WO2005088884A1 - データ送信方法及びデータ受信方法 - Google Patents

データ送信方法及びデータ受信方法 Download PDF

Info

Publication number
WO2005088884A1
WO2005088884A1 PCT/JP2005/004110 JP2005004110W WO2005088884A1 WO 2005088884 A1 WO2005088884 A1 WO 2005088884A1 JP 2005004110 W JP2005004110 W JP 2005004110W WO 2005088884 A1 WO2005088884 A1 WO 2005088884A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
data
symbol
antennas
receiving
Prior art date
Application number
PCT/JP2005/004110
Other languages
English (en)
French (fr)
Inventor
Naganori Shirakata
Yasuo Harada
Koichiro Tanaka
Tomohiro Kimura
Shuya Hosokawa
Yoshio Urabe
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006510960A priority Critical patent/JPWO2005088884A1/ja
Priority to US10/573,044 priority patent/US7702027B2/en
Priority to CN200580001359XA priority patent/CN1898890B/zh
Priority to EP05720381A priority patent/EP1724957A1/en
Publication of WO2005088884A1 publication Critical patent/WO2005088884A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain

Definitions

  • the present invention relates to a data transmission method for transmitting a plurality of data sequences from a plurality of transmission antennas using a MIMO-OFDM scheme, and a data reception method for receiving a plurality of data sequences with a plurality of reception antennas. More specifically, the present invention relates to a data transmission method and a data reception method capable of improving the estimation accuracy of the inverse propagation coefficient function and suppressing the characteristic degradation even when a different frequency error exists for each transmission path.
  • MIMO-OFDM Multi Input Multi Output Urthogonal Frequency Division Multiplexing
  • the OFDM method which is a type of multicarrier transmission
  • a modulation method which is resistant to frequency-selective faging that occurs in a multipath environment.
  • a MIMO channel is configured using multiple transmit antennas and multiple receive antennas, and multiplex communication is performed through multiple paths by spatial division between transmission and reception (hereinafter, MIMO channel).
  • MIMO channel spatial division between transmission and reception
  • the MIMO-OFDM scheme combines the OFDM scheme that is resistant to multipath and the MIMO scheme that improves frequency use efficiency.
  • a transmission apparatus to which the conventional MIMO-OFDM scheme is applied hereinafter, referred to as a conventional transmission apparatus
  • FIG. 18 is a block diagram illustrating an example of a configuration of a conventional transmission device.
  • the conventional transmission apparatus shows a transmission apparatus having two transmission antennas and two reception antennas (ie, a 2 ⁇ 2 MIMO-OFDM transmission apparatus).
  • a conventional transmission device includes a transmission device and a reception device.
  • the transmitting device includes a preamble generator 901, data demodulators 902 and 903, multiplexers 904 and 9 05, including quadrature modulators 906 and 907, local oscillator 908, and transmitting antennas TXI and TX2.
  • the receiving device consists of receiving antennas RX1 and RX2, local oscillator 909, quadrature demodulators 9 and 911, frequency error estimators 912 and 913, averaging unit 914, frequency correction units 915 and 916, propagation inverse function estimator 917, and data. It has demodulation units 918 and 919.
  • preamble generation section 901 generates preamble Ssync for synchronization and preamble Sref for propagation coefficient estimation.
  • Data modulation section 902 performs OFDM modulation on data to be transmitted by transmitting antenna TX 1 (hereinafter, referred to as data sequence 1), and outputs data symbol sequence 1.
  • Data modulation section 903 performs OFDM modulation on data to be transmitted from transmission antenna TX2 (hereinafter, referred to as data sequence 2), and outputs data symbol sequence 2.
  • the multiplexer 904 generates a transmission frame 1 by time-division multiplexing the data symbol sequence 1, the synchronization preamble Ssync, and the transmission coefficient estimation preamble Sref.
  • the multiplexer 905 generates a transmission frame 2 by time-division multiplexing the data symbol sequence 2, the synchronization preamble Ssync, and the propagation coefficient estimation preamble Sref.
  • FIG. 19 is a diagram illustrating an example of a transmission frame used in a conventional transmission device. In FIG. 19, the transmission frame has a synchronization preamble Ssync and a propagation coefficient estimation preamble Sref inserted before the data symbol sequence.
  • Transmission frame 1 is converted into a radio signal by quadrature modulator 906 and local oscillator 908.
  • the transmission frame 2 is converted into a radio signal by the quadrature modulator 907 and the local oscillator 908.
  • the transmission frame 1 and the transmission frame 2 converted into the radio signals are simultaneously transmitted from the transmission antenna TXI and the transmission antenna TX2.
  • Radio signals transmitted from a plurality of transmitting antennas TXi are received by a plurality of receiving antennas RXj via different nodes.
  • i represents the transmitting antenna number
  • j represents the receiving antenna number.
  • the conventional transmission device has p (l, l), p (l, 2), p (2, 1), and will have the four transmission paths (2, 2).
  • the propagation coefficient of the transmission path p (i, j) is h (i, j) and the transmission signal transmitted by the transmission antenna TXi is Ti
  • the reception signal Rj received by the reception antenna RXj is expressed by the following equation (1).
  • Rl h (l, l) Tl + h (2, 1) ⁇ 2
  • received signal Rl is converted by local oscillator 909 and quadrature demodulation section 910 into a frequency band that is optimal for subsequent processing.
  • Frequency error estimating section 912 estimates a frequency error (hereinafter, referred to as frequency error 1) included in received signal R1 based on synchronization preamble Ssync.
  • the received signal R2 is converted by the local oscillator 909 and the quadrature demodulation unit 911 into a frequency band optimal for subsequent processing.
  • Frequency error estimation section 913 estimates a frequency error (hereinafter, referred to as frequency error 2) included in received signal R2 based on synchronization preamble Ssync.
  • Frequency error 1 and frequency error 2 are averaged in averaging section 914.
  • Frequency correcting section 915 corrects the frequency of received signal R1 based on the frequency error averaged by averaging section 914.
  • Frequency correction section 916 corrects the frequency of received signal R2 based on the frequency error averaged by averaging section 914.
  • the received signals Rl and R2 whose frequencies have been corrected are input to the propagation inverse function estimator 917.
  • the inverse propagation function estimator 917 estimates the inverse function of the propagation coefficient h (i, j) based on the propagation coefficient estimation preamble Sref included in the received signal R1 and the received signal R2, and calculates the estimated inverse function.
  • the multiplexed transmission signal T1 and the multiplexed transmission signal T2 are separated based on the multiplexed transmission signal.
  • Data demodulation section 918 performs OFDM demodulation on separated transmission signal T1, and outputs data sequence 1.
  • data demodulation section 919 performs OFDM demodulation on separated transmission signal T2, and outputs data sequence 2.
  • the conventional transmission apparatus estimates the frequency error based on the same synchronization preamble Ssync transmitted from a plurality of transmission antennas.
  • the frequency error for each reception antenna is estimated.
  • the frequency error for each transmission path could not be estimated.
  • the frequency errors for each transmission path are different from each other because the propagation coefficients are uncorrelated with each other and there are different Doppler frequency shifts due to multipath fading.
  • the frequency error generated for each transmission path due to spatial multiplexing is added, and the accuracy of the estimation and equalization of the inverse propagation coefficient function is reduced. There is a problem that the characteristics are deteriorated and the characteristics are deteriorated.
  • an object of the present invention is to provide a transmitting apparatus that transmits a plurality of data sequences from a plurality of transmitting antennas using the MIMO-OFDM scheme, and that a plurality of data sequences are received by a plurality of receiving antennas. It is an object of the present invention to provide a data transmission method and a data reception method that can improve the estimation accuracy of the inverse propagation coefficient function and suppress the characteristic deterioration even when a receiving apparatus has a different frequency error for each transmission path.
  • the present invention is directed to a data transmission method in which a transmitting apparatus transmits a plurality of data sequences from a plurality of transmitting antennas to a plurality of receiving antennas using the MIMO-OFDM scheme.
  • a data transmission method comprises: transmitting a synchronization symbol in which a predetermined amplitude and phase are assigned to a plurality of subcarriers having a predetermined frequency interval orthogonal to each other;
  • the method includes a step of generating a plurality of synchronization sub-symbols by dividing each synchronization sub-symbol and a step of converting the plurality of synchronization sub-symbols into radio signals and transmitting the radio signals simultaneously from a plurality of transmission antennas.
  • the data transmission method includes a step of modulating a plurality of transmission data to be transmitted from a plurality of transmission antennas into a plurality of data symbol sequences, and a method of transmitting a plurality of transmission data between the transmission antenna and the reception antenna.
  • the transmitting includes multiplexing a data symbol sequence, a synchronization sub-symbol, and a propagation coefficient estimation symbol into a transmission frame for each of a plurality of transmission antennas, and transmitting a transmission frame multiplexed for each of a plurality of transmission antennas.
  • the step of modulating the data symbol sequence includes the step of assigning an amplitude and a phase based on transmission data to a predetermined subcarrier among a plurality of subcarriers, so that the subcarrier is a data carrier.
  • Generating a pilot carrier by allocating a known phase and amplitude to each of the subcarriers, orthogonally multiplexing the data carrier and the pilot carrier into a plurality of data symbols, and generating a plurality of orthogonally multiplexed data symbols. Outputting as a data symbol sequence.
  • the step of generating a pilot carrier includes allocating a known phase and amplitude as a pilot carrier to only one of data symbols transmitted simultaneously from a plurality of transmitting antennas, and other data transmitted simultaneously.
  • a magnitude 0 amplitude is assigned to the symbol as a pilot carrier.
  • the transmitting step uses one common transmission local oscillator for each transmission antenna or a plurality of different transmission local oscillators for each transmission antenna in order to synchronize the plurality of transmission antennas.
  • the present invention provides a data reception method in which a receiving apparatus receives a plurality of data sequences transmitted from a plurality of transmitting antennas using a MIMO-OFDM scheme via a plurality of receiving antennas. It is also directed to the method.
  • the data receiving method of the present invention comprises the steps of: receiving a plurality of data sequences for each receiving antenna; and synchronizing the received data sequences for each receiving antenna. Based on the step of demodulating the received signal, the received signal demodulated for each receiving antenna, and the synchronization sub-symbol included in the received signal, the characteristics of multiple transmission paths between the transmitting antenna and the receiving antenna are shown in the transmission path. Estimating each time.
  • the plurality of data sequences include synchronization sub-symbols generated by dividing a synchronization symbol having a plurality of orthogonal sub-carrier powers into a plurality of transmission antennas.
  • the step of estimating the characteristics for each transmission path includes the step of correlating a reception signal demodulated for each reception antenna with a synchronization sub-symbol included in the reception signal, and a frequency error generated for each transmission path. And estimating. Further, the data receiving method further includes, after the step of estimating the characteristics for each transmission path, a step of correcting the frequency of the received signal based on the estimated frequency error.
  • the step of correcting the frequency of the reception signal is a step of calculating a frequency correction value for correcting the reception signal for each reception antenna by weighting and averaging the frequency error generated for each estimated transmission path. And a step of correcting the frequency of the received signal for each receiving antenna based on the calculated frequency correction value and outputting the corrected signal as a frequency-corrected received signal.
  • the step of estimating the frequency error includes the steps of:
  • the reception symbol timing can be generated based on the weighted average of the peak timing of the correlation value with the bol.
  • the received signal is transmitted as a symbol for estimating an inverse function of a propagation coefficient of a plurality of transmission paths between the transmitting antenna and the receiving antenna so as to be orthogonal to each other for each transmitting antenna.
  • the data receiving method uses a plurality of transmission paths based on the propagation coefficient estimating symbols included in the frequency-corrected received signal.
  • the method further includes the step of estimating the inverse function of the propagation coefficient for each time, and separating the signals transmitted by the plurality of transmitting antennas based on the estimated inverse function.
  • the received signal demodulated for each receiving antenna in the demodulating step and the synchronization sub-signal included in the received signal Estimating the frequency error included in the demodulated received signal for each receiving antenna from the correlation between the symbol power and the synthesized synchronization symbol, and averaging the estimated frequency errors by weighting and averaging a plurality of received signals. And a second correction step of correcting the frequencies of the plurality of received signals based on the calculated average frequency correction value.
  • the receiving step includes the steps of receiving signals transmitted from a plurality of transmitting antennas using more receiving antennas than a plurality of data sequences;
  • the method may include a step of determining a reception level, and a step of selecting or combining signals received by a large number of reception antennas according to the determined reception level.
  • the demodulation step uses one common receiving local oscillator for each receiving antenna or a plurality of different receiving local oscillators for each receiving antenna in order to synchronize the plurality of receiving antennas.
  • the phase and the amplitude of a plurality of subcarriers included in the received signal are determined based on synchronization subsymbols included in the received signal demodulated for each receiving antenna.
  • the method may include a step of estimating a coarse frequency characteristic for each transmission path by complementing in the frequency direction.
  • a step of estimating characteristics for each transmission path is estimated, and based on the estimated coarse frequency characteristics of each transmission path, a plurality of received signal powers are also obtained. And separating the signals transmitted by the transmitting antennas.
  • a transmission apparatus of the present invention includes a plurality of synchronization sub-symbol generation units, a plurality of modulation units, and a plurality of transmission antennas.
  • the plurality of synchronization sub-symbol generation units divide a synchronization symbol, in which a predetermined amplitude and phase are assigned to a plurality of sub-carriers having a predetermined frequency spacing force, for each of a plurality of transmission antennas, so that a plurality of transmission sub-carriers are generated. Generate synchronization sub-symbols orthogonal to each other.
  • the plurality of modulators modulate the plurality of synchronization sub-symbols for each of a plurality of transmission antennas. Multiple transmitting antennas simultaneously transmit signals modulated by multiple modulators
  • the present invention is also directed to a receiving apparatus that receives a plurality of data sequences transmitted from a plurality of transmitting antennas using a MIMO-OFDM scheme via a plurality of receiving antennas.
  • a receiving apparatus includes a plurality of receiving antennas, a plurality of demodulating sections, a plurality of synchronous subsymbol correlating sections, and a plurality of frequency correcting sections.
  • the multiple receiving antennas receive multiple data sequences.
  • the plurality of demodulation units demodulate the data sequence received by the plurality of receiving antennas in synchronization with each receiving antenna.
  • the plurality of synchronization sub-symbol correlation units estimate a frequency error included in the reception signal for each transmission path from a correlation between the reception signal demodulated for each reception antenna and the synchronization sub-symbol included in the reception signal.
  • the plurality of frequency correction units correct the frequency of the received signal for each of the plurality of receiving antennas based on the estimated frequency error.
  • the plurality of data sequences include a synchronization subsymbol generated by dividing a synchronization symbol including a plurality of subcarriers orthogonal to each other for each of a plurality of transmission antennas.
  • a transmitting apparatus transmits a synchronization symbol, in which a predetermined amplitude and phase are assigned to a plurality of subcarriers having a predetermined frequency interval, to a plurality of transmission antennas.
  • a plurality of synchronization sub-symbols orthogonal to each other can be transmitted simultaneously by a plurality of transmission antennas.
  • the receiving apparatus can estimate a carrier frequency error and a propagation delay that occur for each transmission path by obtaining a correlation between the synchronization sub symbol included in the received signal and the received signal.
  • the transmission apparatus can improve the accuracy of estimating the inverse transmission coefficient function by correcting the received signal by weighting and averaging these estimated errors for each receiving antenna.
  • the receiving apparatus can estimate an average frequency error for a plurality of receiving antennas from a correlation operation between a received signal received for each receiving antenna and a synchronization symbol Sysnc. Accordingly, the transmission apparatus can cancel the frequency error of the local oscillator between transmission and reception, and can perform the synchronization sub-symbol correlation calculation at the subsequent stage more accurately.
  • the receiving apparatus can estimate coarseness and frequency characteristics of each transmission path in advance using the synchronization subsymbols. This allows the transmission apparatus to improve the estimation accuracy of the inverse propagation coefficient function.
  • the reception apparatus can perform the correlation of the synchronization subsymbol by the reception diversity effect by selecting or combining a plurality of reception antennas. Can be determined accurately. Accordingly, the transmission apparatus can correct the carrier frequency error for each transmission path more accurately, and can improve the estimation accuracy of the inverse propagation coefficient function.
  • the transmitting apparatus can generate a pilot carrier in a data symbol by assigning a known phase and amplitude to a predetermined subcarrier by the data modulation unit.
  • the receiving apparatus estimates the residual error for each transmission path using the pilot carrier of the data symbol and corrects the propagation coefficient to correct the propagation coefficient.
  • the accuracy of estimating the coefficient inverse function can be improved.
  • the transmitting apparatus assigns pilot carriers sequentially to all subcarriers, thereby reducing the probability that the pilot carrier reception level will drop. Can be lowered.
  • the interpolation accuracy of the channel estimation value of each subcarrier can be made uniform by the above-described pilot subcarrier allocation method.
  • FIG. 1 is a block diagram showing an example of a configuration of a transmission device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating synchronization sub-symbols Stxl and Stx2.
  • FIG. 3 is a diagram showing an example of a configuration of a transmission frame.
  • FIG. 4 is a diagram showing an example of a transmission frame generated by multiplexers 106 and 107.
  • FIG. 5 is a block diagram showing an example of a configuration of a transmission device using a different local oscillator for each transmission antenna.
  • FIG. 6 is a diagram for explaining the detailed operation of synchronization sub-symbol correlation sections 114 and 115
  • FIG. 7 is a block diagram showing an example of a configuration of a receiving device according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of a transmission frame into which a synchronization symbol Sysnc is inserted.
  • FIG. 9 is a block diagram showing an example of a configuration of a transmission device according to a third embodiment of the present invention.
  • FIG. 10 is a diagram for explaining the operation of coarse propagation coefficient estimating sections 301-304.
  • FIG. 11 is a block diagram showing an example of a configuration of a receiving apparatus according to a fourth embodiment of the present invention.
  • FIG. 12 is a block diagram showing an example of a configuration of a receiving apparatus including a plurality of receiving antennas greater than the number of receiving systems.
  • FIG. 13 is a block diagram showing an example of a configuration of a transmission device according to a fifth embodiment of the present invention.
  • FIG. 14 is a block diagram showing an example of a configuration of data modulation sections 502 and 504 according to the fifth embodiment of the present invention.
  • FIG. 15 is a block diagram showing an example of a configuration of a propagation inverse function estimation section 522 according to a fifth embodiment of the present invention.
  • FIG. 16 shows an example of a data symbol sequence generated by data modulation sections 502 and 504.
