WO2005087831A1 - 重合性不飽和結合を有するアクリル系重合体の製造方法 - Google Patents

重合性不飽和結合を有するアクリル系重合体の製造方法 Download PDF

Info

Publication number
WO2005087831A1
WO2005087831A1 PCT/JP2005/003372 JP2005003372W WO2005087831A1 WO 2005087831 A1 WO2005087831 A1 WO 2005087831A1 JP 2005003372 W JP2005003372 W JP 2005003372W WO 2005087831 A1 WO2005087831 A1 WO 2005087831A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerizable unsaturated
acrylic polymer
unsaturated bond
carboxylic acid
polymer
Prior art date
Application number
PCT/JP2005/003372
Other languages
English (en)
French (fr)
Inventor
Kenichi Shinya
Keishi Hamada
Hidekazu Kondou
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to JP2006510909A priority Critical patent/JP5125100B2/ja
Publication of WO2005087831A1 publication Critical patent/WO2005087831A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof

Definitions

  • the present invention relates to a novel and useful method for producing an active energy ray-curable resin and an active energy ray-curable resin composition using the same. More specifically, the present invention provides a cured coating film having a tack-free surface after volatilization of a solvent, a good surface condition without adhesion of dust and dust, excellent curability, and excellent chemical resistance and flexibility.
  • the present invention relates to an active energy ray-curable resin suitable for an active energy linear curable resin composition used as a top tall layer of metal products and plastic products.
  • Molded products such as metal parts, plastic products, and woodwork products, are often coated with a paint on the surface of the molded product in order to impart durability and design.
  • a paint on the surface of the molded product in order to impart durability and design.
  • the molded product to be painted (hereinafter referred to as an object to be coated) is made of a wide variety of materials and shapes, a spray painting-dip painting method, which can relatively easily paint them, is often used.
  • the laminated film used in the above-described film decorating method includes film characteristics such as hardness, non-adhesion, and solvent resistance of the film, which are realized by a film forming method such as spray coating, and the like. Workability is required to favorably decorate the film to be coated. However, it is difficult for the above-mentioned conventional laminated film to secure the above-mentioned coating film characteristics and processability at the same time. It was. In other words, there is a problem that when the characteristics of the coating film are emphasized, the processability is reduced, and it is difficult to secure the characteristics of the coating film when the processability is emphasized.
  • the present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to ensure excellent design properties and coating film properties equal to or higher than those of a conventional spray coating method and the like. It has excellent processability such that suitable decoration can be performed following the shape of the object to be coated, and is suitable for an active energy ray-curable resin composition used as a top tally layer of a laminated film. Another object of the present invention is to provide a method for producing an acrylic polymer having a polymerizable unsaturated bond.
  • the inventors of the present invention have conducted intensive studies on the above problem, and as a result, introduced an unsaturated double bond, which is cured by an active energy ray, into an acrylic polymer as a side chain. By controlling the bond length, it is possible to achieve both the properties of various coatings and the processability, which were difficult with the conventional technology, and the polymerizable unsaturated bond is suitable for active energy ray-curable resin compositions.
  • the present inventors have found a method for producing an acrylic polymer having the above formula, and have completed the present invention.
  • the present invention is characterized by the following items (1) to (7).
  • the short-chain unsaturated carboxylic acid (dl) and the long-chain unsaturated carboxylic acid (d2) are each 20 mol% or more and 80 mol based on the total molar amount (dl + d 2). %.
  • the reactive unsaturated double bond group power contained in the acrylic polymer (A) is in the range of 0.67 mol Zkg or more and 3.3 mol Zkg or less.
  • the epoxy group-containing copolymer (c) has a glass transition temperature of 50 ° C. or more and 130 ° C. or less, wherein The method for producing an acrylic polymer (A) having a polymerizable unsaturated bond according to the above.
  • the acrylic polymer (A) having a polymerizable unsaturated bond produced by the present invention ensures the tackiness of the coating film before curing, the hardness and chemical resistance of the coating film after curing, and is excellent. Since it has excellent workability, it is suitable for an active energy ray-curable resin composition. Particularly, it is suitable for the active energy ray-curable resin composition used for the top tall layer of the laminated film in the film decoration method.
  • the present application is accompanied by a priority claim based on Japanese Patent Application No. 2004-068170 (filing date: March 10, 2004) filed earlier by the same applicant, and Incorporated here for reference.
  • the method for producing an acrylic polymer (A) having a polymerizable unsaturated bond comprises a polymerizable unsaturated compound having at least one epoxy group and one polymerizable unsaturated bond in the molecule ( (c) an epoxy group-containing copolymer obtained by copolymerization of (a) and a polymerizable unsaturated compound having one polymerizable unsaturated bond in the molecule other than the component (a);
  • the acrylic polymer (A) is synthesized by reacting a short-chain unsaturated carboxylic acid (dl) with a molecular weight of less than 150 with a long-chain unsaturated carboxylic acid (d2) with a molecular weight of 150 or more.
  • the feature is that.
  • the acrylic polymer (A) obtained by the present invention has acrylic acid or methacrylic acid in its main chain structure (hereinafter, both are collectively referred to as (meth) acrylic acid or (meth) acrylate). ) Containing one or more polymerizable short-side unsaturated double bond groups and one long-side unsaturated double bond group in the side chain that contains the acrylic resin structure obtained by polymerizing the derivative. Have more.
  • these polymerizable unsaturated double bond groups mean substituents which are cross-linked by intramolecular or intermolecular reaction, each of which contains an epoxy group which is a precursor of the acrylic polymer (A).
  • the copolymer (c) is introduced by reacting the above-mentioned short-chain unsaturated carboxylic acid (dl) and the above-mentioned long-chain unsaturated force rubonic acid (d2).
  • An epoxy group-containing copolymer (c) is synthesized by copolymerizing a polymerizable unsaturated compound (b) having one polymerizable unsaturated bond therein.
  • the component (a) is not particularly limited as long as it is a polysynthetic unsaturated compound having at least one epoxy group and one polymerizable unsaturated bond in the molecule, and is not particularly limited, but may be acrylic acid or methacrylic acid. It is preferable that the compound be a compound of an acid derivative and an epoxy group-containing compound, for example, glycidyl (meth) acrylate, 3,4-epoxycyclohexyl (meth) acrylate, and the like. Epoxy group-containing (meth) acrylates may be used, and these may be used alone or in combination of two or more.
  • the component (b) is not particularly limited as long as it is an unsaturated compound having one polymerizable unsaturated bond in the molecule other than the component (a), and is not particularly limited.
  • Preferred are various esters ofizic acid.
  • methyl (meth) acrylate ((meth) atalylate refers to atalylate and methacrylate.
  • Alkoxyalkoxyalkyl (meth) acrylates such as hydroxyalkyl (meth) acrylates, 2-methoxyethoxyxetyl (meth) atalylate, 2-ethoxyethoxyxyl (meth) atalylate, and methoxydiethylene glycol (meth) Alkoxy (poly) alkylenes such as atalylate, ethoxydiethylene glycol (meth) atalylate, methoxytriethylene glycol (meth) atalylate, butoxytriethylene glycol (meth) atalylate, and methoxydipropylene glycol (meth) atalylate Glycol (meth) atalylate, pyrenoxide adduct
  • Dialkylaminoalkyl such as (meth) acrylate, octafluoropentyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N- acetylaminoethyl (meth) acrylate
  • Examples thereof include a mixture having one or more combinations such as (meth) atarylate.
  • the component (a) and the component (b) are copolymerized by a known method such as a solution polymerization method in the presence of a radical polymerization initiator to obtain an epoxy group-containing copolymer (c).
  • these compounding amounts are based on 100 parts by weight of the total amount of the component (a) and the component (b) ⁇ (a) + (b) ⁇ .
  • the component (a) is preferably 10 to 60 parts by weight, more preferably 20 to 45 parts by weight, and the component (b) is preferably 40 to 90 parts by weight, more preferably 55 to 80 parts by weight.
  • the amount of the component (a) is less than 10 parts by weight, the curability and the performance of the cured film obtained as an active energy ray-curable coating material tend to decrease overall, and the amount exceeds 60 parts by weight. And the tackiness of the coating film tends to decrease.
  • the weight average molecular weight (gel permeation 'chromatography method, standard polystyrene conversion value) of the epoxy group-containing copolymer (c) thus obtained is preferably from 30,000 to 200,000. More preferably, it is 50,000-150,000.
  • the weight-average molecular weight of the epoxy group-containing copolymer (c) is less than 30,000, the tackiness of the coating film obtained when the acrylic polymer (A) is used as an active energy ray-curable coating is reduced.
  • the abrasion resistance of the coating film after curing tends to be inferior.
