WO2005085397A1 - バイオマスガス化システムおよびその運転方法 - Google Patents

バイオマスガス化システムおよびその運転方法 Download PDF

Info

Publication number
WO2005085397A1
WO2005085397A1 PCT/JP2005/002147 JP2005002147W WO2005085397A1 WO 2005085397 A1 WO2005085397 A1 WO 2005085397A1 JP 2005002147 W JP2005002147 W JP 2005002147W WO 2005085397 A1 WO2005085397 A1 WO 2005085397A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
gas
fuel
temperature
biomass
Prior art date
Application number
PCT/JP2005/002147
Other languages
English (en)
French (fr)
Inventor
Yoshifumi Ito
Masahiro Fukushima
Kenichi Sasauchi
Original Assignee
Chugai Ro Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co., Ltd. filed Critical Chugai Ro Co., Ltd.
Priority to US10/590,592 priority Critical patent/US20070175095A1/en
Priority to CN2005800067956A priority patent/CN1926222B/zh
Priority to EP05719094A priority patent/EP1724326A4/en
Priority to KR1020067017640A priority patent/KR101156884B1/ko
Publication of WO2005085397A1 publication Critical patent/WO2005085397A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/005Reducing the tar content by partial oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1215Heating the gasifier using synthesis gas as fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1253Heating the gasifier by injecting hot gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1621Compression of synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/165Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • C10J2300/1823Recycle loops, e.g. gas, solids, heating medium, water for synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1869Heat exchange between at least two process streams with one stream being air, oxygen or ozone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention provides a biomass gasification system capable of preventing a trouble caused by a tar component in a fuel gas and capable of thermally effectively using a fuel gas containing the tar component. It relates to the driving method.
  • Biomass gas is produced by using biomass such as wood chips and poultry manure as a raw material and heating it to a high temperature of 600 ° C-900 ° C under oxygen-free conditions in a gasifier and pyrolyzing it to produce fuel gas.
  • Systems are known.
  • the organic combustibles of biomass are gasified at 200 ° C to 600 ° C, and the fuel gas obtained in this way is supplied through a supply system to the subsequent stage of combustion power generation, gas engine power generation, fuel cells, etc.
  • biomass gasification power generation systems which are supplied to various power generation systems and used as fuel for power generation, have been spotlighted in recent years.
  • Fuel gas generated in a gasification furnace contains a tar component that is a high-molecular hydrocarbon.
  • the tar content is gaseous at high temperatures of 350 ° C or higher and agglomerates at low temperatures and adheres to pipes and other parts, causing problems such as blockage.
  • the applicant of the present application has formed a porous shape through which fuel gas flows in a flow path of fuel gas generated from biomass.
  • a fuel gas reforming device for a biomass gasification system which is provided with a heat storage body that stores heat at a temperature of 1100 ° C. or more when heated, has been proposed (see Japanese Patent Application No. 2003-292568).
  • the tar component is heated to a temperature of 1100 ° C. or higher, it can be removed by thermal decomposition.
  • the gas reformer pure oxygen or air is added to the fuel gas, and the heat of oxidation reaction at that time is 1100 ° C or more!
  • the tar component in the gas was thermally decomposed.
  • the temperature of the fuel gas supplied to the gasification furnace is about 600 ° C, which is raised to 1100 ° C or more by the heat of oxidation reaction using only pure oxygen or the like! It took a considerable amount of time to raise the temperature to the treatment temperature, and during that period, the tar component could not be removed.
  • the temperature of the reformer is equivalent to the temperature of the fuel gas, and then the reformer is started up to the processing temperature. During the heat-up period, power was not able to thermally decompose tar.
  • the supply system that supplies fuel gas to the utilization system is provided with a cooling device such as a cooling tower that performs cooling processing for the purpose of cleaning the fuel gas after passing through the reformer! /
  • the cooling action aggregates tar components, which can contaminate or block the interior of the cooling system, hindering and avoiding continuous operation of the system.
  • maintenance work is required to perform the maintenance.
  • the present invention has been made in view of the above-mentioned conventional problems, and it is possible to prevent a trouble caused by a tar component in a fuel gas and to heat a fuel gas containing the tar component. It is an object of the present invention to provide a biomass gasification system and an operation method thereof that can be effectively used.
  • a biomass gasification system that is effective in the present invention is provided in a gasification furnace that also generates biomass fuel gas, and a supply system that supplies the fuel gas from the gasification furnace to a utilization system.
  • a reformer for raising the temperature to a processing temperature at which tar can be thermally decomposed; and when the temperature of the reformer is lower than the processing temperature, the fuel gas from the reformer is gasified as described above.
  • a fuel gas introduction system for introducing gasification furnace fuel to the furnace.
  • the gasification furnace is characterized by comprising combustion switching control means for switching the combustion operation of the gasification furnace between iridashi fuel and fuel gas.
  • the method of operating a biomass gasification system uses a biomass gasification system in a gasification furnace.
  • the temperature of the reformer is lower than the processing temperature, the temperature of the fuel gas from the reformer is raised to a processing temperature at which the tar component in the fuel gas generated from the mass can be thermally decomposed.
  • the fuel gas is introduced into the gasification furnace as a gasification furnace fuel.
  • the gasification furnace when the gasification furnace is started, the combustion operation is started with fossil fuel, and thereafter, when the temperature of the reformer is lower than the processing temperature, the gasifier is introduced from the reformer. It is characterized by being operated by burning with fuel gas.
  • the biomass gasification system basically includes, as shown in FIG. 1, a gasification furnace 1 for generating fuel gas from noomas, and a supply system for supplying fuel gas from the gasification furnace 1 to the utilization system 2.
  • a gas reforming tower 4 as a reforming device that raises the temperature to a processing temperature at which tar components in the fuel gas can be pyrolyzed, and the temperature of the gas reforming tower 4 is
  • a fuel gas introduction system 5 for introducing the fuel gas from the gas reforming tower 4 into the gasification furnace 1 as a gasification furnace fuel is provided.
  • the gasification furnace 1 includes a furnace body 7 that generates a fuel gas by heat-treating biomass supplied from the no-mass charging device 6 at a temperature of 600 ° C to 900 ° C inside the furnace.
  • a hot air generating furnace 8 operated at 800 ° C to 1000 ° C is provided.
  • the hot air generator 8 is provided with a parner 9 for burning fossil fuels such as kerosene and heavy oil in order to generate hot air.
  • the hot air generated by the hot air generating furnace 8 is circulated between the hot air circulating fan 10 and the furnace body 7.
  • the supply system 3 is provided between the gasification furnace 1 and a utilization system 2 such as a gas engine so as to connect them.
  • the supply system 3 is provided on a supply line 12 through which fuel gas flows, and provided on the supply line 12.
  • a supply damper 15 is provided on the line 12 at the outlet side of the gas cooling tower 14 so as to be adjustable in degree of opening, and controls the gasification furnace internal pressure.
  • a supply system fan 16 for drawing fuel gas from the gasifier 1. When the supply system damper 15 is opened, the fuel gas generated in the gasification furnace 1 is supplied to the utilization system 2 by the supply system fan 16.
  • the heat exchanger 13 is connected to a combustion air supply system 11 for supplying combustion air to the hot air generator 8, so that the combustion air is heated by the recovered heat.
  • the combustion air supply system 11 is connected to the hot air generating furnace 8 and has supply pipes 17 through which combustion air flows, a blower fan 18 for feeding combustion air to the supply pipe 17, and a supply pipe 17.
  • a control damper 19 whose opening is controlled in order to control the amount of air to be blown, for example, to maintain the heat exchange outlet temperature of the fuel gas at about 400 ° C.
  • the supply line 12 of the supply system 3 is located between the gasifier 1 and the heat exchanger 13, and is provided with a gas reformer for removing the fuel gas power tar supplied from the gasifier 1.
  • Quality tower 4 is provided.
  • the gas reforming tower 4 is mixed with fuel gas passing through the inside thereof, and is subjected to an oxidation reaction to introduce pure oxygen or air for raising the temperature of the gas reforming tower 4 by the reaction heat.
  • a control nozzle 20 is provided.
  • the gas reforming tower 4 is configured by applying a heat retaining structure to the outside of the heat-resistant steel, and the heat of the internal gas is partially consumed by the heat storage and heat dissipation in the gas reforming tower 4.
  • the temperature of the gas reforming tower 4 is equivalent to the temperature of the fuel gas passing therethrough at the time of start-up and temperature rise, and then gradually increased by the heat of oxidation reaction.
  • the temperature has been increased to 1100 ° C or higher, which is the processing temperature at which the tar content contained therein can be thermally decomposed and removed!
  • the fuel gas introduction system 5 is located upstream of the gas cooling tower 14, that is, upstream of the fuel gas flow direction. And at a temperature of 350 ° C. or higher that has passed through the heat exchanger 13 before branching off from the supply line 12 at the subsequent stage of the heat exchanger 13 and connected to the hot-air generating furnace 8 before flowing into the gas cooling tower 14.
  • Introduced damper 23 which is provided so that the opening can be adjusted freely and controls the gasification furnace internal pressure in cooperation with the supply damper 15, and a temperature sensor such as a thermocouple that detects and outputs the temperature of the gas reforming tower 4. 24 and the temperature of the gas reforming tower 4 from the temperature sensor 24, and when the temperature of the gas reforming tower 4 is lower than the processing temperature, the fuel gas from the gas reforming tower 4 To control the introduction as fuel for gasification furnaces, To control the 23 degree of a control unit 25 for outputting a control signal for controlling the operation of the introduction system fan 22.
  • a temperature sensor such as a thermocouple that detects and outputs the temperature of the gas reforming tower 4. 24 and the temperature of the gas reforming tower 4 from the temperature sensor 24, and when the temperature of the gas reforming tower 4 is lower than the processing temperature, the fuel gas from the gas reforming tower 4
  • the controller 25 opens the introduction system damper 23 and activates the introduction system fan 22 to start the gas reforming.
  • the tower 4 also draws the fuel gas flowing through the supply line 12 via the heat exchanger 13 into the introduction line 21 of the fuel gas introduction system 5 and supplies it to the hot air generator 8.
  • the controller 25 also outputs a control signal for controlling the supply system damper 15 and the supply system fan 16 of the supply system 3 so that the fuel gas is supplied to the hot air generator 8 when the fuel gas is supplied. If necessary, the supply system damper 15 is closed and the supply system fan 16 is stopped.
  • the controller 25 closes the introduction system damper 23 and stops the introduction system fan 22, while opening the supply system damper 15 and supplying the gas.
  • the system fan 16 is started to flow the fuel gas flowing through the supply line 12 toward the gas cooling tower 14!
  • the controller 25 outputs a control signal for controlling the start-up / stop of the parner 9 and the amount of combustion, so that the combustion operation in the hot air generator 8 can be performed by using combustion using the danseki fuel and the fuel gas introduction system. From step 5, it also functions as a combustion switching control means for switching between combustion with the fuel gas when the fuel gas is introduced. Further, the controller 25 controls the opening of the control damper 19 of the combustion air supply system 11 and the operation of the blower fan 18 for controlling the operation of the entire biomass gasification system. Control signals for controlling the control nozzle 20 Output.
  • the temperature of the gas reforming tower 4 is lower than the processing temperature at which the starting force of the no-mass gasification system can be thermally decomposed during the temperature rise period during which the tar content in the fuel gas can be thermally decomposed. This temperature state is detected by the temperature sensor 24 and input to the controller 25.
  • the controller 25 causes the parner 9 to burn the iridite fuel to start the operation and generate hot air.
  • the controller 25 controls the control damper 19 and the blower fan 18 of the combustion air supply system 11 to supply the combustion air to the hot air generator 8 as necessary.
  • the hot air generated in the hot-air generating furnace 8 is circulated between the hot-air generating furnace 8 and the furnace body 7 by the hot-air circulating fan 10, and in the furnace body 7, the heating process of the biomass is started by the hot air and the fuel gas is discharged. Is gradually generated. Residuals are generated with the generation of this fuel gas. This residue is sequentially sent to the hot-air generator 8 as fuel.
  • the controller 25 controls the control nozzle 20 to start supplying pure oxygen and the like to the gas reformer 4, and In accordance with the output from the temperature sensor 24 that detects that the temperature of 4 is below the processing temperature, control is performed to introduce the fuel gas into the hot air generator 8 via the fuel gas introduction system 5. Specifically, the controller 25 activates the introduction fan 22 of the fuel gas introduction system 5, opens the introduction system damper 23, and adjusts the furnace pressure of the furnace body 7 to about 20 Pa. Further, if necessary, the supply damper 15 of the supply system 3 is maintained in a closed state. The fuel gas is sent from the gasifier 1 to the supply line 12 of the supply system 3 by the suction action of the introduction system fan 22, and flows into the gas reforming tower 4. The temperature of the fuel gas flowing out of the gasifier 1 is about 600 ° C.
  • the fuel gas that has flowed into the gas reforming tower 4 is mixed with pure oxygen or the like to generate heat of oxidation reaction, thereby gradually increasing the temperature of the gas reforming tower 4.
  • the controller 25 controls the control nozzle 20 so that the rate of temperature rise per hour of the gas reforming tower 4 becomes 500 ° CZh.
  • the temperature of the gas reforming tower 4 depends on the fuel flowing into it.
  • the gas temperature reaches the processing temperature of 1100 ° C or higher, at which the tar content in the fuel gas can be removed by thermal decomposition, and the fuel gas contains the tar content.
  • the fuel gas at around 600 ° C discharged from the gas reforming tower 4 flows into the heat exchanger 13, where it heats the combustion air to lower the temperature to about 400 ° C and flows out.
  • the fuel gas containing tar content having a temperature of 350 ° C. or more discharged from the heat exchange is introduced into the introduction line 21 by the introduction system fan 22, sent to the hot air generator 8, and burned.
  • Hot air can be generated by the oxidation reaction with the combustion air supplied from 11.
  • the controller 25 burns the daniishi fuel with the parner 9, but when the residue and the fuel gas are supplied, the controller 25 activates the parner 9 according to the temperature control of the hot air generator 8.
  • the throttle control is performed, and when it becomes possible to maintain the generation of hot air with the residue and the fuel gas, control to extinguish the wrench 9 is performed. Further, the controller 25 controls the supply amount of the combustion air by controlling the opening of the control damper 19, and controls the temperature of the hot-air generating furnace 8 to be constant.
  • the gas reforming tower 4 when the temperature of the gas reforming tower 4 reaches the processing temperature due to the temperature rise due to the heat of oxidation reaction between the fuel gas and pure oxygen, the gas reforming tower 4 subjects the tar content in the fuel gas to thermal decomposition processing.
  • the fuel gas from which the tar content has been removed flows out of the gas reforming tower 4.
  • the controller 25 executes control for switching the fuel gas flow path, and the fuel gas is supplied to the utilization system 2 such as a gas engine via the supply system 3. You.
  • the controller 25 gradually closes the introduction system dambar 23 and gradually opens the supply system damper 15, and also starts the supply system fan 16 and stops the introduction system fan 22.
  • the fuel gas from the gasifier 1 flows into the gas cooling tower 14.
  • the fuel gas is purified in the gas cooling tower 14 and the purified fuel gas is supplied to the utilization system 2.
  • the introduction of the fuel gas into the hot air generator 8 is stopped.At this point, a large amount of residue is generated in the gasifier 1, and As a result, the hot-air generating furnace 8 can be operated in combustion, and the generation of hot air can be maintained. If necessary, the operation of the PANER 9 is resumed.
  • the gas reforming tower is heated to a processing temperature at which the tar component in the fuel gas can be thermally decomposed.
  • a fuel gas introduction system 5 for introducing the fuel gas from the gas reforming tower 4 into the hot air generating furnace 8 as fuel has a temperature of 350 ° C or more. Since the fuel gas containing the tar content is burned in the hot air generator 8, the gas is supplied to the supply system 3 downstream of the gas reforming tower 4 in the fuel gas flow direction, for example, the gas cooling tower 14 and the utilization system 2.
  • the fuel gas containing the tar component can be burned in the hot-air generating furnace 8, and its thermal effective utilization can be achieved.
  • a controller 25 is provided as a combustion switching control means for switching the combustion operation of the hot air generator 8 between fossil fuel and fuel gas.
  • the combustion operation is started with fossil fuel.
  • the temperature of the gas reforming tower 4 is lower than the processing temperature, the combustion operation is performed with the fuel gas introduced from the gas reforming tower 4, so that the fuel gas containing tar is circulated.
  • the fuel gas can be used effectively as a gasification furnace fuel, and the amount of fossil fuel used at the start-up is reduced. This can reduce fuel consumption and improve the fuel efficiency of the system.
  • FIG. 1 is a schematic configuration diagram showing a preferred embodiment of a biomass gasification system according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Industrial Gases (AREA)

Abstract

【課題】燃料ガス中のタール分によって引き起こされる障害を阻止することが可能であるとともに、当該タール分を含む燃料ガスを熱的に有効利用することができるバイオマスガス化システムおよびその運転方法を提供する。 【解決手段】バイオマスから燃料ガスを生成するガス化炉1より利用システム2へ燃料ガスを供給する供給系3に、燃料ガス中のタール分を熱分解処理することが可能な処理温度に昇温されるガス改質塔4を設ける。ガス改質塔4の温度が処理温度よりも低いときには、当該ガス改質塔4からの燃料ガスをガス化炉1へガス化炉用燃料として導入する燃料ガス導入系5を設ける。                                                                                 

Description

明 細 書
バイオマスガス化システムおよびその運転方法
技術分野
[0001] 本発明は、燃料ガス中のタール分によって引き起こされる障害を阻止することが可 能であるとともに、当該タール分を含む燃料ガスを熱的に有効利用することができる バイオマスガス化システムおよびその運転方法に関する。
背景技術
[0002] 木材チップや鶏糞等のバイオマスを原料とし、これをガス化炉において無酸素下で 600°C— 900°Cの高温に加熱し熱分解することで燃料ガスを生成するバイオマスガ ス化システムが知られている。このシステムでは、バイオマスの有機可燃分が 200°C 一 600°Cでガス化されることとなり、こうして得られた燃料ガスを、供給系を介して後段 の燃焼発電やガスエンジン発電、燃料電池など、種々の発電システムに供給して、 発電用燃料として利用するようにしたバイオマスガス化発電システムが近年脚光を浴 びている。
[0003] ガス化炉で生成される燃料ガスには、高分子の炭化水素であるタール分が含まれ ている。タール分は 350°C以上の高温ではガス状である力 低温になると凝集し、配 管など各部に付着して閉塞などの問題を生じさせる。このような燃料ガスがタール分 を含んでいることに起因する問題を解決すベぐ本願出願人は、バイオマスから生成 される燃料ガスの流通経路に、燃料ガスを流通させる多孔状に形成され、かつ加熱 されて 1100°C以上の熱を蓄熱する蓄熱体を設けて構成したバイオマスガス化システ ムの燃料ガス改質装置を提案して 、る(特願 2003— 292568参照)。タール分は 11 00°C以上の温度に加熱すれば、これを熱分解して除去することができる。この際、上 記ガス改質装置では、燃料ガスに純酸素や空気を添加するようにし、その際の酸ィ匕 反応熱で 1100°C以上と!/、う処理温度を確保して、燃料ガス中のタール分を熱分解 するようにしていた。
発明の開示
発明が解決しょうとする課題 [0004] ところで、ガス化炉力 供給されてくる燃料ガスの温度は 600°C程度であり、これを 純酸素等だけを用いてその酸ィ匕反応熱により 1100°C以上と!/、う処理温度にまで昇 温させるには相当の時間を要し、その期間中はタール分を除去することができなかつ た。具体的には、バイオマスをガス化炉へ投入し始めて燃料ガスの生成を開始した 時点では、改質装置の温度は燃料ガス温度相当であり、その後処理温度に達するま での改質装置の立ち上げ昇温期間中は、タール分を熱分解することができな力つた
[0005] タール分が除去されていない燃料ガスをそのまま、これを利用するガスエンジンな どの利用システムに供給すると、種々の問題が生じる。特に、利用システムに燃料ガ スを供給する供給系に、改質装置を経過した後の燃料ガスを清浄ィ匕する目的で冷却 処理する冷却塔などの冷却装置が設けられて!/、ると、その冷却作用によってタール 分が凝集し、これにより冷却装置の内部が汚染されたり、閉塞を生じる可能性があつ て、システムの継続的な運転に支障をきたすおそれがあるとともに、またこれを回避 するためのメンテナンス作業が必要になるという課題があった。
[0006] 本発明は上記従来の課題に鑑みて創案されたものであって、燃料ガス中のタール 分によって引き起こされる障害を阻止することが可能であるとともに、当該タール分を 含む燃料ガスを熱的に有効利用することができるバイオマスガス化システムおよびそ の運転方法を提供することを目的とする。
課題を解決するための手段
[0007] 本発明に力かるバイオマスガス化システムは、バイオマスカも燃料ガスを生成する ガス化炉と、該ガス化炉から利用システムへ燃料ガスを供給する供給系に設けられ、 燃料ガス中のタール分を熱分解処理することが可能な処理温度に昇温される改質装 置と、該改質装置の温度が処理温度よりも低いときには、該改質装置からの燃料ガス を上記ガス化炉へガス化炉用燃料として導入する燃料ガス導入系とを備えたことを特 徴とする。
[0008] また、前記ガス化炉の燃焼運転をィ匕石燃料と燃料ガスとで切り替える燃焼切替制 御手段を備えたことを特徴とする。
[0009] また、本発明に力かるバイオマスガス化システムの運転方法は、ガス化炉でバイオ マスから生成された燃料ガス中のタール分を熱分解処理することが可能な処理温度 に昇温される改質装置からの燃料ガスを、該改質装置の温度が処理温度よりも低 、 ときに該ガス化炉へガス化炉用燃料として導入するようにしたことを特徴とする。
[0010] また、前記ガス化炉は、その起動時は化石燃料で燃焼運転が開始され、その後、 前記改質装置の温度が処理温度よりも低い温度のときには、該改質装置から導入さ れる燃料ガスで燃焼運転されることを特徴とする。
発明の効果
[0011] 本発明に力かるバイオマスガス化システムおよびその運転方法にあっては、燃料ガ ス中のタール分によって引き起こされる障害を阻止することができるとともに、当該タ 一ル分を含む燃料ガスを熱的に有効利用することができる。
発明を実施するための最良の形態
[0012] 以下に、本発明に力かるバイオマスガス化システムおよびその運転方法の好適な 一実施形態を、添付図面を参照して詳細に説明する。本実施形態にかかるバイオマ スガス化システム基本的には、図 1に示すように、ノィォマスから燃料ガスを生成する ガス化炉 1と、ガス化炉 1から利用システム 2へ燃料ガスを供給する供給系 3に設けら れ、燃料ガス中のタール分を熱分解処理することが可能な処理温度に昇温される改 質装置としてのガス改質塔 4と、ガス改質塔 4の温度が処理温度よりも低いときには、 当該ガス改質塔 4からの燃料ガスをガス化炉 1へガス化炉用燃料として導入する燃料 ガス導入系 5とを備えて構成される。
[0013] ガス化炉 1は、ノィォマス装入装置 6から投入されるバイオマスをその内部で 600°C 一 900°Cの温度で加熱処理することによって燃料ガスを生成する炉体 7と、この炉体 7に加熱処理のための熱風を供給する熱源として、 800°C— 1000°Cで稼働される熱 風発生炉 8とから構成される。熱風発生炉 8には、熱風を生成するために、灯油や重 油などの化石燃料を燃焼させるパーナ 9が設けられる。そしてこの熱風発生炉 8で生 成された熱風は、熱風循環ファン 10により炉体 7との間で循環されるようになっている 。またこの熱風発生炉 8には、熱風を生成するための燃料として、燃料ガス生成後の 炭化物残さが炉体 7から、また燃料ガス導入系 5から燃料ガスが導入されるとともに、 燃焼作用を維持するための燃焼用空気をこれに供給する燃焼用空気供給系 11が 接続される。
[0014] 供給系 3は、ガス化炉 1とガスエンジンなどの利用システム 2との間にこれらを接続 すべく設けられ、燃料ガスが流通される供給ライン 12と、供給ライン 12に設けられ、 流通される燃料ガス力ゝら熱回収する熱交 13と、供給ライン 12に、熱交 13の 後段に位置させて設けられ、燃料ガスを清浄化する目的で冷却するガス冷却塔 14と 、供給ライン 12に、ガス冷却塔 14の出口側に位置させて開度調整自在に設けられ、 ガス化炉内圧を制御する供給系ダンバ 15と、供給系ライン 12に、供給系ダンバ 15と 利用システム 2との間に位置させて設けられ、燃料ガスをガス化炉 1から誘引する供 給系ファン 16とから構成される。そして、供給系ダンバ 15が開かれることで供給系フ アン 16によりガス化炉 1で生成された燃料ガスが利用システム 2へと供給されるように なっている。
[0015] 熱交換器 13については、熱風発生炉 8に燃焼用空気を供給する燃焼用空気供給 系 11が接続され、回収した熱によって燃焼用空気を加熱するようになっている。燃焼 用空気供給系 11は、熱風発生炉 8に接続され、燃焼用空気が流通される供給配管 1 7と、供給配管 17に燃焼用空気を送り込む送風ファン 18と、供給配管 17の途中に設 けられ、例えば燃料ガスの熱交 出口温度を 400°C程度に維持するなど、送風量 を制御すべく開度制御される制御ダンバ 19とから構成される。
[0016] 供給系 3の供給ライン 12には、ガス化炉 1と熱交翻 13との間に位置させて、ガス 化炉 1から供給される燃料ガス力 タール分を除去するためのガス改質塔 4が設けら れる。このガス改質塔 4には、その内部を経過する燃料ガスに混合されることで酸ィ匕 反応してその反応熱でガス改質塔 4を昇温させる純酸素や空気を導入するための制 御ノズル 20が設けられる。ガス改質塔 4は、耐熱鋼の外部に保温構造を施して構成 されていて、内部ガスの熱は当該ガス改質塔 4への蓄熱と放熱とによって一部消費さ れること〖こなる。ガス改質塔 4の温度は、立ち上げ昇温時にはこれを経過する燃料ガ スの温度相当であり、その後、酸化反応熱によって徐々に昇温されていき、通常の稼 働状態では、燃料ガス中に含まれるタール分を熱分解して除去することが可能な処 理温度である 1100°C以上に昇温されるようになって!/、る。
[0017] 燃料ガス導入系 5は、ガス冷却塔 14の前段、すなわち燃料ガスの流れ方向上流側 であって、かつ熱交換器 13の後段において供給ライン 12から分岐されて熱風発生 炉 8に接続され、ガス冷却塔 14に流入する前の、熱交換器 13を経過した 350°C以上 の温度を有する燃料ガスが流通される導入ライン 21と、導入ライン 21に設けられ、燃 料ガスを供給ライン 12から引き込む導入系ファン 22と、導入ライン 21に、導入系ファ ン 22の前段に位置させて開度調整自在に設けられ、供給系ダンバ 15と連係してガ ス化炉内圧を制御する導入系ダンバ 23と、ガス改質塔 4の温度を検出して出力する 熱電対などの温度センサ 24と、温度センサ 24からガス改質塔 4の温度が入力される とともに、ガス改質塔 4の温度が処理温度よりも低いときに、ガス改質塔 4からの燃料 ガスを熱風発生炉 8へガス化炉用燃料として導入制御するために、導入系ダンバ 23 の開度を制御したり、導入系ファン 22の運転を制御する制御信号を出力する制御器 25とから構成される。
[0018] 制御器 25は、温度センサ 24で検出されるガス改質塔 4の温度が処理温度よりも低 いときには、導入系ダンバ 23を開くとともに導入系ファン 22を起動して、ガス改質塔 4 力も熱交換器 13を経て供給ライン 12に流通する燃料ガスを燃料ガス導入系 5の導 入ライン 21に引きこんで熱風発生炉 8へ供給するようになって 、る。本実施形態にあ つては、制御器 25は供給系 3の供給系ダンバ 15や供給系ファン 16を制御する制御 信号も出力するようになっていて、燃料ガスを熱風発生炉 8へ供給する際に必要に 応じて、供給系ダンバ 15を閉じるとともに、供給系ファン 16を停止させるようになって いる。他方、ガス改質塔 4の温度が処理温度以上となったときには、制御器 25は、導 入系ダンバ 23を閉じるとともに導入系ファン 22を停止させる一方で、供給系ダンバ 1 5を開くとともに供給系ファン 16を起動し、供給ライン 12を流通する燃料ガスをガス冷 却塔 14へ向かって流通させるようになって!/、る。
[0019] また制御器 25は、パーナ 9の起動'停止や燃焼量を制御する制御信号を出力して 、熱風発生炉 8における燃焼運転をィ匕石燃料を用いた燃焼と、燃料ガス導入系 5から 燃料ガスが導入される際に当該燃料ガスによる燃焼とで切り替える燃焼切替制御手 段としても機能される。さらに制御器 25は、これら以外にも、バイオマスガス化システ ム全体の運転制御のために、燃焼用空気供給系 11の制御ダンバ 19の開度制御や 送風ファン 18の運転制御を行ったり、また制御ノズル 20を制御する制御信号なども 出力するようになっている。
[0020] 次に、本発明に係るバイオマスガス化システムの運転方法にっ 、て説明する。ガス 改質塔 4の温度は、ノィォマスガス化システムの起動力もその立ち上げ昇温期間中 は、燃料ガス中のタール分を熱分解処理することが可能な処理温度よりも低ぐガス 改質塔 4のこの温度状態が温度センサ 24によって検出されて制御器 25に入力され る。
[0021] バイオマスガス化システムの起動に際しては、ガス化炉 1の熱風発生炉 8で熱風が 生成されるとともに、バイオマス装入装置 6によって炉体 7内にバイオマスが投入され る。熱風発生炉 8の起動にあたっては、制御器 25によりパーナ 9でィ匕石燃料を燃焼さ せることで運転が開始されて熱風が生成される。この際、制御器 25は必要に応じて、 燃焼用空気供給系 11の制御ダンバ 19と送風ファン 18を制御して、燃焼用空気を熱 風発生炉 8へと供給する。熱風発生炉 8で生成された熱風は熱風循環ファン 10によ り熱風発生炉 8と炉体 7との間で循環され、炉体 7内ではこの熱風によりバイオマスの 加熱処理が開始され、燃料ガスが徐々に生成されていく。またこの燃料ガスの生成 に伴って、残さが発生する。この残さは、燃料として順次熱風発生炉 8へと送られる。
[0022] ガス化炉 1での燃料ガスの生成開始時点では、制御器 25は、制御ノズル 20を制御 してガス改質塔 4への純酸素等の供給を開始するとともに、ガス改質塔 4の温度が処 理温度以下であることを検出する温度センサ 24からの出力に応じて、燃料ガスを、燃 料ガス導入系 5を介して熱風発生炉 8へ導入する制御を実行する。具体的には制御 器 25は、燃料ガス導入系 5の導入系ファン 22を起動し、また導入系ダンバ 23を開い て、炉体 7の炉内圧力を 20Pa程度に調整する。また必要に応じて、供給系 3の供 給系ダンバ 15を閉じ状態に維持する。導入系ファン 22による吸引作用で、燃料ガス はガス化炉 1から供給系 3の供給ライン 12へと送り込まれ、ガス改質塔 4に流入する。 ガス化炉 1から流出される燃料ガスの温度はおおよそ 600°C程度である。
[0023] ガス改質塔 4に流入した燃料ガスは、純酸素等と混ざり合って酸化反応熱を発生し 、これにより徐々にガス改質塔 4の温度を昇温させる。例えば制御器 25は、ガス改質 塔 4の時間当たりの昇温率が 500°CZhとなるように、制御ノズル 20を制御する。とこ ろで、燃料ガスの生成開始時点では、ガス改質塔 4の温度は、これに流入する燃料 ガス温度相当であり、燃料ガス中のタール分を熱分解処理して除去できる 1100°C以 上の処理温度には達して 、な 、ため、燃料ガスはタール分を含んだままガス改質塔
4力も流出されることになる。ガス改質塔 4から流出された 600°C近辺の燃料ガスは熱 交 13に流入され、ここで燃焼用空気を加熱して 400°C程度に降温されて流出さ れる。熱交 から流出された 350°C以上の温度を有するタール分を含む燃料 ガスは、導入系ファン 22によって導入ライン 21に導入され、熱風発生炉 8へと送られ て燃焼される。
[0024] バイオマスガス化システムの起動後、熱風発生炉 8には、上記残さに加えて、燃料 ガス導入系 5から燃料ガスが導入されることとなり、これら残さおよび燃料ガスと燃焼 用空気供給系 11から供給される燃焼用空気との酸ィ匕反応により、熱風の生成が可 能となる。制御器 25は、熱風発生炉 8の起動時はパーナ 9でィ匕石燃料を燃焼させる 一方で、残さおよび燃料ガスが供給されるようになったときには熱風発生炉 8の温度 制御に従ってパーナ 9を絞り制御し、残さおよび燃料ガスで熱風の生成を維持できる ようになったときには、パーナ 9を消火する制御を行う。また、制御器 25は、制御ダン パ 19の開度を制御することで燃焼用空気の供給量を調節し、熱風発生炉 8の温度 が一定になるように制御する。
[0025] ガス改質塔 4の温度が処理温度に達するまでの立ち上げ昇温期間中にあっては、 以上のような運転制御が行われ、ガス改質塔 4からの燃料ガスは、燃料ガス導入系 5 へ導入されて熱風発生炉 8へと供給され続ける。
[0026] 他方、燃料ガスと純酸素の酸化反応熱による昇温によってガス改質塔 4の温度が 処理温度に達すると、当該ガス改質塔 4では、燃料ガス中のタール分を熱分解処理 して除去することができ、タール分が除去された燃料ガスがガス改質塔 4から流出さ れるようになる。この温度状態が温度センサ 24によって検出されると、制御器 25は燃 料ガスの流通経路を切り替える制御を実行し、燃料ガスは供給系 3を介してガスェン ジン等の利用システム 2へと供給される。
[0027] 具体的には、制御器 25は、導入系ダンバ 23を徐々に閉じるとともに供給系ダンバ 15を徐々に開き、また供給系ファン 16を起動するとともに導入系ファン 22を停止さ せる。これにより、ガス化炉 1からの燃料ガスは、ガス冷却塔 14へ流入されるようにな つて当該ガス冷却塔 14で清浄化され、この清浄化された燃料ガスが利用システム 2 に供給される。燃料ガスが利用システム 2へ供給されるようになると、燃料ガスの熱風 発生炉 8への導入が停止されるが、この時点ではガス化炉 1で多量の残さが発生して いてこれを利用して熱風発生炉 8を燃焼運転することができ、熱風の生成を維持する ことができる。また必要に応じて、パーナ 9の運転が再開される。
[0028] さらに、バイオマスガス化システムを停止する場合について説明すると、制御器 25 により制御ノズル 20による純酸素の供給が停止されてガス改質塔 4の温度は順次低 下していく。これによりガス改質塔 4の温度は処理温度よりも低くなるため、制御器 25 は、燃料ガス導入系 5に燃料ガスを送り込む制御を実行することとなり、タール分を含 む燃料ガスは熱風発生炉 8にて焼却されることになる。
[0029] 以上説明した実施形態に力かるバイオマスガス化システムおよびその運転方法に あっては、燃料ガス中のタール分を熱分解処理することが可能な処理温度に昇温さ れるガス改質塔 4の温度が処理温度よりも低 、ときには、ガス改質塔 4からの燃料ガ スを、熱風発生炉 8へ燃料として導入する燃料ガス導入系 5を備えて、 350°C以上の 温度を有する当該タール分を含む燃料ガスを熱風発生炉 8で燃焼させるようにしたの で、ガス改質塔 4よりも燃料ガスの流れ方向下流側の供給系 3、例えばガス冷却塔 14 や利用システム 2に、タール分を含む燃料ガスが流入することによって引き起こされる 汚損や閉塞などの障害発生を阻止できるとともに、またそれに伴うメンテナンス作業 なども不要とすることができる。そしてまた、タール分を含む燃料ガスを熱風発生炉 8 で燃焼させることができて、その熱的有効活用を達成することができる。
[0030] また、熱風発生炉 8の燃焼運転を化石燃料と燃料ガスとで切り替える燃焼切替制御 手段としての制御器 25を備え、熱風発生炉 8の起動時は化石燃料で燃焼運転を開 始し、その後、ガス改質塔 4の温度が処理温度よりも低い温度のときには、ガス改質 塔 4から導入される燃料ガスで燃焼運転するようにしたので、タール分を含む燃料ガ スが流通されるガス改質塔 4の立ち上げ昇温期間中、すなわちノィォマスガス化シス テムの起動時において、当該燃料ガスをガス化炉燃料として熱的に有効活用でき、 起動時に必要な化石燃料の使用量を削減できてシステムの燃費を改善することがで きる。 図面の簡単な説明
[図 1]本発明に係るバイオマスガス化システムの好適な一実施形態を示す概略構成 図である。

Claims

請求の範囲
[1] バイオマスから燃料ガスを生成するガス化炉と、該ガス化炉力 利用システムへ燃 料ガスを供給する供給系に設けられ、燃料ガス中のタール分を熱分解処理すること が可能な処理温度に昇温される改質装置と、該改質装置の温度が処理温度よりも低 いときには、該改質装置力 の燃料ガスを上記ガス化炉へガス化炉用燃料として導 入する燃料ガス導入系とを備えたことを特徴とするバイオマスガス化システム。
[2] 前記ガス化炉の燃焼運転をィ匕石燃料と燃料ガスとで切り替える燃焼切替制御手段 を備えたことを特徴とする請求項 1に記載のバイオマスガス化システム。
[3] ガス化炉でバイオマスから生成された燃料ガス中のタール分を熱分解処理すること が可能な処理温度に昇温される改質装置からの燃料ガスを、該改質装置の温度が 処理温度よりも低いときに該ガス化炉へガス化炉用燃料として導入するようにしたこと を特徴とするバイオマスガス化システムの運転方法。
[4] 前記ガス化炉は、その起動時は化石燃料で燃焼運転が開始され、その後、前記改 質装置の温度が処理温度よりも低い温度のときには、該改質装置力 導入される燃 料ガスで燃焼運転されることを特徴とする請求項 3に記載のバイオマスガス化システ ムの運転方法。
PCT/JP2005/002147 2004-03-03 2005-02-14 バイオマスガス化システムおよびその運転方法 WO2005085397A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/590,592 US20070175095A1 (en) 2004-03-03 2005-02-14 Biomass gasification system and operating method thereof
CN2005800067956A CN1926222B (zh) 2004-03-03 2005-02-14 生物量气化系统及其运转方法
EP05719094A EP1724326A4 (en) 2004-03-03 2005-02-14 SYSTEM FOR GASIFICATION OF BIOMASS AND OPERATING METHOD THEREFOR
KR1020067017640A KR101156884B1 (ko) 2004-03-03 2005-02-14 바이오매스 가스화 시스템 및 그 운전 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-059731 2004-03-03
JP2004059731A JP4312632B2 (ja) 2004-03-03 2004-03-03 バイオマスガス化システムおよびその運転方法

Publications (1)

Publication Number Publication Date
WO2005085397A1 true WO2005085397A1 (ja) 2005-09-15

Family

ID=34917986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002147 WO2005085397A1 (ja) 2004-03-03 2005-02-14 バイオマスガス化システムおよびその運転方法

Country Status (6)

Country Link
US (1) US20070175095A1 (ja)
EP (1) EP1724326A4 (ja)
JP (1) JP4312632B2 (ja)
KR (1) KR101156884B1 (ja)
CN (1) CN1926222B (ja)
WO (1) WO2005085397A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131719A (ja) * 2005-11-10 2007-05-31 Mitsubishi Materials Techno Corp 低温ガス化装置および廃棄物発電システムおよびガス化方法
JP4790412B2 (ja) 2005-12-28 2011-10-12 中外炉工業株式会社 バイオマスガス化装置
KR100742159B1 (ko) 2006-04-04 2007-07-25 한국에너지기술연구원 바이오매스 가스화에 의한 열병합 발전방법
KR100695908B1 (ko) 2006-04-07 2007-03-19 (주)지앤지컨설턴트에프디아이 목질계 바이오매스 가스화 장치
ES2319026B1 (es) 2007-02-20 2010-02-12 Uee-Enviroconsult, S.L. Procedimiento de gasificacion de glicerina.
JP5309620B2 (ja) * 2008-03-10 2013-10-09 株式会社Ihi ガス化設備のタール改質方法及び装置
JP5282455B2 (ja) * 2008-06-17 2013-09-04 株式会社Ihi ガス化ガスの改質方法及び装置
CN101580739B (zh) * 2009-03-12 2013-01-09 徐州燃控科技股份有限公司 一种带焦油回燃的固定床秸秆气化工艺
CN101638589B (zh) * 2009-09-04 2012-11-14 王文茂 一种高纯度生物质制气供热储气设备
NL2003547C2 (en) * 2009-09-25 2011-03-29 Stichting Energie Method and system for gasifying biomass.
BR122019000133B1 (pt) 2010-11-08 2020-09-15 Ze Energy Inc Reformador para reformação de gás de destilação seco e sistema de reformação
FI123354B (fi) 2010-12-20 2013-03-15 Foster Wheeler Energia Oy Järjestely ja menetelmä kiinteän polttoaineen kaasuttamiseksi
US20120255301A1 (en) * 2011-04-06 2012-10-11 Bell Peter S System for generating power from a syngas fermentation process
JP5798046B2 (ja) * 2012-01-05 2015-10-21 ヤンマー株式会社 ガス化装置
JP6016367B2 (ja) * 2012-01-30 2016-10-26 三菱重工環境・化学エンジニアリング株式会社 熱分解ガス化システムにおける熱分解付着物発生抑止方法及び熱分解ガス化システム
WO2015004773A1 (ja) 2013-07-11 2015-01-15 三菱重工環境・化学エンジニアリング株式会社 熱分解ガス化システムにおける熱分解付着物発生抑止方法及び熱分解ガス化システム
KR101415535B1 (ko) * 2013-08-19 2014-07-04 주식회사 싸이텍 바이오매스 폐기물을 합성가스화 하기 위한 수평형 개질장치
KR101493770B1 (ko) * 2013-10-16 2015-03-03 주식회사 싸이텍 바이오매스 폐기물을 합성가스화하기 위한 수평형 개질장치
CN103756728B (zh) * 2013-12-30 2016-04-27 葛守飞 生物质炭气联产系统及工作方法
JP6318009B2 (ja) * 2014-06-03 2018-04-25 ヤンマー株式会社 バイオマスガス専焼エンジン
DK3234069T3 (da) 2014-12-15 2020-11-23 Haldor Topsoe As Katalysatorregenereringsfremgangsmåde for en tjærereformeringskatalysator
GB2551314B (en) * 2016-06-06 2021-03-17 Kew Tech Limited Equilibium approach reactor
JP6847714B2 (ja) * 2017-03-07 2021-03-24 株式会社東芝 監視制御装置、バイオガス発電制御システム及び発電制御方法
CN106861328B (zh) * 2017-03-16 2019-04-09 广东正鹏生物质能源科技有限公司 一种生物质气化燃烧装置净化系统
FR3065058B1 (fr) * 2017-04-11 2019-04-19 Cho Power Procede et installation de production d'electricite a partir d'une charge de csr
KR102427903B1 (ko) * 2021-10-20 2022-08-04 (주)에스지이에너지 바이오매스 가스화 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143681A (ja) * 1997-07-25 1999-02-16 Ube Ind Ltd 廃棄物ガス化処理におけるガスリサイクル方法
JP2003342588A (ja) * 2002-05-27 2003-12-03 Setec:Kk バイオマスガス化装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4338927A1 (de) * 1993-11-15 1995-05-18 Kloeckner Humboldt Deutz Ag Verfahren und Anlage zur thermischen Verwertung von Abfallstoffen
TWI241392B (en) * 1999-09-20 2005-10-11 Japan Science & Tech Agency Apparatus and method for gasifying solid or liquid fuel
CN1098910C (zh) * 2000-01-12 2003-01-15 中国科学技术大学 热裂解除焦生物质气化炉
CN1136289C (zh) * 2000-10-11 2004-01-28 中国科学院山西煤炭化学研究所 生活垃圾气化制备燃料气的方法及复合式气化反应器
CN2433523Y (zh) * 2000-10-11 2001-06-06 北京领科技术研究中心 特异性能的生物质燃气燃烧器
JP3973840B2 (ja) * 2001-01-18 2007-09-12 独立行政法人科学技術振興機構 固形燃料ガス化装置
JP3778038B2 (ja) * 2001-09-19 2006-05-24 日産自動車株式会社 燃料改質システム
BR0212531A (pt) * 2001-09-28 2004-08-24 Ebara Corp Método de reforma de gás combustìvel e aparelho de reforma gás combustìvel e aparelho de gaseificação
DE10149649A1 (de) * 2001-10-09 2003-04-24 Bu Bioenergie & Umwelttechnik Verfahren zur hocheffizienten Stromerzeugung aus Biomassen und sonstigen kohlenstoffhaltigen Rohstoffen
CN1435369A (zh) * 2002-09-06 2003-08-13 中国科学院广州能源研究所 一种生物质催化裂解制取氢气的方法及其装置
JP2006070171A (ja) * 2004-09-02 2006-03-16 Babcock Hitachi Kk 流動層式ガス化方法および装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143681A (ja) * 1997-07-25 1999-02-16 Ube Ind Ltd 廃棄物ガス化処理におけるガスリサイクル方法
JP2003342588A (ja) * 2002-05-27 2003-12-03 Setec:Kk バイオマスガス化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1724326A4 *

Also Published As

Publication number Publication date
CN1926222B (zh) 2011-04-27
KR101156884B1 (ko) 2012-06-20
JP2005247992A (ja) 2005-09-15
EP1724326A1 (en) 2006-11-22
CN1926222A (zh) 2007-03-07
KR20070004667A (ko) 2007-01-09
EP1724326A4 (en) 2007-09-19
JP4312632B2 (ja) 2009-08-12
US20070175095A1 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
WO2005085397A1 (ja) バイオマスガス化システムおよびその運転方法
US8936886B2 (en) Method for generating syngas from biomass including transfer of heat from thermal cracking to upstream syngas
EP2850159B1 (en) Batch processing system and method for pyrolysis of organic material
JP2007099927A (ja) タール分解システムとタール分解方法
JP2008014570A (ja) 廃棄物の熱分解処理設備及び廃棄物の熱分解処理設備の運転方法
JP2011080664A (ja) 廃棄物の熱分解、炭化・ガス化方法及び装置
GB2470127A (en) Operating two batch pyrolysis chambers producing syngas
JP2009215387A (ja) ガス化設備のタール改質方法及び装置
JP2009174392A (ja) バイオマスガス化ガス発電システム
JP5804971B2 (ja) 改質石炭製造設備
JP3924172B2 (ja) 廃棄物熱分解ガス化システム
CN110628466A (zh) 一种连续热解气化系统及方法
CN211255839U (zh) 一种连续热解气化系统
JP5685893B2 (ja) 廃棄物熱分解ガス化装置
JP2009103376A (ja) 炭化炉の加熱方法及び装置
JP6840031B2 (ja) ガス改質炉および熱分解ガス改質方法
JPH11197627A (ja) 廃棄物処理システム
RU17599U1 (ru) Установка для переработки твердых отходов
JP2004278819A (ja) ごみ廃熱の効率的回収方法
JP2006017437A (ja) 熱分解ガス燃焼方法及び装置
JP2000240922A (ja) 廃棄物からの燃料ガス製造装置および方法
WO2013088100A1 (en) Energy recovery system
JPH11294727A (ja) 廃プラスチック処理装置
JP2006193637A (ja) 熱分解処理システム
JP2005255842A (ja) 熱分解処理システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067017640

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580006795.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 10590592

Country of ref document: US

Ref document number: 2007175095

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005719094

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005719094

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067017640

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10590592

Country of ref document: US