重合体力 部分的に水素化された部分水素化 ナフチレン系重合体。
7. 1、 2又は 4に記載のナフチレン系重合体力 なる低誘電材料。
8. 6に記載の部分水素化ナフチレン系重合体力 なる低誘電材料。
9. 7に記載の低誘電材料からなる半導体用層間絶縁膜材料。 10. 8に記載の低誘電材料カゝらなる半導体用層間絶縁膜材料。
11. 1、 2又は 4に記載のナフチレン系重合体力 なる耐熱材料。
12. 6に記載の部分水素化ナフチレン系重合体力 なる耐熱材料。
13.ガラス転移温度が 300°C以上又は観測されず、溶融温度又は熱分解開始温度 の!、ずれか低 、温度が 300°C以上である 11に記載の耐熱材料。
14.ガラス転移温度が 300°C以上又は観測されず、溶融温度又は熱分解開始温度 の!、ずれか低 、温度が 300°C以上である 12に記載の耐熱材料。
15. 1、 2又は 4に記載のナフチレン系重合体力もなる高強度材料。
16. 6に記載の部分水素化ナフチレン系重合体力 なる高強度材料。
17.ハードネスが 0. 2GPa以上、及び Z又はモジュラスが 4GPa以上である 15に記 載の高強度材料。
18.ハードネスが 0. 2GPa以上、及び Z又はモジュラスが 4GPa以上である 16に記 載の高強度材料。
19. 1、 2又は 4に記載のナフチレン系重合体力 なる薄膜。
20. 6に記載の部分水素化ナフチレン系重合体力 なる薄膜。
21. 19に記載の薄膜を含む半導体装置。
22. 20に記載の薄膜を含む半導体装置。
23. 19に記載の薄膜を含む画像表示装置。
24. 20に記載の薄膜を含む画像表示装置。
25. 19に記載の薄膜を含む電子回路装置。
26. 20に記載の薄膜を含む電子回路装置。
27. 19に記載の薄膜を含む表面保護膜。
28. 20に記載の薄膜を含む表面保護膜。
29. 1、 2又は 4に記載のナフチレン系重合体を有機溶媒に溶解させた塗料。
30. 6に記載のナフチレン系重合体を有機溶媒に溶解させた塗料。
本発明によれば、新規なナフチレン系重合体と、優れた低誘電材料、耐熱材料、 高強度材料を提供できる。本発明のナフチレン系重合体からなる低誘電材料、耐熱 材料、高強度材料は、空孔導入をすることなしに層間絶縁膜材料として使用でき、 U LSI等半導体の性能を飛躍的に向上させることができる。
図面の簡単な説明
[図 1]本発明の半導体装置の一実施形態を示す図である。
[図 2]製造例 1で得られた 1, 3 ビス [4— (1—ナフトキシ)フエ-ル]ァダマンタンの1 H NMRのチャート図である。
[図 3]製造例 1で得られた 1, 3 ビス [4— (1—ナフトキシ)フエ-ル]ァダマンタンの13 C NMRのチャート図である。
[図 4]製造例 2で得られた 2, 2 ビス [4— (1—ナフトキシ)フエ-ル]ァダマンタンの1 H NMRのチャート図である。
[図 5]製造例 2で得られた 2, 2 ビス [4— (1—ナフトキシ)フエ-ル]ァダマンタンの13 C NMRのチャート図である。
[図 6]実施例 1で得られたァダマンタン構造含有ナフチレン系重合体の1 H— NMRの チャート図である。
[図 7]実施例 1で得られたァダマンタン構造含有ナフチレン系重合体の13 C— NMRの チャート図である。
[図 8]実施例 2で得られたァダマンタン構造含有ナフチレン系重合体の1 H— NMRの チャート図である。
[図 9]実施例 2で得られたァダマンタン構造含有ナフチレン系重合体の13 C— NMRの チャート図である。
[図 10]製造例 3で得られたナフチレン系重合体合成用モノマーの1 H— NMRのチヤ ート図である。
[図 11]製造例 4で得られたナフチレン系重合体合成用モノマーの1 H— NMRのチヤ ート図である。
[図 12]製造例 5で得られたナフチレン系重合体合成用モノマーの1 H— NMRのチヤ ート図である。
[図 13]製造例 6で得られたナフチレン系重合体合成用モノマーの1 H— NMRのチヤ ート図である。
[図 14]製造例 7で得られたナフチレン系重合体合成用モノマーの1 H— NMRのチヤ ート図である。
[図 15]製造例 8で得られたナフチレン系重合体合成用モノマーの1 H— NMRのチヤ ート図である。
[図 16]製造例 9で得られたナフチレン系重合体合成用モノマーの1 H— NMRのチヤ ート図である。
[図 17]製造例 10で得られた部分水素化重合体合成用モノマーの1 H— NMRのチヤ ート図である。
[図 18]実施例 3で得られたナフチレン系重合体の1 H— NMRのチャート図である。
[図 19]実施例 4で得られたナフチレン系重合体の1 H— NMRのチャート図である。
[図 20]実施例 5で得られたナフチレン系重合体の1 H— NMRのチャート図である。
[図 21]実施例 6で得られたナフチレン系重合体の1 H— NMRのチャート図である。
[図 22]実施例 7で得られたナフチレン系重合体の1 H— NMRのチャート図である。
[図 23]実施例 8で得られたナフチレン系重合体の1 H— NMRのチャート図である。
[図 24]実施例 9で得られたナフチレン系重合体の1 H— NMRのチャート図である。
[図 25]実施例 10で得られた部分水素化重合体の1 H-NMRのチャート図である。
[図 26]実施例 11で得られたナフチレン系共重合体の1 H— NMRのチャート図である。 発明を実施するための最良の形態
本発明の第一実施形態である脂環構造含有ナフチレン系重合体は、式(1)で表わ される。
[化 7]
Figure imgf000011_0001
[式中、 R1は、置換又は非置換の炭素数 5— 50の脂環式二官能性基、置換又は非 置換の炭素数 4一 50の含へテロ原子脂環式二官能性基、又はこれらの基が 1種以 上組み合わさって形成される基であり、
R2は、同一でも異なってもよぐ単結合、— (CR3 ) 一、 -(SIR3 ) 一、— (OSiR3 O) ―、 -(SiR30 ) ―、— (GeR3 ) ―、—(SnR3 ) ―、— BR3—、— AIR3—、— NR3—、 一 m 1. 5 m 2 m 2 m
PR3—、— AsR3—、— SbR3—、— O—、— S―、— Se―、— Te―、—(C = 0)—、— (C = 0) O 一、 OO—、 一 NH— CO—、ァセチリデン基、ェチリデン基、ボラジレン基、置換又は非 置換の炭素数 6— 20の芳香族基、置換又は非置換の炭素数 4一 20の含へテロ原子 芳香族基力 選ばれる二官能性基、又はこれらの基が 1種以上組み合わさって形成 される基であり、
R3は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 1一 20のアル ケニル基、炭素数 1一 20のアルキニル基、置換又は非置換の炭素数 6— 20の芳香 族基、エーテル基、チォエーテル基、エステル基、エポキシ基含有基、シリル基含有 基、シロキシ基含有基、フッ素含有基、ボラジル基、又はこれらの置換基が 2種以上 組み合わさって形成される置換基であり、
R4は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 6— 20の芳香 族基、炭素数 1一 20のアルコキシ基、シリル基、シロキシ基、フッ素含有基、又はこれ らの置換基が 1種以上組み合わさって形成される置換基であり、
aは、同一でも異なってもよぐ 0— 6の整数であり、
mは、 1一 50の整数であり、
nは、 2— 100万の整数である。 ]
R1において、脂環式二官能性基の炭素数は、好ましくは 5— 30である。脂環式二 官能性基の具体例を以下に例示する。
[化 8]
Figure imgf000012_0001
Figure imgf000012_0002
( n " は 1〜5の整数であ る。 ) [0012] 含へテロ原子脂環式二官能性基の炭素数は、好ましくは 4一 29である。含へテロ 原子脂環式二官能性基の具体例を以下に例示する。
[化 9]
Figure imgf000013_0001
[0013] 上記基が 1種以上組み合わさって形成される基として、具体的には、以下のものが 挙げられる。