  • the weight average molecular weight exceeds 200,000, the compatibility with other resin compositions (such as active energy ray-curable resin oligomers) decreases, and the viscosity increases. When diluted to the coating viscosity, the solid content is significantly reduced and the coating properties tend to be reduced.
  • the glass transition temperature of the epoxy group-containing copolymer (c) is preferably from 50 to 130 ° C., more preferably from 60 to 110 ° C.
  • the glass transition temperature of the epoxy group-containing copolymer (c) is less than 50 ° C, non-stickiness of a coating film obtained when the acrylic polymer (A) is used as an active energy ray-curable coating material.
  • the temperature exceeds 130 ° C, the appearance, curability and coatability of the resulting coating film tend to decrease.
  • the side chain of the epoxy group-containing copolymer (c) is unsaturated dicarboxylic acid.
  • a heavy bond group is introduced to obtain an acrylic polymer (A).
  • a short-chain unsaturated carboxylic acid (dl) having a molecular weight of less than 150 (more preferably, a molecular weight of 72 or more and less than 100), and a molecular weight of 150 or more (more preferably) Use at least one long-chain unsaturated carboxylic acid (d2) with a molecular weight of 200 to less than 1000).
  • Examples of the short-chain unsaturated carboxylic acid (dl) include (meth) acrylic acid and a dimer thereof (ALONIX M5600). Further, the long-chain unsaturated carboxylic acid (d Examples of 2) include, for example, modified force-pro-rataton (meth) acrylic acid ( ⁇ -carboxy-poly-pro-pro-ratatone mono-atalylate: Aronics # 5300 manufactured by Toagosei Co., Ltd.), hydroxyl-containing (meth) acrylate and carboxylic anhydride.
  • This reaction can be performed by a known method in the presence of a basic catalyst, a phosphorus-based catalyst, and the like.
  • the content of the short-chain unsaturated carboxylic acid (dl) preferably has a lower limit of 20 mol% or more.
  • the upper limit which is more preferably 33 mol% or more, is preferably 80 mol% or less, and more preferably 67 mol% or less.
  • the content of the long-chain unsaturated carboxylic acid (d2) is preferably 20 mol% or more, more preferably 33 mol% or more, and the upper limit is more preferably 80 mol% or less. More preferably, it is 67 mol% or less.
  • the coating film tends to have poor chemical resistance and coating film hardness, which is not preferable.
  • the content of the short-chain unsaturated carboxylic acid (dl) exceeds 80 mol% or the content of the long-chain unsaturated carboxylic acid (d2) is less than 20 mol%, the active energy ray-curable paint was obtained.
  • the flexibility of the coating film after curing tends to be inferior, which is not preferable.
  • the hydroxyl group contained in the acrylic polymer (A) obtained above has one isocyanato group and one or more polymerizable unsaturated bonds in the molecule.
  • An isocyanato group-containing polymerizable unsaturated compound (e) may be subjected to an addition reaction.
  • Examples of the isocyanato group-containing polymerizable unsaturated compound (e) include methacryloyloxyshethyl isocyanate (trade name MOI manufactured by Showa Denko KK) and 1 mole of 2-hydroxyethyl acrylate.
  • Hexamethylene diisocyanate Obtained by reacting a (meth) atalylate ligated product having one hydroxyl group in the molecule with a diisocyanated ligated product, such as 1 mol of hexamethylene diisocyanate. And an isocyanato group-containing (meth) atalyle having one isocyanato group in the molecule.
  • the compounding amount of the isocyanato group-containing polymerizable unsaturated compound (e) is from 0.1 equivalent to 0.8 equivalent to the hydroxyl group contained in the acrylic polymer (A) obtained above. It is more preferable to add so that the amount becomes 0.2 to 0.7 equivalents. If the compounding amount of the isocyanato group-containing polymerizable unsaturated compound (e) is less than 0.1 equivalent to the above hydroxyl group, after the acrylic polymer (A) is cured as an active energy ray-curable coating, Is unfavorable because the film properties tend to decrease overall.
  • the acrylic polymer (A) will be cured when it is used as an active energy ray-curable coating. This is not preferable because the properties of the coating film such as the appearance of the coating film afterwards tend to decrease.
  • the weight-average molecular weight (gel permeation 'chromatography method, standard polystyrene equivalent value) of the acrylic polymer (A) having a polymerizable unsaturated bond obtained as described above is 50,000-500 , 000, more preferably 80,000-400,000. If the weight average molecular weight of the acrylic polymer (A) is less than 50,000, the tackiness of the coating film obtained when the acrylic polymer (A) is used as an active energy ray-curable coating tends to decrease. And the hardness of the cured coating film tends to be inferior.
  • the weight average molecular weight of the acrylic polymer (A) exceeds 500,000, the compatibility with other resin compositions (such as active energy ray-cured resin oligomers) decreases, and the viscosity increases.
  • the solid content tends to decrease significantly and the coating properties tend to decrease.
  • the reactive unsaturated double bond group contained in the acrylic polymer (A) has a lower limit of It is preferable that the value is 0.67 mol / kg or more. 1. More preferably 1 mol / kg or more. The upper limit is 3.3 mol or less. More preferably, it is not more than mol Zkg.
  • the reactive unsaturated double bond group contained in the acrylic polymer (A) is less than 0.67 mol Zkg, curing when the acrylic polymer (A) is used as an active energy ray-curable coating material. Film properties such as hardness and solvent resistance of the film tend to decrease, which is not preferable.
  • the amount of the reactive unsaturated double bond group exceeds 3.3 mol Zkg
  • the acryl-based polymer (A) when used as an active energy ray-curable coating material, it becomes incompatible with other polymerizable oligomers and the like. The solubility tends to decrease, the appearance of the coating film tends to decrease, and the flexibility after curing tends to decrease, which is not preferred.
  • the hydroxyl value of the acrylic polymer (A) is preferably from 30 to 125, more preferably from 50 to 100. If the hydroxyl value of the acrylic polymer (A) is less than 30, the compatibility with other resin compositions (such as active energy ray-cured resin oligomers) is reduced, and the coating film tends to become turbid. If it exceeds 125, the water resistance of the Taliya coating film tends to decrease, which is not preferable.
  • the epoxy group-containing copolymers (c) of Examples 15 and Comparative Examples 1 and 2 were produced according to the formulations shown in Table 1 below. That is, (I) was charged into a reaction vessel, and heated to 110 ° C. while stirring under a nitrogen gas atmosphere. At 110 ° C, ( ⁇ ) (a mixed solution of the above polymerizable monomer component and perbutyl O (trade name, t-butylperoxy 2-ethylhexanoate, manufactured by NOF Corporation) as a polymerization initiator) was added dropwise over 2 hours. . After completion of the dropwise addition, the reaction was further performed at 110 ° C. for 1 hour, and then (III) was added dropwise over 1 hour.
  • a mixed solution of the above polymerizable monomer component and perbutyl O (trade name, t-butylperoxy 2-ethylhexanoate, manufactured by NOF Corporation) as a polymerization initiator
  • Tg Tg of homopolymer of each component
  • a polymerizable unsaturated bond was introduced into the epoxy group-containing copolymer (c) of each of the Examples and Comparative Examples obtained above according to the formulation shown in Table 2 below, and an acrylic polymer having a polymerizable unsaturated bond was introduced.
  • Polymer (A) was obtained. That is, (V) was charged into a reaction vessel, and heated to 90 ° C. with stirring while blowing air. Add (VI) at 90 ° C, perform reaction at 90 ° C for 1 hour, then heat to 105 ° C, and react at 105 ° C until the acid value of the resin solids is 8 or less. I did it. After adding (VII), raise the temperature to 75 ° C, add (VIII) (Showa Denko Co., Ltd.
  • A1 Parts by weight of short-chain unsaturated carboxylic acid compound
  • A2 parts by weight of long chain unsaturated carboxylic acid compound
  • P1 parts by weight of components excluding isocyanato group-containing compound
  • the sample was titrated with a 0.1N potassium hydroxide solution according to JIS K5601-2--1, and the acid value was calculated by the following formula.
  • Irgacure 184 (Ciba Specialty Chemicals) was used as a photopolymerization initiator with respect to the solid weight lOOg of the acrylic polymer (A) having a polymerizable unsaturated bond in each of the examples and comparative examples obtained above. Co., Ltd .; solid content weight 100%) and paint solid content 35% Toluene was mixed and stirred and mixed to obtain an active energy ray-curable tarry coating.
  • the above-mentioned Talia coating was applied to a glass plate and a tin plate (0.5 mm thick) with a bar coater # 60, and dried at 80 ° C for 10 minutes. Then, the test plate was irradiated with an ultraviolet (UV) irradiator UV
  • UV irradiation was performed using 8408 (manufactured by Nippon Battery Co., Ltd.) with an integrated light amount of 2, OOOmjZcm 2 to prepare a cured coating film.
  • test plate was evaluated for tackiness, hardness, chemical resistance, and flexibility.
  • the test method and test results (Table 3) are described below.
  • test plates before and after the UV curing were dried at 80 ° C for 10 minutes, and then left at 25 ° C for 5 minutes, and the tackiness of the tarry coating film was determined by finger touch according to the following criteria.
  • Pencil hardness was measured in accordance with JIS K5699-5-4, and it was judged as pass ( ⁇ ) when it was HB or more, and was judged as reject (X) when it was less than HB.
  • the coating was rubbed 100 times with gauze containing methyl ethyl ketone, and the appearance of the coating was evaluated.
  • test plate of the tinplate base material was evaluated according to JIS K5600-5-1, using a mandrel with a diameter of 32 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Epoxy Resins (AREA)

