WO2005085486A1 - 高強度および高硬度を有するタングステン系焼結材料およびそれからなる光学ガラスレンズの熱間プレス成形金型 - Google Patents

高強度および高硬度を有するタングステン系焼結材料およびそれからなる光学ガラスレンズの熱間プレス成形金型 Download PDF

Info

Publication number
WO2005085486A1
WO2005085486A1 PCT/JP2004/010278 JP2004010278W WO2005085486A1 WO 2005085486 A1 WO2005085486 A1 WO 2005085486A1 JP 2004010278 W JP2004010278 W JP 2004010278W WO 2005085486 A1 WO2005085486 A1 WO 2005085486A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
tungsten
alloy
mass
less
Prior art date
Application number
PCT/JP2004/010278
Other languages
English (en)
French (fr)
Inventor
Ji-Bin Yang
Masato Otsuki
Original Assignee
Mitsubishi Materials C.M.I. Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials C.M.I. Corporation filed Critical Mitsubishi Materials C.M.I. Corporation
Priority to KR1020117018412A priority Critical patent/KR101159086B1/ko
Priority to KR1020067018500A priority patent/KR101136765B1/ko
Priority to EP04747742A priority patent/EP1724369B1/en
Priority to DE602004030047T priority patent/DE602004030047D1/de
Priority to US10/598,585 priority patent/US7615094B2/en
Publication of WO2005085486A1 publication Critical patent/WO2005085486A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/06Metals or alloys