  • FIG. 17 is a diagram schematically showing an example of the arrangement of pilot carriers on a time axis versus a frequency axis.
  • FIG. 18 is a block diagram showing an example of a configuration of a conventional transmission device.
  • FIG. 19 is a diagram showing an example of a transmission frame used in a conventional transmission device. Explanation of symbols
  • TX1, TX2 transmit antenna
  • RX1, RX2 receive antenna
  • FIG. 1 is a block diagram showing an example of the configuration of the transmission device according to the first embodiment of the present invention.
  • a transmission apparatus in the case where the number of transmitting antennas is 2 and the number of receiving antennas is 2 (that is, a 2 ⁇ 2 MIMO configuration) is shown.
  • the transmission device includes a transmission device and a reception device.
  • the transmitting apparatus includes transmitting antennas TX1 and TX2, synchronization sub-symbol generating sections 101 and 105, data modulating sections 102 and 104, a propagation coefficient estimating symbol generating section 103, multiplexers 106 and 107, quadrature modulating sections 108 and 109, and a transmitting apparatus.
  • a credit local oscillator 109 is provided.
  • the receiving device consists of receiving antennas RX1 and RX2, quadrature demodulators 111 and 113, receiving local oscillator 112, synchronous subsymbol correlator 114 and 117, weighted averaging units 118 and 119, frequency correction units 120 and 121, and inverse propagation function.
  • An estimating unit 122 and data demodulating units 123 and 124 are provided.
  • transmission antennas TX1 and TX2 are antennas for transmitting radio signals.
  • the synchronization sub-symbol generation units 101 and 105 generate different synchronization sub-symbols Stx for each transmission antenna.
  • Data modulation sections 102 and 104 modulate a different data sequence for each transmission antenna and output it as a data symbol sequence.
  • Propagation coefficient estimation symbol generation section 103 generates a symbol for estimating the inverse function of the propagation coefficient (hereinafter, referred to as propagation coefficient estimation symbol Sref).
  • the multiplexers 106 and 107 multiplex the synchronization subsymbol Stx, the propagation coefficient estimation symbol Sref, and the data symbol sequence to generate a transmission frame.
  • the transmitting local oscillator 109 includes a multiplexer 106 and a multiplexer 1 This is an oscillator to keep synchronization with 07.
  • receiving antennas RX1 and RX2 are antennas for receiving radio signals.
  • Quadrature demodulation sections 111 and 113 demodulate a radio signal received via a reception antenna and output the result as a reception signal.
  • the receiving local oscillator 112 is an oscillator for maintaining synchronization between the quadrature demodulation unit 111 and the quadrature demodulation unit 113.
  • Synchronization sub-symbol correlation sections 114 to 117 obtain a correlation between the received signal and synchronization sub-symbol Stx, and estimate a frequency error for each transmission path.
  • Weighting averaging sections 118 and 119 calculate the frequency correction value for each receiving antenna by weighing and averaging the frequency error for each transmission path.
  • Frequency correction units 120 and 121 correct the frequency of the received signal based on the calculated frequency correction value.
  • Propagation inverse function estimation section 122 separates the data sequence transmitted from the transmission antenna from the reception signal based on propagation coefficient estimation symbol Sref included in the frequency-corrected reception signal.
  • Data demodulation sections 123 and 124 demodulate the data series separated by propagation inverse function estimation section 122.
  • synchronization subsymbol generation sections 101 and 105 generate different synchronization subsymbols Stx for each transmission antenna. Specifically, synchronization subsymbol generation section 101 generates synchronization subsymbol Stxl for transmission antenna TX1. Synchronization subsymbol generation section 105 generates synchronization subsymbol Stx2 for transmission antenna TX2.
  • FIG. 2 is a diagram illustrating the synchronization sub-symbols Stxl and Stx2.
  • synchronization sub-symbols Stxl and Stx2 are also formed by extracting predetermined sub-carriers from a plurality of sub-carrier forces included in synchronization symbol Ssync.
  • the synchronization symbol Ssync is composed of a plurality of subcarriers having a predetermined frequency interval force orthogonal to each other, and a predetermined amplitude and phase are assigned to each subcarrier.
  • these subcarriers are orthogonally multiplexed by a Fourier transform or the like into the synchronization symbol Ssync and converted into a signal represented on the time axis, a repetitive waveform appears at a time period that is the reciprocal of the above-described predetermined frequency interval.
  • Synchronization subsymbol generation sections 101 and 105 divide a plurality of subcarriers forming synchronization symbol Ssync into a set of N transmission antennas.
  • the synchronization sub-symbol generation section 101 generates a synchronization sub-symbol Stxl by allocating even-numbered sub-carriers as symbols to be transmitted from the transmission antenna TX1, and orthogonally multiplexing them by Fourier transform or the like.
  • synchronization sub-symbol generation section 105 generates a synchronization sub-symbol Stx2 by allocating odd-numbered sub-carriers as symbols to be transmitted from transmission antenna TX2 and orthogonally multiplexing by Fourier transform or the like. Since the synchronization subsymbols Stxl and Stx2 have different subcarrier arrangements and are orthogonal in the frequency domain, they can be easily separated even if multiplexed in space. In addition, a repetitive waveform appears in the synchronization sub-symbols Stxl and Stx2 at a time period that is the reciprocal of the above-described predetermined frequency interval. Therefore, the receiving apparatus can estimate a carrier frequency error based on the repetitive waveform.
  • Data modulation section 102 modulates data to be transmitted from transmission antenna TX1 (hereinafter, referred to as data sequence 1) and outputs data symbol sequence 1.
  • Data modulation section 104 modulates a data sequence (hereinafter, referred to as data sequence 2) for transmission from transmission antenna TX2, and outputs data symbol sequence 2.
  • Propagation coefficient estimation symbol generation section 103 generates propagation coefficient estimation symbol Sref.
  • the propagation coefficient estimation symbol Sref symbols orthogonal to each other between transmission antennas are used to estimate the inverse function of the propagation coefficient for each transmission path. Assuming that a symbol transmitted from the transmitting antenna T XI is Sref 1 and a symbol transmitted from the transmitting antenna TX 2 is Sref 2, the propagation coefficient estimation symbol generator 103 outputs, for example, Sref as Srefl at a certain time T1, Little is output as Sref 2. At another time T2, the propagation coefficient estimation symbol generation unit 103 does not output anything as Srefl, and outputs Sref as Sref2. This allows the propagation coefficient estimation symbol generator 103 to make Sref1 and Sref2 orthogonal in time.
  • the data symbol sequence 1, the propagation coefficient estimation symbol Srefl, and the synchronization sub-symbol Stxl are input to the multiplexer 106.
  • the data symbol sequence 2, the propagation coefficient estimation symbol Sref2, and the synchronization subsymbol Stx2 are input to the multiplexer 107.
  • the multiplexer 106 receives the input data symbol sequence 1, the propagation coefficient estimation symbol Srefl and The transmission frame Fl is generated by multiplexing the synchronization sub-symbol Stxl.
  • the multiplexer 107 multiplexes the input data symbol sequence 2, the propagation coefficient estimation symbol Sref 2, and the synchronization sub-symbol Stx2 to generate a transmission frame F2.
  • FIG. 3 is a diagram illustrating an example of a transmission frame generated by the multiplexers 106 and 107.
  • synchronization sub-symbol Stx and propagation coefficient estimation symbol Sref are inserted before the data symbol sequence.
  • Transmission frame F1 is converted into a radio signal by quadrature modulation section 108 and transmission local oscillator 109.
  • the transmission frame 2 is converted into a radio signal by the quadrature modulator 110 and the transmitting local oscillator 108.
  • the transmission frame F1 and the transmission frame F2 converted into the radio signal are transmitted simultaneously from the transmission antenna TX1 and the transmission antenna TX2.
  • the transmission frame includes a synchronization sub-symbol Stx and a propagation coefficient estimation symbol Sref, which are inserted before the data symbol sequence, and a power synchronization sub-symbol Stx and a transmission coefficient estimation symbol Sref. It is assumed that either or both of these may be inserted at predetermined intervals into the data symbol sequence.
  • FIG. 4 is a diagram illustrating an example of a transmission frame in which both Stx and Sref are inserted into a data symbol sequence.
  • the transmitting apparatus may use a different transmission local oscillator for each transmitting antenna.
  • FIG. 5 is a block diagram illustrating an example of a configuration of a transmission device using a different local oscillator for each transmission antenna.
  • the transmitting apparatus includes a local oscillator 109a for transmitting antenna TX1, and a local oscillator 109b for transmitting antenna TX2.
  • a transmission device can have a degree of freedom in the arrangement of the transmission antennas.
  • a transmission device including such a transmission device can further reduce the correlation between transmission paths depending on the arrangement of transmission antennas, and can effectively perform spatial multiplexing.
  • Radio signals transmitted simultaneously from the transmitting antennas TX1 and TX2 are received by the receiving antennas RXl and RX2 via a plurality of spatial paths.
  • the signal received by the reception antenna RX1 (hereinafter, referred to as reception signal R1) is demodulated by the quadrature demodulation unit 111 and the reception local oscillator 112, and is input to the synchronization subsymbol correlation units 114 and 115 and the frequency correction unit 120. Is done.
  • a signal received by the reception antenna RX2 (hereinafter, referred to as a reception signal R2) is demodulated by the quadrature demodulation unit 113 and the reception local oscillator 112, and is synchronized with the sub-symbol correlation units 116 and 117 and the frequency correction unit. Entered in 121.
  • the transmission path between the transmission antenna TXi and the reception antenna RXj is p (i, j), and the transmission path p
  • the propagation coefficient of (i, j) be Mi, j).
  • the synchronization subsymbol received by the reception antenna RXi is h (l, l) Stxl + h because the transmission antenna TX1 transmits the synchronization subsymbol Stxl and the transmission antenna TX2 transmits the synchronization subsymbol Stx2. (2, l) Stx2.
  • i is the transmitting antenna number
  • j is the receiving antenna number.
  • the synchronization sub-symbol correlator 114 is orthogonal to Stxl, Stx2, and the force S, when the relation between the received signal at RX1 and Stxl is obtained, the term power of Stx2 becomes ⁇ 0.
  • the information on the transmission path p (l, 1) can be estimated based on Stxl.
  • the synchronous subsymbol correlator 115 estimates the information on the transmission path p (2, 1) based on Stx2 as the term of Stxl becomes 0. Can be.
  • FIG. 6 is a diagram illustrating the detailed operation of the synchronization sub-symbol correlation sections 114 and 115. Fig 6
  • FIG. 6 (c) shows a reception signal at the reception antenna RX1 (hereinafter, referred to as an RX1 reception signal).
  • the synchronization subsymbol correlation sections 114 and 115 calculate the complex correlation between the repetitive waveform of the synchronization subsymbols Stxl and Stx2 and the RXl received signal.
  • the correlation value between the RX1 received signal and Stxl (hereinafter referred to as Stxl correlation value) is a complex correlation at the timing when the RX1 received signal and the repetitive waveform of Stxl match. A value peak appears.
  • Stxl correlation value when a carrier frequency error occurs, the phase of the correlation value changes at each correlation peak timing, so that synchronization sub-symbol correlator 114 determines the transmission path p (l Estimate the carrier frequency error generated in Can be specified.
  • synchronization sub-symbol correlator 115 estimates the carrier frequency error generated in transmission path p (l, 2) in the same manner.
  • the synchronization subsymbol correlation sections 116 and 117 also calculate the complex correlation between the repetitive waveforms of the synchronization subsymbols Stxl and Stx2 and the received signal R2 in the same manner, and transmit the transmission paths p (l, 2) and p ( Estimate the carrier frequency error generated in (2) and (2).
  • the synchronization sub-symbol correlator 114-117 can obtain a Stx correlation value by performing a cross-correlation operation between the repetitive waveform in Stx and the received signal.
  • the synchronization sub-symbol correlator 114-117 may extract a number of sub-carriers constituting Stx using one-frequency DFT, and obtain a Stx correlation value from an average of phase changes of the extracted sub-carriers.
  • the transmitting apparatus repeatedly transmits Stx, and the synchronization subsymbol correlator 114-117 obtains the correlation of the repeated waveform of Stx in the receiving apparatus.
  • the synchronization sub-symbol correlator 114-117 obtains a Stx length correlation for the Stx sequence received thereafter.
  • the synchronization sub-symbol correlation section 1144-1117 can detect a more precise phase difference between transmission and reception by extending the correlation operation period in this way.
  • the carrier frequency error for each transmission path obtained by synchronization sub-symbol correlation sections 114 to 117 is input to weighted averaging sections 118 and 119.
  • Weighting averaging section 118 weights and averages the carrier frequency errors of transmission paths p (1, 1) and p (2, 1) to calculate a frequency correction value for receiving antenna RX1.
  • weighting averaging section 119 weights and averages the carrier frequency errors of transmission paths p (l, 2) and p (2, 2) to calculate a frequency correction value for reception antenna RX2.
  • the weighting averaging units 118 and 119 may perform weighting in proportion to the correlation amount of each synchronization sub-symbol Stx. Alternatively, weighting averaging sections 118 and 119 determine the reception error rate for each transmission antenna by data demodulation sections 123 and 124 at the subsequent stage, and based on the error rate, use a transmission path with many errors (that is, a poor propagation path). The weight of the signal received via the link may be reduced.
  • weighting averaging sections 118 and 119 output synchronization sub-symbols for a predetermined period during a transmission frame. If they are inserted at intervals (see Figure 4), the carrier frequency error estimated in the past and the carrier frequency error estimated at the current synchronization subsymbol power may be averaged.
  • Such a transmission device can follow the time variation of the carrier frequency error while suppressing a large variation in the frequency correction value due to an estimation error due to noise or the like, so that the estimation accuracy of the inverse propagation coefficient function is further improved. Can be done.
  • Frequency correction sections 120 and 121 correct the frequencies of reception signals Rl and R2 based on the frequency correction values for each reception antenna calculated by weighted averaging sections 118 and 119.
  • Propagation inverse function estimating section 122 extracts a propagation coefficient estimation symbol S ref from frequency-corrected received signals Rl and R2, estimates a propagation coefficient inverse function for each transmission path, and performs equalization to cancel interference components.
  • And separates data symbol sequences transmitted from the transmission antennas TX1 and TX2. Specifically, data transmitted from transmission antenna TX1 is separated as data symbol sequence 1. Data transmitted from transmitting antenna TX2 is separated as data symbol sequence 2. The separated data symbol sequence 1 is demodulated as data sequence 1 by data demodulation section 123. Similarly, the separated data symbol sequence 2 is demodulated by data demodulation section 124 as data sequence 2.
  • the receiving apparatus can establish coarse frame synchronization by detecting a propagation delay generated for each transmission path from the correlation peak timing obtained by the synchronization sub-symbol correlation sections 114 to 117.
  • the receiving apparatus weights and averages these correlation peak timings according to the correlation amount, and generates symbol timings based on the weighted averages, thereby suppressing inter-symbol interference at the time of extracting the Sref in the propagation inverse function estimation unit 122. be able to.
  • the receiving device may use a different local oscillator for reception for each receiving antenna.
  • the receiving apparatus can have more flexibility depending on the arrangement of the receiving antennas.
  • a transmission device having such a receiving device capability can further reduce the correlation between transmission paths depending on the arrangement of receiving antennas, and can effectively perform spatial multiplexing.
  • high-frequency components dedicated to MIMO receiving from a plurality of antennas using one local oscillator for reception can be used.
  • the predetermined frequency By dividing a synchronization symbol in which a predetermined amplitude and phase are assigned to a plurality of subcarriers that also have a spacing force for each of a plurality of transmission antennas, simultaneously transmit a plurality of mutually orthogonal synchronization subsymbols with a plurality of transmission antenna forces Can be. Further, according to the receiving apparatus, by determining the correlation between the synchronous sabo symbol included in the received signal and the received signal, it is possible to estimate the carrier frequency error and the propagation delay generated for each transmission path. Accordingly, the transmission apparatus can improve the accuracy of estimating the inverse propagation coefficient by correcting the received signal by weighting and averaging these estimated errors for each receiving antenna.
  • the transmission device according to the second embodiment differs from the first embodiment (see FIG. 1) in the configuration of the reception device.
  • the synchronization subsymbol correlator 114-117 can accurately obtain the correlation.
  • the synchronization sub-symbol correlator 114-117 can accurately extract subcarriers when the frequency error has a difference of 1Z2 or more in the frequency bin interval of the Fourier transform. Gone. Therefore, the receiving apparatus according to the second embodiment corrects in advance the average frequency error of the local oscillator between transmission and reception.
  • FIG. 7 is a block diagram showing an example of a configuration of a receiving device according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the receiving apparatus according to the second embodiment further includes synchronization symbol correlation sections 201 and 202, a weighted averaging section 203, and frequency correction sections 204 and 205, as compared with the first embodiment.
  • the synchronization symbol correlator 201 combines the synchronization sub-symbols Stxl and Stx2 included in the signal received by the reception antenna RX1, and generates a synchronization symbol Sysnc.
  • the synchronization symbol Ssync also has a repetitive waveform force having a predetermined cycle as described above. Therefore, synchronization symbol correlation section 201 can determine the average frequency error generated in reception antenna RX1 from the correlation between the received signal and the repetitive waveform of synchronization symbol Ssync.
  • the synchronous symbol correlator 202 can determine the average frequency error generated in the receiving antenna RX2.
  • Weighted averaging section 203 weights and averages the frequency error for each reception antenna obtained by synchronization symbol correlation sections 201 and 202, and obtains a frequency correction value for the received signal. At this time, weighting averaging section 203 may perform weighting in proportion to the correlation amount of each synchronization symbol Sysnc. Alternatively, weighting averaging section 203 may perform weighting in proportion to the level of the received signal received by each receiving antenna.
  • Frequency correction sections 204 and 205 correct the frequency of the received signal for each reception antenna based on the frequency correction value obtained by weighted averaging section 203, and cancel the frequency error of the local oscillator between transmission and reception.
  • the same transmission frame as that of the first embodiment is used.
  • a transmission frame in which ysnc is inserted may be used.
  • FIG. 8 is a diagram illustrating an example of a transmission frame into which the synchronization symbol Sysnc has been inserted.
  • the average frequency for a plurality of receiving antennas is obtained from the correlation operation between the received signal received for each receiving antenna and the synchronization symbol Sysnc.
  • the error can be estimated.
  • the transmission apparatus can cancel the frequency error of the local oscillator between transmission and reception, and can perform the synchronization sub-symbol correlation calculation at the subsequent stage more accurately.
  • FIG. 9 is a block diagram illustrating an example of a configuration of a transmission device according to the third embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the transmission device according to the third embodiment differs from the first embodiment (see FIG. 1) in the configuration of the reception device.
  • the receiving apparatus according to the third embodiment includes receiving antennas RX1 and RX2, quadrature demodulating sections 111 and 113, a receiving local oscillator 112, a synchronous subsymbol correlating section 114 and 117, and a coarse propagation coefficient estimating section. 301 to 304, a propagation inverse function estimating unit 322, and data demodulating units 123 and 124.
  • the synchronization sub-symbol correlator 114-117 can estimate information on each transmission path from the correlation between the received signal and the synchronization sub-symbol Stx.
  • the synchronization subsymbol correlator 114-117 can determine the phase and amplitude of each subcarrier when the subcarriers constituting the synchronization subsymbol are extracted by one-frequency DFT or the like.
  • FIG. 10 is a diagram illustrating the operation of coarse propagation coefficient estimating sections 301-304.
  • the thin arrows represent those obtained by spatially multiplexing subcarriers of a data symbol sequence subjected to OFDM modulation (that is, data carriers).
  • the synchronization subsymbol correlator 114 extracts only the subcarriers constituting Stxl from the received signal at RX1 (see FIG. 10A), and obtains the phase and amplitude of each extracted subcarrier.
  • the coarse propagation coefficient estimating unit 301 complements the phase and amplitude characteristics between adjacent subcarriers based on the phase and amplitude of the subcarriers that constitute Stxl, thereby obtaining the coarse frequency of the transmission path p (l, 1).
  • the characteristics can be estimated (see Fig. 10 (b)).
  • propagation coefficient coarse estimation section 302 complements phase path-amplitude characteristics between adjacent subcarriers based on the phases and amplitudes of the subcarriers forming Stx2, and thereby provides transmission path P (2, 1 ), The frequency characteristics can be estimated (see Fig. 10 (c)).
  • the data carrier received by the receiving device is a combination of the characteristics of these two transmission paths p (1, l) and p (2, 1). Therefore, coarse propagation coefficient estimating section 301-304 obtains a coarse frequency characteristic of the transmission path in advance using synchronization sub-symbol Stx.
  • the inverse propagation function estimating unit 322 more accurately estimates the inverse function of the propagation coefficient based on the coarse frequency characteristics.
  • the receiving apparatus According to the receiving apparatus according to the third embodiment of the present invention, coarse frequency characteristics for each transmission path can be estimated in advance using the synchronization sub-symbol Stx. With this, the transmission apparatus can improve the estimation accuracy of the inverse propagation coefficient function in the subsequent stage.
  • the transmission device according to the fourth embodiment is different from the transmission device according to the first embodiment (see FIG. 1) in the receiving device.
  • the configuration of the device is different.
  • the receiving apparatus according to the first embodiment in a frequency-selective fusing environment, the reception level of a specific subcarrier drops, and the correlation cannot be accurately obtained by the synchronous subsymbol correlator 114-117. Nature occurs.
  • the receiving apparatus according to the fourth embodiment provides a plurality of receiving antennas for each receiving system, and reduces the influence of frequency selective fusing by receiving diversity.
  • FIG. 11 is a block diagram showing an example of a configuration of a receiving device according to the fourth embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the receiving apparatus differs from the first embodiment in that receiving antennas RX1-1, RX1-2, RX2- 1, RX2-2, reception level judgment sections 401 and 402, and selection synthesis sections 403 and 404.
  • receiving antennas RX1-1 and RX1-2 are a plurality of antennas provided in receiving system 1.
  • Reception level determination section 401 compares the reception levels of the reception signals at a plurality of reception antennas.
  • Selection combining section 403 selects or combines signals received by a plurality of antennas based on the result of comparison by reception level determining section 401. For example, the selection / combination unit 403 selects a reception signal at RX1-1, in which case the reception level at RX1-1 is greater than the reception level at RX1-2.
  • selection combining section 403 may combine the received signals based on the ratio between the reception level at RX1-1 and the reception level at RX1-2.
  • selection / combination section 403 may select, based on the output results of synchronization subsymbol correlation sections 114 and 115, a reception signal in which the subcarriers included in the synchronization subsymbols do not fall below a predetermined level.
  • reception level determination section 402 and selection / combination section 404 select or combine signals received by a plurality of reception antennas RX2-1 and RX2-2.
  • the receiving apparatus may have a configuration in which a plurality of antennas are provided for each receiving system and a plurality of receiving antennas are larger than the number of receiving systems.
  • Fig. 12 shows an example of the configuration of a receiving device that includes more receiving antennas than the number of receiving systems. It is a block diagram showing an example. Referring to FIG. 12, the receiving apparatus compares reception levels at a plurality of reception antennas and selects or combines the reception signals, so that reception signals for the number of reception systems can be extracted.
  • the receiving apparatus even when the reception level of a specific subcarrier drops under a frequency selective fading environment, selection of a plurality of reception antennas is possible.
  • the correlation of the synchronization sub-symbol can be accurately obtained by the reception diversity effect by combining.
  • the transmission apparatus can correct the carrier frequency error for each transmission path more accurately, and can improve the estimation accuracy of the inverse propagation coefficient function.
  • the method of providing a plurality of receiving antennas for each receiving system described in the fourth embodiment can be combined with the first, second, and third embodiments.
  • FIG. 13 is a block diagram illustrating an example of a configuration of a transmission device according to the fifth embodiment of the present invention.
  • the transmission apparatus according to the fifth embodiment of the present invention is different from the first embodiment (see FIG. 1) in data modulators 502 and 504 and inverse propagation function estimator 522.
  • FIG. 14 is a block diagram illustrating an example of a configuration of the data modulation units 502 and 504 according to the fifth embodiment of the present invention.
  • FIG. 15 is a block diagram showing an example of the configuration of the propagation inverse function estimator 522 according to the fifth embodiment of the present invention.
  • data modulation section 502 includes data carrier mapping section 5021, pilot carrier 1 generation section 5022, and orthogonal multiplexing section 5023. Further, data modulation section 504 includes data carrier mapping section 5041, pilot carrier 2 generation section 5042, and orthogonal multiplexing section 5043.
  • Data modulator 502 modulates data sequence 1 to generate data symbol sequence 1 in the same manner as in the first embodiment.
  • Data symbol sequence 1 is an OFDM symbol obtained by orthogonally multiplexing a plurality of subcarriers on the frequency axis.
  • Data modulation section 502 assigns a known phase and amplitude to predetermined subcarriers included in a plurality of subcarriers forming data symbol sequence 1, and sets the subcarriers as pilot carriers.
  • data modulation section 502 The subcarrier is assigned a phase and an amplitude based on the data sequence 1, and is used as a data carrier.
  • data carrier mapping section 5021 maps a phase and an amplitude to a data carrier based on input data sequence 1.
  • PSK and QAM are used for the mapping rules.
  • Pilot carrier 1 generating section 5022 allocates predetermined phases and amplitudes to predetermined subcarriers as pilot carriers.
  • the plurality of subcarriers output from data carrier mapping section 5021 and pilot carrier 1 generating section 5022 are input to orthogonal multiplexing section 5023.
  • the orthogonal multiplexing section 5023 orthogonally multiplexes the plurality of subcarriers to generate a time axis waveform of the data symbol (that is, data symbol sequence 1).
  • an inverse Fourier transform / inverse / ablet transform, an inverse discrete cosine transform, or the like is used for the orthogonal multiplexing.
  • Data modulation section 504 also generates data symbol sequence 2 in the same manner as data modulation section 502.
  • FIG. 16 is a diagram showing an example of a data symbol sequence generated by data modulation sections 502 and 504.
  • FIG. 16 shows a case where each data symbol sequence is composed of four data symbols, and each data symbol also has eight subcarrier forces. However, these numbers can be expanded arbitrarily.
  • the first and fourth rows show the arrangement of each data symbol sequence on the time axis.
  • Data symbol sequence 1 transmitted from transmitting antenna TX1 includes four data symbols Dl-1, Dl-2, Dl-3, and D1-4.
  • data symbol sequence 2 transmitted from transmitting antenna TX2 includes four data symbols D2-1, D2-2, D2-3, and D2-4. These data symbol sequences are transmitted simultaneously from each antenna. That is, in the data symbol sequence, first, the data symbols D1-1 and D2-1 are transmitted simultaneously, the second is the data symbols D1-2 and D2-2, transmitted simultaneously, and then the transmission is omitted. Is done.
  • the second and third rows show the subcarrier arrangement on the frequency axis of each data symbol.
  • the data symbol also has eight subcarriers C4, C-3, C-2, C-1, C + 1, C + 2, C + 3, and C + 4.
  • Solid line among arrows indicating subcarriers Indicates a data carrier, and a broken line indicates a pilot carrier. Those with no arrow at the subcarrier position indicate null carriers with amplitude 0.
  • Data modulation section 502 allocates pilot carriers to subcarrier numbers C-1 and C + 4 for data symbols D1-1 and D2-1 to be transmitted first. At this time, a predetermined phase and an amplitude larger than 0 are assigned to the pilot carrier of Dl-1. On the other hand, a null carrier with an amplitude of 0 is assigned to the pilot carrier of D2-1. Thereby, in data symbols D1-1 and D2-1 transmitted first, subcarrier numbers C1 and C + 4 are transmitted only from transmission antenna TX1. Therefore, in the receiving apparatus, by using the subcarrier numbers C1 and C + 4 among the data symbols received first, the propagation coefficient between the transmitting antenna TX1 and each receiving antenna (h (l, l), h (l, 2)) can be estimated.
  • pilot symbols are assigned to the same subcarrier numbers (C1 and C + 4) as the pilot symbols transmitted first for data symbols D1-2 and D2-2, which are transmitted second.
  • a predetermined phase and an amplitude larger than 0 are assigned to the pilot carrier D2-2, and a null carrier having an amplitude 0 is assigned to the pilot carrier D1-2.
  • subcarrier numbers C-1 and C + 4 are transmitted only from transmission antenna TX2. Therefore, the receiving apparatus uses the subcarrier numbers C1 and C + 4 among the data symbols received second, so that the propagation coefficient (h (2, 1), h (2, 2)) can be estimated.
  • the pilot carrier is assigned to subcarrier numbers C3 and C + 2. That is, for the third data symbol to be transmitted, a predetermined phase and an amplitude larger than 0 are assigned to C-3 and C + 2 of D1-3, and C-3 and C + 2 of D2-3 are assigned. A null carrier with amplitude 0.
  • the data symbol to be transmitted for the fourth time is assigned a null carrier of amplitude 0 to C-3 and C + 2 of D1-4, and a predetermined phase is assigned to C3 and C + 2 of D2-4. Assign an amplitude greater than 0.
  • the receiving apparatus also converts the power of the third received data symbol to Ml, 1) and h (l, 2), and the power of the fourth received data symbol to h (2, 1) and h (2, 2). Can be estimated respectively It becomes possible.
  • FIG. 17 is a diagram schematically showing an example of the arrangement of pilot carriers on a time axis versus a frequency axis.
  • FIG. 17 (a) shows data symbol sequence 1 transmitted from transmission antenna TX1.
  • FIG. 17 (b) shows data symbol sequence 2 transmitted from transmission antenna TX2.
  • the horizontal axis is time (symbol number) and the vertical axis is frequency (subcarrier number).
  • One square indicates a subcarrier
  • a white square indicates a data carrier
  • a gray square indicates a pilot carrier
  • an X-marked square indicates a null carrier.
  • pilot subcarriers At least two or more subcarriers to which pilot carriers or null carriers are assigned (hereinafter, referred to as pilot subcarriers) are assigned to one data symbol.
  • a pilot carrier having a predetermined phase and an amplitude greater than 0 is assigned to a pilot subcarrier of one data symbol, and an amplitude of more than 0 is assigned to a pilot subcarrier of the other data symbol.
  • the assignment between the pilot carrier and the null carrier is switched. For example, as shown in FIG.
  • the same subcarrier number may be assigned to the pilot subcarrier for all data symbols. More preferably, the subcarrier number of the pilot subcarrier may be changed according to a predetermined sequence for each data symbol. Thus, even when the amplitude of a specific subcarrier becomes extremely small due to frequency selective fusing, the probability that the amplitude of the received pilot carrier becomes extremely small can be reduced. For this reason, the transmission device can accurately estimate the propagation coefficient.
  • the pilot subcarrier is changed for every two data symbols.
  • two pilot subcarriers are assigned to one data symbol, and the interval between the pilot subcarriers is fixed.
  • the pilot subcarriers shall be allocated at least once to all subcarriers.
  • all subcarriers are divided at pilot subcarrier positions, If pilot subcarriers are allocated, the next pilot subcarrier is allocated to a subcarrier that has many subcarriers, is near the center of the band, and is far from the pilot subcarrier power of the previous symbol.
  • C + 3 is selected as a subcarrier near the center in the four subcarrier bands, and this is set as a pilot subcarrier.
  • the subcarrier band is divided into two by C + 3, and is divided into a set of C + l, C + 2 and C + 4.
  • a pair of C + 1 and C + 2 is selected, and among the subcarriers near the center, C + 1 that is apart from the pilot subcarrier power of the previous symbol is selected, and is used as a pilot subcarrier.
  • the subcarrier band is divided by the previous pilot subcarriers C + 3 and C + 1, and is divided into C + 2 and C + 4.
  • C + 4 which is apart from the pilot subcarrier power of the previous symbol, is selected, and is used as the pilot subcarrier.
  • the remaining C + 2 is used as a pilot subcarrier. This is repeated for the subsequent data symbols, and in this cycle, all subcarriers are allocated to pilot subcarriers.
  • pilot carriers are arranged such that the distance between the data carrier and the pilot carrier is close in frequency or time, and the propagation coefficients of all subcarriers are changed in the frequency direction.
  • the accuracy can be improved when the interpolation and the time-direction interpolation are used.
  • the propagation path coefficient of a certain subcarrier has a high correlation with the propagation path coefficient of a subcarrier adjacent in the frequency direction and the time direction. This is because the subcarrier power that is closer in frequency or time is supplemented by the estimated channel coefficient than the channel coefficient obtained by interpolating the channel coefficient estimated by subcarriers that are separated in frequency or time. This is because the channel coefficient obtained in this way has higher accuracy.
  • the pilot subcarrier allocation sequence is determined in advance according to the number of subcarriers, the number of pilot subcarriers, and the number of data symbols to be transmitted simultaneously, and is known by the transmitting device and the receiving device.
  • the inverse propagation function estimating section 522 for separating the data symbol sequence into which the pilot carrier has been inserted will be described using FIG. In FIG.
  • the inverse propagation function estimating section 522 includes an orthogonal demultiplexing section 5221 and 5222, a propagation path characteristic estimating section 5223, a pilot carrier 1 extracting section 522, 5226, a pilot carrier 2 extracting section 5225, 5227, hi 1 coarse estimation unit 5228, h21 coarse estimation unit 5229, hi 2 coarse estimation unit 5230, h22 coarse estimation unit 5231 includes a propagation path characteristic updating unit 5232, a propagation path inverse function calculation unit 5233, and a channel separation unit 5234.
  • Propagation inverse function estimating section 522 estimates the frequency error using the synchronization symbol as described in the fourteenth embodiment, and receives the corrected symbol sequence as input.
  • the symbol sequence received by reception antenna RX1 is input to orthogonal separation section 5221.
  • the symbol sequence received by reception antenna RX2 is input to orthogonal separation section 5222.
  • Orthogonal separation sections 522 1 and 5222 perform orthogonal separation for each input symbol to separate the symbols into subcarriers on the frequency axis. Note that Fourier transform, wavelet transform, discrete cosine transform, and the like can be used for orthogonal separation.
  • Propagation coefficient estimation symbol Sref among the symbols separated into subcarriers is input to propagation path characteristic estimation section 5223.
  • the propagation path characteristic estimating unit 5223 estimates the propagation path characteristic Mi, j) between the antennas from the correlation between the known propagation coefficient estimation symbol Sref and the received propagation coefficient estimation symbol Sref. Subsequent received data symbols are subjected to equalization to cancel the interference component by estimating the inverse propagation coefficient of each transmission path, and separate the data symbol sequence transmitted from each transmission antenna.
  • the frequency estimation value estimated using the above-mentioned synchronization symbol includes an estimation error (residual frequency error) due to the influence of noise, phase noise, and the like. For this reason, a phase rotation occurs in the reception symbol train due to the residual frequency error. If the residual frequency error is large, the larger the time lag from the propagation coefficient estimation symbol Sref, the larger the phase difference occurs in the data symbol. For this reason, in the receiver, an error occurs in the estimation of the inverse propagation coefficient function, and a reception error occurs.
  • pilot carrier 1 is transmitted only from transmit antenna TX1
  • pilot carrier 2 extraction section 5225 extracts pilot carrier 2. Since pilot carrier 1 is transmitted only from transmit antenna TX1, the correlation between received pilot carrier 1 and known pilot carrier 1 is also complemented in the frequency direction or time direction, so that Tx1- It is possible to estimate the propagation path characteristic h ′ (1, 1) between RX1.
  • pilot carrier 2 is transmitted only from transmitting antenna TX2, channel characteristics h, (2, 1) between TX2 and RX1 can be estimated. These are performed by the hi 1 coarse estimator 5228 and the h21 coarse estimator 5229.
  • h '(2, 1) and h' (2, 2) are estimated as the pilot carrier force.
  • the propagation coefficient h (i, j) estimated by the propagation coefficient estimation symbol Sref and the propagation coefficients h, (i, j) estimated by the pilot carrier in each data symbol are calculated by Is input to Mi, j) and h '(i, j) have a phase difference due to residual frequency error and phase noise, and a phase difference and amplitude difference due to transmission line fluctuation.
  • the propagation coefficient of each transmission path can be more accurately estimated.
  • the propagation coefficient h ,, (i, j) updated for each data symbol is input to the propagation path inverse function calculation unit 5233, and the inverse function is obtained.
  • the channel separation unit 5234 uses the received data symbol sequence 1 received by RX1 and separated into subcarriers, and the received data symbol sequence 2 received by RX2 and separated into subcarriers into a transmission data symbol sequence. Data demodulation is performed by separating 1 and 2.
  • data modulators 502 and 504 assign known phases and amplitudes to predetermined subcarriers, so that data symbols can be assigned to subcarriers.
  • a pilot carrier can be generated.
  • the receiving apparatus even when there is a residual error in the frequency estimation by the synchronization symbol, the residual error is estimated for each transmission path using the pilot carrier of the data symbol, and the propagation coefficient is corrected by correcting the propagation coefficient. The accuracy of estimating the coefficient inverse function can be improved.
  • the pilot carrier reception level is reduced by sequentially assigning pilot carriers to all subcarriers. Can be reduced. Further, the above-described method of allocating pilot subcarriers can make the interpolation accuracy of the channel estimation value of each subcarrier uniform.
  • the transmitting device and the receiving device described above are each independently used. Alternatively, it can be used in combination with other devices.
  • the transmitting device may transmit a signal to another receiving device other than the above-described receiving device alone.
  • the receiving device may receive a signal transmitted from another transmitting device as long as the consistency of only the format of a signal that is not only the signal transmitted by the transmitting device described above is ensured.
  • the respective processing procedures performed by the transmitting device and the receiving device described in the fifteenth embodiment execute the above-described processing procedures stored in a storage device (ROM, RAM, hard disk, or the like).
  • the predetermined program data may be realized by being interpreted and executed by the CPU.
  • the program data may be introduced into the storage device via the storage medium, or may be executed directly from the storage medium.
  • the storage medium refers to a semiconductor memory such as a ROM, a RAM, or a flash memory, a magnetic disk memory such as a flexible disk or a hard disk, an optical disk memory such as a CD-ROM, a DVD, or a BD, and a memory card.
  • the storage medium is a concept including a communication medium such as a telephone line and a transport path.
  • LSIs are integrated circuits. These may be individually made into one chip, or each chip may be made into one chip so as to include all or a part of them!
  • IC integrated circuit
  • system LSI system LSI
  • super LSI super LSI
  • controller LSI controller
  • the method of circuit integration is not limited to LSI, but may be realized by a dedicated circuit or a general-purpose processor. After manufacturing the LSI, a programmable FPGA (Field Programmable Gate Array) or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used. Furthermore, if the technology of integrated circuits that replaces LSIs appears due to the advancement of semiconductor technology or another derivative technology, it is natural that The integration of functional blocks may be performed using the technology described above. There are potential applications of biotechnology.
  • the data transmission method and the data reception method of the present invention can be applied to a transmission device and a reception device to which the MIMO-OFDM system is applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

 MIMO−OFDM方式が適用された伝送装置において、伝送パス毎に異なる周波数誤差が存在する場合でも、伝搬係数逆関数の推定精度を向上させ、特性劣化を抑えることができるデータ送信方法及びデータ受信方法を提供する。送信装置は、互いに直交する複数のサブキャリアから構成されるシンボルのうち、所定周波数間隔の複数のサブキャリアに所定の振幅と位相とを割り当てたシンボルを同期シンボルとする。そして、その同期シンボルを、送信アンテナ毎に分割することで、複数の同期サブシンボルを発生させ、複数の送信アンテナから同時に送信する。受信装置は、複数の受信アンテナを介して受信した信号に含まれる同期サブシンボルから、伝送パス毎の周波数誤差を推定して、推定した周波数誤差に基づいて受信信号を補正する。

Description

明 細 書
データ送信方法及びデータ受信方法
技術分野
[0001] 本発明は、 MIMO— OFDM方式を利用して複数の送信アンテナから複数のデータ 系列を送信するデータ送信方法、及び複数のデータ系列を複数の受信アンテナで 受信するデータ受信方法に関して、より特定的には、伝送パス毎に異なる周波数誤 差が存在する場合でも、伝搬係数逆関数の推定精度を向上させ、特性劣化を抑える ことができるデータ送信方法及びデータ受信方法に関する。
背景技術
[0002] 近年、広帯域移動体通信に利用される伝送方法として、 MIMO-OFDM (Multi Input Multi Output urthogonal Frequency Division Multiplexingノ方 式が注目されている。以下、 MIMO— OFDM方式について説明する。
[0003] 無線 LANなどの移動体通信には、マルチパス環境下で生じる周波数選択性フエ一 ジングに強 、変調方式として、マルチキャリア伝送の一種である OFDM方式が採用 されている。さらに、周波数利用効率の向上を目指し、複数の送信アンテナと複数の 受信アンテナとを用いて MIMOチャネルを構成し、送受信間で空間分割により複数 のパスを介して多重通信を行う方式 (以下、 MIMO方式と記す)が提案されている。 MIMO方式では、送信アンテナの数だけチャネル数を増加させることができる。
[0004] マルチパスに強い OFDM方式と、周波数利用効率を向上させる MIMO方式とを 組み合わせたものが MIMO— OFDM方式である。従来の MIMO— OFDM方式が 適用された伝送装置(以下、従来の伝送装置と記す)としては、例えば、特開 2003- 60604号公報に開示されたものがある。図 18は、従来の伝送装置の構成の一例を 示すブロック図である。図 18において、従来の伝送装置は、送信アンテナ数が 2、受 信アンテナ数が 2である伝送装置(すなわち、 2 X 2MIMO— OFDM伝送装置)を示 している。
[0005] 図 18において、従来の伝送装置は、送信装置と受信装置とから構成される。送信 装置は、プリアンブル発生部 901、データ復調部 902, 903、マルチプレクサ 904, 9 05、直交変調部 906, 907、ローカル発振器 908、及び送信アンテナ TXI, TX2を 備える。受信装置は、受信アンテナ RX1, RX2、ローカル発振器 909、直交復調部 9 10, 911、周波数誤差推定部 912, 913、平均部 914、周波数補正部 915, 916、 伝搬逆関数推定部 917、及びデータ復調部 918, 919を備える。
[0006] 送信装置において、プリアンブル発生部 901は、同期用プリアンブル Ssyncと伝搬 係数推定用プリアンブル Srefとを発生する。データ変調部 902は、送信アンテナ TX 1力 送信するためのデータ(以下、データ系列 1と記す)を OFDM変調して、データ シンボル列 1を出力する。データ変調部 903は、送信アンテナ TX2から送信するため のデータ(以下、データ系列 2と記す)を OFDM変調して、データシンボル列 2を出 力する。
[0007] マルチプレクサ 904は、データシンボル列 1、同期用プリアンブル Ssync、及び伝 搬係数推定用プリアンブル Srefを時分割多重して伝送フレーム 1を生成する。マル チプレクサ 905は、データシンボル列 2、同期用プリアンブル Ssync、及び伝搬係数 推定用プリアンブル Srefを時分割多重して伝送フレーム 2を生成する。図 19は、従 来の伝送装置で用いられる伝送フレームの一例を示す図である。図 19において、伝 送フレームは、データシンボル列の前に、同期用プリアンブル Ssyncと伝搬係数推 定用プリアンブル Srefとが挿入されて!、る。
[0008] 伝送フレーム 1は、直交変調部 906とローカル発振器 908とで無線信号に変換され る。伝送フレーム 2は、直交変調部 907とローカル発振器 908とで無線信号に変換さ れる。無線信号に変換された伝送フレーム 1及び伝送フレーム 2は、送信アンテナ T XI及び送信アンテナ TX2から同時に送信される。
[0009] 複数の送信アンテナ TXiから送信された無線信号は、異なるノ スを介して複数の受 信アンテナ RXjで受信される。ただし、 iが送信アンテナ番号、 jが受信アンテナ番号 を表すものとする。ここで、送信アンテナ TXiと受信アンテナ RXiとの間の伝送パスを p (i, j)で表すと、従来の伝送装置は、 2 X 2MIMOの場合、 p (l, l)、p (l, 2)、p (2 , 1)、及び (2, 2)の4つの伝送パスを持つことになる。また、伝送パス p (i, j)が持つ 伝搬係数を h (i, j)、送信アンテナ TXiが送信する送信信号を Tiとすると、受信アンテ ナ RXjが受信する受信信号 Rjは、式( 1)及び (2)で表すことができる。 Rl =h (l, l)Tl +h (2, 1)Τ2· · · (1)
R2=h (l, 2)Tl +h (2, 2)Τ2· · . (2)
[0010] 受信装置において、受信信号 Rlは、ローカル発振器 909と直交復調部 910とで後 段の処理に最適な周波数帯域に変換される。周波数誤差推定部 912は、同期用プ リアンブル Ssyncに基づいて、受信信号 R1に含まれる周波数誤差 (以下、周波数誤 差 1と記す)を推定する。受信信号 R2も同様に、ローカル発振器 909と直交復調部 9 11とで後段の処理に最適な周波数帯に変換される。周波数誤差推定部 913は、同 期用プリアンブル Ssyncに基づいて、受信信号 R2に含まれる周波数誤差 (以下、周 波数誤差 2と記す)を推定する。周波数誤差 1及び周波数誤差 2は、平均部 914で平 均化される。
[0011] 周波数補正部 915は、平均部 914で平均化された周波数誤差に基づいて、受信信 号 R1の周波数を補正する。周波数補正部 916は、平均部 914で平均化された周波 数誤差に基づいて、受信信号 R2の周波数を補正する。周波数が補正された受信信 号 Rl, R2は、伝搬逆関数推定部 917に入力される。伝搬逆関数推定部 917は、受 信信号 R1及び受信信号 R2に含まれる伝搬係数推定用プリアンブル Srefに基づい て、伝搬係数 h(i, j)の逆関数を推定し、推定された逆関数に基づいて、多重化され た送信信号 T1及び送信信号 T2を分離する。データ復調部 918は、分離された送信 信号 T1を OFDM復調して、データ系列 1を出力する。同様にデータ復調部 919は、 分離された送信信号 T2を OFDM復調して、データ系列 2を出力する。
発明の開示
発明が解決しょうとする課題
[0012] し力しながら、従来の伝送装置においては、複数の送信アンテナから送信される同 一の同期用プリアンブル Ssyncに基づいて周波数誤差を推定していたため、受信ァ ンテナ毎の周波数誤差は推定できるが、伝送パス毎の周波数誤差は推定することが できなかった。伝送パス毎の周波数誤差は、伝搬係数が互いに無相関であり、マル チパスフエージングにより異なるドップラー周波数偏移が存在するなどの理由で互い に異なる。このため、従来の伝送装置には、空間多重により伝送パス毎に発生する 周波数誤差が足し合わされてしま 、、伝搬係数逆関数の推定および等化の精度が 下がり、特性が劣化するという課題があった。
[0013] それ故に、本発明の目的は、 MIMO— OFDM方式を利用して複数の送信アンテ ナから複数のデータ系列を送信する送信装置、及び複数のデータ系列を複数の受 信アンテナで受信する受信装置において、伝送パス毎に異なる周波数誤差が存在 する場合でも伝搬係数逆関数の推定精度を向上させ、特性劣化を抑えることができ るデータ送信方法及びデータ受信方法を提供することである。
課題を解決するための手段
[0014] 本発明は、 MIMO— OFDM方式を利用して、送信装置が、複数の送信アンテナから 複数の受信アンテナに向けて複数のデータ系列を送信するデータ送信方法に向け られている。そして上記目的を達成させるために、本発明のデータ送信方法は、互い に直交する所定の周波数間隔力 なる複数のサブキャリアに、所定の振幅と位相とを 割り当てた同期シンボルを、複数の送信アンテナ毎に分割することで複数の同期サ ブシンボルを発生させるステップと、複数の同期サブシンボルを無線信号に変換して 、複数の送信アンテナから同時に送信するステップとを備える。
[0015] 好ましくは、データ送信方法は、複数の送信アンテナから送信するための複数の送 信データを複数のデータシンボル列に変調するステップと、送信アンテナと受信アン テナとの間における複数の伝送パスが持つ伝搬係数の逆関数を推定するためのシ ンボルとして、送信アンテナ毎に互いに直交する伝搬係数推定用シンボルを発生さ せるステップとをさらに備える。送信するステップは、複数の送信アンテナ毎に、デー タシンボル列と、同期サブシンボルと、伝搬係数推定用シンボルとを伝送フレームに 多重化するステップと、複数の送信アンテナ毎に多重化された伝送フレームを、無線 信号に変換するステップとを含む。
[0016] また、データシンボル列に変調するステップは、複数のサブキャリアのうち所定のサ ブキャリアに、送信データに基づいた振幅及び位相を割り当てることで、データキヤリ ァとするステップと、データキャリア以外のサブキャリアに既知の位相及び振幅を割り 当てることで、パイロットキャリアを発生させるステップと、データキャリアとパイロットキ ャリアとを複数のデータシンボルに直交多重し、直交多重された複数のデータシンポ ルをデータシンボル列として出力するステップとを含む。 [0017] ノ ィロットキャリアを発生させるステップは、複数の送信アンテナから同時に送信す るデータシンボルの 1つにのみ、パイロットキャリアとして既知の位相と振幅とを割り当 て、その他の同時に送信するデータシンボルにはパイロットキャリアとして大きさ 0の 振幅を割り当てる。
[0018] 送信するステップは、複数の送信アンテナ間で同期を取るために、送信アンテナ毎 に共通する 1つの送信用局部発振器、又は送信アンテナ毎に異なる複数の送信用 局部発振器を利用する。
[0019] また、本発明は、 MIMO— OFDM方式を利用して複数の送信アンテナカゝら送信さ れた複数のデータ系列を、受信装置が、複数の受信アンテナを介して受信するデー タ受信方法にも向けられている。そして、上記目的を達成させるために、本発明のデ ータ受信方法は、複数のデータ系列を受信アンテナ毎に受信するステップと、複数 の受信アンテナ力 受信したデータ系列を受信アンテナ毎に同期させて復調するス テツプと、受信アンテナ毎に復調された受信信号と、受信信号に含まれる同期サブシ ンボルとに基づいて、送信アンテナと受信アンテナとの間における複数の伝送パスが 持つ特性を伝送パス毎に推定するステップとを備える。ただし、複数のデータ系列に は、互いに直交する複数のサブキャリア力もなる同期シンボルを複数の送信アンテナ 毎に分割することで生成された同期サブシンボルが含まれていることを特徴とする。
[0020] 好ましくは、特性を伝送パス毎に推定するステップは、受信アンテナ毎に復調され た受信信号と、受信信号に含まれる同期サブシンボルとの相関力 伝送パス毎に発 生する周波数誤差を推定するステップを含む。また、データ受信方法は、特性を伝 送パス毎に推定するステップの後に、推定された周波数誤差に基づいて、受信信号 の周波数を補正するステップをさらに備える。
[0021] 受信信号の周波数を補正するステップは、推定された伝送パス毎に発生する周波 数誤差を重み付け平均して、受信信号を補正するための周波数補正値を受信アン テナ毎に算出するステップと、算出された周波数補正値に基づいて、受信信号の周 波数を受信アンテナ毎に補正して周波数が補正された受信信号として出力するステ ップとを含む。
[0022] 周波数誤差を推定するステップは、受信信号と受信信号に含まれる同期サブシン ボルとの相関値のピークタイミングを重み付け平均したものに基づ 、て、受信シンポ ルタイミングを発生させることができる。
[0023] 好ましくは、受信信号には、送信アンテナと受信アンテナとの間における複数の伝送 パスが持つ伝搬係数の逆関数を推定するためのシンボルとして、送信アンテナ毎に 互いに直交するように送信された伝搬係数推定用シンボルが含まれる。このような場 合、データ受信方法は、受信信号の周波数を補正するステップの後に、周波数が補 正された受信信号に含まれる伝搬係数推定用シンボルに基づ!、て、複数の伝送パ ス毎に伝搬係数の逆関数を推定して、推定した逆関数に基づいて複数の受信信号 力も複数の送信アンテナが送信した信号を分離するステップをさらに備える。
[0024] また、データ受信方法は、復調するステップと特性を伝送パス毎に求めるステップと の間に、復調するステップによって受信アンテナ毎に復調された受信信号と、受信信 号に含まれる同期サブシンボル力も合成された同期シンボルとの相関から、復調され た受信信号に含まれる周波数誤差を受信アンテナ毎に推定するステップと、推定さ れた周波数誤差を重み付け平均して、複数の受信信号に対する平均の周波数誤差 を算出するステップと、算出された平均の周波数補正値に基づいて、複数の受信信 号の周波数を補正する第 2の補正ステップとを備えてもよい。
[0025] また、受信するステップは、複数の送信アンテナから送信された信号を、複数のデ ータ系列よりも多くの受信アンテナを用いて受信するステップと、多くの受信アンテナ 力 受信した信号の受信レベルを判定するステップと、判定された受信レベルに応じ て、多くの受信アンテナ力 受信した信号を選択又は合成するステップとを含んでも よい。
[0026] 復調するステップは、複数の受信アンテナ間で同期を取るために、受信アンテナ毎 に共通する 1つの受信用局部発振器、又は受信アンテナ毎に異なる複数の受信用 局部発振器を利用する。
[0027] また、特性を伝送パス毎に推定するステップは、受信アンテナ毎に復調された受信 信号に含まれる同期サブシンボルに基づいて、受信信号に含まれる複数のサブキヤ リアの位相と振幅とを周波数方向に補完して、伝送パス毎の粗!ヽ周波数特性を推定 するステップを含んでもよい。データ受信方法は、特性を伝送パス毎に推定するステ ップの後に、推定された伝送パス毎の粗い周波数特性に基づいて、複数の伝送パス が持つ伝搬係数の逆関数を推定して、推定した逆関数に基づ 、て複数の受信信号 力も複数の送信アンテナが送信した信号を分離するステップをさらに備える。
[0028] また、本発明は、 MIMO— OFDM方式を利用して、複数の送信アンテナから複数 の受信アンテナに向けて複数のデータ系列を送信する送信装置にも向けられて 、る 。そして、上記目的を達成させるため、本発明の送信装置は、複数の同期サブシン ボル発生部と、複数の変調部と、複数の送信アンテナとを備える。複数の同期サブシ ンボル発生部は、所定の周波数間隔力もなる複数のサブキャリアに、所定の振幅と 位相とを割り当てた同期シンボルを、複数の送信アンテナ毎に分割することで、複数 の送信アンテナ毎に互いに直交する同期サブシンボルを発生させる。複数の変調部 は、複数の同期サブシンボルを複数の送信アンテナ毎に変調する。複数の送信アン テナは、複数の変調部で変調された信号を同時に送信する
[0029] また、本発明は、 MIMO— OFDM方式を利用して複数の送信アンテナカゝら送信さ れた複数のデータ系列を、複数の受信アンテナを介して受信する受信装置にも向け られている。そして、上記目的を達成させるため、本発明の受信装置は、複数の受信 アンテナと、複数の復調部と、複数の同期サブシンボル相関部と、複数の周波数補 正部とを備える。複数の受信アンテナは、複数のデータ系列を受信する。複数の復 調部は、複数の受信アンテナで受信したデータ系列を、受信アンテナ毎に同期させ て復調する。複数の同期サブシンボル相関部は、受信アンテナ毎に復調された受信 信号と、受信信号に含まれる同期サブシンボルとの相関から、受信信号に含まれる 周波数誤差を伝送パス毎に推定する。複数の周波数補正部は、推定された周波数 誤差に基づいて、受信信号の周波数を複数の受信アンテナ毎に補正する。ただし、 複数のデータ系列には、互いに直交する複数のサブキャリアからなる同期シンボルを 複数の送信アンテナ毎に分割することで生成された同期サブシンボルが含まれてい る。
発明の効果
[0030] 以上のように本発明によれば、送信装置は、所定の周波数間隔からなる複数のサ ブキャリアに、所定の振幅と位相とを割り当てた同期シンボルを複数の送信アンテナ 毎に分割することで、互いに直交する複数の同期サブシンボルを複数の送信アンテ ナカ 同時に送信することができる。また、受信装置は、受信信号に含まれる同期サ ボシンボルと受信信号との相関を求めることで、伝送パス毎に発生する搬送派周波 数誤差および伝搬遅延を推定することができる。これによつて伝送装置は、これら推 定された誤差を受信アンテナ毎に重み付け平均して、受信信号を補正することで伝 搬係数逆関数推定の精度を向上させることができる。
[0031] また、受信装置は、受信アンテナ毎に受信した受信信号と同期シンボル Sysncとの 相関演算から、複数の受信アンテナに対する平均の周波数誤差を推定することがで きる。これによつて伝送装置は、送受間の局部発振器の周波数誤差をキャンセルす ることができ、後段の同期サブシンボル相関演算をより正確に行うことができる。
[0032] また、受信装置は、同期サブシンボルを用いて、予め伝送パス毎の粗!、周波数特 性を推定することができる。これによつて伝送装置は、伝搬係数逆関数の推定精度を 向上させることができる。
[0033] また、受信装置は、周波数選択性フ ージング環境下で特定のサブキャリア受信レ ベルが落ち込むような場合でも、複数の受信アンテナの選択または合成による受信 ダイバーシチ効果で、同期サブシンボルの相関を正確に求めることができる。これに よって伝送装置は、伝送パス毎の搬送波周波数誤差をより正確に補正することがで き、伝搬係数逆関数の推定精度を向上させることができる。
[0034] また、送信装置は、データ変調部が所定のサブキャリアに既知の位相及び振幅を 割り当てることで、データシンボルにパイロットキャリアを発生させることができる。また 、受信装置は、同期シンボルによる周波数推定に残留誤差があるような場合でも、デ ータシンボルのノ ィロットキャリアを用いて、伝送パス毎に残留誤差を推定し伝搬係 数を補正することで伝搬係数逆関数の推定精度を向上させることができる。また、伝 送装置は、周波数選択性フェージング環境下で特定のサブキャリア受信レベルが落 ち込むような場合でも、パイロットキャリアを全サブキャリアに順次割り当てることで、パ ィロットキャリア受信レベルが落ち込む確率を低くすることができる。また、上述したパ ィロットサブキャリアの割当て方法により、各サブキャリアの伝搬路推定値の補間精度 を均一にすることができる。 図面の簡単な説明
[図 1]図 1は、本発明の第 1の実施形態に係る伝送装置の構成の一例を示すブロック 図である。
[図 2]図 2は、同期サブシンボル Stxl, Stx2を説明する図である。
[図 3]図 3は、伝送フレームの構成の一例を示す図である。
[図 4]図 4は、マルチプレクサ 106, 107が生成する伝送フレームの一例を示す図で ある。
[図 5]図 5は、送信アンテナ毎に異なる局部発振器を用いた伝送装置の構成の一例 を示すブロック図である。
[図 6]図 6は、同期サブシンボル相関部 114, 115の詳細な動作を説明する図である
[図 7]図 7は、本発明の第 2の実施形態に係る受信装置の構成の一例を示すブロック 図である。
[図 8]図 8は、同期シンボル Sysncを挿入した伝送フレームの一例を示す図である。
[図 9]図 9は、本発明の第 3の実施形態に係る伝送装置の構成の一例を示すブロック 図である。
[図 10]図 10は、伝搬係数粗推定部 301— 304の動作を説明する図である。
[図 11]図 11は、本発明の第 4の実施形態に係る受信装置の構成の一例を示すプロ ック図である。
[図 12]図 12は、受信系統数よりも多い受信アンテナをまとめて備える受信装置の構 成の一例を示すブロック図である。
[図 13]図 13は、本発明の第 5の実施形態に係る伝送装置の構成の一例を示すプロ ック図である。
[図 14]図 14は、本発明の第 5の実施形態に係るデータ変調部 502, 504の構成の一 例を示すブロック図である。
[図 15]図 15は、本発明の第 5の実施形態に係る伝搬逆関数推定部 522の構成の一 例を示すブロック図である。
[図 16]図 16は、データ変調部 502, 504が生成するデータシンボル列の一例を示す 図である。
園 17]図 17は、パイロットキャリアの配置の一例を時間軸対周波数軸で模式的に示 す図である。
[図 18]図 18は、従来の伝送装置の構成の一例を示すブロック図である。
[図 19]図 19は、従来の伝送装置で用いられる伝送フレームの一例を示す図である。 符号の説明
TX1、 TX2 送信アンテナ
RX1、 RX2 受信アンテナ
101、 105 同期サブシンボル発生部
102、 104、 502、 504 データ変調部
103 伝搬係数推定用シンボル発生部
106、 107 マノレチプレクサ
108、 110 直交変調部
109 送信用局部発振器
112 受信用局部発振器
111、 113 直交復調部
114- -117 同期サブシンボル相関部
118、 119、 203 重み付け平均部
120、 121 周波数補正部
122、 322、 522 伝搬逆関数推定部
123、 124 データ復調部
201、 202 同期シンボル相関部
204、 205 周波数補正部
301 -304 伝搬係数粗推定部
401、 402 受信レベル判定部
403、 404 選択合成部
5021、 5041 データキャリアマッピング部
5022、 5042 ノ ィロットキャリア発生部 5023、 5043 直交多重部
5221、 5222 直交分離部
5223 伝搬路特性推定部
5224—5227 PC抽出部
5228-5231 伝搬路係数粗推定部
5232 伝搬路特性更新部
5233 伝搬路逆関数演算部
5234 チャネル分離部
発明を実施するための最良の形態
[0037] (第 1の実施形態)
図 1は、本発明の第 1の実施形態に係る伝送装置の構成の一例を示すブロック図 である。ここでは、送信アンテナ数が 2、受信アンテナ数が 2である(すなわち、 2 X 2 MIMO構成である)場合の伝送装置を示して!/、る。
[0038] 図 1において、本発明の第 1の実施形態に係る伝送装置は、送信装置と受信装置 とから構成される。送信装置は、送信アンテナ TX1, TX2、同期サブシンボル発生部 101, 105、データ変調部 102, 104、伝搬係数推定用シンボル発生部 103、マルチ プレクサ 106, 107、直交変調部 108, 109、及び送信用局部発振器 109を備える。 受信装置は、受信アンテナ RX1, RX2、直交復調部 111, 113、受信用局部発振器 112、同期サブシンボル相関部 114一 117、重み付け平均部 118, 119、周波数補 正部 120, 121、伝搬逆関数推定部 122、及びデータ復調部 123, 124を備える。
[0039] 送信装置において、送信アンテナ TX1, TX2は、無線信号を送信するためのアン テナである。同期サブシンボル発生部 101, 105は、送信アンテナ毎に異なる同期 サブシンボル Stxを発生させる。データ変調部 102, 104は、送信アンテナ毎に異な るデータ系列を変調し、データシンボル列として出力する。伝搬係数推定用シンボル 発生部 103は、伝搬係数の逆関数を推定するためのシンボル (以下、伝搬係数推定 用シンボル Srefと記す)を発生させる。マルチプレクサ 106, 107は、同期サブシンポ ル Stxと伝搬係数推定用シンボル Srefとデータシンボル列とを多重化して伝送フレ ームを生成する。送信用局部発振器 109は、マルチプレクサ 106とマルチプレクサ 1 07との間の同期を保っための発振器である。
[0040] 受信装置において、受信アンテナ RX1, RX2は、無線信号を受信するためのアン テナである。直交復調部 111, 113は、受信アンテナを介して受信した無線信号を復 調して受信信号として出力する。受信用局部発振器 112は、直交復調部 111と直交 復調部 113との間の同期を保っための発振器である。同期サブシンボル相関部 114 一 117は、受信信号と同期サブシンボル Stxとの相関を求め、伝送パス毎の周波数 誤差を推定する。重み付け平均部 118, 119は、伝送パス毎の周波数誤差を重み付 け平均して、受信アンテナ毎の周波数補正値を算出する。周波数補正部 120, 121 は、算出された周波数補正値に基づいて、受信信号の周波数を補正する。伝搬逆 関数推定部 122は、周波数補正された受信信号に含まれる伝搬係数推定用シンポ ル Srefに基づ ヽて、送信アンテナから送信されたデータ系列を受信信号から分離す る。データ復調部 123, 124は、伝搬逆関数推定部 122で分離されたデータ系列を 復調する。
[0041] 以下、第 1の実施形態に係る伝送装置を構成する送信装置及び受信装置の動作 について説明する。
[送信装置の動作について]
送信装置において、同期サブシンボル発生部 101, 105は、送信アンテナ毎に異 なる同期サブシンボル Stxを発生させる。具体的には、同期サブシンボル発生部 10 1は、送信アンテナ TX1用に同期サブシンボル Stxlを発生させる。同期サブシンポ ル発生部 105は、送信アンテナ TX2用に同期サブシンボル Stx2を発生させる。図 2 は、同期サブシンボル Stxl, Stx2を説明する図である。
[0042] 図 2を参照して、同期サブシンボル Stxl, Stx2は、同期シンボル Ssyncに含まれる 複数のサブキャリア力も所定のサブキャリアを抜き出して構成されたものである。同期 シンボル Ssyncは、互いに直交する所定の周波数間隔力もなる複数のサブキャリア から構成され、各サブキャリアには所定の振幅と位相とが割り当てられている。同期シ ンボル Ssyncには、これらのサブキャリアをフーリエ変換などで直交多重し、時間軸 上で表される信号に変換すると、上述した所定の周波数間隔の逆数である時間周期 で、繰り返し波形が現れるという性質がある。 [0043] 同期サブシンボル発生部 101, 105は、同期シンボル Ssyncを構成する複数のサ ブキャリアを送信アンテナ数 N個の組に分割する。例えば、同期サブシンボル発生部 101は、送信アンテナ TX1から送信するシンボルとして、偶数番のサブキャリアを割り 当て、フーリエ変換などで直交多重することで、同期サブシンボル Stxlを発生させる 。また、同期サブシンボル発生部 105は、送信アンテナ TX2から送信するシンボルと して奇数番のサブキャリアを割り当て、フーリエ変換などで直交多重することで、同期 サブシンボル Stx2を発生させる。同期サブシンボル Stxl, Stx2同士は、互いにサ ブキャリア配置が異なり周波数領域で直交するため、空間で多重されても容易に分 離することができる。また、同期サブシンボル Stxl, Stx2にも上述した所定の周波数 間隔の逆数である時間周期で繰り返し波形が現れる。このため、受信装置は、この繰 り返し波形を元に搬送波周波数誤差を推定することが可能となる。
[0044] データ変調部 102は、送信アンテナ TX1から送信するためのデータ(以下、データ 系列 1と記す)を変調してデータシンボル列 1を出力する。データ変調部 104は、送 信アンテナ TX2から送信するためのデータ系列(以下、データ系列 2と記す)を変調 してデータシンボル列 2を出力する。
[0045] 伝搬係数推定用シンボル発生部 103は、伝搬係数推定用シンボル Srefを発生さ せる。伝搬係数推定用シンボル Srefには、伝送パス毎に伝搬係数の逆関数を推定 するため、送信アンテナ間で互いに直交するシンボルが用いられる。送信アンテナ T XIから送信するシンボルを Sref 1、送信アンテナ TX2から送信するシンボルを Sref 2とすると、伝搬係数推定用シンボル発生部 103は、例えば、ある時刻 T1において は、 Sreflとして Srefを出力し、 Sref 2としては何も出力しない。また、伝搬係数推定 用シンボル発生部 103は、別の時刻 T2においては、 Sreflとしては何も出力せず、 Sref2として Srefを出力する。これによつて、伝搬係数推定用シンボル発生部 103は 、 Sref 1と Sref 2とを時間的〖こ直交させることができる。
[0046] データシンボル列 1、伝搬係数推定用シンボル Srefl及び同期サブシンボル Stxl は、マルチプレクサ 106に入力される。データシンボル列 2、伝搬係数推定用シンポ ル Sref2及び同期サブシンボル Stx2は、マルチプレクサ 107に入力される。マルチ プレクサ 106は、入力されたデータシンボル列 1、伝搬係数推定用シンボル Srefl及 び同期サブシンボル Stxlを多重化して伝送フレーム Flを生成する。同様に、マル チプレクサ 107は、入力されたデータシンボル列 2、伝搬係数推定用シンボル Sref 2 及び同期サブシンボル Stx2を多重化して伝送フレーム F2を生成する。図 3は、マル チプレクサ 106, 107が生成する伝送フレームの一例を示す図である。図 3を参照し て、伝送フレームには、データシンボル列の前に同期サブシンボル Stxと伝搬係数 推定用シンボル Srefとが挿入されて!、る。
[0047] 伝送フレーム F1は、直交変調部 108と送信用局部発振器 109とで無線信号に変 換される。伝送フレーム 2は、直交変調部 110と送信用局部発振器 108とで無線信 号に変換される。無線信号に変換された伝送フレーム F1及び伝送フレーム F2は、 送信アンテナ TX1及び送信アンテナ TX2から同時に送信される。
[0048] なお、図 3において、伝送フレームには、同期サブシンボル Stx及び伝搬係数推定 用シンボル Srefが、データシンボル列の前に挿入されている力 同期サブシンボル S txと伝送係数推定用シンボル Srefの 、ずれかまたは両方をデータシンボル列中に 所定間隔で挿入してもよいものとする。図 4は、 Stxと Srefとの両方をデータシンボル 列中に挿入した伝送フレームの一例を示す図である。このような伝送フレームを用い ることで、伝送装置は、伝搬特性に時間変動が生じるような場合でも、所定間隔で挿 入されたこれらのシンボルで伝搬特性を推定し直すことで時間変動に追従することが 可能になる。これにより、伝送装置は、伝搬特性に時間変動が生じるような場合でも、 受信特性の劣化を抑えることができる。
[0049] また、送信装置は、送信アンテナ毎に異なる送信用局部発振器を用いてもよい。図 5 は、送信アンテナ毎に異なる局部発振器を用いた伝送装置の構成の一例を示すブ ロック図である。図 5を参照して、送信装置は、送信アンテナ TX1用の局部発振器 10 9aと、送信アンテナ TX2用の局部発振器 109bとを備えている。このような送信装置 は、送信アンテナの配置に自由度を持たせることができる。また、このような送信装置 から構成される伝送装置は、送信アンテナの配置によっては、伝送パス間の相関をよ り小さくすることができ、効果的に空間多重を行うことができる。さらに、 1つの送信用 局部発振器を用いて複数のアンテナ力 送信する MIMO専用の高周波部品だけで なぐ一般的に用いられている高周波部品を使用することができる。 [0050] [受信装置の動作について]
送信アンテナ TX1, TX2から同時に送信された無線信号は、複数の空間パスを介し て受信アンテナ RXl, RX2で受信される。受信アンテナ RX1で受信された信号 (以 下、受信信号 R1と記す)は、直交復調部 111と受信用局部発振器 112とで復調され 、同期サブシンボル相関部 114, 115及び周波数補正部 120に入力される。同様に 、受信アンテナ RX2で受信された信号 (以下、受信信号 R2と記す)は、直交復調部 1 13と受信用局部発振器 112とで復調され、同期サブシンボル相関部 116, 117及び 周波数補正部 121に入力される。
[0051] ここで、送信アンテナ TXiと受信アンテナ RXjとの間の伝送パスを p (i, j)、伝送パス p
(i, j)が持つ伝搬係数を Mi, j)とする。このような場合、受信アンテナ RXiが受信する 同期サブシンボルは、送信アンテナ TX1が同期サブシンボル Stxlを、送信アンテナ TX2が同期サブシンボル Stx2を送信しているので、 h(l, l) Stxl +h (2, l) Stx2 で表すことができる。ただし、 iが送信アンテナ番号、 jが受信アンテナ番号である。
[0052] すなわち、同期サブシンボル相関部 114は、 Stxlと Stx2と力 S互いに直交しているの で、 RX1での受信信号と Stxlとのネ目関を求めると、 Stx2の項力 ^0となり、 Stxlに基 づいて伝送パス p (l, 1)に関する情報を推定することができる。同様に、同期サブシ ンボル相関部 115は、 RX1での受信信号と Stx2との相関を求めると、 Stxlの項が 0 となり、 Stx2に基づいて伝送パス p (2, 1)に関する情報を推定することができる。
[0053] 図 6は、同期サブシンボル相関部 114, 115の詳細な動作を説明する図である。図 6
(a)及び(b)を参照して、 TXI, TX2から送信される同期サブシンボル Stxl, Stx2 には、上述したように所定の周期の繰り返し波形が表れる。図 6 (c)は、受信アンテナ RX1での受信信号 (以下、 RX1受信信号と記す)を表している。同期サブシンボル相 関部 114, 115は、同期サブシンボル Stxl, Stx2の繰り返し波形と RXl受信信号と の複素相関を演算する。図 6 (d)を参照して、 RX1受信信号と Stxlとの相関値 (以下 、 Stxl相関値と記す)には、 RX1受信信号と、 Stxlの繰り返し波形とがー致するタイ ミングで複素相関値のピークが現れる。図 6 (e)を参照して、搬送波周波数誤差が生 じると、相関ピークタイミング毎に相関値の位相が変化するため、同期サブシンボル 相関部 114は、この変動量から伝送パス p (l, 1)で発生する搬送波周波数誤差を推 定することができる。
[0054] 図 6 (f)及び (g)を参照して、同期サブシンボル相関部 115は、同様の方法にて、伝 送パス p (l, 2)で発生する搬送波周波数誤差を推定する。同期サブシンボル相関部 116, 117も、同様の方法にて、同期サブシンボル Stxl, Stx2の繰り返し波形と受 信信号 R2との複素相関を演算して、伝送パス p (l, 2)、p (2, 2)で発生する搬送波 周波数誤差を推定する。
[0055] 同期サブシンボル相関部 114一 117は、 Stx内の繰り返し波形と受信信号との相 互相関演算で、 Stx相関値を求めることができる。あるいは、同期サブシンボル相関 部 114一 117は、一周波数 DFTを用いて Stxを構成するサブキャリアを幾つ力抽出 し、抽出したサブキャリアの位相変化の平均から Stx相関値を求めてもよい。このよう な場合、送信装置が Stxを繰り返して送信し、受信装置で同期サブシンボル相関部 1 14一 117が Stxの繰り返し波形の相関を求める。同期サブシンボル相関部 114一 1 17は、この繰り返し波形の相関ピークが所定間隔で所定回数検出できれば、以降に 受信する Stx列に対しては Stx長の相関を求めてょ 、。同期サブシンボル相関部 11 4一 117は、このように相関演算期間を長くすることで、より精密な送受間位相差を検 出することが可能となる。
[0056] 同期サブシンボル相関部 114一 117で得られた伝送パス毎の搬送波周波数誤差 は、重み付け平均部 118, 119に入力される。重み付け平均部 118は、伝送パス p ( 1, 1)及び p (2, 1)の搬送波周波数誤差を重み付け平均して、受信アンテナ RX1に 対する周波数補正値を算出する。同様に、重み付け平均部 119は、伝送パス p (l, 2 )及び p (2, 2)の搬送波周波数誤差を重み付け平均して、受信アンテナ RX2に対す る周波数補正値を算出する。
[0057] 重み付け平均部 118, 119は、各同期サブシンボル Stxの相関量に比例した重み 付けを行えばよい。あるいは、重み付け平均部 118, 119は、後段のデータ復調部 1 23, 124で送信アンテナ毎の受信誤り率を求め、その誤り率に基づいて誤りの多い( すなわち、伝搬路が劣悪な)伝送パスを介して受信される信号の重み付けを小さくし てもよい。
[0058] また、重み付け平均部 118, 119は、同期サブシンボルが伝送フレーム中に所定間 隔で挿入されている場合 (図 4参照)、過去に推定された搬送波周波数誤差と、現在 の同期サブシンボル力 推定された搬送波周波数誤差とを平均化してもよい。このよ うな伝送装置は、雑音などによる推定誤差で周波数補正値が大きく変動することを抑 えつつ、搬送波周波数誤差の時間変動に追従することができるため、より伝搬係数 逆関数の推定精度を向上させることができる。
[0059] 周波数補正部 120, 121は、重み付け平均部 118, 119で算出された受信アンテナ 毎の周波数補正値に基づいて受信信号 Rl, R2の周波数を補正する。伝搬逆関数 推定部 122は、周波数補正された受信信号 Rl, R2から伝搬係数推定用シンボル S refを抽出し、伝送パス毎の伝搬係数逆関数を推定して干渉成分をキャンセルする 等化を行い、送信アンテナ TX1, TX2から送信されたデータシンボル列を分離する 。具体的には、送信アンテナ TX1から送信されたデータは、データシンボル列 1とし て分離される。送信アンテナ TX2から送信されたデータは、データシンボル列 2とし て分離される。分離されたデータシンボル列 1は、データ復調部 123でデータ系列 1 として復調される。同様に、分離されたデータシンボル列 2は、データ復調部 124で データ系列 2として復調される。
[0060] なお、受信装置は、同期サブシンボル相関部 114一 117で得られた相関ピークタイミ ングから伝送パス毎に発生する伝搬遅延を検出することで、粗いフレーム同期を確 立することができる。受信装置は、これらの相関ピークタイミングを相関量に応じて重 み付け平均し、それに基づいてシンボルタイミングを発生させることで、伝搬逆関数 推定部 122での Sref抽出時におけるシンボル間干渉を抑圧することができる。
[0061] また、受信装置は、受信アンテナ毎に異なる受信用局部発振器を用いてもよい。受 信装置は、受信用局部発振器を複数用いることで、受信アンテナの配置により自由 度を持たせることができる。また、このような受信装置力も構成される伝送装置は、受 信アンテナの配置によっては、伝送パス間の相関をより小さくすることができ、効果的 に空間多重を行うことができる。さらに、 1つの受信用局部発振器を用いて複数のァ ンテナから受信する MIMO専用の高周波部品だけでなく、一般的に用 、られて 、る 高周波部品を使用することができる。
[0062] 以上のように、本発明の第 1の実施形態に係る送信装置によれば、所定の周波数 間隔力もなる複数のサブキャリアに、所定の振幅と位相とを割り当てた同期シンボル を複数の送信アンテナ毎に分割することで、互いに直交する複数の同期サブシンポ ルを複数の送信アンテナ力も同時に送信することができる。また、受信装置によれば 、受信信号に含まれる同期サボシンボルと受信信号との相関を求めることで、伝送パ ス毎に発生する搬送派周波数誤差および伝搬遅延を推定することができる。これに よって伝送装置は、これら推定された誤差を受信アンテナ毎に重み付け平均して、 受信信号を補正することで伝搬係数逆関数推定の精度を向上させることができる。
[0063] (第 2の実施形態)
第 2の実施形態に係る伝送装置は、第 1の実施形態(図 1参照)と比較して、受信装 置の構成が異なる。第 1の実施形態に係る伝送装置においては、送信用局部発振 器 109と受信用局部発振器 112との間での周波数誤差が大きい場合、同期サブシ ンボル相関部 114一 117が相関を正確に求められな 、可能性があった。特に相関 演算に一周波数 DFTなどを用いた場合は、同期サブシンボル相関部 114一 117は 、周波数誤差にフーリエ変換の周波数ビン間隔の 1Z2以上のずれが生じると、サブ キャリアの抽出が正確に行えなくなる。そこで、第 2の実施形態に係る受信装置は、 送受間における局部発振器の平均の周波数誤差を予め補正する。
[0064] 図 7は、本発明の第 2の実施形態に係る受信装置の構成の一例を示すブロック図で ある。第 2の実施形態では、第 1の実施形態と同一の構成要素については同一の参 照符号を用いて説明を省略する。図 7において、第 2の実施形態に係る受信装置は 、第 1の実施形態と比較して、同期シンボル相関部 201, 202、重み付け平均部 203 、及び周波数補正部 204, 205をさらに備える。
[0065] 同期シンボル相関部 201は、受信アンテナ RX1が受信した信号に含まれる同期サ ブシンボル Stxl, Stx2を合成して、同期シンボル Sysncを生成する。この同期シン ボル Ssyncは、上述したように所定の周期の繰り返し波形力もなる。そのため、同期 シンボル相関部 201は、受信信号と同期シンボル Ssyncの繰り返し波形との相関か ら、受信アンテナ RX1において発生する平均の周波数誤差を求めることができる。同 期シンボル相関部 202も同様に、受信アンテナ RX2において発生する平均の周波 数誤差を求めることができる。 [0066] 重み付け平均部 203は、同期シンボル相関部 201, 202で求められた受信アンテ ナ毎の周波数誤差を重み付け平均し、受信信号に対する周波数補正値を求める。こ のとき、重み付け平均部 203は、各同期シンボル Sysncの相関量に比例した重み付 けを行えばよい。あるいは、重み付け平均部 203は、各受信アンテナで受信された受 信信号のレベルに比例した重み付けを行ってもよい。
[0067] 周波数補正部 204, 205は、重み付け平均部 203で求められた周波数補正値に 基づいて、受信アンテナ毎に受信信号を周波数補正し、送受間の局部発振器の周 波数誤差をキャンセルする。
[0068] なお、第 2の実施形態に係る伝送装置においては、第 1の実施形態と同じ伝送フレ ーム(図 3参照)を用いていた力 予め同期サブシンボル Stxの前に、同期シンボル S ysncを挿入した伝送フレームを用いてもよい。図 8は、同期シンボル Sysncを挿入し た伝送フレームの一例を示す図である。このような伝送フレームを用いることで、第 2 の実施形態に係る伝送装置は、同期シンボル Sysncに含まれる全てのサブキャリア を複数のアンテナ力も送信することができる。これにより、伝送装置は、ある伝送パス における受信レベルが低い場合でも、同期シンボル Sysncの相関を精度良く検出す ることがでさる。
[0069] 以上のように、本発明の第 2の実施形態に係る受信装置によれば、受信アンテナ毎 に受信した受信信号と同期シンボル Sysncとの相関演算から、複数の受信アンテナ に対する平均の周波数誤差を推定することができる。これによつて、伝送装置は、送 受間の局部発振器の周波数誤差をキャンセルすることができ、後段の同期サブシン ボル相関演算をより正確に行うことができる。
[0070] (第 3の実施形態)
図 9は、本発明の第 3の実施形態に係る伝送装置の構成の一例を示すブロック図 である。第 3の実施形態では、第 1の実施形態と同一の構成要素については、同一 の参照符号を用いて説明を省略する。第 3の実施形態に係る伝送装置は、第 1の実 施形態(図 1参照)と比較して、受信装置の構成が異なっている。図 9において、第 3 の実施形態に係る受信装置は、受信アンテナ RX1, RX2、直交復調部 111, 113、 受信用局部発振器 112、同期サブシンボル相関部 114一 117、伝搬係数粗推定部 301— 304、伝搬逆関数推定部 322、及びデータ復調部 123, 124を備える。
[0071] 同期サブシンボル相関部 114一 117は、上述したように受信信号と同期サブシンポ ル Stxとの相関から、各伝送パスに関する情報を推定することが可能である。同期サ ブシンボル相関部 114一 117は、同期サブシンボルを構成するサブキャリアを一周 波数 DFTなどで抽出した場合、各サブキャリアの位相と振幅とを求めることができる。
[0072] 図 10は、伝搬係数粗推定部 301— 304の動作を説明する図である。なお、図 10 ( a)において、細い矢印は、 OFDM変調されたデータシンボル列のサブキャリアが空 間多重されたもの(すなわち、データキャリア)を表している。同期サブシンボル相関 部 114は、 RX1での受信信号(図 10 (a)参照)から Stxlを構成するサブキャリアのみ を抽出し、抽出したそれぞれのサブキャリアの位相と振幅とを求める。伝搬係数粗推 定部 301は、 Stxlを構成するサブキャリアの位相と振幅とを元に、隣接サブキャリア 間の位相'振幅特性を補完することで、伝送パス p (l, 1)の粗い周波数特性を推定 することができる(図 10 (b)参照)。
[0073] 同様に、伝搬係数粗推定部 302は、 Stx2を構成するサブキャリアの位相と振幅と を元に、隣接サブキャリア間の位相'振幅特性を補完してやれば、伝送パス P (2, 1) の粗 、周波数特性を推定することができる(図 10 (c)参照)。
[0074] 受信装置で受信されるデータキャリア(図 10 (a)参照)は、これら 2つの伝送パス p ( 1, l)、p (2, 1)の特性が合成されたものである。よって、伝搬係数粗推定部 301— 3 04は、同期サブシンボル Stxを用いて、予め伝送パスの粗い周波数特性を求める。 伝搬逆関数推定部 322は、この粗い周波数特性に基づいて、より精密に伝搬係数の 逆関数を推定する。
[0075] 以上のように、本発明の第 3の実施形態に係る受信装置によれば、同期サブシンポ ル Stxを用いて、予め伝送パス毎の粗い周波数特性を推定することができる。これに よって伝送装置は、後段の伝搬係数逆関数の推定精度を向上させることができる。
[0076] なお、第 3の実施形態で説明した伝搬係数粗推定部 301— 304を用いる手法は、 第 1一第 2の実施形態と組み合わせることが可能である。
[0077] (第 4の実施形態)
第 4の実施形態に係る伝送装置は、第 1の実施形態(図 1参照)と比較して、受信装 置の構成が異なる。第 1の実施形態に係る受信装置においては、周波数選択性フ 一ジング環境下では、特定のサブキャリアの受信レベルが落ち込み、同期サブシン ボル相関部 114一 117で相関が正確に求められな 、可能性が生じる。特にサブキヤ リア本数が少ない同期サブシンボルの場合は、あるサブキャリアの受信レベルが落ち 込んだ場合その影響が大きくなる。そこで、第 4の実施形態に係る受信装置は、受信 系統毎に複数の受信アンテナを設け、受信ダイバーシチにより周波数選択性フエ一 ジングの影響を軽減させる。
[0078] 図 11は、本発明の第 4の実施形態に係る受信装置の構成の一例を示すブロック図 である。第 4の実施形態では、第 1の実施形態と同一の構成要素については同一の 参照符号を用いて説明を省略する。
[0079] 図 11において、第 4の実施形態に係る受信装置は、第 1の実施形態と比較して、受 信アンテナ RX1, RX2の代わりに、受信アンテナ RX1— 1, RX1— 2、 RX2— 1, RX2 —2、受信レベル判定部 401, 402、及び選択合成部 403, 404を備える。
[0080] 受信装置において、受信アンテナ RX1— 1, RX1— 2は、受信系統 1に設けられた複 数のアンテナである。受信レベル判定部 401は、複数の受信アンテナでの受信信号 の受信レベルを比較する。選択合成部 403は、受信レベル判定部 401での比較結 果に基づいて、複数のアンテナでの受信信号を選択又は合成する。例えば、選択合 成部 403は、 RX1—1での受信レベルの方が RX1—2での受信レベルよりも大き!/、場 合は、 RX1 - 1での受信信号を選択する。あるいは、選択合成部 403は、 RX1- 1で の受信レベルと RX1— 2での受信レベルとの比に基づ!/、て、受信信号を合成してもよ い。また、選択合成部 403は、同期サブシンボル相関部 114, 115の出力結果に基 づいて、同期サブシンボルに含まれるサブキャリアが所定レベル以下にならない方の 受信信号を選択しても良い。
[0081] 受信系統 2にお 、ても、受信レベル判定部 402、及び選択合成部 404は、複数の 受信アンテナ RX2 - 1 , RX2 - 2での受信信号を選択または合成する。
[0082] なお、第 4の実施形態に係る受信装置は、受信系統毎に複数のアンテナを備える のではなぐ受信系統数よりも多い受信アンテナをまとめて備える構成としてもよい。 図 12は、受信系統数よりも多い受信アンテナをまとめて備える受信装置の構成の一 例を示すブロック図である。図 12を参照して、受信装置は、複数の受信アンテナでの 受信レベルを比較して、受信信号を選択または合成することにで、受信系統数分の 受信信号を取り出すことができる。
[0083] 以上のように、本発明の第 4の実施形態に係る受信装置によれば、周波数選択性 フェージング環境下で特定のサブキャリア受信レベルが落ち込むような場合でも、複 数受信アンテナの選択または合成による受信ダイバーシチ効果で、同期サブシンポ ルの相関を正確に求めることができる。これにより、伝送装置は、伝送パス毎の搬送 波周波数誤差をより正確に補正することができ、伝搬係数逆関数の推定精度を向上 させることがでさる。
[0084] なお、第 4の実施形態で説明した受信系統毎に複数の受信アンテナを設ける手法 は、第 1、第 2及び第 3の実施形態と組み合わせることが可能である。
[0085] (第 5の実施形態)
図 13は、本発明の第 5の実施形態に係る伝送装置の構成の一例を示すブロック図 である。図 13において、本発明の第 5の実施形態に係る伝送装置は、データ変調部 502, 504及び伝搬逆関数推定部 522が第 1の実施形態(図 1参照)と異なる。図 14 は、本発明の第 5の実施形態に係るデータ変調部 502, 504の構成の一例を示すブ ロック図である。図 15は、本発明の第 5の実施形態に係る伝搬逆関数推定部 522の 構成の一例を示すブロック図である。
[0086] 図 14において、データ変調部 502は、データキャリアマッピング部 5021、ノ ィロット キャリア 1発生部 5022、及び直交多重部 5023を備える。また、データ変調部 504は 、データキャリアマッピング部 5041、パイロットキャリア 2発生部 5042、及び直交多重 部 5043を備える。
[0087] データ変調部 502がデータ系列 1を変調してデータシンボル列 1を生成するのは第 1 の実施形態と同様である。データシンボル列 1は、複数のサブキャリアを周波数軸上 で直交多重した OFDMシンボルである。以下、第 1の実施形態と異なるデータ変調 部 502の動作について説明する。データ変調部 502は、データシンボル列 1を構成 する複数サブキャリアに含まれる所定のサブキャリアに、既知の位相及び振幅を割り 当ててパイロットキャリアとする。また、データ変調部 502は、パイロットキャリア以外の サブキャリアには、データ系列 1に基づき、位相及び振幅を割り当てて、データキヤリ ァとする。
[0088] データ変調部 502において、データキャリアマッピング部 5021は、入力されるデー タ系列 1に基づき、データキャリアに位相及び振幅をマッピングする。このときのマツピ ング規則には、 PSKや QAMなどが用いられる。パイロットキャリア 1発生部 5022は、 ノィロットキャリアとして、所定のサブキャリアに対して所定の位相及び振幅を割り当 てる。データキャリアマッピング部 5021及びパイロットキャリア 1発生部 5022から出力 された複数のサブキャリアは、直交多重部 5023に入力される。直交多重部 5023は 、これら複数のサブキャリアを直交多重してデータシンボルの時間軸波形 (すなわち 、データシンボル列 1)を生成する。なお、直交多重には、逆フーリエ変換ゃ逆ゥエー ブレット変換、逆離散コサイン変換などが用いられる。
[0089] データ変調部 504においても、データ変調部 502と同様に、データシンボル列 2を 生成する。
[0090] 図 16は、データ変調部 502, 504が生成するデータシンボル列の一例を示す図で ある。図 16において、各データシンボル列は、 4つのデータシンボルからなり、各デ ータシンボルが 8つのサブキャリア力もなる場合を示している。ただし、これらの数は 任意に拡張できるものとする。
[0091] 図 16において、 1段目と 4段目とは、各データシンボル列の時間軸上の配置を示し ている。送信アンテナ TX1から送信されるデータシンボル列 1は、 4つのデータシン ボル Dl— 1, Dl-2, Dl-3, D1—4からなる。同様に、送信アンテナ TX2から送信さ れるデータシンボル列 2は、 4つのデータシンボル D2—1, D2-2, D2—3, D2— 4か らなる。これらのデータシンボル列は、各アンテナから同時に送信される。 すなわち 、データシンボル列は、 1番目にデータシンボル D1— 1と D2— 1とが同時に送信され、 2番目にデータシンボル D1— 2と D2— 2とが同時に送信され、以降省略という順で送 信される。
[0092] 一方、図 16において、 2段目と 3段目とは、各データシンボルの周波数軸上のサブ キャリア配置を示している。データシンボルは、 8つのサブキャリア C 4、 C— 3、 C-2 、 C— 1、 C+ l、 C + 2, C + 3、 C+4力もなる。サブキャリアを示す矢印のうち、実線 はデータキャリアを、破線はパイロットキャリアを示す。また、サブキャリア位置に矢印 がないものは、振幅 0のヌルキャリアを示す。
[0093] データ変調部 502は、 1番目に送信するデータシンボル D1— 1及び D2— 1には、サ ブキャリア番号 C—1及び C+4にパイロットキャリアを割り当てる。このとき、 Dl— 1のパ ィロットキャリアには、所定の位相と 0より大きい振幅とを割り当てる。一方、 D2— 1のパ ィロットキャリアには、振幅 0のヌルキャリアを割り当てる。これにより、 1番目に送信さ れるデータシンボル D1— 1及び D2— 1において、サブキャリア番号 C 1及び C+4は 、送信アンテナ TX1からのみ送信される。よって、受信装置では、 1番目に受信する データシンボルのうちサブキャリア番号 C 1及び C+4を用いることで、送信アンテナ TX1と各受信アンテナとの間の伝搬係数 (h(l、 l)、h(l、 2) )を推定することが可能 となる。
[0094] 次に、 2番目に送信するデータシンボル D 1—2及び D2—2には、 1番目に送信した パイロットキャリアと同じサブキャリア番号 (C 1及び C+4)にパイロットキャリアを割り 当てる。ただし、 1番目に送信したものとは逆に、 D2— 2のパイロットキャリアに所定の 位相と 0より大きい振幅とを割当て、 D1— 2のパイロットキャリアに振幅 0のヌルキャリア を割り当てる。これにより、 2番目に送信するデータシンボル D 1—2及び D2— 2におい て、サブキャリア番号 C—1及び C+4は、送信アンテナ TX2からのみ送信される。よつ て、受信装置では、 2番目に受信するデータシンボルのうちサブキャリア番号 C 1及 び C +4を用いることで、送信アンテナ TX2と各受信アンテナとの間の伝搬係数 (h (2 、 1)、 h (2、 2) )を推定することが可能となる。
[0095] 3番目と 4番目とに送信するデータシンボルにおいても、 1、 2番目と同様に、パイ口 ットキャリアをサブキャリア番号 C 3と C + 2とに割り当てる。すなわち、 3番目に送信 するデータシンボルには、 D1—3の C—3と C + 2とに所定の位相と 0より大きい振幅と を割り当てて、 D2— 3の C— 3と C + 2とに振幅 0のヌルキャリアを割り当てる。また、 4番 目に送信するデータシンボルには、 D1— 4の C— 3と C + 2とに振幅 0のヌルキャリアを 割当て、 D2— 4の C 3と C + 2とに所定の位相と 0より大きい振幅とを割り当てる。これ により、受信装置は、 3番目に受信するデータシンボル力も Ml、 1)と h (l、 2)とを、 4 番目に受信するデータシンボルから h(2、 1)と h (2、 2)とをそれぞれ推定することが 可能となる。
[0096] 図 17は、パイロットキャリアの配置の一例を時間軸対周波数軸で模式的に示す図 である。図 17 (a)、送信アンテナ TX1から送信されるデータシンボル列 1を示してい る。図 17 (b)は、送信アンテナ TX2から送信されるデータシンボル列 2を示している。 ここで、横軸が時間(シンボル番号)、縦軸が周波数 (サブキャリア番号)である。また 、 1つの四角形がサブキャリアを示しており、白色の四角形がデータキャリアを、灰色 の四角形がパイロットキャリアを、 X印の四角形がヌルキャリアを示す。
[0097] パイロットキャリア又はヌルキャリアを割り当てるサブキャリア(以下、パイロットサブキ ャリアと記す)は、 1つのデータシンボルに対して少なくとも 2つ以上割り当てられる。 また、同時に送信される複数のデータシンボルにおいて、一方のデータシンボルの パイロットサブキャリアには、所定の位相で 0より大きい振幅のパイロットキャリアを割り 当て、他方のデータシンボルのパイロットサブキャリアには、振幅 0のヌルキャリアを割 り当てる。より好ましくは、次に送信するデータシンボルでは、パイロットキャリアとヌル キャリアとの割り当てを入れ替える。例えば、図 17に示すように、データシンボル列 1 においては、奇数番目のデータシンボルでノ ィロットキャリアを送信し、偶数番目の データシンボルでヌルキャリアを送信する。一方、同時に送信するデータシンボル列 2においては、奇数番目のデータシンボルでヌルキャリアを送信し、偶数番目のデー タシンボルでパイロットキャリアを送信する。
[0098] また、パイロットサブキャリアは、全てのデータシンボルで同じサブキャリア番号を割 り当てても良い。より好ましくは、データシンボル毎に所定のシーケンスに従ってパイ ロットサブキャリアのサブキャリア番号を変えてもよい。これにより、周波数選択性フエ 一ジングによって特定のサブキャリアの振幅が極端に小さくなる場合でも、受信パイ ロットキャリアの振幅が極端に小さくなる確率を下げることができる。このため伝送装 置は、伝搬係数を精度よく推定することが可能となる。図 17では、 2つのデータシン ボル毎にパイロットサブキャリアを変えている。ここでは、 1つのデータシンボルに対し て 2つのパイロットサブキャリアを割当て、パイロットサブキャリア間の間隔は一定とす る。パイロットサブキャリアの割り当ては、全サブキャリアに少なくとも 1回割り当てられ るようにする。より好ましくは、全サブキャリアをパイロットサブキャリア位置で分割し、 パイロットサブキャリアが割り当てられて!ヽな 、サブキャリアが多 、帯域の中心付近で 、かつ前シンボルのパイロットサブキャリア力も離れて 、るサブキャリアに次のパイロッ トサブキャリアを割り当てる。
[0099] この割当て方法について、図 17を用いて具体的に説明する。ここでは、サブキヤリ ァ番号 C+ l, C + 2, C + 3, C+4のみについて説明する。まず 1、 2番目のデータ シンボルでは、 4つのサブキャリア帯域における中心付近のサブキャリアとして C + 3 を選択し、これをパイロットサブキャリアとする。次に 3、 4番目のデータシンボルでは、 C + 3でサブキャリア帯域が 2つに分割され、 C + l, C + 2の組と C+4とに分かれる。 ここでは、 C+ l, C + 2の組を選択し、その中央付近となるサブキャリアのうち前シン ボルのパイロットサブキャリア力 離れている C+ 1を選択し、パイロットサブキャリアと する。さらに 5, 6番目のデータシンボルでは、これまでのパイロットサブキャリア C + 3 , C+ 1でサブキャリア帯域が分割され、 C + 2と C+4とに別れる。このうち前シンボル のパイロットサブキャリア力 離れている C+4を選択し、これをパイロットサブキャリア とする。最後に 7, 8番目のデータシンボルでは、残りの C + 2をパイロットサブキャリア とする。以降のデータシンボルではこれを繰り返し、このサイクルですべてのサブキヤ リアがパイロットサブキャリアに割り当てられる。
[0100] このような割当て方法により、各データシンボルにおいて、データキャリアとパイロッ トキャリアとの距離が周波数的または時間的に近くなるようなパイロットキャリア配置と なり、全サブキャリアの伝搬係数を周波数方向補間と時間方向補間とで求める場合 に、その精度を向上させることができる。つまり、伝搬路変動が緩やかな場合、あるサ ブキャリアの伝搬路係数は、周波数方向と時間方向とに隣接するサブキャリアの伝搬 路係数と相関が高いといえる。これは、周波数的または時間的に離れたサブキャリア で推定された伝搬路係数を補間して求めた伝搬路係数よりも、周波数的または時間 的に近いサブキャリア力 推定された伝搬路係数を補完して求めた伝搬路係数の方 が精度がよくなるためである。
[0101] なお、このパイロットサブキャリア割当てシーケンスは、サブキャリア数、パイロットサ ブキャリア数、及び同時に送信するデータシンボル数に応じてあら力じめ決定し、送 信装置、受信装置で既知としておく。 [0102] パイロットキャリアが挿入されたデータシンボル列を分離する伝搬逆関数推定部 52 2について、図 15を用いて説明する。図 15において、伝搬逆関数推定部 522は、直 交分離部 5221、 5222は、伝搬路特性推定部 5223、パイロットキャリア 1抽出部 522 4, 5226、ノ ィロットキャリア 2抽出部 5225, 5227、 hi 1粗推定部 5228、 h21粗推 定部 5229、 hi 2粗推定部 5230、 h22粗推定部 5231は、伝搬路特性更新部 5232 、伝搬路逆関数演算部 5233、及びチャネル分離部 5234を備える。
[0103] 伝搬逆関数推定部 522には、第 1一 4の実施形態で説明したように同期シンボルを 用いて周波数誤差を推定し、これを補正した受信シンボル列が入力される。受信ァ ンテナ RX1で受信したシンボル列は、直交分離部 5221に入力される。受信アンテ ナ RX2で受信したシンボル列は、直交分離部 5222に入力される。直交分離部 522 1, 5222は、入力されたシンボル毎に直交分離を行い周波数軸上のサブキャリアに 分離する。なお、直交分離にはフーリエ変換、ウェーブレット変換、離散コサイン変換 などを用いることができる。
[0104] サブキャリアに分離された各シンボルのうち伝搬係数推定用シンボル Srefは、伝搬 路特性推定部 5223に入力される。伝搬路特性推定部 5223は、既知の伝搬係数推 定用シンボル Srefと受信された伝搬係数推定用シンボル Srefとの相関から各アンテ ナ間の伝搬路特性 Mi, j)を推定する。以降の受信データシンボルは、各伝送パスの 伝搬係数逆関数を推定して干渉成分をキャンセルする等化を行 ヽ、各送信アンテナ から送信されたデータシンボル列を分離する。
[0105] しかし、上述した同期シンボルを用いて推定した周波数推定値には、雑音や位相 雑音などの影響による推定誤差 (残留周波数誤差)が含まれる。このため、受信シン ボル列には、この残留周波数誤差による位相回転が生じる。残留周波数誤差が大き な場合、伝搬係数推定用シンボル Srefから時間的に離れるほど、データシンボルに は大きな位相差が生じる。このため、受信装置では、伝搬係数逆関数の推定に誤差 が生じることとなり受信誤りが発生する。
[0106] このような残留周波数誤差による位相回転を補正するために上述のパイロットキヤリ ァを用いる。 RX1で受信されサブキャリアに分離された受信データシンボルは、パイ ロットキャリア 1抽出部 5224およびパイロットキャリア 2抽出部 5225に入力される。パ ィロットキャリア 1抽出部 5224は、パイロットキャリア 1を抽出する。パイロットキャリア 2 抽出部 5225は、パイロットキャリア 2を抽出する。パイロットキャリア 1が送信アンテナ TX1からのみ送信されているため、受信したノ ィロットキャリア 1と既知のパイロットキ ャリア 1との相関力も周波数方向または時間方向に補完することで全サブキャリアの T X1-RX1間の伝搬路特性 h' (1, 1)を推定することができる。同様に、パイロットキヤ リア 2が送信アンテナ TX2からのみ送信されているため、 TX2— RX1間の伝搬路特 性 h, (2, 1)を推定することができる。これらを hi 1粗推定部 5228および h21粗推定 部 5229で行う。受信アンテナ RX2側でも同様にして h' (2, 1)と h' (2, 2)とをパイ口 ットキャリア力 推定する。
[0107] 伝搬係数推定用シンボル Srefで推定した伝搬係数 h (i, j)と、各データシンボル中 のパイロットキャリアで推定した伝搬係数 h, (i, j)とは、伝搬路特性更新部 1412に入 力される。 Mi, j)と h' (i, j)とには、残留周波数誤差や位相雑音による位相差、伝送 路変動による位相差および振幅差があるため、 Mi, j)を初期値として h' (i, j)との誤 差を用いて伝搬係数 ' (i, j)を更新することにより、より精度良く各伝送パスの伝搬 係数を推定することができる。
[0108] このようにして、データシンボル毎に更新した伝搬係数 h,, (i, j)は、伝搬路逆関数 演算部 5233に入力され、その逆関数が求められる。この逆関数を用いてチャネル分 離部 5234において RX1で受信されサブキャリアに分離された受信データシンボル 列 1と、 RX2で受信されサブキャリアに分離された受信データシンボル列 2から、送信 データシンボル列 1 , 2を分離してデータ復調を行う。
[0109] 以上のように、本発明の第 5の実施形態に係る送信装置によれば、データ変調部 5 02, 504が所定のサブキャリアに既知の位相及び振幅を割り当てることで、データシ ンボルにパイロットキャリアを発生させることができる。また、受信装置によれば、同期 シンボルによる周波数推定に残留誤差があるような場合でも、データシンボルのパイ ロットキャリアを用いて、伝送パス毎に残留誤差を推定し伝搬係数を補正することで 伝搬係数逆関数の推定精度を向上させることができる。また、周波数選択性フェージ ング環境下で特定のサブキャリア受信レベルが落ち込むような場合でも、パイロットキ ャリアを全サブキャリアに順次割り当てることで、パイロットキャリア受信レベルが落ち 込む確率を低くすることができる。また、上述したパイロットサブキャリアの割当て方法 により、各サブキャリアの伝搬路推定値の補間精度を均一にすることができる。
[0110] なお、第 5の実施形態で説明したデータ変調部 502, 504、及び伝搬逆関数推定 部 522を用いる手法は、第 1一第 4の実施形態と組み合わせることが可能である。
[0111] また、第 1一 5の実施形態では、送信装置と受信装置とが同時に使用される場合を 想定して説明を行ったが、上述した送信装置及び受信装置は、それぞれ単独に、あ るいは他の装置と組み合わせて使用することもできる。例えば、送信装置は、上述し た受信装置だけでなぐ他の受信装置に対しても信号を送信してもよい。また、受信 装置は、上述した送信装置によって送信された信号だけでなぐ信号のフォーマット のみ整合性が取れて ヽれば、他の送信装置から送信された信号を受信してもよ ヽ。
[0112] また、第 1一 5の実施形態で述べた送信装置と受信装置とが行うそれぞれの処理手 順は、記憶装置 (ROM、 RAM,ハードディスク等)に格納された上述した処理手順 を実行可能な所定のプログラムデータ力 CPUによって解釈実行されることで実現さ れてもよい。この場合、プログラムデータは、記憶媒体を介して記憶装置内に導入さ れてもよいし、記憶媒体上から直接実行されてもよい。なお、記憶媒体は、 ROMや R AMやフラッシュメモリ等の半導体メモリ、フレキシブルディスクやハードディスク等の 磁気ディスクメモリ、 CD— ROMや DVDや BD等の光ディスクメモリ、及びメモリカード 等をいう。また、記憶媒体は、電話回線や搬送路等の通信媒体を含む概念である。
[0113] また、第 1一 5の実施形態で述べた送信装置と受信装置とに含まれる構成は、それ ぞれ集積回路である LSIとして実現することができる。これらは、個別に 1チップ化さ れてもよ 、し、それぞれにお!/ヽて全てまたは一部を含むように 1チップィ匕されてもよ!ヽ 。ここでは、 LSIとした力 集積度の違いにより、 IC、システム LSI、スーパー LSI、ゥ ノレ卜ラ LSIと呼称されることちある。
また、集積回路化の手法は LSIに限るものではなぐ専用回路又は汎用プロセッサ で実現してもよい。 LSI製造後に、プログラムすることが可能な FPGA (Field Progr ammable Gate Array)や、 LSI内部の回路セルの接続や設定を再構成可能なリ コンフィギユラブル 'プロセッサを利用してもよい。さらには、半導体技術の進歩又は 派生する別技術により LSIに置き換わる集積回路化の技術が登場すれば、当然、そ の技術を用いて機能ブロックの集積ィ匕を行ってもょ 、。バイオ技術の適応例が可能 性としてありえる。
産業上の利用可能性
本発明のデータ送信方法及びデータ受信方法は、 MIMO— OFDM方式が適用さ れた送信装置及び受信装置等に適用することができる。

Claims

請求の範囲
[1] MIMO— OFDM方式を利用して、送信装置が、複数の送信アンテナから複数の受 信アンテナに向けて複数のデータ系列を送信するデータ送信方法であって、 互いに直交する所定の周波数間隔力 なる複数のサブキャリアに、所定の振幅と位 相とを割り当てた同期シンボルを、前記複数の送信アンテナ毎に分割することで複数 の同期サブシンボルを発生させるステップと、
前記複数の同期サブシンボルを無線信号に変換して、前記複数の送信アンテナから 同時に送信するステップとを備えることを特徴とする、データ送信方法。
[2] 前記複数の送信アンテナから送信するための複数の送信データを、複数のデータシ ンボル列に変調するステップと、
前記送信アンテナと前記受信アンテナとの間における複数の伝送パスが持つ伝搬係 数の逆関数を推定するためのシンボルとして、前記送信アンテナ毎に互いに直交す る伝搬係数推定用シンボルを発生させるステップとをさらに備え、
前記送信するステップは、
前記複数の送信アンテナ毎に、前記データシンボル列と、前記同期サブシンボル と、前記伝搬係数推定用シンボルとを伝送フレームに多重化するステップと、
前記複数の送信アンテナ毎に多重化された伝送フレームを、無線信号に変換す るステップとを含むことを特徴とする、請求項 1に記載のデータ送信方法。
[3] 前記データシンボル列に変調するステップは、
前記複数のサブキャリアのうち所定のサブキャリアに、前記送信データに基づいた 振幅及び位相を割り当てることで、データキャリアとするステップと、
前記データキャリア以外のサブキャリアに既知の位相及び振幅を割り当てることで、 パイロットキャリアを発生させるステップと、
前記データキャリアと前記パイロットキャリアとを複数のデータシンボルに直交多重 し、当該直交多重された複数のデータシンボルを前記データシンボル列として出力 するステップとを含むことを特徴とする、請求項 2に記載のデータ送信方法。
[4] 前記ノ ィロットキャリアを発生させるステップは、前記複数の送信アンテナから同時 に送信するデータシンボルの 1つにのみ、前記パイロットキャリアとして既知の位相と 振幅とを割り当て、その他の同時に送信するデータシンボルには前記パイロットキヤリ ァとして大きさ 0の振幅を割り当てることを特徴とする、請求項 3に記載のデータ送信 方法。
[5] 前記送信するステップは、前記複数の送信アンテナ間で同期を取るために、送信 アンテナ毎に共通する 1つの送信用局部発振器、又は送信アンテナ毎に異なる複数 の送信用局部発振器を利用することを特徴とする、請求項 1に記載のデータ送信方 法。
[6] MIMO— OFDM方式を利用して複数の送信アンテナから送信された複数のデー タ系列を、受信装置が、複数の受信アンテナを介して受信するデータ受信方法であ つて、
前記複数のデータ系列には、互いに直交する複数のサブキャリア力もなる同期シン ボルを前記複数の送信アンテナ毎に分割することで生成された同期サブシンボルが 含まれており、
前記複数のデータ系列を前記受信アンテナ毎に受信するステップと、
前記複数の受信アンテナ力 受信したデータ系列を受信アンテナ毎に同期させて 復調するステップと、
前記受信アンテナ毎に復調された受信信号と、当該受信信号に含まれる前記同期 サブシンボルとに基づいて、前記送信アンテナと前記受信アンテナとの間における 複数の伝送パスが持つ特性を伝送パス毎に推定するステップとを備える、データ受 信方法。
[7] 前記特性を伝送パス毎に推定するステップは、前記受信アンテナ毎に復調された 受信信号と、当該受信信号に含まれる前記同期サブシンボルとの相関から伝送パス 毎に発生する周波数誤差を推定するステップを含み、
前記特性を伝送パス毎に推定するステップの後に、前記推定された周波数誤差に 基づいて、前記受信信号の周波数を補正するステップをさらに備えることを特徴とす る、請求項 6に記載のデータ受信方法。
[8] 前記受信信号の周波数を補正するステップは、
前記推定された伝送パス毎に発生する周波数誤差を重み付け平均して、前記受信 信号を補正するための周波数補正値を前記受信アンテナ毎に算出するステップと、 前記算出された周波数補正値に基づいて、前記受信信号の周波数を前記受信ァ ンテナ毎に補正して周波数が補正された受信信号として出力するステップとを含むこ とを特徴とする、請求項 7に記載のデータ受信方法。
[9] 前記周波数誤差を推定するステップは、前記受信信号と前記受信信号に含まれる 前記同期サブシンボルとの相関値のピークタイミングを重み付け平均したものに基づ いて、受信シンボルタイミングを発生させることを特徴とする、請求項 7に記載のデー タ受信方法。
[10] 前記受信信号には、前記送信アンテナと前記受信アンテナとの間における複数の伝 送パスが持つ伝搬係数の逆関数を推定するためのシンボルとして、前記送信アンテ ナ毎に互いに直交するように送信された伝搬係数推定用シンボルが含まれており、 前記受信信号の周波数を補正するステップの後に、前記周波数が補正された受信 信号に含まれる前記伝搬係数推定用シンボルに基づ 、て、前記複数の伝送パス毎 に前記伝搬係数の逆関数を推定して、当該推定した逆関数に基づいて前記複数の 受信信号から前記複数の送信アンテナが送信した信号を分離するステップをさらに 備えることを特徴とする、請求項 7に記載のデータ受信方法。
[11] 前記復調するステップと前記特性を伝送パス毎に求めるステップとの間に、
前記復調するステップによって受信アンテナ毎に復調された受信信号と、前記受信 信号に含まれる同期サブシンボル力 合成された同期シンボルとの相関から、前記 復調された受信信号に含まれる周波数誤差を前記受信アンテナ毎に推定するステツ プと、
前記推定された周波数誤差を重み付け平均して、前記複数の受信信号に対する 平均の周波数誤差を算出するステップと、
前記算出された平均の周波数補正値に基づいて、前記複数の受信信号の周波数 を補正する第 2の補正ステップとを備えることを特徴とする、請求項 6に記載のデータ 受信方法。
[12] 前記受信するステップは、
前記複数の送信アンテナから送信された信号を、前記複数のデータ系列よりも多く の受信アンテナを用いて受信するステップと、
前記多くの受信アンテナ力 受信した信号の受信レベルを判定するステップと、 前記判定された受信レベルに応じて、前記多くの受信アンテナ力 受信した信号を 選択又は合成するステップとを含むことを特徴とする、請求項 6に記載のデータ受信 方法。
[13] 前記復調するステップは、前記複数の受信アンテナ間で同期を取るために、前記受 信アンテナ毎に共通する 1つの受信用局部発振器、又は受信アンテナ毎に異なる複 数の受信用局部発振器を利用することを特徴とする、請求項 6に記載のデータ受信 方法。
[14] 前記特性を伝送パス毎に推定するステップは、前記受信アンテナ毎に復調された 受信信号に含まれる前記同期サブシンボルに基づ 、て、当該受信信号に含まれる 複数のサブキャリアの位相と振幅とを周波数方向に補完して、前記伝送パス毎の粗 Vヽ周波数特性を推定するステップを含み、
前記特性を伝送パス毎に推定するステップの後に、前記推定された伝送パス毎の ¾ 、周波数特性に基づ 、て、前記複数の伝送パスが持つ伝搬係数の逆関数を推定 して、当該推定した逆関数に基づいて前記複数の受信信号から前記複数の送信ァ ンテナが送信した信号を分離するステップをさらに備えることを特徴とする、請求項 6 に記載のデータ受信方法。
[15] MIMO— OFDM方式を利用して、複数の送信アンテナから複数の受信アンテナに 向けて複数のデータ系列を送信する送信装置であって、
所定の周波数間隔力 なる複数のサブキャリアに、所定の振幅と位相とを割り当てた 同期シンボルを、前記複数の送信アンテナ毎に分割することで、前記複数の送信ァ ンテナ毎に互いに直交する同期サブシンボルを発生させる複数の同期サブシンボル 発生部と、
前記複数の同期サブシンボルを前記複数の送信アンテナ毎に変調する複数の変 調部と、
前記複数の変調部で変調された信号を同時に送信する複数の送信アンテナとを備 えることを特徴とする、送信装置。 MIMO— OFDM方式を利用して複数の送信アンテナから送信された複数のデー タ系列を、複数の受信アンテナを介して受信する受信装置であって、
前記複数のデータ系列には、互いに直交する複数のサブキャリア力もなる同期シン ボルを前記複数の送信アンテナ毎に分割することで生成された同期サブシンボルが 含まれており、
前記複数のデータ系列を受信する複数の受信アンテナと、
前記複数の受信アンテナで受信したデータ系列を、前記受信アンテナ毎に同期さ せて復調する複数の復調部と、
前記受信アンテナ毎に復調された受信信号と、当該受信信号に含まれる前記同期 サブシンボルとの相関から、当該受信信号に含まれる周波数誤差を伝送パス毎に推 定する複数の同期サブシンボル相関部と、
前記推定された周波数誤差に基づ!、て、前記受信信号の周波数を前記複数の受 信アンテナ毎に補正する複数の周波数補正部とを備える、受信装置。
PCT/JP2005/004110 2004-03-11 2005-03-09 データ送信方法及びデータ受信方法 WO2005088884A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006510960A JPWO2005088884A1 (ja) 2004-03-11 2005-03-09 データ送信方法及びデータ受信方法
US10/573,044 US7702027B2 (en) 2004-03-11 2005-03-09 Data transmission method and data reception method
CN200580001359XA CN1898890B (zh) 2004-03-11 2005-03-09 数据发送方法和数据接收方法
EP05720381A EP1724957A1 (en) 2004-03-11 2005-03-09 Data transmission method and data reception method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-069440 2004-03-11
JP2004069440 2004-03-11
JP2004225840 2004-08-02
JP2004-225840 2004-08-02

Publications (1)

Publication Number Publication Date
WO2005088884A1 true WO2005088884A1 (ja) 2005-09-22

Family

ID=34975952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004110 WO2005088884A1 (ja) 2004-03-11 2005-03-09 データ送信方法及びデータ受信方法

Country Status (5)

Country Link
US (1) US7702027B2 (ja)
EP (1) EP1724957A1 (ja)
JP (1) JPWO2005088884A1 (ja)
CN (1) CN1898890B (ja)
WO (1) WO2005088884A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043492A (ja) * 2005-08-03 2007-02-15 Casio Comput Co Ltd Ofdm復調装置、ofdm復調回路及びofdm復調方法
JP2007531384A (ja) * 2004-04-28 2007-11-01 サムスン エレクトロニクス カンパニー リミテッド 直交周波数分割多重接続通信システムにおける適応的アンテナシステムのためのプリアンブルシーケンス生成装置及び方法
JPWO2005101711A1 (ja) * 2004-04-14 2008-03-06 松下電器産業株式会社 受信装置
WO2008059985A1 (fr) * 2006-11-17 2008-05-22 Nec Corporation Système de communication mimo à trajets de communication déterministes, et procédé
JP2009100346A (ja) * 2007-10-18 2009-05-07 Nippon Telegr & Teleph Corp <Ntt> 受信装置及び無線通信システム
JP2010161585A (ja) * 2009-01-07 2010-07-22 Nippon Hoso Kyokai <Nhk> 空間多重伝送用送信アダプタおよび空間多重伝送用受信アダプタ
JP2010203965A (ja) * 2009-03-04 2010-09-16 Toshiba Corp レーダ装置、受信機及び相関成分検出装置
JP2012124879A (ja) * 2010-08-26 2012-06-28 Nagoya Institute Of Technology 受信装置及び受信方法
JP2015023555A (ja) * 2013-07-23 2015-02-02 三星電子株式会社Samsung Electronics Co.,Ltd. 通信装置、通信システム、及び通信方法
JP2016208130A (ja) * 2015-04-16 2016-12-08 日本放送協会 無線通信装置、無線通信方法、無線通信システム及びチップ
JP2021048600A (ja) * 2020-11-19 2021-03-25 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ テレメトリ・アプリケーションのための干渉ロバスト・パケット検出のための最適化されたプリアンブル及び方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081439A1 (en) 2004-02-13 2005-09-01 Neocific, Inc. Methods and apparatus for multi-carrier communication systems with adaptive transmission and feedback
CN102546512B (zh) * 2005-08-24 2017-04-26 无线局域网一有限责任公司 正交频分复用发送装置和正交频分复用接收装置
JP4870096B2 (ja) * 2006-01-10 2012-02-08 パナソニック株式会社 マルチキャリア変調方法並びにその方法を用いた送信装置及び受信装置
US8254865B2 (en) * 2006-04-07 2012-08-28 Belair Networks System and method for frequency offsetting of information communicated in MIMO-based wireless networks
CN101480008B (zh) * 2006-04-24 2013-06-12 韩国电子通信研究院 在正交频分多址系统中生成用于自适应信道估计的导频图案的方法、利用该导频图案的传送/接收方法及其设备
EP3098989B1 (en) * 2007-08-02 2019-03-06 NEC Corporation Mimo communication system having deterministic communication path and antenna arrangement method therefor
US8009598B2 (en) * 2008-04-08 2011-08-30 Mstar Semiconductor, Inc. Method and system of radio resource allocation for mobile MIMO-OFDMA
PL2131540T3 (pl) 2008-06-04 2013-12-31 Sony Corp Nowa struktura ramki dla systemów z wieloma nośnymi
US9130789B2 (en) 2008-10-15 2015-09-08 Stmicroelectronics Asia Pacific Pte. Ltd. Recovering data from a secondary one of simultaneous signals, such as orthogonal-frequency-division-multiplexed (OFDM) signals, that include a same frequency
US9083573B2 (en) * 2008-10-15 2015-07-14 Stmicroelectronics Asia Pacific Pte. Ltd. Simultaneous transmission of signals, such as orthogonal-frequency-division-multiplexed (OFDM) signals, that include a same frequency
US9338033B2 (en) 2008-10-15 2016-05-10 Stmicroelectronics, Inc. Recovering data from a primary one of simultaneous signals, such as orthogonal-frequency-division-multiplexed (OFDM) signals, that include a same frequency
US8599803B1 (en) 2009-05-01 2013-12-03 Marvell International Ltd. Open loop multiple access for WLAN
US8755459B2 (en) 2010-03-16 2014-06-17 Nokia Corporation Methods and apparatuses for interference cancellation with frequency error compensation for equalizer adaptation
US8548086B2 (en) * 2012-02-06 2013-10-01 Neocific, Inc. Multiple receivers in an OFDM/OFDMA communication system
JP5869697B2 (ja) * 2012-12-07 2016-02-24 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 信号生成方法、送信装置、受信方法および受信装置
CN104104430B (zh) * 2013-04-03 2017-09-12 南京中兴新软件有限责任公司 频率校准方法及装置
US9219600B1 (en) * 2015-02-25 2015-12-22 L-3 Communications Corp. Synchronization through waveform correlation
WO2017167366A1 (en) 2016-03-31 2017-10-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optimized preamble and method for interference robust packet detection for telemetry applications
JP6723424B1 (ja) * 2019-06-21 2020-07-15 株式会社横須賀テレコムリサーチパーク 送受信方法および送受信システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205205A (ja) * 1998-01-09 1999-07-30 Nippon Telegr & Teleph Corp <Ntt> マルチキャリア信号伝送装置
JP2000209145A (ja) * 1999-01-20 2000-07-28 Nippon Telegr & Teleph Corp <Ntt> マルチキャリア信号送受信装置
WO2001017148A1 (fr) * 1999-08-27 2001-03-08 Matsushita Electric Industrial Co., Ltd. Dispositif de communication ofdm
JP2001345777A (ja) * 2000-06-01 2001-12-14 Denso Corp Ofdm用通信システムおよびその通信システムに用いられる基地局並びに端末
JP2003304216A (ja) * 2002-04-09 2003-10-24 Panasonic Mobile Communications Co Ltd Ofdm通信方法およびofdm通信装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317098B1 (en) * 1999-08-23 2001-11-13 Lucent Technologies Inc. Communication employing triply-polarized transmissions
JP3631698B2 (ja) * 2001-04-09 2005-03-23 日本電信電話株式会社 Ofdm信号伝送システム、ofdm信号送信装置及びofdm信号受信装置
JP3590008B2 (ja) 2001-08-15 2004-11-17 日本電信電話株式会社 Ofdm信号送信装置およびofdm信号受信装置
KR100510434B1 (ko) * 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 Ofdm신호전달 시스템, ofdm신호 송신장치 및ofdm신호 수신장치
US7012966B2 (en) * 2001-05-21 2006-03-14 At&T Corp. Channel estimation for wireless systems with multiple transmit antennas
US7548506B2 (en) * 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
JP3997890B2 (ja) * 2001-11-13 2007-10-24 松下電器産業株式会社 送信方法及び送信装置
JP2003204314A (ja) 2002-01-08 2003-07-18 Nippon Telegr & Teleph Corp <Ntt> 搬送波周波数誤差補正回路及び無線信号送受信装置
JP3896012B2 (ja) 2002-03-20 2007-03-22 三洋電機株式会社 無線装置
US7020226B1 (en) * 2002-04-04 2006-03-28 Nortel Networks Limited I/Q distortion compensation for the reception of OFDM signals
JP3735080B2 (ja) * 2002-04-09 2006-01-11 パナソニック モバイルコミュニケーションズ株式会社 Ofdm通信装置およびofdm通信方法
AU2003236005A1 (en) * 2002-04-09 2003-10-20 Nippon Telegraph And Telephone Corporation Ofdm communication method and ofdm communication device
US7436757B1 (en) * 2002-06-21 2008-10-14 Nortel Networks Limited Scattered pilot and filtering for channel estimation
JP4157443B2 (ja) * 2002-07-16 2008-10-01 松下電器産業株式会社 送信方法、送信信号生成方法およびそれを用いた送信装置
JP4350491B2 (ja) * 2002-12-05 2009-10-21 パナソニック株式会社 無線通信システム、無線通信方法、及び無線通信装置
JP2004214961A (ja) * 2002-12-27 2004-07-29 Sony Corp Ofdm復調装置
US20060083332A1 (en) * 2002-12-30 2006-04-20 Koninklijke Philips Electronics, N.V. Apparatus enabled for optimizing spectral efficiency of a wireless link

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205205A (ja) * 1998-01-09 1999-07-30 Nippon Telegr & Teleph Corp <Ntt> マルチキャリア信号伝送装置
JP2000209145A (ja) * 1999-01-20 2000-07-28 Nippon Telegr & Teleph Corp <Ntt> マルチキャリア信号送受信装置
WO2001017148A1 (fr) * 1999-08-27 2001-03-08 Matsushita Electric Industrial Co., Ltd. Dispositif de communication ofdm
JP2001345777A (ja) * 2000-06-01 2001-12-14 Denso Corp Ofdm用通信システムおよびその通信システムに用いられる基地局並びに端末
JP2003304216A (ja) * 2002-04-09 2003-10-24 Panasonic Mobile Communications Co Ltd Ofdm通信方法およびofdm通信装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005101711A1 (ja) * 2004-04-14 2008-03-06 松下電器産業株式会社 受信装置
JP4583374B2 (ja) * 2004-04-14 2010-11-17 パナソニック株式会社 受信装置
JP2007531384A (ja) * 2004-04-28 2007-11-01 サムスン エレクトロニクス カンパニー リミテッド 直交周波数分割多重接続通信システムにおける適応的アンテナシステムのためのプリアンブルシーケンス生成装置及び方法
JP2007043492A (ja) * 2005-08-03 2007-02-15 Casio Comput Co Ltd Ofdm復調装置、ofdm復調回路及びofdm復調方法
RU2462816C2 (ru) * 2006-11-17 2012-09-27 Нек Корпорейшн Система связи с множеством входов и множеством выходов (mimo), имеющая детерминированные каналы, и способ
WO2008059985A1 (fr) * 2006-11-17 2008-05-22 Nec Corporation Système de communication mimo à trajets de communication déterministes, et procédé
CN101542936A (zh) * 2006-11-17 2009-09-23 日本电气株式会社 具有确定性信道的mimo通信系统和方法
CN106160812A (zh) * 2006-11-17 2016-11-23 日本电气株式会社 具有确定性信道的mimo通信系统和方法
JP5429602B2 (ja) * 2006-11-17 2014-02-26 日本電気株式会社 決定論的通信路を有するmimo通信システム及び方法
JP2009100346A (ja) * 2007-10-18 2009-05-07 Nippon Telegr & Teleph Corp <Ntt> 受信装置及び無線通信システム
JP2010161585A (ja) * 2009-01-07 2010-07-22 Nippon Hoso Kyokai <Nhk> 空間多重伝送用送信アダプタおよび空間多重伝送用受信アダプタ
JP2010203965A (ja) * 2009-03-04 2010-09-16 Toshiba Corp レーダ装置、受信機及び相関成分検出装置
JP2012124879A (ja) * 2010-08-26 2012-06-28 Nagoya Institute Of Technology 受信装置及び受信方法
JP2015023555A (ja) * 2013-07-23 2015-02-02 三星電子株式会社Samsung Electronics Co.,Ltd. 通信装置、通信システム、及び通信方法
JP2016208130A (ja) * 2015-04-16 2016-12-08 日本放送協会 無線通信装置、無線通信方法、無線通信システム及びチップ
JP2021048600A (ja) * 2020-11-19 2021-03-25 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ テレメトリ・アプリケーションのための干渉ロバスト・パケット検出のための最適化されたプリアンブル及び方法
JP7146878B2 (ja) 2020-11-19 2022-10-04 フラウンホッファー-ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ テレメトリ・アプリケーションのための干渉ロバスト・パケット検出のための最適化されたプリアンブル及び方法

Also Published As

Publication number Publication date
US7702027B2 (en) 2010-04-20
EP1724957A1 (en) 2006-11-22
CN1898890B (zh) 2011-06-15
CN1898890A (zh) 2007-01-17
JPWO2005088884A1 (ja) 2008-01-31
US20070121750A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
WO2005088884A1 (ja) データ送信方法及びデータ受信方法
US10270574B2 (en) Transmission signal generation apparatus, transmission signal generation method, reception signal apparatus, and reception signal method
AU2005236761B2 (en) Apparatus and method for channel estimation in an orthogonal frequency division multiplexing cellular communication system using multiple transmit antennas
EP2790339B1 (en) Transmitter, receiver, mobile communication system and synchronization channel
US9155024B2 (en) Radio transmitting apparatus, radio receiving apparatus, and pilot generating method
US8520748B2 (en) Transmitter, OFDM communication system, and transmission method
WO2005062728A2 (en) Method for constructing frame preamble in ofdm wireless communication system, and method for acquiring frame synchronization and searching cells using preamble
US9281986B2 (en) Transmission apparatus, reception apparatus, and relay apparatus
EP2148484A1 (en) OFDM transmitter with subcarrier group phase rotation
JP2012005142A (ja) 無線装置
JP4903058B2 (ja) 無線送信装置、無線受信装置、無線送信方法および無線受信方法
EP2733900A1 (en) Alignment of MIMO-OFDM transmissions between multiple antenna paths
JP5635457B2 (ja) 無線通信システム、通信装置、無線通信方法、及び送信方法
CN101374130A (zh) 多输入多输出正交频分复用系统的同步方法
JP2004201338A (ja) 送信機および伝送方法
Liu et al. Timing and Frequency Synchronization Algorithm for Distributed MIMO-OFDM Systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001359.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007121750

Country of ref document: US

Ref document number: 10573044

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005720381

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006510960

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005720381

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10573044

Country of ref document: US