Abstract

 溶剤揮発後に塗膜表面がタックフリーとなり、ゴミや粉塵が付着することなく表面状態が良好で、硬化性が優れ、耐薬品性と柔軟性に優れる硬化塗膜が得られる、活性エネルギー線硬化型樹脂組成物に用いるのに好適な、重合性不飽和結合を有するアクリル系重合体を提供するために、分子内にエポキシ基を1個以上かつ重合性不飽和結合を1個有する重合性不飽和化合物(a)と、該(a)成分以外の、分子内に重合性不飽和結合を1個有する重合性不飽和化合物(b)との共重合で得られるエポキシ基含有共重合体(c)に、分子量が150未満である短鎖不飽和カルボン酸(d1)および分子量が150以上である長鎖不飽和カルボン酸(d2)を反応させることでアクリル系重合体(A)を合成することを特徴とする、重合性不飽和結合を有するアクリル系重合体(A)の製造方法を提供する。

Description

重合性不飽和結合を有するアクリル系重合体の製造方法
技術分野
[0001] 本発明は、新規にして有用なる、活性エネルギー線硬化型榭脂の製造方法および それを用いた活性エネルギー線硬化型榭脂組成物に関するものである。さらに詳細 には、本発明は、溶剤揮発後に塗膜表面がタックフリーとなり、ゴミゃ粉塵が付着する ことなく表面状態が良好で、硬化性に優れ、耐薬品性と柔軟性に優れる硬化塗膜が 得られ、金属製品やプラスチック製品等のトップタリヤー層として用いる活性エネルギ 一線硬化型榭脂組成物に好適な、活性エネルギー線硬化型榭脂に関するものであ る。
背景技術
[0002] 金属部品やプラスチック製品、木工製品等の成型品には、耐久性の付与と意匠性 の付与を目的として、成型品表面に塗料の塗装による塗膜形成がおこなわれている ことが多い。塗装される成型品(以後、被塗物と称する)は多種多様の材質や形状で あるため、それらを比較的容易に塗装することができるスプレー塗装ゃ浸漬塗装法 等が多く用いられている。
[0003] 近年では、予めフィルムに塗料を塗装し複層塗膜を形成した積層フィルムを接着剤 や加熱転写により被塗物上に貼り付け、複層塗膜を形成する、活性エネルギー線硬 化型のフィルム加飾法が提案されている(例えば、 日本国特開 6— 100640号公報参 照)。この方法によれば、スプレー塗装時の被塗物への未塗着塗料削減および溶剤 揮発量の低減 (塗装環境改善)や塗装工程の短縮 (活性エネルギー線硬化による硬 ィ匕 '乾燥時間の短縮化)を図ることが可能である。
発明の開示
[0004] 上記のフィルム加飾法に用いる積層フィルムには、スプレー塗装等の塗膜形成方 法で実現される塗膜の硬さ、不粘着性、耐溶剤性等の塗膜特性と、積層フィルムを 被塗物に好適に加飾するための加工性が求められる。し力しながら、上記従来の積 層フィルムでは、上記塗膜特性の確保と加工性を同時に確保することは困難であつ た。すなわち、塗膜特性を重視すると加工性が低下し、加工性を重視するど塗膜特 '性の確保が困難という問題があった。
[0005] より具体的には、積層フィルムの加工性を重視した場合、例えば、成型品の形状に 追随するように積層フィルムに対して柔軟性を付与する必要がある。この柔軟性はガ ラス転移温度の低 ヽ榭脂を使用した積層フィルムを用いる、または積層フィルムの架 橋密度を低くする等によって達成可能である。し力しながら、上記のように柔軟性を 重視すると、積層フィルムの不粘着性および塗膜硬度の低下ゃ耐薬品性の低下が 発生する等のような塗膜特性の確保が困難であるという問題がある。
[0006] このように、従来では、積層フィルムを用いて被塗物を加飾する際の加工性を確保 するとともに、上記したスプレー塗装法等によって実現される塗膜特性や意匠性と同 等レベル以上の塗膜特性や意匠性を得ることは困難であった。
[0007] 本発明は、上記従来の問題点を解決するためになされたものであって、その目的 は従来のスプレー塗装法等と同等レベル以上の優れた意匠性及び塗膜特性を確保 するとともに、被塗物の形状に追随して好適な加飾を行なうことができる等の優れた 加工性を有し、積層フィルムのトップタリヤー層として用いる活性エネルギー線硬化 型榭脂組成物に好適な、重合性不飽和結合を有するアクリル系重合体の製造方法 を提供することにある。
[0008] 本発明者らは、上記課題に対して鋭意検討をおこなった結果、アクリル系重合体に 活性エネルギー線で硬化する不飽和二重結合を側鎖として導入し、かつ該不飽和 二重結合の長さを制御することによって、従来技術では困難であった各種塗膜特性 と加工性を両立させることが可能で、活性エネルギー線硬化型榭脂組成物に好適な 、重合性不飽和結合を有するアクリル系重合体の製造方法を見出し、本発明を完成 させるに至った。
[0009] すなわち、本発明は、下記(1)一 (7)に記載の事項をその特徴とするものである。
[0010] (1)分子内にエポキシ基を 1個以上かつ重合性不飽和結合を 1個有する重合性不 飽和化合物 (a)と、該 (a)成分以外の、分子内に重合性不飽和結合を 1個有する重 合性不飽和化合物 (b)との共重合で得られるエポキシ基含有共重合体 (c)に、分子 量が 150未満である短鎖不飽和カルボン酸 (dl)および分子量が 150以上である長 鎖不飽和カルボン酸 (d2)を反応させることでアクリル系重合体 (A)を合成することを 特徴とする、重合性不飽和結合を有するアクリル系重合体 (A)の製造方法。
[0011] (2)前記短鎖不飽和カルボン酸 (dl)および前記長鎖不飽和カルボン酸 (d2)は、 これらの合計モル量 (dl + d2)に対して、それぞれ 20モル%以上 80モル%以下とな るように配合されることを特徴とする、上記(1)記載の重合性不飽和結合を有するァ クリル系重合体 (A)の製造方法。
[0012] (3)前記アクリル系重合体 (A)の重量平均分子量が、 50, 000以上 500, 000以 下の範囲内であることを特徴とする、上記(1)または(2)記載の重合性不飽和結合を 有するアクリル系重合体 (A)の製造方法。
[0013] (4)前記アクリル系重合体 (A)に含まれる反応性の不飽和二重結合基力 0. 67モ ル Zkg以上 3. 3モル Zkg以下の範囲内であることを特徴とする、上記(1)一(3)の V、ずれかに記載の重合性不飽和結合を有するアクリル系重合体 (A)の製造方法。
[0014] (5)前記エポキシ基含有共重合体 (c)は、ガラス転移温度が 50°C以上 130°C以下 であることを特徴とする、上記(1)一(4)のいずれかに記載の重合性不飽和結合を有 するアクリル系重合体 (A)の製造方法。
[0015] (6)前記アクリル系重合体 (A)に含まれる水酸基に対して、さらに分子内にイソシァ ナト基を 1個かつ重合性不飽和結合を 1個以上有するイソシアナト基含有重合性不 飽和化合物(e)を 0. 1-0. 8当量添加して付加反応させることを特徴とする、上記( 1)一 (5)の 、ずれかに記載の重合性不飽和結合を有するアクリル系重合体 (A)の 製造方法。
[0016] (7)前記アクリル系重合体 (A)の水酸基価が 30以上 125以下であることを特徴とす る、上記(1)一(6)のいずれかに記載の重合性不飽和結合を有するアクリル系重合 体 (A)の製造方法。
[0017] 本発明により製造される重合性不飽和結合を有するアクリル系重合体 (A)は、硬化 前塗膜の不粘着性、硬化後塗膜の硬度、耐薬品性を確保し、なおかつ優れた加工 性を有するため、活性エネルギー線硬化型榭脂組成物に好適である。特にフィルム 加飾法での積層フィルムのトップタリヤー層に用いる活性エネルギー線硬化型榭脂 組成物に好適である。 [0018] 本出願は、同出願人により先にされた日本国特許出願 2004— 068170号(出願日 2004年 3月 10日)に基づく優先権主張を伴うものであって、これらの明細書を参照 のためにここに組み込むものとする。
[0019] 以下、本発明について詳細に説明する。
発明を実施するための最良の形態
[0020] 本発明の重合性不飽和結合を有するアクリル系重合体 (A)の製造方法は、分子内 にエポキシ基を 1個以上かつ重合性不飽和結合を 1個有する重合性不飽和化合物( a)と、該 (a)成分以外の、分子内に重合性不飽和結合を 1個有する重合性不飽和化 合物 (b)との共重合で得られるエポキシ基含有共重合体 (c)に、分子量が 150未満 である短鎖不飽和カルボン酸 (dl)および分子量が 150以上である長鎖不飽和カル ボン酸 (d2)を反応させることでアクリル系重合体 (A)を合成することをその特徴とす るものである。
[0021] 本発明により得られるアクリル系重合体 (A)は、主鎖構造にアクリル酸又はメタタリ ル酸 (以下、両者を総称して (メタ)アクリル酸、または (メタ)アタリレートと記載する)の 誘導体を重合してなるアクリル榭脂構造を含み、主鎖構造に結合する側鎖に重合性 の短側鎖不飽和二重結合基と長側鎖不飽和二重結合基をそれぞれ 1つ以上有する 。なお、これら重合性の不飽和二重結合基とは、分子内又は分子間での反応によつ て架橋する置換基を意味し、それぞれアクリル系重合体 (A)前駆体であるエポキシ 基含有共重合体 (c)に、上記短鎖不飽和カルボン酸 (dl)および上記長鎖不飽和力 ルボン酸 (d2)を反応させることによって、導入されるものである。
[0022] 本発明の製造方法では、まず、分子内にエポキシ基を 1個以上かつ重合性不飽和 結合を 1個有する重合性不飽和化合物 (a)と、該 (a)成分以外の、分子内に重合性 不飽和結合を 1個有する重合性不飽和化合物 (b)とを共重合させてエポキシ基含有 共重合体 (c)を合成する。
[0023] 上記 (a)成分としては、分子内にエポキシ基を 1個以上かつ重合性不飽和結合を 1 個有する重合成不飽和化合物であればよぐ特に限定されないが、アクリル酸又はメ タクリル酸の誘導体とエポキシ基含有ィ匕合物との化合物であることが好ましぐ例えば 、グリシジル(メタ)アタリレート、 3, 4—エポキシシクロへキシル (メタ)アタリレート等の エポキシ基含有 (メタ)アタリレートなどが挙げられ、これらは単独でも、 2種以上併用 してちよい。
[0024] 上記 (b)成分としては、上記 (a)成分以外であって、分子内に重合性不飽和結合を 1個有する不飽和化合物であればよぐ特に限定されないが、アクリル酸又はメタタリ ル酸の各種のエステルであることが好ましぐ例えば、メチル (メタ)アタリレート((メタ) アタリレートとはアタリレート及びメタタリレートを示す。以下同様。)、ェチル (メタ)ァク リレート、 n-プロピル (メタ)アタリレート、 n-ブチル (メタ)アタリレート、イソブチル (メタ )アタリレート、 t-ブチル (メタ)アタリレート、ェチルへキシル (メタ)アタリレート、ステア リル (メタ)アタリレート、ラウリル (メタ)アタリレート、トリデシル (メタ)アタリレート等のァ ルキル (メタ)アタリレート、シクロへキシル (メタ)アタリレート、イソボル-ル (メタ)アタリ レート、ジシクロペンタ-ル (メタ)アタリレート等の脂環式 (メタ)アタリレート、スチレン 、ビュルトルエン等の芳香族ビュルモノマ、フ ノキシェチル (メタ)アタリレート等の芳 香族 (メタ)アタリレート、エトキシェチル (メタ)アタリレート、ブトキシェチル (メタ)アタリ レート等のアルコキシアルキル (メタ)アタリレート、 2—ヒドロキシェチル (メタ)アタリレ
等のヒドロキシアルキル (メタ)アタリレート、 2—メトキシェトキシェチル (メタ)アタリレー ト、 2—エトキシエトキシェチル (メタ)アタリレート等のアルコキシアルコキシアルキル (メ タ)アタリレート、メトキシジエチレングリコール(メタ)アタリレート、エトキシジエチレング リコール (メタ)アタリレート、メトキシトリエチレングリコール (メタ)アタリレート、ブトキシ トリエチレングリコール (メタ)アタリレート、メトキシジプロピレングリコール (メタ)アタリレ ート等のアルコキシ(ポリ)アルキレングリコール (メタ)アタリレート、ピレノキシド付加物
(メタ)アタリレート、ォクタフルォロペンチル (メタ)アタリレート、 N, N—ジメチルァミノ ェチル (メタ)アタリレート、 N, N—ジェチルアミノエチル (メタ)アタリレート等のジアル キルアミノアルキル (メタ)アタリレートなどの 1種もしくは 2種以上の組み合わせ力もな る混合物が挙げられる。
[0025] 前記 (a)成分および (b)成分は、ラジカル重合開始剤の存在下で溶液重合法など の公知の方法にて共重合させてエポキシ基含有共重合体 (c)とされる。ここで、これ らの配合量としては、(a)成分と (b)成分の合計量 { (a) + (b) } 100重量部に対して、 (a)成分は、好ましくは 10— 60重量部、より好ましくは 20— 45重量部、(b)成分は、 好ましくは 40— 90重量部、より好ましくは 55— 80重量部である。(a)成分が 10重量 部未満であると、活性エネルギー線硬化型塗料としたときに得られる塗膜の硬化性 及び硬化塗膜性能が全般的に低下する傾向にあり、 60重量部を超えると塗膜の不 粘着性が低下する傾向にある。
[0026] こうして得られるエポキシ基含有共重合体 (c)の重量平均分子量 (ゲルパーミエ一 シヨン'クロマトグラフィー法、標準ポリスチレン換算値)は、 30, 000— 200, 000であ ることが好ましぐ 50, 000— 150, 000であることがより好ましい。エポキシ基含有共 重合体 (c)の重量平均分子量が 30, 000未満であると、アクリル系重合体 (A)を活 性エネルギー線硬化型塗料としたときに得られる塗膜の不粘着性が低下する傾向が あり、また硬化後塗膜の耐擦り傷性が劣る傾向にある。一方、重量平均分子量が 20 0, 000を超えると、他の榭脂組成物 (活性エネルギー線硬化型榭脂オリゴマー等)と の相溶性が低下し、また粘度が高くなるため有機溶剤で適切な塗装粘度まで希釈す ると固形分が著しく低下し塗装性が低下する傾向にある。
[0027] また、このエポキシ基含有共重合体 (c)のガラス転移温度は 50— 130°Cであること が好ましぐ 60— 110°Cであることがより好ましい。ここで、エポキシ基含有共重合体( c)のガラス転移温度が 50°C未満であると、アクリル系重合体 (A)を活性エネルギー 線硬化型塗料としたときに得られる塗膜の不粘着性が低下する傾向があり、 130°Cを 超えると得られる塗膜の外観、硬化性及び塗装性が低下する傾向がある。
[0028] っ 、で、上記エポキシ基含有共重合体 (c)に不飽和カルボン酸ィ匕合物を反応させ ることで、当該エポキシ基含有共重合体 (c)の側鎖に不飽和二重結合基を導入し、 アクリル重合体 (A)を得る。
[0029] 本発明では、上記不飽和カルボン酸ィ匕合物として、分子量 150未満 (より好ましくは 分子量 72以上 100未満)の短鎖不飽和カルボン酸 (dl)、および分子量 150以上( より好ましくは分子量 200以上 1000未満)の長鎖不飽和カルボン酸 (d2)をそれぞ れ 1種類以上使用する。
[0030] 上記短鎖不飽和カルボン酸 (dl)としては、例えば、(メタ)アクリル酸及びこれらの 2 量体(ァロニックス M5600)などが挙げられる。また、上記長鎖不飽和カルボン酸(d 2)としては、例えば、力プロラタトン変成 (メタ)アクリル酸(ω-カルボキシ-ポリ力プロ ラタトンモノアタリレート:東亞合成社製ァロニックス Μ5300)、水酸基含有 (メタ)ァク リレートと無水カルボン酸との開環反応で得られる化合物(フタル酸モノヒドロキシェ チルアタリレート:東亞合成社製ァロニックス Μ5400, β アタリロイルォキシェチル ハイドロジェンサクシネート:新中村化学社製 ΝΚエステル A-SA)などが挙げられ る。
[0031] エポキシ基含有共重合体 (c)と不飽和カルボン酸化合物とを付加反応により反応さ せる際の、エポキシ基含有共重合体 (c)のエポキシ基と不飽和カルボン酸ィ匕合物( 短鎖不飽和カルボン酸 (dl)と長鎖不飽和カルボン酸 (d2)に含まれるカルボキシル 基の合計量)のカルボキシル基の当量比は、エポキシ基に対してカルボキシル基が モル比で 1 : 0. 8— 1 : 1. 1となるように配合することが好ましい。エポキシ基とカルボ キシル基の当量比が 1 : 0. 8未満の場合、得られた榭脂を活性エネルギー線硬化塗 料とした場合の硬化性及び塗膜性能が全般的に低下する傾向にあり、 1 : 1. 1を超え た場合、上記同様の塗料とした場合の硬化前塗膜の不粘着性が低下する傾向にあ る。この反応は、塩基性触媒、リン系触媒などの存在下で公知の方法にて行うことが できる。
[0032] さらに、不飽和カルボン酸化合物の合計モル量(dl + d2)のうち、短鎖不飽和カル ボン酸 (dl)の含有量は下限値が 20モル%以上であることが好ましぐ 33モル%以 上であることがより好ましぐ上限値が 80モル%以下であることが好ましぐ 67モル% 以下であることがより好ましい。一方、長鎖不飽和カルボン酸 (d2)の含有量は下限 値が 20モル%以上であることが好ましぐ 33モル%以上であることがより好ましぐ上 限値が 80モル%以下であることが好ましぐ 67モル%以下であることがより好ましい。 短鎖不飽和カルボン酸(dl)の含有量が 20モル%未満あるいは長鎖不飽和カルボ ン酸 (d2)の含有量が 80モル%を超えると、活性エネルギー線硬化型塗料とした時 に、硬化後塗膜の耐薬品性、塗膜硬度が劣る傾向であり、好ましくない。短鎖不飽和 カルボン酸(dl)の含有量が 80モル%を超える、あるいは長鎖不飽和カルボン酸(d 2)の含有量が 20モル%未満であると、活性エネルギー線硬化型塗料とした時に、硬 化後塗膜の柔軟性が劣る傾向であり、好ましくない。 [0033] 本発明の製造方法では、さらに、上記で得られたアクリル系重合体 (A)に含まれる 水酸基に、分子内にイソシアナト基を 1個かつ重合性不飽和結合を 1個以上有する、 イソシアナト基含有重合性不飽和化合物 (e)を付加反応させてもょ ヽ。
[0034] 上記イソシアナト基含有重合性不飽和化合物(e)としては、例えば、メタクリロイル ォキシェチルイソシァネート(昭和電工社製 商品名力レンズ MOI)や 2—ヒドロキシェ チルアタリレート 1モルとへキサメチレンジイソシァネート 1モルの付カ卩物などの、分子 中に水酸基を 1個有する (メタ)アタリレートイ匕合物とジイソシァネートイ匕合物を反応さ せて得られる、分子中にイソシアナト基を 1個有するイソシアナト基含有 (メタ)アタリレ 一トイ匕合物などが挙げられる。
[0035] 上記イソシアナト基含有重合性不飽和化合物(e)の配合量としては、上記で得られ たアクリル系重合体 (A)に含まれる水酸基に対して 0. 1当量以上 0. 8当量以下とな るように添加することが好ましぐ 0. 2当量以上 0. 7当量以下となるように添加するこ とがより好ま U、。イソシアナト基含有重合性不飽和化合物 (e)の配合量が上記水酸 基に対して 0. 1当量未満では、アクリル系重合体 (A)を活性エネルギー線硬化型塗 料とした際に硬化後の塗膜特性が全般的に低下する傾向であり好ましくない。一方、 イソシアナト基含有重合性不飽和化合物 (e)の配合量が上記水酸基に対して 0. 8当 量を超えると、アクリル系重合体 (A)を活性エネルギー線硬化型塗料とした際に硬化 後の塗膜外観等の塗膜特性が低下する傾向にあり好ましくな 、。
[0036] 上記のようにして得られる重合性不飽和結合を有するアクリル系重合体 (A)の重量 平均分子量 (ゲルパーミエーシヨン'クロマトグラフィー法、標準ポリスチレン換算値) は、 50, 000— 500, 000力 子ましく、より好ましくは 80, 000— 400, 000である。ァ クリル系重合体 (A)の重量平均分子量が 50, 000未満であるとアクリル系重合体 (A )を活性エネルギー線硬化型塗料としたときに得られる塗膜の不粘着性が低下する 傾向であり、また硬化塗膜の塗膜硬度が劣る傾向にある。一方、アクリル系重合体( A)の重量平均分子量が 500, 000を超えると他の榭脂組成物 (活性エネルギー線 硬化榭脂オリゴマー等)との相溶性が低下し、また粘度が高くなるため有機溶剤で適 切な塗装粘度まで希釈すると固形分が著しく低下し塗装性が低下する傾向にある。
[0037] また、上記アクリル系重合体 (A)に含まれる反応性の不飽和二重結合基は、下限 値で 0. 67モル/ kg以上であることが好ましぐ 1. 1モル/ kg以上であることがより好 ましぐ上限値が 3. 3モル Zkg以下であることが好ましぐ 2. 2モル Zkg以下である ことがより好ましい。上記アクリル系重合体 (A)に含まれる反応性の不飽和二重結合 基が 0. 67モル Zkg未満であると、アクリル系重合体 (A)を活性エネルギー線硬化 型塗料とした際の硬化塗膜の硬度および耐溶剤性等の塗膜特性が低下する傾向で あり好ましくない。一方、反応性の不飽和二重結合基が 3. 3モル Zkgを超えると、ァ クリル系重合体 (A)を活性エネルギー線硬化型塗料とした際、他の重合性オリゴマ 一等との相溶性が低下し、塗膜外観が低下する傾向であり、また硬化後の柔軟性が 低下する傾向であり好ましくない。
[0038] また、上記アクリル系重合体 (A)の水酸基価は 30以上 125以下であることが好まし く、 50以上 100以下であることがより好ましい。アクリル系重合体 (A)の水酸基価が、 30未満であると、他の榭脂組成物 (活性エネルギー線硬化榭脂オリゴマー等)との相 溶性が低下し、塗膜に濁りが生じる傾向があり好ましくなぐ 125を超えると、タリヤー 塗膜の耐水性が低下する傾向があり好ましくない。
[0039] 以下、本発明を実施例及び比較例に基づいてより詳細に説明するが、本発明はこ れに限定されるものではな 、。
実施例
[0040] <エポキシ基含有共重合体 (c)の製造 >
実施例 1一 5および比較例 1、 2のエポキシ基含有共重合体 (c)を下記表 1に示す 配合に従い製造した。すなわち、反応容器中に (I)を仕込み、窒素ガス雰囲気下撹 拌しながら 110°Cまで加熱した。 110°Cで (Π) (上記重合性単量体成分と重合開始 剤としてパーブチル O (日本油脂社製 商品名、 t ブチルペルォキシ 2—ェチルへ キサノエート)の混合液)を 2時間に亘つて滴下した。滴下終了後更に 1時間 110°Cで 反応を行い、その後、(III)を 1時間に亘つて滴下した。滴下終了後、 145°Cに加熱さ せ更に 2時間反応を続け、 100°C以下に冷却後(IV)を添加してエポキシ基含有共 重合体 (c)を合成した。各実施例および比較例で得られたエポキシ基含有共重合体 (c)の特性を下記表 1に示す。なお、表中の配合量は重量 (g)であり、各特性値は以 下に記す手法で評価した。 [0041] [表 1]
Figure imgf000011_0002
[0042] (重量平均分子量)
以下の機器測定条件で測定し、標準ポリスチレン換算分子量を求めた。 使用機器:日立 L6000型高速液体クロマトグラフィー
カラム:ゲルパック R400 R450及び R400M (日立化成工業 (株)商品名 ) 溶離液:テトラハイド口フラン
カラム温度: 40°C
試料濃度:0. lg/5ml
流量: 2ml/ mm
検出器:日立 L3350型示差屈折率計
[0043] (ガラス転移温度 (Tg) )
下記式を用い、各成分の単独重合体の Tg (文献値)から算出した。
Figure imgf000011_0001
W :各成分の質量分率
Tg:各成分の単独重合体の Tg
[0044] <重合性不飽和結合を有するアクリル系重合体 (A)の製造 >
上記で得られた各実施例および比較例のエポキシ基含有共重合体 (c)に、下記表 2に示す配合に従って重合性不飽和結合を導入し、重合性不飽和結合を有するァク リル系重合体 (A)を得た。すなわち、反応容器中に (V)を仕込み、空気吹き込み下、 攪拌しながら 90°Cまで加熱した。 90°Cで (VI)を添加し、 90°Cで 1時間反応をおこな い、その後 105°Cまで加熱し、榭脂固形分酸価が 8以下になるまで 105°Cで反応を おこなった。その後 (VII)を添加した後、温度を 75°Cにして (VIII) (昭和電工社製 商品名力レンズ MOI ;メタクリロイルォキシェチルイソシァネート)を添加し、 75°Cで 2 時間反応させた。その後 60°C以下に冷却し、(IX)を添加して重合性不飽和結合を 有するアクリル系重合体 (A)を合成した。各実施例および比較例で得られたアクリル 系重合体 (A)の特性を下記表 2に示す。なお、表中の配合量は重量 (g)であり、各 特性値は以下に記す手法で評価した。
[0045] [表 2]
Figure imgf000012_0001
[0046] (不飽和二重結合基量)
榭脂固形分 lOOOg当りに含有する不飽和カルボン酸 (短鎖不飽和カルボン酸 (dl )と長鎖不飽和カルボン酸 (d2)の合計モル数)とイソシアナト基含有重合性不飽和 化合物 (e)との合計モル数を配合計算値力 算出した。
[0047] (水酸基価)
下記式を用い, (1)一 (3)の手順で榭脂の固形分水酸基価を算出した。
(1)イソシアナト基含有ィ匕合物付加前の水酸基価の算出 (OH1)
OHl =〔{ (Al + Bl) X C1 } + { (A2 + B2) X C2}] /P1
(2)水酸基に対するイソシアナト基含有ィ匕合物の当量配合量の算出 D2=(42XPlXOHl)/(561XE)
(3)イソシアナト基含有ィ匕合物付加後の水酸基価の算出 (OH2)
OH2=[(OHlXPl) X{1-(D1/D2)}]/P2
A1:短鎖不飽和カルボン酸化合物の重量部
A2:長鎖不飽和カルボン酸化合物の重量部
B1: A1と同モル数のエポキシ基含有化合物の重量部
B2:A2と同モル数のエポキシ基含有化合物の重量部
C1:A1 + B1付加物の水酸基価
C2:A2 + B2付加物の水酸基価
D1:イソシァナト基含有化合物の重量部
D2:水酸基に対して当量配合量のイソシアナト基含有ィ匕合物の重量部 E :イソシァナト基含有化合物の NCO含有量(%)
P1:イソシァナト基含有ィ匕合物を除いた成分の重量部
P2:全成分の合計重量部
OH1:イソシアナト基含有化合物付加前の榭脂固形分水酸基価
OH2:イソシアナト基含有化合物付加後の榭脂固形分水酸基価
[0048] (酸価)
JIS K5601— 2— 1に準じて、試料を 0.1N 水酸化カリウム溶液で滴定し 下記式にて酸価を算出した。
酸価 =(AXf)ZB
A:水酸化カリウム溶液滴定量 (ml)
B:試料の質量 (g)
f:水酸ィ匕カリウム溶液の真のモル濃度
[0049] <アクリル系重合体 (A)の評価 >
'タリヤー塗料の作製
上記で得られた各実施例および比較例の重合性不飽和結合を有するアクリル系重 合体 (A)の固形分重量 lOOgに対して光重合開始剤としてィルガキュア 184 (チバ · スぺシャリティ'ケミカルズ (株)製;固形分重量 100%)を 4g加え、塗料固形分 35% になるようにトルエンをカ卩えて攪拌 '混合し、活性エネルギー線硬化型タリヤー塗料を 作製した。
[0050] ·試験板の作成
上記タリヤー塗料をガラス板およびブリキ板 (厚さ 0. 5mm)にバーコ一ター # 60で 塗布し、 80°Cで 10分間乾燥させた。その後、上記試験板を紫外線 (UV)照射機 UV
— 8408 (日本電池株式会社製)を用いて、積算光量を 2, OOOmjZcm2として、 UV 照射をおこな!ヽ硬化塗膜を作製した。
[0051] 上記試験板にて不粘着性、硬度、耐薬品性、柔軟性の評価をおこなった。試験方 法および試験結果 (表 3)を以下に記載する。
[0052] (不粘着性)
UV硬化前および硬化後の試験板を 80°Cで 10分間乾燥し、その後 25°Cにて 5分 間放置したあとのタリヤー塗膜の粘着性を指触によって以下基準にて判定した。
判定基準:粘着性なし→〇 (合格) 粘着性あり→ X (不合格)
[0053] (硬度)
JIS K5699— 5— 4に準じて、鉛筆硬度の測定を行い、 HB以上であれば合格(〇) とし、 HB未満であれば不合格 ( X )として判定した。
[0054] (耐薬品性)
硬化後塗膜をガーゼにメチルェチルケトンを含ませて 100回ラビングし、塗膜外観 を評価した。
判定基準:異状なし→〇 (合格) 塗膜溶解あり→ X (不合格)
[0055] (柔軟性)
ブリキ板基材の試験板を JIS K5600— 5— 1〖こ準じて、直径 32mmのマンドレイル を用いて評価を行った。
判定基準:ヮレなし→〇 (合格) ヮレ発生→ X (不合格)
[0056] [表 3] 塗膜評価結果
Figure imgf000015_0001
[0057] 表 3より、実施例のアクリル系重合体 (A)を用いて作製した活性エネルギー線硬化 型タリヤー塗料で形成された塗膜は、不粘着性、硬度、耐薬品性、柔軟性の全てに ぉ 、て、比較例のそれよりも優れて 、ることが分かる。
[0058] 前述したところが、この発明の好ましい実施態様であること、多くの変更及び修正を この発明の精神と範囲とにそむくことなく実行できることは当業者によって了承されよ

Claims

請求の範囲
[1] 分子内にエポキシ基を 1個以上かつ重合性不飽和結合を 1個有する重合性不飽和 化合物 (a)と、該 (a)成分以外の、分子内に重合性不飽和結合を 1個有する重合性 不飽和化合物 (b)との共重合で得られるエポキシ基含有共重合体 (c)に、分子量が 150未満である短鎖不飽和カルボン酸 (dl)および分子量が 150以上である長鎖不 飽和カルボン酸 (d2)を反応させることでアクリル系重合体 (A)を合成することを特徴 とする、重合性不飽和結合を有するアクリル系重合体 (A)の製造方法。
[2] 前記短鎖不飽和カルボン酸 (dl)および前記長鎖不飽和カルボン酸 (d2)は、これ らの合計モル量 (dl + d2)に対して、それぞれ 20モル%以上 80モル%以下となるよ うに配合されることを特徴とする、請求項 1記載の重合性不飽和結合を有するアタリ ル系重合体 (A)の製造方法。
[3] 前記アクリル系重合体 (A)の重量平均分子量が、 50, 000以上 500, 000以下の 範囲内であることを特徴とする、請求項 1または 2記載の重合性不飽和結合を有する アクリル系重合体 (A)の製造方法。
[4] 前記アクリル系重合体 (A)に含まれる反応性の不飽和二重結合基力 0. 67モル Zkg以上 3. 3モル Zkg以下の範囲内であることを特徴とする、請求項 1一 3のいず れか 1項記載の重合性不飽和結合を有するアクリル系重合体 (A)の製造方法。
[5] 前記エポキシ基含有共重合体 (c)は、ガラス転移温度が 50°C以上 130°C以下であ ることを特徴とする、請求項 1一 4のいずれか 1項記載の重合性不飽和結合を有する アクリル系重合体 (A)の製造方法。
[6] 前記アクリル系重合体 (A)に含まれる水酸基に対して、さらに分子内にイソシァナト 基を 1個かつ重合性不飽和結合を 1個以上有するイソシアナト基含有重合性不飽和 化合物(e)を 0. 1-0. 8当量添加して付加反応させることを特徴とする、請求項 1一 5の 、ずれか 1項記載の重合性不飽和結合を有するアクリル系重合体 (A)の製造方 法。
[7] 前記アクリル系重合体 (A)の水酸基価が 30以上 125以下であることを特徴とする、 請求項 1一 6のいずれか 1項記載の重合性不飽和結合を有するアクリル系重合体 (A )の製造方法。
PCT/JP2005/003372 2004-03-10 2005-03-01 重合性不飽和結合を有するアクリル系重合体の製造方法 WO2005087831A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510909A JP5125100B2 (ja) 2004-03-10 2005-03-01 重合性不飽和結合を有するアクリル系重合体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-068170 2004-03-10
JP2004068170 2004-03-10

Publications (1)

Publication Number Publication Date
WO2005087831A1 true WO2005087831A1 (ja) 2005-09-22

Family

ID=34975540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003372 WO2005087831A1 (ja) 2004-03-10 2005-03-01 重合性不飽和結合を有するアクリル系重合体の製造方法

Country Status (2)

Country Link
JP (1) JP5125100B2 (ja)
WO (1) WO2005087831A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274209A (ja) * 2007-05-04 2008-11-13 Chang Chun Plastic Co Ltd 紫外線硬化樹脂、その製造方法と該樹脂を含有する組成物
WO2017175430A1 (ja) * 2016-04-06 2017-10-12 三菱ケミカル株式会社 熱硬化性樹脂組成物、シートモールディングコンパウンド及びその製造方法、並びに繊維強化複合材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06161108A (ja) * 1992-11-17 1994-06-07 Hitachi Chem Co Ltd 感光性樹脂組成物及びこれを用いた感光性エレメント
JP2001059005A (ja) * 1999-08-24 2001-03-06 Hitachi Chem Co Ltd 光硬化性樹脂組成物及び塗料
JP2003336004A (ja) * 2002-05-21 2003-11-28 Mitsui Chemicals Inc アクリル系熱硬化性粉体塗料組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3413893B2 (ja) * 1993-09-01 2003-06-09 株式会社日本触媒 感光性樹脂組成物
JP3718295B2 (ja) * 1995-08-11 2005-11-24 ジャパンコンポジット株式会社 ビニルエステル樹脂組成物及び硬化物
JPH0987346A (ja) * 1995-09-19 1997-03-31 Dainippon Ink & Chem Inc エネルギ−線硬化型エポキシアクリレ−ト樹脂組成物
JPH10306138A (ja) * 1997-03-03 1998-11-17 Hitachi Chem Co Ltd 感光性樹脂組成物及びこれを用いたプリント配線板の製造方法
JP2000292921A (ja) * 1999-04-12 2000-10-20 Hitachi Chem Co Ltd 感光性樹脂組成物、これを用いたレジストパターンの製造法及び電気回路板の製造法
JP4363077B2 (ja) * 2002-07-12 2009-11-11 三菱化学株式会社 活性エネルギー線硬化性組成物及びハードコートフィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06161108A (ja) * 1992-11-17 1994-06-07 Hitachi Chem Co Ltd 感光性樹脂組成物及びこれを用いた感光性エレメント
JP2001059005A (ja) * 1999-08-24 2001-03-06 Hitachi Chem Co Ltd 光硬化性樹脂組成物及び塗料
JP2003336004A (ja) * 2002-05-21 2003-11-28 Mitsui Chemicals Inc アクリル系熱硬化性粉体塗料組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274209A (ja) * 2007-05-04 2008-11-13 Chang Chun Plastic Co Ltd 紫外線硬化樹脂、その製造方法と該樹脂を含有する組成物
WO2017175430A1 (ja) * 2016-04-06 2017-10-12 三菱ケミカル株式会社 熱硬化性樹脂組成物、シートモールディングコンパウンド及びその製造方法、並びに繊維強化複合材料
US10920009B2 (en) 2016-04-06 2021-02-16 Mitsubishi Chemical Corporation Thermosetting resin composition, sheet-molding compound and production method therefor, and fiber-reinforced composite material

Also Published As

Publication number Publication date
JP5125100B2 (ja) 2013-01-23
JPWO2005087831A1 (ja) 2007-08-09

Similar Documents

Publication Publication Date Title
KR101739356B1 (ko) 코팅제용 표면조정제
JP6582967B2 (ja) シリカ分散体、および、活性エネルギー線硬化性樹脂組成物
TW200813180A (en) Pressure sensitive adhesive agent and pressure sensitive adhesive film
JP2006306994A (ja) 水性塗料組成物及び該水性塗料組成物の塗装方法
JP5215897B2 (ja) 塗膜形成方法
JP5233614B2 (ja) 樹脂組成物及びこれを用いた転写フィルム
JP2011132521A (ja) 無機薄膜付プラスチック用アンダーコート剤、無機薄膜付プラスチック、ならびにインモールド成型またはインサート成型用の加飾フィルム
WO2006068209A1 (ja) 硬化性樹脂組成物、クリヤー塗料組成物及びそれを用いた複層塗膜の形成方法
JP5324726B2 (ja) クリヤー塗料組成物及びそれを用いた複層塗膜の形成方法
JP5539048B2 (ja) 硬化性樹脂組成物
JP4441202B2 (ja) マイケル硬化型撥水性塗料組成物
JPH07103290B2 (ja) 硬化性組成物、その製法並びにそれよりなるクリアラッカー
WO2005087831A1 (ja) 重合性不飽和結合を有するアクリル系重合体の製造方法
JP4936714B2 (ja) 熱硬化性樹脂組成物
JP2011252078A (ja) 紫外線硬化型塗料組成物
JP2019006873A (ja) 硬化性樹脂組成物、コーティング剤、及び物品。
JP5309273B1 (ja) クリヤー塗料組成物及びそれを用いた複層塗膜の形成方法
JP5450922B2 (ja) 活性エネルギー線硬化被膜形成組成物用の表面調整剤
JP2002069135A (ja) アクリル系共重合体、被覆用樹脂組成物および塗料
WO2019182155A1 (ja) 硬化性組成物、硬化物、硬化物の製造方法、硬化物の傷の修復方法
JP2019112594A (ja) 接着用樹脂組成物、プライマー、接着剤及び物品。
JP2004010772A (ja) 光硬化型樹脂、該樹脂を含む樹脂組成物及び塗料
KR100648226B1 (ko) 셀룰로오스 에스테르와 상용가능한 아크릴 폴리올 수지조성물 및 이를 이용한 도료 조성물
WO2004098796A1 (en) Acrylic resin coating composition for metal surface
JPH11100418A (ja) 光硬化型樹脂組成物及び塗料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510909

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase