WO2005091065A1 - 光パルス成形器の設計方法及び光パルス成形器 - Google Patents

光パルス成形器の設計方法及び光パルス成形器 Download PDF

Info

Publication number
WO2005091065A1
WO2005091065A1 PCT/JP2005/004837 JP2005004837W WO2005091065A1 WO 2005091065 A1 WO2005091065 A1 WO 2005091065A1 JP 2005004837 W JP2005004837 W JP 2005004837W WO 2005091065 A1 WO2005091065 A1 WO 2005091065A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
optical
dispersion
nonlinear
fiber
Prior art date
Application number
PCT/JP2005/004837
Other languages
English (en)
French (fr)
Inventor
Takashi Inoue
Shu Namiki
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to US10/593,340 priority Critical patent/US7483608B2/en
Priority to EP05721024A priority patent/EP1744207A4/en
Priority to JP2006511228A priority patent/JP4897958B2/ja
Publication of WO2005091065A1 publication Critical patent/WO2005091065A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/26Pulse shaping; Apparatus or methods therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/54Optical pulse train (comb) synthesizer

Definitions

  • the present invention relates to an optical pulse shaper applied to an optical pulse generation technology used in an optical fiber communication system, or to an optical pulse shaper used for a material processing application, and a design of the optical pulse shaper. About the method.
  • the repetition frequency is sufficiently large, so that high-quality optical pulses with less noise and fluctuation are required.
  • an ultrashort optical pulse train with a very short waveform width is required for the repetition characteristics and waveform quality of the optical pulse.
  • Ultra-short pulse generation technology using a resonator structure includes a solid-state laser such as a titanium sapphire laser, a mode-locked fiber laser that forms the resonator structure by the optical fiber itself, or a mode-locked structure using a semiconductor. Semiconductor mode-locked lasers and the like are used.
  • an ultrashort pulse generation technique that does not use a resonator structure uses a phenomenon in which an optical pulse serving as a seed signal is compressed by a nonlinear effect in an optical fiber. Therefore, an optical soliton compressor, a super continuum (SC) compressor, and the like are also known as a traveling wave (TW) system.
  • TW traveling wave
  • the repetition frequency is determined by the length of the resonator, and thus the flexibility with respect to the repetition frequency is low. Further, in order to continue the pulse oscillation, various stabilization techniques are required, and if it is necessary to fine-tune the setting in accordance with a change in the external environment, there are difficulties.
  • ultrashort pulse generation technology that does not use a resonator structure (particularly, ultrashort pulse generation technology based on the TW method using an optical fiber) uses optical pulses and beat light generated by an electric circuit.
  • the repetition frequency is variable to compress the waveform width of the seed signal.
  • no resonator structure since no resonator structure is used, it is possible to output an optical pulse having extremely high stability according to the stability of the optical fiber itself.
  • SC compression and optical soliton compression are known as compression of the optical pulse waveform width by the TW method.
  • SC compression greatly expands the frequency band of an optical pulse by the nonlinear effect of an optical fiber having a small dispersion value, and further compresses the waveform width of the optical pulse by dispersion-compensating the expanded frequency band. I do.
  • the dispersion value of the optical fiber is flat with respect to the frequency and does not change in the longitudinal direction of the fiber.
  • the SC compression can provide a large compression ratio, it is known that there is a difficulty that a pulse quality may be deteriorated, such as a waveform of a compressed optical pulse accompanied by a pedestal component.
  • optical solitons generated by optical soliton compression are optical noises that are formed by balancing the dispersion effect and the nonlinear effect of an optical fiber and do not change the waveform during propagation.
  • the weakened dispersion In the case of an optical soliton, if the dispersion effect is gradually reduced in the longitudinal direction of the fiber by reducing the dispersion value of the optical fiber in a sufficiently long span with respect to a distance called a soliton period, the weakened dispersion
  • the pulse waveform is self-shaped to compensate for the effect, and consequently the optical pulse waveform width is reduced.
  • the amplitude of the optical pulse is moderated in the longitudinal direction of the fiber.
  • a compression method using such a phenomenon is called adiabatic soliton compression, and it is known that a light pulse as a sech function type optical soliton can be obtained. I have.
  • Adiabatic soliton compression is suitable for communication applications because it can always generate a sech function-type waveform, that is, a high-quality optical pulse waveform without a pedestal.
  • the dispersion value of the optical fiber is divided into several sections extending in the longitudinal direction of the fiber, and an optical fiber having a constant dispersion value corresponding to each section is connected, so that the dispersion value is reduced.
  • An optical fiber constructed by this method is called a Step-like Dispersion Profiled Fiber (SDPF).
  • SDPF Step-like Dispersion Profiled Fiber
  • Another method is to divide the dispersion value of an optical fiber into several sections extending in the longitudinal direction of the fiber, and to approximate each section using optical fibers having two kinds of dispersion values.
  • An optical fiber constructed by this method is called a Comb-like Dispersion Profiled Fiber (CDPF) because the dispersion value changes in a comb-like manner in the longitudinal direction of the fiber (Non-Patent Documents 1, 2, Patent Document 1, 2).
  • CDPF Comb-like Dispersion Profiled Fiber
  • Non-patent literature 1 S. ⁇ . Chernkov et ai., 'Integrated all optical fiore source of multigigahertz soliton pulse train, Electronics Letters ⁇ 1993, vol.29, p.1788
  • Non-Patent Document 2 SVChernikov et al., "Comblike dispersion-profiled fiber for soliton pulse train generation” ⁇ Optics Letters ⁇ 1994, vol.19, no.8, p.539- 541
  • Patent Document 1 Japanese Patent Laid-Open No. 2000- No. 347228
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-229080
  • the dispersion value of an optical fiber for generating a nonlinear effect on an optical pulse is considered to be zero or close to zero.
  • This non-zero dispersion value degrades the optical pulse waveform. (Distortion) can occur. For this reason, it is difficult to output a high-quality optical pulse.
  • the waveform of the optical pulse does not deteriorate (distortion), but it is difficult to obtain a large compression ratio. Therefore, it is not suitable for obtaining a high compression ratio even if a pedestal occurs.
  • An object of the present invention is to provide an easily designed optical pulse shaper capable of easily obtaining an optical pulse having a desired waveform width without generating noise due to deterioration in the waveform of an output optical pulse, and a design method thereof. It is to be.
  • a first aspect of a method for designing an optical pulse reshaping device according to the present invention is an optical pulse reshaping device including a first optical propagation path unit in which a nonlinear medium and a dispersion medium are connected.
  • the second or subsequent light propagation path units are connected in series at the subsequent stage of the first light propagation path unit. This is a method for designing an optical pulse reshaping device.
  • a third aspect of the method for designing an optical pulse reshaping device according to the present invention is a step for specifying design specifications of the second and subsequent optical transmission line units based on the calculated quasi-periodic stationary pulse. This is a method for designing an optical pulse shaper that further includes.
  • the design specification is such that at least the nonlinear coefficient and the dispersion value of each of the nonlinear medium and the dispersion medium of each of the optical propagation path units are provided. And a length in a light propagation direction and a power peak of the input light pulse.
  • the generalized dispersion values of the nonlinear medium and the dispersion medium included in the design specifications of the first optical propagation path unit are represented by s , S
  • 2 1 1 is a design method of an optical pulse shaper that satisfies the following conditional expression.
  • an nth (n is a natural number of 2 or more) counting from the first light propagation unit of the plurality of light propagation path units The generalized dispersion values of the nonlinear medium and the dispersion medium included in the design specifications of the optical propagation path unit connected to) are s and s
  • the values of L and ⁇ are the design method of the optical pulse shaper that satisfies the following condition.
  • a seventh aspect of the method for designing an optical pulse reshaping device is the n-th (n is a natural number of 2 or more) counting from the first light propagation unit among the plurality of light propagation path units.
  • the generalized dispersion values of the nonlinear medium and the dispersion medium included in the design specifications of the optical propagation path unit connected to) are s and s
  • the values of L and ⁇ are the design method of the optical pulse shaper that satisfies the following condition.
  • An eighth aspect of the method for designing an optical pulse reshaping device according to the present invention is a method for designing an optical pulse reshaping device, wherein the input optical pulse is an optical pulse having a waveform close to a quasi-periodic stationary pulse.
  • the nonlinear coefficient and the loss coefficient of the nonlinear medium are V and ⁇ , respectively.
  • The total length of the nonlinear medium in the optical propagation path in the optical pulse shaper expressed as the actual distance
  • The total length of the nonlinear medium in the optical propagation path in the optical propagation path expressed as a dimensionless standard distance
  • an optical pulse using a highly nonlinear optical fiber for the nonlinear medium and a single mode optical fiber for the dispersive medium is described. This is a method of designing a molding machine.
  • One embodiment of the optical pulse reshaping device of the present invention is an optical pulse reshaping device designed based on the method for designing an optical pulse reshaping device according to any one of the above-described embodiments.
  • an optical pulse output from an optical pulse shaper including an optical propagation path unit in which a nonlinear medium and a dispersion medium are connected is
  • the waveform of the peak Z ⁇ destral ratio is almost the same as the pulse waveform supplied to the optical pulse shaper. For this reason, it is possible to sufficiently suppress deterioration (generation of distortion) that may occur in the pulse waveform of the optical pulse output from the optical pulse shaper, and to output an optical pulse train with extremely high accuracy.
  • the dispersion value and length of each medium of the first optical propagation path unit through which the input optical pulse propagates first and the peak power of the input optical pulse are determined, they are provided at the subsequent stage. Since the dispersion value and the length of each medium of the second and subsequent light propagation path units can be uniquely determined, the design of the light pulse shaper becomes very easy and easy.
  • the dispersion value of the nonlinear medium of the first light propagation path unit has a value of zero or near zero
  • the nonlinear medium of the second and subsequent light propagation path units provided at the subsequent stage Since the dispersion value is substantially the same as the dispersion value of the nonlinear medium of the first optical propagation path unit (ie, zero or a value near zero), the design of the optical pulse reshaping device is further facilitated.
  • FIG. 1 is a diagram showing a configuration of an optical pulse output device according to the present embodiment.
  • FIG. 2 is a diagram showing a configuration of an optical pulse reshaping device shown in FIG. 1.
  • FIG. 3 is a diagram showing an example of a dispersion map according to the present embodiment.
  • FIG. 4 is a diagram showing a power value of an input optical pulse and an instantaneous frequency of the input optical pulse.
  • FIG. 5 is a diagram showing a power value of an output light pulse and an instantaneous frequency of the input light pulse.
  • FIG. 6 shows the power value of the optical pulse after performing variable conversion on the output optical pulse shown in Fig. 5.
  • FIG. 3 is a diagram showing the instantaneous frequency of the light pulse.
  • FIG. 7 is a diagram showing a waveform in which the power value of the input light pulse shown in FIG. 4 is logarithmically displayed.
  • FIG. 8 is a diagram showing a relationship between a peak power value and a compression ratio.
  • FIG. 9 is a diagram showing a relationship between a peak power value and a full width at half maximum.
  • FIG. 10 is a diagram showing an optical pulse having a peak power value of 2.
  • FIG. 11 is a diagram showing a convergence solution obtained by fixing the compression ratio to 2 and changing the anomalous variance value.
  • FIG. 12 is a diagram showing the half-power width of the convergence solution obtained by changing the anomalous variance value.
  • FIG. 13 is a schematic diagram showing a dispersion map and a behavior of a quasi-periodic stationary pulse when the dispersion map is periodically changed.
  • FIG. 14 is a schematic diagram when only the fiber length of the dispersion optical fiber is changed with respect to the dispersion map shown in FIG.
  • FIG. 15 is a diagram showing a waveform of an optical pulse after propagating for two cycles in an optical pulse shaper designed to have a compression ratio of 1.8.
  • FIG. 16 is a diagram showing a waveform of an optical pulse after propagating for two cycles in an optical pulse shaper designed to have a compression ratio of 2.0.
  • FIG. 17 is a diagram showing a waveform of an optical pulse after propagating for two periods in an optical pulse shaper designed to have a compression ratio of 2.2.
  • FIG. 18 is a diagram showing a waveform of an optical pulse after propagating three periods in an optical pulse shaper designed to have a compression ratio of 1.8.
  • FIG. 19 is a diagram showing a waveform of an optical pulse after propagating three periods in an optical pulse shaper designed to have a compression ratio of 2.0.
  • FIG. 20 is a diagram showing a waveform of an optical pulse after propagating three periods in an optical pulse reshaping device designed to have a compression ratio of 2.2.
  • FIG. 21 is a diagram showing a waveform of a quasi-periodic stationary pulse.
  • Fig. 21 (a) shows the intensity waveform and instantaneous frequency
  • Fig. 21 (b) shows the autocorrelation waveform
  • Fig. 21 (c) shows the spectrum.
  • FIG. 22 is a diagram showing an experimental system of a pulse molding experiment.
  • FIG. 23 is a diagram showing spectra of the input and each stage canolus.
  • FIG. 23 (a) shows the result of a numerical simulation, and
  • FIG. 23 (b) shows the result of an experiment.
  • FIG. 24 is a diagram showing autocorrelation waveforms of input and output pulses of each stage (lines are numerical simulation results, points are experimental results).
  • FIG. 25 is a diagram showing an autocorrelation waveform of an output pulse at each stage (dots indicate experimental results, and lines indicate numerical simulation results).
  • FIG. 26 is a diagram showing a waveform of a quasi-periodic stationary pulse.
  • FIG. 27 is a diagram showing an experimental system of a pulse molding experiment.
  • FIG. 28 is a diagram showing the spectra of the input and the canors at each step (solid line: experimental result, dotted line: numerical simulation result).
  • FIG. 29 is a diagram showing autocorrelation waveforms of input and output pulses of each stage (lines: numerical simulation results, dots: experimental results).
  • FIG. 30 is a schematic view of a laser beam machine using an optical pulse output device according to the present invention.
  • FIG. 31 is a schematic diagram of an optical sampling oscilloscope as a high-precision measuring instrument using the optical pulse output device according to the present invention.
  • FIG. 32 is a schematic diagram of optical coherence tomography as a high-precision measuring device using the optical pulse output device according to the present invention.
  • the configuration of the optical pulse output device 100 including the optical pulse shaper 30 to which the present invention is applied will be described, then the design theory of the optical pulse shaper 30 will be described, and finally, the optical pulse based on this design theory will be described.
  • a specific example of the detailed design of the molding device 30 will be described.
  • an optical pulse output device 100 includes an optical pulse supplier 101 and an optical pulse shaper for compression-shaping the waveform width of the optical pulse supplied from the optical pulse supplier 101. 30.
  • the optical pulse supplier 101 includes a two-mode beat light source (dud-frequency optical source) 10 and an optical pulse shaper 20.
  • the two-mode beat light source 10 combines two LDs (Laser Diodes) 10a and 10b, each emitting CW (Continuous Wave) light having a different frequency, and CW light having the two frequencies. It includes a multiplexer 10c that outputs a beat light (hereinafter, also simply referred to as an “optical pulse”) and an EDFA (Erbium Doped Fiber Amplifier) 10Ad that amplifies the beat light.
  • LDs Laser Diodes
  • CW Continuous Wave
  • the optical norse shaper 20 is formed of an optical fiber, and shapes an optical pulse output from the two-mode beat light source 10 into a waveform suitable for the optical pulse shaper 30 connected at the subsequent stage.
  • the optical pulse shaper 30 forms an optical propagation path in which a plurality of different types of optical fibers are connected in the fiber longitudinal direction.
  • the light pulse input from the light pulse shaper 20 to the light pulse shaper 30 is compression-shaped in the process of propagating through the light propagation path.
  • the optical pulse shaper 30 is an optical fiber having different parameters (dispersion value, nonlinear constant, length in the longitudinal direction of the fiber, etc., the same applies hereinafter), that is, as a nonlinear medium.
  • the non-linear optical fibers 30a, 30b, 30c and the dispersive optical fibers 31a, 31b, 31c as the dispersing medium are alternately connected in the longitudinal direction of the fiber.
  • a configuration in which one nonlinear medium and one dispersion medium are connected to each other is defined as “one period”.
  • the example of the optical pulse shaper 30 in FIG. 2 has a three-period configuration.
  • the nonlinear optical fiber 30a has a generalized dispersion value s, which is a value obtained by standardizing a dispersion value with a nonlinear coefficient, and a standardized length obtained by multiplying the length in the longitudinal direction of the fiber by the nonlinear coefficient is ⁇ .
  • the dispersion optical fiber 31a has a generalized dispersion value of s and a normalized length in the longitudinal direction of the fiber of ⁇ to ⁇ .
  • the nonlinear optical fiber 30b has a generalized dispersion value of s and a standard length in the longitudinal direction of the fiber.
  • the dispersion optical fiber 31b has a dispersion value of s and a fiber length of
  • the standardized length in the hand direction is ⁇ — ⁇ ⁇
  • the nonlinear optical fiber 30c has a generalized dispersion value of s.
  • the normalized length in the longitudinal direction of the fiber is ⁇ - ⁇
  • the dispersion optical fiber 31c is
  • the dispersion value is s, and the normalized length in the longitudinal direction of the fiber is ⁇ - ⁇ .
  • the nonlinear optical fibers 30a 30b 30c have optical pulses ul l (t) and optical pulses ul2 (t)
  • the optical pulse ul3 (t) is input, and the optical pulse ul4 (t) is output from the dispersion optical fiber 31c (t is time).
  • Q (Z, T) [W1 / 2 ] is the envelope amplitude of the electric field
  • Z [m] is the distance in the fiber longitudinal direction of the optical fiber
  • T [s] is the propagation speed at the group velocity of the carrier. This is the delay time of the coordinate axis force.
  • ⁇ [/ zm] is the wavelength of the carrier in a vacuum
  • c [X 10 8 m / s] is the speed of light.
  • equation (3) is
  • is a value obtained by multiplying the physical length by the weight of the cumulative amount of the nonlinear effect, and is hereinafter referred to as a generalized length.
  • s ( ⁇ ) defined by Expression (13) is obtained by converting the normalized dispersion value d into a power attenuation coefficient a (z) due to fiber loss (see the definition of Expression (8)) and a normalized nonlinear coefficient.
  • V (z) the variance is re-standardized and generalized.
  • This 3 ( ⁇ ) is hereinafter referred to as a generalized variance.
  • the generalized length ⁇ and the generalized variance s are simply referred to as length and variance, respectively.
  • Equation (12) After all, in the equation transformed as in Equation (12), only the dispersion value varies in the longitudinal direction of the fiber. In other words, even when the dispersion value D [ps / nm / km], the nonlinear coefficient ⁇ [W _1 km _1 ], and the loss coefficient L [dB / km] have an arbitrary profile in the longitudinal direction of the fiber, the equation ( By performing the conversion of (9), (11) and (13), a system in which the power loss is zero, the nonlinear coefficient has a constant value in the longitudinal direction of the fiber, and only the dispersion value changes in the longitudinal direction of the fiber (standard Conversion to the space. Conversely, the discussion made in the above standardization space is suitable for any real space by performing an inverse transformation in which the constants Z [m], T [s], and P [W] are arbitrarily set.
  • FIG. 3 shows how the dispersion value s ( ⁇ ) of the first light propagation path unit 3a changes with respect to the longitudinal direction ⁇ ⁇ ⁇ ⁇ of the fiber (the same applies to the second light propagation path units 3b and 3c below). ).
  • This figure is hereinafter referred to as a dispersion map.
  • is the length of the nonlinear optical fiber 30a in the fiber longitudinal direction, and ⁇ is the first optical propagation path.
  • the coefficient of the third term on the left side of the result is 1 at any point.
  • HNLF highly-nonlinear fiber
  • the magnitude is on the order of O (l). Not only the amount of the nonlinear phase shift, but also the amount of up-chapping and spectrum spreading due to the nonlinear effect is of the order O (l).
  • the dispersion value in this section is set to a large positive value (ie, anomalous dispersion value), the propagation of the optical noise in this section behaves almost linearly, and the nonlinear optical fiber 30a The capture caused by the non-linear effect in the interval 0 is compensated, and as a result, the optical pulse waveform width is compressed.
  • the order of the dispersion value of the dispersion optical fiber 31a is set to 0 (1 / ⁇ ), and the order of the distance is set to 0 ( ⁇ ). Therefore, the order of the cumulative dispersion value in this case is O (l).
  • Table 1 shows the section 0 of the nonlinear optical fiber 30a and the section 0 of the dispersive optical fiber 31a.
  • the distance the instantaneous value of the nonlinear effect, the accumulated value
  • the order of the cumulative value of the nonlinear effect in the section 0 of the nonlinear optical fiber 30a is O (l)
  • the order of the accumulated value in the section of the dispersive optical fiber 31a following the next stage is O (l).
  • An optical pulse whose output light pulse waveform that has been compressed by propagating through the first optical propagation path unit 3a is completely similar to the waveform of the input light pulse is obtained by a method called averaging method ( ⁇ JHBNijhof et al., I he averaging method for finding exactly periodic
  • the waveform of the input optical pulse is similar to the waveform of the output optical pulse means that when a predetermined variable conversion is performed on the amplitude and time of one of the waveforms, the waveform matches the other waveform. Means to do. That is, the waveform u (t) of the input optical pulse propagates through the first optical path unit 3a.
  • u (t) be the waveform of the output light pulse that is output after
  • variable conversion of Expression (14) is equivalent to multiplying the amplitude of the waveform of the input optical pulse by ⁇ 1 / 2 times and the width by l / ⁇ times, and by this conversion, the pulse energy is held as it is. If ⁇ > 1, the waveform width is compressed to 1 / a.
  • the waveform u ′ (t) of the output light pulse that is output when this light pulse propagates through the first light propagation path unit 3a has two effects due to the spectrum broadening due to the nonlinear effect and the anomalous dispersion.
  • the waveform width is compressed by the interaction of, and the peak power is changed from the original value P to another value P
  • the waveform of the output optical pulse after compression becomes similar to the waveform of the input optical pulse.
  • an input optical pulse in which the waveforms of the input optical pulse and the output optical pulse are similar with high accuracy can be obtained.
  • 0 h (t) is propagated to the first optical path unit 3a, and the compression ratio a is determined by taking the ratio of the peak power of the output optical pulse to the peak power of the input optical pulse.
  • the variable conversion of the equation (15) is performed, and the phase and peak power are adjusted. Then, the averaging calculation is repeated to converge to an optical pulse as a periodic stationary solution.
  • the solution of the optical pulse obtained in this way has a peak power P set in advance and a first propagating power.
  • the quasi-periodic stationary pulse has been discovered by the present inventors, and has a completely new aspect in terms of pulse propagation, unlike the conventional one.
  • the compression ratio ⁇ does not necessarily need to be a value specified after propagating through the first optical propagation path unit 3a that propagates first.Any value may be determined before starting the averaging method. .
  • the parameters and compression ratio of the transmission line are determined in advance, and for example, the pulse waveform is made to be a Gaussian function, and for each optical pulse obtained by arbitrarily changing parameters such as amplitude, width, and chirp, Propagation is performed for one cycle on the given transmission path, the variable conversion of equation (15) is performed, a parameter combination that makes each parameter closest to the value at the time of input is searched for, and a pulse given by the optimal combination is obtained. Approximate stationary noise I'm sorry.
  • the peak power of the force light pulse is 3.94356, which is 1.97178 times the initial value.
  • FIG. 4 shows the absolute value (solid line) and the instantaneous frequency (dashed line) of the amplitude of the optical pulse obtained by performing the averaging calculation 100 times using this compression ratio ⁇ .
  • the instantaneous frequency is defined as the value obtained by multiplying the time derivative of the phase by "1".
  • FIG. 6 shows a waveform obtained by performing variable conversion corresponding to equation (15) on the waveform shown in FIG. Since this waveform exactly matches the waveform shown in Fig. 4, the waveform before and after compression
  • the waveform shown in Fig. 4 is a quasi-periodic stationary pulse because, when variable conversion is performed after propagation through the first optical propagation path unit 3a, the waveform returns to the original waveform (waveform of the input optical pulse).
  • the characteristics of the waveform shown in Fig. 4 are that it has an instantaneous frequency (non-linear chirp) that changes nonlinearly with time, especially that it has a down chirp near the center of the pulse, and that it has a slight Some have pedestals.
  • the waveform shown in FIG. 7 is a logarithmic representation of the waveform shown in FIG. 4, and the waveform near the center is represented as a shape close to a parabola. This result indicates that the central part of the light pulse can be approximated with a Gaussian function with high accuracy.
  • dispersion management solitons have a short period and a period (corresponding to the average dispersion value) of the order of 0 ( ⁇ ). Since a large local dispersion value (on the order of 0 (1 / ⁇ )) is added within the dispersion distance that is small or a distance that is sufficiently short compared to the nonlinear distance, one period (for example, a normal dispersion optical fiber and abnormal The order of the cumulative value of the dispersion effect due to perturbation over the optical propagation path connected to the dispersion optical fiber) is O (l), and the order of the cumulative value of the nonlinear effect is 0 ( ⁇ ).
  • a linear up-chirp caused by a large normal dispersion accumulates in the order of O (l), and then a linear down-chirp is accumulated by a large anomalous dispersion.
  • the dispersion management soliton can be considered as a linear pulse where the dispersion effect is dominant locally, and as a periodic stationary solution formed by the small nonlinear effect distributively canceling the dispersion effect. Pulse.
  • the order of normal dispersion and abnormal dispersion may be reversed! / ,.
  • the quasi-periodic stationary pulse propagating through the first optical propagation path unit 3a in the present embodiment has an order of O (l) (the length of the nonlinear optical fiber 30a) and an order of O ( A nonlinear effect is added at the strength of 1). Further, it is considered that a dispersion effect is added with a strength on the order of 0 (1 / ⁇ ) over a distance of 0 ( ⁇ ) (length of the dispersion optical fiber 3 la). Therefore, the amount of each of the two effects accumulated over one period (the first optical propagation path unit 3a) is on the order of O (l). Therefore, the quasi-periodic stationary pulse in the present embodiment is crucially different from the averaging soliton and the dispersion management soliton in the pulse propagation mechanism.
  • the quasi-periodic steady-state pulse in the present embodiment causes the first optical propagation path unit 3a to Propagation causes up-chirp (non-linear chirp) due to non-linear effects accompanied by spectrum spreading, and then down-chirp (linear chirp) due to anomalous dispersion effects compensates for the up-chirp and returns the chirp to its original state. .
  • the waveform width of the optical noise is compressed.
  • Table 2 shows the results obtained by comparing the characteristics of the averaging soliton, the dispersion management soliton, and the quasi-periodic stationary pulse in the present embodiment.
  • Force The quasi-periodic stationary pulse in the present embodiment is substantially zero including s force zero. Having a predetermined value in the neighborhood changes its characteristics according to the sign.
  • set the variance s to a negative value (normal variance). Is preferred.
  • the dispersion value s of the dispersion optical fiber 31a may be changed.
  • FIG. 11 shows the waveform of an optical pulse as a convergent solution obtained by performing the above-described method.
  • the nonlinear effect is small and can be ignored, and only the accumulated dispersion value may affect the pulse propagation. Therefore, instead of changing s, ⁇ — ⁇ , that is, the dispersion optical fiber
  • the length of the fiber 31a in the longitudinal direction of the fiber may be changed.
  • the width of the convergence pulse can be changed by appropriately setting the accumulated dispersion value by changing the scatter value or the length in the longitudinal direction of the fiber.
  • the optical pulse can be propagated by repeating the first light propagation path unit 3a as many times as the periodic steady state (assuming that a plurality of first light propagation path units 3a are connected).
  • variable conversion [0112]
  • Equation (22) matches Equation (17) in the coordinate system of ⁇ ′ and ⁇ .
  • FIG. 14 is a schematic diagram showing the dispersion map and the state of propagation of the optical pulse in this case.
  • the important factors in determining the standard length ⁇ of the nonlinear optical fiber 30a in the longitudinal direction of the fiber and the peak power of the quasi-periodic steady-state panelless are the nonlinear phase shift amount ⁇ of the optical pulse in the nonlinear optical fiber 30a. It is. Because the compression ratio ⁇ is almost proportional to ⁇ as shown in Fig. 8, the product of peak power and the standard length ⁇ in the longitudinal direction of the nonlinear optical fiber 30a is consequently reduced. Dominates the rate ⁇ . Therefore, each value can be set arbitrarily according to the design guidelines to be considered later. Since the cumulative dispersion value in the dispersion optical fiber 31a and the width of the quasi-periodic stationary pulse are also substantially proportional as shown in FIG. 12, each value can be set arbitrarily. Here are some examples of design guidelines.
  • the peak power and the waveform width are determined in a standardized space, and a standard in the fiber longitudinal direction of the nonlinear optical fiber 30a that gives a nonlinear phase shift amount corresponding to a desired compression rate a to those values.
  • N is an arbitrary integer
  • An optical pulse with a peak power of 2 in a scaled space and a power half width power of 1.43119 is peaked in a real axis space. It has a power of 2 [W] and a half power width of 1.43119 [ps].
  • the dispersion value and nonlinear coefficient are HNLF (dispersion value 0ps / nm / km, nonlinear coefficient 24W- ⁇ m-) and SMF (dispersion optical fibers 31a, 31b, 31c) in the nonlinear optical fibers 30a, 30b, 30c. This is convenient when using a variance of 16ps / nm / km and a nonlinear coefficient of 1.3W- ⁇ m-.
  • n As described above, by changing the value of n, it is possible to determine the parameters of the input light pulse and the design of the first cycle of the dispersion map (ie, the first light propagation path unit 3a) at an arbitrary scale. Wear.
  • the quasi-periodic stationary pulse can be approximated by a Gaussian function in the vicinity of the center of the pulse, but has a small pedestal and a nonlinear trap (see Fig. 4).
  • a Gaussian pulse having a peak power of 1.0143 [W] and a half width power of 3 ⁇ 4.822 [ps] is considered as an input light pulse.
  • the design of the propagation path in the first cycle (that is, the first optical propagation path unit 3a) is based on
  • the design of the propagation path after the second cycle (ie, the second optical propagation path units 3b and 3c and thereafter) can be determined by using the value of the compression ratio a and the method shown in the dispersion map of FIG.
  • the compression ratios are set to 1.8, 2.0, and 2.2, and The state of the compression of the optical pulse when the propagation path is designed is examined by performing direct numerical calculation of equation (1).
  • fiber loss, higher-order dispersion, and higher-order nonlinearity Ignore gender are considered.
  • Table 3 shows the HNLF length, the SMF length, the output pulse width, and the compression ratio (the ratio of the waveform width of each of the input and output optical pulses) for each value of the compression ratio ⁇ ′. It is assumed that the input light pulse and the propagation path in the first cycle are common to all values of a ′.
  • the output light pulse in the third cycle (ie, the light pulse output from the third optical propagation path unit 3c) has a waveform width of 0.371.
  • the waveform is compressed to only 0.459 ps
  • the waveform width of the output optical pulse in the third cycle is compressed to 0.351 ps.
  • the optical pulse waveform is compressed while maintaining the waveform closest to the quasi-periodic stationary pulse. If the waveform deviates from the quasi-periodic stationary pulse, a large distortion is generated in the compressed waveform of the optical pulse every time the optical pulse propagates in a cycle, which is not preferable.
  • the power of the optical pulse is lower than that of the quasi-periodic stationary pulse. It is considered to be a power loss due to a deviation from the luz.
  • this power loss is applied to the power of the optical pulse by pre-emphasis (a quasi-periodic stationary pulse has a nonlinear chirp, especially a force that has a down chirp near the center).
  • the peak power will increase to a certain extent when approaching the chirp-free state, and adjusting the incident pulse to have the current peak power is defined as adding pre-emphasis). It is possible.
  • the actual output optical pulse is close to a quasi-periodic stationary pulse. For this reason, there is a certain margin in the waveform of the input light norse. For example, even when a sech-type pulse or the like is used, there is no great difference in the obtained results.
  • the width of the output light pulse in the second or third cycle is smaller than lps, but in such a case, strictly speaking, higher-order dispersion and Raman self-frequency The effects of higher-order effects such as shifts must be considered.
  • a dispersion optical fiber generally has a smaller loss than a nonlinear optical fiber, and the fiber length is extremely short as shown in Table 1, and therefore can be ignored in consideration of power loss.
  • the loss coefficient ⁇ and the nonlinear coefficient V are satisfied.
  • the total length z of each fiber is calculated as 0.12256 for HNLF.
  • the peak power of the input pulse shall be 357mW.
  • the pulse width and peak power at each stage of the quasi-periodic stationary pulse can be determined as shown in Table 4.
  • Figure 21 shows the waveform.
  • Figure 21 (a) shows the intensity time waveform and the instantaneous frequency
  • Figure 21 (b) the autocorrelation waveform
  • (c) the spectrum.
  • the half-power width of the quasi-periodic stationary pulse shown in Fig. 21 is 1.442.
  • Table 5 shows the variance, nonlinear constant, and loss of HNLF and SMF.
  • the transmission path parameters and the quasi-periodic stationary pulse parameters in the standardization space are replaced with the fiber parameters shown in Table 5 and the pulse parameters in real space shown in Table 4, the HNLF in the third stage of the pulse shaper becomes And SMF lengths are 77m and 14.7m respectively.
  • the fiber lengths of the first, second, and fourth stages are obtained by the above-described conversion, and are as shown in Table 6.
  • a pulse shaper may be manufactured as designed in Table 6.
  • the optical power attenuated by the configuration in which the optical amplifier is incorporated in the molding device is used.
  • Table 7 shows the design results when the HNLF length of each stage was increased in consideration of the loss.
  • Fig. 22 shows the experimental system.
  • Continuous light with two DFB laser (LD) powers each having an oscillation wavelength of about 1550 nm and different by 0.32 nm (40 GHz in frequency), respectively, is combined via a polarization controller (PC) and a 3 dB power plug. It becomes a beat light with a repetition frequency of 40 GHz.
  • LD DFB laser
  • the beat light undergoes 1GHz phase modulation by passing through a 1GHz sine wave driven LN phase modulator (LNM) obtained from a function generator (F.G.).
  • LNM 1GHz sine wave driven LN phase modulator
  • This phase modulation can suppress stimulated Brillouin scattering (SBS) in the fiber.
  • SBS stimulated Brillouin scattering
  • a method of inserting at least one optical isolator at an appropriate position in the pulse reshaping device In order to suppress SBS, besides performing phase modulation using a phase modulator, there is also a method of inserting at least one optical isolator at an appropriate position in the pulse reshaping device.
  • the light output from LNM is amplified by EDFA (Erbium doped fiber amplifier), After the spontaneous emission noise is removed by the band pass filter (BPF), it is input to the three-stage pulse shaper.
  • EDFA Erbium doped fiber amplifier
  • This three-stage pulse reshaping device is known from the following document.
  • the output light of the three-stage pulse reshaping device is such that adjacent pulses have opposite phases, a repetition frequency is 40 GHz, a half-power width is 7 ps, and a waveform is a pulse train having a sech function.
  • the pulse train is input to the pulse reshaping device designed according to the present invention, and the spectrum waveform and self-correlation waveform at each stage are converted into the optical spectrum, respectively.
  • OSA analyzer
  • AC autocorrelation waveform measuring instrument
  • the numerical simulation assumes a single linearly polarized light wave and takes into account the effects of higher-order dispersion, higher-order nonlinearity, and birefringence of the fiber.
  • Fig. 23 shows the spectrum waveform of the output pulse at each stage
  • Fig. 24 shows the autocorrelation waveform.
  • FIG. 23 (a) shows the result of numerical simulation
  • FIG. 23 (b) shows the result of experiment.
  • Table 8 summarizes the theoretical values, the results of numerical simulations, and the experimental results for the pulse width (half-power width) of the output pulse at each stage.
  • FIG. 23 and FIG. 24 show that the experimental results and the simulation results agree with good accuracy.
  • the shape of the input pulse is of the sech function type, and the waveform of the compressed pulse is close to that of the quasi-periodic stationary pulse even though it does not exactly match the waveform of the quasi-periodic stationary pulse.
  • the shaper During propagation through the shaper, it is converging to a quasi-periodic stationary pulse as a stationary state.
  • One of the causes is the influence of polarization.
  • Fig. 24 the delay time is in the range of -12.5ps to 12.5ps, and the self-correlation waveform of the output pulse at each stage is shown.
  • FIG. 25 shows the autocorrelation waveform of the output pulse at each stage, where the points indicate the experimental results and the lines indicate the numerical simulation results.
  • This decrease in peak value means that the 40 GHz pulse train has timing jitter (time position fluctuation).
  • the cause of the timing jitter is considered as follows.
  • the optical pulse waveform is distorted due to interference between the pulse and the noise component, and the distortion is random for each time slot.
  • the distortion is more remarkable when an ASE (high-frequency noise component) with a frequency component farther than the center frequency of the light pulse is added.
  • the first moment of the pulse on the time axis (representing the centroid of the pulse position) is random (with jitter) for each time slot.
  • the force simulation results show that the peak position of the output pulse substantially coincides with the center of gravity of the input canolus.
  • the standard deviation of the first moment hardly changes, while the standard deviation of the peak position approaches that of the first moment.
  • the force with a width of 7 ps can almost ignore the jitter, and the peak values at ⁇ 25 and 25 ps in the input autocorrelation waveform of FIG. 25 are , Almost the same as in Ops.
  • the first moment standard deviation is 70.6 fs
  • the pulse width is 367 fs, so that the ratio of the jitter amount to the width increases, and the self-pulse in FIG.
  • the peak values at -25 and 25 ps in the correlated waveform are smaller than those at Ops.
  • the EDFA amplifies the light to a sufficient optical power, removes as much noise as possible with a narrow-band BPF, combines the light, and then adds light with noise.
  • a pulse reshaping device designed by the method of the present invention is realized by a polarization-maintaining HNLF and SMF.
  • the width of the input pulse is set to 8ps, and the pulse is designed to be compressed to 2ps by a four-stage pulse shaper.
  • the peak power of the input pulse is 420 mW.
  • Table 10 shows the values of the pulse width and the peak power of the quasi-periodic stationary pulse in each stage.
  • the half-power width of the quasi-periodic stationary pulse shown in Fig. 26 is 1.974.
  • Table 11 shows the parameters of the polarization-maintaining HNLF and SMF.
  • the loss is first ignored.
  • the second stage design is decided.
  • the transmission path parameters and the quasi-periodic stationary pulse parameters in the standardization space are replaced with the fiber parameters shown in Table 11 and the noise parameters in real space shown in Table 10, the HNLF in the second stage of the pulse shaper can be obtained. And SMF are 164.3m and 212.1m respectively. From this, the fiber lengths of the first, third, and fourth stages are obtained by the above-described conversion, and are as shown in Table 12.
  • connection loss between the HNLF and the SMF was obtained as a typical value, that is, 0.6 dB at one location.
  • connection loss between the HNLF and the SMF is a relatively large value of 0.6 dB, as shown in Table 13, when the HNLF length increases step by step, the result is as follows.
  • Figure 27 shows the experimental system.
  • This light pulse contains two frequency components centered at 1553nm and 1551nm, but the latter component is suppressed by BPF.
  • the light pulse output from the BPF is compensated by propagating a DCF with a force of 600 m having a frequency chirp to obtain a pulse with a width of 13.3 ps.
  • This is optically amplified by an EDFA, passed through a BPF with a bandwidth of 3 nm to remove noise, and input to the three-stage pulse reshaping device used in Experiment 1 to obtain a pulse with a width of 8 ps.
  • the polarization maintaining fiber of the present invention After adjusting the polarization controller (PC) so that the average power of the single linearly polarized light pulse obtained by passing through the polarizer (Pol.) Is 1.8 dBm, the polarization maintaining fiber of the present invention is adjusted. It is incident on a four-stage noose molding machine consisting of knuckles.
  • PC polarization controller
  • Figure 28 shows the spectra of the input and output pulses at each stage (solid line: experimental results, dotted line: numerical simulation results).
  • Figure 29 shows the autocorrelation waveforms of the input and output pulses at each stage (dots: experimental results, line: numerical simulation results).
  • Fig. 28 shows the spectra of the input and output pulses of each stage, with the solid line representing the experimental results and the dotted line representing the numerical simulation results.
  • Table 14 summarizes the theoretical values, calculated values obtained by numerical simulations, and experimental values for the half-power width of the output pulse at each stage.
  • the reason may be that a polarization maintaining fiber was used for the noise shaping device.
  • the polarization is always maintained while the pulse is propagating through the shaping device, the effect of birefringence such as PMD does not occur, and the pulse propagation characteristics as calculated can be obtained.
  • the nonlinear effect is first given by the nonlinear optical fiber 30a and the like, and then the dispersion effect is given by the dispersion optical fiber 31a and the like.
  • the compression ratio ⁇ in the variable conversion of Expression (14) is 0 or more and less than 1.
  • the waveform width expands in each cycle in which no energy loss occurs other than fiber loss.
  • the band width of an optical pulse has been increased mainly by using a band-pass optical filter, thereby causing an energy loss.
  • the method of applying the optical pulse output device 100 can dramatically reduce the problem of energy loss.
  • the order of perturbation of order O (l) is to give the normal dispersion effect first and then the nonlinear effect, then it is expected that a parabolic pulse will be obtained as a steady solution.
  • a parabolic curve is considered as a waveform that can be a steady-state solution in a state in which the pulse force caused by the linear dispersion due to the normal dispersion is further added by the nonlinear effect.
  • the compression ratio ⁇ in the variable conversion of Expression (14) is still 0 or more and less than 1.
  • the optical pulses ull (t), ul2 (t) input to each of the nonlinear optical fibers 30a, 30b, 30c. ) And ul3 (t) are similar to each other, so that the optical pulse finally output from the optical pulse shaper 30 has a peak Z pedestal ratio substantially the same as the optical pulse waveform input to the optical pulse shaper 30. It is output as a waveform. For this reason, it is possible to sufficiently suppress deterioration (generation of distortion) that may occur in the pulse waveform of the optical pulse output from the optical pulse shaper 30, and to output an optical pulse train with extremely high accuracy.
  • the compression ratio per cycle can be increased, and the pulse efficiency is much higher than that of the conventionally known adiabatic soliton compression method. Molding becomes possible.
  • the optical pulse output device 100 (in particular, the optical pulse It becomes very easy to design the molding machine 30).
  • the dispersion value of the nonlinear optical fiber 30a of the first optical propagation path unit 3a is zero or zero. If there is a value in the vicinity, the dispersion value of each of the nonlinear optical fibers 30b and 30c of the second and third optical propagation path units provided at the subsequent stage is the nonlinear optical fiber 30a of the first optical propagation path unit 3a. Since the variance value is substantially the same (that is, zero or a value near zero), the design of the optical pulse shaper 30 is further facilitated.
  • the description in the present embodiment shows an example of the optical pulse reshaping device according to the present invention and a design method thereof, and the present invention is not limited thereto.
  • the detailed configuration, detailed operation, and the like of the optical pulse reshaping device 30 in the present embodiment can be appropriately changed without departing from the spirit of the present invention.
  • higher-order dispersion, higher-order nonlinearity, polarization mode dispersion, and the like of the optical fiber are not taken into consideration. It is easy to take into account secondary nonlinearity and polarization mode dispersion.
  • the effect of the dispersion slope must be considered first.
  • the dispersions of a nonlinear optical fiber and a dispersion optical fiber are opposite to each other. If designed to have a slope, the effects of the two dispersion slopes can be negated.
  • the medium that gives the nonlinear effect is not limited to the nonlinear optical fibers 30a, 30b, and 30c, but may be any other medium such as a photonic crystal fiber or the like if the refractive index is proportional to the electric field strength. Other waveguide devices may be used.
  • the medium that gives anomalous dispersion is not limited to single-mode dispersion optical fibers 3 la, 31 b, and 31 c, but higher-order mode fino (S. Ramachandran, Dispersion Management with Higher Order Mode Fibers OECC 2003, paper 15D4- 1, Shanghai, China, October 2003), a fiber Bragg grating (FBG), or a chromatic dispersion medium in a spatial system using a prism may be used.
  • FBG fiber Bragg grating
  • the optical spectrum is expanded with a down-chirp, for example, after passing through a nonlinear optical fiber, an arbitrary nonlinear medium
  • an arbitrary nonlinear medium Consider a case in which idler light is generated by a parametric process of pump light and light pulses in (for example, an optical fiber). In such a case, the above-mentioned state occurs because the phase is inverted.
  • a normal dispersion medium is used instead of an abnormal dispersion medium.
  • the optical pulse shaper 30 having the configuration shown in FIG. 13 or FIG. 14 also has at least one cycle of the propagation path (the first optical propagation path unit 3a and the like) force.
  • a propagation path from which another different quasi-periodic stationary pulse can be obtained may be connected to the latter stage of the propagation path after the second cycle.
  • the parameters of the input light pulse are close to numerically obtained quasi-periodic stationary pulses.
  • the light propagation paths are also shown in FIG.
  • the optical pulse is designed based on the dispersion map shown in Fig. 5. However, in any case, since the margin of the parameter deviation is large, even if the optical pulse is not strictly designed, the optical pulse output is not required. A force device 100 is feasible.
  • a method of making the input light pulse closer to the quasi-periodic stationary pulse when actually making the light pulse shaper 30 will be described below.
  • the output of the optical amplifier is adjusted so that the peak power, time width, or pedestal shape approaches that of the quasi-periodic stationary pulse, or the intensity modulator or the optical pulse shaper 30 is separately provided. It can be adjusted by using it.
  • the compression ratio is set to a large value
  • the shape of the Gaussian function is set
  • the shape of the sech function is adjusted.
  • a chirp close to the desired shape is given, for example, using a phase modulator, or an optical pulse is propagated in an anomalous dispersion medium. It is conceivable to approximate a desired cap by giving a linear down-cap, so that the present invention can be efficiently implemented.
  • the means for generating an optical pulse serving as seed light may be a single laser other than the method using the beat light described above.
  • a method of generating a pulse by performing intensity modulation using an external modulator such as an LN type or electroabsorption type on continuous light output from one side, or a sinusoidal electric signal for a direct modulation type DFB laser In addition, a method of generating a pulse by a gain switching operation, or a method of generating a mode-locked laser force pulse such as a fiber ring type or a semiconductor resonator type having a certain resonator structure can be considered.
  • the half-power width of the power is femtosecond.
  • OCT optical coherence tomography
  • Fig. 30 is a schematic view of a laser beam machine using the optical pulse output device according to the present invention.
  • the light pulse output from the short pulse output device (pulse light source) of the present invention is amplified to a high power by an optical amplifier, and is applied to a workpiece through a spatial output device such as a lens.
  • the short pulse light applied to the workpiece is processed by processes such as the two-photon absorption process.
  • Fig. 31 is a schematic diagram of an optical sampling oscilloscope as a high-accuracy measuring device using the optical pulse output device according to the present invention.
  • the optical pulse output from the short pulse output device (pulse light source) of the present invention is input to the optical signal processor together with the signal to be measured.
  • an optical signal processor for example, an optical pulse and a signal to be measured are multiplexed by a power bra, an OR of the two optical waves is obtained by a non-linear effect in the optical fiber, and the obtained light intensity is output as an electric signal. By repeating this periodically on the time axis, optical sampling becomes possible.
  • FIG. 32 is a schematic diagram of optical coherence tomography as a high-precision measuring device using the optical pulse output device according to the present invention.
  • the light pulse output from the short pulse output device (pulse light source) of the present invention, the output time of which is controlled by a control device, is bifurcated by a force bra, and one of the two is irradiated on the object to be measured via a spatial output device such as a lens. Is done.
  • the reflected light from the device under test passes through a spatial input device such as a lens, and is input to the interferometer together with the other branched light pulse.
  • the output of the interferometer is input to the signal processor controlled by the control device.
  • the signal processor performs analog-to-digital conversion on the output signal of the interferometer. By performing the analysis and analyzing the digitized signal, tomographic information of the measured object can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

非線形媒質と分散媒質とが連結された第1の光伝搬路ユニットを備えた光パルス成形器の設計方法であって、前記第1の光伝搬路ユニットの設計仕様を特定するステップと、前記特定した設計仕様に基づいて、前記第1の光伝搬路ユニットに対する入力光パルス及び出力光パルスの各波形が互いに相似となる準周期定常パルスを算出するステップとを含むことを特徴とする光パルス成形器の設計方法。

Description

明 細 書
光パルス成形器の設計方法及び光パルス成形器
技術分野
[0001] 本発明は、光ファイバ通信システムに用いられる光パルス発生技術に適用される、 或いは材料加工用途に用いられる光パルス発生技術に適用される光パルス成形器 と該光パルス成形器の設計方法に関する。
背景技術
[0002] 近年、超短光パルスを生成して出力するための光パルス成形器の重要性力 光通 信分野や光加工分野で急激に高まって 、る。
[0003] 光通信分野に関しては、 1チャネルあたりのビットレートが 40Gb/sを超えるシステム では、繰り返し周波数が十分大きいため、雑音や揺らぎ等がより少ない高品質な光 パルスが要求される。また、光伝搬路中に挿入される中継器に対しては、伝搬中に 生じる光パルスの波形劣化の回復を図るための光信号再生機能に局所クロックパル ス列を発生させる必要がある。すなわち、 40GHzを超える大きな繰り返し周波数のもと で、繰り返し特性や光パルスの波形品質が高ぐし力もこの波形幅が非常に短い超 短光パルス列が必要となる。
[0004] 一方、光加工分野に関しては、光パルスの波形幅がフェムト秒オーダーの光パルス を用いた多光子吸収過程を応用することにより、従来では得られな力つた加工方法 の実現が期待されている。
[0005] また、従来の超短パルス発生技術は、共振器構造を用いるものと、共振器構造を用 V、な 、ものとに大きく分けることができる。
[0006] 共振器構造を用いる超短パルス発生技術には、チタンサファイアレーザ等の固体 レーザ、光ファイバ自体によって共振器構造を構成するモード同期ファイバレーザ又 は半導体を用いてモード同期構造を構成する半導体モード同期レーザ等が用いら れている。
[0007] 一方、共振器構造を用いな 、超短パルス発生技術は、種信号となる光パルスが光 ファイバ中の非線形効果により圧縮される現象を用いるものであり、共振器構造を用 ヽな 、ことからトラベリングウェーブ (TW)方式とも呼ばれ、光ソリトン圧縮器やスーパ 一コンティニューム(SC)圧縮器等が知られて 、る。
[0008] 共振器構造を用いる超短パルス発生技術は、繰り返し周波数が共振器長で決定さ れるため、繰り返し周波数に対する柔軟性が少ない。更にパルス発振を継続させるた めには、様々な安定ィ匕技術が必要な上に、外部環境の変化に応じて設定を微調整 する必要があると 、う難点が伴う。
[0009] これに対し、共振器構造を用いない超短パルス発生技術 (特に、光ファイバを用い た TW方式に基づく超短パルス発生技術)では、電気回路により生成される光パルス やビート光等の種信号の波形幅を圧縮するため、繰り返し周波数が可変である。また 、共振器構造を用いないことから、光ファイバ自体の安定性に応じた極めて高い安定 性を有する光パルスの出力が可能となる。
[0010] ここで、 TW方式による光パルスの波形幅の圧縮は、 SC圧縮や光ソリトン圧縮が知 られている。
[0011] SC圧縮は、光パルスの周波数帯域を、分散値の小さな光ファイバの非線形効果に よって大きく拡張させ、更に、この拡張された周波数帯域を分散補償することにより光 パルスの波形幅を圧縮する。この SC圧縮を効率良く行うためには、光ファイバの分 散値が、周波数に対し平坦であると共にファイバ長手方向に変化しないのが好まし い。
[0012] しかし、 SC圧縮は、大きな圧縮率が得られるものの、圧縮された光パルスの波形に ペデスタル成分が伴う等、パルス品質の低下を招く恐れが生じる等の困難が知られ ている。
[0013] 一方、光ソリトン圧縮により生成される光ソリトンは、光ファイバの分散効果と非線形 効果とが釣り合うことにより形成され、伝搬中に波形を変えない光ノ ルスである。
[0014] 光ソリトンの場合、ソリトン周期と呼ばれる距離に対し十分長いスパンで光ファイバの 分散値を小さくする等して、分散効果をファイバ長手方向に緩やかに小さくしていくと 、この弱まった分散効果を補償するようにパルス波形が自己整形され、結果的に光 パルスの波形幅が小さくなる。或いは、光ファイバの分散値を一定に保ったままラマ ン増幅等による分布増幅を行うことにより光パルスの振幅をファイバ長手方向に緩や 力に大きくすることで非線形効果が強められ、この強められた非線形効果を補償する ようにパルス波形が自己整形され、結果的に光パルスの波形幅が小さくなる。このよう な現象 (光ファイバの分散効果と非線形効果とが釣り合う現象)を用いた圧縮方法は 、断熱ソリトン圧縮と呼ばれ、 sech関数型の光ソリトンとしての光パルスが得られること が知られている。
[0015] 断熱ソリトン圧縮は、 sech関数型の波形、つまりペデスタルを有さない高品質な光 パルス波形を常に生成できるため、通信用途に適している。
[0016] また、ペデスタルを有する光パルスと、ペデスタルを有さない光パルスとを比較する と、両者が同一のエネルギー及び電力半値幅を持つような場合には、ペデスタルを 有さない光パルスの方が大きなピークパワーを持つ。このため、ペデスタルを有さな い光パルスは、材料カ卩ェ用途に適している。
[0017] ところで、断熱ソリトン圧縮を行う方法としては、前述したように光ファイバの分散値 をファイバ長手方向に緩やかに変化させる方法が知られている。この場合、分散値が ファイバ長手方向に連続的に減少するような光ファイバの製造は容易ではないため、 幾つかの代替方法が考案されて 、る。
[0018] 例えば、光ファイバの分散値をファイバ長手方向に広がる幾つかの区間に分け、当 該区間毎に該当する一定の分散値を持つ光ファイバを連結させることにより、当該減 少する分散値を近似するという方法が考案されている。この方法により構成された光 ファイバは、 Step-like Dispersion Profiled Fiber (SDPF)と称される。この方法では、 ステップ数を多くするほど近似の精度が高くなる反面、様々な分散値のファイバを数 多く用意する必要が生じる。
[0019] また、他の方法としては、光ファイバの分散値を、ファイバ長手方向に広がる幾つか の区間に分け、当該各区間を二種類の分散値を持つ光ファイバを用いて近似すると いう方法が考案されている。この方法により構成された光ファイバは、分散値がフアイ バ長手方向に櫛状に変化することから Comb-like Dispersion Profiled Fiber (CDPF) と称される (非特許文献 1、 2、特許文献 1、 2を参照)。
非特干文献 1 : S.\ .Chernkov et ai.、 'Integrated all optical fiore source of multigigahertz soliton pulse train 、 Electronics Letters ^ 1993年、 vol.29、 p.1788 非特許文献 2 : S.V.Chernikov et al.、 "Comblike dispersion-profiled fiber for soliton pulse train generation"^ Optics Letters ^ 1994年、 vol.19、 no.8、 p.539- 541 特許文献 1:特開 2000-347228号公報
特許文献 2:特開 2002 - 229080号公報
発明の開示
発明が解決しょうとする課題
[0020] しかし、上記従来技術には、次のような問題点がある。
従来の超短光パルス発生技術に基づく光パルス成形器の設計では、ソリトン圧縮を 行うための光ファイバの長さをどの程度に設定すればよいかが判定困難である。この ため、現状では、試行錯誤により、光ファイバの長さの設定を行っている。
また、従来、光パルスに対し非線形効果を生じさせるための光ファイバの分散値は ゼロ又はゼロに近ければよいとされている力 このゼロでない分散値の大きさによって 、光ノ ルスの波形に劣化 (歪み)が生じ得る。このため、高品質な光パルスの出力が 困難である。
また、従来の断熱ソリトン圧縮では、光パルスの波形に劣化 (歪み)は生じないが、 大きな圧縮率を得るのが困難である。このため、ペデスタル等が生じても高い圧縮率 を得ようとする場合には不向きである。
本発明の課題は、出力される光パルスの波形に劣化によるノイズを生じさせることな く、所望の波形幅の光パルスが容易に得られる設計容易な光パルス成形器とその設 計方法を提供することである。
課題を解決するための手段
[0021] 上記課題を解決するため、この発明の光パルス成形器の設計方法の第 1の態様は 、非線形媒質と分散媒質とが連結された第 1の光伝搬路ユニットを備えた光パルス成 形器の設計方法であって、
前記第 1の光伝搬路ユニットの設計仕様を特定するステップと、
前記特定した設計仕様に基づいて、前記第 1の光伝搬路ユニットに対する入力光 パルス及び出力光パルスの各波形が互いに相似となる準周期定常パルスを算出す るステップと を含むことを特徴とする光パルス成形器の設計方法である。
[0022] この発明の光パルス成形器の設計方法の第 2の態様は、前記第 1の光伝搬路ュニ ットの後段に第 2番目以降の光伝搬路ユニットがー又は複数直列に連結されて成る 光パルス成形器の設計方法である。
[0023] この発明の光パルス成形器の設計方法の第 3の態様は、前記算出した準周期定常 パルスに基づいて、前記第 2番目以降の光伝送路ユニットの設計仕様を特定するス テツプを更に含む光パルス成形器の設計方法である。
[0024] この発明の光パルス成形器の設計方法の第 4の態様は、前記設計仕様は、少なく とも、前記各光伝搬路ユニットの非線形媒質及び分散媒質の各々が有する非線形係 数、分散値及び光伝搬方向の長さと、前記入力光パルスのパワーピークとを含む光 パルス成形器の設計方法である。
[0025] この発明の光パルス成形器の設計方法の第 5の態様は、前記第 1の光伝搬路ュニ ットの設計仕様に含まれる非線形媒質、分散媒質の各一般化分散値を s、 s
1 2とし、当 該非線形媒質、分散媒質が各々有する各光伝搬方向の規格化長さを κ、 とする と、 sは異常分散に属する値であると共に下記条件式を満たし、且つ、 K、 Lの各値
2 1 1 は下記条件式を満たす光パルス成形器の設計方法である。
0≤ I s I < < K < s
1 2
L < <K
I s I ; sの絶対値
[0026] この発明の光パルス成形器の設計方法の第 6の態様は、前記複数の光伝搬路ュ ニットのうち前記第 1の光伝搬ユニットから数えて第 n番目(nは 2以上の自然数)に連 結された光伝搬路ユニットの設計仕様に含まれる非線形媒質、分散媒質の各一般化 分散値を s 、s
In 2nとし、当該非線形媒質、分散媒質が各々有する各光伝搬方向の長 さを Κ、 Lとすると、 s は異常分散に属する値であると共に下記条件式を満たし、且 η η 2η
つ、 L、 Κの各値は下記条件式を満たす光パルス成形器の設計方法である。
/ η-1
s = s / a
In 1
/ n-1
s = s / a
2n 2
Κη=Κ / α η_1 L =L / a
a;圧縮率
[0027] この発明の光パルス成形器の設計方法の第 7の態様は、前記複数の光伝搬路ュ ニットのうち前記第 1の光伝搬ユニットから数えて第 n番目(nは 2以上の自然数)に連 結された光伝搬路ユニットの設計仕様に含まれる非線形媒質、分散媒質の各一般化 分散値を s 、s
In 2nとし、当該非線形媒質、分散媒質が各々有する各光伝搬方向の長 さを Κ、 Lとすると、 s は異常分散に属する値であると共に下記条件式を満たし、且 η η 2η
つ、 L、 Κの各値は下記条件式を満たす光パルス成形器の設計方法である。
/ η-1
s = s / a
In 1
s = s
2n 2
Κη=Κ / α η_1
T T / 2 (n— 1)
し =し Z a
a;圧縮率
[0028] この発明の光パルス成形器の設計方法の第 8の態様は、前記入力光パルスは、準 周期定常パルスに近い波形を有する光パルスである光パルス成形器の設計方法で ある。
[0029] この発明の光パルス成形器の設計方法の第 9の態様は、前記非線形媒質に係る非 線形係数、損失係数を、それぞれ V、 δとすると、該非線形媒質は、 V、 δが下記条 件式を満たす高非線形媒質である光パルス成形器の設計方法である。
z=- (l/2 6 ) ln (l- (2 6 /a 2 ν ) ζ )
ο
Ζ ;光パルス成形器内における非線形媒質の光伝搬路方向の長さの総計を実距離で 表現したもの
ζ;光パルス成形器内における非線形媒質の光伝搬路方向の長さの総計を無次元 量の規格ィ匕距離で表現したもの
a;非線形媒質が有する光パルスの入力端のパワー減衰係数
0
In ;自然対数
[0030] この発明の光パルス成形器の設計方法の第 10の態様は、前記非線形媒質に高非 線形光ファイバを用い、前記分散媒質にシングルモード光ファイバを用いる光パルス 成形器の設計方法である。
[0031] この発明の光パルス成形器の 1つの態様は、上述した態様の何れか一つにおける 光パルス成形器の設計方法に基づ ヽて設計された、光パルス成形器である。
発明の効果
[0032] 本発明により、非線形媒質及び分散媒質が連結された光伝搬路ユニットを備えた( 例えば、光伝搬路ユニットが複数連結されて成る)光パルス成形器から出力される光 パルスは、該光パルス成形器に供給されるパルス波形と略同一のピーク Zぺデスタ ル比の波形となる。このため、光パルス成形器から出力される光パルスのパルス波形 に生じ得る劣化 (歪みの発生)が十分に抑制可能となり、非常に高精度な光パルス列 が出力可能となる。
また、入力される光パルスが最初に伝搬する第 1の光伝搬路ユニットの各媒質の分 散値及び長さと、当該入力される光パルスのピークパワーとが決定されれば、後段に 設けられる第 2番目以降の光伝搬路ユニットの各媒質の分散値及び長さが一意に決 定できるので、光パルス成形器の設計が非常に行 、易くなる。
また、第 1の光伝搬路ユニットの非線形媒質の分散値がゼロ若しくはゼロ近傍に値 を持つような場合には、後段に設けられる第 2番目以降の光伝搬路ユニットの各非線 形媒質の分散値が当該第 1の光伝搬路ユニットの非線形媒質の分散値に略同一( すなわち、ゼロ若しくはゼロ近傍の値)となるので、光パルス成形器の設計が更に容 易となる。
図面の簡単な説明
[0033] [図 1]図 1は、本実施の形態における光パルス出力装置の構成を示す図である。
[図 2]図 2は、図 1に示す光パルス成形器の構成を示す図である。
[図 3]図 3は、本実施の形態における分散マップの一例を示す図である。
[図 4]図 4は、入力光パルスのパワー値と該入力光パルスの瞬時周波数とを示す図で ある。
[図 5]図 5は、出力光パルスのパワー値と該入力光パルスの瞬時周波数とを示す図で ある。
[図 6]図 6は、図 5に示す出力光パルスに変数変換を施した後の光パルスのパワー値 と該光パルスの瞬時周波数とを示す図である。
[図 7]図 7は、図 4に示す入力光パルスのパワー値を対数表示した波形を示す図であ る。
[図 8]図 8は、ピークパワー値と圧縮率との関係を示す図である。
[図 9]図 9は、ピークパワー値と半値全幅との関係を示す図である。
[図 10]図 10は、ピークパワー値が 2の光パルスを示す図である。
[図 11]図 11は、圧縮率を 2に固定して異常分散値を変化させて得られる収束解を示 す図である。
圆 12]図 12は、異常分散値を変化させて得られる収束解の電力半値幅を示す図で ある。
圆 13]図 13は、分散マップを周期的に変化させた場合の分散マップと準周期定常パ ルスの振る舞 、とを示す模式図である。
[図 14]図 14は、図 13に示す分散マップに対し、分散光ファイバのファイバ長のみを 変化させた場合の模式図である。
[図 15]図 15は、圧縮率が 1.8に設計された光パルス成形器内を二周期伝搬した後の 光パルスの波形を示す図である。
[図 16]図 16は、圧縮率が 2.0に設計された光パルス成形器内を二周期伝搬した後の 光パルスの波形を示す図である。
[図 17]図 17は、圧縮率が 2.2に設計された光パルス成形器内を二周期伝搬した後の 光パルスの波形を示す図である。
[図 18]図 18は、圧縮率が 1.8に設計された光パルス成形器内を三周期伝搬した後の 光パルスの波形を示す図である。
[図 19]図 19は、圧縮率が 2.0に設計された光パルス成形器内を三周期伝搬した後の 光パルスの波形を示す図である。
[図 20]図 20は、圧縮率が 2.2に設計された光パルス成形器内を三周期伝搬した後の 光パルスの波形を示す図である。
[図 21]図 21は、準周期定常パルスの波形を示す図である。図 21 (a)は、強度波形と 瞬時周波数を示し、図 21 (b)は、自己相関波形を示し、図 21 (c)はスペクトルを示す [図 22]図 22は、パルス成型実験の実験系を示す図である。
[図 23]図 23は、入力および各段出カノ ルスのスペクトルを示す図である。図 23 (a) は、数値シミュレーション結果を示し、図 23 (b)は、実験結果を示す。
[図 24]図 24は、入力および各段出力パルスの自己相関波形を示す図である(線は 数値シミュレーション結果、点は実験結果)。
[図 25]図 25は、各段出力パルスの自己相関波形を示す図である(点は実験結果、線 は数値シミュレーション結果)。
[図 26]図 26は、準周期定常パルスの波形を示す図である。
[図 27]図 27は、パルス成型実験の実験系を示す図である。
[図 28]図 28は、入力および各段出カノ ルスのスペクトルを示す図である(実線:実験 結果、点線:数値シミュレーション結果)。
[図 29]図 29は、入力および各段出力パルスの自己相関波形を示す図である(線:数 値シミュレーション結果、点:実験結果)。
[図 30]図 30は、本発明による光パルス出力装置を用いたレーザー加工機の模式図 である。
[図 31]図 31は、本発明による光パルス出力装置を用いた高精度計測器としての光サ ンプリングオシロスコープの模式図である。
[図 32]図 32は、本発明による光パルス出力装置を用いた高精度計測器としての光コ ヒーレンストモグラフィーの模式図である。
発明を実施するための最良の形態
[0034] 以下、本発明を適用した一実施の形態について説明する。
まず、本発明を適用した光パルス成形器 30を備えた光パルス出力装置 100の構成 について説明し、次いで、光パルス成形器 30の設計理論について説明し、最後に、 この設計理論に基づく光パルス成形器 30の詳細設計の具体例について説明する。
[0035] <光パルス出力装置 100の構成 >
まず、図 1を参照して、後述する設計理論に基づく光パルス出力装置 100の構成に ついて説明する。 [0036] 図 1に示すように、光パルス出力装置 100は、光パルス供給器 101と、この光パル ス供給器 101から供給される光パルスの波形幅を圧縮成形するための光パルス成形 器 30とを備える。
[0037] 光パルス供給器 101は、 2モードビート光光源(dud-frequency optical source) 10と 、光ノ ルス整形器 20とを備える。
[0038] 2モードビート光光源 10は、互いに異なる周波数の CW (Continuous Wave)光を各 々発光する二つの LD (Laser Diode) 10a、 10bと、上記二つの周波数の CW光を合 波してビート光(以下、単に「光パルス」ともいう)を出力する合波器 10cと、該ビート光 を増幅する EDFA (Erbium Doped Fiber Amplifier) lOdとを備える。
[0039] 光ノルス整形器 20は、光ファイバによって構成され、 2モードビート光光源 10から 出力される光パルスを、後段に連結された光パルス成形器 30に適した波形に整形 する。
[0040] 光パルス成形器 30は、複数の異なる種類の光ファイバがファイバ長手方向に連結 された光伝搬路を成す。光パルス整形器 20から光パルス成形器 30に入力された光 パルスは、上記光伝搬路を伝搬する過程で圧縮成形される。
[0041] 次に、図 2を参照して光パルス成形器 30の構成について説明する。
[0042] 図 2に示すように、光パルス成形器 30は、互いに異なるパラメータ(分散値、非線形 定数、ファイバ長手方向の長さ等であり、以下同じ)を有する光ファイバ、すなわち、 非線形媒質としての非線形光ファイバ 30a、 30b、 30cと、分散媒質としての分散光フ アイバ 31a、 31b、 31cとがファイバ長手方向に交互に連結されている。以下、非線形 媒質と分散媒質が一つずつ連結された構成を「一周期」と定義する。図 2における光 パルス成形器 30の例では、三周期の構成である。
[0043] 非線形光ファイバ 30aは、分散値を非線形係数で規格ィ匕した値である一般ィ匕分散 値が s、ファイバ長手方向の長さに非線形係数を乗じた規格ィ匕長さが ί であり、分 散光ファイバ 31aは、一般化分散値が s、ファイバ長手方向の規格化長さが ζ ~ ζ
2 2 1 であり、非線形光ファイバ 30bは、一般化分散値が s 、ファイバ長手方向の規格ィ匕
12
長さが ζ — ζ である。また、分散光ファイバ 31bは、一般ィ匕分散値が s 、ファイバ長
3 2 22
手方向の規格化長さが ζ — ζ であり、非線形光ファイバ 30cは、一般ィ匕分散値が s 、ファイバ長手方向の規格化長さが ζ - ζ であり、分散光ファイバ 31cは、一般ィ匕
3 5 4
分散値が s 、ファイバ長手方向の規格化長さが ζ - ζ である。
23 6 5
[0044] また、非線形光ファイバ 30a 30b 30cには、光パルス ul l (t)、光パルス ul2 (t)
、光ノ ルス ul3 (t)がそれぞれ入力し、分散光ファイバ 31cからは光パルス ul4 (t)が 出力される (tは時間)。
[0045] <光パルス成形器 30の設計理論 >
次に、上記構成を有する光パルス成形器 30に対する設計理論について説明する。 まず、光パルス成形器 30中の最初の周期である非線形光ファイバ 30aおよび分散 光ファイバ 31aを伝搬する準周期定常パルス (パルス ul2(t)の形状力 ¾l l(t)に相似で ある光パルス)の算出を行う。
[0046] 一般に、光ファイバ中を伝搬する光パルスの振る舞いは、非線形シュレディンガー 方程式
[数 1]
3Q k"(Z) d2Q 2 λ L(Z)
' -—― -~^ ^ + 7(Ζ) ΙβΙ' Q = _i Q により記述される。
[0047] ここで、 Q(Z,T)[W1/2]は電場の包絡線振幅、 Z[m]は光ファイバのファイバ長手方向 の距離、 T[s]は搬送波の群速度で伝搬する座標軸力もの遅延時間である。
[0048] また、 ' (Z)[s2/m] γ (Ζ)[\Υ— 、 L(Z)[m— は、それぞれファイバの分
散値、非線形係数及び損失係数であり、ファイバ長手方向に対して変化するものと する。
[0049] そして、定数 Z [m] T [s] P [W]を導入し、振幅、距離及び時間に対して無次元量
0 0 0
[数 2]
Q z τ
— , を定義して数式 (1)を変数変換すると、
[数 3] q -iS、z、q
Figure imgf000013_0001
が得られる。
[0050] ここで、
7 τ
d = v二 γΡ0Ζο, δ = -Ζ0 は、それぞれ規格化された分散値、非線形係数及び損失係数であり、無次元量であ る。
[0051] また、光ファイバのパラメータを表現する際に一般に用いられる単位系に基づく分 散値 D[pS/nm/km]、非線形係数 γ [W_1Km_1]、損失係数 L[dB/km]と、上記各規格化 値との関係は、
[数 5]
Figure imgf000014_0001
[数 6]
v = y[W— ikm— 尸 0[W]Z0[km] [数 7] δ = ^-L[dB/km]Z0[km] である。
[0052] ここで、 λ [ /z m]は搬送波の真空中における波長、 c[ X 108m/s]は光速である。以
0
降は c=2.998[X 108m/s]とし、さらに搬送波の波長をえ =1.555 m]とする力 この条
0
件によって一般性が失われることはない。
[0053] 例として、 Z =l[km]、 T =l[ps]、 P =1[W]とすると、規格化分散値 d=1.284D、規格ィ匕
0 0 0
非線形係数 V = γ、規格化損失係数 δ =0.1151Lという関係が得られる。 SMF (Single Mode Fiber)の場合、 D=16[ps/nm/km]なる規格化分散値は d=20.54という値に、 γ =1.3[W— ^m— なる格ィ匕非線形係数は V =1.3という値に、そして、 L=0.2[dB/km]なる 規格化損失係数は δ =0.023という値に変換される。
[0054] 上記規格化された数式 (3)では、規格化分散値 d(z)、規格化非線形係数 V (z)、規 格化損失係数 δ (ζ)の各々が、ファイバ長手方向に対して変化する関数となっている が、更に変数変換を施すことにより、当該各規格化係数が簡単化できる。
[0055] まず、
[数 8] (ζ) = ( ) exp
ϋ と定義される関数 a(z)を用いて
[数 9]
q(z, t) = (z)u(z, t)
とおくと、数式 (3)は、
[数 10]
Figure imgf000015_0001
に変形される。ここで、 a =a(0
0 )〉0とする c
[0056] 更に、新たな距離スケールとして、
[数 11] ζ = f(z) = I 2(z'Mz')dz:
Jo
を定義する。
[0057] ここで、 a2(z) v (z)は常に正である力ゝら、 ζと zとは一対一の対応関係を有する。従つ て、 zは、 Z=f_1( ζ )と表される。 ζは物理的な長さに非線形効果累積量の重みをかけ たものであり、以下ではこれを一般化長さと称する。
[0058] この ζを用いて数式(10)に対し、 zの変数変換を施すと、
[数 12]
2 dt2
が得られる。
[0059] ここで、 [数 13] s(Q = = )
a2(z)y(z) 。2(广 i)M广1
である。
[0060] 数式(13)により定義される s( ζ )は、規格化分散値 dを、ファイバ損失によるパワー 減衰係数 a(z) (数式 (8)の定義を参照)と、規格化非線形係数 V (z)とで割ること〖こよつ て、分散値を再規格ィ匕して一般ィ匕したものである。この 3( ζ )を、以下では一般化分 散値と呼ぶ。また数式(12)で表される規格ィ匕空間上で特に断りがない場合は、一般 化長さ ζと一般化分散値 sを、それぞれ単に長さおよび分散値と称する。
[0061] 結局、数式(12)のように変形された式では、分散値のみがファイバ長手方向に変 動していることとなる。つまり、分散値 D[ps/nm/km]、非線形係数 γ [W_1km_1]、そして 損失係数 L[dB/km]がファイバ長手方向に任意のプロファイルを持つ場合であっても 、数式 (9)、(11)、(13)の変換を行うことにより、パワー損失が零で非線形係数がフ アイバ長手方向に一定値を持ち、分散値のみがファイバ長手方向に変化するような 系 (規格ィ匕空間)に変換が可能となる。逆に、上記規格ィ匕空間でなされた議論は、定 数 Z [m]、 T [s]、 P [W]を任意に設定した逆変換を施すことにより任意の実空間に適
0 0 0
用することができる。
[0062] ここで、第 1光伝搬路ユニット 3aの分散値 s( ζ )がファイバ長手方向 ζに対して変化 する様子を図 3に示す (第 2光伝搬路ユニット 3b、 3cについても以下同様)。当該図 を、以下、分散マップと呼ぶ。
[0063] ζ は非線形光ファイバ 30aのファイバ長手方向の長さであり、 ζ は第 1光伝搬路
1 2
ユニット 3aのファイバ長手方向の長さである。なお、 0〈|s |《l《sかつ 1》ζ — ζ 〉0
1 2 2 1 で、 ζェは極端に大きくも小さくもない量であるとする。すなわち、所定の微小量 0く εく く 1を用いて上記各値のオーダー(order)を定量的に表現すると、 |s |
1一 0( ε )、 s— O
2
(1/ ε )、 ζ 一 0(1)、 ζ — ζ 一 Ο( ε )と表せる。また、数式(12)において、非線形効
1 2 1
果を表す左辺第三項の係数は任意の点で 1である。
[0064] 以下、例えば、非線形光ファイバ 30aに HNLF (Highly- NonLinear Fiber) (実空間 における分散値 D =0[ps/nm/km]、非線形係数 γ =24[W"1Km"1],規格化のための 定数を Z =l[km]、 T =l[ps]、 P =1[W]とおいたときの規格ィ匕分散値 d = 0、規格化非線
0 0 0 1 形係数 V =24)、分散光ファイバ 31aに SMF (同様に、分散値 D =16[ps/nm/km]、非
1 2 線形係数 0 =1.3[W— ^m— 、規格化分散値 d =20.544、規格化非線形係数 V =1.3)
2 2 2 を用いた場合を考える。また、説明簡略ィ匕のため、非線形光ファイバ 30a及び分散光 ファイバ 3 laのエネルギー損失を考えず、数式(8)において a(z) = 1とする。このとき、 図 3に示す一般化分散値は、 s =d / V =0、 s =d / V =15.8である。更に、距離ついて
1 1 1 2 2 2
は、実距離で Z = 50 [m]、 Z = 62.5 [m] (Z— Z = 12.5 [m])の場合を考えると、 z =
1 2 2 1 1
0.05、 z = 0.0625により、 ζ = 1.2、 ζ = 1.21625 ( ζ — ζ = 0.01625)となり、 ζ 、 ζ
2 1 2 2 1 1 2 に関する上記条件が満たされる。
[0065] O(l)のオーダー(order)の振幅及び波形幅を持つ光パルスが、当該分散マップに より表される第 1光伝搬路ユニット 3aを伝搬する場合、特に、非線形光ファイバ 30aの 区間 0く ζ く ζ を伝搬する際には、分散の効果が小さぐ非線形効果 (Kerr効果) によってアップチヤープが生じるため、結果として周波数帯域 (スペクトルの拡がり)が 拡張される。このとき、非線形効果の累積値のオーダーは O(l)となる。
[0066] すなわち、非線形係数を一定値 1として 、るため、例えば光パルスのピークにおけ る非線形位相シフト(Δ φ = γ Ρ zで与えられる。ここでは、非線形定数 γ = 1、電力 Ρ— 0(1)、距離 ζ = ί 一 O(l)としている。)の大きさが O(l)のオーダーとなることを 意味する。上記非線形位相シフトの量に限らず、非線形効果によるアップチヤープゃ 、スペクトル拡がりの量もオーダー O(l)となる。
[0067] 一方、上記 O(l)のオーダーの振幅及び波形幅を持つ光パルスが、分散光ファイバ 31aの区間 ζ く ζ く ζ を伝搬する際には、短距離のため非線形効果は弱くなる。
1 2
また、当該区間における分散値が、大きな正の値 (すなわち、異常分散値)に設定さ れていることから、この区間における光ノ ルスの伝搬は、略線形的に振る舞い、上記 非線形光ファイバ 30aの区間 0く ζ く ζ における非線形効果により生じたアツプチ ヤープが補償され、その結果、光パルスの波形幅が圧縮される。この場合、分散光フ アイバ 31aの分散値のオーダーが 0(1/ ε )に、距離のオーダーが 0( ε )にそれぞれ 設定されて 、ることから、この場合の累積分散値のオーダーは O(l)となる。
[0068] ここで、表 1に、非線形光ファイバ 30aの区間 0く ζ ぐ ζ と、分散光ファイバ 31aの 区間 ζ く ζ く ζ とにおける、距離と、非線形効果の瞬時値と、累積値と、分散効
1 2
果の瞬時値と、累積値とにつ!、てのオーダーを各々示す。
[表 1]
Figure imgf000018_0001
[0070] 非線形光ファイバ 30aの区間 0く ζ ぐ ζ における非線形効果の累積値のオーダ 一が O(l)であり、その後段に続く分散光ファイバ 31aの区間 ζ く ζ く ζ における分
1 2
散の累積値のオーダーが O(l)である点が、従来の光ソリトン (この場合、分散効果及 び非線形効果の双方の累積値のオーダーは 0( ε )である。「A. Hasegawa et al.、 " Guiding-center soiton in optical fibers 、 Optics Letters ^ Vol.15、 p.1443、 1990」を参 照)や、分散マネージメントソリトン (この場合、分散効果の累積値のオーダーは O(l) だ力 非線形効果の累積値のオーダーは 0( ε )である。「M. J. Ablowitz et al.、 " Multiscale pulse dynamics in communication systems with strong dispersion management" , Optics Letters, Vol.23, ρ.1668、 1998」を参照。)が伝搬する光伝搬 路と、本発明を適用した図 3に示す分散マップにより表される第 1光伝搬路ユニット 3a とが決定的に違う点である。
[0071] また、第 1光伝搬路ユニット 3aを伝搬して圧縮された出力光パルスの波形が入力光 パルスの波形と完全に相似形になるような光パルスは、平均化法と呼ばれる手法(「 J.H.B.Nijhof et al.、 i he averaging method for finding exactly periodic
dispersion-managed solitons,,、 IEEE J. Sel. Top. Quantum Electron^ vol.6、 pp.330-336、 2000」を参照)を用いた数式(12)による直接数値計算により求められる
[0072] ここで、入力光パルスの波形と出力光パルスの波形とが相似であるとは、何れかの 波形の振幅と時間とに対し所定の変数変換を行うと、もう一方の波形に一致すること を意味する。すなわち、入力光パルスの波形 u (t)が第 1光伝搬路ユニット 3aを伝搬し
in
た後に出力される出力光パルスの波形を u (t)とし、波形 u (t)を、所定の定数 α (以
out in
下、圧縮率という)を用いて [数 14]
Ιΐ'{ί) = V^£½ (ひ t) と変数変換すると、^ (t) = U (t)となる場合を言う。
out
[0073] 数式(14)の変数変換は、入力光パルスの波形の振幅を α 1/2倍、幅を l/ α倍する ことに相当し、当該変換により、パルスエネルギーは保持されたまま、 α〉1の場合に は波形幅が 1/ aに圧縮されることとなる。
[0074] 次に、上記平均化を行う上での光パルスの初期波形 (入力光パルスの波形)を u (t)
0
=P 1/2 sech(t)とした場合について説明する。ここで、 Pは光パルスのピークパワーを
0 0
表す。この光パルスが第 1光伝搬路ユニット 3aを伝搬して出力される出力光パルスの 波形 u ' (t)は、非線形効果によるスペクトル拡がりと、異常分散とによる二つの効果
0
の相互作用により波形幅が圧縮され、ピークパワーはもとの値 Pから、他の値 P
0 0 ' に 増大される。
[0075] そこで、 α = P ' / Ρとしてこの を用い、圧縮された出力光パルスの波形 u ' (t)
0 0 0 を、
[数 15]
【 )
のように変数変換する。
[0076] 次に、光パルスの中心位置 t = 0における u ' ' (t)の位相 0 ' ' 力 伝搬前の位
0 0
相 0 に一致するよう、パルス全体の位相をシフトさせる。そして u ' ' (t)のピークパ
0 0
ヮー P ' ' 力もとの値 Pに一致するように、パルスの振幅全体を増幅若しくは減衰さ
0 0
せ、入力光ノ ルスの波形 u (t)と足し合わせて 2で割ることにより平均化計算が一回終
0
了する。
[0077] このようにして得られた u (t)を、式を用いて表すと、
[数 16]
Figure imgf000019_0001
となる。 [0078] 次いで、 u (t)を入力光パルスの波形として上記平均化計算を再び行うことにより、 u
1 2 ωが得られる。なお平均化計算の二回目以降では、一回目に決定した圧縮率 を 用いる。
[0079] 以上のような平均化計算を繰り返し行うことにより、圧縮後の出力光パルスの波形が 入力光パルスの波形に相似となる。実際には、上記平均化計算を 100回程度繰り返 すことにより、入力光パルスと出力光パルスの各波形が高い精度で相似するような入 力光パルスが得られる。
[0080] ここで、上記説明した準周期定常パルスを数値的に得る手順を、下記 (i)一 (iv)に まとめる;
(i)図 3に示す分散マップ (第 1光伝搬路ユニット 3aが有する分散マップ)を決める、 (ii)得たい光パルスのピークパワー Pを決める、(iii)入力光パルスとして P 1/2 sec
0 0 h(t)を第 1光伝搬路ユニット 3aに伝搬させ、出力光パルスのピークパワーと入力光パ ルスのピークパワーとの比をとつて、圧縮率 aを決定する、(iv)決定した圧縮率 aを 用いて数式(15)の変数変換を行い、位相とピークパワーとを調整した後、平均化計 算を繰り返し、周期定常解としての光パルスに収束させる。
[0081] こうして得られた光パルスの解は、予め設定するピークパワー Pと、最初に伝搬す
0
る第 1光伝搬路ユニット 3aを伝搬後に特定される圧縮率 aとを持つ、準周期定常パ ルスである。この準周期定常パルスは、本発明者らが発見したものであって、パルス 伝搬に関して従来と異なり、まったく新しい様相を呈するものである。なお圧縮率 α は最初に伝搬する第 1光伝搬路ユニット 3aを伝搬後に特定される値を必ずしも用!ヽ る必要はなぐ平均化法を開始する前に任意の値を決めておいてもよい。
[0082] なお以上においては、厳密な周期定常解を得る方法として平均化法による手法を 示したが、近似的な解を得る手段として、以下が考えられる。すなわち、伝送路のパ ラメータと圧縮率をあらかじめ決めておき、例えばパルス波形をガウス型関数とし、振 幅、幅、チヤープなどのパラメータを任意に変更して得られるそれぞれの光パルスに 対して、与えた伝送路上で一周期伝搬させ、数式(15)の変数変換を行い、それぞ れのパラメータが入力時の値に最も近くなるようなパラメータの組み合わせを探し出し 、最適な組み合わせによって与えられるパルスをもって近似的な定常ノ ルスとするこ とちでさる。
[0083] 次に、上記光パルスの準周期定常パルスを例示する。
図 3に示す分散マップにおいて、 s = 0、 s = 15.8、 ζ = 1.2、 ζ = 1.21625
1 2 1 2
( ζ — ζ = 0.01625)を設定する。入力パルス u (t) = P 1/2 sech(t)のピークパワーを P
2 1 0 0
= 2とすると、当該分散マップに対応する第 1光伝搬路ユニット 3aを伝搬した後の出
0
力光パルスのピークパワーは、当初の 1.97178倍の 3.94356になる。
[0084] ここで、 α =1.97178とする。この圧縮率 αを用いて上記平均化計算を 100回行って 得られた光パルスの振幅の絶対値 (実線)と瞬時周波数 (破線)とを図 4に示す。なお、 瞬時周波数は、位相の時間微分に" 1"を乗じた値として定義される。
[0085] 図 5には、図 4に示す波形を、第 1光伝搬路ユニット 3a中に更に伝搬させた波形で あり、波形幅が 1/ α =0.507倍に圧縮されていることがわかる。
[0086] 図 6には、図 5に示す波形に対して、数式(15)に相当する変数変換を行った後の 波形である。この波形が図 4に示す波形と正確に一致することから、圧縮前後の波形
(すなわち、第 1光伝搬路ユニット 3aに対する入力光パルスの波形と出力光パルスの 波形)が完全に相似であることが確認できる。
[0087] 図 4に示す波形は、第 1光伝搬路ユニット 3aを伝搬後に変数変換を行うと、もとの波 形 (入力光パルスの波形)に戻るので、準周期定常パルスである。
[0088] 図 4に示す波形の特徴としては、時間に対して非線形に変化する瞬時周波数 (非 線形チヤープ。)を持つ点、特にパルスの中心付近ではダウンチヤープを持つ点、そ して、僅かなペデスタルを持つ点等がある。
[0089] また、図 7に示す波形は、図 4に示す波形を対数表示したものであり、中心付近の 波形が放物線に近い形として表されている。この結果は、光パルスの中心部分がガ ウス型関数により精度よく近似できることを示して 、る。
[0090] 次に、上記算出した準周期定常パルスの特徴について説明する。以下では、更に
、この準周期定常パルスと、従来知られている光ソリトン (すなわち、平均化ソリトン、 分散マネージメントソリトン)との違いについても説明する。
[0091] 平均化ソリトン ガイディングセンターソリトン;「A. Hasegawa et al.、 "
Guiding-center soliton in optical fibers '\ Optics Letters ^ vol.15、 p 1443-1445 ^ 1990 」を参照)は、短い周期 (ソリトンの分散距離に比べて十分短い増幅器間隔、若しくは 分散マネージメント周期。以下、 0く εくく 1なる εを用いて、 0( ε )と表現する)内で、ォ ーダ一が O(l)の摂動 (すなわち、ファイバ長手方向に対して変動する非線形効果若 しくは分散効果。)が加わるため、一周期 (例えば、第 1光伝搬路ユニット 3aと同様な 非線形光ファイバと分散光ファイバとが連結された光伝搬路)にわたる非線形効果及 び分散効果の両効果の累積値は、それぞれ 0( ε )のオーダーとなる。
[0092] また、分散マネージメントソリトン(「N.J.Smith et al.、 Electronics Letters, vol.32, p.54、 1996」を参照)は、 0( ε )のオーダーの短 、周期(平均分散値に対応する分散 距離、若しくは非線形距離と比較して十分短い距離)内で、大きな局所分散値 (0(1/ ε )のオーダーとする。)が加わるため、一周期(例えば、正常分散光ファイバと異常 分散光ファイバとが連結された光伝搬路)にわたる摂動による分散効果の累積値の オーダーが O(l)で、非線形効果の累積値のオーダーが 0( ε )となる。特にチヤープ に注目すると、例えば、大きな正常分散によって生じる線形アップチヤープがオーダ 一 O(l)の大きさで蓄積した後、大きな異常分散よつて線形ダウンチヤープが蓄積され る。ここで、平均分散値が小さく設定されているので、当該二つの線形チヤ一プはほ ぼキャンセルされる。このような性質から、分散マネージメントソリトンは、局所的には 分散効果が支配的な線形パルスであるとみなせ、小さな非線形効果が分布的に分 散効果と打ち消しあうことにより形成される周期定常解としてのパルスである。なお、 正常分散と異常分散の順序は逆であってもよ!/、。
[0093] 一方、本実施の形態における第 1光伝搬路ユニット 3aを伝搬する準周期定常パル スは、オーダーが O(l)の距離 (非線形光ファイバ 30aの長さ)にわたり、オーダーが O (1)の強さで非線形効果が加わる。さらに、オーダーが 0( ε )の距離 (分散光ファイバ 3 laの長さ)にわたり、 0(1/ ε )のオーダーの強さで分散効果が加わると考えられる。こ のため、両効果の各々がー周期(第 1光伝搬路ユニット 3a)にわたつて累積される量 は、共に O(l)のオーダーとなる。従って、本実施の形態における準周期定常パルス は、平均化ソリトンや分散マネージメントソリトンとは、パルス伝搬メカニズムが決定的 に異なる。
[0094] すなわち、本実施の形態における準周期定常パルスは、第 1光伝搬路ユニット 3aを 伝搬することにより、スペクトル拡がりを伴う非線形効果によるアップチヤープ (非線形 チヤープ)が引き起こされ、次に異常分散効果によるダウンチヤープ (線形チヤープ) により当該アップチヤープが補償されて、チヤープがもとの状態に回帰される。この際 、光ノ ルスの波形幅が圧縮されるという大きな特徴が生じる。
[0095] ここで、平均化ソリトン、分散マネージメントソリトン及び本実施の形態における準周 期定常パルスの特徴を比較してまとめた結果を表 2に示す。
[0096] [表 2]
Figure imgf000023_0001
[0097] 分散マネージメント伝搬系にお 、て累積分散値を小さくして 、くと、分散マネージメ ントソリトンは平均化ソリトンに漸近していくことが知られている。本実施の形態におけ る準周期定常パルスの場合にも、一周期の長さを短くして、非線形効果と分散効果 の累積値を小さくしていくと、圧縮率 αは 1に近づき、平均化ソリトンに漸近していく。 このように圧縮率が小さい場合は、断熱ソリトン圧縮(「Chernikov et al.、 Electronics Letters, vol.29, ρ.1788、 1993」を参照)現象に対応する。
[0098] 図 4一図 7に示す波形は、図 3において Si = 0 (零分散)のときに得られる波形である 力 本実施の形態における準周期定常パルスは、 s力 ゼロを含む略ゼロ近傍内の 所定値を持つと、符号に応じてその特徴が変化する。
[0099] そこで次に、 s =—0.05314、 0、 0.05314の三通りの場合に、入力光パルスを P 1/2
1 0
Sech(t)としてピークパワー Pを変化させたときの各収束解を、それぞれ平均化法によ
0
り求める。ピークパワー Pに対する圧縮率 αと、収束解の電力半値幅とをそれぞれ図
0
8、図 9に示す。ここで、実線、破線、点線は、それぞれ s = 0.05314、 0、 0.05314の 結果を示す。
[0100] 図 8に示すように、 Ρ く 2.5の場合には、 sに対する依存性は見られないが、 Ρ >
0 1 0
2.5の場合には、 s = 0.05314 (異常分散)の際に圧縮率が小さくなる。一方、収束し た光パルスの波形幅は、 3 の値に対して定量的にある程度の依存性を示してはいる ものの、定性的には大きな依存性は認められない。
[0101] 図 10に示すように、 P = 2としたときの、 sの上記各値に対する波形が示されている
0 1
力 実線で示す s =— 0.05314の波形が最もペデスタルが小さい。図 8に示す結果に より圧縮率はほぼ α — 2であり、半値幅も大きく変わらないので、ペデスタルが小さ な波形を得るためには、分散値 sを負の値 (正常分散)に設定するのが好ましい。
[0102] また、収束解としての光パルスの波形幅を変化させた 、場合には、分散光ファイバ 31aの分散値 sを変化させればよい。ここで、 P = 2及び α = 2に固定し、 sを変化さ
2 0 2 せて得られる収束解としての光パルスの波形を図 11に示す。
[0103] 図 11に示すように、分散光ファイバ 31aの分散値が大きくなると、ペデスタルの大き さは保たれたまま、波形幅が増大する。図 12には、 sに対する収束解の電力半値幅
2
の値が示されており、 S
2と電力半値幅とが、ほぼ比例関係となっている。
[0104] 分散光ファイバ 31aでは非線形効果が小さく無視でき、累積分散値のみがパルス 伝搬に影響するとしてよいので、 sを変化させる代わりに、 ζ — ζ 、つまり分散光ファ
2 2 1
ィバ 31aのファイバ長手方向の長さを変化させてもよい。
[0105] 結局、ピークパワー P及び圧縮率 aを任意に設定した後、分散光ファイバ 3 laの分
0
散値若しくはファイバ長手方向の長さを変化させて累積分散値を適切に設定するこ とにより、収束パルスの幅を変化させることができる。
[0106] 上記のように、第 1光伝搬路ユニット 3aを伝搬した後の出力光パルスの波形に対し て数式(15)の変数変換を行うと、入力光パルスの波形と完全に一致することから、光 パルスは周期定常状態として第 1光伝搬路ユニット 3aを何回でも繰り返して伝搬可能 となる (第 1光伝搬路ユニット 3aが複数連結されている場合を前提とする)。
[0107] 一方、数式(15)の変数変換を行う代わりに図 3に示す分散マップを一周期毎に( すなわち、光伝搬路ユニット毎に)変化させても、全く同じ結果が得られる。
以下、詳細に説明する。
[0108] 分散マップ 3( ζ )として図 3を考え、入力パルスを u(t)として数式(11)を再度書き下 すと、
[数 17] ,du .ι(ζ) d2u , ■つ „ となる。
[0109] ここで、一周期伝搬後に波形幅が圧縮された光パルスの波形を u' (t)とすると、 u(t) と^ (t)との関係は、圧縮率 αを用いて
[数 18]
- au(at)
となっている。
[0110] 一方、U' (t)が新たな分散マップ s' (ζ)を伝搬する様子は、下記方程式により表さ れる。
[数 19]
[0111] 数式(19)に数式(18)を代入すると、
[数 20] i— S" (ひり + -γ- au( t) + α^α \u(at)\2 (at) = 0 が得られる。
[0112] ここで、変数変換
[数 21]
ς = αζ, τ = at を行うと、数式(20)は、
[数 22]
.du as'iCIa ^ , l2 η となる。
[0113] ここで、仮に、 as' (ζ' /a)=s(C )とするならば、数式(22)は、 ζ' 、 τの座 標系で数式(17)に一致する。換言すると、^ (ζ)=δ(α ζ)/αであるから、一周期 毎に分散マップのファイバ長手方向の長さと分散値とをそれぞれ 1/ a倍すれば、数 式(18)の変数変換が一周期毎に行われることとなり、光パルスは、一周期毎に互い に相似な波形として伝搬する。
[0114] この状況を模式図として図 13に示す。ここで、 n> =2、 ζ = 0とすると、 ζ — ζ
0 2η— 1 2η
= (ζ -ζ ) / α = ζ /
Figure imgf000026_0001
ζ -ζ = (ζ -ζ ) / α = (ζ -
-2 2η— 3 2η— 4 1 2η 2η— 1 2η— 2 2η— 3 2 ζ ) / αη1である。
[0115] 一方、図 3に示す分散マップおいて、 0く |s Iくく 1くく s且つ ζ » ζ -ζ の場合
1 2 1 2 1 を考えているので、第 1光伝搬路ユニット 3aの区間 ζ く ζく ζ では分散効果が支配
1 2
的で、非線形効果はほぼ無視できる。そこで、一周期毎に、ファイバ長手方向の長さ と分散値とをそれぞれ l/α倍する代わりに、分散値を変えずにファイバ長手方向の 長さのみを 1/ a 2倍にしても等価な結果が得られる。この場合の分散マップと光パル スの伝搬の様子とを模式図として図 14に示す。ここで、 n> =2、 ζ = 0とすると、 ζ
—ζ = (ζ —ζ ) /
-1 2η— 2 2η— 3 2η— 4
Figure imgf000026_0002
(ζ -ζ ) / ひ2 (η "である。
2 1
[0116] ここで、 sが十分小さい値 (ゼロ若しくはゼロ近傍の値)の場合は、 s =s =s =…とし
1 1 12 13 ても、同様の結果が得られる。
[0117] <光パルス成形器 30の設計の具体例 >
図 13に示すような、一周期毎に分散値とファイバ長手方向の長さとがそれぞれ 1/ a倍される分散マップを有する光パルス成形器 30に対し、数値計算によって得られ る、圧縮率 OCの準周期定常パルスの波形に近い状態の入力光パルスを用いれば、 準周期定常パルスに近い圧縮形態が実際に得られる。以下、このような光パルス成 形器 30の設計の具体例を示す。
[0118] 本発明における方法に基づく設計においては、様々なパラメータに対する任意性 が存在する。よって先に、いくつかの設計指針に対する実際の手順について、簡単 に説明する。まず行うべきことは、規格化された空間上における仮の伝搬路を設定し 、当該伝搬路を伝搬する光パルスの準周期定常パルスを求めることである。この手順 を経て圧縮率 αを導出してもよいし、独立に任意の αを設定してもよいが、圧縮率 α は実空間でも同じ値である。前者のように OCを決める場合は、所望の圧縮率 OCを得る ために、当該仮の伝搬路設定と準周期定常パルスのパラメータ設定とを行う必要が ある。仮の伝搬路は、一般ィ匕分散値がやはり図 3の形態で与えられる。非線形光ファ ィバ 30aのファイバ長手方向の規格ィ匕長さ ζ と、準周期定常パノレスのピークパワー とを決定する上で重要なのは、非線形光ファイバ 30aにおける光パルスの非線形位 相シフト量 Δ φである。なぜなら、図 8のように圧縮率 αは Δ φにほぼ比例した形をと るため、結果的に非線形光ファイバ 30aのファイバ長手方向の規格ィ匕長さ ζ とピー クパワーとの積とが圧縮率 αを支配する。よってそれぞれの値は、後に考慮する設計 指針に応じて、任意に設定可能である。分散光ファイバ 31aにおける累積分散値と、 準周期定常パルスの幅についても図 12のようにほぼ比例の関係であるため、やはり それぞれの値は任意に設定可能である。では、いくつかの設計指針の例を挙げる。
[0119] ( 1)実空間上のファイバパラメータが決まっている場合で、さらに光パルス成形器 3 0の一周期目における非線形光ファイバ 30aおよび分散光ファイバ 3 laの長さが定め られて 、る場合:実空間上における伝搬路が設定されて 、るので、規格化空間上の 伝搬路は一意に得られる。規格化空間上の準周期定常パルスのピークパワーを変 更することで、図 8および図 9から得られる値に応じた圧縮率 ocおよび波形幅が得ら れる。所望の圧縮率 αまたは波形幅を選択した後、実空間に変換すると、入力光パ ルスの条件と二周期目以降の設計が決定される。なお、圧縮率 OCの値が増すことで ピーク ペデスタル比が増大して都合が悪いようであれば、あえて小さな圧縮率 aを 選び、光パルス成形器 30内の周期数を増やすことで最終的に所望の圧縮率 ocを実 現するとしてちょい。
[0120] (2)実空間上のファイバパラメータが決まっている場合で、さらに入力光パルスの条 件が定められている場合:非線形光ファイバ 30aおよび分散光ファイバ 3 laのフアイ バ長手方向の長さは任意に変更可能であることから、規格ィ匕空間上でも、それぞれ の長さを任意に変更してよい。そこで、実空間に変換した後の光パルスが定められた 条件にあうような、規格ィ匕空間上の準周期定常パルスが得られるよう、それぞれの光 ファイバの規格ィ匕空間上のファイバ長手方向の長さを調整する。具体的には、ピーク パワーと波形幅を規格化空間上で定めておき、それらの値に対して所望の圧縮率 a に相当する非線形位相シフト量を与える非線形光ファイバ 30aのファイバ長手方向 の規格化長さ ζ と、既定の累積分散値を与える分散光ファイバ 31aのファイバ長手 方向の規格化長さ ζ - ζ
2 1を決めることができる。これにより実空間上の設計が確定 可能となる。
[0121] 以上の例のように、与えられた設計指針に対して規格ィ匕空間上でしかるべき設定、 つまり所望の条件を満足する最適値を導出し、これを現実的な設計に反映させると いう手順が考えられる。以下では、上記(1)の例に沿った場合の具体例について述 ベる。ただし伝搬路に関しては段落 0063に記載のように予め決定されていて、さら に所望の圧縮率 αの値としては、段落 0083に定められた値を考える。つまり、段落 0 121、 0122に記載のような条件設定となる。
[0122] まず、光ファイバのパワー損失を考慮しな 、場合にっ 、て説明する。
以下、一例として、 P = 2, s = 0としたときの準周期定常パルスの伝搬に基づく設
0 1
計を考える。ここで、準周期定常パルスの半値全幅を 1.43119とし、圧縮率 αを上記 算出した 1.97178とする。
[0123] まず、図 3に示す分散マップ (すなわち、第 1光伝搬路ユニット 3a)において、 s = d / v = 0、s = d / v =15.8、 ζ = v z = 1.2、 ζ = v z + v (z— z ) = 1.21625と
1 2 2 2 1 1 1 2 1 1 2 2 1 し、 d = 0とする。そして、 v = 24, v = 1.3とすると、 d = 20.54、 z = 0.05、 z =
1 1 2 2 1 2
0.0625が定まる。
[0124] 次に、変数変換を行うパラメータを、 Z = a n[km]、T = a n [ps]、P = a— n [W]に設
0 0 0
定すると (nは任意の整数)、規格化分散値 d、規格化非線形係数 V、ファイバ長手方 向の長さ z、時間軸 t、振幅 qは、実空間においてそれぞれ D[ps/nm/km] = 0.784 « nd 、 y [W'km"1] = v、 Z [km] = a nz、 T [ps] = a \ Q [W1/2] = o; /2qのように変換 される。
[0125] 更に、分散光ファイバ 31aでは非線形効果が無視できると仮定し、分散値を変化さ せずにファイバ長手方向の長さのみを変化させる方法を用いて(図 14に示す分散マ ップを参照)、例えば、分散値とファイバ長手方向の長さとを、それぞれ D[pS/nm/km] = 0.784d、 Z [km] = a 2nzとしてもよい。
[0126] ここで、仮に、 η=0とすれば、 D = 0[ps/nm/km]、 y = 24[W"1km"1], D =
2
16[ps/nm/km]、 y 0.0625[km]となる。また、規
Figure imgf000028_0001
格化空間でピークパワーが 2、電力半値幅力 1.43119の光パルスは、実軸空間でピー クパワー 2[W]、電力半値幅 1.43119[ps]という値を持つ。この場合の分散値及び非線 形係数は、非線形光ファイバ 30a、 30b、 30cに HNLF (分散値 0ps/nm/km、非線形 係数 24W— ^m— 、分散光ファイバ 31a、 31b、 31cに SMF (分散値 16ps/nm/km、非 線形係数 1.3W— ^m— を用いる際に都合がよい。
[0127] 一方、 n=lとすれば、 D = 0[ps/nm/km]、 y = 24[W"1km"1], D = 31.55[ps/nm/km
1 1 2
]、 γ = 1.3[W— ^m— 、 Z = 0.098589[km]、 Z = 0.1232362[km]となる。また、規格化
2 1 2
空間でピークパワーが 2、電力半値幅力 1.43119の光パルスは、実軸空間でピークパ ヮー 1.0143[W]、電力半値幅 2.822[ps]という値を持つ。なお、分散光ファイバ 31aで は分散効果が支配的であるとすると、 D = 16[ps/nm/km] 88[km]として
2 、 Z = 0.1471
2
も等価である。
[0128] このように、 nの値を変えることで、任意のスケールで入力光パルスのパラメータと、 分散マップの一周期目(すなわち、第 1光伝搬路ユニット 3a)の設計を決めることがで きる。
[0129] 次に、 n=lの場合について、具体的な設計例と、当該設計例に基づいて行った数 値計算による光パルスの圧縮の様子を示すシミュレーション結果とを示す。
[0130] 準周期定常パルスは、パルス中心付近についてはガウス型関数で近似できるが小 さなペデスタルと非線形チヤ一プとを有する(図 4を参照)。しかし、以下では、入力光 パルスとして、ピークパワーが 1.0143[W]、電力半値幅力 ¾.822[ps]であるチヤ一プフリ 一のガウス型パルスを考える。
[0131] 一周期目の伝搬路 (すなわち、第 1光伝搬路ユニット 3a)の設計は、上記内容から、 D
Figure imgf000029_0001
= 0.098589[km]、 Z = 0.147188[km]として設計する。
2
[0132] 二周期目以降の伝搬路 (すなわち、第 2光伝搬路ユニット 3b、 3c以降)の設計は、 圧縮率 aの値と、図 14の分散マップに示す方法とを用いて決定できる。
[0133] この場合、圧縮率 αとしては、上記算出した圧縮率 α = 1.97178を用いるのが好ま しいが、有効性を確かめるために、圧縮率を = 1.8、 2.0、 2.2として二周期目以降 の伝搬路設計を行った場合の、光パルスの圧縮の様子を、数式 ( 1)の直接数値計算 を行うことによって調べる。ここで、ファイバ損失や高次の分散性及び高次の非線形 性を無視する。
[0134] ここで、表 3に、上記圧縮率 α ' の各値につき、 HNLF長、 SMF長、出力パルスの 幅及び圧縮率 (入出力光パルスそれぞれの波形幅の比)を示す。入力光パルスと一 周期目の伝搬路とは、全ての a ' の値に対し共通であるとする。
[0135] [表 3]
Figure imgf000030_0001
[0136] 圧縮率が理想値に近い α ' = 2.0の場合には、三周期目の出力光パルス (すなわ ち、第 3光伝搬路ユニット 3cから出力される光パルス)の波形幅が 0.371psに圧縮され るのに対して、圧縮率が α ' = 1.8の場合には、波形幅が 0.459psまでしか圧縮され ない。一方、圧縮率が α ' = 2.2の場合には、三周期目の出力光パルスの波形幅が 0.351psにまで圧縮される。
[0137] 上記圧縮率 α ' の各値につき、二周期目及び三周期目の出力光パルスの波形の 時間とパワーとを規格ィ匕したものを、図 4に示す数値的に得られた準周期定常パルス と重ねて図 15—図 20にプロットして示す。実線は、当該圧縮率 を用いた場合の パルス圧縮の結果を示し、破線は図 4に示す準周期定常パルスを示す。
[0138] また、図 15—図 20に示すように、圧縮率が α ' = 2.0の場合には、光パルスの波形 は、準周期定常パルスに最も近い波形を保ちながら圧縮されている。波形が準周期 定常パルスからズレが生じると、光パルスが周期を重ねて伝搬する毎に該光パルス の圧縮波形に大きな歪みが生じることとなり、好ましくない。また、光パルスのパワー が準周期定常パルスに比べて減少しているが、これは入力光パルスと準周期定常パ ルスとの間のズレに起因するパワー損失であると考えられる。このパワー損失は、実 際に光パルスの圧縮を行う際には、光パルスのパワーにプリエンファシス(準周期定 常パルスは非線形チヤープ、特に中心付近ではダウンチヤープを持っている力 これ を分散補償することでチヤープフリーの状態に近づけたときに、ピークパワーはある 程度大きくなる。入射パルスがそのときのピークパワーを持つように調整することを、 プリエンファシスを加えることと定義する)を加えることにより補償可能である。
[0139] ここで、入力光パノレスにチヤープフリーガウシアンパノレスを用いても、実際の出力光 パルスは準周期定常パルスに近いものとなる。このため、入力光ノルスの波形にはあ る程度のマージンがあり、例えば、 sech型パルス等を用いた場合でも、得られる結果 に大差はない。
[0140] 更に、準周期定常パルスの中心部分はダウンチヤープを持っため、 HNLFへの入 射時には光パルスがダウンチヤープを有していることが必要となる。 SMF長はそのよ うに設計されなければならないが、表 3に示す設計結果は、この点が反映されたもの となっている。
[0141] なお、表 3に示す内容では、二周期目や三周期目の出力光パルスの幅が lpsより小 さくなつているが、このような場合、厳密には高次分散やラマン自己周波数シフト等の 高次効果の影響を考慮しなければならな 、。
[0142] 次に、光ファイバのパワー損失を考慮した場合について説明する。
光ファイバ自体に生じるパワー損失や光ファイバ同士の接続部に生じるパワー損失 等によるパワー低下が生じるような場合には、その低下分に合わせて非線形光フアイ ノ 30aのファイバ長手方向の長さ長くすることにより(effective lengthに相当、「 u.P.AgrawaU 'Nonlinear Fiber Optics 、 Academic Press ^ 3rd.ea.、 p98、 2001」を参 照)、当該パワー低下が容易に補償可能となる。そのため、図 13に示す分散マップ では非線形光ファイバのファイバ長手方向の長さは一周期毎に 1/ α倍されていくが 、一周期の総パワー損失が所定閾値を超えると、次周期のファイバ長は前周期のフ アイバより長くなることもあり得る。このため、 HNLFのように γ / δが大きなものでない と、所望の圧縮が得ら
れないという結論に至る。 [0143] 以下、上記結論について詳細に説明する。なお、分散光ファイバは非線形光フアイ バに比べて一般に損失が小さく、またファイバ長は表 1に示すように極めて短 、ので 、パワー損失を考える上では無視してよい。
[0144] まず、第 1光伝搬路ユニット 3a、 3b、 3c等、 n個の光伝送路ユニットが連結された光 パルス成形器 30に対して光パルスを伝搬させると、圧縮率は α ηとなる。この際の非 線形光ファイバの規格化空間上の総長 (ファイバ長手方向の長さの総計、以下同じ) ζ は、 ζ = 0として、
An 0
[数 23] j ^ a aA a"'1 ^ - 1 \ " j となる。
[0145] 非線形光ファイバの非線形係数 V、損失係数 δが共にファイバ長手方向の長さに よらず一定値をとるとすると、数式 (8)から a(z) = a (0)exp [- δ z]となり、数式(11)から 規格ィ匕空間上の距離 ζと実距離 zとの関係は、
[数 24]
Figure imgf000032_0001
となる。
[0146] 数式 (24)から、損失係数 δを考慮した場合の実距離 zは規格化空間上の距離 ζ を用いて、
[数 25]
Figure imgf000032_0002
と表される。
[0147] 得られた数式 (25)の ζに ζ / α η1を代入すると、 η周期目の非線形光ファイバの 実距離 (ファイバ長手方向の実距離) zが算出される。よって、 η回圧縮するために必 要な非線形光ファイバの実空間におけるファイバ長 z は、数式(23)を数式(25)に
An
代入して、
[数 26] = 叫卜 が得られる。
[0148] 更に、この際の入力光パルスのパワーに対する出力光パルスのパワーの比 a2(z )
An
I a 2は (以下、パワー損失の割合という)、
0
[数 27]
Figure imgf000033_0001
となる。
[0149] ここで簡単のため、 a = a(0) = 1としても、一般性は失われない。このとき数式(25)
0
は、規格ィ匕空間における一周期目の非線形光ファイバ 30aのファイバ長手方向の長 さ ζ 、圧縮率 α及び周期数 ηと、実空間における非線形光ファイバ 3の損失係数 δ 、非線形係数 V及び総長 ζ との関係を与える。
An
[0150] 例えば、非線形光ファイバ 30aのファイバ長手方向の長さ ζ 、圧縮率 a、周期数 n を決めて総長 z に対する条件を与えると、損失係数 δと非線形係数 Vとが満たすベ
An
き条件が得られる。具体例として、上述の ί = 1.2, a = 1.97、 n = 3の場合を考え、 非線形光ファイバとして HNLF ( γ =
Figure imgf000033_0002
L = 1.5dB/km)と DSF (Dispersion Shifted Fiber) ( y = について
Figure imgf000033_0003
比較する。
[0151] 数式 (6)及び数式(7)で規格ィ匕に用いる定数を z = 1 [km], P = 1 [W]とし、数式(
0 0
25)を用いてそれぞれのファイバの総長 z を計算すると、 HNLFの場合には 0.12256
An
km、 DSFは 1.23443 kmであり、残留パワーの割合はそれぞれ 0.95855 (=— 1.5
[dB/km] X 0.12256 [km] =—0.18384 [dB])、 0.94474 (=—0.2 [dB/km] X 1.23443 [km] = -0.246886 [dB])であり(数式(26)力らも計算可能)、 HNLFの方が DSFより もパワーロスが少ないことがわかる。この結果は、局所的な損失係数 δは、 HNLFの 方が DSFよりも大きいが、それ以上に総長 z が十分短いために、結果的に総パワー
An
損失が小さくなることを意味している。逆に、あるパルス成型器を実現する際にパワー 損失の許容値が設定される場合、 HNLFを用いると実現可能であるが、 DSFでは不可 能となる場合も存在し得る。
[0152] 以上より、非線形光ファイバのファイバ長手方向の長さの総計及びパワー損失の両 面から、 HNLFを用いた方が DSFを用いるよりも有利であることが計算により確認で きる。
[0153] 光パルス成型の実験結果
以下では本発明で開示した方法、すなわち準周期定常パルス伝搬に基づくパルス 成型器設計方法にしたがってパルス成型器を作製し、光パルス成型実験を行った結 果について示す。
(実験結果 1)四段構成の偏波非保持型パルス成型器を用いて、 40GHz繰り返し逆 相パノレス列の幅を、 7ps力ら 0. 360psに圧縮する。
入力パルスのピークパワーは 357mWとする。
[0154] 一段あたりの圧縮率 αは、(7Ζ0. 36) 1/4= 2. 1とする。
このとき準周期定常パルスの各段におけるノ ルス幅とピークパワーは表 4のように決 定できる。
[表 4]
各段におけるパルスの幅とピークパワー
Figure imgf000034_0001
[0155] 四段構成のパルス成型器の中である一段の設計を決めれば、他段の設計もただち に決められる。
ここでは成型器の三段目の設計を決めるため、圧縮率が α = 2. 1で、ピーク非線形 位相シフト量が 2. 4radの準周期定常パルスを求める。
[0156] 図 3に示す規格化空間上の伝送路において、 s =— 0. 0824、 s = 118. 17、 ζ
1 2 1
= 0. 25、 ζ = 0. 25213とし、 α = 2. 1、ピークノ ヮ一力 9. 6である準周期定常ノ
2
ルスを平均化法により求めた。図 21にその波形を示す。図 21 (a)強度時間波形と瞬 時周波数、図 21(b)自己相関波形、(c)スペクトルを示す。 図 21に示した準周期定常パルスの電力半値幅は、 1. 442である。
[0157] 高非線形ファイバ(HNLF)とシングルモードファイバ(SMF)からなる、実空間上のパ ルス成型器において、図 21のパルスが伝搬するようにそれぞれのファイバの長さを 決める。
HNLFと SMFの分散値、非線形定数、損失を表 5に示す。
[表 5]
使用するファイバのパラメータ
Figure imgf000035_0001
[0158] まずは損失を無視して考える。
規格ィ匕空間上の伝送路パラメータと準周期定常パルスパラメータを、表 5に示したフ アイバパラメータ、および表 4に示した実空間上のパルスパラメータに置き換えると、 パルス成型器三段目の HNLFと SMFの長さはそれぞれ 77mと 14.7mとなる。
これから一段目、二段目、および四段目のファイバ長は、先に述べた変換によって求 められ、表 6のようになる。
[表 6]
損失を考慮しなレ、場合の四段パルス成型器の設計
Figure imgf000035_0002
[0159] ファイバ損失がなく、 HNLFと SMFの接続損失もな 、場合、表 6の設計どおりにパルス 成型器を作製すればよい。
しかし現実には、損失による光パワーの減衰が大きな影響を及ぼすため、それを考 慮して設計しなければ、各段で所定の非線形位相シフト量が得られず、所望の圧縮 特性を達成することができな 、。
[0160] そこで、表 5に示したファイバ損失と、 HNLFと SMFの接続損失を考慮して、表 6の設 計を見直す。 なお HNLFと SMFの接続損失は測定の結果、典型値として 1箇所につき 0.15dBという 値が得られた。
[0161] ファイバ損失による光パワーの減衰を補償して、各段で所定の非線形位相シフト量を 実現するための方法としては、成型器の中に光増幅器を組み込んだ構成で減衰した 光パワーを増幅する方法と、減衰したパワーに応じて HNLF長を長くする方法がある ここでは後者の方法を用い、パルス成型器の各段でパルスが受けるピーク非線形位 相シフトが所定の 2.4radとなるように、各段の HNLF長を調整する。
表 7に損失を考慮して各段の HNLF長を長くした設計結果を示す。
[表 7]
損失 (ファイバ損失と、 HNLFと SMFの接続損 0.15dB)を考慮した場合の
四段パルス成型器の設計
Figure imgf000036_0001
[0162] 表 6と表 7の結果と比較すると、 HNLF長が各段で長くなつていることがわかる。
表 7の設計結果にしたがって、実際にパルス成型器を作製し、パルス成型実験を行 つた o
実験系を図 22に示す。
[0163] 発振波長が 1550nm付近で、それぞれ 0.32nm (周波数に換算すると 40GHz)異なる 二つの DFBレーザー(LD)力も発生された連続光は、それぞれ偏波コントローラ(PC) と 3dB力プラを経て合波され、繰り返し周波数が 40GHzのビート光となる。
ビート光は、ファンクションジェネレータ (F.G.)から得られる 1GHzの正弦波で駆動さ れる LN位相変調器 (LNM)を通過することで、 1GHzの位相変調を受ける。
この位相変調により、ファイバ中の誘導ブリルアン散乱 (SBS)を抑圧できる。 なお SBSを抑圧するには、位相変調器による位相変調を行う他に、パルス成型器中 の適当な箇所に少なくとも一つの光アイソレータを挿入する方法もある。
LNMから出力された光は、 EDFA (Erbium doped fiber amplifier)によって増幅され、 帯域通過フィルタ (BPF)によって自然放出光雑音を除去した後、三段パルス成型器 に入力される。
[0164] この三段パルス成型器は、次の文献によって公知である。
K. Igarashi他, Wideband-tunable highly pure 40 uriz picosecond soliton train generation by short comb-like profiled fiber", CLEO2004, paper CFC2, San Francisco, CA, U.S.A., May 2004.
[0165] 三段パルス成型器の出力光は隣接するパルスどうしが逆位相で、繰り返し周波数 が 40GHz、電力半値幅が 7psであり、波形が sech関数のパルス列である。
可変光減衰器 (VOA)によって平均光パワーを 21.13dBmに調整した後、そのパルス列 を本発明によって設計したパルス成型器に入力し、各段でのスペクトル波形と自己相 関波形を、それぞれ光スペクトラムアナライザ (OSA)と自己相関波形測定器 (A.C.)で 測定する。
[0166] また実験と同様の条件のもとで、ノ ルス成型に関する数値シミュレーションを行い、 実験結果と比較した。
ただし数値シミュレーションでは、単一直線偏光の光波を仮定し、ファイバの高次分 散や高次非線形性、複屈折の効果は考慮して 、な 、。
[0167] シミュレーションと実験のそれぞれについて、図 23に各段出力パルスのスペクトル 波形、図 24に自己相関波形を示す。
ただし図 23 (a)は数値シミュレーション結果、図 23 (b)は実験結果を示す。
また図 24で、線は数値シミュレーション結果、点は実験結果を示す。
[0168] また各段出力パルスのパルス幅 (電力半値幅)につ ヽて理論値、数値シミュレーシ ヨン結果、実験結果をまとめたものを表 8に示す。
ただし理論値は、入力値を 7ps、段数を nとして、 T α "η= 7' 2. Γηより得られる値で あり、一方実験値は、図 24のように得られた自己相関波形に対して、入力パルスの み sech関数、各段出力パルスは Gauss関数の強度自己相関関数でフィッティングを 行い、電力半値幅を導出したものである。
[表 8] 入力および各段出力パルスの電力半値幅の理論値、 数値計算値、 および実験 値
Figure imgf000038_0001
[0169] 図 23と図 24力 、実験結果とシミュレーション結果がよい精度で一致している。
また表 8から、ほぼ理論通りにノ ルス幅が圧縮されて 、ると言える。
さらに四段目出力パルスの波形に注目すると、スペクトルと自己相関波形ともに、図 2 1に示した準周期定常パルスの波形に近 、ことがわかる。
入力パルスの形状は sech関数型であり、準周期定常パルスの波形とは正確に一致し ないにもかかわらず、圧縮されたパルスの波形が準周期定常パルスのそれに近いと いうことは、パルスが成型器を伝搬中に、定常状態としての準周期定常パルスに収束 しつつあると 、うことである。
よって成型器の段数をさらに増加すると、パルス波形はより正確に準周期定常パル スに漸近するものと考えられる。
[0170] 一方、四段目出力パルスについて、シミュレーション結果に対して実験結果のスぺ タトル帯域がわずかに狭い。
[0171] その原因は、ひとつには、偏波の影響がある。
パルス成型器中のパルス伝搬に関する数値シミュレーションにおいては、光ノ ルスは 常に単一偏波であり、複屈折を無視することで偏波が保持されることを仮定した。 し力 実際はファイバの複屈折の効果により、入力時は単一偏波であった光波が、 直交する二つの偏波成分に分離し、し力もそれらが群遅延を持つことで、結果的に パルス幅の増大と、ピークパワーの減少につながる。
この効果は偏波モード分散 (PMD)として知られて 、る。
パルスのピークパワーが下がると、パルス成型器のある段で所定のピーク非線形位 相シフトを達成することができず、帯域が狭ぐ時間幅が大きいパルスが出力される。 もしパルス成型器の段数をさらに増やすならば、小さいパルス幅のために PMDの影 響が相対的に大きくなることから、所望の圧縮特性を実現できない可能性がある。 よってパルス成型器を設計する際は、ファイバ損失と接続損失に加えて、ファイバ の複屈折の影響も考慮して行うことで、設計どおりの実験結果を得ることができる。
[0172] 次に、成型器入力時にパルスに付加された雑音と、出力光のパルス列が持つタイミ ングジッタの関係について述べる。
[0173] 図 24では、遅延時間を- 12.5psから 12.5psの範囲として、各段出力パルスの自己相 関波形を示した。
範囲を- 30psから 30psまで広げた場合の各段出力パルスの自己相関波形を、実験結 果 (点)および数値シミュレーション結果 (線)の両方につ!、て示す。
図 25は、各段出力パルスの自己相関波形であり、点は実験結果、線は数値シミュ レーシヨン結果を示す。
[0174] 遅延時間が- 25, 0,および 25psのときに自己相関波形のピークが存在し、段数を増 すごとに、 -25および 25psにおけるピークの値が減少していることがわ力る。
このピーク値の減少は、 40GHzパルス列がタイミングジッタ(時間位置揺らぎ)を持つ ていることを意味している。
[0175] このタイミングジッタの原因は、以下のように考えられる。
光パルスに ASE雑音が付加されて ヽる場合、パルスと雑音成分の干渉により光パル ス波形が歪むが、その歪みは時間スロットごとにランダムである。
その歪みは、光パルスの中心周波数力 より離れた周波数成分の ASE (高周波雑音 成分)が付加されている場合により顕著である。
光パルス波形が歪んだ結果、時間軸におけるパルスの一次モーメント (パルス位置 の重心を表す)が各時間スロットに対してランダムとなる(ジッタを持つ)。
[0176] 一方、本発明のパルス成型器によってパルスの幅を圧縮する場合、出力パルスの ピーク位置は、入カノ ルスの重心位置にほぼ一致すること力 シミュレーション結果 より示される。
数値シミュレーションでパルス成型器各段出カノ ルスを計算した際、時間軸におけ るパルス列の中の個々のパルスの一次モーメントとピーク位置について、時間スロット 中心位置に対するずれ量の標準偏差をそれぞれ求め、入力および各段出力でまと めた結果を表 9に示す。
[表 9]
Figure imgf000040_0001
[0177] 表 9から入力パルスについて、雑音との干渉のために波形が歪んだ結果、ノ レスの ピーク位置標準偏差が大き!/、ことがわかる。
しかしパルス成型器の段数を増すごとに、一次モーメント標準偏差はほとんど変化が なぐ一方でピーク位置標準偏差は一次モーメントのそれに近づいていくことがわか る。
[0178] パルスのタイミングジッタは、パルスの電力半値幅に対する割合が大きくなると、パ ルス列の品質を悪化させる。
換言すれば、タイミングジッタの量が一定値の場合、パルスの幅が大きければほと んど問題にならないが、幅が小さくなるとジッタが相対的に大きくなる。
例えば入力パルスについては、一次モーメントの標準偏差が 67.9fsであるのに対して 、幅が 7psである力もジッタはほとんど無視でき、図 25の入力自己相関波形で- 25お よび 25psにおけるピーク値は、 Opsにおけるそれとほぼ同じである。
逆に、例えば四段目出力パルスについては、一次モーメント標準偏差が 70.6fsであ るのに対してパルスの幅が 367fsであるから、幅に対するジッタ量の割合が大きくなつ て、図 25の自己相関波形で- 25および 25psにおけるピーク値は Opsにおけるそれより 小さくなるのである。
[0179] したがって、パルス成型器によってパルスの幅を圧縮する場合に、出力パルスのタ イミングジッタの影響を抑圧するためには、入力パルスのタイミングジッタ量、すなわ ち時間軸における一次モーメントのジッタ量を極力低減することが非常に重要である そのためには EDFAで光増幅する際に BPFによって ASE雑音 (特に高周波雑音成 分)を除去する方法が有効である。
あるいは図 22でビート光を発生させる二つの LDそれぞれに対して、 EDFAで十分な 光パワーに増幅した後、狭帯域 BPFでできるだけ雑音を除去して力 合波し、その後 は雑音付加をともなう光増幅を行わな!/ヽ構成や、雑音付加をともなわな!/ヽ光増幅を 行う構成なども考えられる。
(実験結果 2:偏波保持ファイバを使用したパルス成型器)
別の実施例として、本発明の方法で設計したパルス成型器を、偏波保持型の HNLFと SMFで実現する。
[0180] 入力パルスの幅を 8psとし、四段構成のパルス成型器で 2psに圧縮するように設計 する。
入力パルスのピークパワーは 420mWとする。
一段当たりの圧縮率を α = 1. 4とし、ピーク非線形位相シフト量が lradとなる準周期 定常パルスが伝搬するように、設計を行う。
[0181] 各段における準周期定常パルスのパルス幅とピークパワーの値を表 10に示す。
[表 10]
各段における準周期定常パルスの幅とピークパワー
Figure imgf000041_0001
[0182] 図 3に示す伝送路にお!/、て s =-0. 024、 s =6. 92、 ζ = 1、 ζ = 1. 08とし、
1 2 1 2
« = 1. 4、ピークパワーが 1である準周期定常パルスを平均化法により求めた。 図 26にその波形を示す。準周期定常パルスの波形、時間強度波形とスペクトル波 形を示す。
[0183] 図 26に示した準周期定常パルスの電力半値幅は、 1. 974である。
[0184] 表 11に偏波保持型の HNLFおよび SMFのパラメータを示す。
[表 11] 使用するファイバのパラメータ
Figure imgf000042_0001
[0185] 先の実施例と示した方法と同様に、まずは損失を無視して考える。
四段構成のパルス成型器のうち、二段目の設計を決める。
規格ィ匕空間上の伝送路パラメータと準周期定常パルスパラメータを、表 11に示した ファイバパラメータ、および表 10に示した実空間上のノ ルスパラメータに置き換えると 、パルス成型器二段目の HNLFと SMFの長さはそれぞれ 164.3mと 212.1mとなる。 これから一段目、三段目、および四段目のファイバ長は、先に述べた変換によって求 められ、表 12のようになる。
[表 12]
損失を考慮しない場合の四段パルス成型器の設計
Figure imgf000042_0002
表 11に示したファイバ損失と、 HNLFと SMFの接続損失を考慮した場合のパルス成 型器設計結果を表 13に示す。
なお HNLFと SMFの接続損失は測定の結果、典型値として 1箇所につき 0.6dBと 、う値 が得られた。
[表 13]
損失 (ファイバ損失と、 HNLFと SMFの接続損 0.6dB)を考慮した場合の四段
パルス成型器の設計
Figure imgf000042_0003
[0187] ファイバ損失と、 HNLFと SMFの接続損失を無視した場合の設計では、表 6や表 12 のように、 HNLF長が段ごとに短くなる。 また、それらの損失を考慮した場合でも、比較的小さい場合は表 7の設計結果のよ うに、やはり HNLF長は段ごとに短くなる。
ところが HNLFと SMFの接続損失が 0.6dBという、比較的大きな値の場合には、表 13 のように HNLF長が段ごとに長くなると 、う結果になる。
[0188] 表 13に示した設計にもとづいてノ ルス成型器を作製し、パルス圧縮実験を行った。
その実験系を図 27に示す。
[0189] 直接変調 DFBレーザー(LD)に、ファンクションジェネレータ (F.G.)から発生された 508MHzの正弦波クロック信号をカ卩えると、ゲインスイッチング動作によって繰り返し周 波数力 508MHZの光パルス列が発生される。
この光パルスは 1553nmと 1551nmそれぞれを中心とする二つの周波数成分を含ん でいるが、後者の成分を BPFにより抑圧する。
BPFより出力された光パルスは周波数チヤープを持っている力 600mの DCFを伝 搬させることでチヤープ補償して、幅が 13.3psのパルスを得る。
これを EDFAで光増幅し、雑音除去のため帯域幅が 3nmの BPFを通過させ、実験 1 でも用いた三段パルス成型器に入力して、幅が 8psのノ ルスを得る。
偏波コントローラ (PC)を調整し、偏光子 (Pol.)を通過させて得られる単一直線偏波の 光パルスの平均パワーが 1.8dBmとなるように調整した後、本発明の偏波保持フアイ ノくからなる四段ノ ルス成型器に入射する。
[0190] 入カノ ルスと各段出カノ ルスの光スペクトルと自己相関波形をそれぞれ測定し、実 験結果とあわせて数値シミュレーション結果も示す。
図 28は、 入力および各段出力パルスのスペクトル (実線:実験結果、点線:数値シミ ユレーシヨン結果)を示す。
図 29は、入力および各段出力パルスの自己相関波形 (点:実験結果、線:数値シミュ レーシヨン結果)を示す。
[0191] 図 28は入力および各段出力パルスのスペクトルを示しており、実線が実験結果、 点線が数値シミュレーション結果を表す。
また図 29では入力および各段出力パルスの自己相関波形を示しており、点が実験 結果、線が数値シミュレーション結果を表す。 それぞれの図で、実験結果と数値シミュレーション結果がかなりの精度で一致して!/ヽ ることがゎカゝる。
また各段出力パルスの電力半値幅について、理論値、数値シミュレーションにより 得られた計算値、そして実験値をまとめた結果を表 14に示す。
[表 14]
入力および出力パルス幅の理論値、 数値計算値、 実験値
Figure imgf000044_0001
[0192] 表 14から、ほぼ設計どおりにパルス圧縮が行われていることが確認できる。
[0193] 偏波非保持ファイバを用いたパルス成型器では、四段目出力パルスのスペクトルに 関して、図 23に示したように、実験により得られた帯域幅がシミュレーションにより得ら れたそれより小さいことを先に述べた。
ところが、図 28の四段目出力スペクトル波形について、実験結果と数値シミュレーシ ヨン結果がほぼ一致して 、る。
この理由としては、ノ ルス成型器に偏波保持ファイバを用いたことが考えられる。 つまりパルスが成型器を伝搬中、偏波が常に保持されているので、 PMDなど複屈 折による悪影響が発生しな力つたため、計算どおりのパルス伝搬特性が得られたとい うことである。
[0194] よって、偏波保持ファイバを用いたパルス成型器を作製することで、設計どおりの動 作を実現することができ、パルス成型器を製作する際の大きな利点となる。
[0195] 最後に、本実施の形態における光パルス成形器 30を応用した、波形整形器の可 能性、断熱パルス膨張器、放物線自己相似パルス生成器の実現可能性と、正常分 散に属する光ファイバを必要としない分散マネージメント伝搬の可能性とについて述 ベる。
[0196] <波形整形器の可能性 >
上述したように、本実施の形態においては、一周期毎に圧縮される準周期定常パ ルスを用いた断熱圧縮について説明した。具体設計例においても示したように、準周 期定常パルスに完全に一致しな 、光パルスを入射しても、図 16や 19に示した数値 シミュレーション結果や、図 23、 24、 28, 29に示した実験結果とそれをシミュレートす る計算結果のように、複数周期伝搬することで定常パルスに近づいて行くことがわか る。これを利用すると、なんらかの理由で波形が歪んだノ ルスを入射したとき、定常パ ルスに近づいて行くことで、結果的に波形整形が行われる。任意の点で光フィルタな どを用いることによる周波数帯域制御を適用することで、効率のよい波形整形器が実 現でき、波形歪みを伴う光伝送に対して有効である。
[0197] <断熱パルス膨張器の可能性 >
上述したように、本実施の形態においては、一周期毎に圧縮される準周期定常パ ルスを用いた断熱圧縮について説明した。そこでは、オーダー O(l)の摂動を加える 順序として、まず非線形光ファイバ 30a等により非線形効果を与え、次に分散光ファ ィバ 31a等により分散効果を与えるとしてきた。しかし、オーダー O(l)の摂動を加える 順序として、逆に、まず異常分散効果を与え、次に非線形効果を与えるとすると、一 周期毎に光パルスの波形幅が膨張する準周期定常パルスが見つ力ることが予想さ れる。このとき、数式(14)の変数変換における圧縮率 αは 0以上 1未満となる。これを 用いれば、ファイバ損失以外にエネルギー損失の発生が生じない、周期毎に波形幅 が膨張する「断熱パルス膨張器」の作成が可能となる。従来では、主に帯域通過光フ ィルタを用いて、光パルスの波形幅を増大させており、このため、エネルギーの損失 が生じていた。しかし、光パルス出力装置 100を応用した方法によりエネルギー損失 の問題が劇的に改善可能となる。
[0198] <放物線自己相似パルス生成器の可能性 >
さらに、オーダー O(l)の摂動を加える順序として、まず正常分散効果を与え、次に 非線形効果を与えるとすると、放物線パルスが定常解として得られることが予想され る。これは正常分散によって線形アップチヤープが生じたパルス力 非線形効果によ るアップチヤープをさらに加えるような状態で、定常解になり得る波形としては、放物 線が考えられるためである。このとき、数式(14)の変数変換における圧縮率 αはや はり 0以上 1未満となる。圧縮率が 1に近い設計を行ったとき、「長手方向に分散が減 少する正常分散ファイバ中の自己相似放物線パルス伝搬」(T. Hirooka et al.、 " Parabolic pulse generation by use or a dispersion-decreasing nber with normal group-velocity dispersion 、 Optics Letters ^ vol.29、 no.5、 pp.498- 500、 2004)や、そ れと等価である「利得を有する正常分散ファイバ中の自己相似放物線パルス伝搬」( M. E. Fermann et al.、 Self-Similar Propagation ana Amplification of Paraoolic Pulses in Optical Fibers '\ Physical Review Letters ^ vol.84、 no.26、 pp.6010- 6013、 2000)を論じた文献で知られているような、自己相似放物線パルス伝搬現象に漸近 するものと考えられる。
[0199] <正常分散に属する光ファイバを必要としない分散マネージメント伝搬の可能性 > 非線形効果によるアップチヤープを異常分散で補償することにより、分散マネージ メント伝搬が可能になる。なお、光パルスの波形幅は周期毎に圧縮されるため、帯域 制限光フィルタ等で、光パルスの波形幅をもとに戻す必要がある。
[0200] 以上説明したように、本実施の形態の光ノ ルス成形器 30によれば、非線形光ファ ィバ 30a、 30b、 30cの各々に入力する光パルス ul l (t)、 ul2 (t)、 ul3 (t)の波形は 互いに相似となるため、光パルス成形器 30から最終的に出力される光パルスは、光 パルス成形器 30に入力する光パルス波形と略同一のピーク Zペデスタル比の波形 として出力される。このため、光パルス成形器 30から出力される光パルスのパルス波 形に生じ得る劣化 (歪みの発生)が十分に抑制可能となり、非常に高精度な光パルス 列が出力可能となる。
また、本実施の形態の光パルス成形器 30を用いる場合、一周期当たりの圧縮率を 大きくとることができ、従来知られている断熱ソリトン圧縮方式と比較してはるかに効 率の高 、パルス成型が可能となる。
また、第 1光伝搬路ユニット 3aに係る分散値 s、 s及びファイバ長手方向の長さ ζ
1 2 1
、 ζ と、第 1光伝搬路 3aに入力される光パルスのパワーピーク値とが決定されれば、
2
分散光ファイバ 31aの後段に連結される第 2、第 3光伝搬路ユニットに係る分散値及 びファイバ長手方向の長さが一意的に決定できるので、光パルス出力装置 100 (特 に、光パルス成形器 30)の設計が非常に行い易くなる。
また、第 1光伝搬路ユニット 3aの非線形光ファイバ 30aの分散値がゼロ若しくはゼロ 近傍に値を持つような場合には、後段に設けられる第 2、第 3光伝搬路ユニットの各 非線形光ファイバ 30b、 30cの分散値が当該第 1光伝搬路ユニット 3aの非線形光フ アイバ 30aの分散値に略同一(すなわち、ゼロ若しくはゼロ近傍の値)となるので、光 パルス成形器 30の設計が更に容易となる。
[0201] なお、本実施の形態における記述は、本発明に係る光パルス成形器及びその設計 方法の一例を示すものであり、これに限定されるものではない。本実施の形態におけ る光パルス成形器 30の細部構成及び詳細動作等に関しては、本発明の趣旨を逸脱 しな 、範囲で適宜変更可能である。
[0202] 例えば、本実施の形態では、光ファイバの高次分散、高次非線形性、偏波モード 分散等を考慮に入れていないが、数式(1)を変更することにより高次分散、高次非線 形性、偏波モード分散等を考慮に入れることは容易である。特に、圧縮によって波形 幅が小さくなつた光パルスを伝搬させる場合、分散スロープ (3次分散)の影響を第 1 に考えねばならないが、例えば非線形光ファイバと分散光ファイバとで互いに逆の分 散スロープを持つように設計すれば、当該二つの分散スロープによる影響を打ち消 すことが可能となる。
[0203] また、非線形効果を与える媒体としては、非線形光ファイバ 30a、 30b、 30cに限ら ず、「屈折率が電場強度に比例する」ものであれば他の媒体、例えばフォトニック結 晶ファイバやその他の導波路型デバイスであってもよい。また、異常分散を与える媒 体としては、シングルモード分散光ファイバ 3 la、 31b、 31cに限らず、高次モードファ ィノ (S. Ramachandran, Dispersion Management with Higher Order Mode Fibers OECC 2003, paper 15D4- 1, Shanghai, China, October 2003参照)、ファイバブラッグ グレーティング (FBG)や、プリズムを用いた空間系における波長分散媒体等を用い てもよい。
[0204] また、非線形効果がアップチヤープを伴って光スペクトルが拡げられた場合とは逆 に、ダウンチヤープを伴って光スペクトルが拡げられた状態、例えば非線形光フアイ バを通過した後に、任意の非線形媒質 (例えば、光ファイバ)中におけるポンプ光と 光パルスとのパラメトリックプロセスによるアイドラ光が発生する場合を考える。このよう な場合、位相が反転しているため上述の状態となるが、分散を与える媒体 (例えば、 光ファイバ)としては、異常分散媒体ではなぐ正常分散媒体が用いられる。
[0205] また、光パルス成形器 30中の任意の点で、波長変換を行う設計を施すことで、容 易に波長可変な構成をとることができる。
[0206] また、図 13或いは図 14に示す構成を持つ光パルス成形器 30は、少なくとも一周期 分の伝搬路 (第 1光伝搬路ユニット 3a等)力も構成されるが、この一周期分の伝搬路 の後段には、他の異なる準周期定常パルスが得られるような伝搬路をニ周期目以降 に連結させてもよい。例えば、一周期目は圧縮率 α = 1.5の構成で、二周期目は圧 縮率 α = 2の構成としてもよい。
[0207] また、入力光パルスのパラメータは数値的に得られる準周期定常パルスに近いもの が好ましぐまた光伝搬路 (第 1光伝搬路ユニット 3a、 3b, 3c)も図 13或いは図 14に 示す分散マップに基づ 、て設計されるのが好まし 、が、何れの場合にぉ 、てもパラメ ータのズレについてはマージンが大きいため、厳密に設計されてなくても光パルス出 力装置 100が実現可能である。
[0208] また、実際に光パルス成形器 30を作る際に、入力光パルスを準周期定常パルスに 近づける方法を以下に述べる。大きく分けて二つのアプローチが考えられ、一つはパ ルス強度を準周期定常パルスに近づけること、もう一つはチヤ一プを準周期定常パ ルスに近づけることである。前者に関しては、ピークパワーや時間幅、もしくはぺデス タルの形が準周期定常パルスのそれに近づくよう、光増幅器の出力を調整したり、あ るいは強度変調器や、光パルス成形器 30を別に用いたりすることで、調整すればよ い。特に、例えば圧縮率を大きく設定するときはガウス関数の形に、逆に小さく設定 するときは、 sech関数の形に調整することも加えることで、本発明をより効率的に実施 することが可能になる。一方後者に関しては、パルス中心付近でダウンチヤープとな る非線形チヤープを加えるために、例えば位相変調器を用いて所望の形に近いチヤ ープを与えたり、あるいは光パルスを異常分散媒質中で伝搬させ、線形ダウンチヤ一 プを与えることで所望のチヤープを近似したりすることが考えられ、これによつてやは り本発明を効率的に実施することが可能になる。
[0209] 本発明により作製されたパルス成型器を含むパルス光源において、種光となる光パ ルスを生成する手段は、前に述べたビート光発生による方法以外には、単一レーザ 一より出力された連続光に対して LN型もしくは電界吸収型等の外部変調器を用 、て 強度変調を行うことでパルスを発生する方法、あるいは直接変調型 DFBレーザーに 対して正弦波電気信号を加え、利得スイッチング動作によってパルスを発生させる方 法、あるいは何らかの共振器構造を有する、ファイバリング型もしくは半導体共振器 型などのモードロックレーザー力 パルスを発生する方法などが考えられる。
[0210] 本発明により作製されたノ ルス成型器から出力される光ノ《ルスの応用事例として、 光通信における信号源やクロック光等の用途の他には、電力半値幅がフェムト秒ォ ーダ一の超短パルスを用いたレーザー加工や、超広帯域性を用いた高精度計測、 例えば光サンプリングオシロスコープゃ光コヒーレンストモグラフィー(OCT)などがあ る。
[0211] 図 30に本発明による光パルス出力装置を用いたレーザー加工機の模式図を示す。
本発明の短パルス出力装置 (パルス光源)より出力された光パルスは、光増幅器によ つて高パワーに増幅され、レンズ等の空間出力器を経て被加工物に照射される。被 加工物に照射された短パルス光は、二光子吸収過程などのプロセスによって、加工 が実現される。
[0212] 図 31に本発明による光パルス出力装置を用いた高精度計測器としての光サンプリ ングオシロスコープの模式図を示す。本発明の短パルス出力装置 (パルス光源)より 出力された光パルスは、被測定信号とともに光信号処理器に入力される。光信号処 理器では、例えば力ブラによって光パルスと被測定信号を合波し、光ファイバ中の非 線形効果によって二つの光波の論理和をとり、得られた光の強度を電気信号として 出力し、これを時間軸で周期的に繰り返すことで光サンプリングが可能となる。
[0213] 図 32に本発明による光パルス出力装置を用いた高精度計測器としての光コヒーレ ンストモグラフィーの模式図を示す。制御機器によって出力時間が制御された本発明 の短パルス出力装置 (パルス光源)より出力された光パルスは、力ブラによって二分 岐され、一方がレンズ等の空間出力器を経て被測定物に照射される。被測定物から の反射光はレンズ等の空間入力器を経て、分岐されたもう一方の光パルスとともに干 渉計に入力される。干渉計の出力は制御機器によって制御された信号処理器に入 力される。信号処理器では、干渉計の出力信号に対してアナログ デジタル変換を 行い、デジタル化された信号を解析することで、被測定物の断層情報が得られる。

Claims

請求の範囲
[1] 非線形媒質と分散媒質とが連結された第 1の光伝搬路ユニットを備えた光パルス成 形器の設計方法であって、
前記第 1の光伝搬路ユニットの設計仕様を特定するステップと、
前記特定した設計仕様に基づいて、前記第 1の光伝搬路ユニットに対する入力光 パルス及び出力光パルスの各波形が互いに相似となる準周期定常パルスを算出す るステップと
を含むことを特徴とする光パルス成形器の設計方法。
[2] 前記第 1の光伝搬路ユニットの後段に第 2番目以降の光伝搬路ユニットがー又は複 数直列に連結されて成ることを特徴とする請求項 1に記載の光パルス成形器の設計 方法。
[3] 前記算出した準周期定常パルスに基づいて、前記第 2番目以降の光伝送路ユニット の設計仕様を特定するステップを更に含むことを特徴とする請求項 2に記載の光パ ルス成形器の設計方法。
[4] 前記設計仕様は、少なくとも、前記各光伝搬路ユニットの非線形媒質及び分散媒質 の各々が有する非線形係数、分散値及び光伝搬方向の長さと、前記入力光パルス のパワーピークとを含むことを特徴とする請求項 1一 3のうち何れか一項に記載の光 パルス成形器の設計方法。
[5] 前記第 1の光伝搬路ユニットの設計仕様に含まれる非線形媒質、分散媒質の各一般 化分散値を s、 sとし、当該非線形媒質、分散媒質が各々有する各光伝搬方向の規
1 2
格化長さを K、 Lとすると、 sは異常分散に属する値であると共に下記条件式を満た
1 1 2
し、且つ、 K、 の各値は下記条件式を満たすことを特徴とする請求項 4に記載の 光パルス成形器の設計方法。
0≤ I s I < < K < s
1 2
L < <K
I s I ; sの絶対値
[6] 前記複数の光伝搬路ユニットのうち前記第 1の光伝搬ユニットから数えて第 n番目(n は 2以上の自然数)に連結された光伝搬路ユニットの設計仕様に含まれる非線形媒 質、分散媒質の各一般化分散値を s
In、 s
2nとし、当該非線形媒質、分散媒質が各々 有する各光伝搬方向の長さを Κ、 Lとすると、 s は異常分散に属する値であると共
η η 2η
に下記条件式を満たし、且つ、 L、 Κの各値は下記条件式を満たすことを特徴とす る請求項 5に記載の光パルス成形器の設計方法。
/ η-1
s =s / a
In 1
/ n-1
s =s / a
2n 2
Κη=Κ /αη_1
L =L Z
a;圧縮率
[7] 前記複数の光伝搬路ユニットのうち前記第 1の光伝搬ユニットから数えて第 n番目(n は 2以上の自然数)に連結された光伝搬路ユニットの設計仕様に含まれる非線形媒 質、分散媒質の各一般化分散値を s
In、 s
2nとし、当該非線形媒質、分散媒質が各々 有する各光伝搬方向の長さを Κ、 Lとすると、 s は異常分散に属する値であると共
η η 2η
に下記条件式を満たし、且つ、 L、 Κの各値は下記条件式を満たすことを特徴とす る請求項 5に記載の光パルス成形器の設計方法。
/ n-1
s =s / a
In 1
s =s
2n 2
Κη=Κ Ζαη1
T T / 2 (n-1)
し =し Z a
a;圧縮率
[8] 前記入力光パルスは、準周期定常パルスに近い波形を有する光パルスであることを 特徴とする請求項 1一 7のうち何れか一項に記載の光パルス成形器の設計方法。
[9] 前記非線形媒質に係る非線形係数、損失係数を、それぞれ V、 δとすると、該非線 形媒質は、 V、 δが下記条件式を満たす高非線形媒質であることを特徴とする請求 項 1一 8のうち何れか一項に記載の光パルス成形器の設計方法。
z=-(l/26)ln(l-(26/a 2ν) ζ )
ο
Ζ;光パルス成形器内における非線形媒質の光伝搬路方向の長さの総計を実距離で 表現したもの ζ;光パルス成形器内における非線形媒質の光伝搬路方向の長さの総計を無次元 量の規格ィ匕距離で表現したもの
a;非線形媒質が有する光パルスの入力端のパワー減衰係数
0
In;自然対数
[10] 前記非線形媒質に高非線形光ファイバを用い、前記分散媒質にシングルモード光フ アイバを用いることを特徴とする請求項 1一 9のうち何れか一項に記載の光パルス成 形器の設計方法。
[11] 請求項 1一 10のうち何れか一項に記載の設計方法に基づいて設計されたことを特徴 とする光パルス成形器。
[12] 一段あたりで生じるノ ルスのピーク非線形位相シフト量が 0(1)であることを特徴とする
、請求項 11に記載のパルス成型器。
[13] 非線形媒質または分散媒質の伝搬損失や、異媒質どうしの接続損失を含む、各種 媒質の接続損失を考慮して非線形媒質の長さを設定したことを特徴とする、請求項 1
1に記載のパルス成型器。
[14] 非線形媒質または分散媒質の伝搬損失や、異媒質どうしの接続損失を含む、各種 媒質の接続損失によって失われた光パワーを補償するために、任意の箇所に光増 幅器が挿入されて ヽることを特徴とする、請求項 11に記載のパルス成型器。
[15] パルス光源、光増幅器、狭帯域帯域通過フィルタが順次連結されて、入力光の雑音 を低減することを特徴とする、請求項 11に記載のパルス成型器。
[16] DFBレーザーダイオード、光増幅器、狭帯域帯域通過フィルタが順次連結された 2つ の部材によってビート光を発生し、前記ビート光が入力されることを特徴とする、請求 項 11に記載のパルス成型器。
[17] 偏波保持ファイバを用いることを特徴とする、請求項 11に記載のパルス成型器。
[18] 前記非線形媒質としてフォトニック結晶ファイバを用いることを特徴とする、請求項 11 力も 17の何れか 1項に記載のパルス成型器。
[19] 前記分散媒質としてファイバブラッググレーティングを用いることを特徴とする、請求 項 11から 17の何れ力 1項に記載のパルス成型器。
[20] 分散媒質として高次モードファイバを用いることを特徴とする、請求項 11から 17の何 れカ 1項に記載のパルス成型器。
[21] 請求項 11から 20の何れか 1項に記載のパルス成型器を含むことを特徴とするパルス 出力装置
[22] 請求項 11から 20の何れか 1項に記載のパルス成型器を含むことを特徴とするレーザ 一加工器。
[23] 請求項 11から 20の何れか 1項に記載のパルス成型器を含むことを特徴とする計測
[24] 請求項 11から 20の何れか 1項に記載のパルス成型器を含むことを特徴とする光サン プリングオシロスコープ。
PCT/JP2005/004837 2004-03-19 2005-03-17 光パルス成形器の設計方法及び光パルス成形器 WO2005091065A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/593,340 US7483608B2 (en) 2004-03-19 2005-03-17 Method of designing optical pulse shaping device and optical pulse shaping device
EP05721024A EP1744207A4 (en) 2004-03-19 2005-03-17 METHOD FOR THE DESIGN OF A DEVICE FOR FORMING OPTICAL IMPULSES AND DEVICE FOR FORMING OPTICAL IMPULSES
JP2006511228A JP4897958B2 (ja) 2004-03-19 2005-03-17 光パルス成形器の設計方法及び光パルス成形器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004081396 2004-03-19
JP2004-081396 2004-03-19

Publications (1)

Publication Number Publication Date
WO2005091065A1 true WO2005091065A1 (ja) 2005-09-29

Family

ID=34993863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004837 WO2005091065A1 (ja) 2004-03-19 2005-03-17 光パルス成形器の設計方法及び光パルス成形器

Country Status (4)

Country Link
US (1) US7483608B2 (ja)
EP (1) EP1744207A4 (ja)
JP (1) JP4897958B2 (ja)
WO (1) WO2005091065A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163579A (ja) * 2005-12-09 2007-06-28 Furukawa Electric Co Ltd:The 光圧縮器および極短パルス光源
WO2007111367A1 (ja) * 2006-03-29 2007-10-04 The Furukawa Electric Co., Ltd. 光パルス列発生器
JP2008002815A (ja) * 2006-06-20 2008-01-10 Univ Nagoya 波長変化パルス光発生装置およびこれを用いた光断層計測装置
JP2009180812A (ja) * 2008-01-29 2009-08-13 Canon Inc 光パルス圧縮器
JP2012159546A (ja) * 2011-01-28 2012-08-23 Tokyo Univ Of Agriculture & Technology 光パルス圧縮装置および光パルス圧縮方法
JP2016065871A (ja) * 2010-01-22 2016-04-28 ニューポート コーポレーション 広範に同調可能な光パラメトリック発振器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2154566B1 (en) * 2007-04-11 2017-03-01 Furukawa Electric Co., Ltd. Optical pulse shaper, optical pulse light source, super continuum light generator and super continuum light generating method
EP2175315A1 (en) * 2007-08-10 2010-04-14 Fujitsu Limited Method and device for shaping optical waveform
WO2010011389A2 (en) * 2008-05-01 2010-01-28 Massachusetts Institute Of Technology Optimized cascaded raman fiber-based laser source for high efficiency mid-infrared spectral generation
US8275263B1 (en) * 2009-06-26 2012-09-25 The Boeing Company Multiplication of phase deviations
US8451528B1 (en) 2012-09-13 2013-05-28 Ram Photonics, LLC Method and apparatus for generation of coherent frequency combs
US8447155B1 (en) 2012-09-13 2013-05-21 Ram Photonics, LLC Methods and apparatus for power-equalized optical frequency comb generation
US10411810B2 (en) 2016-07-04 2019-09-10 The Regents Of The University Of California Receiver with mutually coherent optical frequency combs
US10523329B2 (en) 2016-11-07 2019-12-31 The Regents Of The University Of California Comb-assisted cyclostationary analysis
WO2018089997A1 (en) * 2016-11-14 2018-05-17 Regents Of The University Of Colorado, A Body Corporate Compact diode laser source
WO2018129558A1 (en) 2017-01-09 2018-07-12 Media Overkill, LLC Multi-source switched sequence oscillator waveform compositing system
US11212011B2 (en) 2017-07-07 2021-12-28 The Regents Of The University Of California System and method for receiver sensitivity improvement
US10897115B2 (en) * 2017-09-30 2021-01-19 University Of Rochester Systems and methods for spatiotemporal control of a laser and applications of same
CN112513701B (zh) * 2018-07-25 2023-06-20 康宁股份有限公司 包括用于实现局域化量子游走的波导阵列的通信系统
US11137538B2 (en) 2019-10-08 2021-10-05 Corning Incorporated Multicore ring fibers and quantum systems comprising such fibers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347228A (ja) 1999-03-29 2000-12-15 Furukawa Electric Co Ltd:The 光ファイバ中での四光子混合方法およびそれを用いた短パルス発生装置
JP2002229080A (ja) 2001-01-30 2002-08-14 Furukawa Electric Co Ltd:The 光パルス波形変換器、それを備えた光パルス光源

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4057291B2 (ja) * 2001-01-30 2008-03-05 古河電気工業株式会社 光パルス発生器
AU2003284429A1 (en) * 2002-11-21 2004-06-18 The Furukawa Electric Co., Ltd. Light source in optical transmission system, waveform shaper, optical pulse train generator, and optical reproduction system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000347228A (ja) 1999-03-29 2000-12-15 Furukawa Electric Co Ltd:The 光ファイバ中での四光子混合方法およびそれを用いた短パルス発生装置
JP2002229080A (ja) 2001-01-30 2002-08-14 Furukawa Electric Co Ltd:The 光パルス波形変換器、それを備えた光パルス光源

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GUY M.J. ET AL: "A novel optical pulse compressor with use of a comb-like dispersion profield fiber.", CLEO'97., pages 178, XP010233088 *
INOUE T. ET AL: "Stationary Rescaled Pulse Denpan ni Motozuku Comb-like Profiled Fiber Sekkei to Pulse Asshuku Jikken.", DENSHI JOHO TSUSHIN GAKKAI KOEN RONBUNSHU, ELECTRONICS., 7 March 2005 (2005-03-07), pages 338, XP008110656 *
MARUTA ET AL.: "Effectiveness of densely dispersion managed solitons in ultra-high speed transmission", ELECTRONICS LETTERS, vol. 36, no. 23, 9 November 2000 (2000-11-09), XP006015924, DOI: doi:10.1049/el:20001370
S.V. CHERNIKOV ET AL.: "Comblike dispersion-profiled fiber for soliton pulse train generation", OPTICAL LETTERS, vol. 19, no. 8, 1994, pages 539 - 541, XP000440029
S.V. CHERNIKOV ET AL.: "Integrated all optical fiber source of multigigahertz soliton pulse train", ELECTRONICS LETTERS, vol. 29, 1993, pages 1788
See also references of EP1744207A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163579A (ja) * 2005-12-09 2007-06-28 Furukawa Electric Co Ltd:The 光圧縮器および極短パルス光源
EP1962135A1 (en) * 2005-12-09 2008-08-27 The Furukawa Electric Co., Ltd. Optical compressor and ultra-short pulse light source
EP1962135A4 (en) * 2005-12-09 2010-09-29 Furukawa Electric Co Ltd OPTICAL COMPRESSOR AND ULTRA-SHORT-PULSE LIGHT SOURCE
WO2007111367A1 (ja) * 2006-03-29 2007-10-04 The Furukawa Electric Co., Ltd. 光パルス列発生器
JP2007293256A (ja) * 2006-03-29 2007-11-08 Furukawa Electric Co Ltd:The 光パルス列発生器
US8023537B2 (en) 2006-03-29 2011-09-20 The Furukawa Electric Co., Ltd. Optical pulse train generator
JP2008002815A (ja) * 2006-06-20 2008-01-10 Univ Nagoya 波長変化パルス光発生装置およびこれを用いた光断層計測装置
JP2009180812A (ja) * 2008-01-29 2009-08-13 Canon Inc 光パルス圧縮器
JP2016065871A (ja) * 2010-01-22 2016-04-28 ニューポート コーポレーション 広範に同調可能な光パラメトリック発振器
JP2012159546A (ja) * 2011-01-28 2012-08-23 Tokyo Univ Of Agriculture & Technology 光パルス圧縮装置および光パルス圧縮方法

Also Published As

Publication number Publication date
EP1744207A4 (en) 2008-12-24
EP1744207A1 (en) 2007-01-17
US7483608B2 (en) 2009-01-27
JPWO2005091065A1 (ja) 2008-02-07
JP4897958B2 (ja) 2012-03-14
US20070280613A1 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
WO2005091065A1 (ja) 光パルス成形器の設計方法及び光パルス成形器
US6775447B2 (en) All fiber low noise supercontinuum source
EP2082463B1 (en) A system and method for producing optical pulses of a desired wavelength using cherenkov radiation in higher-order mode fibers
JP4459547B2 (ja) 光パルス圧縮器および光関数発生器、光パルス圧縮方法および光関数発生方法
EP2003746B1 (en) Optical pulse string generator
JP5193188B2 (ja) 光パルス成型器、光パルス光源、スーパーコンティニューム光発生装置及びスーパーコンティニューム光発生方法
EP0998067A2 (en) Article comprising an optical pulse compressor
Azaña et al. Optical time-mapped spectrograms (I): From the time-lens Fourier transformer to the Talbot-based design
JP4558565B2 (ja) 光波形成形器及び該光波形成形器を用いた光信号発生器
Takayanagi et al. Generation of pedestal-free 22-fs ultrashort pulse using highly nonlinear fiber and reverse-dispersion fiber
JP3478985B2 (ja) 光パルス圧縮器
Inoue et al. Generation of 80-nm wavelength-tunable 100-fs pulse based on comblike profiled fiber comprised of HNLF and zero dispersion-slope NZDSF
Mohamed et al. Comparison between different chromatic dispersion compensation schemes in high bit rate communication systems with important non linear effects
Gilles Cross-phase modulation effects in normal dispersive fibers and their applications
Kaushal et al. Arbitrary dispersion compensation of periodic waveforms using on-chip discrete phase filters
Garcia et al. Effects of pump pulse temporal structure on long-pulse multi-order stimulated Raman scattering in optical fiber
JP2022189501A (ja) パルス光整形器およびパルス光発生器
Igarashi et al. A highly nonlinear fiber module and its application to the generation of ultra-high repetition-rate sub-picosecond optical pulse trains
JPH11160744A (ja) コヒーレント広帯域光源
Kbashi et al. Simulation of short Laser Pulses Propagation Optical Fiber
Palací et al. Terahertz radiation shaping based on third-order dispersion and self-phase modulation in standard single-mode optical fiber
de Dios et al. Comparative study of nonlinear optical loop mirror using gain switching diode lasers
Junnarkar et al. Computer simulation of ultra-short optical pulse propagation in solid and hollow wave-guides
Dorrer et al. Highly sensitive direct femtosecond pulse measurements using electrooptic spectral shearing interferometry
Kaur et al. Effect of Different Scattaring Technique on Higher Order Soliton

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511228

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005721024

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005721024

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10593340

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10593340

Country of ref document: US