Definitions

  • the present invention relates to a tungsten-based sintered material having high strength and high hardness at a high temperature, and a molding die made of the same. More specifically, the present invention has excellent durability, high strength and high hardness with respect to extremely corrosive glass such as silicofluoride glass and quartz glass which requires high-temperature molding, and has a high thermal conductivity.
  • the present invention relates to a tungsten-based sintered material having excellent (heat dissipation) properties and a low coefficient of thermal expansion.
  • the molding die made of the tungsten-based sintered material is made of a tundast-based sintered material having the above-mentioned excellent characteristics (hereinafter abbreviated as W-based sintered material), for example, It is suitable for use as a hot press mold for optical glass lenses, which are components of optical functional devices mounted on various electronic and electrical devices and optical devices. .
  • hot press molding dies for optical glass lenses are required to have (a) excellent glass corrosion resistance, (b) excellent thermal conductivity (heat dissipation), and (c) low thermal expansion coefficient.
  • melting point 1,800 to 2,000 ° C
  • thermal conductivity 90 to 15 OW / m ⁇ K :
  • thermal expansion coefficient 4.5 to 5 .
  • a 5 X 10 _ 6 / K W based sintered material is used.
  • W-based sintered materials generally used for hot press molding dies are Ni: 0.2 to 0.2. 8% by mass (hereinafter, “%” indicates “% by mass”) and W: Obtained by sintering the green compact consisting of the remainder.
  • the W phases in this W-based sintered material are bonded to each other by sintering, and the maximum grain size of the W phase is 40 ⁇ m or more by microscopic observation with a scanning electron microscope, and the crushing strength of 700 to 90 OMPa And Vickers hardness (Hv) of 250-290.
  • the present inventors have further improved the strength and hardness without impairing the excellent characteristics of the conventional W-based sintered material hot press forming die used for forming the optical glass lens.
  • the research focused on W-based sintered materials. As a result, they found that the following first and second W-based sintered materials exhibited excellent performance over a long period of time even when used for hot press molding of optical glass lenses.
  • the first W-based sintered material of the present invention has the following composition.
  • Ni 0.2 to 1.5%
  • V C Vanadium carbide
  • Co / Fe Co and Fe
  • This first W-based sintered material is obtained, for example, as follows.
  • Ni sources include, for example, nickel nitrate hydrate powder, nickel chloride hydrate powder, or nickel sulfate hydrate powder, cobalt nitrate hydrate powder as a C 0 source, and nitric acid as an Fe source Use iron hydrate powder etc. /, These powders are blended so as to have the above blending ratio.
  • the obtained mixed raw material powder is completely dissolved in a solvent such as acetone or pure water, and then mixed with W powder having an average particle size of 0.5 to 3 ⁇ to obtain a slurry.
  • the obtained slurry is kneaded with a mixer, and the next! Dry with /, and coat the raw material with a predetermined amount of nickel nitrate, nickel hydrochloride, nickel sulfate, etc.
  • the obtained coated W powder is subjected to a heat treatment (for example, in a hydrogen atmosphere, at a temperature of 800 ° C.
  • the W-based sintered material obtained by sintering the obtained green compact has a high melting point, high thermal conductivity corresponding to the melting point, thermal conductivity, and coefficient of thermal expansion of the conventional W-based sintered material. , And low coefficient of thermal expansion, ie,
  • the maximum grain size of the W phase was 4 ⁇ or more as described above, whereas as described above, the maximum of the W phase in the first W-based sintered material of the present invention was The particle size is 30 m or less. This is the blanking rice that the added Y 2 0 3 has W-phase growth inhibition.
  • the crushing strength was improved to 1350 to 200 OMPa, and the hardness was improved to Hv: 320 to 450. 53.Since the crushing strength of conventional W-based sintered materials is 700 to 900 MPa and Vickers hardness is 250 to 290, the W-based sintered material of the present invention has excellent strength and hardness. It is clear to have both.
  • the first W-based sintered material of the present invention is used to form a molding die, particularly a highly erosive silica glass or a quartz glass requiring a high molding temperature, and further press molding.
  • a molding die particularly a highly erosive silica glass or a quartz glass requiring a high molding temperature
  • Research has shown that the molding dies will exhibit excellent performance in the long term.
  • the first W-based sintered material of the present invention is preferably used as a hot press molding die for an optical glass lens.
  • the present invention has been made based on the above research results, and the first W-based sintered material of the present invention is:
  • the Ni phase or Ni-Co / Fe alloy phase having a maximum particle size of 5 ⁇ m or less and the Y 2 ⁇ 3 phase are dispersed and distributed at the boundary of the W phase.
  • the second W-based sintered material of the present invention has the following composition.
  • Mo molybdenum
  • Cr chromium
  • Nb diobium
  • Re rhenium
  • VVC Vanadium carbide
  • CoZFe Co and Fe
  • This second W-based sintered material is obtained, for example, as follows.
  • Ni source for example, nickel nitrate powder, nickel chloride powder, nickel sulfate powder, or the like in a hydrate form, nitric acid powder as a Co source Using cobalt powder or the like and iron nitrate powder or the like as a Fe source, these powders are blended so as to have the above blend ratio.
  • M represents at least one of Mo, Cr, Nb, and Re.
  • the obtained slurry is kneaded with a mixer, and then dried to obtain a raw material coating W whose surface is coated with a predetermined amount of nickel nitrate, nickel hydrochloride, or nickel sulfate.
  • a raw material-coated W_M alloy-forming powder whose surface is coated with 1M alloy-forming powder or a predetermined amount of nickel nitrate and the like and copartate nitrate and / or iron nitrate is obtained.
  • the obtained raw material-coated W—M alloy forming powder is subjected to a heat treatment (for example, in a hydrogen atmosphere, at a temperature of 800 ° C., for a heating time of 1 hour), and nickel nitrate, nickel hydrochloride, or sulfuric acid on the surface is treated. It pyrolyzes nickel and possibly further cobalt nitrate and / or iron nitrate.
  • a coated W—M alloy forming powder having a surface coated with Ni or a coated W—M alloy forming powder coated with Ni and Co / Fe is obtained.
  • the coating W_M alloying powder obtained in both particle size of more than 5 mu m blending Y 2 ⁇ 3 powder predetermined amount adjusted sieved so as not to exist.
  • at this stage at least one of the Co / Fe powder can be blended again.
  • the W-based sintered material obtained by sintering the obtained green compact has a high melting point, high thermal conductivity, similar to the melting point, thermal conductivity, and thermal expansion coefficient of the conventional W-based sintered material, and Low thermal expansion, that is,
  • W—M alloy phase (where M is the Mo, Cr, Nb, and R e At least one of them).
  • M is the Mo, Cr, Nb, and R e At least one of them.
  • the W—M alloy exists as a W—M gold phase as it is.
  • This W—M alloy phase is harder than the W phase and is sintered to each other.
  • both have been distributed distributed in the boundary portion of the W- M alloy phase and a maximum particle size of 5 Myupaiiota less fine N i-phase or N i one C o / F e alloy phase and Y 2 ⁇ 3-phase Was confirmed.
  • the W-II alloy phase had a fine grain structure in which the maximum grain size was 30 m or less. Furthermore, the maximum grain size of the W phase was 40 im or more as described above in the conventional W-based sintered material, whereas the largest grain size of the W-M alloy phase was obtained in the 2W-based sintered material of the present invention. The diameter became less than 30 im. This is an additive This is because the Y 2 O 3 suppressed the growth of the W phase.
  • VC is Ri by the coexist with Y 2 0 3, more exert W-phase growth inhibition, less than the maximum particle diameter 1 5 mu m of W phase and I also found that I can do it.
  • Co / Fe can improve the crushing strength to 140 to 220 OMPa and the Vickers hardness (Hv) to 350 to 550.
  • the crushing strength of the conventional W-based sintered material is from 700 to 900 MPa and the Vickers hardness is from 250 to 290 MPa. Clearly has both excellent strength and hardness.
  • the second W-based sintered material of the present invention is used to form a molding die, particularly a highly corrosive silicate glass or a quartz glass that requires a high molding temperature, and has a higher press molding pressure.
  • the molding dies exhibit excellent performance over a long period of time. That is, they have found that the second W-based sintered material of the present invention is preferably used as a hot press molding die for an optical glass lens.
  • the present invention has been made based on the above research results, and the second W-based sintered material of the present invention is:
  • W_M alloy phases (where M represents at least one of Mo, Cr, Nb, and Re) are sintered and bonded to each other,
  • Both the maximum particle size of 5 im or less fine N i-phase or N i -C o / F e alloy phase and Y 2 0 3 phase is dispersed distributed in the boundary portion of the W- Micromax alloy phase, further It is characterized in that the maximum grain size of the WM alloy phase is 30 / im or less.
  • compositions of the first and second W-based sintered materials of the present invention are limited as described above will be described.
  • the sinterability is significantly improved.
  • a fine Ni phase or Ni-Co / Fe alloy phase having a maximum particle size of 5 / zm or less is present at the boundary of the W phase or the W-M alloy phase, the strength of the W-based sintered material can be improved.
  • the compounding ratio is less than 0.2%, the sinterability is improved and the distribution ratio of the Ni phase or the Ni-Co / Fe alloy phase becomes insufficient, and a desired high strength can be secured. Can not.
  • the mixing ratio of Ni is set to 0.2 to 1.5%, preferably 0.7 to 1.2%.
  • Ni, or Ni and CoZF e as nickel nitrate, cobalt nitrate, or iron nitrate
  • Ni, or Ni and CoZF e as nickel nitrate, cobalt nitrate, or iron nitrate
  • the maximum particle size of the Ni phase or Ni-Co / Fe alloy phase dispersed at the boundary of the W phase or the W-M alloy phase can be easily reduced to 5 ⁇ m or less by being present in the mixed state. Can be.
  • Ni powder, cobalt powder or iron powder can also be mixed, but in this case, the sieving of the powder is adjusted. Required.
  • the maximum grain size of the Co / Fe alloy phase is set to 5 ⁇ m or less.
  • Y 2 0 3 0. 1 ⁇ 1 % Y 2 0 3 suppresses growth coarsening of W-phase or W-M alloy phase during sintering. That is dispersed distributed in 5 Myuitaiota less fine state at a maximum particle size in the boundary portion of the W-phase or W- M alloy phase after sintering, the maximum particle size of the W-phase or W-M alloy phase 30 mu m It is suppressed as follows. Thereby, hardness and strength are improved.
  • the mixing ratio can not be obtained sufficiently the above effect is less than 1% 0., conversely Y 2 0 3 phase when the blending ratio exceeds 1% W-phase or W-M alloy phase boundary is liable to agglomerate However, this may cause a decrease in strength. Therefore, the mixing ratio is set to 0.1 to 1%, preferably 0.2 to 0.7%.
  • Upsilon 2 Omicron 3 powder particle size as a raw material powder, it must be a maximum particle size of Upsilon 2 0 3 phase dispersed on the boundary of the W-phase or W- Micromax alloy phase that does not exceed 5 mu m is there. This in particle size 5 mu Y 2 ⁇ three phases exceeding the m is present, the strength is because Ru tend to decrease significantly.
  • the mixing ratio is set to 0.05 to 0.5%, desirably to 0 :! to 0.3%.
  • Co / Fe has an effect of forming an alloy with Ni to improve the strength of the boundary between the W phase and the W-M alloy phase, thereby contributing to the improvement of the material strength. Combine.
  • the mixing ratio has been set to 0.01 to 0.5%, preferably to 0.05 to 0.3%.
  • the mixing ratio is set to 0.5 to 4%, preferably 1 to 3%.
  • Ni powder, Co powder, or Fe powder are dissolved in acetone to have the composition shown in Tables 1 and 2, and then W powder having an average particle size of 2.5 ⁇ m is obtained. It was blended to make a slurry. The obtained slurry was kneaded with a mixer and dried to obtain a raw material-coated W powder whose surface was coated with a predetermined amount of nickel nitrate, cobalt nitrate, and / or iron nitrate.
  • the obtained powder-coated W powder was subjected to a heat treatment (in a hydrogen atmosphere, at a temperature of 800 ° C. and for a heating time of 1 hour) to thermally decompose nickel nitrate, cobalt nitrate, or iron nitrate on the surface.
  • a raw material-coated W powder whose surface was coated with Ni or a raw material-coated W powder coated with a Ni—Co / Fe alloy was formed.
  • the obtained mixture was wet-mixed for 48 hours using an acetone solvent in a ball mill and dried. Then, it was filled in a rubber mold and press-molded under a hydrostatic pressure of 15 OMPa to form a molded body having a size of diameter: 5 OmmX height: 40 mm.
  • This compact was pre-sintered (in a hydrogen atmosphere, sintering temperature: 900 ° C, sintering time: 5 hours) and fully sintered (in a hydrogen atmosphere, sintering temperature: 1,470 ° C, sintering time: 2 hours) Then, a die material of the W-based sintered material of the present invention having a size of diameter: 4 OmmX length: 32 mm was obtained.
  • Hot press forming die (hereinafter referred to as the present die) 1 to 32 and optical glass lens hot press forming die made of conventional W-based sintered material (hereinafter referred to as Comparative die 1) was manufactured.
  • the melting point of each of the W-based sintered materials constituting the obtained molds 1 to 32 of the present invention and the comparative mold 1 is as high as 1,800 to 2,000 ° C and the thermal conductivity is 90. It was confirmed that it had a high thermal conductivity of about 150 W / m ⁇ K and a low thermal expansion coefficient of 4.5 to 5.5 ⁇ 10 16 / K.
  • the structure of the obtained W-based sintered material was analyzed using a scanning electron microscope to disperse and distribute the Ni phase or Ni—CoZF e alloy phase at the boundary between the W phase and the W phase.
  • the W-based sintered materials constituting the molds 1 to 32 of the present invention all show a structure in which the W phases are sintered and bonded to each other, and have a fine Ni phase or a Ni-Co / Fe alloy phase. and a Y 2 0 3 phase was also confirmed that the uniformly dispersed distributed along the boundary of the W-phase.
  • the diameter was reduced to 5 mm and the maximum thickness was reduced to 2 mm.
  • Press molding of thinned optical glass lens (Molding condition: Cob as glass lens material: Quartz glass; Capacity per piece of the gob: 0.2 cm 3 ; Heating temperature of the gob: 1,200 ° C; press forming pressure: 1 OMPa; press forming speed: 6 pieces Z time), and the number of lens formed pieces until the surface roughness of the core mold curved surface reached Rma X: 0.06 ⁇ was measured.
  • the measurement results are shown in Tables 1 and 2 below.
  • the Ni phase indicates a Ni phase or a Ni_CoZFe alloy phase.
  • Ni phase indicates Ni phase or Ni—Co / Fe alloy phase
  • the maximum grain size of the W phase is 40 mu
  • the present invention comprising a W-based sintered material having a fine-grained structure with a maximum grain size of the W phase of 3 ⁇ or less
  • the molds 1 to 32 have high strength and high hardness due to the dispersed distribution of the Ni phase or the Ni-Co / Fe alloy phase, and also have excellent glass corrosion resistance and high melting point. , High thermal conductivity (high heat dissipation), and low thermal expansion coefficient.
  • the hot press molding die for an optical glass lens made of a W-based sintered material of the present invention is, for example, a hot press for an optical glass lens using silicate glass, boride glass, or the like, which is relatively less corrosive. Not only molding, but also particularly corrosive silicate glass and 1,100. (: A good press surface is maintained for a long period of time even when forming a small diameter and thin optical glass lens by hot press molding of quartz glass etc. which requires the above high molding temperature. Examples 33 to 92 and Comparative Example 2 have a long service life.
  • W powder, Mo powder, Cr powder, Nb powder, and Re powder each having an average particle diameter of 2.5 ⁇ were prepared as W—M alloy forming powders. Moreover, purity is 99.6% of the nickel nitrate hydrate ⁇ Molecular formula: N i (N0 3) 2 ⁇ 6H 2 0 ⁇ powder, purity of 99.6% cobalt nitrate hydrate powder, and purity 99 A 6% iron nitrate hydrate powder was also prepared.
  • a predetermined amount of the hydrate powder was dissolved in acetone, and then blended with the WM alloy-forming powder to form a slurry.
  • a predetermined amount of nickel nitrate and W powder were dissolved in acetone to form a slurry.
  • the obtained slurry is kneaded with a mixer and dried, and the raw material-coated W-M alloy forming powder coated with a predetermined amount of nickel nitrate is mixed with a predetermined amount of nickel nitrate and at least one of cobalt nitrate and iron nitrate.
  • a coated raw material-coated W—M alloy forming powder and a comparative raw material-coated W powder coated with nickel nitrate were obtained.
  • the obtained raw material-coated W_M alloy-forming powder and the comparative raw material-coated W powder were subjected to a heat treatment (in a hydrogen atmosphere, at a temperature of 800 ° C. and for a heating time of 1 hour) to obtain a surface Nickel nitrate and cobalt nitrate and / or iron nitrate are thermally decomposed to form a coated W—M alloy forming powder coated with Ni, and coated with Ni—CoZF e alloy.
  • a coated W—M alloy-forming powder and a comparative coated W powder coated on the surface with Ni were formed.
  • the obtained mixture was wet-mixed for 48 hours using an acetone solvent in a ball mill and dried. Thereafter, the mixture was filled in a rubber mold and pressed under a hydrostatic pressure of 15 OMPa to form a molded body having a diameter of 5 OmmX and a height of 40 mm.
  • Preformed sintering sintering temperature: 900 ° C, sintering time: 5 hours in hydrogen atmosphere
  • main sintering sintering temperature: 1,450 ° C, hydrogen atmosphere, hydrogen atmosphere
  • Each of the obtained W-based sintered materials constituting the molds 33 to 92 of the present invention has a high melting point of 1,800 to 2,000 ° C and a thermal conductivity of 70 to: 130 W / m. a high thermal conductivity of K, and the thermal expansion coefficient of 4.8 to 6. it has a low thermal expansion coefficient say 2 ⁇ 10- 6 ⁇ was confirmed.
  • the W-based sintered materials constituting the molds 33 to 92 of the present invention all show a structure in which W—— alloy phases are sintered and bonded to each other, and have a fine Ni phase or Ni-Co / F. It was also confirmed to have a uniform dispersion distribution tissue along the boundary portion of the e alloy phase and Y 2 0 3 phase and the W- Micromax alloy phase.
  • Blending composition (% by mass) Ni-Co / Fe lens, gold phase crushing
  • the W-based sintered material of the present invention is harder than the W phase and has a maximum grain size of the W-M alloy phase.
  • the molds 32 to 92 of the present invention made of such a W-based sintered material have high strength and high hardness, are excellent in glass corrosion resistance, and have a high melting point and a high thermal conductivity (high heat resistance). Heat dissipation) and a low coefficient of thermal expansion. Due to these excellent properties, even in hot press molding of quartz glass that requires a high molding temperature of 1,100 ° C or more, it maintains a good cavity surface for a long time and is used for a longer time. It is clear that it shows a life.
  • the hot press molding die for an optical glass lens made of a W-based sintered material of the present invention is, for example, a hot press molding of an optical glass lens using silicate glass, boride glass, or the like, which has relatively low corrosivity.
  • hot press molding of particularly highly corrosive silicofluoride glass and quartz glass that requires a high molding temperature of 1,10 oC or more
  • a W phase is sintered and bonded to each other, and a fine Ni phase or a Ni—Co / Fe alloy phase having a maximum particle size of 5 ⁇ or less and a Y 2 0 and 3 phases are dispersed and distributed at the boundary of the W phase, and the W phase has a structure in which the maximum particle size is 30 ⁇ m or less. Therefore, it has the following excellent characteristics.
  • the hot press forming mold at least partly formed of the first W-based sintered material of the present invention is particularly suitable for extremely corrosive silicate glass and 1,100 ° C. Excellent performance over a long period of time even in hot press molding of optical glass lenses made of quartz glass, etc., which require a high molding temperature as described above, and which have been reduced in diameter and thickness! : It works.
  • the hard W—M alloy phase is mutually sintered and bonded, and each of them has a fine Ni phase or Ni—Co / Fe having a maximum particle size of 5 ⁇ or less. and the alloy phase and Y 2 ⁇ 3 phase dispersed distribution on the boundary portion of the W- Micromax alloy phase phase further comprises a tissue most large particle diameter is less than 30 / m for the W- Micromax alloy phase. For this reason, it has the following excellent characteristics.
  • the hot press forming mold at least partially composed of the second W-based sintered material of the present invention is particularly suitable for forming a highly corrosive silicate glass or a high forming temperature of 1,100 ° C or more. Excellent performance can be exhibited over a long period of time even in the hot press forming of optical glass lenses made of quartz glass or the like that requires temperature, and having a small diameter and a thin wall.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明の第1W系焼結材料は、Ni:0.2~1.5%、Y2O3:0.1~1%、さらに必要に応じて、(a)VC:0.05~0.5%、および/または(b)Coおよび/またはFe:0.01~0.5%、およびW:残部からなり、W相が相互に焼結結合し、いずれも最大粒径が5μm以下のNi相またはNi-Co/Fe合金相と、Y2O3相とが上記W相の境界部に分散分布し、さらに上記W相の最大粒径が30μm以下である高強度および高硬度を有するW系焼結材料である。上記W焼結材料は、光学ガラスレンズの熱間プレス成形金型として用いるのに適している。

Description

明 細 書 髙強度および高硬度を有するタングステン系焼結材料 およびそれからなる光学ガラスレンズの熱間プレス成形金型 技術分野
本発明は、 高温において高強度および高硬度を有するタングステン系焼結材料 およびそれからなる成形金型に関する。 より詳しくは、 本発明は、 珪弗化ガラス などの腐食性のきわめて強いガラスや高温成形を必要とする石英ガラスなどに対 する優れた耐久性、 高強度および高硬度を有し、 熱伝導性 (放熱性) にも優れ、 さらに低い熱膨張係数を有するタングステン系焼結材料に関するものである。 ま た、 そのタングステン系焼結材料からなる成形金型は、 上述の優れた特性を有す るタンダステン系焼結材料 (以下、 W系焼結材料と略称する) から構成されるた め、 例えば各種の電子 ·電気機器や光学装置などに装着されている光機能装置の 部品である光学ガラスレンズの熱間プレス成形金型として使用するのに適してい る。 .
本願は、 2 004年 3月 5日に出願された特願 2004— 062251号、 2 004年 3月 1 2日に出願された特願 2004-070278号、 および 200 4年 3月 1 7日に出願された特願 2004-076 757号に対し優先権を主張 し、 その内容をここに援用する。 背景技術
一般に、 光学ガラスレンズの熱間プレス成形金型は、 (a) 耐ガラス腐食性 に優れ、 (b) 熱伝導性 (放熱性) に優れ、 および (c) 低熱膨張係数を有する ことが要求される。 このため、 (a) 融点: 1, 800〜2, 000°C、 (b) 熱伝導率: 9 0〜 1 5 OW/m · K:、 および ( c ) 熱膨張係数: 4. 5〜 5. 5 X 10 _ 6 / Kである W系焼結材料が用いられている。
また、 例えは'特開 2003-239034号公報に開示されているように、 一 般に熱間プレス成形金型に使用されている W系焼結材料は、 N i : 0. 2〜0. 8質量% (以下、 「%」 は 「質量%を示す」 ) および W:残部からなる圧粉体を 焼結することにより得られる。 この W系焼結材料中の W相は相互に焼結結合し、 走查型電子顕微鏡による組織観察で W相の最大粒径が 40 μ m以上であり、 70 0〜90 OMP aの圧壊強度、 および 2 50〜 2 9 0のビッカース硬さ (Hv) を有することも知られている。
近年、 各種電子 ·電気機器や光学装置などの小型化および軽量ィヒはめざましく 、 これら機器や装置に装着されている光機能装置の部品である光学ガラスレンズ も小径化および薄肉化を余儀なくされている。 これに伴ない、 光学ガラスレンズ の熱間プレス成形装置の構造部材である、 熱間プレス成形金型の成形温度および 成形圧力はいずれも上昇傾向にある。 しかしながら、 上記従来の W系焼結材料か らなる熱間プレス成形金型は、 特に強度および硬さが不十分であるため、 これに 満足に対応できず、 比較的短時間で使用寿命に至るのが現状である。 発明の開示
そこで、 本発明者らは、 光学ガラスレンズの成形に用いられる従来の W系焼結 材料製熱間プレス成形金型のもつ優れた特性を損なうことなく、 強度および硬さ の一段の向上を図り、 小径化および薄肉化した光学ガラスレンズの熱間プレス成 形にも長期に亘つてすぐれた性能を発揮する W系焼結材料製熱間プレス成形金型 を開発すべく、 特にこれを構成する W系焼結材料に着目して研究を行った。 その 結果、 以下の第 1および第 2 W系焼結材料が光学ガラスレンズの熱間プレス成形 に用いた場合にも優れた性能を長期にわたって発揮することを見出した。
まず、 第 1W系焼結材料について説明する。
本発明の第 1W系焼結材料は、 以下の組成を有する。
•ニッケル (以下、 N iと表す) : 0. 2〜 1. 5%、
•酸ィ匕イットリウム (以下、 Y203と示す) : 0. 1〜1 %、
• さらに必要に応じて、 以下の (a) および (b) の少なくとも一方
(a) 炭化バナジウム (以下、 V Cで示す) : 0. 0 5〜0. 5%、
(b) C oおよび F eのうち少なくとも一方 (以下、 C o/F eで示す) : 0 • 0 1〜0. 5 %、 • W:残部
この第 1W系焼結材料は、 例えば以下のようにして得られる。
N i源として、 例えば、 硝酸二ッケル水和物粉 、 塩酸二ッケル水和物粉末、 または硫酸ニッケル水和物粉末など、 C 0源として硝酸コバルト水和物粉末など 、 そして F e源として硝酸鉄水和物粉末などを用!/、、 上記配合比となるように、 これら粉末を配合する。
得られた混合原料粉末を、 アセトンや純水など 溶媒中に完全に溶解させた後 、 例えば 0. 5〜3 μηιの平均粒径をもった W粉 に配合して、 スラリーを得る 。 次いで、 得られたスラリーを混合機で混練、 次!/、で乾燥させて、 所定量の硝酸 ニッケル、 塩酸ニッケル、 あるいは硫酸ニッケル どで表面が被覆された原料被 覆 W粉末、 あるいはさらに硝酸コバルトおよび Ζまたは硝酸鉄などで表面が被覆 された原料被覆 W粉末を得る。 その後、 得られた 料被覆 W粉末を加熱処理 (例 えば水素雰囲気中、 温度: 800°C、 加熱時間: 1 時間) して、 表面の硝酸ニッ ケル、 塩酸ニッケル、 硫酸ニッケル、 硝酸コバルト 、 または硝酸鉄などを熱分解 する。 これにより、 表面が N iで被覆された被覆 W"粉末、 あるいは N iと CoZ F eとで被覆された被覆 W粉末を得る。 そして、 られた被覆 W粉末に、 いずれ も 5 m以上の粒径が存在しないように篩分調整した所定量の Y203粉末を配 合する。 この時、 場合によっては所定量の Υ203救末と VC粉末とを配合する こともできる。 さらには、 この段階で C o/F
Figure imgf000004_0001
くとも一方を再度配 合するもできる。
ついで、 通常の条件で、 湿式混合し、 乾燥し、 IE粉体にプレス成形する。 得られた圧粉体を焼結してなる W系焼結材料は、 従来の W系焼結材料のもっ融 点、 熱伝導率、 および熱膨張係数に相当する高融^:、 高熱伝導率、 および低熱膨 張係数、 すなわち、
(a) 融点: 1, 800〜 2, 000 °C、
( b ) 熱伝導率: 90〜 150 W/m · K、
( c ) 熱膨張係数: 4. 5〜5. 5 X 10 -6/
を有する。 さらには、 W相が相互に焼結結合し、 查型電子顕微鏡による組織観 察で、 いずれも最大粒径が 5 m以下 (以下、 粒 は走查型電子顕微鏡による組 織観察で測定した結果を示す) の微細な N i相または N i -C o/F e合金相と 、 Y203相とが前記 W相の境界部に分散分布し、 さらに前 sw相の最大粒径が 30 μπι以下である細粒組織を有する。
従来の W系焼結材料では、 W相の最大粒径が上記の通り 4 Ο μπι以上であった のに対して、 上述の通り、 本発明の第 1 W系焼結材料の W相の最大粒径で 30 m以下である。 これは、 添加した Y203が W相成長抑制したブこめである。
また、 W系焼結材料に VCを配合すると、 VCが Υ203と共存することによ り、 W相成長抑制作用をより発揮し、 W相の最大粒径を 20 m以下とできるこ とも見出した。
さらに、 C o/F eを配合すると、 圧壊強度で 1 350〜 200 OMP a、 硬 さも Hv : 320〜450に改善されることを見出した。 な 53、 従来の W系焼結 材料の圧壊強度は 700〜900MP aであり、 ビッカース硬さは 250〜 29 0であることから、 本発明の W系焼結材は優れた強度および硬さの両方を具備す ることが明らかである。
さらに、 本発明の第 1W系焼結材料を用いて成形金型、 特 ^こ腐食性のきわめて 強い珪弗化ガラスや高い成形温度を必要とする石英ガラスなどで構成され、 かつ 一段と高いプレス成形圧力および成形温度が要求される小径 f匕および薄肉化した 光学ガラスレンズの熱間プレス成形金型を得た。 その成形金型は優れた性能を長 期に直って発揮するという研究結果を得た。 つまり、 本発明の第 1W系焼結材料 は、 光学ガラスレンズの熱間プレス成形金型として用いられることが好ましいと いうことを見出した。
本発明は上記研究結果に基づいてなされたものであって、 発明の第 1 W系焼 結材料は、
• N i : 0. 2〜 1. 5 %、
• Y203: 0. 1〜 1 %、
• さらに必要に応じて、 下記 (a) および (b) の少なくとも一方、
(a) VC : 0. 05〜0. 5%、
(b) C o/F e : 0. 01〜0. 5%、 および
• W:残部からなり、 W相が相互に焼結結合し、
いずれも最大粒径が 5 ^m以下の N i相または N i一 C o/F e合金相と、 Y 23相とが上記 W相の境界部に分散分布し、 さらに
上記 W相の最大粒径が 30 μ m以下である高強度および高硬度を有する W系焼 結材料である。
本発明の第 2 W系焼結材料は、 以下の組成を有する。
• N i : 0. 2〜: 1. 5%、
• Y23: 0. 1〜 1 %、
'モリブデン (以下、 Moと略記する) , クロム (以下、 C rと略記する) , 二 オビゥム (以下、 Nbと略記する) , およびレニウム (以下、 Reと略記する) のうち少なくとも 1種: 0. 5〜4%、
• さらに必要に応じて、 以下の (a) および (b) の少なくとも一方
(c) 炭化バナジウム (以下、 VCで示す) : 0. 05〜0. 5%、
(d) C oおよび F eのうち少なくとも一方 (以下、 C oZF eで示す) : 0 . 01〜0. 5%、
• W:残部、
この第 2 W系焼結材料は、 例えば以下のようにして得られる。
すなわち、 上記第 1 W系焼結材料と同様に、 N i源として、 例えば、 水和物形 態としての硝酸二ッケル粉末、 塩酸二ッケル粉末、 または硫酸二ッケル粉末など 、 C o源として硝酸コバルト粉末など、 そして F e源として硝酸鉄粉末などを用 い、 上記配合比となるように、 これら粉末を配合する。
得られた混合原料粉末をァセトンゃ純水などの溶媒中に完全に溶解させた後、 例えば 0· 5〜 3 μ mの平均粒径をもつた W粉末と、 M o粉末、 C r粉末、 Nb 粉末、 および Re粉末のうち少なくとも 1種とを配合して、 スラリーを得る。 な お、 これら原料粉末の一部または全部を W—M合金 (ただし、 Mは Mo, C r, Nb, および Reのうち少なくとも 1種を示す) 粉末として配合しても良い。 以 下、 これらを総称して W— M合金形成粉末という。
次いで、 得られたスラリーを混合機で混練し、 その後乾燥させて、 所定量の硝 酸ニッケル、 塩酸ニッケル、 または硫酸ニッケルで表面が被覆された原料被覆 W 一 M合金形成粉末、 または所定量の硝酸二ッケルなどと硝酸コパルトおよび/ま たは硝酸鉄とで表面が被覆された原料被覆 W_M合金形成粉末を得る。 その後、 得られた原料被覆 W— M合金形成粉末を加熱処理 (例えば、 水素雰囲気中、 温度 : 800°C、 加熱時間: 1時間) して、 表面の硝酸ニッケル、 塩酸ニッケル、 ま たは硫酸ニッケル、 場合によってはさらに硝酸コバルトおよび/または硝酸鉄な どを熱分解する。 これにより、 表面が N iで被覆された被覆 W— M合金形成粉末 、 または N iと C o/F eとで被覆された被覆 W—M合金形成粉末を得る。 そし て得られた被覆 W_M合金形成粉末に、 いずれも 5 μ m以上の粒径が存 しない ように篩分調整した所定量の Y23粉末を配合する。 このとき、 必要に応 じて所 定量の Υ23粉末と VC粉末とを配合することもできる。 さらには、 この段階で C o/F e粉末の少なくとも一方を再度配合するもできる。
ついで、 通常の条件で、 湿式混合し、 乾燥し、 圧粉体にプレス成形する。 得ら れた圧粉体を焼結してなる W系焼結材料は、 従来の W系焼結材料の融点、 熱伝導 率、 および熱膨張係数と同程度の高融点、 高熱伝導率、 および低熱膨張供数、 す なわち、
(a) 融点: 1, 800〜 2, 000。C、
(b) 熱伝導率: 70〜 130 W/m · K、
( c ) 熱膨張係数: 4. 8〜6. 2 X 10— 6ZK、
を有する。 さらには、 焼結時に Wに Mo, C r, Nb, および R eのうち少なく とも 1種が固溶して W—M合金相 (ただし、 Mは Mo, C r, Nb, および R e のうち少なくとも 1種を示す) を形成する。 なお、 原料粉末の一部また 全部を W—M合金粉末として配合した場合には、 W—M合金はそのまま W— M 金相と して存在する。 この W— M合金相は W相よりも硬く、 かつ W— M合金相 相互に 焼結結合する。 また、 いずれも最大粒径が 5 μπι以下の微細な N i相または N i 一 C o/F e合金相と Y23相とが前記 W— M合金相の境界部に分散分布してい ることが確認された。 さらに、 前記 W— Μ合金相の最大粒径が 30 m以下であ る細粒組織を有することも確認された。 さらに、 上記従来の W系焼結材 では W 相の最大粒径が上記の通り 40 im以上であつたのに対して、 本発明の 2W系 焼結材料では、 W— M合金相の最大粒径は 30 im以下となった。 これは、 添加 した Y 2 O 3が W相の成長を抑制したためである。
また、 W系焼結材料に VCを配合すると、 VCが Y203と共存することによ り、 W相成長抑制作用をより発揮し、 W相の最大粒径を 1 5 μ m以下とできるこ とも見出した。
また、 C o/F eを配合すると、 圧壊強度を 1 4 0 0〜2 2 0 OMP a、 ビッ カース硬さ (Hv) を 3 5 0〜5 5 0に改善できることを見出した。 なお、 従来 の W系焼結材料の圧壊強度は 7 0 0〜9 0 0MP aであり、 ビッカース硬さは 2 5 0〜2 9 0であることから、 本発明の第 2 W系焼結材料は優れた強度および硬 さの両方を具備することが明らかである。
さらに、 本発明の第 2 W系焼結材料を用いて成形金型、 特に腐食性のきわめて 強い珪弗化ガラスや高い成形温度を必要とする石英ガラスなどで構成され、 かつ 一段と高いプレス成形圧力および成形温度が要求される小径化および薄肉化した 光学ガラスレンズの熱間プレス成形金型を得た。 その成形金型は優れた性能を長 期に亘つて発揮するという研究結果を得た。 つまり、 本発明の第 2W系焼結材料 は、 光学ガラスレンズの熱間プレス成形金型として用いられることが好ましいと いうことを見出した。
本発明は上記研究結果に基づいてなされたものであって、 本発明の第 2 W系焼 結材料は、
• N i : 0. 2〜 1. 5 %、
• Y203: 0. 1〜 1 %、
- Mo , C r , N b, および R eのうち少なくとも 1種: 0. 5〜4%、 • さらに必要に応じて、 下記 (a ) および (b) の少なくとも一方、
(a) VC: 0. 0 5〜0. 5 %、
(b) C o/F e : 0. 0 1〜0. 5%、
• W:残部で構成され、
W_M合金相 (ただし、 Mは Mo , C r , Nb , および R eのうち少なくとも 1種を示す) が相互に焼結結合し、
いずれも最大粒径が 5 i m以下の微細な N i相または N i -C o/F e合金相 と Y203相とが上記 W— Μ合金相の境界部に分散分布し、 さらに 上記 W— M合金相の最大粒径が 3 0 /i m以下であるという特徴を有するもので ある。 発明を実施するための最良の形態
つぎに、 本発明の第 1および第 2 W系焼結材料の組成を上記の通りに限定した 理由を説明する。
N i : 0. 2〜 1. 5 %
N iを圧粉体中で W粉末または W— M合金形成粉末の表面を被覆した状態で存 在させると、 焼結性が著しく向上する。 また、 最大粒径で 5 /z m以下の微細な N i相または N i -C o/F e合金相として W相または W— M合金相の境界に存在 させると、 W系焼結材料の強度を向上できる。 しかしながら、 その配合割合が 0 . 2 %未満では焼結性の向上および前記 N i相または N i -C o/F e合金相の 分布割合が不十分となり、 所望の高強度を確保することができない。 一方その配 合割合が 1. 5 %を越えると、 硬さに低下傾向が現れるようになるばかりでなく 、 最大粒径が 5 μ πιを越えた N i相または N i -C o/F e合金相が分布するよ うになる。 これは金型キヤビティ表面の摩耗促進の原因となる。 そこで、 N iの 配合割合を 0. 2〜1. 5 %、 望ましくは 0. 7〜1. 2%と定めた。
なお、 上記の通り、 原料粉末の混合時に硝酸ニッケル、 硝酸コバルト、 または 硝酸鉄などとして、 N i、 または N i と C oZF eとを、 W粉末または W— M合 金形成粉末の表面にまぶした状態で存在させることによって、 W相または W— M 合金相の境界に分散する上記 N i相または N i -C o/F e合金相の最大粒径を 容易に 5 μ m以下とすることができる。 Y 2 O 3粉末または Y 2 O 3粉末と V C粉末 とを配合する際にも N i粉末、 コバルト粉末、 または鉄粉末を配合することもで きるが、 この場合には粉末の篩分調節が必要となる。
また、 上記 N i相または N i — C o/F e合金相の最大粒径が 5 / mを越える と、 金型キヤビティの表面粗さが急激に低下するため、 上記 N i相または N i — C o/F e合金相の最大粒径を 5 μ m以下とした。
Y203: 0. 1〜 1 % Y203は、 焼結時の W相または W—M合金相の成長粗大化を抑制する。 つまり 、 焼結後 W相または W— M合金相の境界部に最大粒径で 5 μηι以下の微細な状態 で分散分布させて、 W相または W—M合金相の最大粒径を 30 μ m以下に抑制す る。 これにより硬さおよび強度を向上させる。
その配合割合が 0. 1 %未満では上記効果が充分得られず、 逆にその配合割合 が 1 %を越えると W相または W—M合金相境界部の Y203相が凝集し易くなり、 強度低下の原因となる。 そこで、 その配合割合を 0. 1〜1%、 望ましくは 0. 2〜0. 7%と定めた。
原料粉末である Υ 2 Ο 3粉末の粒度を調整して、 W相または W— Μ合金相の境界 に分散する Υ203相の最大粒径が 5 μ mを越えないようにする必要がある。 これ は粒径が 5 μ mを越えた Y23相が存在すると、 強度が著しく低下する傾向があ るからである。
VC: 0. 05〜0. 5%
VCが Υ203と共存すると、 焼結時に N iあるいは N i -C o/F e合金に固 溶して、 W相または W一 M合金相の成長粗大化を抑制し、 W相の最大粒径を 20 πι以下、 W— Μ合金相の最大粒径を 1 5 μπι以下に抑制できるため、 必要に応 じて配合する。
その配合割合が 0. 05%未満では上記効果が充分に得られず、 逆にその配合 割合が 0. 5 %を越えると W相境界または W—M合金相境界に分散分布して強度 低下の原因となる。 このため、 その配合割合を 0. 05〜0. 5 %、 望ましくは 0. :!〜 0. 3%と定めた。
C οおよび F eの少なくとも一方 (C o/F e) : 0. 0 1〜0. 5%
C o/F eは、 N iと合金を形成して W相または W— M合金相の境界部の強度 を向上させ、 もって材料の強度向上に寄与する効果があるので、 必要に応じて配 合する。
その配合割合が 0. 01%未満では上記効果が充分得られず、 逆にその配合割 合が 0. 5%を越えると, 硬さが低下する傾向があり、 これが金型キヤビティ表 面の摩耗促進の原因となる。 このため、 その配合割合を 0. 01〜0. 5%、 望 ましくは 0. 05〜0. 3%と定めた。
Mo, C r , Nb, および R eの少なくとも 1種: 0. 5〜 4 %
これらの成分は Wに固溶し、 焼結材料中で Wと比較して硬い W—M合金相とし て存在する。 このため、 W系焼結材料の硬さを向上させ、 もって耐摩耗性向上に 寄与する効果がある。
その配合割合が 0. 5%未満では所望の硬さ向上効果が得られず、 逆にその配 合割合が 4 %を越えると遊離 M相として W— M合金相の粒界に析出し、 これが強 度低下をもたらす。 そこで、 その配合割合を 0. 5〜4%、 望ましくは 1〜3% と定めた。 以下、 本発明の W系焼結材料およぴ成形金型を実施例および比較例を用いて具 体的に説明する。 実施例:!〜 32および比較例 1
まず、 純度: 99. 6%の硝酸ニッケル水和物 {分子式: N i (N03) 2 · 6 Η2θ} 粉末、 純度: 99. 6%の硝酸コバルト水和物粉末、 および純度: 99 . 6 %硝酸鉄水和物粉末を用意した。
表 1および 2に記載の組成を有するように、 これら N i粉末、 C o粉末、 また は F e粉末をァセトン中に溶解し、 次いで 2. 5 μ mの平均粒径をもつた W粉末 を配合して、 スラリーとした。 得られたスラリーを混合機で混練、 乾燥させて、 所定量の硝酸ニッケル、 硝酸コバルト、 および/または硝酸鉄で表面が被覆され た原料被覆 W粉末を得た。
ついで、 得られた ^料被覆 W粉末を、 加熱処理 (水素雰囲気中、 温度: 800 °C、 加熱時間: 1時間) して、 表面の硝酸ニッケル、 硝酸コバルト、 または硝酸 鉄を熱分解した。 これにより、 表面が N iで被覆された原料被覆 W粉末または N i一 C o/F e合金で被覆された原料被覆 W粉末を形成した。
得られた原料被覆 W粉末に、 表 1および 2に示される配合組成となるように、 いずれも 1 μπιの平均粒径をもった Y203粉末および VC粉末を配合した。
つぎに、 得られた混合物をボールミルでァセトン溶媒を用いて 48時間湿式混 合し、 乾燥した。 その後、 ゴム鎵型に充填し、 1 5 OMP aの静水圧にてプレス 成形して、 直径: 5 OmmX高さ : 40 mmの寸法をもった成形体を形成した。 この成形体を予備焼結 (水素雰囲気中、 焼結温度: 900°C、 焼結時間: 5時間 ) および本焼結 (水素雰囲気中、 焼結温度: 1, 470°C、 焼結時間: 2時間) して、 直径: 4 OmmX長さ : 32 mmの寸法をもった本発明の W系焼結材料の 金型素材を得た。
得られた金型素材の 2個を 1対の上下コア型とし、 このうち下コア型の上面に 直径: 38 mm X中心部深さ : 5 mmの曲面キヤビティを形成した。 上コア型の 下面は平面のままとし、 これら両上下コア型の曲面を Rma X : 0. 05 μ m以 下の面粗度に研磨して、 本発明の W系焼結材料製光学ガラスレンズ熱間プレス成 形金型 (以下、 本発明金型という) 1〜32、 並びに従来の W系焼結材料で構成 された光学ガラスレンズ熱間プレス成形金型 (以下、 比較金型 1という) を製造 した。
得られた本発明金型 1〜 32および比較金型 1を構成する W系焼結材料のいず れも、 融点は 1, 800〜2, 000 °Cという高温であり、 熱伝導率は 90〜 1 50 W/m · Kという高熱伝導率であり、 熱膨張係数は 4. 5〜5. 5 X 1 0一6 / Kという低熱膨張係数を有していることを確認した。
さらに、 圧壊強度およびビッカース硬さを測定したところ、 表 1および 2に示 される結果を示した。
また、 得られた W系焼結材料の組織を、 走査型電子顕微鏡を用いて、 W相およ び W相の境界部に分散分布する N i相または N i— C oZF e合金相、 および Y
2 O 3相の最大粒径を測定したところ、 同じく表 1および 2に示される結果を示し た。
さらに本発明金型 1〜 32を構成する W系焼結材料は、 いずれも W相が相互に 焼結結合した組織を示し、 かつ微細な N i相または N i一 C o/F e合金相と Y 203相とが前記 W相の境界に沿って均一に分散分布していることも確認された。 つぎに、 得られた金型を用いて、 直径: 5mmX最大厚さ : 2mmの小径化お ょぴ薄肉化した光学ガラスレンズをプレス成形 (成形条件;ガラスレンズ素材で あるコブ:石英ガラス ;前記ゴブの 1個当たりの容量: 0. 2 cm3 ;前記ゴブ の加熱温度: 1, 200°C; プレス成形圧力 : 1 OMP a ; プレス成形速度: 6 個 Z時間) し、 コア型曲面の面粗度が Rma X : 0. 06 μηιに達するまでのレ ンズ成形個数を測定した。 この測定結果を下記表 1および 2に併せて示した。
Y2O3
配合組成 (質量%) W相の Ni相の 圧壊 レンス、、 相の
別 最大粒径 最大粒径 強度 Hv 成形個数 最大粒径
N i Y2O3 VC C o F e W m) (MPa) (個)
(μπι)
1 0.2 0.5 一 一 ― 残 8.7 1.2 1.6 1351 378 493
2 0.5 0.5 - 一 - 残 8.3 1.2 1.6 1358 371 504
3 0.9 0.5 一 一 一 残 12.1 1.9 2.8 1565 352 551
4 1.1 0.5 - 一 - 残 9.8 1.9 2.1 1748 362 633
5 1.3 0.5 一 一 - 残 15.2 2.7 3.1 1792 342 613
6 1.5 0.5 一 一 一 残 17.5 3.3 2.6 1898 337 639 本
7 0.9 0.1 - 一 - 残 27.5 4.8 0.7 1368 321 439
8 0.9 0.3 一 一 ― 残 14.9 2.1 1.8 1518 343 521 明
9 0.9 0.7 - 一 - 残 7.6 1.5 3.4 1651 376 621
10 0.9 1 一 一 - 残 6.3 1.4 4.6 1673 388 649
11 0.9 0.5 0.05 一 - 残 7.7 1.5 2.6 1649 375 618
12 0.9 0.5 0.1 一 - 残 5.0 1.3 1.8 1680 403 677
13 0.9 0.5 0.2 一 一 残 3.8 1.2 2.0 1651 424 700
14 0.9 0.5 0.3 一 一 残 3.2 1.2 3.1 1608 438 704
15 0.9 0.5 0.4 一 - 残 2.9 1.1 2.2 1560 449 700
16 0.9 0.5 0.5 一 - 残 2.8 1.1 1.5 1545 452 698 表中、 N i相は、 N i相または N i _C oZF e合金相を示す。
表 2
Figure imgf000015_0001
表中、 N i相は、 N i相または N i— C o/F e合金相を示す,
表 1および 2に示されるように、 W相の境界に N i相または N i -C o/F e 合金相と Y203相とが存在せず、 W相の最大粒径が 40 μ mを越えた粗粒組織を 有する W系焼結材料からなる比較金型に比して、 W相の最大粒径が 3 Ο μπι以下 の細粒組織を有する W系焼結材料からなる本発明金型 1〜 32は、 N i相または N i一 C o/F e合金相が分散分布しているため、 高強度と高硬度とを具備し、 さらに耐ガラス腐食性に優れ、 かつ高融点、 高熱伝導性 (高放熱性) 、 および低 熱膨張係数を有するが確認された。
また、 本発明の W系焼結材料製光学ガラスレンズの熱間プレス成形金型は、 例 えば比較的腐食性の弱レ、珪酸ガラスや硼化ガラスなどを用いた光学ガラスレンズ の熱間プレス成形は勿論のこと、 特に腐食性の強い珪弗化ガラスや、 1, 100 。(:以上の高い成形温度を必要とする石英ガラスなどの加熱プレス成形であって、 小径化および薄肉化した光学ガラスレンズを成形する場合であつても、 良好なキ ャビティ面を長期に つて保持し、 長い使用寿命を有することも明らかである。 実施例 33〜 92および比較例 2
まず、 W— M合金形成粉末として、 いずれも 2. 5 μιηの平均粒径をもった W 粉末、 Mo粉末、 C r粉末、 Nb粉末、 および R e粉末を用意した。 さらに、 純 度が 99. 6%の硝酸ニッケル水和物 {分子式: N i (N03) 2 · 6H20} 粉末 、 純度が 99. 6%の硝酸コバルト水和物粉末、 および純度が 99. 6%の硝酸 鉄水和物粉末も用意した。
上記水和物粉末の所定量をアセトン中に溶解し、 次いで前記 W— M合金形成粉 末に配合して、 スラリーとした。 なお、 比較例 2では所定量の硝酸ニッケルと W 粉末とをアセトン中に溶解して、 スラリーとした。 得られたスラリーを混合機で 混練、 乾燥させて、 所定量の硝酸二ッケルで被覆された原料被覆 W— M合金形成 粉末、 所定量の硝酸二ッケルと硝酸コバルトおよび硝酸鉄の少なくとも一方とで 被覆された原料被覆 W— M合金形成粉末、 および硝酸二ッケルで被覆された比較 用原料被覆 W粉末を得た。
ついで、 得られた原料被覆 W_M合金形成粉末、 および比較用原料被覆 W粉末 を加熱処理 (水素雰囲気中、 温度: 800°C、 加熱時間: 1時間) して、 表面の 硝酸二ッケルと、 硝酸コバルトおよび/または硝酸鉄とを熱分解することにより 、 表面が N iで被覆された被覆 W—M合金形成粉末、 表面が N i— C oZF e合 金で被覆された被覆 W— M合金形成粉末、 および表面が N iで被覆された比較用 被覆 W粉末を形成した。
得られた被覆 W— M合金形成粉末だけに、 いずれも 5 μ m以上の粒径が存在し ないように篩分調整した平均粒径が 1 / mの Y203粉末および VC粉末と、 さら に 3 i mの平均粒径を有する C ο粉末および F e粉末とを、 表 3〜6に示される 組成となるように配合した。
つぎに、 得られた混合物をボールミル中でアセトン溶媒を用いて 48時間湿式 混合し、 乾燥した。 その後、 ゴム铸型に充填し、 1 5 OMP aの静水圧にてプレ ス成形して、 直径: 5 OmmX高さ : 40 mmの寸法をもった成形体を形成した 。 この成形体を予備焼結 (水素雰囲気中、 焼結温度: 900°C、 焼結時間: 5時 間) および本焼結 (水素雰囲気中、 焼結温度: 1, 450°C、 焼結時間: 1時間 ) して、 直径: 4 OmmX長さ : 32 mmの寸法をもった W系焼結材料の金型素 材を得た。
得られた金型素材の 2個を 1対の上下コア型とし、 このうち下コア型の上面に 直径: 38mmX中心部深さ : 5 mmの曲面キヤビティを开成した。 上コア型の 下面は平面のままとし、 これら両上下コア型の曲面を Rm a X : 0. 05 μ ITL以 下の面粗度に研磨して、 本実施例の W系焼結材料製の光学ガラスレンズ熱間プレ ス成形金型 (以下、 本発明金型という) 33〜92、 並びに比較用光学ガラスレ ンズ熱間プレス成形金型 (以下、 比較金型 2という) を製造した。
得られた本発明金型 33〜 92を構成する W系焼結材料のいずれも、 融点は 1 , 800〜2, 000 °Cという高融点であり、 熱伝導率は 70〜: 1 30 W/m . Kという高熱伝導率であり、 そして熱膨張係数は 4. 8〜6. 2 Χ 10—6ΖΚと いう低熱膨張係数を有することが確認された。
さらに、 圧壌強度およびビッカース硬さを測定したところ、 表 3〜6に示され る結果が得られた。
また、 走查型電子顕微鏡を用いて、 得られた W系焼結材料の W— Μ合金相およ び W— Μ合金相の境界部に分散分布する N i相または N i— C oZF e合金相の 最大粒径、 および Y203相の最大粒径を測定したところ、 同じく表 1〜4に示さ れる結果が得られた。
さらに本発明金型 33〜 92を構成する W系焼結材料は、 いずれも W— Μ合金 相が相互に焼結結合した組織を示し、 かつ微細な N i相または N i -C o/F e 合金相と Y203相とが W— Μ合金相の境界部に沿って均一に分散分布した組織を 有することも確認された。
つぎに、 得られた金型を用いて、 直径: 5mmX最大厚さ : 2mmの小径化お ょぴ薄肉化した光学ガラスレンズをプレス成形 (成形条件;ガラスレンズ素材で あるコブ:石英ガラス、 前記ゴブの 1個当たりの容量: 0. 2 cm3、 前記ゴブ の加熱温度: 1, 200° (:、 プレス成形圧力: 1 OMP a、 プレス成形速度: 6 個/時間) し、 コア型曲面の面粗度が Rma X : 0. 06 μπιに達するまでのレ ンズ成形個数を測定した。 この測定結果を表 3〜 6に併せて示した。
表 3
W - M合
配合組成 (質量%) Y203相 レンス、、 金相の Ni相の 圧壊
の最大 成形 別 最大 最大粒 強度 Hv
粒径 個数
M o C r N b ο F e W 径 ( m) (MPa)
R e N i Y 2 O 3 V C C ι, m) (個)
Figure imgf000019_0001
33 4 一 - ― 0. 2 0. 5 - 一 - 残 12. 3 1. 4 3. 4 1590 457 594
34 - 2 - - 0. 5 0. 5 一 - ― 残 15. 3 2. 1 3. 7 1459 424 542
35 - 一 1 一 0. 9 0. 5 - 一 - 残 19. 4 3. 2 4. 0 1410 408 568
36 - - 一 0. 5 1. 1 0. 5 - 一 - 残 21. 5 3. 7 4. 2 1394 401 535
37 0. 5 1 一 - 1. 3 0. 5 - - - 残 23. 5 4. 3 4. 4 1461 410 587 本
38 3 - 1 - 1. 5 0. 5 - 一 一 残 25. 6 5. 0 4. 6 1594 430 597
39 4 一 - 1 0. 7 0. 1 ― - 一 残 26. 5 3. 6 3. 3 1549 438 605 明 40 ― 1 0. 5 ― 0. 7 0. 3 - 一 - 残 21. 0 3. 0 3. 6 1404 410 596 金 41 - 3 - 0. 5 0. 7 0. 7 一 - 一 残 14. 8 2. 4 4. 2 1529 433 594
42 ― 一 0. 5 3 0. 7 1. 0 - 一 - 残 12. 2 2. 1 4. 7 1507 429 591
43 2 1 0. 5 - 0. 5 0. 5 - - - 残 15. 3 2. 1 3. 7 1538 439 610
44 2 一 1 0. 5 0. 7 0. 5 一 - 一 残 17. 4 2. 6 3. 9 1524 432 607
45 2 1 一 0. 5 0. 9 0. 5 - - ― 残 19. 4 3. 2 4. 0 1538 431 605
46 一 1 0. 5 1 1. 1 0. 5 一 - - 残 21. 5 3. 7 4. 2 1457 412 597
47 1 0. 5 0. 5 0. 5 1. 3 0. 5 一 - 一 残 23. 5 4. 3 4. 4 1492 415 590
表 4
W - M合
配合組成 (質量%) Ni相の Υ203相 レンス、、 金相の 圧壊
最大 の最大 成形 別 最大粒 強度 Hv
粒径 粒径 個数
M o C r N b R e N i 径 (MPa)
Y 2 O 3 V C C ο F e W ( μ ηϊ) (個)
48 0. 5 - 一 - 0. 7 0. 5 0. 2 - - 残 4. 1 1. 2 2. 7 1706 474 728
49 一 4 - - 0. 7 0. 5 0. 1 - 一 残 6. 7 1. 5 2. 9 1701 471 731
50 一 一 2 - 0. 7 0. 5 0. 2 - ― 残 4. 1 1. 2 2. 7 1725 479 725
51 一 - 一 1 1. 5 0. 5 0. 3 - 一 残 4. 4 2. 0 2. 7 1764 468 694
52 3 1 一 - 0. 7 1. 0 0. 3 - 一 残 2. 1 1. 0 3. 5 1915 556 746 本 53 3 - 1 一 0. 7 0. 2 0. 05 - - 残 13. 0 2. 2 2. 7 1710 450 741
54 3 - ― 1 0. 7 0. 5 0. 1 - 一 残 6. 7 1. 5 2. 9 1713 476 750 明 55 一 1 0. 5 一 0. 7 0. 5 0. 2 一 一 残 4. 1 1. 2 2. 7 1723 478 706 金 56 一 3 - 0. 5 0. 7 0. 5 0. 3 一 - 残 3. 0 1. 1 2. 6 1831 513 685
57
型 一 - 0. 5 3 0. 7 0. 5 0. 5 一 - 残 1. 9 1. 0 2. 5 1886 537 739
58 2 1 0. 5 - 0. 2 0. 5 0. 05 - 一 残 6. 8 1. 0 2. 9 1646 471 725
59 2 - 1 0. 5 0. 5 0. 1 0. 1 一 - 残 9. 0 1. 5 2. 2 1614 456 736
60 2 1 - 0. 5 0. 7 0. 5 0. 2 - - 残 4. 1 1. 2 2. 7 1787 497 742
61 一 1 0. 5 1 0. 7 0. 5 0. 3 一 - 残 3. 0 1. 1 2. 6 1804 503 716
62 1 0. 5 0. 5 0. 5 0. 7 0. 5 0. 5 ― - 残 1. 9 1. 0 2. 5 1897 543 743
表 5
W- M合 YA
配合組成 (質量%) Ni-Co/Fe レンス、、 金相の 相の 圧壊
合金相の 成形 別 最大 最大 強度 Hv
最大粒径 個数
M o C r N b R e N i W 粒径 粒径 (MPa)
Y 2 O 3 V C C o F e m) (個)
( μ m)
63 1 - 一 ― 0. 7 0. 5 - - 0. 4 残 21. 5 3. 7 4. 2 1803 410 686
64 一 0. 5 一 ― 1. 5 0. 5 - 0. 01 一 残 25. 7 5. 0 4. 6 1655 350 635
65 - - 4 一 0. 7 0. 5 - 0. 1 0. 1 残 19. 4 3. 2 4. 0 1644 423 689
66 - 一 ― 2 0. 5 0. 5 ― 0. 1 - 残 16. 4 2. 4 3. 8 1725 414 696
67 0. 5 1 - - 0. 7 0. 5 - - 0. 2 残 19. 4 3. 2 4. 0 1650 415 681 本 68 3 - 1 一 0. 7 0. 5 一 0. 2 0. 1 残 20. 5 3. 5 4. 1 1783 425 697
69 3 - 一 1 0. 7 0. 5 ― 0. 3 - 残 20. 5 3. 5 4. 1 1743 416 623 明 70 - 1 0. 5 - 1. 0 0. 5 - - 0. 3 残 23. 5 4. 3 4. 4 1717 407 664
71 - 3 - 0. 5 0. 7 0. 5 一 0. 1 0. 3 残 21. 5 3. 7 4. 2 1842 422 692
72 - 一 0. 5 3 0. 7 0. 5 - 0. 4 一 残 21. 5 3. 7 4. 2 1692 411 641
73 2 1 0. 5 - 0. 7 1. 0 - - 0. 4 残 15. 0 2. 9 5. 0 1861 436 695
74 2 ― 1 0. 5 0. 7 0. 5 - 0. 3 0. 2 残 22. 5 4. 0 4. 3 1897 425 697
75 2 1 一 0. 5 0. 2 0. 5 - 0. 5 一 残 17. 4 2. 6 3. 9 1834 434 675
76 - 1 0. 5 1 0. 7 0. 5 - 一 0. 5 残 22. 5 4. 0 4. 3 1840 411 683
77 1 0. 5 0. 5 0. 5 0. 2 0. 1 - 0. 2 0. 3 残 26. 5 3. 6 3. 3 1805 412 692
表 6
Figure imgf000022_0001
*は Ni相であることを示す
表 3〜6に示される結果から、 W相の境界に N i相または N i -C o/F e合 金相と、 Y203相とが存在せず、 W相の最大粒径が 40 / mを越えた粗粒組織の W系焼結材料からなる比較金型に比して、 本発明 W系焼結材料は、 W相よりも硬 く、 W— M合金相の最大粒径が 30 μπι以下の細粒組織を有し、 N i相または N i一 C oZF e合金相の分散分布している。 したがって、 このような W系焼結材 料からなる本発明金型 32〜92は、 高強度と高硬度とを具備し、 さらに耐ガラ ス腐食性にすぐれ、 かつ高融点、 高熱伝導性 (高放熱性) 、 および低熱膨張係数 を有する。 このような優れた特性を有することから、 1, 100°C以上の高い成 形温度を必要とする石英ガラスの加熱プレス成形においても、 良好なキヤビティ 面を長期に苴つて保持し、 一段と長い使用寿命を示すことが明らかである。
したがって、 本発明の W系焼結材料製光学ガラスレンズの熱間プレス成形金型 は、 例えば比較的腐食性の弱レ、珪酸ガラスや硼化ガラスなどを用いた光学ガラス レンズの熱間プレス成形は勿論のこと、 特に腐食性の強い珪弗化ガラスや、 1, 10 o°c以上の高い成形温度を必要とする石英ガラスなどの加熱プレス成形にて
、 小径化および薄肉化した光学ガラスレンズを成形する場合においても、 すぐれ た性能を長期に亘つて発揮し、 長い使用寿命を示すものである。 産業上の利用の可能性
本発明の第 1W系焼結材料は、 W相が相互に焼結結合し、 いずれも最大粒径が 5 μπι以下の微細な N i相または N i— C o/F e合金相と Y203相とが前記 W 相の境界部に分散分布し、 さらに前記 W相の最大粒径が 30 μ m以下である組織 を有する。 このため、 以下の優れた特性を有する。
(a) 融点: 1, 800〜 2, 000 °C、
( b ) 熱伝導率: 90〜: 1 50 W/m · K、
( c ) 熱膨張係数: 4. 5〜5· 5 X 10- 6/Κ、
(d) 圧壊強度: 1, 350〜2, 000MP a、
(e) ビッカース硬さ (Hv) : 320〜450、
したがって、 本発明の第 1 W系焼結材料で少なくとも一部を形成した熱間プレ ス成形金型は、 特に腐食性のきわめて強い珪弗化ガラスや、 さらに 1, 100°C 以上の高い成形温度を必要とする石英ガラスなどからなり、 小径化および薄肉化 した光学ガラスレンズの熱間プレス成形でも、 優れた性能を長期に!:つて発揮す る。
本発明の第 2 W系焼結材料は、 硬い W— M合金相が相互に焼結結合し、 いずれ も最大粒径が 5 μπι以下の微細な N i相または N i— C o/F e合金相と Y23 相とが上記 W— Μ合金相相の境界部に分散分布し、 さらに上記 W— Μ合金相の最 大粒径が 30 / m以下である組織を有する。 このため、 以下の優れた特性を有す る。
(a) 融点: 1, 800〜2, 000 °C、
( b ) 熱伝導率: 70〜: 1 30 W/m · K、
( c ) 熱膨張係数: 4. 8〜6. 2 X 10— 6/K、
(d) 圧壊強度: 1, 400〜2, 200MP a、
(e) ビッカース硬さ (Hv) : 350〜 550、
したがって、 本発明の第 2 W系焼結材料で少なくとも一部を構成した熱間プレ ス成形金型は、 特に腐食性のきわめて強い珪弗化ガラスや、 さらに 1, 100°C 以上の高い成形温度を必要とする石英ガラスなどで構成され、 かつ小径化および 薄肉化した光学ガラスレンズの熱間プレス成形でも、 すぐれた性能を長期に亘っ て発揮する。

Claims

請求の範囲
1. エッケル (N i ) : 0. 2〜1. 5質量0 /0、 酸化イットリウム (Y203 ) : 0. 1〜1質量%、 タングステン (W) :残部で構成され、
タングステン相が相互に焼結結合し、
いずれも最大粒径が 5 H πι以下の微細な二ッケル相と酸化ィットリウム相とが 上記タングステン相の境界部に分散分布し、 さらに
上記タングステン相の最大粒径が 3 Ο μπι以下である、 高強度および高硬度を 有するタングステン系焼結材料。
2. ニッケル (N i ) : 0. 2〜1. 5質量0 /0、 酸化イッ トリ ウム (Y23 ) : 0. 1〜1質量0 /ο、 炭化バナジウム (VC) : 0. 05〜0. 5質量0 /0、 タ ングステン (W) :残部で構成され、
タングステン相が相互に焼結結合し、
いずれも最大粒径が 5 im以下の微細なニッケル相と酸化ィットリゥム相とが 上記タングステン相の境界部に分散分布し、 さらに
上記タングステン相の最大粒径が 2 Ο μπι以下である、 高強度および高硬度を 有するタングステン系焼結材料。
3. ニッケル (N i ). : 0. 2〜1. 5質量0 /0、 酸化イッ トリ ウム (Y203 ) : 0. 1〜:!質量0 /。、 コノくルト (C o) および鉄 (F e) の少なくとも一方: 0. 01〜 0. 5質量0 /0、 タングステン (W) :残部で構成され、
タングステン相が相互に焼結結合し、
いずれも最大粒径が 5 ^um以下の微細な N i一 C o合金相、 N i一 F e合金相 、 および N i—C o— F e合金相のいずれかと、 酸化イットリウム相とが上記タ ングステン相の境界部に分散分布し、 さらに
上記タングステン相の最大粒径が 3 Ο μηι以下である、 高強度および高硬度を 有するタンダステン系焼結材料。
4. ニッケル (N i ) : 0. 2~ 1. 5質量。 /。、 酸化イッ トリウム (Y23 ) : 0. :!〜 1質量%、 炭化バナジウム (VC) : 0. 0 5〜0. 5質量%、 コ バルト (C o) およぴ鉄 (F e ) の少なくとも一方: 0. 0 1〜0. 5質量0 /0、 タングステン (W) :残部で構成され、
タングステン相が相互に焼結結合し、 さらに
いずれも最大粒径が 5 μ πι以下の微細な N i 一 C o合金相、 N i _F e合金相 、 および N i — C o _F e合金相のいずれかと、 酸化イットリウム相とが上記タ ングステン相の境界部に分散分布し、 さらに
上記タングステン相の最大粒径が 2 0 μ m以下である、 高強度および高硬度を 有するタンダステン系焼結材料。
5. ニッケル (N i ) : 0. 2〜: 1. 5質量0/。、 酸化イットリウム (Y203 ) : 0. :!〜 1質量0 /0、 モリブデン (Mo) 、 クロム (C r ) 、 二オビゥム (N b) 、 およびレニウム (R e) のうち少なくとも 1種: 0. 5〜4質量%、 タン グステン ( W) :残部で構成され、
W— M合金相 (ただし、 Mは Mo , C r , Nb, および R eのうち少なくとも 1種を示す) が相互に焼結結合し、
いずれも最大粒径が 5 μ m以下の微細なニッケル相と酸化ィットリゥム相とが 上記 W—M合金相の境界部に分散分布し、 さらに
上記 W—M合金相の最大粒径が 3 0 μ ηι以下である、 高強度および高硬度を有 するタンダステン系焼結材料。
6. ニッケル (N i ) : 0. 2〜1. 5質量0 /0、 酸化イットリウム (Y203 ) : 0. :!〜 1質量0 /0、 モリブデン (Mo) 、 クロム (C r ) 、 二オビゥム (N b) 、 およびレニウム (R e) のうち少なくとも 1種: 0. 5〜4質量%、 炭化 バナジウム (VC) : 0. 0 5〜0. 5質量%、 タングステン (W) :残部で構 成され、
W_M合金相 (ただし、 Mは Mo , C r, Nb, および R eのうち少なくとも 1種を示す) が相互に焼結結合し、 いずれも最大粒径が 5 μ m以下の微細なニッケル相と酸化ィットリゥム相と力 S 上記 W— M合金相の境界部に分散分布し、 さらに
上記 W— M合金相の最大粒径が 1 5 μιη以下である、 高強度および高硬度を有 するタンダステン系焼結材料。
7. ニッケル (N i) : 0. 2〜1. 5質量0 /0、 酸化イットリウム (Y203 ) : 0. 1〜1質量%、 モリブデン (Mo) , クロム (C r) , 二オビゥム (N b) , およびレニウム (Re) のうち 1種または 2種以上: 0. 5〜4質量0 /。、 コバルト (C o) およぴ鉄 (F e) のうち少なくとも一方: 0. 01〜0. 5% 、 タングステン (W) :残部で構成され、
W— M合金相 (ただし、 Mは Mo, C r, Nb, および R eのうち少なくとも 1種を示す) が相互に焼結結合し、
いずれも最大粒径が 5 μ m以下の微細な N i -C o合金相、 N i— F e合金相 、 および N i -C o -F e合金相のうちいずれかと酸化ィットリゥム相とが上記 W_M合金相相互間の境界部に分散分布し、 さらに
上記 W— M合金相の最大粒径が 30 m以下である、 高強度および高硬度を有 するタンダステン系焼結材料。
8. ニッケル (N i) : 0. 2〜: 1. 5質量0 /0、 酸化イットリウム (Y203 ) : 0. :!〜 1質量0 /0、 モリブデン (Μο) , クロム (C r) , 二オビゥム (N b) , およびレニウム (Re) のうち少なくとも 1種: 0. 5〜4質量0 /0、 炭化 バナジウム (VC) : 0. 05〜0. 5質量0/。、 コバルト (C o) およぴ鉄 (F e) のうち少なくとも一方: 0. 0 1〜0. 5%、 タングステン (W) :残部で 構成され、
W— M合金相 (ただし、 Mは Mo, C r, Nb, および R eのうち少なくとも 1種を示す) が相互に焼結結合し、
いずれも最大粒径が 5 μπι以下の微細な N i一 C o合金相、 N i— F e合金相 、 および N i— C o— F e合金相のうちいずれかと酸化ィットリゥム相とが上記 W— M合金相の境界部に分散分布し、 さらに 上記 W—M合金相の最大粒径が 1 5 /i m以下である、 高強度および高硬度を有 するタングステン系焼結材料。
9 . 請求項 1〜 8のいずれか 1項に記載のタングステン系焼結材料が少なくとも 一部に使用されてなる光学レンズの熱間プレス用成形金型。
PCT/JP2004/010278 2004-03-05 2004-07-13 高強度および高硬度を有するタングステン系焼結材料およびそれからなる光学ガラスレンズの熱間プレス成形金型 WO2005085486A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117018412A KR101159086B1 (ko) 2004-03-05 2004-07-13 고강도 및 고경도를 갖는 텅스텐계 소결 재료 및 그것으로 이루어지는 광학 유리 렌즈의 열간 프레스 성형 금형
KR1020067018500A KR101136765B1 (ko) 2004-03-05 2004-07-13 고강도 및 고경도를 갖는 텅스텐계 소결 재료 및 그것으로이루어지는 광학 유리 렌즈의 열간 프레스 성형 금형
EP04747742A EP1724369B1 (en) 2004-03-05 2004-07-13 Tungsten based sintered material having high strength and high hardness and mold for hot press molding of optical glass lens
DE602004030047T DE602004030047D1 (de) 2004-03-05 2004-07-13 Auf wolfram basierendes gesintertes material mit hoher festigkeit und hoher härte und form zum heisspressen einer optischen glaslinse
US10/598,585 US7615094B2 (en) 2004-03-05 2004-07-13 Tungsten-based sintered material having high strength and high hardness, and hot press mold used for optical glass lenses

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004062251 2004-03-05
JP2004/62251 2004-03-05
JP2004070278 2004-03-12
JP2004/70278 2004-03-12
JP2004076757 2004-03-17
JP2004/76757 2004-03-17

Publications (1)

Publication Number Publication Date
WO2005085486A1 true WO2005085486A1 (ja) 2005-09-15

Family

ID=34923016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010278 WO2005085486A1 (ja) 2004-03-05 2004-07-13 高強度および高硬度を有するタングステン系焼結材料およびそれからなる光学ガラスレンズの熱間プレス成形金型

Country Status (6)

Country Link
US (1) US7615094B2 (ja)
EP (1) EP1724369B1 (ja)
KR (2) KR101136765B1 (ja)
DE (1) DE602004030047D1 (ja)
TW (1) TWI263682B (ja)
WO (1) WO2005085486A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614908B2 (ja) * 2005-05-11 2011-01-19 日立粉末冶金株式会社 冷陰極蛍光ランプ用電極
CA2850951A1 (en) 2005-07-28 2007-01-28 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
TWI588267B (zh) * 2016-07-20 2017-06-21 Nat Chung-Shan Inst Of Science And Tech High purity tungsten metal material and preparation method of tungsten target
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
CN113278837B (zh) * 2021-05-17 2022-04-26 合肥工业大学 一种高致密度Y2O3掺杂W-Re合金的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341087B1 (ja) * 1971-03-18 1978-10-31
JPS647141B2 (ja) * 1984-04-24 1989-02-07 Mitsubishi Metal Corp
JPH06128604A (ja) * 1992-10-19 1994-05-10 Toshiba Corp 金属材料の製造方法
JP2001220634A (ja) * 2000-02-08 2001-08-14 Sumitomo Metal Ind Ltd ガラス成形治工具用Ni−W合金
JP2004083968A (ja) * 2002-08-26 2004-03-18 Mitsubishi Material Cmi Kk 高精度光学ガラスレンズの熱間プレス成形に用いるのに適したタングステン基焼結合金金型

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1086708A (en) * 1966-02-01 1967-10-11 Gen Electric Co Ltd Improvements in or relating to metal bodies and their manufacture
JPS5341087A (en) * 1976-09-27 1978-04-14 Yoshida Seisakusho Kk Dental curing chair
JPS647141A (en) * 1986-10-28 1989-01-11 Toshiba Corp Mode switching control system
US4812372A (en) * 1988-01-25 1989-03-14 Owens-Corning Fiberglas Corporation Refractory metal substrate and coatings therefor
DE4442161C1 (de) * 1994-11-27 1996-03-07 Bayerische Metallwerke Gmbh Verfahren zur Herstellung eines Formteils
AT2017U1 (de) * 1997-05-09 1998-03-25 Plansee Ag Verwendung einer molybdän-/wolfram-legierung in bauteilen für glasschmelzen
JP3969110B2 (ja) 2002-02-15 2007-09-05 三菱マテリアルシ−エムアイ株式会社 耐ガラス腐食性にすぐれた高精度光学ガラスレンズの熱間プレス成形用w基焼結合金製金型
JP4222223B2 (ja) * 2004-02-24 2009-02-12 三菱マテリアルシ−エムアイ株式会社 光学ガラスレンズの熱間プレス成形金型として用いるのに適した細粒組織を有する高硬度タングステン系焼結材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341087B1 (ja) * 1971-03-18 1978-10-31
JPS647141B2 (ja) * 1984-04-24 1989-02-07 Mitsubishi Metal Corp
JPH06128604A (ja) * 1992-10-19 1994-05-10 Toshiba Corp 金属材料の製造方法
JP2001220634A (ja) * 2000-02-08 2001-08-14 Sumitomo Metal Ind Ltd ガラス成形治工具用Ni−W合金
JP2004083968A (ja) * 2002-08-26 2004-03-18 Mitsubishi Material Cmi Kk 高精度光学ガラスレンズの熱間プレス成形に用いるのに適したタングステン基焼結合金金型

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1724369A4 *

Also Published As

Publication number Publication date
EP1724369A1 (en) 2006-11-22
DE602004030047D1 (de) 2010-12-23
KR20110094360A (ko) 2011-08-23
EP1724369A4 (en) 2008-04-16
KR101136765B1 (ko) 2012-04-19
US7615094B2 (en) 2009-11-10
KR101159086B1 (ko) 2012-06-25
TWI263682B (en) 2006-10-11
EP1724369B1 (en) 2010-11-10
US20070169586A1 (en) 2007-07-26
KR20070026416A (ko) 2007-03-08
TW200530408A (en) 2005-09-16

Similar Documents

Publication Publication Date Title
JP3339652B2 (ja) 複合材料およびその製造方法
JP5302965B2 (ja) 硬質粉末、硬質粉末の製造方法および焼結硬質合金
JP2660455B2 (ja) 耐熱硬質焼結合金
KR20140081149A (ko) 탄소나노튜브를 포함하는 초경합금의 제조방법, 이에 의해 제조된 초경합금 및 초경합금을 포함하여 이루어지는 초경 절삭공구
WO2005085486A1 (ja) 高強度および高硬度を有するタングステン系焼結材料およびそれからなる光学ガラスレンズの熱間プレス成形金型
JP2010500477A (ja) 固溶体粉末を含む混合粉末とそれを用いた焼結体、固溶体粉末を含む混合サ−メット粉末とそれを用いたサ−メット、及びそれらの製造方法
JP2001122664A (ja) Wc基複合セラミックス焼結体
WO2001012431A1 (en) Multimodal structured hardcoatings made from micro-nanocomposite materials
JP4366594B2 (ja) 光学ガラスレンズの熱間プレス成形金型として用いるのに適した高強度および高硬度を有するタングステン系焼結材料
JP4366595B2 (ja) 光学ガラスレンズの熱間プレス成形金型として用いるのに適した高強度および高硬度を有するタングステン系焼結材料
JP4222223B2 (ja) 光学ガラスレンズの熱間プレス成形金型として用いるのに適した細粒組織を有する高硬度タングステン系焼結材料
JPS6059195B2 (ja) すぐれた耐摩耗性と靭性を有する硬質焼結材料の製造法
JP4189723B2 (ja) 高精度光学ガラスレンズの熱間プレス成形に用いるのに適したタングステン基焼結合金金型
JPH10259433A (ja) 高強度を有する微粒炭化タングステン基超硬合金の製造方法
JP2564857B2 (ja) ニツケル・モルブデン複硼化物焼結体
JP2000129280A (ja) 硬質非晶質炭素分散複合材料
JPH06340941A (ja) ナノ相複合硬質材料とその製造方法
KR20150043276A (ko) 탄소나노튜브를 포함하는 초경합금의 제조방법, 이에 의해 제조된 초경합금 및 초경합금을 포함하여 이루어지는 초경 절삭공구
JP2626863B2 (ja) 超硬合金及びその製造方法
JPH082961A (ja) 金属粒子分散酸化アルミニウム基焼結体及びその製造方法
JP5459850B2 (ja) 窒化ケイ素焼結体及びその製造方法
JP2004107156A (ja) ジルコニア系超塑性セラミックス
JPH07268524A (ja) 高耐食耐摩耗性複合材料
JP2020164991A (ja) 加圧焼結体及びその製造方法
Tanaka et al. Processing and Properties of Ti‐Base Intermetallic Particles Dispersed Tetragonal Zirconia

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480042249.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067018500

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004747742

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004747742

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007169586

Country of ref document: US

Ref document number: 10598585

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067018500

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10598585

Country of ref document: US