[化 10]
Figure imgf000013_0002
[0014] R1上の置換基としては、例えば、メチル基、ェチル基、シクロプロピル基、 n—ブチル 基、 tert—ブチル基、ァダマンチル基、ビアダマンチル基;ビュル基、イソプロぺニル 基、ァリル基、ェチュル基;フヱ-ル基、ナフチル基、アントラセ-ル基、フヱナンスレ -ル基;メトキシ基、フエノキシ基、ァダマンチルォキシ基、ビアダマンチルォキシ基、 ビュルォキシ基、ァリルォキシ基;ァダマンチルチオ基、ビニルチオ基;アタリ口キシ基 、メタクリロキシ基;トリメチルシリル基、トリフエ-ルシリル基;トリメチルシロキシ基;フッ 素、トリフルォロメチル基、トリフルォロメトキシ基等が挙げられる。
[0015] R1の構造中には、二重結合が 1つ以上含まれていてもよい。また、 R1の R2との結合 位置、 R1上の置換基の置換位置は特に限定されな!、。
[0016] R2は、好ましくは、単結合、— (CR3 ) O — S NR3 — (C = 0)—
2 m 、— (C
= 0) 0 ΝΗ— CO—、置換又は非置換の炭素数 6— 20の芳香族基、置換又は非 置換の炭素数 4一 20の含へテロ原子芳香族基力 選ばれる二官能性基、又はこれ らの基が 1種以上組み合わさって形成される基である。 R2の置換位置は特に限定さ れない。 [0017] R2において、芳香族基の炭素数は、好ましくは 6— 12である。具体的には、フエ二 レン基、ナフチレン基、ビフヱ-レン基等が挙げられる。
含へテロ原子芳香族基の炭素数は、好ましくは 5— 9である。具体的には、ピリジレ ン基、ピリミジレン基、キノリレン基等が挙げられる。
上記基が 1種以上組み合わさって形成される基として、具体的には、置換又は非置 換のォキシフエ-レン基、フエ-ルビリジレン基等が挙げられる。
R2上の置換基としては、例えば、 R1上の置換基と同様の基が挙げられる。
R2の R1との結合位置、 R2上の置換基の置換位置は特に限定されな 、。
[0018] R3は、好ましくは、炭素数 1一 20のアルキル基、炭素数 1一 20のァルケ-ル基、炭 素数 1一 20のアルキニル基、置換又は非置換の炭素数 6— 20の芳香族基、フッ素 含有基、ボラジル基又はこれらの置換基が 2種以上組み合わさって形成される置換 基である。
R3として、具体的には、メチル基、ェチル基、 n—プロピル基、 iso—プロピル基、シク 口プロピル基、 n -ブチル基、 iso -ブチル基、 tert -ブチル基、 2 -ェチルへキシル基 、 n—デシル基、 n—ドデシル基、シクロへキシル基、ノルボルニル基、ァダマンチル基 、ビアダマンチル基等の炭素数 1一 20のアルキル基;ビニル基、イソプロぺニル基、 ァリル基等の炭素数 1一 20のァルケ-ル基;ェチュル基等の炭素数 1一 20のアルキ -ル基;フエ-ル基、ナフチル基、アントラセ-ル基、フエナンスレニル基等の炭素数 6— 20の芳香族基;メトキシ基、エトキシ基、ァダマンチルォキシ基、ビアダマンチル ォキシ基等の炭素数 1一 20のアルコキシ基、ビュルォキシ基、ァリルォキシ基等の炭 素数 1一 20のァルケ-ルォキシ基、フエノキシ基;メチルチオ基、ァダマンチルチオ 基等の炭素数 1一 20のアルキルチオ基、ビニルチオ基等の炭素数 1一 20のァルケ 二ルチオ基、フエ二ルチオ基;ァセトキシ基、アタリロキシ基、メタクリロキシ基等のエス テル基;エポキシ基、エポキシメチル基等の炭素数 1一 20のアルキルエポキシ基;シ リル基、トリメチルシリル基、 tert -ブチルジメチルシリル基等のトリアルキルシリル基、 トリフエ-ルシリル基;シロキシ基、トリメチルシロキシ基、 tert—ブチルジメチルシロキ シ等のトリアルキルシロキシ基、トリフエ-ルシロキシ基;フッ素、トリフルォロメチル基 等の炭素数 1一 20のフッ素化アルキル基、へキサフルォロイソプロべ-ル基等の炭 素数 1一 20のフッ素化ァルケ-ル基、トリフルォロメトキシ基等の炭素数 1一 20のフッ 素化アルコキシ基、へキサフルォロイソプロぺノキシ基等の炭素数 1一 20のフッ素化 ァルケ-ルォキシ基、ペンタフルォロフエ-ル基、 p トリフルォロメチルフエ-ル基、 ペンタフルオロフエノキシ基、 p—トリフルォロメチルフエノキシ基;ビュルァダマンチル 基、ビュルァダマンチルォキシ基、ビュルビアダマンチルォキシ基等の上記の置換 基が 2種以上組み合わさって形成される置換基が例示される。
[0019] 好ましくは、 R3は、メチル基、ェチル基、シクロプロピル基、 n ブチル基、 tert—ブチ ル基、ァダマンチル基、ビアダマンチル基;ビュル基、イソプロべ-ル基、ァリル基、 ェチニル基;フエニル基、ナフチル基、アントラセニル基、フエナンスレニル基;メトキ シ基、フエノキシ基、ァダマンチルォキシ基、ビアダマンチルォキシ基、ビュルォキシ 基、ァリルォキシ基;ァダマンチルチオ基、ビ-ルチオ基;アタリロキシ基、メタクリロキ シ基;トリメチルシリル基、トリフエ-ルシリル基;トリメチルシロキシ基;フッ素、トリフル ォロメチル基、トリフルォロメトキシ基である。
[0020] R4の炭素数 1一 20のアルキル基、炭素数 6— 20の芳香族基、炭素数 1一 20のァ ルコキシ基、シリル基、シロキシ基、フッ素含有基の具体例及び好適例は、 R3と同様 である。また、これらの置換基が 1種以上組み合わさって形成される置換基としては、 メチルシクロへキシル基が例示される。
[0021] aは、好ましくは 0— 4、より好ましくは 0— 2の整数である。 mは、好ましくは 1一 30、 より好ましくは 1一 10の整数である。 nは、好ましくは 2— 10万、より好ましくは 2— 1, 0 00の整数である。尚、繰り返し単位の末端構造は特に限定されないが、例えば、 1 ナフチル基、 1ーナフチロキシ基である。
[0022] 脂環構造含有ナフチレン系重合体の例として、式(2)又は(3)で表わされるァダマ ンタン構造含有ナフチレン系重合体が挙げられる。
[化 11]
Figure imgf000016_0001
[式中、 R2、 R4、 a、 nは、式(1)と同様であり、 bは、同一でも異なってもよぐ 0— 14の 整数であり、 n'は、 1一 10の整数である。 ]
[0023] bは、好ましくは 0— 8、より好ましくは 0— 2の整数である。 n'は、好ましくは 1一 5、よ り好ましくは 1一 3の整数である。
[0024] 次に、脂環構造含有ナフチレン系重合体の合成方法について説明する。
式(1)、(2)、(3)の重合体は、それぞれ式 (4)、(5)、(6)で表されるモノマーを重 合して製造できる。好ましくは、酸ィ匕重合である。
[0025] [化 12]
Figure imgf000017_0001
[式中、 R R2、R4&、^ 11'は、式(1)、 (2)、 (3)と同様である。]
[0026] 式 (4)、 (5)、 (6)のモノマーは、それぞれ式 (7)、 (8)、 (9)で表わされる二官能性 ァダマンタン類又はその有機合成上の等価体力 選択される一種類以上、及び、式 (10)で表わされるナフタレン類、好ましくは、式(11)で表わされる 1位に置換基 Yを 有するナフタレン類カゝら選択される一種類以上の原料を用いて、脱水反応、 William son反応、 Ullmann反応、 Mitsunobu反応等の従来公知の反応により合成すること が可能である。
[0027] [化 13]
X—— R2—— R1—— R2—— X (7)
Figure imgf000018_0001
(10) (11)
[式中、 R R2、R4&、1)、11 'は、式(1)、(2)、(3)と同様であり、 X、Yは、水酸基、 臭素、塩素、ヨウ素等のエーテル合成反応において活性な置換基である。 ]
[0028] 二官能性ァダマンタン類として、具体的には、 1, 3 ビス(4ーヒドロキシフエ-ル)ァ ダマンタン、 2, 2 ビス(4ーヒドロキシフエ-ル)ァダマンタン、 1, 3—ジヒドロキシァダ マンタン、 1, 3 ジブ口モアダマンタン、 2, 2 ジブ口モアダマンタンが挙げられる。ま た、これらの有機合成上の等価体としては、 2—ァダマンタノン及びその 2—ァダマンタ ノンのァセタール等の二官能性ァダマンタン類が挙げられる。さらに、これらに R4を 1 一 14個有する二官能性ァダマンタン類が挙げられる。
[0029] ナフタレン類として、具体的には、 1 ナフトール、 1 クロロナフタレン、 1ーブロモナ フタレン、 1ーョードナフタレン、及び、これらに R4を 1一 6個有するナフタレン類等が 挙げられる。
[0030] 上記モノマーの酸ィ匕重合法としては特に限定されないが、一般的に公知である、窒 素ガス雰囲気下において塩ィ匕第二鉄の懸濁液中で実施する方法、トリフルォロ酢酸 中、酸化バナジル化合物を触媒として、トリフルォロ酢酸無水物を脱水剤として用い 、酸素ガスを導入する方法等が好適に使用できる。
[0031] 本発明の第二実施形態であるナフチレン系重合体は下記式 (21)で表される。 [化 14]
Figure imgf000019_0001
[式中、 R1"は、同一でも異なっていてもよぐ置換又は非置換の下記式(22)に示さ れる基、及び置換又は非置換の下記式(23)に示されるァダマンタン含有基力 選 択される二官能性基である。式中、 nは 3— 100万の整数である。 ]
[化 15]
Figure imgf000019_0002
Figure imgf000019_0003
[式中、 R皿、 は同一でも異なってもよぐ水素、又は炭素数 1一 20の直鎖又は 分枝アルキル基であり、 R1G1と R1G2は結合してモノシクロアルキル基を形成してもよく 、 R103は、シクロへキシレン又は 2価のァダマンタンであり、 tは 0又は 1である。 ]
R1C)は、式(21)に示される重合体において全て同一でもよぐまた異なってもよい。 即ち、この重合体はホモポリマーでもよくコポリマーでもよい。コポリマーの場合、好ま しくは、置換又は非置換の式 (22)で示される基の少なくとも一種と、式 (23)で示され る基の少なくとも一種を含むランダムコポリマーである。好ましくは二種力もなるランダ ムコポリマーである。
式(21)の nは、好ましくは 3— 10万、より好ましくは 3— 1000の整数である
。尚、繰り返し単位の末端構造は特に限定されないが、例えば、 1 ナフチル基、 1— ナフチロキシ基である。
式(22)に含まれる下記式で示される基において、 R10\ R1G2がモノシクロアルキル 基である場合、このモノシクロアルキル基は好ましくは炭素数が 6— 20であり、より好 ましくは炭素数が 6— 14である。
[化 16]
Figure imgf000020_0001
また、式(22)に含まれる下記式で示される基
[化 18]
Figure imgf000020_0002
の具体例を以下に例示する。
Figure imgf000021_0001
[0036] 式 (22)、(23)の基に置換する置換基として、炭素数 5— 20の芳香族炭化水素基 、炭素数 1一 20の直鎖状脂肪族炭化水素基、炭素数 3— 20の分岐を有する直鎖状 脂肪族炭化水素基、炭素数 3— 20の環状脂肪族炭化水素基、これら置換基の任意 位置に酸素原子、窒素原子、硫黄原子、ケィ素原子、ホウ素原子力 選ばれるへテ 口原子を含有してなる置換基、あるいはこれらの置換基のうち 1種類が複数、あるい は 2種以上が適宜組み合わさって形成される置換基等が挙げられる。置換位置は特 に限定されない。置換数は 0以上 38以下の整数で、置換基は、同一でも異なっても よい。
[0037] 置換又は非置換の式(22)、 (23)は、好ましくは下記式に示される二官能性基であ る。
[化 20]
Figure imgf000021_0002
[式中、 R は同一でも異なってもよぐ炭素数 1一 10のアルキル基、又はシクロアル キル基であり、 cは同一でも異なってもよぐ 0— 3の整数である。 R10\ R102、 R103、 t は式(22)と同様である。 ] R は好ましくは炭素数 1一 6のアルキル基、シクロへキシル基又はァダマンチル基 であり、 cは好ましくは 0— 2の整数である。
[0038] 式(21)で示されるナフチレン系重合体は、部分水素化されて 、てもよ 、。
本発明のナフチレン系重合体は、重合体の水素化反応、あるいは、モノマーの水 素化反応後の重合反応により、芳香族構造を部分的に脂肪族構造に変換することが できる。好ましくは、式(21)に示されるナフタレン環を部分水素化する。水素化反応 における水素化率は、 0. 1— 99%にすることができる。また、その水素化反応方法 はラネーニッケル、活性炭担持貴金属触媒等従来公知の芳香環水素化触媒を使用 すればよぐ特に限定されない。
[0039] 本発明の第一実施形態である式(1)に示される脂環構造含有ナフチレン系重合体 も、本発明の第二実施形態と同様に、重合体の水素化反応、あるいは、モノマーの 水素化反応後の重合反応により、芳香族構造を部分的に脂肪族構造に変換するこ とができる。好ましくは、式(1)一(3)に示されるナフタレン環を部分水素化する。
[0040] 次に、本発明の第二実施形態であるナフチレン系重合体の製造方法について説 明する。
式(21)の重合体は、下記式(25)で示されるモノマーを重合して製造できる。好ま しくは酸ィ匕重合である。
[0041] [化 21]
Figure imgf000022_0001
[式中、 R1"は式 (21)と同様である。 ]
尚、使用するモノマーの一部(0. 1— 99%)について水素化処理して、ナフタレン 環を部分的に脂肪族環構造にしてもよい。
[0042] 式(25)のモノマーは、下記式(26)で表される二官能性ィ匕合物類力 選択される 一種類以上、及び、下記式(27)で表されるナフタレン類、好ましくは下記式(28)で 表される 1位に置換基 Yを有するナフタレン類力 選択される一種類以上の原料を用 いて、脱水反応、 Williamson反応、 Ullmann反応、 Mitsunobu反応等の従来公知 の反応により合成することが可能である。
[化 22]
X—— ~~ X
(26)
Figure imgf000023_0001
(27) (28)
[式中、 R1C>は式 (21)と同様であり、 X、 Yは、水酸基、臭素、フッ素、塩素、ヨウ素等 のエーテル合成反応において活性な置換基である。 ]
[0043] 式(28)のナフタレン類は、具体的には 1 ナフトール、 1 クロロナフタレン、 1ーブロ モナフタレン、 1ーョードナフタレン、及び、これらに式(26)中の R1Gと同様の置換基を 有するナフタレン類等が挙げられる。
[0044] 上記モノマーの酸ィ匕重合法としては特に限定されないが、一般的に公知である方 法が適用できる。その具体例として、窒素ガス雰囲気下において塩ィ匕第二鉄の懸濁 液中で実施する方法、 Cu錯体を触媒として用い酸素含有ガスを導入する方法、トリ フルォロ酢酸中にぉ ヽて酸化バナジル化合物を触媒、トリフルォロ酢酸無水物中を 脱水剤として用いる酸素含有ガスを導入する方法等が好適に使用できる。
[0045] 部分水素化重合体は、あら力じめ式(25)で示されるモノマーを水素化処理して、 ナフタレン環を部分的に脂肪族環構造にしたモノマーを、酸ィ匕重合法を用いることに より得ることができる。また別法として、式(25)で示されるモノマーを酸ィ匕重合するこ とにより得られた重合体をラネーニッケル、活性炭担持貴金属触媒等従来公知の芳 香環水素化触媒を使用し、水素化処理する方法でも得ることができる。そのときの水 素化率は 0. 1— 99%とすることができる。
[0046] 本発明のナフチレン系重合体は、誘電率が低いため、様々な電気 ·電子部品の低 誘電材料、特に半導体装置等に用いられる半導体用層間絶縁膜材料として使用で きる。
半導体製造における ULSI多層配線構造の層間絶縁膜材料には、誘電率、耐熱 性、強度、基板密着性、安定性等の特性が必要とされる。これらの特性は、用いる多 層配線の階層やデザインノードにより変化するため、具体的な値については一概に 定義ができない。一般に誘電率等は低ぐ耐熱性、強度、基板密着性、安定性等は 高くなることが望ましぐ本発明のナフチレン系重合体は、これらの性質を具備するも のである。層間絶縁膜材料は使用される目的や部位により要求性能が異なるため、 誘電率、耐熱性、強度、基板密着性、安定性の内、最低一点を満たせば良い。
[0047] 本発明のナフチレン系重合体の誘電率は、その構造により変化するが、 kの値とし て、 3. 0以下の範囲であり、好ましくは 2. 8以下、より好ましくは 2. 5以下、さらに好ま しくは 2. 3以下である。ナフチル構造の立体反発による主鎖のねじれにより、双極子 モーメントがランダム化し打ち消し合うため、分子全体としての双極子モーメントが低 くなり、さらに、ナフチル構造の立体反発とねじれ構造より幾何学的に大きい分子間 自由体積を具備するため、ポリフエ-レン等の通常のポリアリーレンよりも低誘電率を 示す。ナフチル構造の立体反発と双極子モーメントは、主鎖構造、分子量、置換基 の種類、置換位置、置換数により適宜調整できる。
[0048] 本発明のナフチレン系重合体は、上述したように、誘電率が低いため、半導体装置 の層間絶縁膜として好適に利用できるが、耐熱性が高い等他の特性にも優れるため 、半導体装置、さらに、画像表示装置、電子回路装置等において、他の部材としても 用!/、ることができる。
[0049] また、本発明のナフチレン系重合体は、耐熱性が高いため、様々な電気'電子部品 の耐熱材料として使用できる。
本発明の耐熱材料を用いれば、 ULSI等半導体を始めとする様々な物品において 、熱処理をしなくても耐熱性が付与される。この結果、性能や信頼性を飛躍的に向上 させることが可會となる。
[0050] 耐熱性の評価方法は、示差走査熱量計 (DSC)、示差熱熱重量同時測定装置 (T GZDTA)等の一般的な熱物性評価により行える。評価用サンプルの形状は、薄膜 の状態でも、その前駆体である粉体やブロック状であっても、評価方法の際に用いる 装置の制限の範囲内で適宜選択できる。耐熱温度としては以上の方法により求めら れたガラス転移温度、及び溶融温度又は熱分解開始温度(5%重量減少温度)のう ち 、ずれか低 、温度の 2種類の温度により規定される。
ガラス転移温度は、主鎖構造、分子量、置換基の種類、置換位置、置換数により変 化するが、好ましくは 300°C— 700°Cの範囲、より好ましくは 350°C— 700°Cの範囲 である。溶融温度又は熱分解開始温度のうちいずれか低い温度は、主鎖構造、分子 量、置換基の種類、置換位置、置換数により変化するが、好ましくは 300°C— 700°C の範囲、より好ましくは 350°C— 700°Cの範囲である。本発明のナフチレン系重合体 は、ナフタレン骨格並びに式(1)における R1及び式(21)における R1Gの構造等から、 高耐熱性を有する。従って、本発明のナフチレン系重合体は、半導体回路用層間絶 縁膜の他、耐熱材料として好適に利用できる。
[0051] また、本発明のナフチレン系重合体は、様々な電気 ·電子部品の高強度材料として 使用できる。
本発明の高強度材料を用いれば、 ULSI等半導体を始めとする様々な物品におい て、熱処理をしなくても高強度が付与される。この結果、性能や信頼性を飛躍的に向 上させることが可會となる。
[0052] 強度は、主鎖構造、分子量、置換基の種類、置換位置、置換数により変化するが、 ナノインデンテーション法によるハードネス(硬度)が好ましくは 0. 2GPa以上 lOGPa 以下、及び Z又はモジュラス(弾性率)が 4GPa以上 lOOGPa以下である。より好まし くは、ハードネスが 0. 25GPa以上 8GPa以下、及び Z又はモジュラスが 5GPa以上 8 OGPa以下である。
本発明のナフチレン系重合体は、半導体製造における ULSI多層配線構造の層間 絶縁膜材料としては充分な強度を有する。さらに、スピンコーティング法、 CVD法等 の方法により、厚さ lOnm— 10 mの薄膜形成が可能であるため半導体回路用層間 絶縁膜の他、高強度材料として好適に利用できる。
[0053] 本発明のナフチレン系重合体は、洗浄、イオン交換榭脂処理、再沈殿、再結晶、精 密ろ過、乾燥等の精製より、例えば、 Fe3+、 Cl—、 Na+、 Ca2+等のイオン性不純物、 反応溶媒、後処理溶媒、水分等を除去することにより、その誘電率、耐熱性又は強 度が向上する。
[0054] 本発明のナフチレン系重合体は、アモルファス性であるため、厚さ lOnm— 10 μ m の薄膜化が可能である。従って、耐熱性薄膜として、半導体装置、画像表示装置、 電子回路装置、表面保護膜等に使用できる。尚、薄膜の膜厚は、エリプソメータ等に よる光学的膜厚測定、触針式膜厚測定器や AFM等による機械的膜厚測定が可能 である。
[0055] 薄膜の形成方法としては、スピンコート法、キャスト法、バーコート法、 CVD法等の 薄膜形成方法が好適に使用できる。薄膜形成条件は、置換基の種類、置換位置、 置換数等により、溶媒に対する溶解度や、溶液粘度が異なるため、適宜設定する。 溶液をこれらの方法により所望の表面に塗布した後、常圧下において溶媒の沸点を 上回る温度で加熱、又は減圧下や乾燥ガス気流下にお 、て溶媒の沸点以下で加熱 して溶媒を除去することにより、簡便に薄膜を形成できる。熱架橋材料において必要 な溶媒除去後の高温下熱処理は必要ない。しかし、さらに、強度を上げる場合やそ の他の特性を調整する場合は、従来公知の架橋剤等の添加剤を適宜添加してもよ い。
[0056] 本発明のナフチレン系重合体力 なる薄膜は、薄膜ィ匕後の高温での重合 (熱キュ ァ)が不要な上、化学構造も単純で安価な原料より製造できるため、従来用いられて いたり、提案されたりしている熱硬化性有機系層間絶縁膜材料に対して経済的であ る上、熱硬化させるために必要な触媒や架橋剤を必要としないため、これらの残留が なぐ層間絶縁膜材料として好適に使用できる。
[0057] また、本発明のナフチレン系重合体を、酢酸ェチル、乳酸ェチル等のエステル系、 ァ-ソール等のエーテル系、 NMP、 DMF等のアミド系、ニトロベンゼン、トルエン等 の芳香族系、クロロホノレム、ジクロロメタン、トリクロロェタン等のハロゲン系、 DMSO 等の有機溶媒に溶解させた塗料は、塗装面やプラスチック製品の表面に塗布して表 面保護膜として使用できる。例えば、この塗料を塗装面やプラスチック製品の表面に 塗布した後、有機溶媒を蒸発させると、塗装面保護膜又はプラスチックハードコート 膜が形成できる。
[0058] 本発明のナフチレン系重合体は、その優れた特性により、上記の用途の他、繊維 や成形品等、様々な分野で好適に使用できる。例えば、シート、チューブ、フィルム、 繊維、積層物、コーティング材、各種容器として使用したり、各種部品、例えば、機械 部品、 自動車部品(バンパー、フェンダー、エプロン、フードパネル、フェイシァ、ロー カーパネル、ロッカパネルレインフォース、フロアパネル、リアクォーターパネル、ドア パネル、ドアサポート、ルーフトップ、トランクリツド、フユエルリッド等の外装部品、イン ストルメントパネル、コンソールボックス、グローブボックス、シフトノブ、ピラーガー-ッ シュ、ドアトリム、ハンドル、アームレスト、ウィンドルーノ 、ヘッドレスト、シートべノレト、 シート等の内装部品、ディストリビュータキヤップ、エアクリーナー、ラジェータタンク、 バッテリーケース、ラジェータシユラウド、ウォッシャータンク、クーリングファン、ヒータ ケース等のエンジンルーム内部品、ミーラーボディー、ホイールカバー、トランクマット
、ガソリンタンク等)、二輪車用部品(カウリング材、マフラーカバー、レグシールド等) 、電気'電子部品(ハウジング、シャーシー、コネクター、プリント基板、プーリー、エア コン部品、タイプライター部品、ワードプロセッサー部品、カメラ部品、オフィスコンビュ 一ター関連部品、電話機関連部品、ファクシミリ関連部品、複写機関連部品等)等、 の部品に使用できる。また、各種レンズ、プリズム、光ファイバ一、光ディスク、液晶パ ネル等の各種光学機器用素材として有用である。
実施形態 1
図 1に、本発明のナフチレン系重合体力 なる層間絶縁膜を含む半導体装置の一 実施形態を示す。
この図に示すような半導体装置の一種である超大規模集積回路 (ULSI)多層配線 構造は、シリコンウェハ 10、トランジスタ 20、多層配線 30、パッシベーシヨン膜 40を 含む。多層配線 30を多層化することにより、高集積化となる。多層配線 30は、ハード マスク及び/又はノ リヤメタル 32を結合する Cu配線 34と、 Cu配線 34間にある層間 絶縁膜 36からなる。層間絶縁膜 36は、本発明のナフチレン系重合体から構成されて いる。
この回路では、層間絶縁膜 36を構成するナフチレン系重合体の誘電率が低いた め、配線カ卩ェサイズ (Cu配線 34の間隔)が狭くなつても Cu配線 34間に電荷が寄生 し難く配線遅延時間及び Z又は消費電力を小さく抑えることができる。
また、層間絶縁膜 36を構成するナフチレン系重合体の耐熱性が高いため、微細加 ェ、例えば、光リソグラフィー、エッチング、 Cu配線形成、蒸着、スパッタリング等高温 化にさらされるプロセスを経て半導体装置を製作する際に、熱による破壊、サイズ変 動、ガス発生、変質等の問題を回避できる。
さらに、層間絶縁膜 36を構成するナフチレン系重合体の強度が高いため、微細加 ェ、例えば、光リソグラフィー、エッチング、 Cu配線形成、 CMP (化学的機械的研磨) 、蒸着、スパッタリング等により半導体装置を製作する際に、破壊、破損、剥がれ、め くれ等の問題を回避できる。
[0060] 本発明のナフチレン系重合体の有機溶媒に対する溶解性が、その構造により異な るため用いる有機溶媒の種類は一概に定義できないが、公知の有機溶媒あるいは 有機溶媒と成り得る公知の有機化合物はいずれも好適に使用できる。その際のナフ チレン系重合体又はナフチレン系共重合体濃度は同様に定義できないが 0. 01— 9 0%が一般的である。また、これらの重合体は単品でも複数の混合物でも良ぐ必要 に応じて、添加剤等の第三成分を一種または複数種加えても良い。
[実施例]
[0061] 本発明はこれらの実施例によって何ら限定されるものではない。また、以下の例で 使用した触媒、試薬は、市販の製品、又は公知文献記載の方法に従い調製したもの である。
製造例 1
[ァダマンタン構造含有ナフチレン系重合体合成用モノマーの合成]
トルエン(10ミリリットル)が入った容量 50ミリリットルのフラスコに、 1, 3—ビス(4ーヒド ロキシフエ-ル)ァダマンタン(1. 26g、 4ミリモル)をカ卩えて溶解させた後、キノリン(1 0ミリリットル)を添カ卩した。この溶液に炭酸カリウム(1. 38g、 10ミリモル)をカ卩えた懸 濁液をオイルバス中で 150°Cに加熱攪拌し、トルエンを留去するとともに系内に微量 含まれる水を共沸除去した。室温に到達するまで放冷した後、銅粉末 (0. 026g、 0. 4ミリモノレ)と 1—ブロモナフタレン(1. 12ミリリットノレ、 8ミリモノレ)を追カロし、才ィノレノ ス 中で 190°C、 42時間加熱攪拌した。室温に到達するまで放冷した後、塩化メチレン( 20ミリリットル)を添カ卩し、希塩酸(1N)で洗浄、次いで NaOH水溶液(3%)で洗浄し た。塩化メチレンを減圧留去することにより濃縮し、メタノールを過剰量添加すること により再沈殿させ、濾過することにより粗生成物を得た。この粗生成物を塩化メチレン (2ミリリットル)に溶解させた後、シリカゲルカラムによるクロマトグラフィー (THF (テト ラヒドロフラン):へキサン = 1 : 5)により精製することにより、下記式に示す 1, 3 ビス [ 4一(1 ナフトキシ)フエニル]ァダマンタンを得た(1. 21g、収率 55%)。構造は1 H— NMR (図 2)及び13 C— NMR (図 3)により確認した。
[化 23]
Figure imgf000029_0001
製造例 2
[ァダマンタン構造含有ナフチレン系重合体合成用モノマーの合成]
トルエン(10ミリリットル)が入った容量 50ミリリットルのフラスコに、 2, 2 ビス(4ーヒド ロキシフエ-ル)ァダマンタン(1. 26g、 4ミリモル)をカ卩えて溶解させた後、キノリン(1 0ミリリットル)を添カ卩した。この溶液に炭酸カリウム(1. 38g、 10ミリモル)をカ卩えた懸 濁液をオイルバス中で 150°Cに加熱攪拌し、トルエンを留去するとともに系内に微量 含まれる水を共沸除去した。室温に到達するまで放冷した後、銅粉末 (0. 026g、 0. 4ミリモノレ)と 1—ブロモナフタレン(1. 12ミリリットノレ、 8ミリモノレ)を追カロし、才ィノレノ ス 中で 190°C、 42時間加熱攪拌した。室温に到達するまで放冷した後、塩化メチレン ( 20ミリリットル)を添カ卩し、希塩酸(1N)で洗浄、次いで NaOH水溶液(3%)で洗浄し た。塩化メチレンを減圧留去することにより濃縮し、メタノールを過剰量添加すること により再沈殿させ、濾過することにより粗生成物を得た。この粗生成物を塩化メチレン (2ミリリットル)に溶解させた後、シリカゲルカラムによるクロマトグラフィー (THF:へキ サン = 1 : 5)により精製することにより、下記式に示す 2, 2 ビス [4一(1 ナフトキシ) フエニル]ァダマンタンを得た(1. 21g、収率 55%)。構造は1 H— NMR (図 4)及び13 C NMR (図 5)により確認した。
[化 24]
Figure imgf000030_0001
製造例 3
[ナフチレン系重合体合成用モノマーの合成]
トルエン(200ミリリットル)が入った容量 1リットルのフラスコに、下記式に示すビスフ ノール化合物
[化 25]
Figure imgf000030_0002
(76. 8g、 218ミリモル)をカ卩えて溶解させた後、キノリン(500ミリリットル)を添加した。 この溶液に炭酸カリウム(63. 3g、 458ミリモル)をカ卩えた懸濁液をオイルバス中で 15 0°Cに加熱攪拌し、トルエンを留去するとともに系内に微量含まれる水を共沸除去し た。室温に到達するまで放冷した後、銅粉末(1. 44g、 22. 7ミリモル)と 1 プロモナ フタレン(94. 8g、 458ミリモル)を追加し、オイルバス中で 200°C、 40時間加熱攪拌 した。室温に到達するまで放冷した後、 1N塩酸(2リットル)に投入し、沈殿した固体 をろ別した。該固体を次いで 1N塩酸、アセトンで洗浄した後、塩化メチレン溶液とし てからメタノールに投入することにより再沈殿により精製することにより、下記式に示す 化合物を得た (収率 48%)。構造は1 H-NMRにより確認した(図 10)。
[化 26]
Figure imgf000030_0003
[0064] 製造例 4
[ナフチレン系重合体合成用モノマーの合成]
製造例 3にお 、て、製造例 3で用いたビスフエノールイヒ合物の代わりに下記式に示 すビスフエノール化合物
[化 27]
Figure imgf000031_0001
を使用した以外は、製造例 3と同様の方法で合成し、下記式に示すモノマーを得た ( 収率 69%)。構造は製造例 1と同様に1 H-NMRにより確認した(図 11)
[化 28]
Figure imgf000031_0002
[0065] 製造例 5
[ナフチレン系重合体合成用モノマーの合成]
製造例 3において、製造例 3で用いたビスフエノールイ匕合物の代わりに下記式に示 すビスフ ノール化合物
[化 29]
Figure imgf000031_0003
を使用した以外は、製造例 3と同様の方法で合成し、下記式に示すモノマーを得た ( 収率 28%)。構造は製造例 1と同様に1 H-NMRにより確認した(図 12)。
Figure imgf000032_0001
[0066] 製造例 6
[ナフチレン系重合体合成用モノマーの合成]
製造例 3にお 、て、製造例 3で用いたビスフエノールイ匕合物の代わりに下記式に示 すビスフエノール化合物
[化 31]
Figure imgf000032_0002
を使用した以外は、製造例 3と同様の方法で合成し、下記式に示すモノマーを得た ( 収率 26%)。構造は製造例 1と同様に1 H-NMRにより確認した(図 13)。
[化 32]
Figure imgf000032_0003
[0067] 製造例 7
[ナフチレン系重合体合成用モノマーの合成]
製造例 3にお 、て、製造例 3で用いたビスフエノールイ匕合物の代わりに下記式に示 すビスフエノール化合物
[化 33] HO OH
を使用した以外は、製造例 3と同様の方法で合成し、下記式に示すモノマーを得た ( 収率 30%)。構造は製造例 1と同様に1 H-NMRにより確認した(図 14)。
[化 34]
Figure imgf000033_0001
[0068] 製造例 8
[ナフチレン系重合体合成用モノマーの合成]
製造例 3にお 、て、製造例 3で用いたビスフエノールイ匕合物の代わりに下記式に示 すビスフエノール化合物
[化 35]
Figure imgf000033_0002
を使用した以外は、製造例 3と同様の方法で合成し、下記式に示すモノマーを得た ( 収率 39%)。構造は製造例 1と同様に1 H-NMRにより確認した(図 15)。
[化 36]
Figure imgf000033_0003
[0069] 製造例 9 [ナフチレン系重合体合成用モノマーの合成]
製造例 3にお 、て、製造例 3で用いたビスフエノールイ匕合物の代わりに下記式に示 すビスフエノール化合物
[化 37]
Figure imgf000034_0001
を使用した以外は、製造例 3と同様の方法で合成し、下記式に示すモノマーを得た ( 収率 70%)。構造は製造例 1と同様に1 H-NMRにより確認した(図 16)。
[化 38]
Figure imgf000034_0002
製造例 10
分水素化重合体モノマーの合成]
製造例 3において、製造例 3で用いたビスフエノールイ匕合物の代わりに、 2, 2 ビス (4—ヒドロキシフエ-ル)ァダマンタンを用いることにより、 2, 2 ビス [4— (1—ナフトキシ )フエ-ル]ァダマンタン得た。次に、 2, 2 ビス [4— (1 ナフトキシ)フエ-ル]ァダマン タン(26. Og、 45ミリモル)、触媒としてラネーニッケル(8. 2g)、溶媒としてテトラヒドロ フラン(500ミリリットルを、容積約 1リットルのオートクレーブに封入し、窒素ガス(3MP a)の導入と脱圧を 4回繰り返し空気をパージするとともにリークチェックを行った後、 水素ガス (4MPa)の導入と脱圧を 3回繰り返し窒素をパージするとともにリークチエツ クを行った。その後、水素ガス (4MPa)を導入するとともに、オートクレープを 200°C に加熱することにより 3時間水素添加反応を行った。冷却後、脱圧及び窒素置換した 後、オートクレープを開放し、内容物をろ過することにより触媒を分離した反応液を得 た。反応液を減圧濃縮後、カラムクロマトグラフィーにより精製し、白色の粉体 23. 5g を得た。粉体の構造を1 H— NMRにより確認した結果(図 17)、下記式に示す 2, 2- ビス [4— (5, 6, 7, 8—テトラヒドロー 1 ナフトキシ)フエ-ノレ]ァダマンタンであることを 確認した。
[化 39]
Figure imgf000035_0001
実施例 1
[ァダマンタン構造含有ナフチレン系重合体の合成]
ニトロベンゼン(2. 8ミリリットル)が入った容量 20ミリリットルのフラスコに、製造例 1 で合成した 1, 3 ビス [4— (1 ナフトキシ)フエ-ル]ァダマンタン(0. 30g 0. 5ミリモ ル)を完全に溶解させた後、無水塩化第二鉄 (0. 21g 1. 31ミリモル)を添加した。 この懸濁液を室温下にて攪拌し、 20時間反応させた。この重合溶液を酸性メタノー ルに投入することにより塩ィ匕第二鉄を含む鉄化合物を溶解させるとともに重合体を沈 殿させた。この重合体を濾過し減圧乾燥した後、ジクロロメタン(5ミリリットル)に溶解 させ均一溶液とした。この溶液をイオン交換榭脂 (オルガノ株式会社製、アンバーライ ト 15J— HG'DRY)を充填したカラム管に通過させた後、減圧濃縮した均一溶液をァ セトン(20ミリリットル)に投入、濾過、減圧乾燥させることにより下記式に示すポリ { 1, 3 ビス [4— (1 ナフチルォキシ)フエ-ル]ァダマンタン }を得た(0. 27g、収率 90%)
[化 40]
Figure imgf000036_0001
[式中、 nは 3— 100万の整数である。以下同様である。 ]
構造は1 H— NMR (図 6)及び13 C— NMR (図 7)により確認した。さらに GPC (ゲルパ 一ミエーシヨンクロマトグラフィー、ポリスチレン換算、移動相として THFを使用)により 分子量を測定した(Mn= 3500、 Mw/Mn= 2. 29)。結果を表 1に示す。
実施例 2
[ァダマンタン構造含有ナフチレン系重合体の合成]
ニトロベンゼン(2. 8ミリリットル)が入った容量 20ミリリットルのフラスコに、製造例 2 で合成した 2, 2 ビス [4— (1 ナフトキシ)フエ-ル]ァダマンタン(0. 30g、0. 5ミリモ ル)を完全に溶解させた後、無水塩化第二鉄 (0. 21g、 1. 31ミリモル)を添加した。 この懸濁液を室温下にて攪拌し、 20時間反応させた。この重合溶液を酸性メタノー ルに投入することにより塩ィ匕第二鉄を含む鉄化合物を溶解させるとともに重合体を沈 殿させた。この重合体を濾過し減圧乾燥した後、ジクロロメタン(5ミリリットル)に溶解 させ均一溶液とした。この溶液をイオン交換榭脂 (オルガノ株式会社製、アンバーライ ト 15J— HG'DRY)を充填したカラム管に通過させた後、減圧濃縮した均一溶液をァ セトン(20ミリリットル)に投入、濾過、減圧乾燥させることにより下記式に示すポリ {2, 2 ビス [4— (1 ナフチルォキシ)フエ-ル]ァダマンタン }を得た(0. 27g、収率 90%)
[化 41]
Figure imgf000036_0002
構造は1 H— NMR (図 8)及び13 C— NMR (図 9)により確認した。さらに GPC (ポリス チレン換算、移動相として THFを使用)により分子量を測定した(Mn= 3100、 Mw /Mn= 2. 19)。結果を表 1に示す。
[0073] 実施例 3
[ナフチレン系重合体の合成]
ニトロベンゼン(2. 8ミリリットル)が入った容量 20ミリリットルのフラスコに、製造例 3 で得られたモノマー (0. 5ミリモル)を完全に溶解させた後、無水塩ィ匕第二鉄 (0. 21g 、 1. 31ミリモル)を添加した。この懸濁液を室温下にて攪拌し、 20時間反応させた。 この重合溶液を酸性メタノールに投入することにより塩ィ匕第二鉄を含む鉄化合物を 溶解させるとともに重合体を沈殿させた。この重合体を濾過し減圧乾燥した後、ジクロ ロメタン(5ミリリットル)に溶解させ均一溶液とした。この溶液をイオン交換榭脂 (オル ガノ株式会社製、アンバーライト 15J— HG'DRY)を充填したカラム管に通過させた 後、減圧濃縮した均一溶液をアセトン(20ミリリットル)に投入、濾過、減圧乾燥させる ことにより下記式に示すナフチレン系重合体を得た (収率 81%)。
[化 42]
Figure imgf000037_0001
構造は1 H— NMR (図 18)により確認し、 GPC (ポリスチレン換算、移動相として TH Fを使用)により分子量を測定した。結果を表 1に示す。
[0074] 実施例 4
[ナフチレン系重合体の合成]
実施例 3にお 、て、製造例 3で合成したモノマーの代わりに製造例 4で合成したモノ マーを使用した以外は、実施例 3と同様に下記式に示すナフチレン系重合体を得た (収率 46%)。
[化 43]
Figure imgf000038_0001
構造は1 H— NMR (図 19)により確認し、 GPC (ポリスチレン換算、移動相として TH Fを使用)により分子量を測定した。結果を表 1に示す。
[0075] 実施例 5
[ナフチレン系重合体の合成]
実施例 3にお 、て、製造例 3で合成したモノマーの代わりに製造例 5で合成したモノ マーを使用した以外は、実施例 3と同様に下記式に示すナフチレン系重合体を得た (収率 75%)。
[化 44]
Figure imgf000038_0002
構造は1 H— NMR (図 20)により確認し、 GPC (ポリスチレン換算、移動相として TH Fを使用)により分子量を測定した。結果を表 1に示す。
[0076] 実施例 6
[ナフチレン系重合体の合成]
実施例 3にお 、て、製造例 3で合成したモノマーの代わりに製造例 6で合成したモノ マーを使用した以外は、実施例 3と同様に下記式に示すナフチレン系重合体を得た (収率 75%)。
[化 45]
Figure imgf000039_0001
構造は1 H— NMR (図 21)により確認し、 GPC (ポリスチレン換算、移動相として TH Fを使用)により分子量を測定した。結果を表 1に示す。
[0077] 実施例 7
[ナフチレン系重合体の合成]
実施例 3にお 、て、製造例 3で合成したモノマーの代わりに製造例 7で合成したモノ マーを使用した以外は、実施例 3と同様に下記式に示すナフチレン系重合体を得た (収率 82%)。
[化 46]
Figure imgf000039_0002
構造は1 H— NMR (図 22)により確認し、 GPC (ポリスチレン換算、移動相として TH Fを使用)により分子量を測定した。結果を表 1に示す。
[0078] 実施例 8
[ナフチレン系重合体の合成]
実施例 3にお 、て、製造例 3で合成したモノマーの代わりに製造例 8で合成したモノ マーを使用した以外は、実施例 3と同様に下記式に示すナフチレン系重合体を得た (収率 29%)。
[化 47]
Figure imgf000040_0001
構造は1 H— NMR (図 23)により確認し、 GPC (ポリスチレン換算、移動相として TH Fを使用)により分子量を測定した。結果を表 1に示す。
[0079] 実施例 9
[ナフチレン系重合体の合成]
実施例 3にお 、て、製造例 3で合成したモノマーの代わりに製造例 9で合成したモノ マーを使用した以外は、実施例 3と同様に下記式に示すナフチレン系重合体を得た (収率 78%)。
[化 48]
Figure imgf000040_0002
構造は1 H— NMR (図 24)により確認し、 GPC (ポリスチレン換算、移動相として TH Fを使用)により分子量を測定した。結果を表 1に示す。
[0080] 実施例 10
分水素化重合体の合成]
実施例 3にお 、て、製造例 3で合成したモノマーの代わりに製造例 10で合成したモ ノマーを使用した以外は、実施例 3と同様に下記式に示すナフチレン系重合体を得 た (収率 35%)。
[化 49]
Figure imgf000041_0001
構造は1 H— NMR (図 25)により確認し、 GPC (ポリスチレン換算、移動相として TH Fを使用)により分子量を測定した。結果を表 1に示す。
[0081] 実施例 11
[ナフチレン系共重合体の合成]
実施例 3において、製造例 3で合成したモノマーの代わりに、製造例 10記載の方法 で得た 2, 2 ビス [4 ( 1—ナフトキシ)フエ-ル]ァダマンタンと製造例 5で得られた 9, 9 ビス [4— (1 ナフトキシ)フエ-ル]フルオレンをそれぞれ 0. 25モルずつ使用した 以外は、実施例 3と同様に下記式に示すナフチレン系共重合体を得た (収率 88%)
[化 50]
Figure imgf000041_0002
[式中、 nと nは、 n +n =nの整数である。 ]
1 2 1 2
共重合体のモノマーシーケンスはランダムであり、その収率は 95%であった。構造 と分子量は、実施例 1と同様に1 H— NMR (図 26)、 GPCで確認した。結果を表 1に示 す。
[0082] 評価例 1
実施例 1にて合成した重合体を用い、濃度 10wt%の 1, 1, 2, 2—テトラクロ口エタ ン溶液を作成した。これを、スピンコーターを用いて 3000rpm、 100秒間回転させ、 シリコンウェハ上に塗布し、 80°Cのホットプレート上にて 5分間加熱することにより、粘 着性の薄膜を形成した。この粘着性薄膜が形成したシリコンウェハを 180°Cにて 300 分加熱することにより、均一な表面形状の非粘着性薄膜を形成させた。この膜厚は、 分光エリプソメトリー法により 0. 73 μ mと計測された。
また、円状金電極を薄膜面に、全面アルミニウム電極をシリコンウェハ面に蒸着する ことによりコンデンサを作成し、 C V測定を行うことにより誘電率を算出したところ、比 誘電率 kは 2. 1-2. 3と計測された。
また、示差熱重量同時測定装置を用いた測定により 5%重量減少温度は 515°Cに 観測され、示差走査熱量計を用いた測定によりガラス転位温度は観測されな力つた ナノインデンテーション法により、ハードネス (硬度)は 0. 28GPa、弾性力を表わす モジュラスは 6. 3GPaと測定された。
各測定値を表 1に示す。
以上の操作中、シリコンウェハからの膜の剥離は全く観測されず、基板密着性につ いても問題がなかった。
以上の結果から、この重合体は、半導体用層間絶縁膜材料、耐熱材料、高強度材 料として好適に使用できることが証明された。
評価例 2
実施例 2にて合成した重合体を用い、濃度 5wt%の 1, 1, 2, 2—テトラクロロェタン 溶液を作成した。これを、評価例 1と同様にしてシリコンウェハ上に均一な表面形状の 非粘着性薄膜を形成させた。この膜厚は、分光エリプソメトリー法により 0. 20 ;ζ ΐηと 計測された。
さらに、評価例 1と同様にして、誘電率、 5%重量減少温度、硬度、モジュラスを測 定した。示差走査熱量計を用いた測定によりガラス転位温度は観測されな力つた。 各測定値を表 1に示す。
以上の操作中、シリコンウェハからの膜の剥離は全く観測されず、基板密着性につ いても問題がなかった。
以上の結果から、この重合体は、半導体用層間絶縁膜材料、耐熱材料、高強度材 料として好適に使用できることが証明された。 [0084] 評価例 3— 11
実施例 3— 11にて合成した重合体のテトラクロロェタン溶液を作成し、この溶液をシ リコンウェハ上にスピンコーターを用いて塗布し、粘着性の薄膜を形成した。この粘着 性薄膜が形成したシリコンウェハを 250°Cにて 60分加熱することにより非粘着性薄膜 を形成させた。この薄膜の誘電率は水銀プローブ法により、耐熱性は示差熱重量同 時測定装置を用いた 5%重量減少温度により、薄膜強度はナノインデンテーション法 の硬度と弾性率により、薄膜の表面形状の均一性は反射分光膜厚計を用いて求め た平均表面粗さにより評価した。結果は表 1に示す。
[0085] また、目視観察した結果、シリコンウェハ上に形成した薄膜に欠陥は見らな力 た。
さらに、以上の操作中にシリコンウエノ、からの膜の剥離は全く観測されな力つたことか ら、基板密着性についても問題がな力つた。以上の結果力も半導体用層間絶縁膜材 料、耐熱材料又は高強度材料として好適に使用できることが証明された。
[0086] 比較例 1
評価例 3において、実施例 3にて合成した重合体の代わりに、下記式に示す巿販 のポリ(2, 6 ジメチルー 1, 4 フエ-レンォキシド)(アルドリッチ社製)
[化 51]
Figure imgf000043_0001
を用いた以外は評価例 3と同様に薄膜を作製した。作成した薄膜について、評価例 3 と同様に評価を行った。結果を表 1に示す。
尚、表面には彗星状欠陥が観察されたが、平均表面粗さはこれを除いて評価した
[0087] [表 1] •mm mm
1 2 3 4 5 6 7 8 9 10 11 1 数平均 量 3500 3100 4000 1800 9200 7600 1900 2500 2900 3900 4500 18900 比誘電率 2.1〜2.3 2.1-2.3 2.85 2.73 2.70 2.81 2.61 2.52 2.79 2.86 2.80 2.95 觀 GPa) 0.28 0.43 0.30 0.26 0.33 0.37 0.32 0.35 0.31 0.40 0.35 0.16 弾性率 (GPa) 6.3 8.4 8.8 7.7 7.6 8.4 6.9 8.2 6.7 7.8 7.3 3.5
5輝 » ^少 268
515 498 408 401 446 452 425 405 430 402 441
CC) (M )
6.9 平職面粗さ
5.2 4.5 2.1 4.3 2.2 2.6 3.6 4.2 2.3 2.9 3.6 (籠歡 陥を除く)
[0088] 以上の結果から、この重合体は、半導体用層間絶縁膜材料、耐熱材料、高強度材 料としては不充分なものであることが証明された。
産業上の利用可能性
[0089] 本発明のナフチレン系重合体は、電気'電子分野における低誘電材料、高強度材 料、耐熱材料等として有用である。

Claims

請求の範囲
[1] 式 (1)で表わされる脂環構造含有ナフチレン系重合体。
[化 52]
Figure imgf000046_0001
[式中、 R1は、置換又は非置換の炭素数 5— 50の脂環式二官能性基、置換又は非 置換の炭素数 4一 50の含へテロ原子脂環式二官能性基、又はこれらの基が 1種以 上組み合わさって形成される基であり、
R2は、同一でも異なってもよく、単結合、 (CR3 ) O S — NR3— (C
2 m
= 0)—、— (C = 0) 0— NH— CO—、置換又は非置換の炭素数 6— 20の芳香族基 、置換又は非置換の炭素数 4一 20の含へテロ原子芳香族基力 選ばれる二官能性 基、又はこれらの基が 1種以上組み合わさって形成される基であり、
R3は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 1一 20のアル ケニル基、炭素数 1一 20のアルキニル基、置換又は非置換の炭素数 6— 20の芳香 族基、フッ素含有基、ボラジル基、又はこれらの置換基が 2種以上組み合わさって形 成される置換基であり、
R4は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 6— 20の芳香 族基、炭素数 1一 20のアルコキシ基、シリル基、シロキシ基、フッ素含有基、又はこれ らの置換基が 1種以上組み合わさって形成される置換基であり、
aは、同一でも異なってもよぐ 0— 6の整数であり、
mは、 1一 50の整数であり、
nは、 2— 100万の整数である。 ]
[2] 式(2)又は(3)で表わされるァダマンタン構造含有ナフチレン系重合体。
[化 53]
Figure imgf000047_0001
[式中、 R2は、同一でも異なってもよぐ単結合、— (CR3 ) -、 -0-、 -S -、 -NR3-
2 m 、
-(C = 0)- — (C = 0) 0-、 -NH-CO-,置換又は非置換の炭素数 6— 20の芳香 族基、置換又は非置換の炭素数 4一 20の含へテロ原子芳香族基力 選ばれるニ官 能性基、又はこれらの基が 1種以上組み合わさって形成される基であり、
R3は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 1一 20のアル ケニル基、炭素数 1一 20のアルキニル基、置換又は非置換の炭素数 6— 20の芳香 族基、フッ素含有基、ボラジル基、又はこれらの置換基が 2種以上組み合わさって形 成される置換基であり、
R4は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 6— 20の芳香 族基、炭素数 1一 20のアルコキシ基、シリル基、シロキシ基、フッ素含有基、又はこれ らの置換基が 1種以上組み合わさって形成される置換基であり、
aは、同一でも異なってもよぐ 0— 6の整数であり、
bは、同一でも異なってもよぐ 0— 14の整数であり、
mは、 1一 50の整数であり、
nは、 2— 100万の整数であり、
n,は、 1一 10の整数である。 ]
式 (4)又は(5)で表わされるモノマーを重合する請求項 2に記載のァダマンタン構 造含有ナフチレン系重合体の合成方法。
[化 54]
Figure imgf000048_0001
[式中、 R2は、同一でも異なってもよぐ単結合、— (CR3 ) -、 -0-、 -S -、 -NR3-
2 m 、
-(C = 0)- — (C = 0) 0-、 -NH-CO-,置換又は非置換の炭素数 6— 20の芳香 族基、置換又は非置換の炭素数 4一 20の含へテロ原子芳香族基力 選ばれるニ官 能性基、又はこれらの二官能性基が 1種以上組み合わさって形成される基であり、
R3は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 1一 20のアル ケニル基、炭素数 1一 20のアルキニル基、置換又は非置換の炭素数 6— 20の芳香 族基、フッ素含有基、ボラジル基又はこれらの置換基が 2種以上組み合わさって形成 される置換基であり、
R4は、同一でも異なってもよぐ炭素数 1一 20のアルキル基、炭素数 6— 20の芳香 族基、炭素数 1一 20のアルコキシ基、シリル基、シロキシ基、フッ素含有基、又はこれ らの置換基が 1種以上組み合わさって形成される置換基であり、
aは、同一でも異なってもよぐ 0— 6の整数であり、
bは、同一でも異なってもよぐ 0— 14の整数であり、
mは、 1一 50の整数であり、
n,は、 1一 10の整数である。 ]
下記式(21)で表わされるナフチレン系重合体。
[化 55]
Figure imgf000048_0002
[式中、 R1(>は、同一でも異なっていてもよぐ置換又は無置換の下記式(22)に示さ れる基、及び置換又は無置換の下記式(23)に示されるァダマンタン含有基、力 選 択される二官能性基であり、 nは 3— 100万の整数である。 ]
[化 56]
Figure imgf000049_0001
Figure imgf000049_0002
[式中、 R皿、 は同一でも異なってもよぐ水素、又は炭素数 1一 20の直鎖又は 分枝アルキル基であり、 R1G1と R1G2は結合してモノシクロアルキル基を形成してもよく 、 R103は、シクロへキシレン又は 2価のァダマンタンであり、 tは 0又は 1である。 ] 下記式(25)で表わされるモノマーを重合する請求項 4記載のナフチレン系重合体 の合成方法。
[化 57]
Figure imgf000049_0003
[式中、 R1"は式 (21)と同様である。 ] [6] 請求項 1、 2又は 4に記載のナフチレン系重合体力 部分的に水素化された部分水 素化ナフチレン系重合体。
[7] 請求項 1、 2又は 4に記載のナフチレン系重合体力 なる低誘電材料。
[8] 請求項 6に記載の部分水素化ナフチレン系重合体力 なる低誘電材料。
[9] 請求項 7に記載の低誘電材料力 なる半導体用層間絶縁膜材料。
[10] 請求項 8に記載の低誘電材料力 なる半導体用層間絶縁膜材料。
[11] 請求項 1、 2又は 4に記載のナフチレン系重合体力 なる耐熱材料。
[12] 請求項 6に記載の部分水素化ナフチレン系重合体力 なる耐熱材料。
[13] ガラス転移温度が 300°C以上又は観測されず、溶融温度又は熱分解開始温度の
V、ずれか低 ヽ温度が 300°C以上である請求項 11に記載の耐熱材料。
[14] ガラス転移温度が 300°C以上又は観測されず、溶融温度又は熱分解開始温度の
V、ずれか低 ヽ温度が 300°C以上である請求項 12に記載の耐熱材料。
[15] 請求項 1、 2又は 4に記載のナフチレン系重合体力 なる高強度材料。
[16] 請求項 6に記載の部分水素化ナフチレン系重合体力 なる高強度材料。
[17] ハードネスが 0. 2GPa以上、及び Z又はモジュラスが 4GPa以上である請求項 15 に記載の高強度材料。
[18] ハードネスが 0. 2GPa以上、及び Z又はモジュラスが 4GPa以上である請求項 16 に記載の高強度材料。
[19] 請求項 1、 2又は 4に記載のナフチレン系重合体力 なる薄膜。
[20] 請求項 6に記載の部分水素化ナフチレン系重合体力 なる薄膜。
[21] 請求項 19に記載の薄膜を含む半導体装置。
[22] 請求項 20に記載の薄膜を含む半導体装置。
[23] 請求項 19に記載の薄膜を含む画像表示装置。
[24] 請求項 20に記載の薄膜を含む画像表示装置。
[25] 請求項 19に記載の薄膜を含む電子回路装置。
[26] 請求項 20に記載の薄膜を含む電子回路装置。
[27] 請求項 19に記載の薄膜を含む表面保護膜。
[28] 請求項 20に記載の薄膜を含む表面保護膜。 [29] 請求項 1、 2又は 4に記載のナフチレン系重合体を有機溶媒に溶解させた塗料。
[30] 請求項 6に記載の部分水素化ナフチレン系重合体を有機溶媒に溶解させた塗料。
PCT/JP2005/003635 2004-03-26 2005-03-03 ナフチレン系重合体及びその合成方法、並びにその用途 WO2005092946A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511414A JPWO2005092946A1 (ja) 2004-03-26 2005-03-03 ナフチレン系重合体及びその合成方法、並びにその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-092169 2004-03-26
JP2004092169 2004-03-26

Publications (1)

Publication Number Publication Date
WO2005092946A1 true WO2005092946A1 (ja) 2005-10-06

Family

ID=35056149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003635 WO2005092946A1 (ja) 2004-03-26 2005-03-03 ナフチレン系重合体及びその合成方法、並びにその用途

Country Status (3)

Country Link
JP (1) JPWO2005092946A1 (ja)
TW (1) TW200604240A (ja)
WO (1) WO2005092946A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007537A (ja) * 2006-06-27 2008-01-17 Idemitsu Kosan Co Ltd 脂環式置換基含有芳香族系化合物の製造方法及び低誘電材料
JP2008201982A (ja) * 2007-02-22 2008-09-04 Idemitsu Kosan Co Ltd 多環脂環式化合物を前駆体物質とする薄膜、及びその製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160491A (ja) * 1999-10-01 2001-06-12 Eastman Kodak Co エレクトロルミネセント装置
JP2004217677A (ja) * 2003-01-09 2004-08-05 Sumitomo Chem Co Ltd 低誘電率ポリマー

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160491A (ja) * 1999-10-01 2001-06-12 Eastman Kodak Co エレクトロルミネセント装置
JP2004217677A (ja) * 2003-01-09 2004-08-05 Sumitomo Chem Co Ltd 低誘電率ポリマー

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007537A (ja) * 2006-06-27 2008-01-17 Idemitsu Kosan Co Ltd 脂環式置換基含有芳香族系化合物の製造方法及び低誘電材料
JP2008201982A (ja) * 2007-02-22 2008-09-04 Idemitsu Kosan Co Ltd 多環脂環式化合物を前駆体物質とする薄膜、及びその製造方法

Also Published As

Publication number Publication date
TW200604240A (en) 2006-02-01
JPWO2005092946A1 (ja) 2008-02-14

Similar Documents

Publication Publication Date Title
Wu et al. Synthesis and characterization of organosoluble aromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane
KR100295485B1 (ko) 산화규소막의제조방법
KR101157471B1 (ko) 막형성용 조성물, 절연재료 형성용 조성물, 절연막 및 전자디바이스
JP4516857B2 (ja) カゴ構造を有する重合体、それを含む膜形成用組成物、絶縁膜および電子デバイス
US20060293482A1 (en) Organo functionalized silane monomers and siloxane polymers of the same
WO2005030837A1 (ja) 架橋性含フッ素芳香族プレポリマー及びその用途
Choi et al. Synthesis and characterization of ladder-like structured polysilsesquioxane with carbazole group
JP2020033540A (ja) シルセスキオキサン含有ポリイミド
Mathews et al. Synthesis and characterization of novel fully aliphatic polyimidosiloxanes based on alicyclic or adamantyl diamines
US20060205879A1 (en) Film-forming composition and insulating film and electronic device using the same
US6518390B2 (en) Precursor of a heat resistant resin, heat resistant resin, insulating film and semiconductor device
JP2006206857A (ja) ベンゾオキサゾール樹脂前駆体、ポリベンゾオキサゾール樹脂、樹脂膜および半導体装置
JP4734055B2 (ja) アセチレン性三重結合を有するモノマーの重合体、これを用いる膜形成用組成物、絶縁膜および電子デバイス
WO2005092946A1 (ja) ナフチレン系重合体及びその合成方法、並びにその用途
US20060178542A1 (en) Aromatic ring polymer and low-dielectric material
JP2006282814A (ja) ポリエステル化合物、ポリベンゾオキサゾール樹脂、ワニス、樹脂膜および半導体装置
WO2003057749A1 (en) Organic compositions
Takamura et al. Completely discontinuous organic/inorganic hybrid nanocomposites by self‐curing of nanobuilding blocks constructed from reactions of [HMe2SiOSiO1. 5] 8 with vinylcyclohexene
US7534292B2 (en) Film-forming composition, insulating film obtained from the composition and electronic device having the same
JP4130110B2 (ja) 有機シラン化合物多層薄膜及び有機シラン化合物薄膜の製造方法
JP2006257212A (ja) 膜形成用組成物、それを用いた絶縁膜および電子デバイス
KR20010094928A (ko) 전기 절연성 박막 형성성 수지 조성물 및 이로부터의박막의 형성방법
TWI742160B (zh) 橋接聚矽氧樹脂、膜、電子裝置及相關方法
JP2006245117A (ja) 膜形成用組成物、それを用いた絶縁膜および電子デバイス
WO2018064543A1 (en) Bridged silicone resin, film, electronic device and related methods

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511414

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase