WO2005083453A1 - Circuit substrate inspection device and circuit substrate inspection method - Google Patents

Circuit substrate inspection device and circuit substrate inspection method Download PDF

Info

Publication number
WO2005083453A1
WO2005083453A1 PCT/JP2005/003448 JP2005003448W WO2005083453A1 WO 2005083453 A1 WO2005083453 A1 WO 2005083453A1 JP 2005003448 W JP2005003448 W JP 2005003448W WO 2005083453 A1 WO2005083453 A1 WO 2005083453A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
inspection
inspected
anisotropic conductive
conductive sheet
Prior art date
Application number
PCT/JP2005/003448
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Kimura
Sugiro Shimoda
Satoshi Suzuki
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004110144A external-priority patent/JP3705366B1/en
Priority claimed from JP2004138955A external-priority patent/JP2005321280A/en
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to CN2005800068200A priority Critical patent/CN1926437B/en
Publication of WO2005083453A1 publication Critical patent/WO2005083453A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • G01R1/07328Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support for testing printed circuit boards
    • G01R1/07335Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support for testing printed circuit boards for double-sided contacting or for testing boards with surface-mounted devices (SMD's)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]

Definitions

  • the present invention provides a circuit board to be subjected to an electrical inspection (hereinafter referred to as a "circuit board to be inspected”) which is pressed by an upper inspection jig and a lower inspection jig from both sides.
  • the present invention relates to a circuit board inspection apparatus and a circuit board inspection method for inspecting electrical characteristics of a circuit board to be inspected while electrodes formed on both surfaces of the circuit board to be inspected are electrically connected to a tester.
  • a printed circuit board on which an integrated circuit or the like is mounted is inspected for electrical characteristics before mounting the integrated circuit or the like in order to confirm that a wiring pattern of the circuit board has predetermined performance.
  • an inspection head is incorporated into an inspection tester provided with a circuit board transport mechanism, and different circuit boards are inspected by replacing the inspection head part.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-94768
  • a metal inspection pin that is in electrical contact with an electrode to be inspected on a circuit substrate to be inspected is planted on the substrate.
  • a method using an inspection jig with the installed structure has been proposed! RU
  • Patent Document 2 JP-A-5-159821
  • an inspection head having conductive pins, a circuit board for pitch conversion called off-grid adapter, and an anisotropic conductive sheet are used.
  • a method using a combined inspection jig is known.
  • circuits on circuit boards have become finer and higher in density, and when such printed circuit boards are inspected, it is necessary to simultaneously conduct a large number of conductive pins to the electrodes to be inspected on the circuit boards to be inspected. Needs to press the inspection jig with high pressure, The electrode to be inspected is easily damaged.
  • an electrode to be inspected on a circuit board to be inspected is an electrode of a pitch conversion substrate via an anisotropic conductive sheet. Therefore, there is an advantage that the electrode to be inspected on the circuit board to be inspected is hardly damaged.
  • the inspection pins to be implanted on the board can be implanted at a pitch wider than the pitch of the electrodes to be inspected on the circuit board to be inspected. It is possible to reduce the cost of manufacturing inspection jigs without the need to plant inspection pins at the pitch.
  • FIG. 31 is a cross-sectional view of an inspection apparatus using such a universal type inspection jig.
  • This inspection apparatus has an upper inspection jig 11 la and a lower inspection jig 11 lb.
  • the jig includes circuit board side connectors 121a and 121b, relay pin units 131a and 131b, and tester side connectors 141a and 141b.
  • the circuit board side connectors 121a and 121b include pitch conversion boards 123a and 123b, and anisotropic conductive sheets 122a, 122b, 126a and 126b disposed on both sides thereof.
  • the relay pin units 131a and 131b are composed of conductive pins 132a and 132b arranged at a fixed pitch (for example, 2.54 mm pitch) on a lattice point (for example, 5000 pins), and the conductive pins 132a and 132b are vertically moved. It comprises a pair of insulating plates 134a, 134b and 135a, 135b movably supported.
  • the tester-side connectors 141a and 141b include connector boards 143a and 143a for electrically connecting the tester and the conductive pins 132a and 132b when the circuit board 101 to be inspected is clamped by the inspection jigs 11la and 111b.
  • 143b anisotropic conductive sheets 142a and 142b placed on conductive pins 132a and 132bftlJ of connector boards 143a and 143b, and base plates 146a and 146b.
  • the circuit board side connectors 121a and 121b are replaced with ones corresponding to the circuit board 101 to be inspected.
  • the relay pin units 13 la, 13 lb and the tester-side connectors 141a, 141b can be used in common.
  • a plurality of conductive paths extending in the thickness direction are formed as anisotropic conductive sheets 122a and 122b constituting the circuit board side connectors 121a and 121b. Part and an insulating part that insulates these conductive path forming parts from each other.
  • the conductive particles are contained only in the conductive path forming part and are unevenly dispersed in the surface direction.
  • the unevenly distributed anisotropic conductive sheets 122a and 122b having protruding portions are used.
  • the unevenly distributed anisotropic conductive sheets 122a and 122b cause problems such as rapid deterioration of the conductive path forming portion due to repeated use in the inspection, and an increase in the resistance value when the conductive path forming portion is deteriorated. .
  • the alignment between the anisotropic conductive sheets 122a and 122b and the pitch conversion boards 123a and 123b, and the circuit board side connectors 121a and 122b are performed. Alignment between 121b and relay pin units 131a and 131b is required, and replacement work is complicated, replacement frequency is high, and inspection efficiency is reduced.
  • the unevenly distributed anisotropic conductive sheets 122a and 122b as described above are used. This makes it difficult to align the anisotropic conductive sheets 122a and 122b with the pitch conversion boards 123a and 123b, and furthermore, when a plurality of circuit boards 101 to be inspected are continuously inspected, Repeated contact with 101 makes it easy for the anisotropic conductive sheets 122a and 122b to be misaligned.
  • the conductive path forming portions of the anisotropic conductive sheets 122a and 122b do not match the electrode positions of the circuit board 101 to be inspected, and good electrical connection cannot be obtained.
  • the resistance value is measured, and the printed circuit board, which should be judged to be good, is likely to be erroneously judged to be defective.
  • the printed wiring board which is the circuit board 101 to be inspected, has been multi-layered and has a high density.
  • the electrodes to be inspected 102, 103 such as a solder ball electrode such as a BGA are used in the thickness direction. Variations in height and warpage of the substrate itself have occurred. Therefore, in order to achieve electrical connection to the electrodes to be inspected 102 and 103, which are inspection points on the circuit board 101 to be inspected, the upper inspection jig 11la and the lower inspection jig 11lb are applied with high pressure.
  • the conductive pins 132a and 132b need to be arranged at regular intervals in order to support the pitch conversion substrates 123a and 123b and distribute the pressing pressure.
  • Patent Document 1 JP-A-6-94768
  • Patent Document 2 JP-A-5-159821
  • Patent Document 3 JP-A-7-248350
  • Patent Document 4 JP-A-8-271569
  • Patent Document 5 JP-A-8-338858
  • Patent Document 6 JP-A-6-82531
  • the present invention can perform a highly reliable electrical inspection even when a circuit substrate to be inspected has minute electrodes arranged at a fine pitch. It is an object of the present invention to provide a circuit board inspection apparatus and a circuit board inspection method that can be performed.
  • the present invention also provides a circuit board inspection apparatus with high inspection efficiency, in which the frequency of replacement due to deterioration of an anisotropic conductive sheet is low when a circuit board to be inspected is repeatedly and continuously inspected. And a method for inspecting a circuit board. Further, according to the present invention, when a circuit board to be inspected is repeatedly subjected to a continuous inspection, the workability of the inspection is excellent because it is less necessary to correct the positional deviation of the anisotropic conductive sheet.
  • An object of the present invention is to provide a circuit board inspection apparatus and a circuit board inspection method.
  • the present invention provides a circuit board inspection apparatus which can easily replace an anisotropic conductive sheet when the anisotropic conductive sheet is deteriorated in a repeated continuous inspection of a circuit board to be inspected as an inspection object.
  • An object of the present invention is to provide a circuit board inspection method.
  • An object of the present invention is to provide a circuit board inspection apparatus and a circuit board inspection method capable of performing inspection on a circuit board to be inspected.
  • the present invention has a good follow-up property with respect to variations in the height of electrodes to be inspected of a circuit board to be inspected, and does not cause a conduction failure, and can perform an accurate inspection.
  • An object of the present invention is to provide a circuit board inspection apparatus and a circuit board inspection method.
  • the circuit board inspection apparatus of the present invention uses a pair of a first inspection jig and a second inspection jig to perform an inspection between both inspection jigs on both sides of a circuit board to be inspected.
  • the first inspection jig and the second inspection jig are each
  • a pitch conversion substrate for converting an electrode pitch between one surface side and the other surface side of the substrate; a first anisotropic conductive sheet disposed on the circuit board to be inspected side of the pitch conversion substrate;
  • a second anisotropic conductive sheet disposed on the opposite side of the pitch conversion board from the circuit board to be inspected;
  • a circuit board side connector having
  • a plurality of conductive pins arranged at a predetermined pitch
  • the first anisotropic conductive sheet is characterized in that the first anisotropic conductive sheet is an anisotropic conductive sheet in which conductive particles are arranged in a thickness direction and uniformly dispersed in a surface direction.
  • a circuit board inspection method of the present invention is a circuit board inspection method using the above-described circuit board inspection apparatus
  • a pair of the first inspection jig and the second inspection jig sandwiches both surfaces of the circuit board to be inspected between the two inspection jigs to perform an electrical inspection.
  • the thickness W of the first anisotropically conductive sheet is 0.03-0.5m.
  • the number average particle diameter of the conductive particles D is 50 ⁇ m
  • the ratio W / ⁇ to the diameter D is 1.1 to 10, which is the ratio of the insulating elastomer constituting the sheet base material.
  • the durometer hardness is preferably 30-90.
  • the conductive particles are used as the first anisotropic conductive sheet disposed between the circuit board to be inspected and the pitch conversion board. Are arranged in the thickness direction and are uniformly dispersed in the plane direction.
  • the first anisotropic conductive sheet is separate from the circuit board for inspection, if the first anisotropic conductive sheet is deteriorated, the first anisotropic conductive sheet is degraded. Replacement is easy because only the conductive sheet needs to be replaced. Since the inspection circuit board does not need to be replaced when the first anisotropic conductive sheet is replaced and can be reused, the inspection cost of the circuit board to be inspected can be reduced.
  • circuit board inspection apparatus of the present invention even if the circuit board to be inspected has minute electrodes arranged at a fine pitch, a highly reliable electric circuit can be obtained. Mental examination can be performed.
  • the first anisotropic conductive sheet has a surface roughness of 0.5 to 5 m on a surface in contact with the circuit board to be inspected, and the pitch conversion is performed. Surface roughness on the side in contact with the substrate for use is 0.3 m or less,
  • the pitch conversion substrate is characterized in that the surface roughness of the insulating portion on the surface in contact with the first anisotropic conductive sheet is 0.2 m or less.
  • the contact surface of the first anisotropic conductive sheet to the circuit board to be inspected is a rough surface having a specific surface roughness
  • the pressure applied to the circuit board to be inspected is released.
  • the contact area force between the circuit board to be inspected and the first anisotropic conductive sheet is reduced. Therefore, the adhesiveness of the insulating elastomer, which is the sheet substrate, is suppressed, and the circuit board to be inspected can be prevented or suppressed from adhering to the first anisotropic conductive sheet.
  • the contact surface of the first anisotropic conductive sheet with the pitch conversion substrate is a flat surface with small surface roughness, and the surface roughness of the insulating portion on the surface of the pitch conversion substrate is reduced. Therefore, the contact area between the pitch conversion substrate and the first anisotropic conductive sheet increases. Therefore, even after the pressurization of the circuit board to be inspected is released, the first anisotropic conductive sheet changes its pitch due to the adhesive property of the insulating elastomer, which is a sheet base material having high adhesion between the two. It is securely held on the replacement substrate. For this reason, it is possible to prevent the first anisotropic conductive sheet from being detached by the pitch converting substrate force, and to perform the inspection work even when a large number of circuit boards to be inspected are continuously subjected to electrical inspection. Can be performed smoothly.
  • the second anisotropic conductive sheet extends in a thickness direction.
  • the conductive particles are contained only in the conductive path forming portions, so that the conductive particles do not extend in the surface direction. It is characterized by being uniformly dispersed and having a conductive path forming portion protruding on one side of the sheet.
  • the thickness W of the conductive path forming portion in the second anisotropic conductive sheet is 0.1 to 2 mm, and the number average particle diameter D of the conductive particles is 200 ⁇ m. , Thickness
  • the ratio W ZD of W to the number average particle diameter D is 1.1 to 10,
  • the durometer hardness of the edge elastomer is 15-60! / ,.
  • the third anisotropic conductive sheet includes a plurality of conductive path forming portions extending in a thickness direction, and an insulating portion that insulates the conductive path forming portions from each other. And the conductive particles are contained only in the conductive path forming portion, whereby the conductive particles are unevenly dispersed in the surface direction, and the conductive path forming portion protrudes on one side of the sheet.
  • the second anisotropic conductive sheet and the third anisotropic conductive sheet each include the conductive path forming portion and the insulating portion, and the conductive particles are contained only in the conductive path forming portion.
  • the pressing force and impact due to the pressing of the inspection jig can be used for these sheets.
  • deterioration of the first anisotropic conductive sheet can be suppressed.
  • the unevenly distributed anisotropic conductive sheet since the unevenly distributed anisotropic conductive sheet has high elasticity, it absorbs the pressing force of the inspection jig at the time of inspection and has excellent impact relaxation ability, so that the elasticity is relatively low. It alleviates pressure concentration and impact on the first anisotropically conductive sheet and suppresses deterioration of the first anisotropically conductive sheet. Therefore, the service life of the first anisotropically conductive sheet for repeated inspection is prolonged, and as a result, the number of times of replacement of the first anisotropically conductive sheet in the electrical inspection of the circuit board to be inspected can be reduced. Inspection efficiency is improved.
  • the pitch conversion board is provided with a connection electrode including a pair of a current terminal electrode and a voltage terminal electrode, and the connection electrode is provided on the circuit board to be inspected.
  • the pair of current terminal electrodes and voltage terminal electrodes are arranged on the pitch conversion substrate so as to be electrically connected to each of the electrodes to be inspected,
  • a current pin-side electrode and a voltage pin-side electrode are arranged on the connector board so as to be electrically connected to the current terminal electrode and the voltage terminal electrode of the pitch conversion board, respectively. It is characterized by the following.
  • a current supply path is formed for each of the electrodes to be inspected on the circuit board to be inspected via the current terminal electrodes of the upper and lower pitch conversion substrates.
  • a voltage measurement path is formed for each of the electrodes to be inspected on the circuit board via the voltage terminal electrodes of the upper and lower pitch conversion boards.
  • the current is fixed to the current supply path via the current terminal electrodes of the upper and lower pitch conversion boards, for example, using a constant current supply device.
  • the voltage from each of the electrodes to be inspected on the circuit board to be inspected is measured by a voltmeter through the voltage measuring electrodes via the voltage terminal electrodes of the upper and lower pitch conversion boards while supplying the current of It is possible to perform a test for confirming whether or not the wiring pattern of the inspection circuit board has a predetermined performance on electrical characteristics.
  • each of the electrodes to be inspected on the circuit board to be inspected is connected to the voltage measurement path via the voltage terminal electrodes of the upper and lower pitch conversion substrates, for example, using a constant voltage supply device. While applying a constant voltage, measure the current from each electrode to be inspected on the circuit board to be inspected with an ammeter through the current supply path via the current terminal electrodes of the upper and lower pitch conversion boards. Accordingly, it is also possible to perform a test for confirming electrical characteristics as to whether or not the wiring pattern of the circuit board to be inspected has a predetermined performance.
  • the relay pin unit may include:
  • An intermediate holding plate disposed between the first insulating plate and the second insulating plate
  • a first contact support position of the first support pin with respect to the intermediate holding plate and a second contact support position of the second support pin with respect to the intermediate holding plate are in the thickness direction of the intermediate holding plate. It is characterized by being arranged at a different position on the projected intermediate holding plate projection plane.
  • the first contact support position of the first support pin with the intermediate holding plate and the second contact support position of the second support pin with the intermediate holding plate are different from each other. Since the intermediate holding plate projected in the thickness direction is arranged at different positions on the projection plane, the circuit board to be inspected, which is the inspection object, is further pressed between the first inspection jig and the second inspection jig.
  • the first insulating plate of the relay pin unit Due to the panel elasticity of the second insulating plate and the intermediate holding plate disposed between the first insulating plate and the second insulating plate, the height variation of the electrode to be inspected on the circuit board to be inspected, for example, the solder ball electrode With respect to the height variation, the pressure concentration can be dispersed to avoid local stress concentration.
  • the number of through holes formed in the insulating plate can be reduced. Therefore, the thickness of the insulating plate can be reduced. Further, it is possible to reduce the cost required for manufacturing an inspection apparatus in which drilling of a through hole in an insulating plate holding conductive pins by drilling is small.
  • the circuit board inspection apparatus of the present invention includes a pair of first and second inspection jigs, which are used to inspect both sides of a circuit board to be inspected, which is an inspection object, between the two inspection jigs.
  • first and second inspection jigs which are used to inspect both sides of a circuit board to be inspected, which is an inspection object, between the two inspection jigs.
  • the intermediate holding plate is characterized in that it is configured so as to extend in the direction of the first insulating plate around a second contact support position of the second support pin with respect to the intermediate holding plate.
  • the intermediate holding plate bends in opposite directions about the first contact support position and the second contact support position, the first inspection is performed.
  • the circuit board to be inspected is further pressurized between the jig and the second inspection jig, the panel elasticity of the intermediate holding plate is further exerted, and the circuit board to be inspected is exposed.
  • pressure concentration can be dispersed to avoid local stress concentration, and local damage of the first anisotropic conductive sheet can be suppressed.
  • the durability of repeated use of the first anisotropic conductive sheet is improved, so that the number of times of replacement of the first anisotropic conductive sheet is reduced, and the inspection work efficiency is improved.
  • the first contact support position of the first support pin with respect to the intermediate holding plate is arranged in a grid on the intermediate holding plate projection plane
  • a second contact support position of the second support pin with respect to the intermediate holding plate is arranged in a grid on the intermediate holding plate projection plane
  • one second contact support position is arranged in a unit lattice area where four adjacent first contact support position forces are also provided.
  • one first contact support position is arranged in a unit lattice region where four adjacent second contact support position forces are also provided.
  • the first contact support position and the second contact support position are arranged in a lattice, and the first contact support position and the second contact support position are arranged in a lattice. It will be arranged in the position where all shifted.
  • the intermediate holding plate is deflected in directions opposite to each other with the first contact support position and the second contact support position as centers, and the first inspection jig and the second inspection jig and the second inspection jig and the second inspection jig.
  • the circuit board to be inspected is pressurized between the inspection jigs, the panel elasticity of the intermediate holding plate is further exerted, and the height of the electrodes to be inspected on the circuit board to be inspected is increased.
  • the pressure concentration with respect to the variation, local stress concentration can be further avoided, and local damage of the first anisotropic conductive sheet is suppressed.
  • the repeated use durability of the first anisotropic conductive sheet is improved, so that the number of times of replacement of the first anisotropic conductive sheet is reduced, and the inspection work efficiency is improved.
  • the relay pin unit may include:
  • a plurality of intermediate holding plates disposed at predetermined intervals between the first insulating plate and the second insulating plate;
  • a holding support position of the holding plate support pin abutting against the intermediate holding plate from one surface side, and a second holding position abutting against the intermediate holding plate from the other surface side.
  • the contact support position of the first support pin, the second support pin, or the support plate support pin with respect to the intermediate support plate corresponds to the intermediate support plate projection surface projected in the thickness direction of the intermediate support plate. At different positions.
  • the holding plate support pins that are in contact with the one-side force on the intermediate holding plate have contact support positions with respect to the intermediate holding plate;
  • the contact support position of the first support pin, the second support pin, or the holding plate support pin with respect to the intermediate holding plate, which is in contact with the intermediate holding plate on the other surface, is in the thickness direction of the intermediate holding plate.
  • the intermediate holding plate is projected at a different position from the projection surface of the intermediate holding plate.
  • the supporting pin positions on the front and back sides of the plurality of intermediate holding plates are located at positions shifted from each other.
  • the pressure concentration is dispersed against the height variation of the electrode to be inspected on the circuit board to be inspected, so that local stress concentration can be further avoided. Local damage of the conductive sheet is suppressed.
  • the durability of repeated use of the first anisotropic conductive sheet is improved, so that the number of times of replacement of the first anisotropic conductive sheet is reduced, and the inspection work efficiency is improved.
  • a highly reliable electrical inspection can be performed even when a circuit board to be inspected has minute electrodes arranged at a fine pitch.
  • FIG. 1 is a cross-sectional view showing one embodiment of a circuit board inspection device of the present invention.
  • FIG. 2 is a cross-sectional view showing a stacked state at the time of inspection of the inspection device of FIG. 1.
  • FIG. 3 is a view showing a surface of a board for pitch conversion on a circuit board to be inspected side.
  • FIG. 4 is a diagram showing a surface of a pitch conversion board on a relay pin unit side.
  • FIG. 5 is a partial cross-sectional view of a first anisotropic conductive sheet.
  • FIG. 6 is a partial cross-sectional view of a second anisotropic conductive sheet.
  • FIG. 7 is a cross-sectional view showing a state where a first anisotropic conductive sheet is laminated on a pitch conversion substrate.
  • FIG. 8 FIG. 8 (a) FIG. 8 is a partial cross-sectional view of a first anisotropic conductive sheet having one surface roughened, and FIG. 8 (b) shows a pitch of the first anisotropic conductive sheet.
  • FIG. 4 is a cross-sectional view showing a state in which the layers are stacked on a conversion substrate.
  • FIG. 9 is a diagram for explaining a manufacturing process of the first anisotropic conductive sheet.
  • FIG. 10 is a view showing a distribution state of conductive particles inside a molded member.
  • FIG. 11 is a diagram illustrating a process for manufacturing the first anisotropic conductive sheet.
  • FIG. 12 is a diagram showing a distribution state of conductive particles after applying a magnetic field.
  • FIG. 13 is a cross-sectional view showing a conductive pin of a relay pin unit and a part of an insulating plate.
  • FIG. 14 is a cross-sectional view showing another embodiment of the circuit board inspection device of the present invention.
  • FIG. 15 is a cross-sectional view showing a stacked state at the time of inspection by the inspection device of FIG. 14.
  • FIG. 16 is a diagram showing a surface of a pitch conversion substrate on the side of a circuit board to be inspected. is there.
  • FIG. 17 is a diagram showing the surface of the pitch conversion board on the relay pin unit side.
  • FIG. 18 is a cross-sectional view showing a state where the first anisotropic conductive sheet is laminated on the pitch conversion substrate.
  • FIG. 19 is a partially enlarged cross-sectional view illustrating a state of use of the inspection device of FIG. 14.
  • FIG. 20 is a cross-sectional view showing another embodiment of the circuit board inspection apparatus of the present invention.
  • FIG. 21 is a cross-sectional view showing a stacked state at the time of inspection of the inspection device of FIG.
  • FIG. 22 is a cross-sectional view showing a conductive pin of a relay pin unit and a part of an insulating plate.
  • FIG. 23 is a partially enlarged view of an intermediate holding plate projection surface projected in the thickness direction of the intermediate holding plate.
  • FIG. 24 is a partially enlarged cross-sectional view of the inspection device in FIG. 20.
  • FIG. 25 is a partially enlarged cross-sectional view illustrating a use state of the inspection device of FIG. 20. so is there.
  • FIG. 26 is a partially enlarged cross-sectional view of a relay pin unit in the inspection device of FIG. 20.
  • FIG. 27 is a partially enlarged cross-sectional view illustrating a use state of the inspection device in FIG. 20.
  • FIG. 28 is a partially enlarged cross-sectional view similar to FIG. 24, showing another embodiment of the inspection apparatus of the present invention.
  • FIG. 29 is a partially enlarged cross-sectional view of a relay pin unit in the inspection device of FIG. 28.
  • FIG. 30 is a partially enlarged cross-sectional view showing a use state of an inspection device according to another embodiment of the present invention.
  • FIG. 31 is a cross-sectional view of a conventional circuit board inspection apparatus.
  • first inspection jig and the second inspection jig for example, the circuit board side connector 21a and the circuit board side connector 21b, the first anisotropic conductive sheet 22a and the first anisotropic conductive sheet 22b
  • the symbols “a” and “b” may be omitted (for example, the first anisotropic conductive sheet 22a and the first anisotropic conductive sheet 22b).
  • the anisotropic conductive sheet 22b may be collectively referred to as "first anisotropic conductive sheet 22").
  • FIG. 1 is a cross-sectional view illustrating an inspection apparatus according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view illustrating a stacked state of the inspection apparatus in FIG. 1 at the time of inspection
  • FIG. FIG. 4 is a diagram illustrating a surface of the circuit board for inspection on the side of the circuit board to be inspected
  • FIG. 4 is a diagram illustrating a surface of the substrate for pitch conversion on the side of the relay pin unit.
  • the inspection apparatus of the present embodiment measures the electric resistance between the electrodes to be inspected on the circuit board 1 to be inspected such as a printed circuit board for mounting an integrated circuit or the like by measuring the electric resistance between the electrodes to be inspected. An electrical inspection is performed. As shown in FIGS. 1 and 2, this inspection apparatus includes a first inspection jig 11a disposed on the upper surface side of the circuit board 1 to be inspected, and a second inspection jig disposed on the lower surface side. lib are arranged so as to face each other up and down.
  • the first inspection jig 11a includes a circuit board side connector 21a, a relay pin unit 31a, and a tester one side connector 41a.
  • the circuit board side connector 21a is composed of a pitch conversion board 23a, a first anisotropic conductive sheet 22a and a second anisotropic conductive sheet 26a arranged on both sides thereof.
  • the tester-side connector 41a includes a third anisotropic conductive sheet 42a disposed on the relay pin unit 31a side, a connector board 43a, and a base plate 46a.
  • the second inspection jig lib is configured similarly to the first inspection jig 11a, and includes a circuit board side connector 21b, a relay pin unit 31b, and a tester side connector 41b.
  • the circuit board side connector 21b includes a pitch conversion board 23b, and a first anisotropic conductive sheet 22b and a second anisotropic conductive sheet 26b arranged on both sides thereof.
  • the tester-side connector 41b includes a third anisotropic conductive sheet 42b, a connector board 43b, and a base plate 46b, which are arranged on the relay pin unit 31b side.
  • An electrode 2 to be inspected is formed on the upper surface of the circuit board 1 to be inspected, and an electrode 3 to be inspected is also formed on the lower surface thereof. These are electrically connected to each other! You.
  • the circuit board side connectors 21a and 21b include pitch conversion boards 23a and 23b, and first anisotropic conductive sheets 22a and 22b and second anisotropic conductive sheets 26a and 26b disposed on both sides thereof. I have.
  • FIG. 3 is a diagram showing a surface of the pitch conversion board 23 on the circuit board under test 1 side
  • FIG. 4 is a diagram showing a surface of the pitch conversion board 23 on the relay pin unit 31 side.
  • connection electrodes 25 are formed. These connection electrodes 25 are arranged so as to correspond to the patterns of the electrodes 2 and 3 to be inspected on the circuit board 1 to be inspected. On the other hand, on the other surface of the pitch conversion board 23, that is, on the opposite side of the circuit board 1 to be inspected, as shown in FIG. 4, the conductive pins 32 a and 32 b of the relay pin unit 31 are electrically connected. A plurality of terminal electrodes 24 to be connected are formed. These terminal electrodes 24 are, for example, pitchers 54 mm, 1.8 mm, 1.27 mm, 1.06 mm, 0.8 mm, 0.75 mm, 0.5 mm, 0.45 mm, 0.3 mm or 0.2 mm.
  • connection electrode 25 in FIG. 3 is electrically connected to the corresponding terminal electrode 24 in FIG. 4 by a wiring 52 and an internal wiring 53 penetrating in the thickness direction of the insulating substrate 51 in FIG.
  • the insulating portion on the surface of the pitch conversion substrate 23 is formed of, for example, an insulating layer 54 formed on the surface of the insulating substrate 51 so that the respective connection electrodes 25 are exposed, as shown in FIG.
  • the thickness of the insulating layer 54 is preferably 5 to 100 m, more preferably 10 to 60 m. If the thickness is too small, it may be difficult to form an insulating layer having a small surface roughness. On the other hand, if the thickness is excessive, electrical connection between the connection electrode 25 and the first anisotropic conductive sheet 22 may be difficult.
  • a material for forming the insulating substrate 51 of the pitch conversion substrate a material generally used as a substrate of a printed circuit board can be used.
  • Specific examples include polyimide resin, glass fiber reinforced polyimide resin, glass fiber reinforced epoxy resin, and glass fiber reinforced bismaleimide triazine resin.
  • a polymer material that can be formed into a thin film can be used. Specifically, for example, epoxy resin, acrylic resin, phenol resin, polyimide resin Fats, polyamide resins, mixtures thereof, resist materials and the like.
  • the pitch conversion substrate 23 can be manufactured, for example, as follows. First, a laminated material in which thin metal layers are laminated on both sides of a flat insulating substrate is prepared, and the laminated material is penetrated in the thickness direction of the laminated material in accordance with the pattern corresponding to the terminal electrode to be formed. A plurality of through holes to be formed are formed by a numerically controlled drilling device, a photo-etching process, a laser processing process, or the like. Next, by applying electroless plating and electrolytic plating to the through-holes formed in the laminated material, no holes connected to the thin metal layers on both surfaces of the substrate are formed. Thereafter, the metal thin layer is subjected to a photo-etching process to form a wiring pattern and a connection electrode on the surface of the insulating substrate and to form a terminal electrode on the opposite surface.
  • an insulating layer 54 is formed on the surface of the insulating substrate 51 so that each connection electrode 25 is exposed, and each terminal electrode 2 is formed on the opposite surface.
  • insulating layer 55 so that 4 is exposed, substrate 23 for pitch conversion can be obtained.
  • the thickness of insulating layer 55 is preferably 5 to 100 m, more preferably 10 to 60 m.
  • the first anisotropic conductive sheet 22 which constitutes the circuit board side connector 21 and is laminated on the pitch conversion circuit board 23 is a sheet base material 61 having an insulating elastic polymer force as shown in FIG.
  • Many conductive particles 62 are dispersed in the plane direction and contained in a state arranged in the thickness direction.
  • the thickness of the first anisotropic conductive sheet 22 is preferably 0.03-0.5 mm, more preferably 0.05-0.2 mm.
  • the "thickness of the first anisotropic conductive sheet 22" This is the thickness (minimum thickness) from the recessed surface 63 to the rear surface 64 (flat surface).
  • the thickness of the first anisotropic conductive sheet 22 is less than 0.03 mm, the required durability is obtained because the mechanical strength of the first anisotropic conductive sheet 22 is easily reduced. May not be possible.
  • the thickness of the first anisotropic conductive sheet 22 exceeds 0.5 mm, the electrical resistance in the thickness direction tends to increase, and when the pitch of the electrodes to be connected is small, the additional resistance increases. The required insulation cannot be obtained between the conductive paths formed by the pressure, and an electrical short circuit may occur between the electrodes under test, making it difficult to perform an electrical test on the circuit board under test.
  • the elastic polymer material constituting the sheet substrate 61 of the first anisotropic conductive sheet 22 preferably has a durometer hardness of 30 to 90, more preferably 35 to 80, and still more preferably. 4 0—70.
  • durometer hardness refers to a value measured by a type A durometer based on a durometer hardness test of JIS K6253. If the durometer hardness of the elastic polymer material is less than 30, compression and deformation of the anisotropically conductive sheet will be large when pressed in the thickness direction. The sheet deteriorates prematurely, making it difficult to use for inspection, and the durability tends to be low.
  • the number average particle diameter D of the magnetic conductive particles is preferably 3 to 50 m, more preferably
  • the “number average particle size of the magnetic conductive particles” is a value measured by a laser diffraction scattering method.
  • the number-average particle size 0 1 of the magnetic conductive particles is 3 mu m or more, deform under pressure of the portion where the magnetic conductive particles in the anisotropically conductive sheet obtained is contained is facilitated Also, when the magnetic conductive particles are oriented by a magnetic field orientation treatment in the manufacturing process, the orientation of the magnetic conductive particles is easily facilitated, so that the obtained anisotropic conductive sheet is highly anisotropic.
  • the resolution of the anisotropically conductive sheet (the anisotropy of the anisotropically conductive sheet is calopressed to achieve electrical continuity between the electrodes facing each other in the thickness direction, while maintaining the electrical insulation between the horizontally adjacent electrodes) Ability).
  • the number average particle diameter D of the magnetic conductive particles is 50 ⁇ m or less, it is obtained.
  • the anisotropic conductive sheet has good elasticity and is easy to deform under pressure, and has good resolution even for fine and fine pitch electrodes.
  • the thickness of the anisotropic conductive sheet is equal to or larger than the thickness of the sheet, the elasticity of the anisotropic conductive sheet decreases, and therefore, the sheet faces the electrode to be inspected of the circuit board 1 to be inspected such as a printed wiring board.
  • the anisotropic conductive sheet is arranged and pressure is applied to achieve the contact conduction state, the circuit substrate 1 to be inspected is easily damaged.
  • the surface 63 of the anisotropic conductive sheet 22 that is in contact with the circuit board 1 to be inspected has It has a rough surface with irregularities.
  • the back surface 64 on the side in contact with the pitch conversion substrate 23 is a flat surface.
  • the chain formed by the conductive particles 62 is formed in a state of being dispersed in the surface direction of the sheet 22 irrespective of the positions of the convex portions and the concave portions of the rough surface on the surface 63 side of the anisotropic conductive sheet 22. .
  • the surface roughness of the surface 63 (rough surface) on the side that comes into contact with the circuit board 1 to be inspected is preferably 0.5-5 / ⁇ , and more preferably 11.
  • surface roughness refers to the center line roughness Ra according to JIS B0601. If the surface roughness is too small, it is difficult to sufficiently suppress the adhesiveness on this surface, and the anisotropic conductive sheet 22 may be displaced by being dragged by the circuit board 1 to be inspected during the inspection, The anisotropic conductive sheet 22 may adhere to the circuit board 1 to be inspected and may be separated from the pitch conversion board 23. On the other hand, if the surface roughness is excessive, it is difficult to make a stable electrical connection to the circuit board 1 to be inspected.
  • the surface roughness of the back surface 64 on the side in contact with the pitch conversion substrate 23 is preferably 0.3 m or less, more preferably 0.005 to 0.2 m, and still more preferably 0.01 to 0. 1 m.
  • the surface roughness of the insulating portion 54 (FIGS. 3 and 7) on the surface of the pitch conversion substrate 23 on the side in contact with the anisotropic conductive sheet 22 is preferably 0.2 m or less, more preferably 0.001. — 0.1 m, more preferably 0.01-1. 03 / zm. If the surface roughness on these surfaces is excessive, the adhesion between the anisotropic conductive sheet 22 and the pitch conversion substrate 23 may be insufficient. Therefore, it is difficult to prevent the anisotropic conductive sheet 22 from detaching from the pitch conversion substrate 23 during the electrical inspection.
  • the elastic polymer material constituting the base material of the first anisotropic conductive sheet 22 is not particularly limited as long as it is within the above range of the durometer hardness. From the viewpoint of electrical characteristics, it is preferable to use silicone rubber.
  • the curable polymer material preferably used for obtaining the elastic polymer material constituting the base material of the first anisotropic conductive sheet 22 for example, polybutadiene rubber, natural rubber, polyisoprene Conjugated rubbers such as rubber, styrene-butadiene copolymer rubber, acrylonitrile-tagene copolymer rubber, and hydrogenated products thereof, and block copolymers such as styrene-butadiene block copolymer rubber and styrene-isoprene block copolymer
  • the rubber include a combined rubber and a hydrogenated product thereof, chloroprene rubber, urethane rubber, polyester rubber, epichlorohydrin rubber, silicone rubber, ethylene propylene copolymer rubber, and ethylene propylene gen copolymer rubber.
  • the anisotropic conductive sheet it is preferable to use a material other than the conjugated-gen-based rubber. It is preferable to use rubber rubber.
  • the silicone rubber those obtained by crosslinking or condensing a liquid silicone rubber are preferable.
  • the liquid silicone rubber may be any of a condensation type, an addition type, and a type containing a butyl group and a hydroxyl group, which preferably have a viscosity of 10 5 poise or less at a strain rate of 10_1 sec. May be.
  • dimethyl silicone raw rubber, methyl vinyl silicone raw rubber, methyl phenol silicone raw rubber and the like can be mentioned.
  • the liquid silicone rubber containing a bullet group includes, for example, dimethyldichlorosilane or dimethyldialkoxysilane, and the presence of dimethylvinylchlorosilane or dimethylvinylalkoxysilane. It is obtained by performing hydrolysis and condensation reaction below! And then performing fractionation by repeated dissolution and precipitation.
  • a liquid silicone rubber containing a bull group at both ends can be used as a polymerization terminator by polymerizing a cyclic siloxane such as otatamethylcyclotetrasiloxane in the presence of a catalyst.
  • a cyclic siloxane such as otatamethylcyclotetrasiloxane
  • it can be obtained by using dimethyldibutylsiloxane and appropriately adjusting other reaction conditions (for example, the amount of cyclic siloxane and the amount of polymerization terminator).
  • alkalis such as hydroxymethyltetramethylammonium and hydroxybutylbutylphosphonium or a silanolate solution thereof can be used. Is, for example, 80-130 ° C.
  • Liquid silicone rubbers containing hydroxyl groups include, for example, dimethinoresichlorosilane or dimethinoresinolecoxysilane, and the presence of dimethylhydrochlorosilane or dimethylhydroalkoxysilane. It can be obtained by carrying out water splitting and condensation reaction of squid under the following conditions, and then performing fractionation by repeating dissolution and precipitation.
  • cyclic siloxane is polymerized in the presence of a catalyst in the presence of a catalyst, and as a polymerization terminator, for example, dimethinoaldehyde, chlorosilane, methinoresid, chlorosilane or dimethynolehide, loanoreoxysilane, or the like is used, and other reaction conditions (for example, cyclic siloxane And the amount of the polymerization terminator) are appropriately adjusted.
  • alkali such as tetramethylammonium hydroxide and n-butylphosphonium hydroxide or a silanolate solution thereof can be used. 0—130. C.
  • liquid silicone rubber one having a compression set of 150% or less at 150 ° C of the cured product should be used, so that the durability when repeatedly compressed in the thickness direction of the anisotropic conductive sheet is good.
  • This compression set is more preferably not more than 20%.
  • liquid silicone rubber with a tear strength of the cured product of 7 kNZm or more at 23 ° C is preferred because it gives good durability when repeatedly compressed in the thickness direction of the anisotropic conductive sheet.
  • This tear strength is more preferably 10 OkNZm or more.
  • the compression set and tear strength of the liquid silicone rubber cured product can be measured by a method based on JIS K 6249.
  • the molecular weight distribution index (referred to as the value of the ratio MwZMn between the weight average molecular weight Mw in terms of standard polystyrene and the number average molecular weight Mn in terms of standard polystyrene) is preferably 2 or less.
  • the polymer material for obtaining the elastic polymer material serving as the base material of the anisotropic conductive sheet 22 may contain a curing catalyst for curing the same.
  • a curing catalyst include an organic peroxide, a fatty acid azo compound, and a hydrosilylide catalyst.
  • organic peroxide used as a curing catalyst examples include benzoyl peroxide, bisdicyclobenzoyl peroxide, dicumyl peroxide, and di-tert-butyl peroxide.
  • fatty acid azo compound used as a curing catalyst examples include, for example, azobisisobutyl nitrile.
  • Examples of the catalyst that can be used as a catalyst for the hydrosilylation reaction include chloroplatinic acid and salts thereof, a siloxane complex containing a platinum unsaturated group, a complex of butylsiloxane and platinum, and a mixture of platinum and 1,3-dibutyl.
  • Examples include a complex with tetramethyldisiloxane, a complex of triorganophosphine or phosphite with platinum, a chelate of acetylacetate platinum, and a complex of cyclic gen and platinum.
  • the amount of the curing catalyst used is appropriately selected in consideration of the type of the polymer material to be added, the type of the curing catalyst, and other curing conditions. 3-15 parts by weight.
  • the polymer material for obtaining the elastic polymer material serving as the base material of the anisotropic conductive sheet 22 may include, if necessary, an ordinary inorganic powder such as silica powder, colloidal silica, air port gel silica, and alumina.
  • a filler can be included.
  • the amount of the inorganic filler to be used is not particularly limited. However, when used in a large amount, it is not preferable because the magnetic particles cannot sufficiently orient the conductive particles. Further, the viscosity of the sheet forming material is preferably in the range of 100,000-100,000 cp at a temperature of 25 ° C.
  • the conductive particles contained in the base material of the anisotropic conductive sheet 22 can be easily aligned in the thickness direction of the sheet by applying a magnetic field. Conductive particles exhibiting magnetism are used. As the magnetic conductive particles, the magnetic conductive particles can be easily moved by the action of a magnetic field in a sheet forming material for forming an anisotropic conductive sheet by a manufacturing method described below. Those having a saturation magnetization of at least 0.1 Wb / m 2 are preferred, more preferably at least 0.3 Wb / m 2 , and particularly preferably at least 0.5 WbZm 2 .
  • the saturation magnetization is 0.1 lWbZm 2 or more
  • the magnetic conductive particles can be surely moved by the action of a magnetic field in the manufacturing process to obtain a desired orientation state.
  • chains of magnetic conductive particles can be formed.
  • the magnetic conductive particles include particles of a metal exhibiting magnetism such as iron, nickel, and cobalt, particles of an alloy thereof, particles containing these metals, or particles containing these metals as core particles.
  • Composite particles having a highly conductive metal coated on the surface of the particles, or inorganic material particles such as nonmagnetic metal particles or glass beads or polymer particles are used as core particles, and the surface of the core particles is coated with a highly conductive metal. Examples include composite particles subjected to plating, or composite particles in which core particles are coated with both a conductive magnetic material such as ferrite and an intermetallic compound and a highly conductive metal.
  • highly conductive metal refers to a metal having a conductivity of 5 ⁇ 10 6 ⁇ — 1 !!! — 1 or more at 0 ° C.
  • gold As such a highly conductive metal, specifically, gold, silver, rhodium, platinum, chromium, and the like can be used. Among these, gold is chemically stable and has high conductivity. Preferably, it is used.
  • magnetic conductive particles composite particles or the like in which nickel particles are used as core particles and the surface thereof is plated with a highly conductive metal such as gold or silver are preferably used.
  • Means for coating the surface of the core particles with a highly conductive metal is not particularly limited. However, for example, an electroless plating method can be used.
  • the magnetic conductive particles preferably have a coefficient of variation of the number average particle diameter of 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less. is there.
  • the “variation coefficient of the number average particle diameter” is represented by the formula: ( ⁇ ZDn) X 100 (where ⁇ indicates the value of the standard deviation of the particle diameter, and Dn indicates the number average particle diameter of the particles. ).
  • Such magnetic conductive particles can be obtained by converting a metal material into particles by an ordinary method, or by preparing commercially available metal particles and performing a classification treatment on the particles.
  • the particle classification process can be performed by a classifier such as an air classifier or a sonic sieve.
  • the specific conditions of the classification process are appropriately set according to the number average particle diameter of the target conductive metal particles, the type of the classification device, and the like.
  • the coverage of the highly conductive metal on the particle surface (based on the surface area of the core particle)
  • the ratio of the area covered by the conductive metal is preferably 40% or more, more preferably 45% or more, and even more preferably 47 to 95%.
  • the coating amount of the highly conductive metal is preferably 0.5 to 50% by weight based on the core particles, more preferably 1 to 30% by weight, still more preferably 3 to 25% by weight, particularly preferably 3 to 25% by weight. Preferably it is 4-1 20% by weight.
  • the coating amount is preferably 2 to 30% by weight of the core particles, more preferably 3 to 20% by weight, and still more preferably 3. 5-17% by weight.
  • the specific shape of the magnetic conductive particles is not particularly limited, but is easily included in the polymer material for forming the elastic polymer material that is the base material of the anisotropic conductive sheet 22. Secondary particles in which spherical, star-shaped, or primary particles aggregate because they can be dispersed It is preferred that they are massive.
  • the magnetic conductive particles particles whose surfaces have been treated with a coupling agent such as a silane coupling agent may be used.
  • a coupling agent such as a silane coupling agent
  • the adhesion between the magnetic conductive particles and the elastic polymer base material is increased, and as a result, the resulting anisotropic conductive sheet 22 is used repeatedly. Endurance is increased.
  • the anisotropic conductive sheet 22 can contain an antistatic agent as long as the insulating property of the elastic polymer material is not impaired.
  • an antistatic agent in the anisotropic conductive sheet 22, the accumulation of electric charges on the sheet surface is prevented or suppressed, so that during the electrical inspection of the circuit board 1 to be inspected, the anisotropic conductive sheet 22 is used.
  • the anisotropic conductive sheet 22 can be manufactured, for example, as follows. First, a fluid molding material is prepared in which magnetic conductive particles are dispersed in a liquid polymer material that is cured to become an elastic polymer material. Further, as shown in FIG. 9, a pair of forming members 93a and 93b made of a non-magnetic sheet are prepared. A frame-shaped spacer having an opening having a shape conforming to the planar shape of the target anisotropic conductive sheet 22 on the molding surface of one molding member 93b, and having a thickness corresponding to the thickness. Place 94. The prepared molding material 95 is applied to the opening of the spacer 94, and the other molding member 93 a is arranged on the molding material 95 such that the molding surface thereof is in contact with the molding material 95.
  • a strong resin sheet such as polyimide resin, polyester resin, or acrylic resin can be used.
  • the molding surface is subjected to a surface roughening treatment according to the surface roughness of the surface 63 of the target anisotropic conductive sheet 22.
  • the concave portions 99a and the convex portions 99b are formed on the molding surface by a method such as a sand blast method or an etching method.
  • the other molding member 93b has a molding surface that is a flat surface.
  • the sheet thickness of the molded members 93a and 93b is preferably 50 to 500 ⁇ m, more preferably 75 to 500 ⁇ m. 300 / zm. If the thickness is less than 50 m, the strength required for a molded member may not be obtained. If the thickness exceeds 500 m, it may be difficult to apply a magnetic field of a desired strength to the molding material when arranging the conductive particles.
  • the molding material 93a, 93b sandwiching the molding material 95 is sandwiched by the pressure roll 91 and the support roll 92, so that the molding material has a predetermined thickness.
  • the conductive particles 62 are uniformly dispersed inside the molding material 95 as shown in FIG.
  • a pair of electromagnets 98a and 98b are arranged on the back side of the molding members 93a and 93b, and a parallel magnetic field is applied in the thickness direction of the molding material 95.
  • the conductive particles 62 dispersed in the molding material are oriented so as to be arranged in the thickness direction while maintaining the state of being dispersed in the plane direction, and a plurality of particles extending in the thickness direction are maintained.
  • the chains formed by the conductive particles 62 are dispersed in the plane direction.
  • the conductive particles are oriented in the elastic polymer base material so as to line up in the thickness direction and are dispersed in the plane direction.
  • Sheet 22 is manufactured.
  • the curing treatment of the molding material may be performed while the parallel magnetic field is applied, or may be performed after stopping the operation of the parallel magnetic field.
  • the strength of the parallel magnetic field applied to the molding material is preferably such that the average is 0.02-1.5 Tesla.
  • a permanent magnet may be used instead of an electromagnet.
  • a magnetic material such as alnico (Fe—A1-Ni—Co alloy) or ferrite is preferable because a parallel magnetic field strength in the above range can be obtained.
  • the curing treatment of the molding material is usually carried out by a heat treatment, depending on the material used.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of the polymer material and the like, the time required for the movement of the conductive particles, and the like.
  • an anisotropic conductive sheet which does not need to be subjected to surface roughening treatment on the cured anisotropic conductive sheet itself can be manufactured in a simple process, and further, post-treatment is performed. This can avoid adverse effects on the anisotropic conductive sheet.
  • a magnetic field having a uniform strength can be applied to the molding material in the plane direction.
  • a magnetic field having a higher intensity than the position of the concave portion is not formed at the position of the convex portion of the roughened molding surface, the chain of conductive particles is selectively formed at the position of the convex portion.
  • the chain of conductive particles that cannot be formed on the anisotropic conductive sheet is formed in a state of being dispersed in the surface direction of the anisotropic conductive sheet. Will be formed.
  • the second anisotropic conductive sheet 26 arranged on the relay pin unit 31 side of the pitch conversion board 23 has a large number of conductive particles 62 in an insulating elastic polymer material.
  • conductive path forming portions 72 are formed in the thickness direction and insulating portions 71 separating the conductive path forming portions 72 from each other.
  • the conductive particles 62 are non-uniformly dispersed only in the conductive path forming portion 72 in the plane direction.
  • the thickness W of the conductive path forming portion 72 is preferably 0.1 to 2 mm, more preferably 0.2 to 1.5.
  • the absorption of the pressing force by the inspection jig is reduced, and the effect of alleviating the impact on the circuit board side connector 21 is reduced. Therefore, the deterioration of the first anisotropic conductive sheet 22 is suppressed, and as a result, the number of times of replacement of the first anisotropic conductive sheet 22 in the repeated inspection of the circuit board 1 to be inspected is increased! ] And the efficiency of the inspection is reduced.
  • the thickness W exceeds 2 mm, the electrical resistance in the thickness direction tends to increase,
  • the thickness of the insulating portion 71 is preferably substantially the same as the thickness of the conductive path forming portion 72, and is preferably smaller than that. As shown in FIG. 6, the thickness of the insulating portion 71 is made smaller than the thickness of the conductive path forming portion 72 so that the conductive path forming portion 72 forms a protruding portion 73 protruding from the insulating portion 71.
  • the conductive path forming part 72 is easily deformed by pressure in the direction and absorbs the pressing force. Since the capacity is increased, the pressure of the inspection jig can be absorbed at the time of inspection, and the impact of 21 to the connector on the circuit board side can be reduced.
  • the number average particle diameter is preferably 5 to 200 ⁇ m, more preferably 5 to 150 ⁇ m. ⁇ m, more preferably 10-100 / zm.
  • the “number average particle size of the magnetic conductive particles” refers to a value measured by a laser diffraction scattering method.
  • the number average particle diameter of the magnetic conductive particles is 5 ⁇ m or more, the pressurized deformation of the conductive path forming portion of the anisotropic conductive sheet becomes easy.
  • the magnetic conductive particles are oriented by a magnetic field orientation treatment in the manufacturing process, the orientation of the magnetic conductive particles is easy.
  • the number average particle diameter of the magnetic conductive particles is 200 m or less, the elasticity of the conductive path forming portion 72 of the anisotropic conductive sheet is good, and the pressure deformation becomes easy.
  • the ratio W ZD to 22 is preferably 1.1 to 10.
  • the diameter of the conductive particles is equal to or larger than the diameter, the elasticity of the conductive path forming portion 72 decreases, and the ability to absorb the pressing force in the thickness direction decreases. For this reason, the effect of alleviating the impact on the circuit board side connector 21 at the time of inspection is reduced, so that the deterioration of the first anisotropic conductive sheet 22 is suppressed.
  • the number of times of replacement of the first anisotropic conductive sheet 22 increases!], And the efficiency of the inspection tends to decrease.
  • the chains are arranged to form a chain, and a large number of contact points between the conductive particles are present, the electrical resistance value tends to increase.
  • the elastic polymer substance as the base material of the conductive path forming section 72 preferably has a durometer hardness of 15 to 60, more preferably 20 to 50, still more preferably 25 to 25 as measured by a type A durometer. — 45.
  • the durometer hardness of the elastic polymer material is smaller than 15, the sheet shape changes early due to the large permanent strain that occurs when the sheet is compressed and deformed when pressed in the thickness direction. It tends to be difficult to make electrical connection during inspection. If the durometer hardness of the elastic polymer material is greater than 60, the deformation force when pressed in the thickness direction is reduced, and the ability to absorb the pressing force in the thickness direction is reduced. For this reason, it is difficult to suppress the deterioration of the first anisotropic conductive sheet 22, and as a result, the number of times of replacement of the first anisotropic conductive sheet 22 increases during the repeated inspection of the circuit board 1 to be inspected. As a result, the efficiency of inspection tends to decrease.
  • the elastic polymer material serving as the base material of the conductive path forming portion 72 is not particularly limited as long as it exhibits the above durometer hardness, but from the viewpoint of processability and electrical characteristics, silicone rubber is preferably used. Is preferred,.
  • the insulating portion 71 of the second anisotropic conductive sheet 26 is formed of an insulating material that does not substantially contain conductive particles.
  • an insulating material for example, an insulating polymer material, an inorganic material, a metal material whose surface has been subjected to insulating treatment, and the like can be used, and the same material as the elastic polymer used for the conductive path forming portion can be used. It is easy to produce when used.
  • an elastic polymer material is used as a material for the insulating portion, it is preferable to use one having a durometer hardness within the above range.
  • the magnetic conductive particles used in the first anisotropic conductive sheet 22 described above can be used.
  • the second anisotropic conductive sheet 26 can be manufactured, for example, by a method according to the method shown in FIGS. First, the entire shape is substantially flat, and the upper and lower dies correspond to each other.A magnetic field acts on the material layer filled in the molding space between the upper and lower dies. Meanwhile, an anisotropic conductive sheet molding die having a configuration capable of heating and curing the material layer is prepared.
  • both the upper die and the lower die are made of iron, On a substrate made of a ferromagnetic material such as nickel, a ferromagnetic portion made of iron, nickel, or the like for generating an intensity distribution in a magnetic field in a mold, and a nonmagnetic metal made of a nonmagnetic metal such as copper or resin.
  • the structure has a mosaic-like layer in which magnetic parts are alternately arranged so as to be adjacent to each other, and the ferromagnetic parts are arranged according to a pattern corresponding to a pattern of a conductive path forming part to be formed.
  • the molding surface of the upper die is flat, and the molding surface of the lower die has slight irregularities corresponding to the conductive path forming portions of the anisotropic conductive sheet to be formed.
  • a molding material containing conductive particles exhibiting magnetism in a polymer material that is cured to become an elastic polymer material is injected into the molding space of the anisotropic conductive sheet molding die, thereby forming a molding material layer.
  • a magnetic field having an intensity distribution in the surface direction is applied to the formed molding material layer by using the ferromagnetic portion and the nonmagnetic portion in each of the upper mold and the lower mold.
  • the conductive particles are gathered between the ferromagnetic part in the upper die and the ferromagnetic part in the lower die located immediately below, so that the conductive particles are arranged in the thickness direction.
  • an anisotropic conductive sheet having a configuration in which the plurality of columnar conductive path forming portions are insulated from each other by the insulating portion is manufactured.
  • the relay pin units 31a and 31b are provided with a large number of conductive pins 32a and 32b provided at a predetermined pitch in parallel so as to face up and down.
  • the relay pin units 31a and 31b are provided at both ends of the conductive pins 32a and 32b, and the insulating plates 34a and 31b are disposed on the side of the circuit board under test 1 that supports the conductive pins 32a and 32b. 34b, and two (a pair of) insulating plates, that is, insulating plates 35a and 35b arranged on the side opposite to the circuit board 1 to be inspected.
  • the conductive pin 32 also has a central portion 82 having a large diameter and ends la and 8 lb having a smaller diameter.
  • the pair of insulating plates 34 and 35 have through holes 83 into which the ends 81a and 81b of the conductive pins 32 are inserted. Then, the diameter of the through hole 83 is formed to be larger than the diameter of the end portion 81 of the conductive pin 32 and smaller than the diameter of the central portion 82, whereby the conductive pin 32 is held so as not to fall off. RU
  • the two insulating plates 34 and 35 are fixed by the support pins 33 so that their interval is longer than the length of the central portion 82 of the conductive pins 32, so that the conductive pins 32 can move up and down. Is held.
  • the length of the end portion 81 of the conductive pin 32 is formed to be longer than the thickness of the insulating plates 34, 35, so that the conductive pin 32 projects at least one force of the insulating plates 34, 35. I'm wearing
  • the relay pin unit has a large number of conductive pins with a constant pitch, for example, 2.54mm, 1.8mm, 1.27mm, 1.06mm, 0.8mm, 0.5mm, 0.5mm, 0.45mm , 0.3 mm and 7 mm are arranged on grid points with a pitch of 0.2 mm.
  • the pitch conversion board 23 is connected to the tester via the conductive pins 32. Side to be electrically connected.
  • the distance between insulating plate 34 and insulating plate 35 is not particularly limited, but is desirably 20 mm or more, preferably 40 mm or more.
  • the thickness of each of the insulating plate 34 and the insulating plate 35 is appropriately selected according to the type of a material constituting the insulating plate 34 and the insulating plate 35, and is preferably, for example, 110 mm.
  • the material of the insulating plate 34, 35, resistivity 1 X 10 10 ⁇ 'cm or more insulating materials such as polyimide ⁇ , polyester ⁇ , polyamides ⁇ , phenol ⁇ , polyacetal Resin, polybutylene terephthalate resin, polyethylene terephthalate resin, syndiotactic polystyrene resin, polyphenylene sulfide resin, polyether ethyl ketone resin, fluorine resin, polyether-tolyl resin, polyether sulfo Resin materials with high mechanical strength such as resin, polyarylate resin, polyamideimide resin, glass fiber reinforced epoxy resin, glass fiber reinforced polyester resin, glass fiber reinforced polyimide resin, glass Glass fiber composite resin materials such as fiber reinforced phenol resin and glass fiber reinforced fluorine resin, carbon fiber Carbon fiber composite resin, epoxy such as strong epoxy resin, carbon fiber reinforced polyester resin, carbon fiber reinforced polyimide resin, carbon fiber reinforced phenol resin, carbon fiber reinforced fluorine resin, etc.
  • insulating materials such as polyimide
  • Examples thereof include a composite resin material in which an inorganic material such as silica, alumina, and boron nitride is filled in a fat or phenol resin, or a composite resin material in which a mesh is included in an epoxy resin or a phenol resin. Further, a composite plate material formed by laminating a plurality of plate materials made of these materials may be used. [0140] (3) Tester side connector
  • the tester-side connectors 41a and 41b include third anisotropic conductive sheets 42a and 42b, connector boards 43a and 43b, and base plates 46a and 46b, as shown in FIGS. Puru.
  • the third anisotropic conductive sheets 42a and 42b those similar to the above-described second anisotropic conductive sheet 26 are used, and as shown in FIG. A conductive path forming portion formed by arranging the conductive particles in the thickness direction, and an insulating portion separating the conductive path forming portions.
  • the connector substrates 43a and 43b are formed using an insulating substrate as a base material, and the pin-side electrodes 45a and 45b are formed on the surface of the connector substrate 43 on the side of the relay pin unit 31 as shown in FIGS. 1 and 2. .
  • These pin Tsukuda J electrodes 45a and 45b have a constant pitch, f rows: 2.45mm, 1.8mm, 1.27mm, 1.Oomm, 0.8mm, 0.5mm, 0.5mm, 0.45mm, They are arranged on grid points with a constant pitch of 0. dmm to 7 and f to 0.2 mm, and the arrangement pitch is the same as the arrangement pitch of the conductive pins of the relay pin unit.
  • the pin-side electrodes 45a and 45b are electrically connected to the tester-side electrodes 44a and 44b by a wiring pattern formed on the surface of the insulating substrate and an internal wiring formed therein.
  • the electrodes 2 and 3 of the circuit board 1 to be inspected are the first anisotropic conductive sheets 22a and 22b, Outermost via conversion substrates 23a and 23b, second anisotropic conductive sheets 26a and 26b, conductive pins 32a and 32b, third anisotropic conductive sheets 42a and 42b, and connector boards 43a and 43b.
  • the pressure for pressing the circuit board 1 to be inspected by the upper first inspection jig 11a and the lower second inspection jig lib is, for example, 100 to 250 kgf.
  • FIG. 14 is a cross-sectional view showing another embodiment of the inspection apparatus of the present invention
  • FIG. 15 is a cross-sectional view showing a stacked state of the inspection apparatus of FIG. 14 at the time of inspection
  • FIG. FIG. 17 shows the surface of the conversion board on the side of the circuit board to be inspected.
  • the configuration of the inspection apparatus of this embodiment is basically the same as that of the above-described embodiment, but is more suitable for performing current measurement and voltage measurement on the electrode to be inspected.
  • the pitch conversion substrates 23a and 23b, the current terminal electrodes 27a and 27b, and the voltage terminal electrodes 28a and 28b The connection electrodes 25a, 25b are arranged, and the current pin side electrodes 47a, 47b and the voltage pin side electrodes 48a, 48b are arranged on the connector boards 43a, 43b.
  • connection electrode 25a of the pitch conversion board 23a is electrically connected to the pair of current terminal electrodes 27a and the voltage terminal electrodes 28a with respect to each of the electrodes 2 to be inspected of the circuit board 1 to be inspected. They are arranged to connect.
  • the connection electrodes 25b of the pitch conversion board 23b are arranged so that a pair of current terminal electrodes 27b and voltage terminal electrodes 28b are electrically connected to each of the electrodes 3 to be inspected of the circuit board 1 to be inspected. Being done.
  • the current pin-side electrode 47a of the connector board 43a is arranged so as to be electrically connected to the current terminal electrode 27a of the pitch conversion board 23a, and the voltage pin-side electrode 48a is connected to the pitch conversion board. It is arranged so as to be electrically connected to the voltage terminal electrode 28a of the substrate 23a.
  • the current pin electrode 47b of the connector board 43b is arranged so as to be electrically connected to the current terminal electrode 27b of the pitch conversion board 23b, and the voltage pin electrode 48b is connected to the pitch conversion board 23b. It is arranged so as to be electrically connected to the voltage terminal electrode 28b.
  • connection electrodes 25 are formed on one surface of the pitch conversion board 23, that is, on the side of the circuit board 1 to be inspected, as shown in FIG. 16, the electrode 2 to be inspected (electrode 3 to be inspected) of the circuit board 1 to be inspected is provided.
  • a plurality of connection electrodes 25 that are electrically connected are formed. These connection electrodes 25 are arranged so as to correspond to the pattern of the electrode 2 to be inspected (the electrode 3 to be inspected) of the circuit board 1 to be inspected.
  • connection electrode 25 is connected to a pair of mutual electrodes with respect to the electrode 2 to be inspected (the electrode 3 to be inspected) of the circuit board 1 to be inspected. It comprises a current terminal electrode 27 and a voltage terminal electrode 28 separated by a predetermined distance.
  • the shapes of the current terminal electrode 27 and the voltage terminal electrode 28 can be various shapes such as a rectangular shape, a circular shape, and a triangular shape. Also, these pair of current terminal electrodes 27 and the voltage It is desirable that the area occupied by the terminal electrodes 28 be arranged in substantially the same area as the area occupied by the electrodes 2 to be inspected (electrodes 3 to be inspected) of the circuit board 1 to be inspected, in order to reduce measurement errors. No.
  • the distance between the current terminal electrode 27 and the voltage terminal electrode 28 is preferably 10 m or more. If the separation distance is smaller than 10 m, the current flowing between the current terminal electrode 27 and the voltage terminal electrode 28 via the first anisotropic conductive sheets 22a and 22b becomes large, so that high accuracy is achieved. In some cases, it may be difficult to measure the electrical resistance, and it may not be possible to perform an accurate electrical characteristic test.
  • the upper limit of the separation distance between the current terminal electrode 27 and the voltage terminal electrode 28 depends on the dimensions and pitch of the electrodes 2 and 3 to be inspected on the circuit board 1 to be inspected, and the current terminal. It is determined by the dimensions of the electrode 27 and the voltage terminal electrode 28 and is not particularly limited, but is usually 500 m or less. If this separation distance is too large, both the current terminal electrode 27 and the voltage terminal electrode 28 should be properly connected to the electrode 2 to be inspected (electrode 3 to be inspected) of the circuit board 1 to be inspected having a small size. It becomes difficult to arrange.
  • the conductive pins 32 of the relay pin unit 31 are electrically connected.
  • a plurality of terminal electrodes 24 are formed. These terminal electrodes 24 have, for example, a pitch of 2.54 mm, 1.8 mm, 1.27 mm, top.06 mm, 0.8 mm, 0.omm, 0.omm, 0.45 mm, 0.3 mm or 0.3 mm.
  • the relay pins are arranged on grid points having a constant pitch of 2 mm, and the pitch is the same as the arrangement pitch of the conductive pins 32 of the relay pin unit 31.
  • the internal wiring 53 is electrically connected to the corresponding terminal electrode 24 of FIG.
  • a pin-side electrode 45 is formed on the surface of the connector board 43 on the side of the relay pin unit 31, as shown in FIG. 14, FIG. 15, and FIG.
  • These pin-side electrodes 45 are connected to the connection electrodes 25 of the pitch conversion substrate 23, as shown in FIG.
  • the current pin electrode 27 and the voltage pin electrode 48 are configured so as to be electrically connected to the current terminal electrode 27 and the voltage terminal electrode 28, respectively. It is arranged at a position corresponding to the conductive pin 32.
  • these pin-side electrodes 45 are arranged at a constant pitch, for example, 2.54 mm, 1.8 mm, 1.2 / mm, 1. Oomm, 0.8 mm, 0.5 mm, 0.5 mm, 0 mm They are arranged on grid points having a constant pitch of 45 mm, 7 mm or 0.2 mm, and 0.2 mm, and the arrangement pitch is the same as the arrangement pitch of the conductive pins 32 of the relay pin cut 31.
  • Each pin-side electrode 45 is electrically connected to the tester-side electrode 44 by a wiring pattern formed on the surface of the insulating substrate and an internal wiring formed therein.
  • the shape of the pin-side electrode 45 is not limited to the pin shape, and various modifications are possible, such as a flat electrode. is there.
  • the electrodes 2 and 3 of the circuit board 1 to be inspected are the first anisotropic conductive sheets 22a and 22b, Substrates 23a and 23b, second anisotropic conductive sheets 26a and 26b, conductive pins 32a and 32b, third anisotropic conductive sheets 42a and 42b, and connector boards 43a and 43b.
  • the base plates 46a and 46b are pressed by a tester's pressing mechanism at a specified pressure to be electrically connected to a tester (not shown), thereby measuring electrical resistance between electrodes of the circuit board 1 to be inspected. An electrical test is performed.
  • the electrode 2 to be inspected (electrode 3 to be inspected) of the circuit board 1 to be inspected is subjected to pitch conversion via the first anisotropic conductive sheet 22.
  • a pair of current terminal electrodes 27 and voltage terminal electrodes 28 on the circuit under test substrate 1 side of the substrate 23 are electrically connected.
  • the electrodes 2 and 3 to be inspected of the circuit board 1 to be inspected are connected via the current terminal electrodes 27a and 27b of the pitch conversion boards 23a and 23b.
  • the current measurement path I is configured.
  • the voltage terminal electrodes 28a and 28b of the pitch conversion boards 23a and 23b are connected to the electrodes 2 and 3 of the circuit board 1 to be inspected.
  • the voltage measurement path V is configured.
  • a voltage is applied to the voltage measurement path V to each of the electrodes 2 and 3 of the circuit board 1 to be inspected via the voltage terminal electrodes 28a and 28b of the pitch conversion boards 23a and 23b. While the voltage is being applied, the current flows through each of the electrodes 2 and 3 of the circuit board 1 to be inspected via the current measuring path I through the current terminal electrodes 27a and 27b of the pitch conversion boards 23 and 23b. By measuring the current, it is possible to perform a test for confirming the electrical characteristics of the circuit pattern under test 1 based on whether or not the wiring pattern has a predetermined performance.
  • the circuit to be inspected can be measured at a setting voltage lower than the setting voltage for determining whether the conduction resistance is good or not in the conventional inspection apparatus. Measure the conduction resistance of the circuit under test on board 1 stably. You can do it.
  • the electrodes 2 and 3 to be inspected of the circuit board 1 to be inspected are subjected to voltage measurement using, for example, a constant voltage device via the voltage terminal electrodes 28a and 28b of the pitch conversion substrates 23a and 23b. While applying a constant voltage to the path V, a current is supplied to the current measurement path I via the current terminal electrodes 27a and 27b of the pitch conversion boards 23a and 23b, and each test target circuit board 1 is tested. By measuring the current from the electrodes 2 and 3 with an ammeter, a test for confirming electrical characteristics as to whether or not the wiring pattern of the circuit board 1 to be inspected has predetermined performance is performed.
  • FIG. 20 is a cross-sectional view showing another embodiment of the circuit board inspection apparatus of the present invention
  • FIG. 21 is a cross-sectional view showing a stacked state at the time of inspection of the inspection apparatus of FIG. Note that components corresponding to the components in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the configuration of the inspection apparatus of this embodiment is basically the same as that of the above-described embodiment, except that the relay pin unit is more stable with respect to the electrode to be inspected of the circuit board to be inspected having a height variation.
  • the structure is such that a secure electrical contact can be ensured.
  • the relay pin unit 31 includes a large number of conductive pins 32a, It has 3 2b.
  • the relay pin units 31 are provided on both ends of the conductive pins 32a and 32b, and are disposed on the side of the circuit board under test 1 that supports the conductive pins 32a and 32b. And two insulating plates, second insulating plates 35a and 35b, disposed on the side opposite to the circuit board 1 to be inspected.
  • the conductive pin 32 is provided with a central portion 82 having a large diameter, and end portions 8 la and 8 lb having a smaller diameter than the central portion 82 and a force S.
  • the first insulating plate 34 and the second insulating plate 35 have through-holes into which the ends 81 of the conductive pins 32 are inserted.
  • a hole 83 is formed. Then, the diameter of the through hole 83 is formed to be larger than the diameter of the end portion 81 of the conductive pin 32 and smaller than the diameter of the central portion 82, so that the conductive pin 32 is held so as not to fall off! RU
  • the distance between the first insulating plate 34 and the second insulating plate 35 is longer than the length of the central portion 82 of the conductive pin 32 by the first support pin 33 and the second support pin 37.
  • the conductive pin 32 is held so as to move up and down.
  • the ends 81a and 81b of the conductive pins 32 are formed to be longer than the thicknesses of the insulating plates 34 and 35, whereby the conductive pins 32 protrude at least one of the forces of the insulating plates 34 and 35. It has become.
  • the relay pin unit has a large number of conductive pin forces at a constant pitch, for example, 2.54 mm, 1.8 mm, 1.27 mm, 1.06 mm, 0.8 mm, 0.5 mm, 0.5 mm, 0.45 mm , 0.3 mm and 7 mm are arranged on grid points with a pitch of 0.2 mm.
  • the pitch conversion board 23 is connected to the tester via the conductive pins 32. Side to be electrically connected.
  • the relay pin unit 31 has a space between the first insulating plates 34a and 34b and the second insulating plates 35a and 35b, Plates 36a and 36b are arranged. And, between the first insulating plates 34a, 34b and the intermediate holding plates 36a, 36b, first supporting pins 33a, 33b are arranged, whereby the first insulating plates 34a, 34b and The space between the intermediate holding plates 36a and 36b is fixed.
  • second supporting pins 37a, 37b are arranged, whereby the second insulating plates 35a, 35b are provided. And the intermediate holding plates 36a, 36b.
  • the material of the first support pin 33 and the second support pin 37 is not particularly limited, and is, for example, a metal such as brass or stainless steel.
  • the distance between the first insulating plate 34 and the intermediate holding plate 36 and the distance between the second insulating plate 35 and the intermediate holding plate 36 are not particularly limited, but will be described later.
  • the circuit board under test is formed by the elasticity of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35.
  • it is preferably 2 mm or more, more preferably 2.5 mm or more.
  • a first contact supporting position 38 A of the first support pin 33 with respect to the intermediate holding plate 36 and a second contacting position 38 A of the second support pin 37 with respect to the intermediate holding plate 36 is located at a different position on the intermediate holding plate projection plane A where the inspection apparatus is projected in the thickness direction of the intermediate holding plate 36 (in the direction from the upper side to the lower side in FIG. 20). ing.
  • the different positions are not particularly limited, but the first contact support position 38A and the second contact support position 38B are, as shown in FIG. Preferably, it is formed on the lattice and on the surface A.
  • one unit grid region R1 including four adjacent first contact support positions 38A is provided with one second The second contact support position 38B is arranged. Further, on the intermediate holding plate projection plane A, one first contact support position 38A is arranged in a unit lattice region R2 composed of four adjacent second contact support positions 38B. Have been.
  • the first contact support position 38A is indicated by a black circle
  • the second contact support position 38B is indicated by a white circle.
  • one second contact support position 38B is disposed at the center of the diagonal line Q1 of the unit lattice region R1 of the first contact support position 38A, and the second contact support position 38B Force at which one first contact support position 38A is arranged at the center of the diagonal Q2 of the unit lattice region R2 of the contact support position 38B.
  • the relative positions of these are not particularly limited. It is sufficient that the inspection device is arranged at a different position on the intermediate holding plate projection plane A where the inspection device is projected in the thickness direction of the intermediate holding plate. In other words, if they are not arranged in a lattice, they are not restricted by such a relative positional relationship. As described above, the inspection device 10 projects the intermediate holding plate projection surface A in the thickness direction of the intermediate holding plate. ⁇ on the top, are located in different locations! You only have to do it.
  • the distance between the first contact support positions 38A and the distance between the second contact support positions 38B that are adjacent to each other are not particularly limited. — 100 mm, more preferably 12-70 mm, particularly preferably 15-50 mm.
  • the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35 those having flexibility are used. The degree of flexibility required for the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35 depends on both ends of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35.
  • the same material as the insulating plate of the relay pin unit in the above-described embodiment can be used.
  • resistivity 1 X 1 ⁇ 10 ⁇ 'cm or more insulating materials are preferred.
  • each of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35 depends on the type of the material forming the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35.
  • the force is selected as appropriate, and is preferably 11 to 10 mm.
  • the electrodes 2 and 3 of the circuit board 1 to be inspected are the first anisotropic conductive sheets 22a and 22b.
  • the base plates 46a and 46b arranged on the outside are electrically connected to a tester (not shown) by pressing the base plates 46a and 46b with a predetermined pressure by a pressing mechanism of the tester. An electrical test such as resistance measurement is performed.
  • a tester not shown
  • the first contact support position 38A of the first support pin 33b with respect to the intermediate holding plate 36b and the second contact support position 38B of the second support pin 37b with the intermediate holding plate 36b are: Since the intermediate holding plate 36b is arranged at a different position on the intermediate holding plate projection plane A projected in the thickness direction of the intermediate holding plate 36b, a force acts in the vertical direction as shown by the arrow in FIG. As shown in FIG.
  • the circuit board 1 to be inspected is further pressurized between the first inspection jig 11a and the second inspection jig lib, the first In addition to the rubber elastic compression of the anisotropic conductive sheet 22b, the second anisotropic conductive sheet 26b, and the third anisotropic conductive sheet 42b, the first insulating plate 34b of the relay pin unit 31b, Due to the panel elasticity of the second insulating plate 35b and the intermediate holding plate 36b disposed between the first insulating plate 34b and the second insulating plate 35b, the circuit board 1 Variations in height of the test electrodes 3, for example, can be a solder ball electrodes with respect to height variation, by dispersing pressure concentration, to avoid local stress concentration.
  • the intermediate holding plate 36b is connected to the second supporting center 38a of the first support pin 33b with the intermediate holding plate 36b. While bending in the direction of the insulating plate 35b (see the portion E surrounded by the dashed line in FIG. 27), the second support pin 37b is held at the intermediate contact support position 38B with the intermediate holding plate 36b. The plate 36b is bent in the direction of the first insulating plate 34b (see a portion D surrounded by a dashed line in FIG. 27).
  • the “radius” and the “radial direction” refer to the radius of the intermediate holding plate 36 protruding in a direction in which the intermediate holding plate 36 becomes convex, and the protruding direction thereof.
  • the intermediate holding plate 36b is deflected in opposite directions about the first contact support position 38A and the second contact support position 38B, the first inspection jig is provided.
  • the circuit board 1 to be inspected is further pressurized between 11a and the second inspection jig lib, the panel elasticity of the intermediate holding plate 36b is further exerted.
  • the height of the conductive pin 32b is absorbed by the compression of the protrusion of the conductive path forming portion of the second anisotropic conductive sheet 26b. Is applied to the first insulating plate 34b, which cannot be absorbed by the compression of the protruding portion.As a result, as shown by the portion C surrounded by the dashed line in FIG.
  • the second insulating plate 35b also deflects in a direction opposite to each other to some extent at the contact position with the first support pin 33b and the second support pin 37b, so that the first inspection jig 11a and the second When the circuit board 1 to be inspected is further pressed between the inspection jigs 11b, the panel elasticity of the first insulating plate 34b and the second insulating plate 35b is further exerted. .
  • FIG. 28 is a cross-sectional view similar to FIG. 24 showing another embodiment of the inspection apparatus of the present invention (only the second inspection jig is shown for convenience), and FIG. It is an expanded sectional view of a unit. Note that components corresponding to the components in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a plurality of (three in this embodiment) intermediate holding plates 36b are arranged between the first insulating plate 34b and the second insulating plate 35b with a predetermined interval therebetween.
  • holding plate support pins 39b are arranged between the adjacent intermediate holding plates 36b.
  • a contact supporting position of the holding plate support pin 39b that also contacts the one-side force against the intermediate holding plate 36b with the intermediate holding plate 36b is in the thickness direction of the intermediate holding plate 36b. It is necessary to be arranged at different positions on the projection plane of the intermediate holding plate projected on the surface.
  • the holding plate support pins 39b that are in one-side contact with the intermediate holding plate 36b are in contact with the intermediate holding plate 36b.
  • the projected intermediate holding plate is located at a different position on the projection plane.
  • the holding plate support pins 39b that also come into contact with the one-side force against the intermediate holding plate 36b abut on the intermediate holding plate 36b.
  • the support position 39A and the contact support position 38A of the first support pin 33b, which also abuts the other surface side force on the intermediate holding plate 36b, against the intermediate holding plate 36b are projected in the thickness direction of the intermediate holding plate 36b. It is arranged at a different position from the projection surface of the intermediate holding plate.
  • the holding support positions 39A of the holding plate support pins 39b abutting against the intermediate holding plate 36b from one side with respect to the intermediate holding plate 36b.
  • the supporting position 39A of the holding plate support pin 39b against the intermediate holding plate 36b which also contacts the other surface side force against the intermediate holding plate 36b, projected in the thickness direction of the intermediate holding plate 36b. It is located at a different position from the surface.
  • the contact supporting position of the holding plate support pin 39b that contacts the intermediate holding plate 36b from one side with respect to the intermediate holding plate 36b is arranged at different positions on the plate projection plane.
  • the plurality of intermediate holding plates 36b further exerts the spring property, and the height variation of the electrode 3 to be inspected of the circuit board 1 to be inspected is reduced.
  • the local stress concentration can be further avoided, the local damage of the first anisotropic conductive sheet 22b is suppressed, and as a result, the first anisotropic conductive sheet Since the durability of repeated use of 22b is improved, the number of times of replacement of the first anisotropic conductive sheet 22b is reduced, and the inspection work efficiency is improved.
  • the number of the intermediate holding plates 36 is not particularly limited as long as it is plural.
  • a support pin 49 may be arranged between 43 and the base plate 46. These support pins 49 have the same functions as the first support pins 33 and the second support pins 37 (the first support pins 33, the second support pins 37, and the holding plate support pins 39 in FIG. 28). And spread the surface pressure It is also possible to give the action to make it.
  • FIG. 30 shows a partially enlarged cross-sectional view of such an inspection apparatus.
  • FIG. 30 shows the drawing with the support pins 33 and 37 omitted for convenience of explanation.
  • a pair of terminals of the pitch conversion board 23 on the side opposite to the circuit board 1 to be inspected are obtained from a pair of the current terminal electrode 27 and the voltage terminal electrode 28 on the circuit board 1 to be inspected.
  • the electrode 24 the second anisotropic conductive sheet 26, the conductive pin 32 of the relay pin unit 31, and the third anisotropic conductive sheet 42, the current terminal electrode 27 of the pitch conversion board 23 is connected to the connector. It is electrically connected to the current pin side electrode 47 of the board 43 and the voltage terminal electrode 28 of the pitch conversion board 23 is electrically connected to the voltage terminal electrode 48 of the connector board 43. It has become.
  • a current measurement path I is formed for each of the electrodes 2 and 3 of the circuit board 1 to be inspected via the current terminal electrodes 27a and 27b of the pitch conversion boards 23a and 23b.
  • the voltage measurement path V is connected to each of the electrodes 2 and 3 of the circuit board 1 to be inspected via the voltage terminal electrodes 28a and 28b of the pitch conversion boards 23a and 23b. Will be composed.
  • a voltage is applied to the voltage measurement path V to each of the electrodes 2 and 3 of the circuit board 1 to be inspected via the voltage terminal electrodes 28a and 28b of the pitch conversion boards 23a and 23b. While the voltage is being applied, the current flows through each of the electrodes 2 and 3 of the circuit board 1 to be inspected via the current measuring path I through the current terminal electrodes 27a and 27b of the pitch conversion boards 23 and 23b. By measuring the current, it is possible to perform a test for confirming the electrical characteristics of the circuit pattern under test 1 based on whether or not the wiring pattern has a predetermined performance.
  • the circuit substrate 1 to be inspected may be a semiconductor integrated circuit device such as a knock IC, MCM, or CSP, or a circuit device formed on a wafer, other than the printed circuit board.
  • the printed circuit board may be not only a double-sided printed circuit board but also a single-sided printed circuit board.
  • the first inspection jig 11a and the second inspection jig lib may be different as long as the materials used, the member structures, and the like do not necessarily need to be the same. Also, the first inspection jig 1 la and the second inspection jig 1 lb do not necessarily have to be arranged vertically. Further, the tester side connector may be configured by laminating a circuit board such as a connector board and a plurality of anisotropic conductive sheets.
  • Diameter of the electrode to be inspected on the top side 0.3 mm
  • Diameter of the electrode to be inspected on the bottom side 0.3 mm
  • a circuit board inspection device for inspecting the above-mentioned evaluation circuit board, which is compatible with the inspection section of the rail transport type circuit board automatic inspection machine (manufactured by Nidec-Read Corporation, product name: STARREC V5) did.
  • the following first anisotropic conductive sheet was prepared in which conductive particles were arranged in the thickness direction and uniformly dispersed in the plane direction.
  • Conductive particles Material: nickel-plated nickel particles, average particle diameter: 20 m, content: 18% by volume
  • Elastic polymer material Material; silicone rubber, hardness; 40
  • Numerically controlled drilling is performed on a laminated material (Matsushita Electric Works, product name: R-1766) in which a thin metal layer made of copper with a thickness of 18 m is formed on both sides of an insulating substrate made of glass fiber reinforced epoxy resin.
  • the apparatus formed a total of 7312 circular through-holes each having a diameter of 0.2 mm penetrating in the thickness direction of the laminated material.
  • a copper plating layer was formed on the inner wall of each through-hole by performing an electroless plating process on the laminated material in which the through-holes were formed using an EDTA-type copper plating solution.
  • electrolytic copper plating using a copper sulfate plating solution, a cylindrical via having a thickness of about 10 m is used to electrically connect the thin metal layers on the surface of the laminated material to each other in each through hole. A hole was formed.
  • a 25 ⁇ m-thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) was laminated on the thin metal layer on the surface of the laminated material to form a resist layer.
  • a protective seal was placed on the other side of the thin metal layer.
  • a photomask film is placed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then developed to obtain a resist pattern for etching. Was formed.
  • 7312 connection electrodes having a diameter of 200 m, and each connection electrode and via hole were electrically formed on the surface of the insulating substrate.
  • a pattern wiring portion having a connecting line width of 100 ⁇ m was formed, and then the resist pattern was removed.
  • a 25 ⁇ m-thick dry film solder resist (manufactured by Hitachi Chemical, product name: SR-2300G) is laminated on the surface of the insulating substrate on which the connection electrodes and the pattern wiring section are formed to form an insulating layer.
  • a photomask film is placed on the insulating layer, and the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then subjected to development processing. 7312 openings with a diameter of 200 m were formed to expose the electrodes.
  • the protective seal on the thin metal layer on the other side of the laminated material was removed, and a 25 m thick dry film resist (manufactured by Tokyo Ohka, product name: FP — 225) was laminated to form a resist layer.
  • a photomask film is disposed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then subjected to a development treatment to obtain a laminated material.
  • a resist pattern for etching was formed on the thin metal layer.
  • 7312 terminal electrodes and a pattern wiring portion for electrically connecting each terminal electrode to the via hole were formed on the back surface of the insulating substrate, and the resist pattern was removed.
  • a 38 ⁇ m-thick dry film solder resist (-Tigo Morton, product name: ComfoMask 2015) was laminated on the back surface of the insulating substrate on which the terminal electrodes and the pattern wiring portions were formed.
  • An insulating layer is formed, a photomask film is disposed on the insulating layer, and then the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then developed. Then, 7312 openings of 0.4 mm in diameter were formed to expose the electrodes.
  • the pitch conversion substrate 23a for the first inspection jig 11a was manufactured.
  • This pitch conversion substrate 23a has a vertical and horizontal dimension of 120 mm ⁇ 160 mm, a thickness of 0.5 mm, Surface of the insulation layer of the connection electrode The diameter of the exposed part is about 300 m, the height of the connection electrode protruding from the surface of the insulation layer is about 25 m, the minimum arrangement pitch of the connection electrodes is 0.4 mm, and the diameter of the terminal electrode is The arrangement pitch of the terminal electrodes was 0.4 mm, and the surface roughness of the insulating layer on the side where the connection electrodes were formed was 0.02 m.
  • a pitch conversion substrate 23b for a second inspection jig lib having 3784 connection electrodes on the front surface and 3784 terminal electrodes on the back surface was produced.
  • the pitch conversion substrate 23b has a vertical and horizontal dimension of 120 mm ⁇ 160 mm, a thickness of 0.5 mm, a diameter of a portion of the connection electrode exposed on the surface of the insulating layer is about 300 / ⁇ , and a surface force of the insulating layer on the connection electrode.
  • the projecting height is about 25 m
  • the minimum arrangement pitch of the connection electrodes is 0.4 mm
  • the diameter of the terminal electrodes is 0.4 mm
  • the arrangement pitch of the terminal electrodes is 0.75 mm
  • the surface roughness of the insulating layer on the (face) side is 0.02 m.
  • the first anisotropic conductive sheet 22 is disposed on the front side of the pitch conversion substrate 23, and on the back side, a large number of conductive path forming portions extending in the thickness direction and insulating portions for insulating these from each other.
  • the circuit board side connector 21 was formed by disposing a second anisotropic conductive sheet 26 made of an unevenly distributed anisotropic conductive sheet having a conductive path forming portion protruding on one surface.
  • the second anisotropic conductive sheet 26 disposed between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 6, and specifically has the following configuration. used.
  • Thickness of conductive path forming part 0.6mm
  • Projection height of conductive path forming part 0.05 mm
  • Conductive particles Material: nickel-plated nickel particles, average particle size; 35; ⁇ ⁇ , content of conductive particles in conductive path forming portion; 30% by volume
  • Elastic polymer material Material; silicone rubber, hardness; 30
  • the distance L1 between the first insulating plate 34 and the intermediate holding plate 36 is 36.3 mm
  • the distance L2 between the second insulating plate 35 and the intermediate holding plate 36 is 3 mm.
  • the first support pin 33 (diameter 2 mm, length 36.3 mm) and the second support pin 37 (diameter 2 mm, length 3 mm) are fixed and supported, and the first insulating plate 34 and the The conductive pin 32 having the following constitutional force was arranged between the insulating plate 35 and the through-hole 83 (0.4 mm in diameter) so as to be movable.
  • central part 82 outer diameter 0.45mm, total length 41mm
  • FIG. 23 shows a first contact support position 38A of the first support pin 33 with respect to the intermediate holding plate 36 and a second contact support position 38B of the second support pin 37 with the intermediate holding plate 36.
  • the distance between the adjacent first contact support positions 38A and the distance between the second contact support positions 38B were 17.5 mm.
  • the tester side connector 41 was composed of a third anisotropic conductive sheet 42, a connector board 43, and a base plate 46.
  • the third anisotropic conductive sheet 42 used was the same as the second anisotropic conductive sheet 26 described above.
  • the fabricated inspection device is set in the inspection section of the rSTARREC V5J rail transfer type circuit board automatic inspection machine, and the evaluation circuit board 1 is set in the inspection device, and the rail transfer type circuit board automatic inspection machine “STARREC V5J Press pressure within the range of 100-210kgf And stepwisely change the resistance value when a current of 1 mA is applied to the electrode under test of the circuit board for evaluation 1, 10 times for each press pressure condition. did.
  • Inspection points having a measured conduction resistance value of 100 ⁇ or more are determined to have poor conduction, and the percentage of NG inspection points in the total inspection points (hereinafter, “NG inspection points”). Inspection point ratio ”) was calculated, and the lowest press pressure at which the NG inspection point ratio was 0.01% or less was determined as the lowest press pressure.
  • the press pressure related to the measurement is released to return the inspection device to a non-pressurized state, and the next measurement of the conduction resistance value is performed as follows. Again, this was performed by applying a predetermined amount of press pressure.
  • the number of NG test points was 7312 for the upper surface of the circuit board 1 for evaluation and 3784 for the lower surface of the circuit board 1 for evaluation, and the measurement was performed 10 times under each press pressure condition.
  • the percentage of NG inspection points in the 110960 inspection points calculated by the formula (7312 + 3784) X 10 110960 is shown.
  • the minimum press pressure is small means that the circuit board to be inspected can be electrically inspected with a low press pressure.
  • the pressure during inspection can be set low, deterioration of the circuit board to be inspected, the anisotropic conductive sheet, and the inspection circuit board due to the pressure during inspection can be suppressed. Since it is possible to use components with low durability and strength as constituent members, the structure of the inspection device can be made small and compact, and as a result, the durability of the inspection device can be improved and the production of the inspection device can be improved. Preferred because the cost savings of construction are achieved.
  • the created inspection device is set in the inspection section of the rail transport type automatic circuit board inspection machine rSTARREC V5J, and the evaluation circuit board 1 is set for the inspection device.
  • the press pressure condition is set to 130 kgf and pressurized a predetermined number of times, and then a current of 1 mA is applied to the test electrode under the condition of a press pressure of 130 kgf for the test electrode of the evaluation circuit board 1.
  • Measure the conduction resistance 10 times pressurize it a predetermined number of times, and measure the conduction resistance 10 times in the same manner. Repeated.
  • the anisotropic conductive sheet of the inspection device was replaced with a new one, and a predetermined number of pressurizations were performed under the same conditions as above except that the press pressure condition was changed to 150 kgf.
  • the NG inspection point ratio was calculated by the same method as above, except that was changed to 150 kgf.
  • the number of NG test points is 73 12 for the upper surface of the circuit board 1 to be inspected and 3784 for the lower surface of the circuit board 1 for evaluation.
  • the percentage of the NG inspection points in the 110,960 inspection points calculated by the formula (7312 + 3784) X 10 110960 is shown.
  • the inspection apparatus requires that the percentage of NG inspection points be 0.01% or less for practical use. If the percentage of NG inspection points exceeds 0.01%, non-defective products In some cases, an erroneous inspection result indicating that the circuit board to be inspected is defective may be obtained, which may make it impossible to perform an electrical inspection of the circuit board with high reliability.
  • Table 1 shows the measurement results of the minimum press, and Table 2 shows the measurement results of the durability of the anisotropic conductive sheet.
  • the relay pin units 31a and 31b of FIG. 1 were used instead of the relay pin unit 31 described above. That is, a large number (8000 pins) of conductive pins 32a and 32b are arranged on a grid point at a constant pitch (2.54 mm pitch), and insulating plates 34a and 34b that support the conductive pins 32a and 32b so as to be movable up and down.
  • An inspection apparatus was manufactured having the same configuration as that of Example 1 except that a relay pin unit composed of 35a and 35b was used.
  • Table 1 shows the measurement results of the minimum press
  • Table 2 shows the measurement results of the durability of the anisotropic conductive sheet.
  • the surface roughness was measured using a three-dimensional surface structure analysis microscope ⁇ New View 200 '' manufactured by Zigo, and the center average roughness Ra according to JIS B0601 was cut off 0.8 mm, measurement length 0.25 mm This is a value measured under the conditions.
  • Diameter of the electrode to be inspected on the top side 0.3 mm
  • Diameter of the electrode to be inspected on the bottom side 0.3 mm
  • Circuit board inspection equipment for inspecting the above-mentioned circuit board for evaluation, which is compatible with the inspection section of the rail transfer type circuit board automatic inspection machine (manufactured by Nidec-Read Corporation, product name: STARREC V5) (Fig. 1).
  • Liquid A and liquid B of the two-part addition type liquid silicone rubber were mixed in equal proportions. 100 parts by weight of conductive particles having an average particle diameter of 20 ⁇ m were added to 100 parts by weight of this mixture, mixed, and then subjected to defoaming treatment under reduced pressure to prepare a molding material.
  • the viscosity of liquid A and liquid B is 500P each, and the compression set of the cured product at 150 ° C (by the measuring method in accordance with JIS K 6249) is as follows.
  • the one of NZm was used.
  • nickel particles were used as core particles, and the core particles were subjected to electroless gold plating (average coating amount: amount of 5% by weight of the core particles).
  • One molding member has a rectangular opening of 120mm x 200mm on the molding surface, and the thickness is
  • a 0.1 mm thick polyester resin sheet made by Toray Industries, “Mattle Mirror S10” was used, and its non-glossy surface (surface roughness: 1 m) was used as the molding surface.
  • the other molded member was a polyester resin sheet with a thickness of 0.1 mm (manufactured by Toray Industries, Inc., product name: “Matsutorumirror S10”), and its glossy surface (surface roughness: 0.04 / zm) was molded. Used as
  • An electromagnet is placed on the back of each molded member, and a curing process is performed on the molding material at 120 ° C for 30 minutes while applying a 0.3T parallel magnetic field to the molding material in the thickness direction. Then, a rectangular anisotropic conductive sheet having a thickness of 0.1 mm was produced.
  • anisotropic conductive sheet (a) The obtained anisotropic conductive sheet had a surface roughness on one side of 1.4 ⁇ m and a surface roughness on the other side of 0.12 m, and the proportion of the conductive particles was a volume fraction. The rate was 12%.
  • anisotropic conductive elastomer sheet This anisotropic conductive elastomer sheet is referred to as “anisotropic conductive sheet (a)”.
  • (2) Pitch conversion board 23 Numerically controlled drilling is performed on a laminated material (Matsushita Electric Works, product name: R-1766) in which a thin metal layer made of copper with a thickness of 18 m is formed on both sides of an insulating substrate made of glass fiber reinforced epoxy resin.
  • the apparatus formed a total of 7312 circular through-holes each having a diameter of 0.2 mm penetrating in the thickness direction of the laminated material.
  • an electroless plating process is performed on the laminated material in which the through holes are formed by using an EDTA type copper plating solution to form a copper plating layer on the inner wall of each through hole, and further, a copper sulfate plating solution is formed.
  • electrolytic copper plating By performing electrolytic copper plating using, a cylindrical via hole having a thickness of about 10 m was formed in each through hole to electrically connect the thin metal layers on the surface of the laminated material to each other.
  • a 25 ⁇ m thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) was laminated on the thin metal layer on the surface of the laminated material to form a resist layer.
  • a protective seal was placed on the other side of the thin metal layer.
  • a photomask film is placed on this resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then developed to form a resist pattern for etching. Formed.
  • 7312 connection electrodes having a diameter of 200 m, and each connection electrode and via hole were electrically formed on the surface of the insulating substrate.
  • a pattern wiring portion having a connecting line width of 100 ⁇ m was formed, and then the resist pattern was removed.
  • a 25 ⁇ m-thick dry film solder resist (manufactured by Hitachi Chemical, product name: SR-2300G) was laminated on the surface of the insulating substrate on which the connection electrodes and the pattern wiring portion were formed to form an insulating layer.
  • a photomask film is placed on the insulating layer, and the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then subjected to development processing. 7312 openings with a diameter of 200 m were formed to expose the electrodes.
  • a 38 ⁇ m-thick dry film solder resist (manufactured by Tigo Morton, product name: ConfoMask 2015) was laminated on the back surface of the insulating substrate on which the terminal electrodes and the pattern wiring portions were formed.
  • An insulating layer is formed, a photomask film is disposed on the insulating layer, and then the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then developed. Then, 7312 openings of 0.4 mm in diameter were formed to expose the electrodes.
  • the pitch conversion substrate 23a was manufactured.
  • the pitch conversion board has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, a diameter of the portion of the connection electrode exposed from the insulating layer surface is about 300 ⁇ m, and a height of the connection electrode protruding from the insulating layer surface.
  • the minimum arrangement pitch of the connection electrodes is 0.4 mm
  • the diameter of the terminal electrodes is 0.4 mm
  • the arrangement pitch of the terminal electrodes is 0.75 mm
  • the insulating layer on the side where the connection electrodes are formed Had a surface roughness of 0.02 ⁇ m.
  • the anisotropic conductive sheet (a) described above is arranged on the front surface side of the pitch conversion substrate, and on the back surface side, a number of conductive path forming portions extending in the thickness direction, and an insulating portion for insulating these from each other.
  • the circuit board side connector 21a on the upper side is formed by disposing an unevenly distributed anisotropic conductive sheet having a conductive path forming portion protruding on one surface.
  • the second anisotropic conductive sheet 26 disposed between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 6, and specifically has the following configuration. used.
  • Thickness of conductive path forming part 0.6mm
  • Conductive particles Material: nickel-plated nickel particles, average particle size; 35; ⁇ ⁇ , content of conductive particles in conductive path forming portion; 30% by volume
  • Elastic polymer material Material; silicone rubber, hardness; 30
  • a pitch conversion substrate 23b for a lower inspection jig having 3784 connection electrodes on the front surface and 3784 terminal electrodes on the back surface was manufactured.
  • the pitch conversion board has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, a diameter of a portion of the connection electrode exposed on the insulating layer surface is about 300 m, and a height of the connection electrode protruding from the insulating layer surface.
  • connection electrodes Is about 25 m
  • the minimum arrangement pitch of the connection electrodes is 0.4 mm
  • the diameter of the terminal electrodes is 0.4 mm
  • the arrangement pitch of the terminal electrodes is 0.75 mm
  • the surface of the insulating layer on the side where the connection electrodes are formed The roughness was 0.02 m.
  • the anisotropic conductive sheet (a) is disposed on the front side of the pitch conversion substrate, and on the back side, a number of conductive path forming portions extending in the thickness direction and an insulating portion for insulating these from each other
  • the lower circuit board side connector was 2 lb.
  • an inspection apparatus was configured by arranging the relay pin units 31a and 31b and the tester side connectors 41a and 41b as shown in FIG.
  • the fabricated inspection device is set in the inspection section of the rail transport type circuit board automatic inspection machine rSTARREC V5J, and the evaluation circuit board 1 is set in the inspection device.
  • the press pressure of the circuit board for evaluation 1 was changed stepwise within the range of 100-250 kgf, 10 times for each press pressure condition. With respect to the electrode to be inspected, the conduction resistance when a current of 1 mA was applied to the electrode for inspection was measured.
  • Inspection points having a measured conduction resistance value of 100 ⁇ or more are determined to have poor conduction, and the percentage of NG inspection points in the total inspection points (hereinafter, “NG inspection points”). Inspection point ratio ”) was calculated, and the lowest press pressure at which the NG inspection point ratio was 0.01% or less was determined as the lowest press pressure.
  • the press pressure related to the measurement is released to return the inspection device to a non-pressurized state, and the next measurement of the conduction resistance value is performed as follows. Again, this was performed by applying a predetermined amount of press pressure.
  • the number of NG test points was 7312 on the upper surface of the circuit board 1 for evaluation and 3784 on the lower surface of the circuit board 1 for evaluation, and the measurement was performed 10 times under each press pressure condition.
  • the percentage of NG inspection points in the 110960 inspection points calculated by the formula (7312 + 3784) X 10 110960 is shown. Table 3 shows the measurement results.
  • the above-described circuit board for evaluation was transported and set in an inspection apparatus, and pressed against the circuit board for evaluation with a press load of 150 kgf. In this state, the electric resistance was measured when a current of 1 mA was applied to the evaluation circuit board electrically connected to the connection electrodes of the two connectors, and then the pressure on the evaluation circuit board was released. . After performing this operation 10 times, the circuit board for evaluation was transported from the inspection area of the inspection apparatus.
  • an inspection device was configured using the following anisotropic conductive elastomer sheet (b) instead of the anisotropic conductive elastomer sheet Ha), and the same as in Example 3 was performed.
  • a connection stability test and a peelability test were performed. Table 3 shows the measurement results. After forming a frame-shaped spacer having a rectangular opening of 120 mm x 200 mm and a thickness of 0.08 mm on the molding surface of one molded member, the same as in Example 1 in the opening of the spacer.
  • the molding material prepared in the same manner was applied, and the other molding member was arranged on this molding material such that the molding surface was in contact with the molding material.
  • Both molded members were made of a 0.1 mm thick polyester resin sheet (made by Toray Sene Co., product name "Mattle Mirror S10”), and its glossy surface (surface roughness: 0.04 m) was molded.
  • a molding material layer having a thickness of 0.08 mm was formed by pressing the molding material between the molding members using a pressure roll device including a pressure roll and a support roll. An electromagnet is placed on the back side of each molded member, and the molding material layer is cured at 120 ° C for 30 minutes while applying a 0.3T parallel magnetic field to the molding material layer in the thickness direction. Then, a rectangular anisotropic conductive sheet having a thickness of 0.1 mm was produced.
  • the obtained anisotropic conductive sheet (b) had a surface roughness of 0.1 m on one surface and a surface roughness of 0.12 m on the other surface.
  • the volume fraction was 12%.
  • the surface roughness was measured using a three-dimensional surface structure analysis microscope ⁇ New View 200 '' manufactured by Zigo, and the center average roughness Ra according to JIS B0601 was cut off 0.8 mm, measurement length 0.25 mm This is a value measured under the conditions.
  • Diameter of the electrode to be inspected on the bottom side 0.3 mm
  • a circuit board inspection device for inspecting the above-mentioned evaluation circuit board, which is compatible with the inspection section of the rail transport type circuit board automatic inspection machine (manufactured by Nidec-Read Corporation, product name: STARREC V5) did.
  • Liquid A and liquid B of the two-part addition type liquid silicone rubber were mixed in equal proportions. 100 parts by weight of conductive particles having an average particle diameter of 20 ⁇ m were added to 100 parts by weight of this mixture, mixed, and then subjected to defoaming treatment under reduced pressure to prepare a molding material.
  • the viscosity of liquid A and liquid B is 500P each, and the cured product has a compression set at 150 ° C (by the measuring method in accordance with JIS K 6249) of 6% and a tear at 23 ° C.
  • the strength (measured according to JIS K 6249) was 25 kNZm.
  • nickel particles were used as core particles, and the core particles were subjected to electroless gold plating (average coating amount: amount of 5% by weight of the core particles).
  • the prepared molding material is placed in the opening of the spacer. It was applied, and the other molding member was arranged on this molding material so that its molding surface was in contact with the molding material.
  • a polyester resin sheet having a thickness of 0.1 mm (made by Toray Dentsu Co., Ltd., product name: "Mattle Mirror S10”) was used with its non-glossy surface (surface roughness: 1 m) as the molding surface.
  • the other molded member used was a polyester resin sheet with a thickness of 0.1 mm (manufactured by Toray Industries, Inc., product name: “Pantle Miller S10”) with a glossy surface (surface roughness of 0.04 / zm). was used as the molding surface.
  • a pressure roll device composed of a pressure roll and a support roll, the molding material was sandwiched between these molding members to make the thickness of the molding material 0.08 mm.
  • An electromagnet is arranged on the back surface of each molding member, and the molding material is cured at 120 ° C for 30 minutes while applying a 0.3 T parallel magnetic field to the molding material in the thickness direction.
  • a rectangular anisotropic conductive sheet having a thickness of 0.1 mm was produced.
  • anisotropic conductive sheet (a) The obtained anisotropic conductive sheet had a surface roughness on one side of 0.1, a surface roughness on the other side of 0.12 m, and a conductive particle ratio of 12% by volume.
  • anisotropic conductive sheet (a) This anisotropic conductive elastomer sheet is referred to as “anisotropic conductive sheet (a)”.
  • Numerically controlled drilling is performed on a laminated material (Matsushita Electric Works, product name: R-1766) in which a thin metal layer made of copper with a thickness of 18 m is formed on both sides of an insulating substrate made of glass fiber reinforced epoxy resin.
  • the apparatus formed a total of 7312 circular through-holes each having a diameter of 0.2 mm penetrating in the thickness direction of the laminated material.
  • a copper plating layer was formed on the inner wall of each through-hole by performing an electroless plating process on the laminated material in which the through-hole was formed using an EDTA-type copper plating solution.
  • electrolytic copper plating using a copper sulfate plating solution, a cylindrical via having a thickness of about 10 m is used to electrically connect the thin metal layers on the surface of the laminated material to each other in each through hole. A hole was formed.
  • a 25 ⁇ m-thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) was laminated on the thin metal layer on the surface of the laminated material to form a resist layer.
  • a protective seal was placed on the other side of the thin metal layer.
  • a photomask film is placed on this resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then developed to form a resist pattern for etching. Formed.
  • 7312 connection electrodes having a diameter of 200 m, and each connection electrode and via hole were electrically formed on the surface of the insulating substrate.
  • a pattern wiring portion having a connecting line width of 100 ⁇ m was formed, and then the resist pattern was removed.
  • a 25 ⁇ m-thick dry film solder resist (manufactured by Hitachi Chemical Co., Ltd., product name: SR-2300G) was laminated on the surface of the insulating substrate on which the connection electrodes and the pattern wiring portion were formed to form an insulating layer.
  • a photomask film is disposed on the insulating layer, and is flat with respect to the insulating layer. Exposure treatment was performed using a line light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then development treatment was performed to form 7312 openings with a diameter of 200 m exposing each connection electrode.
  • a 38 ⁇ m-thick dry film solder resist (manufactured by Tigo Morton, product name: ConfoMask 2015) was laminated on the back surface of the insulating substrate on which the terminal electrodes and the pattern wiring portions were formed.
  • An insulating layer is formed, a photomask film is disposed on the insulating layer, and then the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then developed. Then, 7312 openings of 0.4 mm in diameter were formed to expose the electrodes.
  • the pitch conversion substrate 23a for the first inspection jig 11a was manufactured.
  • the pitch conversion board 23a has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, the surface of the insulating layer of the connecting electrode has a diameter of about 300 m, and the connecting electrode protrudes from the surface of the insulating layer.
  • the height is about 25 m
  • the minimum arrangement pitch of the connection electrodes is 0.4 mm
  • the diameter of the terminal electrodes is 0.4 mm
  • the arrangement pitch of the terminal electrodes is 0.75 mm.
  • the insulating layer on the side where the connection electrodes are formed Had a surface roughness of 0.02 m.
  • a pitch conversion substrate 23b for a second inspection jig lib having 3784 connection electrodes on the front surface and 3784 terminal electrodes on the back surface was manufactured.
  • the pitch conversion board 23b has a vertical and horizontal dimension of 120 mm X 160 mm and a thickness of 0.5 mm.
  • the diameter of the part of the connection electrode exposed on the surface of the insulating layer is about 300 / ⁇
  • the surface strength of the insulating layer at the connection electrode is about 25 m
  • the minimum height of the connection electrodes is 0.4 mm
  • the terminal is The electrode diameter is 0.4 mm
  • the arrangement pitch of the terminal electrodes is 0.75 mm
  • the surface roughness of the insulating layer on the surface (the surface on which the connection electrodes are formed) is 0.02 m.
  • the first anisotropic conductive sheet 22 is disposed on the front side of the pitch conversion substrate 23, and on the back side, a large number of conductive path forming portions extending in the thickness direction and insulating portions for insulating these from each other.
  • the circuit board side connector 21 was formed by disposing a second anisotropic conductive sheet 26 made of an unevenly distributed anisotropic conductive sheet having a conductive path forming portion protruding on one surface.
  • the second anisotropic conductive sheet 26 disposed between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 6, and specifically has the following configuration. used.
  • Thickness of conductive path forming part 0.6mm
  • Projection height of conductive path forming part 0.05 mm
  • Conductive particles Material: nickel-plated nickel particles, average particle size; 35; ⁇ ⁇ , content of conductive particles in conductive path forming portion; 30% by volume
  • Elastic polymer material Material; silicone rubber, hardness; 30
  • the specific resistance is I X
  • the distance L1 between the first insulating plate 34 and the intermediate holding plate 36 is 36.3 mm, and the distance L2 between the second insulating plate 35 and the intermediate holding plate 36 is 3 mm.
  • the first support pin 33 (diameter 2 mm, length 36.3 mm) and the second support pin 37 (diameter 2 mm, length 3 mm) In addition to being fixedly supported, a conductive pin 32 having the following configuration is disposed in the through hole 83 (0.4 mm in diameter) between the first insulating plate 34 and the second insulating plate 35 so as to be movable. It was produced.
  • the first contact support position 38A of the first support pin 33 with the intermediate holding plate 36 and the second contact support position 38B of the second support pin 37 with the intermediate holding plate 36 are shown in FIG. As shown in the figure, they were arranged in a grid. Also, the separation distance between the adjacent first contact support positions 38A.
  • the distance between the second contact support positions 38B was 17.5 mm.
  • the tester side connector 41 was composed of a third anisotropic conductive sheet 42, a connector board 43, and a base plate 46.
  • the third anisotropic conductive sheet 42 used was the same as the second anisotropic conductive sheet 26 described above.
  • the created inspection device is set in the inspection section of the rail transport type circuit board automatic inspection machine rSTARREC V5J, the evaluation circuit board 1 is set in the inspection device, and the rail transport type circuit board automatic inspection machine “STARREC V5J
  • the press pressure of the test circuit was changed stepwise within the range of 100-210 kgf, and each test pressure condition was changed 10 times, and the test electrodes of the evaluation circuit board 1 and the test electrodes were 1 mA each.
  • the conduction resistance when a current of? Was applied was measured.
  • NG inspection point Inspection point at which the measured conduction resistance value is 100 ⁇ or more (hereinafter, referred to as “NG inspection point”) Is determined to be a conduction failure, and the ratio of NG inspection points in the total inspection points (hereinafter referred to as “NG inspection point ratio”) is calculated.
  • the lowest press pressure at which the NG inspection point ratio becomes 0.01% or less is determined. The minimum press pressure was used.
  • the press pressure related to the measurement is released to return the inspection device to a non-pressurized state, and the next measurement of the conduction resistance value is performed as follows. Again, this was performed by applying a predetermined amount of press pressure.
  • the ratio of NG inspection points is that the number of electrodes to be inspected on the upper surface of the evaluation circuit board 1 is 7312, and the number of electrodes to be inspected on the lower surface is 3784, and measurement is performed 10 times under each press pressure condition.
  • the percentage of NG inspection points in the 110960 inspection points calculated by the formula (7312 + 3784) X 10 110960 is shown. Table 4 shows the measurement results.
  • the above-described circuit board for evaluation was transported and set in an inspection device, and pressed against the circuit board for evaluation with a press load of 130 kgf. In this state, the electric resistance was measured when a current of 1 mA was applied to the evaluation circuit board electrically connected to the connection electrodes of the two connectors, and then the pressure on the evaluation circuit board was released. . After performing this operation 10 times, the circuit board for evaluation was transported from the inspection area of the inspection apparatus.
  • an inspection device was configured using the following anisotropic conductive elastomer sheet (b) instead of the anisotropic conductive elastomer sheet Ha), and the same as in Example 5 was performed.
  • a connection stability test and a peelability test were performed.
  • the measurement results are shown in Table 4.
  • a frame-shaped spacer having a rectangular opening of 120 mm x 200 mm and a thickness of 0.08 mm was placed on the molding surface of one molded member.
  • the molding material prepared in the same manner as in Example 1 is applied to the opening, and the other molding member is molded on the molding material. The surface was arranged so as to be in contact with the molding material.
  • Both molded members were molded from a 0.1 mm thick polyester resin sheet (made by Toray Dentsu Co., Ltd., product name: "Mattle Mirror S10”), and its glossy surface (surface roughness: 0.04 m) was formed.
  • a molding material layer having a thickness of 0.08 mm was formed by sandwiching the molding material between the molding members using a pressure roll device comprising a pressure roll and a support roll. An electromagnet is placed on the back side of each molded member, and the molding material layer is cured at 120 ° C for 30 minutes while applying a 0.3T parallel magnetic field to the molding material layer in the thickness direction. Then, a rectangular anisotropic conductive sheet having a thickness of 0.1 mm was produced.
  • the obtained anisotropic conductive sheet (b) had a surface roughness of 0.1 m on one surface and a surface roughness of 0.12 m on the other surface, and the ratio of the conductive particles was The volume fraction was 12%.
  • Diameter of the electrode to be inspected on the top side 0.3 mm
  • Diameter of the electrode to be inspected on the bottom side 0.3 mm
  • the following first anisotropic conductive sheet was prepared in which conductive particles were arranged in the thickness direction and uniformly dispersed in the plane direction.
  • Conductive particles Material: nickel-plated nickel particles, average particle diameter: 20 m, content: 18% by volume
  • Elastic polymer material Material; silicone rubber, hardness; 40
  • the laminated material in which the through-holes were formed was subjected to electroless plating using an EDTA-type copper plating solution to form a copper plating layer on the inner wall of each through-hole.
  • electroless plating using an EDTA-type copper plating solution
  • a 25 ⁇ m-thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) was laminated on the thin metal layer on the surface of the laminated material to form a resist layer.
  • a protective seal was placed on the other side of the thin metal layer.
  • a photomask film is placed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then developed to obtain a resist pattern for etching. Was formed.
  • 6800 connection electrodes 60 m wide and 150 m long, and each connection electrode and via hole were formed on the surface of the insulating substrate.
  • a pattern wiring part having a line width of 100 m for electrically connecting the resist pattern was formed, and then the resist pattern was removed.
  • a dry film resist manufactured by Tokyo Ohka, product name: FP-225
  • FP-225 a dry film resist having a thickness of 50 ⁇ m
  • a resist layer was formed.
  • a 25 m thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) was laminated on the thin metal layer on this surface.
  • a photomask film is disposed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then subjected to a development treatment to obtain a laminated material.
  • a resist pattern for etching was formed on the thin metal layer.
  • a 38 ⁇ m-thick dry film solder resist (manufactured by Tigo Morton, product name: ConfoMask 20105) was laminated on the back surface of the insulating substrate on which the terminal electrodes and the pattern wiring portions were formed.
  • An insulating layer is formed, a photomask film is disposed on the insulating layer, and then the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then developed. 6800 apertures with 0.4mm diameter to expose electrodes Done.
  • the pitch conversion substrate 23a has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, and a dimensional force of a portion of the connection electrode 25 exposed from the surface of the insulating layer.
  • the protruding height of the insulating layer surface of the electrode 25 is about 60 m
  • the distance between the pair of connecting electrodes 25 is 100 m
  • the diameter of the terminal electrode 24 is 0.4 mm
  • the arrangement pitch of the terminal electrodes 24 is 0. It was 75 mm, and the surface roughness of the insulating layer on the side where the connection electrode 24 was formed was 0.02 m.
  • the pitch conversion substrate 23b for the second inspection jig l ib having 5000 connection electrodes 25 on the front surface and 5000 terminal electrodes 24 on the back surface is provided. It was made.
  • the pitch conversion substrate 23b has a vertical and horizontal dimension of 120 mm ⁇ 160 mm, a thickness of 0.5 mm, a width of about 60 / zm in a portion of the connection electrode 25 exposed on the surface of the insulating layer, and a length of about 150 / ⁇ .
  • the surface height of the insulating layer at the connection electrode 25 is about 60 m
  • the separation distance between the pair of connection electrodes is 100 m
  • the diameter of the terminal electrode 24 is 0.4 mm
  • the arrangement pitch of the terminal electrodes 24 is 0. 75 mm
  • the surface roughness of the insulating layer on the front surface (the surface on which the connection electrode is formed) is 0.02 m.
  • the first anisotropic conductive sheet 22 is disposed on the front side of the pitch conversion substrate 23, and on the back side, a large number of conductive path forming portions extending in the thickness direction and insulating portions for insulating these from each other.
  • the circuit board side connector 21 was formed by disposing a second anisotropic conductive sheet 26 made of an unevenly distributed anisotropic conductive sheet having a conductive path forming portion protruding on one surface.
  • the second anisotropic conductive sheet 26 disposed between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 6, and specifically has the following configuration. used.
  • Thickness of conductive path forming part 0.6mm
  • Conductive particles Material: nickel-plated nickel particles, average particle size; 35; ⁇ ⁇ , content of conductive particles in conductive path forming portion; 30% by volume
  • Elastic polymer material Material; silicone rubber, hardness; 30
  • an insulating material having a specific resistance of 1 ⁇ 10 10 ⁇ 'cm or more and a glass fiber reinforced epoxy resin having a thickness of 6 mm were used.
  • Base end dimensions 0.35mm outer diameter, 6.7mm overall length
  • the tester side connector 41 was composed of a third anisotropic conductive sheet 42, a connector board 43, and a base plate 46.
  • the third anisotropic conductive sheet 42 used was the same as the second anisotropic conductive sheet 26 described above.
  • the created inspection device is set in the inspection section of the rail transport type circuit board automatic inspection machine rSTARREC V5J, the evaluation circuit board 1 is set in the inspection device, and the rail transport type circuit board automatic inspection machine “STARREC V5J Pressing pressure is changed stepwise within the range of 100-250 kgf, and the electrode to be inspected on the circuit board for evaluation 1 is changed from the electrode for current supply to the electrode for inspection by 10 times for each pressing pressure condition. Provides 1 mA of current The conduction resistance value when supplied was measured with a voltage measurement electrode.
  • NG inspection points where the measured conduction resistance value is 100 ⁇ or more (hereinafter referred to as “NG inspection points”) are judged to be poor conduction, and the percentage of NG inspection points in the total inspection points (hereinafter “NG inspection point ratio”) The lowest press pressure at which the percentage of NG inspection points fell below 0.01% was taken as the lowest press pressure.
  • the ratio of NG test points is that the number of electrodes to be inspected on the upper surface of the evaluation circuit board 1 is 3400, the number of electrodes to be inspected on the lower surface is 2500, and that the measurement was performed 10 times under each press pressure condition.
  • This shows the percentage of NG inspection points in the inspection points of 59,000 points calculated by the formula (3400 + 2500) X 10 59000. Table 5 shows the measurement results.
  • the created inspection device is set on the inspection part of rSTARREC V5J, a rail transport type circuit board automatic inspection machine, and the evaluation circuit board 1 prepared for the inspection device is set.
  • the press pressure condition of rSTARREC V5J is set to 150 kgf and pressurized a predetermined number of times, the electrodes to be inspected of the evaluation circuit board 1 are switched from the current supply electrodes to the test electrodes under the press pressure of 150 kgf.
  • the conduction resistance when a current of 1 mA was supplied was measured 10 times with a voltage measurement electrode.
  • Inspection points where the measured conduction resistance value was 100 ⁇ or more were determined as poor conduction, and the ratio of NG inspection points to the total inspection points (NG inspection point ratio) was calculated.
  • the anisotropic conductive sheet in the inspection device was replaced with a new one, and a predetermined number of pressurizations were performed under the same conditions as above except that the press pressure condition was changed to 180 kgf.
  • the NG inspection point ratio was calculated by the same method as above except that the weight was 180 kgf.
  • the number of NG test points is 3400 for the upper electrode to be inspected and 2500 for the lower electrode to be tested on the circuit board 1 for evaluation.
  • the ratio of NG inspection points to the inspection points of 59000 points calculated by the formula (3400 + 2500) X 10 59000 is shown.
  • the inspection equipment is required to have the NG inspection point ratio of 0.01% or less for practical use, and if the NG inspection point ratio exceeds 0.01%, the inspection device is considered to be a non-defective product. Since an erroneous inspection result indicating that the inspection circuit board is defective may be obtained, there is a possibility that the electrical inspection of the circuit board cannot be performed with high reliability. Table 6 shows the measurement results.
  • the fabricated inspection device is set in the inspection section of the rSTARREC V5J automatic circuit board inspection machine, and the evaluation circuit board 1 prepared for the inspection device is set.
  • rSTARREC V5J was pressed at 150 kgf, and the test electrode on the circuit board for evaluation 1 was supplied with a current of 1 mA from the current supply electrode to the test electrode under the press pressure of 150 kgf.
  • the resistance value is measured 10 times with the voltage measurement electrode, and the inspection point (NG inspection point ratio) where the conduction resistance value equal to or higher than the set conduction resistance value (100 ⁇ ) is detected is judged as NG inspection point, and the total inspection point
  • the percentage of NG inspection points at (NG inspection point ratio) was calculated.
  • the evaluation circuit board 1 was evaluated by changing the setting of the conduction resistance value, which is determined as an NG inspection point, to a resistance value lower than 100 ⁇ for the same evaluation circuit board 1.
  • Table 7 shows the measurement results.
  • the substrate for pitch conversion was changed to the following.
  • An upper pitch conversion substrate 23a was manufactured in the same manner as in the method of manufacturing the pitch conversion substrate of Example 7, except that the opening pattern of the connection electrode resist was changed to a circle having a diameter of 200 m. Manufactured.
  • the obtained pitch conversion board 23a for the upper side has a vertical and horizontal dimension of 120 mm ⁇ 160 mm, a thickness of 0.5 mm, a dimension of a portion of the connection electrode 25 exposed on the surface of the insulating layer of the connection electrode 25 having a diameter of about 250 m, and a connection electrode of about 250 m.
  • the protruding height from the surface of the insulating layer is about 60 m, and one of the connecting electrodes is connected to one of the electrodes to be tested on the circuit board.
  • the diameter of 24 was 0.4 mm
  • the arrangement pitch of the terminal electrodes 24 was 0.75 mm
  • the surface roughness of the insulating layer on the side where the connection electrodes 24 were formed was 0.02 m.
  • the pitch conversion board 23b for the lower side has a vertical and horizontal dimension of 120 mm X 160 mm, a thickness of 0.5 mm, and a diameter of a portion exposed on the surface of the insulating layer in the connection electrode 25 is about 250 / zm.
  • the connection electrode 25 is arranged so that the protruding height of the surface force is about 60 / ⁇ , and one of the connection electrodes is connected to one of the electrodes to be inspected on the circuit board to be inspected. Is 0.4 mm, the arrangement pitch of the terminal electrodes 24 is 0.75 mm, and the surface roughness of the insulating layer on the front surface (the surface on which the connection electrode is formed) is 0.02 m.
  • the minimum press pressure, the durability of the anisotropic conductive sheet, and the evaluation of the conduction failure of the circuit board to be inspected were measured in the same manner as in Example 7.
  • Table 5 shows the measurement results of the minimum press
  • Table 6 shows the measurement results of the durability of the anisotropic conductive sheet
  • Table 7 shows the evaluation of the conduction failure of the circuit board to be inspected.
  • An evaluation circuit board 1 having the following specifications was prepared.
  • Diameter of the electrode to be inspected on the top side 0.3 mm
  • Diameter of the electrode to be inspected on the bottom side 0.3 mm
  • the following first anisotropic conductive sheet was prepared in which conductive particles were arranged in the thickness direction and uniformly dispersed in the plane direction. Dimensions: 110mm XI 10mm, thickness 0. lmm
  • Conductive particles Material: nickel-plated nickel particles, average particle diameter: 20 m, content: 18% by volume
  • Elastic polymer material Material; silicone rubber, hardness; 40
  • the laminated material in which the through holes were formed was subjected to an electroless plating process using an EDTA type copper plating solution to form a copper plating layer on the inner wall of each through hole.
  • an electroless plating process using an EDTA type copper plating solution to form a copper plating layer on the inner wall of each through hole.
  • a 25 ⁇ m thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) is laminated on the thin metal layer on the surface of the laminated material to form a resist layer, and the other surface of the laminated material is formed.
  • a protective seal was placed on the side thin metal layer.
  • a photomask film is placed on this resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then developed to form a resist pattern for etching. Formed.
  • 7200 connection electrodes of 60 / ⁇ and 150 m in length and each connection electrode were formed on the surface of the insulating substrate.
  • a pattern wiring portion having a line width of 100 m for electrically connecting the via hole and the via hole was formed, and then the resist pattern was removed.
  • a 50 ⁇ m thick A dry film resist (Tokyo Ohka, product name: FP-225) is laminated to form a resist layer, a photomask film is placed on this resist layer, and a parallel light exposure machine ( (Oak Manufacturing Co., Ltd.), and then perform development processing, exposing each connection electrode to form 7200 rectangular 60 / ⁇ and 150 / zm rectangular An opening was formed.
  • connection electrode was subjected to electrolytic copper plating treatment, whereby 7,200 connection electrodes were formed. Formed. Next, the resist pattern was removed.
  • a 25 m thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) was laminated on the thin metal layer on this surface.
  • a photomask film is disposed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then subjected to a development treatment to obtain a laminated material.
  • a resist pattern for etching was formed on the thin metal layer.
  • a 38 ⁇ m-thick dry film solder resist (manufactured by Tigo Morton, product name: ComfoMask 2015) is laminated on the back surface of the insulating substrate on which the terminal electrodes and the pattern wiring portion are formed to form an insulating layer.
  • a photomask film is arranged on the insulating layer, and then the electrode is exposed by subjecting the insulating layer to an exposure process using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then performing a development process. 7,200 openings with a diameter of 0.4 mm were formed.
  • the pitch conversion substrate 23 was manufactured.
  • the pitch conversion substrate 23 has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, and a dimensional force of a portion of the connection electrode 25 exposed from the surface of the insulating layer.
  • the surface height of the insulating layer of electrode 25 is about 60 m, and the distance between paired connecting electrodes 25 is 100.
  • the diameter of the terminal electrode 24 was 0.4 mm
  • the arrangement pitch of the terminal electrodes 24 was 0.75 mm
  • the surface roughness of the insulating layer on the side where the connection electrode 24 was formed was 0.02 m.
  • the pitch conversion substrate 23b for the second inspection jig l ib having 5200 connection electrodes 25 on the front surface and 5200 terminal electrodes 24 on the back surface is provided. It was made.
  • the pitch conversion substrate 23b has a vertical and horizontal dimension of 120 mm ⁇ 160 mm, a thickness of 0.5 mm, a width of about 60 / zm in a portion of the connection electrode 25 exposed on the surface of the insulating layer, and a length of about 150 / ⁇ .
  • the surface height of the insulating layer at the connection electrode 25 is about 60 m
  • the separation distance between the pair of connection electrodes is 100 m
  • the diameter of the terminal electrode 24 is 0.4 mm
  • the arrangement pitch of the terminal electrodes 24 is 0. 75 mm
  • the surface roughness of the insulating layer on the front surface (the surface on which the connection electrode is formed) is 0.02 m.
  • the first anisotropic conductive sheet 22 is disposed on the front side of the pitch conversion substrate 23, and on the back side, a large number of conductive path forming portions extending in the thickness direction and insulating portions for insulating these from each other.
  • the circuit board side connector 21 was formed by disposing a second anisotropic conductive sheet 26 made of an unevenly distributed anisotropic conductive sheet having a conductive path forming portion protruding on one surface.
  • the second anisotropic conductive sheet 26 disposed between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 6, and specifically has the following configuration. used.
  • Thickness of conductive path forming part 0.6mm
  • Projection height of conductive path forming part 0.05 mm
  • Conductive particles Material: nickel-plated nickel particles, average particle size; 35; ⁇ ⁇ , content of conductive particles in conductive path forming portion; 30% by volume
  • Elastic polymer material Material; silicone rubber, hardness; 30
  • the distance L1 between the first insulating plate 34 and the intermediate holding plate 36 is 36.3 mm
  • the distance L2 between the second insulating plate 35 and the intermediate holding plate 36 is 3 mm.
  • the first support pin 33 (diameter 2 mm, length 36.3 mm) and the second support pin 37 (diameter 2 mm, length 3 mm) are fixed and supported, and the first insulation plate 34 and the second insulation
  • the conductive pin 32 having the following configuration was disposed between the plate 35 and the through-hole 83 (0.4 mm in diameter) so as to be movable.
  • the first contact support position 38A of the first support pin 33 with the intermediate holding plate 36 and the second contact support position 38B of the second support pin 37 with the intermediate holding plate 36 are , Arranged in a grid.
  • the distance between the adjacent first contact support positions 38A and the distance between the second contact support positions 38B were 17.5 mm.
  • the tester-side connector 41 is composed of a third anisotropic conductive sheet 42, a connector board 43, and a base plate 46.
  • the third anisotropic conductive sheet 42 used was the same as the second anisotropic conductive sheet 26 described above.
  • the created inspection device is set in the inspection section of the rSTARREC V5J automatic circuit board inspection machine, and the evaluation circuit board 1 prepared for the inspection device is set.
  • STARREC V5J press pressure in the range of 100-210kgf Of the test electrode of the circuit board for evaluation 10 times for each press pressure condition, when a current of 1 mA was applied to the test electrode from the current supply electrode.
  • the conduction resistance value was measured with a voltage measuring electrode.
  • Inspection points having a measured conduction resistance value of 10 ⁇ or more are determined to be continuity failures, and the percentage of NG inspection points in the total inspection points (hereinafter, “NG inspection points”). Inspection point ratio ”) was calculated, and the lowest press pressure at which the NG inspection point ratio was 0.01% or less was determined as the minimum press pressure.
  • the press pressure related to the measurement is released to return the inspection device to a non-pressurized state, and the next measurement of the conduction resistance value is performed as follows. Again, this was performed by applying a predetermined amount of press pressure.
  • the fabricated inspection device is set in the inspection section of the rSTARREC V5J automatic circuit board inspection machine, and the evaluation circuit board 1 prepared for the inspection device is set.
  • the electrode to be inspected of the evaluation circuit board 1 is changed from the current supply electrode to the test electrode under the condition of the press pressure of 130 kgf.
  • Conduction resistance was measured 10 times when a current of 1 mA was applied, and the operation of applying pressure a predetermined number of times and similarly measuring the conduction resistance 10 times with a voltage measurement electrode was repeated.
  • the anisotropic conductive sheet in the inspection device was replaced with a new one, and a predetermined number of pressurizations were performed under the same conditions as above except that the press pressure condition was changed to 150 kgf.
  • the NG inspection point ratio was calculated by the same method as above except that the weight was set to 150 kgf.
  • the inspection device requires that the percentage of NG inspection points be 0.01% or less for practical use, and if the percentage of NG inspection points exceeds 0.01%, a non-defective product In some cases, an erroneous inspection result indicating that the circuit board to be inspected is defective may be obtained, which may make it impossible to perform an electrical inspection of the circuit board with high reliability. Table 9 shows the measurement results.
  • the fabricated inspection device is set in the inspection section of the rSTARREC V5J automatic circuit board inspection machine, and the evaluation circuit board 1 prepared for the inspection device is set.
  • rSTARREC V5J was pressed at 150 kgf, and the test electrode on the circuit board for evaluation 1 was supplied with a current of 1 mA from the current supply electrode to the test electrode under the press pressure of 150 kgf.
  • the resistance value is measured 10 times with the voltage measurement electrode, and the inspection point (NG inspection point ratio) where the conduction resistance value equal to or higher than the set conduction resistance value (100 ⁇ ) is detected is judged as NG inspection point, and the total inspection point
  • the percentage of NG inspection points at (NG inspection point ratio) was calculated.
  • the evaluation circuit board 1 was evaluated by changing the setting of the conduction resistance value, which is determined as an NG inspection point, to a resistance value lower than 100 ⁇ for the same evaluation circuit board 1.
  • Table 10 shows the measurement results.
  • relay pin units 31a and 31b as shown in FIG. 1 were used. That is, a large number (8000) at a fixed pitch (2.54 mm pitch) Pins) were used having conductive pins 32a, 32b arranged thereon and insulating plates 34a, 34b and 35a, 35b for supporting the conductive pins 32a, 32b movably up and down.
  • Example 9 With respect to the manufactured inspection device, the minimum press pressure and the durability of the anisotropic conductive sheet were measured in the same manner as in Example 9. Table 8 shows the measurement results of the minimum press, and Table 9 shows the measurement results of the durability of the anisotropic conductive sheet.
  • the substrate for pitch conversion was changed to the following.
  • the pitch conversion substrate for the upper side was manufactured in the same manner as in Example 9 except that the opening pattern of the resist for the connection electrode was changed to a circle having a diameter of 200 m. Was manufactured.
  • the obtained pitch conversion board for the upper side has 3600 connection electrodes 25 on the surface, the vertical and horizontal dimensions are 120 mm X 160 mm, the thickness is 0.5 mm, and the surface of the insulating layer of the connection electrodes 25 is also exposed.
  • the dimensions of the connection electrode 25 are about 250 m, the surface of the insulation layer of the connection electrode 25 is protruding, and the height of the connection electrode is about 60 m.
  • the diameter of the terminal electrode 24 is 0.4 mm
  • the arrangement pitch of the terminal electrodes 24 is 0.75 mm
  • the surface roughness of the insulating layer on the side where the connection electrode 24 is formed is 0.02. m.
  • the pitch conversion board for the lower side has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, a diameter of a portion of the connection electrode 25 exposed on the surface of the insulating layer of about 250 m, and an insulation of the connection electrode 25.
  • the connection electrode 25 is arranged so that the protruding height of the surface force of the layer is about 60 m, and one of the connection electrodes is connected to one of the electrodes to be inspected on the circuit board to be inspected.
  • the pitch of terminal electrodes 24 is 0.75 mm
  • the surface roughness of the insulating layer on the side where the connection electrode is formed is 0.02 m.
  • the minimum press pressure and the durability of the anisotropic conductive sheet were measured in the same manner as in Example 9.
  • the measurement results of the durability of the anisotropic conductive sheet are shown in Table 10, and the evaluation was performed by changing the conduction resistance value, which is judged as the NG inspection point of the conduction failure of the circuit board to be inspected, to a resistance value lower than 100 ⁇ .
  • Table 11 shows the results.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

There is provided a circuit substrate inspection device capable of performing electrical inspection of a circuit substrate with a high reliability even when the circuit substrate to be inspected has small electrodes of a small pitch. The circuit substrate inspection device includes a first inspection jig and a second inspection jig, between which a circuit substrate to be inspected is arranged with a sandwiching pressure for performing electric inspection. As a first anisotropic conductive sheet arranged at the side of the circuit substrate to be inspected for a pitch conversion substrate, there is used an anisotropic conductive sheet having conductive particles arranged in the thickness direction and uniformly dispersed in the surface direction. Moreover, a connection electrode of the pitch conversion substrate is formed by a current terminal electrode and a voltage terminal electrode which are electrically connected to respective inspection electrodes of the circuit substrate to be inspected. On the connector substrate, there are arranged a current pin side electrode and a voltage pin side electrode to be electrically connected respectively to the current terminal electrode and the voltage terminal electrode of the pitch conversion substrate. Moreover, an intermediate holding plate is arranged between a first insulation plate and a second insulation plate in a relay pin unit and between them, support pints are arranged at abutment support positions different from the front and the rear surfaces.

Description

明 細 書  Specification
回路基板の検査装置および回路基板の検査方法  Circuit board inspection apparatus and circuit board inspection method
技術分野  Technical field
[0001] 本発明は、電気検査を行う検査対象である回路基板 (以下、「被検査回路基板」と 言う。)を、上側検査治具と下側検査治具で両面から挟圧することにより、被検査回路 基板の両面に形成された電極をテスターに電気的に接続された状態として、被検査 回路基板の電気的特性を検査する回路基板の検査装置および回路基板の検査方 法に関する。  [0001] The present invention provides a circuit board to be subjected to an electrical inspection (hereinafter referred to as a "circuit board to be inspected") which is pressed by an upper inspection jig and a lower inspection jig from both sides. The present invention relates to a circuit board inspection apparatus and a circuit board inspection method for inspecting electrical characteristics of a circuit board to be inspected while electrodes formed on both surfaces of the circuit board to be inspected are electrically connected to a tester.
背景技術  Background art
[0002] 集積回路などを実装するためのプリント回路基板は、集積回路などを実装する前に 、回路基板の配線パターンが所定の性能を有することを確認するために電気的特性 が検査される。  [0002] A printed circuit board on which an integrated circuit or the like is mounted is inspected for electrical characteristics before mounting the integrated circuit or the like in order to confirm that a wiring pattern of the circuit board has predetermined performance.
この電気検査では、例えば、回路基板の搬送機構を備えた検査用テスターに検査 ヘッドを組み込み、検査ヘッド部分を交換することにより異なる回路基板の検査を行 つている。  In this electrical inspection, for example, an inspection head is incorporated into an inspection tester provided with a circuit board transport mechanism, and different circuit boards are inspected by replacing the inspection head part.
[0003] 例えば、特許文献 1 (特開平 6— 94768号公報)に開示されているように、被検査回 路基板の被検査電極に接して電気的に導通する金属の検査ピンを基板に植設した 構造の検査治具を用いる方法が提案されて!、る。  [0003] For example, as disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 6-94768), a metal inspection pin that is in electrical contact with an electrode to be inspected on a circuit substrate to be inspected is planted on the substrate. A method using an inspection jig with the installed structure has been proposed! RU
また、特許文献 2 (特開平 5— 159821号公報)に開示されているように、導電ピンを 有する検査ヘッドと、オフグリットアダプターと呼ばれるピッチ変換用の回路基板と、 異方導電性シートとを組み合わせた検査治具を用いる方法が知られて 、る。  Further, as disclosed in Patent Document 2 (JP-A-5-159821), an inspection head having conductive pins, a circuit board for pitch conversion called off-grid adapter, and an anisotropic conductive sheet are used. A method using a combined inspection jig is known.
[0004] しカゝしながら、特許文献 1のように、金属検査ピンを直接に被検査回路基板の被検 查電極に接触させる検査治具を用いる方法では、金属力 なる導電ピンとの接触に より被検査回路基板の電極が損傷する可能性がある。  [0004] Meanwhile, in the method using an inspection jig for directly contacting a metal inspection pin with an electrode to be inspected on a circuit board to be inspected as disclosed in Patent Document 1, a method for contacting a conductive pin which is a metal force is used. The electrodes of the circuit board to be inspected may be more damaged.
特に、近年では回路基板における回路の微細化、高密度化が進み、このようなプリ ント回路基板を検査する場合、多数の導電ピンを被検査回路基板の被検査電極に 同時に導通接触させるためには、高い圧力で検査治具を加圧することが必要となり、 被検査電極が損傷し易くなる。 In particular, in recent years, circuits on circuit boards have become finer and higher in density, and when such printed circuit boards are inspected, it is necessary to simultaneously conduct a large number of conductive pins to the electrodes to be inspected on the circuit boards to be inspected. Needs to press the inspection jig with high pressure, The electrode to be inspected is easily damaged.
そして、このような微細化、高密度化されたプリント回路基板を検査するための検査 治具では、高密度で多数の金属ピンを基板に植設することが技術的に困難になりつ つある。また、その製造コストも高価となり、さらに、一部の金属ピンが損傷した場合に 、修理、交換することが困難である。  With such inspection jigs for inspecting printed circuit boards that have been miniaturized and densified, it is becoming technically difficult to implant a large number of metal pins at high density on the substrate. . In addition, the manufacturing cost is high, and when some metal pins are damaged, it is difficult to repair or replace them.
[0005] 一方、特許文献 2のように、異方導電性シートを使用する検査治具では、被検査回 路基板の被検査電極が、異方導電性シートを介してピッチ変換用基板の電極と接触 することになるため、被検査回路基板の被検査電極が損傷しにくいという利点がある 。また、ピッチ変換を行う基板を使用しているため、基板に植設する検査ピンを、被検 查回路基板の被検査電極のピッチよりも広 、ピッチで植設することができるため、微 細ピッチで検査ピンを植設する必要がなぐ検査治具の製造コストを節約できるという 禾 IJ点ちある。  On the other hand, in an inspection jig using an anisotropic conductive sheet as disclosed in Patent Document 2, an electrode to be inspected on a circuit board to be inspected is an electrode of a pitch conversion substrate via an anisotropic conductive sheet. Therefore, there is an advantage that the electrode to be inspected on the circuit board to be inspected is hardly damaged. In addition, since a board that performs pitch conversion is used, the inspection pins to be implanted on the board can be implanted at a pitch wider than the pitch of the electrodes to be inspected on the circuit board to be inspected. It is possible to reduce the cost of manufacturing inspection jigs without the need to plant inspection pins at the pitch.
し力しながら、この検査治具では、検査対象である被検査回路基板ごとに、ピッチ 変換用基板と、検査ピンを植設する検査治具とを作成する必要があるため、検査され る被検査回路基板であるプリント回路基板と同数の検査治具が必要となる。  However, in this inspection jig, it is necessary to prepare a pitch conversion board and an inspection jig for implanting inspection pins for each circuit board to be inspected. The same number of inspection jigs as the printed circuit board which is the inspection circuit board is required.
[0006] このため、複数のプリント回路基板を生産している場合では、それに対応して複数 の検査治具を保有しなければならないという問題がある。特に、近年では電子機器の 製品サイクルが短縮し、製品に使用されるプリント回路基板の生産期間の短縮化が 進んでいるが、これに伴って検査治具を長期間使用することができなくなり、プリント 回路基板の生産が切り替わる度に検査治具を生産しなければならな 、と 、う問題が 生じている。 [0006] Therefore, when a plurality of printed circuit boards are produced, there is a problem that a plurality of inspection jigs must be held correspondingly. In particular, in recent years, the product cycle of electronic equipment has been shortened, and the production period of printed circuit boards used for products has been shortened.However, this has made it impossible to use inspection jigs for a long time, A problem has arisen that inspection jigs must be produced each time the production of printed circuit boards is switched.
[0007] このような問題への対策として、例えば、特許文献 3— 5 (特開平 7-248350号公 報、特開平 8— 271569号公報、特開平 8— 338858号公報)のような、中継ピンュ- ットを用いる、 V、わゆるユニバーサルタイプの検査治具を用いた検査装置が提案され ている。  [0007] As a countermeasure against such a problem, for example, relaying such as disclosed in Patent Document 3-5 (Japanese Patent Application Laid-Open No. 7-248350, Japanese Patent Application Laid-Open No. 8-271569, Japanese Patent Application Laid-Open No. 8-338858) is used. There has been proposed an inspection apparatus using a V-shaped, so-called universal type inspection jig using a pin cut.
[0008] 図 31は、このようなユニバーサルタイプの検査治具を用いた検査装置の断面図で ある。  FIG. 31 is a cross-sectional view of an inspection apparatus using such a universal type inspection jig.
この検査装置は、上側検査治具 11 laと下側検査治具 11 lbとを備え、これらの検 查治具は、回路基板側コネクタ 121a、 121bと、中継ピンユニット 131a、 131bと、テ スター側コネクタ 141a、 141bとを備えている。 This inspection apparatus has an upper inspection jig 11 la and a lower inspection jig 11 lb. 查 The jig includes circuit board side connectors 121a and 121b, relay pin units 131a and 131b, and tester side connectors 141a and 141b.
回路基板側コネクタ 121a、 121bは、ピッチ変換用基板 123a、 123bと、その両面 側に配置される異方導電性シート 122a、 122b, 126a, 126bとを備えている。  The circuit board side connectors 121a and 121b include pitch conversion boards 123a and 123b, and anisotropic conductive sheets 122a, 122b, 126a and 126b disposed on both sides thereof.
[0009] 中継ピンユニット 131a、 131bは、一定ピッチ(例えば 2. 54mmピッチ)で格子点上 に多数(例えば 5000ピン)配置された導電ピン 132a、 132bと、この導電ピン 132a、 132bを上下へ移動可能に支持する一対の絶縁板 134a、 134b,および 135a、 135 bとを備えている。 [0009] The relay pin units 131a and 131b are composed of conductive pins 132a and 132b arranged at a fixed pitch (for example, 2.54 mm pitch) on a lattice point (for example, 5000 pins), and the conductive pins 132a and 132b are vertically moved. It comprises a pair of insulating plates 134a, 134b and 135a, 135b movably supported.
[0010] テスター側コネクタ 141a、 141bは、被検査回路基板 101を検査治具 11 la、 111b で挟圧した際に、テスターと導電ピン 132a、 132bとを電気的に接続するコネクタ基 板 143a、 143bと、コネクタ基板 143a、 143bの導電ピン 132a、 132bftlJに酉己置され る異方導電性シート 142a、 142bと、ベース板 146a、 146bとを備えている。  [0010] The tester-side connectors 141a and 141b include connector boards 143a and 143a for electrically connecting the tester and the conductive pins 132a and 132b when the circuit board 101 to be inspected is clamped by the inspection jigs 11la and 111b. 143b, anisotropic conductive sheets 142a and 142b placed on conductive pins 132a and 132bftlJ of connector boards 143a and 143b, and base plates 146a and 146b.
[0011] この中継ピンユニットを使用した検査治具は、異なる被検査対象であるプリント回路 基板を検査する際に、回路基板側コネクタ 121a、 121bを被検査回路基板 101に対 応するものに交換するだけでよぐ中継ピンユニット 13 la、 13 lbとテスター側コネク タ 141a、 141bは共通で使用できる。  In the inspection jig using this relay pin unit, when inspecting a printed circuit board to be inspected differently, the circuit board side connectors 121a and 121b are replaced with ones corresponding to the circuit board 101 to be inspected. The relay pin units 13 la, 13 lb and the tester-side connectors 141a, 141b can be used in common.
[0012] し力しながら、従来のこのようなユニバーサルタイプの検査治具では、回路基板側 コネクタ 121a、 121bを構成する異方導電性シート 122a、 122bとして、厚み方向に 延びる複数の導電路形成部と、これらの導電路形成部を互いに絶縁する絶縁部とか らなり、導電性粒子が導電路形成部中にのみ含有されて面方向に不均一に分散さ れ、シート片面側に導電路形成部が突出した、偏在型の異方導電性シート 122a、 1 22bを使用している。  [0012] In the conventional universal type inspection jig, a plurality of conductive paths extending in the thickness direction are formed as anisotropic conductive sheets 122a and 122b constituting the circuit board side connectors 121a and 121b. Part and an insulating part that insulates these conductive path forming parts from each other. The conductive particles are contained only in the conductive path forming part and are unevenly dispersed in the surface direction. The unevenly distributed anisotropic conductive sheets 122a and 122b having protruding portions are used.
[0013] 偏在型の異方導電性シート 122a、 122bは、検査での繰り返し使用による導電路 形成部の劣化が早ぐ導電路形成部が劣化すると抵抗値が上昇する等の問題が生 じる。劣化した異方導電性シート 122a、 122bを交換する際に、交換の度に異方導 電性シート 122a、 122bとピッチ変換用基板 123a、 123bとの位置合わせ、および回 路基板側コネクタ 121a、 121bと中継ピンユニット 131a、 131bとの位置合わせが必 要であり、交換作業が繁雑で交換頻度が高く検査効率が低下してしまうことになる。 [0014] また、被検査回路基板 101の被検査電極が、例えば、 200 μ m以下のような微小ピ ツチになると、上記のような偏在型の異方導電性シート 122a、 122bを用いる場合に は、異方導電性シート 122a、 122bとピッチ変換用基板 123a、 123bとの位置合わ せが困難となり、さらに、複数の被検査回路基板 101について検査を連続して行った 場合、被検査回路基板 101と繰り返し接触することにより異方導電性シート 122a、 1 22bの位置ずれが生じ易くなる。 [0013] The unevenly distributed anisotropic conductive sheets 122a and 122b cause problems such as rapid deterioration of the conductive path forming portion due to repeated use in the inspection, and an increase in the resistance value when the conductive path forming portion is deteriorated. . When replacing the deteriorated anisotropic conductive sheets 122a and 122b, each time the replacement is performed, the alignment between the anisotropic conductive sheets 122a and 122b and the pitch conversion boards 123a and 123b, and the circuit board side connectors 121a and 122b are performed. Alignment between 121b and relay pin units 131a and 131b is required, and replacement work is complicated, replacement frequency is high, and inspection efficiency is reduced. When the electrode to be inspected of the circuit substrate 101 to be inspected has a minute pitch of, for example, 200 μm or less, the unevenly distributed anisotropic conductive sheets 122a and 122b as described above are used. This makes it difficult to align the anisotropic conductive sheets 122a and 122b with the pitch conversion boards 123a and 123b, and furthermore, when a plurality of circuit boards 101 to be inspected are continuously inspected, Repeated contact with 101 makes it easy for the anisotropic conductive sheets 122a and 122b to be misaligned.
[0015] これによつて、異方導電性シート 122a、 122bの導電路形成部と被検査回路基板 1 01の電極位置とがー致しなくなり、良好な電気的接続が得られなくなるため、過大な 抵抗値が測定され、本来は良品と判断されるべきプリント回路基板が不良品と誤判 断され易くなる。  [0015] As a result, the conductive path forming portions of the anisotropic conductive sheets 122a and 122b do not match the electrode positions of the circuit board 101 to be inspected, and good electrical connection cannot be obtained. The resistance value is measured, and the printed circuit board, which should be judged to be good, is likely to be erroneously judged to be defective.
[0016] 一方、例えば、特許文献 6 (特開平 6— 82531号公報)に記載されたような、異方導 電性シートとピッチ変換用基板とがー体ィ匕したコネクタを使用した場合には、位置合 わせは容易であるが、異方導電性シート部分が劣化した際にピッチ変換用基板ごと 交換しなければならず、多数のピッチ変換用基板が必要となり検査コストが増大する  [0016] On the other hand, for example, when a connector in which an anisotropic conductive sheet and a pitch conversion substrate are used as described in Patent Document 6 (Japanese Patent Application Laid-Open No. 6-82531) is used. Is easy to align, but when the anisotropic conductive sheet part deteriorates, the entire pitch conversion board must be replaced, which requires a large number of pitch conversion boards and increases the inspection cost.
[0017] 一方、被検査回路基板 101であるプリント配線基板は、多層高密度化してきており 、実際には厚み方向に、例えば、 BGAなどのハンダボール電極などの被検査電極 1 02、 103による高さバラツキや基板自体の反りが生じている。そのため、被検査回路 基板 101上の検査点である被検査電極 102、 103に電気的接続を達成するために は、上側検査治具 11 laと下側検査治具 11 lbとを高い圧力で加圧して、被検査回 路基板 101を平坦に変形させる必要があり、さらに、被検査電極 102、 103の高さバ ラツキに対して、上側検査治具 11 laと下側検査治具 11 lb側の被検査電極 102、 1 03の高さを追従させる必要がある。 On the other hand, the printed wiring board, which is the circuit board 101 to be inspected, has been multi-layered and has a high density. Actually, the electrodes to be inspected 102, 103 such as a solder ball electrode such as a BGA are used in the thickness direction. Variations in height and warpage of the substrate itself have occurred. Therefore, in order to achieve electrical connection to the electrodes to be inspected 102 and 103, which are inspection points on the circuit board 101 to be inspected, the upper inspection jig 11la and the lower inspection jig 11lb are applied with high pressure. It is necessary to apply pressure to deform the circuit board 101 to be inspected flat.Furthermore, the upper inspection jig 11 la and the lower inspection jig 11 lb It is necessary to follow the height of the electrodes 102 and 103 to be inspected.
[0018] 従来のこのようなユニバーサルタイプの検査治具では、被検査電極 102、 103の高 さバラツキに対して、導電ピン 132a、 132bの軸方向移動により追従していた力 この 導電ピン 132a、 132bの軸方向移動量にも限界があるため、このような被検査電極 1 02、 103の高さバラツキに対する追従性が良好でない場合があり、導通不良が発生 して正確な検査ができな 、ことになる。 [0019] また、このようなユニバーサルタイプの検査治具では、上側検査治具 11 laと下側検 查治具 111bによって被検査回路基板 101を挟圧した際のプレス圧力は、その上下 の異方導電性シート 122a、 122b, 126a, 126b, 142a, 142bで吸収している。 そのため、このようなユニバーサルタイプの検査治具では、ピッチ変換用基板 123a 、 123bを支持しプレス圧を分散させるために、導電ピン 132a、 132bを一定間隔で 配置する必要がある。 In such a conventional universal type inspection jig, the force that follows the height variation of the electrodes to be inspected 102 and 103 by moving the conductive pins 132a and 132b in the axial direction is used. Since there is a limit in the amount of movement of the electrode 132b in the axial direction, there is a case where the followability with respect to the height variation of the electrodes to be inspected 102 and 103 is not good, and a conduction failure occurs and accurate inspection cannot be performed. Will be. [0019] In such a universal type inspection jig, the pressing pressure when the circuit board 101 to be inspected is clamped by the upper inspection jig 11la and the lower inspection jig 111b is different from the upper and lower parts. Absorbed by the conductive sheets 122a, 122b, 126a, 126b, 142a, 142b. Therefore, in such a universal type inspection jig, the conductive pins 132a and 132b need to be arranged at regular intervals in order to support the pitch conversion substrates 123a and 123b and distribute the pressing pressure.
[0020] また、従来のユニバーサルタイプの検査治具では、プレス圧力は導電ピン 132a、 1 32bで受けるようになつているため、一定間隔で多数の導電ピン 132a、 132bを配置 する必要がある。  [0020] In the conventional universal type inspection jig, since the pressing pressure is received by the conductive pins 132a and 132b, it is necessary to arrange a large number of conductive pins 132a and 132b at regular intervals.
このため、被検査回路基板 101の電極の微細化に対応して、例えば、 0. 75mmピ ツチで 1万以上の貫通孔を有する絶縁板 134a、 134bを形成する場合、絶縁板 134 a、 134bおよび 135a、 135bの基板の厚さが薄いと強度が低くなり、曲げた時に割れ ることもあるので、絶縁板 134a、 134bおよび 135a、 135bを厚くする必要があった。 特許文献 1:特開平 6— 94768号公報  Therefore, for example, when forming the insulating plates 134a and 134b having a through hole of 10,000 or more at 0.75 mm pitch in accordance with the miniaturization of the electrodes of the circuit board 101 to be inspected, the insulating plates 134a and 134b When the thickness of the substrates 135a and 135b is thin, the strength becomes low and the substrate may be broken when bent. Therefore, it is necessary to make the insulating plates 134a and 134b and 135a and 135b thick. Patent Document 1: JP-A-6-94768
特許文献 2 :特開平 5—159821号公報  Patent Document 2: JP-A-5-159821
特許文献 3:特開平 7-248350号公報  Patent Document 3: JP-A-7-248350
特許文献 4 :特開平 8— 271569号公報  Patent Document 4: JP-A-8-271569
特許文献 5:特開平 8— 338858号公報  Patent Document 5: JP-A-8-338858
特許文献 6:特開平 6— 82531号公報  Patent Document 6: JP-A-6-82531
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0021] 本発明は、このような現状に鑑み、検査対象である被検査回路基板が、微細ピッチ で配置された微小電極を有するものであっても信頼性の高い電気的検査を行うこと ができる回路基板の検査装置および回路基板の検査方法を提供することを目的とす る。 [0021] In view of the above situation, the present invention can perform a highly reliable electrical inspection even when a circuit substrate to be inspected has minute electrodes arranged at a fine pitch. It is an object of the present invention to provide a circuit board inspection apparatus and a circuit board inspection method that can be performed.
[0022] また本発明は、検査対象である被検査回路基板について、繰り返し連続検査を行 う際に、異方導電性シートの劣化による交換頻度が少なぐ検査効率が高い回路基 板の検査装置および回路基板の検査方法を提供することを目的とする。 [0023] また本発明は、検査対象である被検査回路基板について、繰り返し連続検査を行 う際に、異方導電性シートの位置ずれを補正する必要が少なぐ検査の作業性が良 好な回路基板の検査装置および回路基板の検査方法を提供することを目的とする。 [0022] The present invention also provides a circuit board inspection apparatus with high inspection efficiency, in which the frequency of replacement due to deterioration of an anisotropic conductive sheet is low when a circuit board to be inspected is repeatedly and continuously inspected. And a method for inspecting a circuit board. Further, according to the present invention, when a circuit board to be inspected is repeatedly subjected to a continuous inspection, the workability of the inspection is excellent because it is less necessary to correct the positional deviation of the anisotropic conductive sheet. An object of the present invention is to provide a circuit board inspection apparatus and a circuit board inspection method.
[0024] また本発明は、検査対象である被検査回路基板の繰り返し連続検査において、異 方導電性シートが劣化した際に、異方導電性シートの交換作業が容易な回路基板 の検査装置および回路基板の検査方法を提供することを目的とする。  [0024] Further, the present invention provides a circuit board inspection apparatus which can easily replace an anisotropic conductive sheet when the anisotropic conductive sheet is deteriorated in a repeated continuous inspection of a circuit board to be inspected as an inspection object. An object of the present invention is to provide a circuit board inspection method.
[0025] また本発明は、検査対象である被検査回路基板が変更されても、検査装置全体( 検査治具全体)を別途作製することなぐ検査用回路基板を変更するだけで、あらゆ る被検査回路基板に対して検査の対応が可能な回路基板の検査装置および回路基 板の検査方法を提供することを目的とする。  Further, in the present invention, even if the circuit board to be inspected to be inspected is changed, all that is required is to change the circuit board for inspection without separately manufacturing the entire inspection apparatus (entire inspection jig). An object of the present invention is to provide a circuit board inspection apparatus and a circuit board inspection method capable of performing inspection on a circuit board to be inspected.
[0026] また本発明は、検査対象である被検査回路基板の被検査電極の高さバラツキに対 する追従性が良好で、導通不良が発生せず、正確な検査を実施することが可能な回 路基板の検査装置および回路基板の検査方法を提供することを目的とする。  [0026] Further, the present invention has a good follow-up property with respect to variations in the height of electrodes to be inspected of a circuit board to be inspected, and does not cause a conduction failure, and can perform an accurate inspection. An object of the present invention is to provide a circuit board inspection apparatus and a circuit board inspection method.
課題を解決するための手段  Means for solving the problem
[0027] 本発明の回路基板の検査装置は、一対の第 1の検査治具と第 2の検査治具によつ て、両検査治具の間で検査対象である被検査回路基板の両面を挟圧して電気検査 を行う回路基板の検査装置であって、 The circuit board inspection apparatus of the present invention uses a pair of a first inspection jig and a second inspection jig to perform an inspection between both inspection jigs on both sides of a circuit board to be inspected. A circuit board inspection device for performing an electrical inspection by clamping
前記第 1の検査治具と第 2の検査治具がそれぞれ、  The first inspection jig and the second inspection jig are each
基板の一面側と他面側との間で電極ピッチを変換するピッチ変換用基板と、 前記ピッチ変換用基板の被検査回路基板側に配置される第 1の異方導電性シート と、  A pitch conversion substrate for converting an electrode pitch between one surface side and the other surface side of the substrate; a first anisotropic conductive sheet disposed on the circuit board to be inspected side of the pitch conversion substrate;
前記ピッチ変換用基板の被検査回路基板とは逆側に配置される第 2の異方導電性 シートと、  A second anisotropic conductive sheet disposed on the opposite side of the pitch conversion board from the circuit board to be inspected;
を備えた回路基板側コネクタと、  A circuit board side connector having
所定のピッチで配置された複数の導電ピンと、  A plurality of conductive pins arranged at a predetermined pitch,
前記導電ピンを軸方向に移動可能に支持する、一対の離間した第 1の絶縁板と第 2の絶縁板と、  A pair of spaced first and second insulating plates that support the conductive pins movably in the axial direction,
を備えた中 «Iピンユニットと、 テスターと前記中継ピンユニットとを電気的に接続するコネクタ基板と、 前記コネクタ基板の中継ピンユニット側に配置される第 3の異方導電性シートと、 前記コネクタ基板の中継ピンユニットとは逆側に配置されるベース板と、 を備えたテスター佃 jコネクタと、を備え、 With «I-pin unit and A connector board for electrically connecting the tester to the relay pin unit; a third anisotropic conductive sheet disposed on the relay pin unit side of the connector board; and an opposite side of the connector board to the relay pin unit And a tester Tsukuda j connector provided with:
前記第 1の異方導電性シートが、導電性粒子が厚み方向に配列するとともに面方 向に均一に分散された異方導電性シートであることを特徴とする。  The first anisotropic conductive sheet is characterized in that the first anisotropic conductive sheet is an anisotropic conductive sheet in which conductive particles are arranged in a thickness direction and uniformly dispersed in a surface direction.
[0028] また、本発明の回路基板の検査方法は、上記の回路基板の検査装置を用いた回 路基板の検査方法であって、 [0028] Further, a circuit board inspection method of the present invention is a circuit board inspection method using the above-described circuit board inspection apparatus,
一対の第 1の検査治具と第 2の検査治具によって、両検査治具の間で検査対象で ある被検査回路基板の両面を挟圧して電気検査を行うことを特徴とする。  A pair of the first inspection jig and the second inspection jig sandwiches both surfaces of the circuit board to be inspected between the two inspection jigs to perform an electrical inspection.
[0029] 上記の発明において、前記第 1の異方導電性シートの厚み W力 0. 03-0. 5m [0029] In the above invention, the thickness W of the first anisotropically conductive sheet is 0.03-0.5m.
1  1
mであり、導電性粒子の数平均粒子径 Dカ^ー 50 μ mであり、厚み Wと数平均粒子  m, the number average particle diameter of the conductive particles D is 50 μm, the thickness W and the number average particles
1 1  1 1
径 Dとの比 W /Όが 1. 1一 10であり、シート基材を構成する絶縁性エラストマ一の The ratio W / Ό to the diameter D is 1.1 to 10, which is the ratio of the insulating elastomer constituting the sheet base material.
1 1 1 1 1 1
デュロメータ硬さが 30— 90であることが好ましい。  The durometer hardness is preferably 30-90.
[0030] 本発明の回路基板の検査装置によれば、検査対象である被検査回路基板と、ピッ チ変換用基板との間に配置される第 1の異方導電性シートとして、導電性粒子が厚 み方向に配列するとともに面方向に均一に分散された異方導電性シートを使用して いる。 According to the circuit board inspection apparatus of the present invention, the conductive particles are used as the first anisotropic conductive sheet disposed between the circuit board to be inspected and the pitch conversion board. Are arranged in the thickness direction and are uniformly dispersed in the plane direction.
このため、被検査回路基板について繰り返し連続検査を行う際に、異方導電性シ ートの劣化による交換頻度が少なぐ検査効率が高い。  For this reason, when the circuit board to be inspected is repeatedly and continuously inspected, the frequency of replacement due to deterioration of the anisotropic conductive sheet is small, and the inspection efficiency is high.
[0031] また、例えば 200 μ m以下の微細ピッチで配置され、電極幅が 100 μ m以下である 微小な電極を備えた被検査回路基板であっても、被検査回路基板の各被検査電極 間における絶縁状態を保ちつつ、被検査電極と回路基板側コネクタの検査電極との 電気的な接続を達成することができる。そして、絶縁部に隔てられた導電路形成部を 有しないため、被検査回路基板の繰り返し検査時において、異方導電性シートの横 方向への位置ずれが生じても、常に被検査回路基板の被検査電極と回路基板側コ ネクタの検査電極との電気的な接続が達成されるので、異方導電性シートの位置ず れに起因して良品の被検査回路基板が不良品と誤判定されることを抑制することが できる。 [0031] Further, even if a circuit board to be inspected is provided with minute electrodes arranged at a fine pitch of 200 μm or less and having an electrode width of 100 μm or less, for example, Electrical connection between the electrode to be inspected and the inspection electrode of the connector on the circuit board side can be achieved while maintaining the insulation state between the electrodes. Further, since there is no conductive path forming portion separated by the insulating portion, even when the anisotropic conductive sheet is displaced in the horizontal direction during the repeated inspection of the circuit board to be inspected, the circuit board to be inspected is always maintained. Since electrical connection between the electrode under test and the test electrode of the connector on the circuit board side is achieved, a good circuit board under test is erroneously determined to be defective due to the displacement of the anisotropic conductive sheet. Can be controlled it can.
[0032] また、第 1の異方導電性シートは、検査用の回路基板とは別体となっているため、 第 1の異方導電性シートに劣化が生じた場合には第 1の異方導電性シートのみ交換 すればよいので交換が容易である。検査用の回路基板は第 1の異方導電性シートの 交換時に交換する必要がなく再使用が可能であるため、被検査回路基板の検査コス 卜を低減させることができる。  [0032] Further, since the first anisotropic conductive sheet is separate from the circuit board for inspection, if the first anisotropic conductive sheet is deteriorated, the first anisotropic conductive sheet is degraded. Replacement is easy because only the conductive sheet needs to be replaced. Since the inspection circuit board does not need to be replaced when the first anisotropic conductive sheet is replaced and can be reused, the inspection cost of the circuit board to be inspected can be reduced.
[0033] このように、本発明の回路基板の検査装置によれば、検査対象である被検査回路 基板が微細ピッチで配置された微小電極を有するものであっても、信頼性の高 ヽ電 気的検査を行うことができる。  As described above, according to the circuit board inspection apparatus of the present invention, even if the circuit board to be inspected has minute electrodes arranged at a fine pitch, a highly reliable electric circuit can be obtained. Mental examination can be performed.
[0034] 本発明の回路基板の検査装置は、前記第 1の異方導電性シートは、被検査回路基 板に接する側の表面における表面粗さが 0. 5— 5 mであり、ピッチ変換用基板に 接する側の表面における表面粗さが 0. 3 m以下であり、  [0034] In the circuit board inspection apparatus of the present invention, the first anisotropic conductive sheet has a surface roughness of 0.5 to 5 m on a surface in contact with the circuit board to be inspected, and the pitch conversion is performed. Surface roughness on the side in contact with the substrate for use is 0.3 m or less,
前記ピッチ変換用基板は、第 1の異方導電性シートに接する側の表面における絶 縁部の表面粗さが 0. 2 m以下であることを特徴とする。  The pitch conversion substrate is characterized in that the surface roughness of the insulating portion on the surface in contact with the first anisotropic conductive sheet is 0.2 m or less.
[0035] このように、第 1の異方導電性シートの被検査回路基板への接触面を、特定の表面 粗さを有する粗面としたので、被検査回路基板に対する加圧が解除された際におけ る被検査回路基板と第 1の異方導電性シートとの接触面積力 、さくなる。したがって 、シート基材である絶縁性エラストマ一の粘着性が抑制され、被検査回路基板が第 1 の異方導電性シートに対して接着してしまうことを防止または抑制することができる。  As described above, since the contact surface of the first anisotropic conductive sheet to the circuit board to be inspected is a rough surface having a specific surface roughness, the pressure applied to the circuit board to be inspected is released. In this case, the contact area force between the circuit board to be inspected and the first anisotropic conductive sheet is reduced. Therefore, the adhesiveness of the insulating elastomer, which is the sheet substrate, is suppressed, and the circuit board to be inspected can be prevented or suppressed from adhering to the first anisotropic conductive sheet.
[0036] さらに、第 1の異方導電性シートのピッチ変換用基板への接触面を、表面粗さが小 さい平坦面とし、ピッチ変換用基板の表面の絶縁部における表面粗さを小さくしたの で、ピッチ変換用基板と第 1の異方導電性シートとの接触面積が大きくなる。したがつ て、被検査回路基板に対する加圧が解除された後も、両者の密着性が高ぐシート 基材である絶縁性エラストマ一の粘着性によって第 1の異方導電性シートがピッチ変 換用基板に確実に保持される。このため、ピッチ変換用基板力ゝらの第 1の異方導電 性シートの離脱を防止することができ、多数の被検査回路基板の電気検査を連続し て行う場合であっても、検査作業を円滑に行うことができる。  [0036] Furthermore, the contact surface of the first anisotropic conductive sheet with the pitch conversion substrate is a flat surface with small surface roughness, and the surface roughness of the insulating portion on the surface of the pitch conversion substrate is reduced. Therefore, the contact area between the pitch conversion substrate and the first anisotropic conductive sheet increases. Therefore, even after the pressurization of the circuit board to be inspected is released, the first anisotropic conductive sheet changes its pitch due to the adhesive property of the insulating elastomer, which is a sheet base material having high adhesion between the two. It is securely held on the replacement substrate. For this reason, it is possible to prevent the first anisotropic conductive sheet from being detached by the pitch converting substrate force, and to perform the inspection work even when a large number of circuit boards to be inspected are continuously subjected to electrical inspection. Can be performed smoothly.
[0037] 本発明の回路基板の検査装置は、前記第 2の異方導電性シートが、厚み方向に延 びる複数の導電路形成部と、これらの導電路形成部を互いに絶縁する絶縁部とから なり、導電性粒子が導電路形成部中にのみ含有され、これにより該導電性粒子は面 方向に不均一に分散されるとともに、シート片面側に導電路形成部が突出しているこ とを特徴とする。 [0037] In the circuit board inspection device of the present invention, the second anisotropic conductive sheet extends in a thickness direction. A plurality of conductive path forming portions, and an insulating portion that insulates the conductive path forming portions from each other. The conductive particles are contained only in the conductive path forming portions, so that the conductive particles do not extend in the surface direction. It is characterized by being uniformly dispersed and having a conductive path forming portion protruding on one side of the sheet.
[0038] 上記の発明において、前記第 2の異方導電性シートにおける導電路形成部の厚み Wが 0. 1— 2mmであり、導電性粒子の数平均粒子径 D力 一 200 μ mであり、厚 In the above invention, the thickness W of the conductive path forming portion in the second anisotropic conductive sheet is 0.1 to 2 mm, and the number average particle diameter D of the conductive particles is 200 μm. , Thickness
2 2 twenty two
み Wと数平均粒子径 Dとの比 W ZDが 1. 1一 10であり、シート基材を構成する絶 The ratio W ZD of W to the number average particle diameter D is 1.1 to 10,
2 2 2 2 2 2 2 2
縁性エラストマ一のデュロメータ硬さが 15— 60であることが好まし!/、。  It is preferable that the durometer hardness of the edge elastomer is 15-60! / ,.
[0039] 本発明の回路基板の検査装置は、前記第 3の異方導電性シートが、厚み方向に延 びる複数の導電路形成部と、これらの導電路形成部を互いに絶縁する絶縁部とから なり、導電性粒子が導電路形成部中にのみ含有され、これにより該導電性粒子は面 方向に不均一に分散されるとともに、シート片面側に導電路形成部が突出しているこ とを特徴とする。 [0039] In the circuit board inspection device of the present invention, the third anisotropic conductive sheet includes a plurality of conductive path forming portions extending in a thickness direction, and an insulating portion that insulates the conductive path forming portions from each other. And the conductive particles are contained only in the conductive path forming portion, whereby the conductive particles are unevenly dispersed in the surface direction, and the conductive path forming portion protrudes on one side of the sheet. Features.
[0040] このように、第 2の異方導電性シートおよび第 3の異方導電性シートとして、導電路 形成部と絶縁部とからなり、導電性粒子が導電路形成部中にのみ含有されて面方向 に不均一に分散され、シート片面側に導電路形成部が突出した偏在型の異方導電 性シートを使用することにより、検査治具の押圧による加圧力や衝撃がこれらのシー トで吸収され、これにより第 1の異方導電性シートの劣化を抑制することができる。す なわち、この偏在型の異方導電性シートは弾力性が大きいため、検査時における検 查治具の加圧力を吸収し、衝撃緩和能力に優れているので、弾力性が比較的少な い第 1の異方導電性シートへの圧力集中や衝撃を緩和し、第 1の異方導電性シート の劣化を抑制する。したがって、繰り返し検査に対する第 1の異方導電性シートの使 用寿命が長くなり、結果として、被検査回路基板の電気的検査において第 1の異方 導電性シートの交換回数を減少させることができ、検査効率が向上する。  As described above, the second anisotropic conductive sheet and the third anisotropic conductive sheet each include the conductive path forming portion and the insulating portion, and the conductive particles are contained only in the conductive path forming portion. By using an unevenly distributed anisotropic conductive sheet that is unevenly distributed in the surface direction and the conductive path forming portion protrudes on one side of the sheet, the pressing force and impact due to the pressing of the inspection jig can be used for these sheets. Thus, deterioration of the first anisotropic conductive sheet can be suppressed. That is, since the unevenly distributed anisotropic conductive sheet has high elasticity, it absorbs the pressing force of the inspection jig at the time of inspection and has excellent impact relaxation ability, so that the elasticity is relatively low. It alleviates pressure concentration and impact on the first anisotropically conductive sheet and suppresses deterioration of the first anisotropically conductive sheet. Therefore, the service life of the first anisotropically conductive sheet for repeated inspection is prolonged, and as a result, the number of times of replacement of the first anisotropically conductive sheet in the electrical inspection of the circuit board to be inspected can be reduced. Inspection efficiency is improved.
[0041] 本発明の回路基板の検査装置は、前記ピッチ変換用基板に、一対の電流用端子 電極と電圧用端子電極とからなる接続電極が設けられ、該接続電極は、被検査回路 基板の各被検査電極に対して前記一対の電流用端子電極と電圧用端子電極とが電 気的に接続するようにピッチ変換用基板に配置されており、 前記コネクタ基板に、前記ピッチ変換用基板の電流用端子電極と電圧用端子電極 とにそれぞれ電気的に接続するように、電流用ピン側電極と電圧用ピン側電極が配 置されて!ヽることを特徴とする。 In the circuit board inspection apparatus of the present invention, the pitch conversion board is provided with a connection electrode including a pair of a current terminal electrode and a voltage terminal electrode, and the connection electrode is provided on the circuit board to be inspected. The pair of current terminal electrodes and voltage terminal electrodes are arranged on the pitch conversion substrate so as to be electrically connected to each of the electrodes to be inspected, A current pin-side electrode and a voltage pin-side electrode are arranged on the connector board so as to be electrically connected to the current terminal electrode and the voltage terminal electrode of the pitch conversion board, respectively. It is characterized by the following.
[0042] このように構成することによって、第 1の検査治具と第 2の検査治具の間で検査対象 である被検査回路基板の両面を挟圧して電気検査を行う際に、被検査回路基板の 各被検査用電極に対してそれぞれ、第 1の異方導電性シートを介して、ピッチ変換用 基板の接続電極の電流用端子電極と電圧用端子電極の両方が電気的に接続する。 そして、第 2の異方導電性シート、中継ピンユニットの導電ピン、第 3の異方導電性 シートを介して、ピッチ変換用基板の電流用端子電極が、コネクタ基板の電流用ピン 側電極に電気的に接続されるとともに、ピッチ変換用基板の電圧用端子電極が、コ ネクタ基板の電圧用端子電極に電気的に接続されるようになって!/ヽる。  [0042] With this configuration, when the electrical inspection is performed by pressing both sides of the circuit board to be inspected between the first inspection jig and the second inspection jig, Both the current terminal electrode and the voltage terminal electrode of the connection electrode of the pitch conversion board are electrically connected to each of the electrodes to be inspected on the circuit board via the first anisotropic conductive sheet. . Then, through the second anisotropic conductive sheet, the conductive pins of the relay pin unit, and the third anisotropic conductive sheet, the current terminal electrode of the pitch conversion board is connected to the current pin side electrode of the connector board. While being electrically connected, the voltage terminal electrode of the pitch conversion board is now electrically connected to the voltage terminal electrode of the connector board! / Puru.
[0043] これにより、被検査回路基板の各被検査用電極に対してそれぞれ、上下のピッチ 変換用基板の電流用端子電極を介して電流供給経路が構成されることになる、一方 、被検査回路基板の各被検査用電極に対してそれぞれ、上下のピッチ変換用基板 の電圧用端子電極を介して電圧計測経路が構成されることになる。  [0043] Thus, a current supply path is formed for each of the electrodes to be inspected on the circuit board to be inspected via the current terminal electrodes of the upper and lower pitch conversion substrates. A voltage measurement path is formed for each of the electrodes to be inspected on the circuit board via the voltage terminal electrodes of the upper and lower pitch conversion boards.
[0044] したがって、被検査回路基板の各被検査用電極に対して、上下のピッチ変換用基 板の電流用端子電極を介して、例えば、定電流供給装置を用いて、電流供給経路 に一定の電流を供給しながら、上下のピッチ変換用基板の電圧用端子電極を介して 、電圧計測経路によって、被検査回路基板の各被検査用電極からの電圧を電圧計 で測定することによって、被検査回路基板の配線パターンが所定の性能を有するか 否かについての電気的特性の確認試験を行うことができる。  Therefore, for each of the electrodes to be inspected on the circuit board to be inspected, the current is fixed to the current supply path via the current terminal electrodes of the upper and lower pitch conversion boards, for example, using a constant current supply device. The voltage from each of the electrodes to be inspected on the circuit board to be inspected is measured by a voltmeter through the voltage measuring electrodes via the voltage terminal electrodes of the upper and lower pitch conversion boards while supplying the current of It is possible to perform a test for confirming whether or not the wiring pattern of the inspection circuit board has a predetermined performance on electrical characteristics.
[0045] 逆に、被検査回路基板の各被検査用電極に対して、上下のピッチ変換用基板の電 圧用端子電極を介して、例えば、定電圧供給装置を用いて、電圧計測経路に対して 一定の電圧を加えながら、上下のピッチ変換用基板の電流用端子電極を介して、電 流供給経路によって、被検査回路基板の各被検査用電極からの電流を電流計で測 定することによって、被検査回路基板の配線パターンが所定の性能を有する力否か についての電気的特性の確認試験を行うこともできる。  Conversely, each of the electrodes to be inspected on the circuit board to be inspected is connected to the voltage measurement path via the voltage terminal electrodes of the upper and lower pitch conversion substrates, for example, using a constant voltage supply device. While applying a constant voltage, measure the current from each electrode to be inspected on the circuit board to be inspected with an ammeter through the current supply path via the current terminal electrodes of the upper and lower pitch conversion boards. Accordingly, it is also possible to perform a test for confirming electrical characteristics as to whether or not the wiring pattern of the circuit board to be inspected has a predetermined performance.
[0046] このように、被検査回路基板の各被検査用電極に対して、別個の電圧計測経路、 電流供給経路を介して、別個に電圧と電流を測定することができるので、被検査回 路基板の配線パターンが所定の性能を有するか否かにっ 、ての電気的特性にっ ヽ て正確な確認試験を行うことができ、しかも、確認試験を短時間で実施することができ る。 As described above, for each of the electrodes to be inspected on the circuit board to be inspected, a separate voltage measurement path, Since the voltage and current can be measured separately via the current supply path, it is possible to accurately determine whether or not the wiring pattern of the circuit board to be inspected has a predetermined performance and the electrical characteristics. Confirmation test can be performed, and the confirmation test can be performed in a short time.
[0047] 本発明の回路基板の検査装置は、前記中継ピンユニットが、  [0047] In the circuit board inspection device of the present invention, the relay pin unit may include:
前記第 1の絶縁板と第 2の絶縁板との間に配置された中間保持板と、  An intermediate holding plate disposed between the first insulating plate and the second insulating plate,
前記第 1の絶縁板と中間保持板との間に配置された第 1の支持ピンと、 前記第 2の絶縁板と中間保持板との間に配置された第 2の支持ピンと、 を備えるとともに、  A first support pin disposed between the first insulating plate and the intermediate holding plate, and a second support pin disposed between the second insulating plate and the intermediate holding plate,
前記第 1の支持ピンの中間保持板に対する第 1の当接支持位置と、前記第 2の支 持ピンの中間保持板に対する第 2の当接支持位置とが、中間保持板の厚さ方向に投 影した中間保持板投影面において異なる位置に配置されていることを特徴とする。  A first contact support position of the first support pin with respect to the intermediate holding plate and a second contact support position of the second support pin with respect to the intermediate holding plate are in the thickness direction of the intermediate holding plate. It is characterized by being arranged at a different position on the projected intermediate holding plate projection plane.
[0048] このように構成することによって、第 1の検査治具と第 2の検査治具の間で検査対象 である被検査回路基板の両面を挟圧して電気検査を行う際に、加圧の初期段階で は、中継ピンユニットの導電ピンの移動と、第 1の異方導電性シートと、第 2の異方導 電性シートと、第 3の異方導電性シートのゴム弾性圧縮にて圧力を吸収して、被検査 回路基板の被検査電極の高さバラツキをある程度吸収することができる。  [0048] With this configuration, when the electrical inspection is performed by pressing both sides of the circuit board to be inspected between the first inspection jig and the second inspection jig, In the initial stage, the conductive pins of the relay pin unit are moved, and the rubber elastic compression of the first anisotropic conductive sheet, the second anisotropic conductive sheet, and the third anisotropic conductive sheet is performed. Thus, it is possible to absorb the variation in height of the electrodes to be inspected on the circuit board to be inspected to some extent.
[0049] そして、第 1の支持ピンの中間保持板との第 1の当接支持位置と、第 2の支持ピン の中間保持板との第 2の当接支持位置とが、中間保持板の厚さ方向に投影した中間 保持板投影面において異なる位置に配置されているので、第 1の検査治具と第 2の 検査治具の間で検査対象である被検査回路基板をさらに加圧した際に、第 1の異方 導電性シートと、第 2の異方導電性シートと、第 3の異方導電性シートのゴム弾性圧 縮に加えて、中継ピンユニットの第 1の絶縁板と、第 2の絶縁板と、第 1の絶縁板と第 2の絶縁板の間に配置された中間保持板のパネ弾性により、被検査回路基板の被検 查電極の高さバラツキ、例えば、ハンダボール電極の高さバラツキに対して、圧力集 中を分散させて、局部的な応力集中を回避することができる。  [0049] Then, the first contact support position of the first support pin with the intermediate holding plate and the second contact support position of the second support pin with the intermediate holding plate are different from each other. Since the intermediate holding plate projected in the thickness direction is arranged at different positions on the projection plane, the circuit board to be inspected, which is the inspection object, is further pressed between the first inspection jig and the second inspection jig. In addition to the rubber elastic compression of the first anisotropic conductive sheet, the second anisotropic conductive sheet, and the third anisotropic conductive sheet, the first insulating plate of the relay pin unit Due to the panel elasticity of the second insulating plate and the intermediate holding plate disposed between the first insulating plate and the second insulating plate, the height variation of the electrode to be inspected on the circuit board to be inspected, for example, the solder ball electrode With respect to the height variation, the pressure concentration can be dispersed to avoid local stress concentration.
[0050] これにより、高さバラツキを有する被検査回路基板の被検査電極の各々に対して安 定的な電気的接触が確保される。さらに、第 1の異方導電性シートへの応力集中が 低減されるので、第 1の異方導電性シートの局部的な破損が抑制される。その結果、 第 1の異方導電性シートの繰り返し使用耐久性が向上するので、第 1の異方導電性 シートの交換回数が減り、検査作業効率が向上する。 [0050] Thereby, stable electrical contact with each of the electrodes to be inspected of the circuit board to be inspected having a variation in height is ensured. Furthermore, stress concentration on the first anisotropic conductive sheet Since this is reduced, local breakage of the first anisotropic conductive sheet is suppressed. As a result, the repeated use durability of the first anisotropic conductive sheet is improved, so that the number of times of replacement of the first anisotropic conductive sheet is reduced, and the inspection work efficiency is improved.
[0051] また、一定間隔で導電ピンを配置する必要がないため、絶縁板に形成する貫通孔 の数を減らすことができる。したがって、絶縁板を薄くすることができる。さらに、導電 ピンを保持する絶縁板への貫通孔のドリル加工による穿設作業が少なぐ検査装置 の作製に要するコストを低減することができる。  [0051] Further, since it is not necessary to arrange the conductive pins at regular intervals, the number of through holes formed in the insulating plate can be reduced. Therefore, the thickness of the insulating plate can be reduced. Further, it is possible to reduce the cost required for manufacturing an inspection apparatus in which drilling of a through hole in an insulating plate holding conductive pins by drilling is small.
[0052] 本発明の回路基板の検査装置は、一対の第 1の検査治具と第 2の検査治具によつ て、両検査治具の間で検査対象である被検査回路基板の両面を挟圧した際に、 前記第 1の支持ピンの中間保持板に対する第 1の当接支持位置を中心として、前 記中間保持板が、前記第 2の絶縁板の方向に橈むとともに、 [0052] The circuit board inspection apparatus of the present invention includes a pair of first and second inspection jigs, which are used to inspect both sides of a circuit board to be inspected, which is an inspection object, between the two inspection jigs. When the pressure is applied, the intermediate holding plate is bent in the direction of the second insulating plate around the first contact support position of the first support pin with respect to the intermediate holding plate,
前記第 2の支持ピンの中間保持板に対する第 2の当接支持位置を中心として、前 記中間保持板が、前記第 1の絶縁板の方向に橈むように構成されていることを特徴と する。  The intermediate holding plate is characterized in that it is configured so as to extend in the direction of the first insulating plate around a second contact support position of the second support pin with respect to the intermediate holding plate.
[0053] このように構成すること〖こよって、中間保持板が、第 1の当接支持位置、第 2の当接 支持位置を中心として、相互に反対方向に橈むので、第 1の検査治具と第 2の検査 治具の間で検査対象である被検査回路基板をさらに加圧した際に、中間保持板の パネ弾性力がさらに発揮されることになり、被検査回路基板の被検査電極の高さバラ ツキに対して、圧力集中を分散させて、局部的な応力集中を回避することができ、第 1の異方導電性シートの局部的な破損が抑制される。その結果、第 1の異方導電性 シートの繰り返し使用耐久性が向上するので、第 1の異方導電性シートの交換回数 が減り、検査作業効率が向上する。  [0053] With this configuration, since the intermediate holding plate bends in opposite directions about the first contact support position and the second contact support position, the first inspection is performed. When the circuit board to be inspected is further pressurized between the jig and the second inspection jig, the panel elasticity of the intermediate holding plate is further exerted, and the circuit board to be inspected is exposed. With respect to the height variation of the inspection electrode, pressure concentration can be dispersed to avoid local stress concentration, and local damage of the first anisotropic conductive sheet can be suppressed. As a result, the durability of repeated use of the first anisotropic conductive sheet is improved, so that the number of times of replacement of the first anisotropic conductive sheet is reduced, and the inspection work efficiency is improved.
[0054] 本発明の回路基板の検査装置は、前記第 1の支持ピンの中間保持板に対する第 1 の当接支持位置が、前記中間保持板投影面において格子状に配置され、 [0054] In the circuit board inspection device of the present invention, the first contact support position of the first support pin with respect to the intermediate holding plate is arranged in a grid on the intermediate holding plate projection plane,
前記第 2の支持ピンの中間保持板に対する第 2の当接支持位置が、前記中間保持 板投影面において格子状に配置されており、  A second contact support position of the second support pin with respect to the intermediate holding plate is arranged in a grid on the intermediate holding plate projection plane,
前記中間保持板投影面において、隣接する 4個の第 1の当接支持位置力もなる単 位格子領域に、 1個の第 2の当接支持位置が配置されるとともに、 前記中間保持板投影面において、隣接する 4個の第 2の当接支持位置力もなる単 位格子領域に、 1個の第 1の当接支持位置が配置されるように構成されていることを 特徴とする。 On the intermediate holding plate projection plane, one second contact support position is arranged in a unit lattice area where four adjacent first contact support position forces are also provided, In the intermediate holding plate projection plane, one first contact support position is arranged in a unit lattice region where four adjacent second contact support position forces are also provided. Features.
[0055] このように構成することによって、第 1の当接支持位置と第 2の当接支持位置が格子 状に配置され、第 1の当接支持位置と第 2の当接支持位置が格子状に全てずれた位 置に配置されることになる。  [0055] With such a configuration, the first contact support position and the second contact support position are arranged in a lattice, and the first contact support position and the second contact support position are arranged in a lattice. It will be arranged in the position where all shifted.
[0056] したがって、中間保持板が、第 1の当接支持位置、第 2の当接支持位置を中心とし て、相互に反対方向により橈むことになり、第 1の検査治具と第 2の検査治具の間で 検査対象である被検査回路基板を加圧した際に、中間保持板のパネ弾性力がさら に発揮されることになり、被検査回路基板の被検査電極の高さバラツキに対して、圧 力集中を分散させて、局部的な応力集中をさらに回避することができ、第 1の異方導 電性シートの局部的な破損が抑制される。その結果、第 1の異方導電性シートの繰り 返し使用耐久性が向上するので、第 1の異方導電性シートの交換回数が減り、検査 作業効率が向上する。  [0056] Therefore, the intermediate holding plate is deflected in directions opposite to each other with the first contact support position and the second contact support position as centers, and the first inspection jig and the second inspection jig and the second inspection jig and the second inspection jig. When the circuit board to be inspected is pressurized between the inspection jigs, the panel elasticity of the intermediate holding plate is further exerted, and the height of the electrodes to be inspected on the circuit board to be inspected is increased. By dispersing the pressure concentration with respect to the variation, local stress concentration can be further avoided, and local damage of the first anisotropic conductive sheet is suppressed. As a result, the repeated use durability of the first anisotropic conductive sheet is improved, so that the number of times of replacement of the first anisotropic conductive sheet is reduced, and the inspection work efficiency is improved.
[0057] 本発明の回路基板の検査装置は、前記中継ピンユニットが、  [0057] In the circuit board inspection device of the present invention, the relay pin unit may include:
前記第 1の絶縁板と第 2の絶縁板との間に所定間隔離間して配置された複数個の 中間保持板と、  A plurality of intermediate holding plates disposed at predetermined intervals between the first insulating plate and the second insulating plate;
隣接する中間保持板同士の間に配置された保持板支持ピンと、  Holding plate support pins arranged between adjacent intermediate holding plates,
を備えるとともに、  With
少なくとも 1つの中間保持板において、該中間保持板に対して一面側から当接する 保持板支持ピンの該中間保持板に対する当接支持位置と、該中間保持板に対して 他面側から当接する第 1の支持ピン、第 2の支持ピン、または保持板支持ピンの該中 間保持板に対する当接支持位置とが、該中間保持板の厚さ方向に投影した中間保 持板投影面にぉ 、て異なる位置に配置されて 、ることを特徴とする。  In at least one intermediate holding plate, a holding support position of the holding plate support pin abutting against the intermediate holding plate from one surface side, and a second holding position abutting against the intermediate holding plate from the other surface side. The contact support position of the first support pin, the second support pin, or the support plate support pin with respect to the intermediate support plate corresponds to the intermediate support plate projection surface projected in the thickness direction of the intermediate support plate. At different positions.
[0058] このように構成することによって、これらの複数個の中間保持板によってパネ弾性が さらに発揮されることになり、被検査回路基板の被検査電極の高さバラツキに対して 、圧力集中を分散させて、局部的な応力集中をさらに回避することができ、第 1の異 方導電性シートの局部的な破損が抑制される。その結果、第 1の異方導電性シート の繰り返し使用耐久性が向上するので、異方導電性シートの交換回数が減り、検査 作業効率が向上する。 With this configuration, panel elasticity is further exhibited by the plurality of intermediate holding plates, and pressure concentration is reduced with respect to variations in the height of electrodes to be inspected on the circuit board to be inspected. By dispersing, local stress concentration can be further avoided, and local damage of the first anisotropic conductive sheet is suppressed. As a result, the first anisotropic conductive sheet Since the durability of repeated use of the conductive sheet is improved, the number of times of replacement of the anisotropic conductive sheet is reduced, and the inspection work efficiency is improved.
[0059] 本発明の回路基板の検査装置は、全ての前記中間保持板において、該中間保持 板に対して一面側力 当接する保持板支持ピンの該中間保持板に対する当接支持 位置と、該中間保持板に対して他面側力 当接する第 1の支持ピン、第 2の支持ピン 、または保持板支持ピンの該中間保持板に対する当接支持位置とが、該中間保持 板の厚さ方向に投影した中間保持板投影面にぉ 、て異なる位置に配置されて 、るこ とを特徴とする。  [0059] In the circuit board inspection apparatus of the present invention, in all of the intermediate holding plates, the holding plate support pins that are in contact with the one-side force on the intermediate holding plate have contact support positions with respect to the intermediate holding plate; The contact support position of the first support pin, the second support pin, or the holding plate support pin with respect to the intermediate holding plate, which is in contact with the intermediate holding plate on the other surface, is in the thickness direction of the intermediate holding plate. The intermediate holding plate is projected at a different position from the projection surface of the intermediate holding plate.
[0060] これによつて、全ての中間保持板において、その表裏面側の支持ピン力もの当接 支持位置が互いにずれた位置に配置されるので、これらの複数個の中間保持板の パネ弾性がさらに発揮されることになり、被検査回路基板の被検査電極の高さバラッ キに対して、圧力集中を分散させて、局部的な応力集中をさらに回避することができ 、第 1の異方導電性シートの局部的な破損が抑制される。その結果、第 1の異方導電 性シートの繰り返し使用耐久性が向上するので、第 1の異方導電性シートの交換回 数が減り、検査作業効率が向上する。  [0060] As a result, in all the intermediate holding plates, the supporting pin positions on the front and back sides of the plurality of intermediate holding plates are located at positions shifted from each other. The pressure concentration is dispersed against the height variation of the electrode to be inspected on the circuit board to be inspected, so that local stress concentration can be further avoided. Local damage of the conductive sheet is suppressed. As a result, the durability of repeated use of the first anisotropic conductive sheet is improved, so that the number of times of replacement of the first anisotropic conductive sheet is reduced, and the inspection work efficiency is improved.
発明の効果  The invention's effect
[0061] 本発明によれば、検査対象である被検査回路基板が、微細ピッチで配置された微 小電極を有するものであっても信頼性の高い電気的検査を行うことができる。  [0061] According to the present invention, a highly reliable electrical inspection can be performed even when a circuit board to be inspected has minute electrodes arranged at a fine pitch.
図面の簡単な説明  Brief Description of Drawings
[0062] [図 1]図 1は、本発明の回路基板の検査装置における一実施形態を示した断面図で ある。  FIG. 1 is a cross-sectional view showing one embodiment of a circuit board inspection device of the present invention.
[図 2]図 2は、図 1の検査装置の検査時における積層状態を示した断面図である。  FIG. 2 is a cross-sectional view showing a stacked state at the time of inspection of the inspection device of FIG. 1.
[図 3]図 3は、ピッチ変換用基板の被検査回路基板側の表面を示した図である。  FIG. 3 is a view showing a surface of a board for pitch conversion on a circuit board to be inspected side.
[図 4]図 4は、ピッチ変換用基板の中継ピンユニット側の表面を示した図である。  FIG. 4 is a diagram showing a surface of a pitch conversion board on a relay pin unit side.
[図 5]図 5は、第 1の異方導電性シートの部分断面図である。  FIG. 5 is a partial cross-sectional view of a first anisotropic conductive sheet.
[図 6]図 6は、第 2の異方導電性シートの部分断面図である。  FIG. 6 is a partial cross-sectional view of a second anisotropic conductive sheet.
[図 7]図 7は、第 1の異方導電性シートをピッチ変換用基板に積層した状態を示した 断面図である。 [図 8]図 8 (a)図 8は、片面を粗面とした第 1の異方導電性シートの部分断面図、図 8 ( b)は、この第 1の異方導電性シートをピッチ変換用基板に積層した状態を示した断 面図である。 FIG. 7 is a cross-sectional view showing a state where a first anisotropic conductive sheet is laminated on a pitch conversion substrate. [FIG. 8] FIG. 8 (a) FIG. 8 is a partial cross-sectional view of a first anisotropic conductive sheet having one surface roughened, and FIG. 8 (b) shows a pitch of the first anisotropic conductive sheet. FIG. 4 is a cross-sectional view showing a state in which the layers are stacked on a conversion substrate.
圆 9]図 9は、第 1の異方導電性シートの製造工程を説明する図である。 [9] FIG. 9 is a diagram for explaining a manufacturing process of the first anisotropic conductive sheet.
[図 10]図 10は、成形部材内部の導電性粒子の分布状態を示した図である。  FIG. 10 is a view showing a distribution state of conductive particles inside a molded member.
圆 11]図 11は、第 1の異方導電性シートの製造工程を説明する図である。 {11} FIG. 11 is a diagram illustrating a process for manufacturing the first anisotropic conductive sheet.
[図 12]図 12は、磁場を作用した後の導電性粒子の分布状態を示した図である。  FIG. 12 is a diagram showing a distribution state of conductive particles after applying a magnetic field.
[図 13]図 13は、中継ピンユニットの導電ピン、および絶縁板の一部を示した断面図で ある。  FIG. 13 is a cross-sectional view showing a conductive pin of a relay pin unit and a part of an insulating plate.
[図 14]図 14は、本発明の回路基板の検査装置における他の実施形態を示した断面 図である。  FIG. 14 is a cross-sectional view showing another embodiment of the circuit board inspection device of the present invention.
[図 15]図 15は、図 14の検査装置の検査時における積層状態を示した断面図である 圆 16]図 16は、ピッチ変換用基板の被検査回路基板側の表面を示した図である。  [FIG. 15] FIG. 15 is a cross-sectional view showing a stacked state at the time of inspection by the inspection device of FIG. 14. [16] FIG. 16 is a diagram showing a surface of a pitch conversion substrate on the side of a circuit board to be inspected. is there.
[図 17]図 17は、ピッチ変換用基板の中継ピンユニット側の表面を示した図である。 圆 18]図 18は、第 1の異方導電性シートをピッチ変換用基板に積層した状態を示し た断面図である。 FIG. 17 is a diagram showing the surface of the pitch conversion board on the relay pin unit side. [18] FIG. 18 is a cross-sectional view showing a state where the first anisotropic conductive sheet is laminated on the pitch conversion substrate.
[図 19]図 19は、図 14の検査装置の使用状態を説明する部分拡大断面図である。  FIG. 19 is a partially enlarged cross-sectional view illustrating a state of use of the inspection device of FIG. 14.
[図 20]図 20は、本発明の回路基板の検査装置における他の実施形態を示した断面 図である。 FIG. 20 is a cross-sectional view showing another embodiment of the circuit board inspection apparatus of the present invention.
[図 21]図 21は、図 20の検査装置の検査時における積層状態を示した断面図である  [FIG. 21] FIG. 21 is a cross-sectional view showing a stacked state at the time of inspection of the inspection device of FIG.
[図 22]図 22は、中継ピンユニットの導電ピン、および絶縁板の一部を示した断面図で ある。 FIG. 22 is a cross-sectional view showing a conductive pin of a relay pin unit and a part of an insulating plate.
[図 23]図 23は、中間保持板の厚さ方向に投影した中間保持板投影面の部分拡大図 である。  FIG. 23 is a partially enlarged view of an intermediate holding plate projection surface projected in the thickness direction of the intermediate holding plate.
[図 24]図 24は、図 20の検査装置の部分拡大断面図である。  FIG. 24 is a partially enlarged cross-sectional view of the inspection device in FIG. 20.
[図 25]図 25は、図 20の検査装置の使用状態を説明する部分拡大断面図である。で ある。 FIG. 25 is a partially enlarged cross-sectional view illustrating a use state of the inspection device of FIG. 20. so is there.
[図 26]図 26は、図 20の検査装置における中継ピンユニットの部分拡大断面図である  FIG. 26 is a partially enlarged cross-sectional view of a relay pin unit in the inspection device of FIG. 20.
[図 27]図 27は、図 20の検査装置の使用状態を説明する部分拡大断面図である。 FIG. 27 is a partially enlarged cross-sectional view illustrating a use state of the inspection device in FIG. 20.
[図 28]図 28は、本発明の検査装置の他の実施形態を示した図 24と同様の部分拡大 断面図である。 FIG. 28 is a partially enlarged cross-sectional view similar to FIG. 24, showing another embodiment of the inspection apparatus of the present invention.
[図 29]図 29は、図 28の検査装置における中継ピンユニットの部分拡大断面図である  FIG. 29 is a partially enlarged cross-sectional view of a relay pin unit in the inspection device of FIG. 28.
[図 30]図 30は、本発明の他の実施形態における検査装置の使用状態を示した部分 拡大断面図である。 FIG. 30 is a partially enlarged cross-sectional view showing a use state of an inspection device according to another embodiment of the present invention.
[図 31]図 31は、従来における回路基板の検査装置の断面図である。  FIG. 31 is a cross-sectional view of a conventional circuit board inspection apparatus.
符号の説明 Explanation of symbols
1 被検査回路基板 1 Inspection circuit board
2 被検査電極 2 Test electrode
3 被検査電極 3 Test electrode
11a 第 1の検査治具 11a First inspection jig
l ib 第 2の検査治具 l ib Second inspection jig
21a, 21b 回路基板側コネクタ 21a, 21b Circuit board connector
22a, 22b 第 1の異方導電性シート 22a, 22b First anisotropic conductive sheet
23a, 23b ピッチ変換用基板 23a, 23b Pitch conversion board
24 端子電極  24 terminal electrode
25 接続電極  25 Connection electrode
26a, , 26b 第 2の異方導電性シート  26a,, 26b 2nd anisotropic conductive sheet
27a, , 27b 電流用端子電極  27a,, 27b Current terminal electrode
28a, , 28b 電圧用端子電極  28a,, 28b Voltage terminal electrode
31a, , 31b 中継ピンユニット  31a,, 31b Relay pin unit
32a, , 32b 導電ピン  32a,, 32b conductive pin
a3a, , 33b 第 1の支持ピン (支持ピン) a, 34b 第 1の絶縁板a3a,, 33b 1st support pin (support pin) a, 34b 1st insulation board
a, 35b 第 2の絶縁板a, 35b Second insulating plate
a 中間保持板a Intermediate holding plate
a, 37b 第 2の支持ピンa, 37b Second support pin
A 第 1の当接支持位置A First contact support position
B 第 2の当接支持位置a, 39b 保持板支持ピンB Second contact support position a, 39b Holding plate support pin
A 当接支持位置A Contact support position
a, 41b テスター側コネクタa, 42b 第 3の異方導電性シートa, 43b コネ、クタ基板a, 41b Tester side connector a, 42b Third anisotropic conductive sheet a, 43b Connector, connector board
a, 44b テスター側電極a, 45b ピン側電極a, 44b Tester side electrode a, 45b Pin side electrode
a, 46b ベース板a, 46b Base plate
a, 47b 電流用ピン側電極a, 48b 電圧用ピン側電極a, 49b 支持ピン a, 47b Current pin side electrode a, 48b Voltage pin side electrode a, 49b Support pin
絶縁基板  Insulating substrate
配線  Wiring
内部配線  Internal wiring
絶縁層  Insulating layer
絶縁層  Insulating layer
シート基材  Sheet base material
導電性粒子  Conductive particles
表面  Surface
裏面  Back
絶縁部  Insulation
導電路形成部 73 突出部 Conductive path forming part 73 Projection
81a, 81b 端部 81a, 81b end
82 中央部 82 Center
83 貫通孔 83 Through hole
91 加圧ロール 91 Pressure roll
92 支持ロール 92 Support roll
93a, b 成型部材 93a, b molded parts
94 スぺーサ 94 Susa
95 成型材料 95 Molding material
96 上部表面 96 Top surface
97 下部表面 97 Lower surface
98a, b 電磁石 98a, b electromagnet
99a 凹部 99a recess
99b 凸部 99b convex
101 被検査回路基板  101 Circuit board to be inspected
102 被検査電極  102 Test electrode
103 被検査電極  103 Test electrode
111a 上側検査治具  111a Upper inspection jig
11 1b 下側検査治具  11 1b Lower inspection jig
121a, 121b 回路基板側コネクタ 121a, 121b Circuit board side connector
121a, 121b 回路基板側コネクタ121a, 121b Circuit board side connector
122a, 122b 異方導電性シート122a, 122b Anisotropic conductive sheet
123a, 123b ピッチ変換用基板123a, 123b Pitch conversion board
126a, 126b 異方導電性シート126a, 126b Anisotropic conductive sheet
131a, 131b 中継ピンユニット131a, 131b Relay pin unit
132a, 132b 導電ピン 132a, 132b conductive pin
133a, 133b 支持ピン 133a, 133b Support pin
34a, 134b 第 1の絶縁板 135a, 135b 第 2の絶縁板 34a, 134b First insulating plate 135a, 135b Second insulating plate
141a, 141b テスター側コネクタ  141a, 141b Tester side connector
142a, 142b 異方導電性シート  142a, 142b Anisotropic conductive sheet
143a, 143b コネクタ基板  143a, 143b connector board
144a, 144b テスター側電極  144a, 144b Tester side electrode
145a, 145b ピン側電極  145a, 145b Pin side electrode
146a, 146b ベース板  146a, 146b Base plate
A 中間保持板投影面  A Intermediate holding plate projection surface
L1 距離  L1 distance
L2 距離  L2 distance
Q1 対角線  Q1 Diagonal line
Q2 対角線  Q2 Diagonal
R1 単位格子領域  R1 unit cell area
R2 単位格子領域  R2 unit cell area
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0064] 以下、図面を参照しながら本発明の実施形態について説明する。なお、以降の記 述において、 第 1の検査治具と第 2の検査治具における一対の同一の構成要素 (例えば回路基板側コネクタ 21aと回路基板側コネクタ 21b、第 1の異方導電性シート 22aと第 1の異方導電性シート 22bなど)を総称する場合には、記号「a」、「b」を省略 することがある (例えば、第 1の異方導電性シート 22aと第 1の異方導電性シート 22bとを総称して「第 1の異方導電性シート 22」と記述することがある)。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, a pair of identical components in the first inspection jig and the second inspection jig (for example, the circuit board side connector 21a and the circuit board side connector 21b, the first anisotropic conductive sheet 22a and the first anisotropic conductive sheet 22b), the symbols “a” and “b” may be omitted (for example, the first anisotropic conductive sheet 22a and the first anisotropic conductive sheet 22b). The anisotropic conductive sheet 22b may be collectively referred to as "first anisotropic conductive sheet 22").
[0065] 図 1は、本発明の一実施形態における検査装置を示した断面図、図 2は、図 1の検 查装置の検査時における積層状態を示した断面図、図 3は、ピッチ変換用基板の被 検査回路基板側の表面を示した図、図 4は、ピッチ変換用基板の中継ピンユニット側 の表面を示した図である。  FIG. 1 is a cross-sectional view illustrating an inspection apparatus according to an embodiment of the present invention, FIG. 2 is a cross-sectional view illustrating a stacked state of the inspection apparatus in FIG. 1 at the time of inspection, and FIG. FIG. 4 is a diagram illustrating a surface of the circuit board for inspection on the side of the circuit board to be inspected, and FIG. 4 is a diagram illustrating a surface of the substrate for pitch conversion on the side of the relay pin unit.
[0066] 本実施形態の検査装置は、集積回路などを実装するためのプリント回路基板など の検査対象である被検査回路基板 1に対して、被検査電極間の電気抵抗を測定す ることにより電気検査を行うものである。 この検査装置は、図 1および図 2に示したように、被検査回路基板 1の上面側に配 置される第 1の検査治具 11aと、下面側に配置される第 2の検査治具 l ibとが、上下 に互いに対向するように配置されて 、る。 The inspection apparatus of the present embodiment measures the electric resistance between the electrodes to be inspected on the circuit board 1 to be inspected such as a printed circuit board for mounting an integrated circuit or the like by measuring the electric resistance between the electrodes to be inspected. An electrical inspection is performed. As shown in FIGS. 1 and 2, this inspection apparatus includes a first inspection jig 11a disposed on the upper surface side of the circuit board 1 to be inspected, and a second inspection jig disposed on the lower surface side. lib are arranged so as to face each other up and down.
[0067] 第 1の検査治具 11aは、回路基板側コネクタ 21aと、中継ピンユニット 31aと、テスタ 一側コネクタ 41aとを備えている。回路基板側コネクタ 21aは、ピッチ変換用基板 23a と、その両側に配置された第 1の異方導電性シート 22aおよび第 2の異方導電性シー ト 26aと力 構成されている。テスター側コネクタ 41aは、中継ピンユニット 31a側に配 置された第 3の異方導電性シート 42aと、コネクタ基板 43aと、ベース板 46aとから構 成されている。 The first inspection jig 11a includes a circuit board side connector 21a, a relay pin unit 31a, and a tester one side connector 41a. The circuit board side connector 21a is composed of a pitch conversion board 23a, a first anisotropic conductive sheet 22a and a second anisotropic conductive sheet 26a arranged on both sides thereof. The tester-side connector 41a includes a third anisotropic conductive sheet 42a disposed on the relay pin unit 31a side, a connector board 43a, and a base plate 46a.
[0068] 第 2の検査治具 l ibも、第 1の検査治具 11aと同様に構成され、回路基板側コネク タ 21bと、中継ピンユニット 31bと、テスター側コネクタ 41bとを備えている。回路基板 側コネクタ 21bは、ピッチ変換用基板 23bと、その両側に配置された第 1の異方導電 性シート 22bおよび第 2の異方導電性シート 26bとから構成されて 、る。テスター側コ ネクタ 41bは、中継ピンユニット 31b側に配置された第 3の異方導電性シート 42bと、 コネクタ基板 43bと、ベース板 46bと力ら構成されて 、る。  [0068] The second inspection jig lib is configured similarly to the first inspection jig 11a, and includes a circuit board side connector 21b, a relay pin unit 31b, and a tester side connector 41b. The circuit board side connector 21b includes a pitch conversion board 23b, and a first anisotropic conductive sheet 22b and a second anisotropic conductive sheet 26b arranged on both sides thereof. The tester-side connector 41b includes a third anisotropic conductive sheet 42b, a connector board 43b, and a base plate 46b, which are arranged on the relay pin unit 31b side.
被検査回路基板 1の上面には、被検査用の電極 2が形成され、その下面にも被検 查用の電極 3が形成されており、これらは互 ヽに電気的に接続されて!ヽる。  An electrode 2 to be inspected is formed on the upper surface of the circuit board 1 to be inspected, and an electrode 3 to be inspected is also formed on the lower surface thereof. These are electrically connected to each other! You.
[0069] (1)回路基板側コネクタ (1) Connector on Circuit Board Side
回路基板側コネクタ 21a, 21bは、ピッチ変換用基板 23a, 23bと、その両側に配置 される第 1の異方導電性シート 22a, 22bおよび第 2の異方導電性シート 26a, 26bを 備えている。  The circuit board side connectors 21a and 21b include pitch conversion boards 23a and 23b, and first anisotropic conductive sheets 22a and 22b and second anisotropic conductive sheets 26a and 26b disposed on both sides thereof. I have.
[0070] (li)ピッチ変換用基板 [0070] (li) Pitch conversion substrate
図 3は、ピッチ変換用基板 23の被検査回路基板 1側の表面を示した図であり、図 4 は、その中継ピンユニット 31側の表面を示した図である。  FIG. 3 is a diagram showing a surface of the pitch conversion board 23 on the circuit board under test 1 side, and FIG. 4 is a diagram showing a surface of the pitch conversion board 23 on the relay pin unit 31 side.
ピッチ変換用基板 23の一方の表面、すなわち、被検査回路基板 1側には、図 3〖こ 示したように、被検査回路基板 1の電極 2、 3に電気的に接続される複数の接続電極 As shown in FIG. 3, on one surface of the pitch conversion board 23, that is, on the side of the circuit board under test 1, there are a plurality of connections electrically connected to the electrodes 2 and 3 of the circuit board 1 under test. electrode
25が形成されている。これらの接続電極 25は、被検査回路基板 1の被検査電極 2, 3のパターンに対応するように配置されて 、る。 [0071] 一方、ピッチ変換用基板 23の他方の表面、すなわち、被検査回路基板 1の反対側 には、図 4に示したように、中継ピンユニット 31の導電ピン 32a、 32bに電気的に接続 される複数の端子電極 24が形成されている。これらの端子電極 24は、例えば、ピッ チカ 54mm、 1. 8mm、 1. 27mm、 1. 06mm、 0. 8mm、 0. 75mm、 0. 5mm、 0. 45mm, 0. 3mmまたは 0. 2mmである一定間隔の格子点上に配置されており、 そのピッチは中継ピンユニットの導電ピン 32a、 32bの配置ピッチと同一である。 図 3のそれぞれの接続電極 25は、配線 52および、図 7において絶縁基板 51の厚 み方向に貫通する内部配線 53によって、対応する図 4の端子電極 24に電気的に接 続されている。 25 are formed. These connection electrodes 25 are arranged so as to correspond to the patterns of the electrodes 2 and 3 to be inspected on the circuit board 1 to be inspected. On the other hand, on the other surface of the pitch conversion board 23, that is, on the opposite side of the circuit board 1 to be inspected, as shown in FIG. 4, the conductive pins 32 a and 32 b of the relay pin unit 31 are electrically connected. A plurality of terminal electrodes 24 to be connected are formed. These terminal electrodes 24 are, for example, pitchers 54 mm, 1.8 mm, 1.27 mm, 1.06 mm, 0.8 mm, 0.75 mm, 0.5 mm, 0.45 mm, 0.3 mm or 0.2 mm. They are arranged on grid points at regular intervals, and their pitch is the same as the arrangement pitch of the conductive pins 32a and 32b of the relay pin unit. Each connection electrode 25 in FIG. 3 is electrically connected to the corresponding terminal electrode 24 in FIG. 4 by a wiring 52 and an internal wiring 53 penetrating in the thickness direction of the insulating substrate 51 in FIG.
[0072] ピッチ変換用基板 23の表面における絶縁部は、例えば、図 7に示したように、絶縁 基板 51の表面に、それぞれの接続電極 25が露出するように形成された絶縁層 54で 構成され、この絶縁層 54の厚みは、好ましくは 5— 100 m、より好ましくは 10— 60 mである。この厚みが過小である場合、表面粗さが小さい絶縁層を形成することが 困難となることがある。一方、この厚みが過大である場合、接続電極 25と第 1の異方 導電性シート 22との電気的接続が困難となることがある。  The insulating portion on the surface of the pitch conversion substrate 23 is formed of, for example, an insulating layer 54 formed on the surface of the insulating substrate 51 so that the respective connection electrodes 25 are exposed, as shown in FIG. The thickness of the insulating layer 54 is preferably 5 to 100 m, more preferably 10 to 60 m. If the thickness is too small, it may be difficult to form an insulating layer having a small surface roughness. On the other hand, if the thickness is excessive, electrical connection between the connection electrode 25 and the first anisotropic conductive sheet 22 may be difficult.
[0073] ピッチ変換用基板の絶縁基板 51を形成する材料としては、一般にプリント回路基 板の基材として使用されるものを用いることができる。具体的には、例えばポリイミド榭 脂、ガラス繊維補強型ポリイミド榭脂、ガラス繊維補強型エポキシ榭脂、ガラス繊維補 強型ビスマレイミドトリアジン榭脂などを挙げることができる。  As a material for forming the insulating substrate 51 of the pitch conversion substrate, a material generally used as a substrate of a printed circuit board can be used. Specific examples include polyimide resin, glass fiber reinforced polyimide resin, glass fiber reinforced epoxy resin, and glass fiber reinforced bismaleimide triazine resin.
図 7の絶縁層 54、 55の形成材料としては、薄膜状に成形可能な高分子材料を用 いることができ、具体的には、例えばエポキシ榭脂、アクリル榭脂、フエノール榭脂、 ポリイミド榭脂、ポリアミド榭脂、これらの混合物、レジスト材料などを挙げることができ る。  As a material for forming the insulating layers 54 and 55 in FIG. 7, a polymer material that can be formed into a thin film can be used. Specifically, for example, epoxy resin, acrylic resin, phenol resin, polyimide resin Fats, polyamide resins, mixtures thereof, resist materials and the like.
[0074] ピッチ変換用基板 23は、例えば、次のようにして製造することができる。まず、平板 状の絶縁基板の両面に金属薄層を積層した積層材料を用意し、この積層材料に対 して、形成すべき端子電極に対応するパターンに対応して積層材料の厚み方向に 貫通する複数の貫通孔を、数値制御型ドリリング装置、フォトエッチング処理、レーザ 一加工処理などにより形成する。 [0075] 次 、で、積層材料に形成された貫通孔内に無電解メツキおよび電解メツキを施すこ とによって、基板両面の金属薄層に連結されたノィァホールを形成する。その後、金 属薄層に対してフォトエッチング処理を施すことにより、絶縁基板の表面に配線パタ ーンおよび接続電極を形成するとともに、反対側の表面に端子電極を形成する。 [0074] The pitch conversion substrate 23 can be manufactured, for example, as follows. First, a laminated material in which thin metal layers are laminated on both sides of a flat insulating substrate is prepared, and the laminated material is penetrated in the thickness direction of the laminated material in accordance with the pattern corresponding to the terminal electrode to be formed. A plurality of through holes to be formed are formed by a numerically controlled drilling device, a photo-etching process, a laser processing process, or the like. Next, by applying electroless plating and electrolytic plating to the through-holes formed in the laminated material, no holes connected to the thin metal layers on both surfaces of the substrate are formed. Thereafter, the metal thin layer is subjected to a photo-etching process to form a wiring pattern and a connection electrode on the surface of the insulating substrate and to form a terminal electrode on the opposite surface.
[0076] そして、図 7に示したように、絶縁基板 51の表面に、それぞれの接続電極 25が露 出するように絶縁層 54を形成するとともに、反対側の表面に、それぞれの端子電極 2 4が露出するように絶縁層 55を形成することにより、ピッチ変換用基板 23が得られる oなお、絶縁層 55の厚みは、好ましくは 5— 100 m、より好ましくは 10— 60 mで ある。  Then, as shown in FIG. 7, an insulating layer 54 is formed on the surface of the insulating substrate 51 so that each connection electrode 25 is exposed, and each terminal electrode 2 is formed on the opposite surface. By forming insulating layer 55 so that 4 is exposed, substrate 23 for pitch conversion can be obtained. The thickness of insulating layer 55 is preferably 5 to 100 m, more preferably 10 to 60 m.
[0077] (1 b)第 1の異方導電性シート  [0077] (1b) First anisotropic conductive sheet
回路基板側コネクタ 21を構成し、ピッチ変換用回路基板 23と積層される第 1の異 方導電性シート 22は、図 5に示したように、絶縁性の弾性高分子力もなるシート基材 61中に多数の導電性粒子 62が面方向に分散されるとともに厚み方向に配列した状 態で含有されている。  As shown in FIG. 5, the first anisotropic conductive sheet 22 which constitutes the circuit board side connector 21 and is laminated on the pitch conversion circuit board 23 is a sheet base material 61 having an insulating elastic polymer force as shown in FIG. Many conductive particles 62 are dispersed in the plane direction and contained in a state arranged in the thickness direction.
[0078] 第 1の異方導電性シート 22の厚みは、好ましくは 0. 03-0. 5mm、より好ましくは 0 . 05-0. 2mmである。なお、図 8に示したように、第 1の異方導電性シート 22の表面 63を粗面として 、る場合には、「第 1の異方導電性シート 22の厚み」とは粗面とされ た表面 63の凹部から裏面 64 (平坦面)までの厚み (最小厚み)のことである。  [0078] The thickness of the first anisotropic conductive sheet 22 is preferably 0.03-0.5 mm, more preferably 0.05-0.2 mm. In addition, as shown in FIG. 8, when the surface 63 of the first anisotropic conductive sheet 22 is a rough surface, the "thickness of the first anisotropic conductive sheet 22" This is the thickness (minimum thickness) from the recessed surface 63 to the rear surface 64 (flat surface).
[0079] 第 1の異方導電性シート 22の厚みが 0. 03mm未満である場合には、第 1の異方導 電性シート 22の機械的強度が低くなり易ぐ必要な耐久性が得られないことがある。 一方、この第 1の異方導電性シート 22の厚みが 0. 5mmを超える場合には、厚み方 向の電気抵抗が大きくなり易ぐまた、接続すべき電極のピッチが小さい場合には、 加圧により形成されるそれぞれの導電路間において所要の絶縁性が得られず、被検 查電極間で電気的な短絡が生じて被検査回路基板の電気的検査が困難となること がある。  When the thickness of the first anisotropic conductive sheet 22 is less than 0.03 mm, the required durability is obtained because the mechanical strength of the first anisotropic conductive sheet 22 is easily reduced. May not be possible. On the other hand, when the thickness of the first anisotropic conductive sheet 22 exceeds 0.5 mm, the electrical resistance in the thickness direction tends to increase, and when the pitch of the electrodes to be connected is small, the additional resistance increases. The required insulation cannot be obtained between the conductive paths formed by the pressure, and an electrical short circuit may occur between the electrodes under test, making it difficult to perform an electrical test on the circuit board under test.
[0080] 第 1の異方導電性シート 22のシート基材 61を構成する弾性高分子物質は、そのデ ュロメータ硬さが好ましくは 30— 90であり、より好ましくは 35— 80、さらに好ましくは 4 0— 70である。 本明細書において、「デュ口メータ硬さ」とは、 JIS K6253のデュロメータ硬さ試験に 基づいて、タイプ Aデュロメータによって測定されたものをいう。弾性高分子物質のデ ュロメータ硬さが 30未満である場合には、厚み方向に押圧された際に、異方導電性 シートの圧縮、変形が大きぐ大きな永久歪みが生じるため、異方導電性シートが早 期に劣化して検査使用が困難となり耐久性が低くなり易い。 [0080] The elastic polymer material constituting the sheet substrate 61 of the first anisotropic conductive sheet 22 preferably has a durometer hardness of 30 to 90, more preferably 35 to 80, and still more preferably. 4 0—70. In this specification, “durometer hardness” refers to a value measured by a type A durometer based on a durometer hardness test of JIS K6253. If the durometer hardness of the elastic polymer material is less than 30, compression and deformation of the anisotropically conductive sheet will be large when pressed in the thickness direction. The sheet deteriorates prematurely, making it difficult to use for inspection, and the durability tends to be low.
[0081] 一方、弾性高分子物質のデュロメータ硬さが 90を超える場合には、異方導電性シ ートが厚み方向に押圧された際に、厚み方向の変形量が不十分になるため、良好な 接続信頼性が得られず、接続不良が発生し易くなる。  On the other hand, when the durometer hardness of the elastic polymer substance exceeds 90, the amount of deformation in the thickness direction becomes insufficient when the anisotropic conductive sheet is pressed in the thickness direction. Good connection reliability cannot be obtained, and connection failures are likely to occur.
[0082] 第 1の異方導電性シート 22の導電性粒子 62には、通常は磁性導電性粒子が使用 される。磁性導電性粒子の数平均粒子径 Dは、好ましくは 3— 50 m、より好ましく  [0082] As the conductive particles 62 of the first anisotropic conductive sheet 22, magnetic conductive particles are usually used. The number average particle diameter D of the magnetic conductive particles is preferably 3 to 50 m, more preferably
1  1
は 5— 30 μ m、さら〖こ好ましくは 8— 20 μ mである。  Is 5 to 30 μm, more preferably 8 to 20 μm.
本明細書において、「磁性導電性粒子の数平均粒子径」とは、レーザー回折散乱 法によって測定されたものを ヽぅ。  In the present specification, the “number average particle size of the magnetic conductive particles” is a value measured by a laser diffraction scattering method.
[0083] 磁性導電性粒子の数平均粒子径01が 3 μ m以上であることにより、得られる異方導 電性シートにおける磁性導電性粒子が含有されている部分の加圧変形が容易となり 、また、その製造工程において磁場配向処理によって磁性導電性粒子を配向させる 場合、磁性導電性粒子の配向が容易になり易ぐそのため、得られる異方導電性シ ートが異方性の高いものとなり、異方導電性シートの分解能 (異方導電性シートをカロ 圧して、厚み方向に対向する電極間の電気的導通を達成しつつ、横方向に隣接す る電極間の電気的絶縁を保持する能力)が良好なものとなる。 [0083] By the number-average particle size 0 1 of the magnetic conductive particles is 3 mu m or more, deform under pressure of the portion where the magnetic conductive particles in the anisotropically conductive sheet obtained is contained is facilitated Also, when the magnetic conductive particles are oriented by a magnetic field orientation treatment in the manufacturing process, the orientation of the magnetic conductive particles is easily facilitated, so that the obtained anisotropic conductive sheet is highly anisotropic. The resolution of the anisotropically conductive sheet (the anisotropy of the anisotropically conductive sheet is calopressed to achieve electrical continuity between the electrodes facing each other in the thickness direction, while maintaining the electrical insulation between the horizontally adjacent electrodes) Ability).
[0084] 一方、磁性導電性粒子の数平均粒子径 Dが 50 μ m以下であることにより、得られ  On the other hand, when the number average particle diameter D of the magnetic conductive particles is 50 μm or less, it is obtained.
1  1
る異方導電性シートが、その弾性が良好で加圧変形が容易なものとなり、微細で微 小ピッチの電極に対しても分解能が良好なものとなる。  The anisotropic conductive sheet has good elasticity and is easy to deform under pressure, and has good resolution even for fine and fine pitch electrodes.
第 1の異方導電性シート 22における厚み W ( μ m)と磁性導電性粒子の数平均粒  The thickness W (μm) of the first anisotropic conductive sheet 22 and the number average particle size of the magnetic conductive particles
1  1
子径 D m)との比率 W ZDは、 1· 1  Diameter D m) and the ratio W ZD is 1.1
1 1 一 10であることが好ましい。  It is preferably 1 1 to 10.
1  1
[0085] 比率 W ZDが 1. 1未満である場合には、磁性導電性粒子の直径が異方導電性シ  [0085] When the ratio W ZD is less than 1.1, the diameter of the magnetic conductive particles is
1 1  1 1
ートの厚みと同等かあるいはそれよりも大きくなるため、異方導電性シートの弾性が低 くなり、そのため、プリント配線基板などの被検査回路基板 1の被検査電極に面して 異方導電性シートを配置し、加圧を行って接触導通状態を達成する際に、被検査回 路基板 1が傷つき易くなる。 Since the thickness of the anisotropic conductive sheet is equal to or larger than the thickness of the sheet, the elasticity of the anisotropic conductive sheet decreases, and therefore, the sheet faces the electrode to be inspected of the circuit board 1 to be inspected such as a printed wiring board. When the anisotropic conductive sheet is arranged and pressure is applied to achieve the contact conduction state, the circuit substrate 1 to be inspected is easily damaged.
一方、比率 W ZDが 10を超える場合には、プリント配線基板などの被検査回路基  On the other hand, if the ratio W ZD exceeds 10, the circuit
1 1  1 1
板 1の被検査電極に面して異方導電性シートを配置し、加圧を行って接触導通状態 を達成する際に、被検査回路基板 1とピッチ変換用基板 23との間に多数の導電性粒 子が配列して連鎖を形成することとなる。そのため、導電性粒子同士の接点が多数 存在し、電気的抵抗値が高くなり易ぐ電気的検査のために使用することが困難とな り易い。  When an anisotropic conductive sheet is arranged facing the electrode to be inspected of the plate 1 and a pressure is applied to achieve a contact conduction state, a large number of sheets are placed between the circuit board 1 to be inspected and the pitch conversion substrate 23. The conductive particles are arranged to form a chain. Therefore, there are many contacts between the conductive particles, and the electrical resistance value tends to be high, which makes it difficult to use for electrical inspection.
[0086] 本発明における好ま 、一態様では、図 8 (a)、図 8 (b)に示したように、異方導電 性シート 22における被検査回路基板 1と接触する側の表面 63が、凹凸を有する粗面 とされている。一方、そのピッチ変換用基板 23と接触する側の裏面 64は平坦面とさ れている。なお、導電性粒子 62による連鎖は、異方導電性シート 22の表面 63側に おける粗面の凸部および凹部の位置と無関係にシート 22の面方向に分散された状 態で形成されている。  In one embodiment of the present invention, preferably, as shown in FIGS. 8A and 8B, the surface 63 of the anisotropic conductive sheet 22 that is in contact with the circuit board 1 to be inspected has It has a rough surface with irregularities. On the other hand, the back surface 64 on the side in contact with the pitch conversion substrate 23 is a flat surface. The chain formed by the conductive particles 62 is formed in a state of being dispersed in the surface direction of the sheet 22 irrespective of the positions of the convex portions and the concave portions of the rough surface on the surface 63 side of the anisotropic conductive sheet 22. .
[0087] 被検査回路基板 1と接触する側の表面 63 (粗面)における表面粗さは、好ましくは 0 . 5— 5 /ζ πι、より好ましくは 1一 である。なお、本明細書において「表面粗さ」と は、 JIS B0601による中心線粗さ Raを!、う。この表面粗さが過小である場合、この面 における粘着性を充分に抑制することが困難となり、検査時に被検査回路基板 1に 引きずられて異方導電性シート 22が位置ずれしてしまったり、異方導電性シート 22 が被検査回路基板 1に貼り付いてピッチ変換用基板 23から離脱してしまったりする 場合がある。一方、表面粗さが過大である場合、被検査回路基板 1に対して安定な 電気的接続を行うことが困難となる。  The surface roughness of the surface 63 (rough surface) on the side that comes into contact with the circuit board 1 to be inspected is preferably 0.5-5 / ζπι, and more preferably 11. In this specification, “surface roughness” refers to the center line roughness Ra according to JIS B0601. If the surface roughness is too small, it is difficult to sufficiently suppress the adhesiveness on this surface, and the anisotropic conductive sheet 22 may be displaced by being dragged by the circuit board 1 to be inspected during the inspection, The anisotropic conductive sheet 22 may adhere to the circuit board 1 to be inspected and may be separated from the pitch conversion board 23. On the other hand, if the surface roughness is excessive, it is difficult to make a stable electrical connection to the circuit board 1 to be inspected.
[0088] ピッチ変換用基板 23と接触する側の裏面 64における表面粗さは、好ましくは 0. 3 m以下、より好ましくは 0. 005— 0. 2 m、さらに好ましくは 0. 01-0. 1 mであ る。また、ピッチ変換用基板 23の異方導電性シート 22に接する側の表面における絶 縁部 54 (図 3、図 7)の表面粗さは好ましくは 0. 2 m以下、より好ましくは 0. 001— 0 . 1 m、さらに好ましくは 0. 01-0. 03 /z mである。これらの面における表面粗さが 過大である場合、異方導電性シート 22とピッチ変換用基板 23との密着性が不充分と なるため、電気検査時においてピッチ変換用基板 23からの異方導電性シート 22の 離脱を防止することが困難となる。 The surface roughness of the back surface 64 on the side in contact with the pitch conversion substrate 23 is preferably 0.3 m or less, more preferably 0.005 to 0.2 m, and still more preferably 0.01 to 0. 1 m. The surface roughness of the insulating portion 54 (FIGS. 3 and 7) on the surface of the pitch conversion substrate 23 on the side in contact with the anisotropic conductive sheet 22 is preferably 0.2 m or less, more preferably 0.001. — 0.1 m, more preferably 0.01-1. 03 / zm. If the surface roughness on these surfaces is excessive, the adhesion between the anisotropic conductive sheet 22 and the pitch conversion substrate 23 may be insufficient. Therefore, it is difficult to prevent the anisotropic conductive sheet 22 from detaching from the pitch conversion substrate 23 during the electrical inspection.
[0089] 第 1の異方導電性シート 22の基材を構成する弾性高分子物質としては、上記のデ ュロメータ硬さの範囲内であるものであれば特に限定されないが、成形カ卩工性および 電気特性の点から、シリコーンゴムを用いることが好ましい。 [0089] The elastic polymer material constituting the base material of the first anisotropic conductive sheet 22 is not particularly limited as long as it is within the above range of the durometer hardness. From the viewpoint of electrical characteristics, it is preferable to use silicone rubber.
この他、第 1の異方導電性シート 22の基材を構成する弾性高分子物質を得るため に好ましく使用される硬化性の高分子材料としては、例えば、ポリブタジエンゴム、天 然ゴム、ポリイソプレンゴム、スチレン ブタジエン共重合体ゴム、アクリロニトリルーブ タジェン共重合体ゴムなどの共役ジェン系ゴムおよびこれらの水素添加物、スチレン ブタジエン ジェンブロック共重合体ゴム、スチレン イソプレンブロック共重合体な どのブロック共重合体ゴムおよびこれらの水素添加物、クロロプレンゴム、ウレタンゴ ム、ポリエステル系ゴム、ェピクロルヒドリンゴム、シリコーンゴム、エチレン プロピレン 共重合体ゴム、エチレン プロピレン ジェン共重合体ゴムなどが挙げられる。  In addition, as the curable polymer material preferably used for obtaining the elastic polymer material constituting the base material of the first anisotropic conductive sheet 22, for example, polybutadiene rubber, natural rubber, polyisoprene Conjugated rubbers such as rubber, styrene-butadiene copolymer rubber, acrylonitrile-tagene copolymer rubber, and hydrogenated products thereof, and block copolymers such as styrene-butadiene block copolymer rubber and styrene-isoprene block copolymer Examples of the rubber include a combined rubber and a hydrogenated product thereof, chloroprene rubber, urethane rubber, polyester rubber, epichlorohydrin rubber, silicone rubber, ethylene propylene copolymer rubber, and ethylene propylene gen copolymer rubber.
[0090] 異方導電性シートに耐候性が要求される場合には、共役ジェン系ゴム以外のもの を用いることが好ましぐ上記したように、成形カ卩ェ性および電気特性の点力 シリコ ーンゴムを用いることが好ましい。シリコーンゴムとしては、液状シリコーンゴムを架橋 または縮合したものが好ましい。液状シリコーンゴムは、その粘度が歪速度 10_1secで 105ポアズ以下であることが好ましぐ縮合型のもの、付加型のもの、ビュル基ゃヒドロ キシル基を含有するものなどのいずれであってもよい。具体的には、例えばジメチル シリコーン生ゴム、メチルビ-ルシリコーン生ゴム、メチルフエ-ルビ-ルシリコーン生 ゴムなどを挙げることができる。 [0090] When weather resistance is required for the anisotropic conductive sheet, it is preferable to use a material other than the conjugated-gen-based rubber. It is preferable to use rubber rubber. As the silicone rubber, those obtained by crosslinking or condensing a liquid silicone rubber are preferable. The liquid silicone rubber may be any of a condensation type, an addition type, and a type containing a butyl group and a hydroxyl group, which preferably have a viscosity of 10 5 poise or less at a strain rate of 10_1 sec. May be. Specifically, for example, dimethyl silicone raw rubber, methyl vinyl silicone raw rubber, methyl phenol silicone raw rubber and the like can be mentioned.
[0091] これらの中で、ビュル基を含有する液状シリコーンゴム(ビュル基含有ポリジメチル シロキサン)は、例えば、ジメチルジクロロシランまたはジメチルジアルコキシシランを 、ジメチルビ-ルクロロシランまたはジメチルビ-ルアルコキシシランの存在下にお!/ヽ て加水分解および縮合反応させ、その後、溶解 沈殿の繰り返しによる分別を行うこ とにより得られる。  [0091] Among these, the liquid silicone rubber containing a bullet group (polydimethylsiloxane containing a bullet group) includes, for example, dimethyldichlorosilane or dimethyldialkoxysilane, and the presence of dimethylvinylchlorosilane or dimethylvinylalkoxysilane. It is obtained by performing hydrolysis and condensation reaction below! And then performing fractionation by repeated dissolution and precipitation.
[0092] ビュル基を両末端に含有する液状シリコーンゴムは、オタタメチルシクロテトラシロキ サンのような環状シロキサンを触媒の存在下でァ-オン重合し、重合停止剤として例 えばジメチルジビュルシロキサンを用い、その他の反応条件(例えば、環状シロキサ ンの量および重合停止剤の量)を適宜調節することにより得られる。ここで、ァ-オン 重合の触媒としては、水酸ィ匕テトラメチルアンモ -ゥムおよび水酸ィ匕 n ブチルホスホ -ゥムなどのアルカリまたはこれらのシラノレート溶液などを用いることができ、反応温 度は、例えば 80— 130°Cである。 [0092] A liquid silicone rubber containing a bull group at both ends can be used as a polymerization terminator by polymerizing a cyclic siloxane such as otatamethylcyclotetrasiloxane in the presence of a catalyst. For example, it can be obtained by using dimethyldibutylsiloxane and appropriately adjusting other reaction conditions (for example, the amount of cyclic siloxane and the amount of polymerization terminator). Here, as a catalyst for the a-one polymerization, alkalis such as hydroxymethyltetramethylammonium and hydroxybutylbutylphosphonium or a silanolate solution thereof can be used. Is, for example, 80-130 ° C.
[0093] ヒドロキシル基を含有する液状シリコーンゴム(ヒドロキシル基含有ポリジメチルシロ キサン)は、例えば、ジメチノレジクロロシランまたはジメチノレジァノレコキシシランを、ジメ チルヒドロクロロシランまたはジメチルヒドロアルコキシシランの存在下でカ卩水分解およ び縮合反応させ、その後、溶解 沈殿の繰り返しによる分別を行うことにより得られる 。また、環状シロキサンを触媒の存在下でァ-オン重合し、重合停止剤として、例え ばジメチノレヒド、口クロロシラン、メチノレジヒド、口クロロシランまたはジメチノレヒド、ロアノレコキ シシランなどを用い、その他の反応条件 (例えば、環状シロキサンの量および重合停 止剤の量)を適宜調節することによつても得られる。ここで、ァ-オン重合の触媒とし ては、水酸化テトラメチルアンモニゥムおよび水酸化 n ブチルホスホニゥムなどのァ ルカリまたはこれらのシラノレート溶液などを用いることができ、反応温度は、例えば 8 0— 130。Cである。 [0093] Liquid silicone rubbers containing hydroxyl groups (hydroxyl group-containing polydimethylsiloxane) include, for example, dimethinoresichlorosilane or dimethinoresinolecoxysilane, and the presence of dimethylhydrochlorosilane or dimethylhydroalkoxysilane. It can be obtained by carrying out water splitting and condensation reaction of squid under the following conditions, and then performing fractionation by repeating dissolution and precipitation. Further, cyclic siloxane is polymerized in the presence of a catalyst in the presence of a catalyst, and as a polymerization terminator, for example, dimethinoaldehyde, chlorosilane, methinoresid, chlorosilane or dimethynolehide, loanoreoxysilane, or the like is used, and other reaction conditions (for example, cyclic siloxane And the amount of the polymerization terminator) are appropriately adjusted. Here, as a catalyst for the a-one polymerization, alkali such as tetramethylammonium hydroxide and n-butylphosphonium hydroxide or a silanolate solution thereof can be used. 0—130. C.
[0094] 液状シリコーンゴムとしては、その硬化物の 150°Cにおける圧縮永久歪みが 35% 以下のものを用いることが、異方導電性シートの厚み方向に繰り返し圧縮させた際の 耐久性が良好となる点力 好ましぐこの圧縮永久歪みは、より好ましくは 20%以下 である。  [0094] As the liquid silicone rubber, one having a compression set of 150% or less at 150 ° C of the cured product should be used, so that the durability when repeatedly compressed in the thickness direction of the anisotropic conductive sheet is good. This compression set is more preferably not more than 20%.
また、その硬化物の 23°Cにおける引き裂き強度が 7kNZm以上の液状シリコーン ゴムを用いることが、異方導電性シートの厚み方向に繰り返し圧縮させた際の耐久性 が良好となる点力も好ましぐこの引き裂き強度は、より好ましくは lOkNZm以上であ る。  In addition, the use of liquid silicone rubber with a tear strength of the cured product of 7 kNZm or more at 23 ° C is preferred because it gives good durability when repeatedly compressed in the thickness direction of the anisotropic conductive sheet. This tear strength is more preferably 10 OkNZm or more.
ここで、液状シリコーンゴム硬化物の圧縮永久歪みおよび引き裂き強度は、 JIS K 6249に準拠した方法によって測定することができる。  Here, the compression set and tear strength of the liquid silicone rubber cured product can be measured by a method based on JIS K 6249.
[0095] 異方導電性シート 22の基材としてシリコーンゴムを使用する場合、その分子量 Mw [0095] When silicone rubber is used as the base material of the anisotropic conductive sheet 22, its molecular weight Mw
(標準ポリスチレン換算重量平均分子量をいう。)は、 10000— 40000であることが好 ましい。また、耐熱性の点から、分子量分布指数 (標準ポリスチレン換算重量平均分 子量 Mwと標準ポリスチレン換算数平均分子量 Mnとの比 MwZMnの値をいう。 )が 2以下であることが好まし 、。 (Mean weight average molecular weight in terms of standard polystyrene) is preferably 10,000 to 40,000. Good. Further, from the viewpoint of heat resistance, the molecular weight distribution index (referred to as the value of the ratio MwZMn between the weight average molecular weight Mw in terms of standard polystyrene and the number average molecular weight Mn in terms of standard polystyrene) is preferably 2 or less.
[0096] 異方導電性シート 22の基材となる弾性高分子物質を得るための高分子材料中に は、これを硬化させるための硬化触媒を含有させることができる。このような硬化触媒 としては、例えば、有機過酸化物、脂肪酸ァゾ化合物、ヒドロシリルイ匕触媒などを挙げ ることがでさる。 [0096] The polymer material for obtaining the elastic polymer material serving as the base material of the anisotropic conductive sheet 22 may contain a curing catalyst for curing the same. Examples of such a curing catalyst include an organic peroxide, a fatty acid azo compound, and a hydrosilylide catalyst.
[0097] 硬化触媒として用いられる有機過酸化物としては、例えば、過酸化べンゾィル、過 酸化ビスジシクロべンゾィル、過酸化ジクミル、過酸化ジターシャリーブチルなどが挙 げられる。  [0097] Examples of the organic peroxide used as a curing catalyst include benzoyl peroxide, bisdicyclobenzoyl peroxide, dicumyl peroxide, and di-tert-butyl peroxide.
硬化触媒として用いられる脂肪酸ァゾ化合物としては、例えば、ァゾビスイソプチ口 二トリルなどが挙げられる。  Examples of the fatty acid azo compound used as a curing catalyst include, for example, azobisisobutyl nitrile.
[0098] ヒドロシリル化反応の触媒として使用可能な触媒としては、例えば、塩化白金酸およ びその塩、白金 不飽和基含有シロキサンコンプレックス、ビュルシロキサンと白金と のコンプレックス、白金と 1, 3—ジビュルテトラメチルジシロキサンとのコンプレックス、 トリオルガノホスフィンあるいはホスファイトと白金とのコンプレックス、ァセチルァセテ ート白金キレート、環状ジェンと白金とのコンプレックスなどが挙げられる。  [0098] Examples of the catalyst that can be used as a catalyst for the hydrosilylation reaction include chloroplatinic acid and salts thereof, a siloxane complex containing a platinum unsaturated group, a complex of butylsiloxane and platinum, and a mixture of platinum and 1,3-dibutyl. Examples include a complex with tetramethyldisiloxane, a complex of triorganophosphine or phosphite with platinum, a chelate of acetylacetate platinum, and a complex of cyclic gen and platinum.
[0099] 硬化触媒の使用量は、これを添加する高分子材料の種類、硬化触媒の種類、その 他の硬化処理条件を考慮して適宜選択されるが、通常、高分子材料 100重量部に 対して 3— 15重量部である。  [0099] The amount of the curing catalyst used is appropriately selected in consideration of the type of the polymer material to be added, the type of the curing catalyst, and other curing conditions. 3-15 parts by weight.
[0100] 異方導電性シート 22の基材となる弾性高分子物質を得るための高分子材料中に は、必要に応じて、通常のシリカ粉、コロイダルシリカ、エア口ゲルシリカ、アルミナな どの無機充填材を含有させることができる。このような無機充填材を含有させることに より、異方導電性シート 22を得るための高分子材料 (成形用材料)のチキソトロピー 性が確保され、その粘度が高くなる。さらに、導電性粒子の分散安定性が向上すると ともに、得られる異方導電性シートの強度が高くなる。  [0100] The polymer material for obtaining the elastic polymer material serving as the base material of the anisotropic conductive sheet 22 may include, if necessary, an ordinary inorganic powder such as silica powder, colloidal silica, air port gel silica, and alumina. A filler can be included. By including such an inorganic filler, the thixotropic property of the polymer material (forming material) for obtaining the anisotropic conductive sheet 22 is ensured, and the viscosity thereof is increased. Further, the dispersion stability of the conductive particles is improved, and the strength of the obtained anisotropic conductive sheet is increased.
[0101] このような無機充填材の使用量は、特に限定されるものではないが、多量に使用す ると、磁場により導電性粒子を充分に配向させることができなくなるため好ましくない。 また、シート成形用材料の粘度は、温度 25°Cにおいて 100000— lOOOOOOcpの 範囲内であることが好ましい。 [0101] The amount of the inorganic filler to be used is not particularly limited. However, when used in a large amount, it is not preferable because the magnetic particles cannot sufficiently orient the conductive particles. Further, the viscosity of the sheet forming material is preferably in the range of 100,000-100,000 cp at a temperature of 25 ° C.
[0102] 異方導電性シート 22の基材中に含有される導電性粒子としては、磁場を作用させ ることによって容易にシートの厚み方向に並ぶよう配向させることができる点から、通 常は磁性を示す導電性粒子が用いられる。磁性導電性粒子としては、後述する製造 方法により異方導電性シートを形成するためのシート成形用材料中において、当該 磁性導電性粒子を磁場の作用によって容易に移動させることができる点から、その 飽和磁化が 0. lWb/m2以上のものが好ましぐより好ましくは 0. 3Wb/m2以上、 特に好ましくは 0. 5WbZm2以上のものである。 [0102] The conductive particles contained in the base material of the anisotropic conductive sheet 22 can be easily aligned in the thickness direction of the sheet by applying a magnetic field. Conductive particles exhibiting magnetism are used. As the magnetic conductive particles, the magnetic conductive particles can be easily moved by the action of a magnetic field in a sheet forming material for forming an anisotropic conductive sheet by a manufacturing method described below. Those having a saturation magnetization of at least 0.1 Wb / m 2 are preferred, more preferably at least 0.3 Wb / m 2 , and particularly preferably at least 0.5 WbZm 2 .
[0103] 飽和磁化が 0. lWbZm2以上であることにより、その製造工程において磁性導電 性粒子を磁場の作用によって確実に移動させて所望の配向状態とすることができる ため、異方導電性シートを使用する際に磁性導電性粒子の連鎖を形成することがで きる。 [0103] When the saturation magnetization is 0.1 lWbZm 2 or more, the magnetic conductive particles can be surely moved by the action of a magnetic field in the manufacturing process to obtain a desired orientation state. When used, chains of magnetic conductive particles can be formed.
磁性導電性粒子の具体例としては、鉄、ニッケル、コバルトなどの磁性を示す金属 の粒子若しくはこれらの合金の粒子またはこれらの金属を含有する粒子、またはこれ らの粒子を芯粒子とし、当該芯粒子の表面に高導電性金属を被覆した複合粒子、あ るいは非磁性金属粒子若しくはガラスビーズなどの無機物質粒子またはポリマー粒 子を芯粒子とし、当該芯粒子の表面に、高導電性金属のメツキを施した複合粒子、あ るいは芯粒子に、フェライト、金属間化合物などの導電性磁性体および高導電性金 属の両方を被覆した複合粒子などが挙げられる。  Specific examples of the magnetic conductive particles include particles of a metal exhibiting magnetism such as iron, nickel, and cobalt, particles of an alloy thereof, particles containing these metals, or particles containing these metals as core particles. Composite particles having a highly conductive metal coated on the surface of the particles, or inorganic material particles such as nonmagnetic metal particles or glass beads or polymer particles are used as core particles, and the surface of the core particles is coated with a highly conductive metal. Examples include composite particles subjected to plating, or composite particles in which core particles are coated with both a conductive magnetic material such as ferrite and an intermetallic compound and a highly conductive metal.
[0104] ここで、「高導電性金属」とは、 0°Cにおける導電率が 5 X 106 Ω—1!!!—1以上の金属を いう。 Here, “highly conductive metal” refers to a metal having a conductivity of 5 × 10 6 Ω— 1 !!! — 1 or more at 0 ° C.
このような高導電性金属としては、具体的に、金、銀、ロジウム、白金、クロムなどを 用いることができ、これらの中では、化学的に安定でかつ高い導電率を有する点で金 を用いることが好ましい。  As such a highly conductive metal, specifically, gold, silver, rhodium, platinum, chromium, and the like can be used. Among these, gold is chemically stable and has high conductivity. Preferably, it is used.
[0105] 上記した磁性導電性粒子の中では、ニッケル粒子を芯粒子とし、その表面に金や 銀などの高導電性金属のメツキを施した複合粒子などが好ましく用いられる。 [0105] Among the above-mentioned magnetic conductive particles, composite particles or the like in which nickel particles are used as core particles and the surface thereof is plated with a highly conductive metal such as gold or silver are preferably used.
芯粒子の表面に高導電性金属を被覆する手段としては、特に限定されるものでは ないが、例えば、無電解メツキ法を用いることができる。 Means for coating the surface of the core particles with a highly conductive metal is not particularly limited. However, for example, an electroless plating method can be used.
磁性導電性粒子は、その数平均粒子径の変動係数が 50%以下のものであること が好ましぐより好ましくは 40%以下、さらに好ましくは 30%以下、特に好ましくは 20 %以下のものである。  The magnetic conductive particles preferably have a coefficient of variation of the number average particle diameter of 50% or less, more preferably 40% or less, still more preferably 30% or less, and particularly preferably 20% or less. is there.
ここで、「数平均粒子径の変動係数」とは、式:( σ ZDn) X 100 (但し、 σは、粒子 径の標準偏差の値を示し、 Dnは、粒子の数平均粒子径を示す。 )によって求められ るものである。  Here, the “variation coefficient of the number average particle diameter” is represented by the formula: (σ ZDn) X 100 (where σ indicates the value of the standard deviation of the particle diameter, and Dn indicates the number average particle diameter of the particles. ).
[0106] 磁性導電性粒子の数平均粒子径の変動係数が 50%以下であることにより、粒子径 の不揃いの程度が小さくなるため、得られる異方導電性シートにおける部分的な導 電性のバラツキを小さくすることができる。  [0106] When the variation coefficient of the number average particle diameter of the magnetic conductive particles is 50% or less, the degree of irregularity of the particle diameter is reduced, and thus the partial conductivity of the obtained anisotropic conductive sheet is reduced. Variation can be reduced.
このような磁性導電性粒子は、金属材料を常法により粒子化し、あるいは市販の金 属粒子を用意し、この粒子に対して分級処理を行うことにより得ることができる。  Such magnetic conductive particles can be obtained by converting a metal material into particles by an ordinary method, or by preparing commercially available metal particles and performing a classification treatment on the particles.
[0107] 粒子の分級処理は、例えば、空気分級装置、音波ふるい装置などの分級装置によ つて行うことができる。  [0107] The particle classification process can be performed by a classifier such as an air classifier or a sonic sieve.
また、分級処理の具体的な条件は、目的とする導電性金属粒子の数平均粒子径、 分級装置の種類などに応じて適宜設定される。  The specific conditions of the classification process are appropriately set according to the number average particle diameter of the target conductive metal particles, the type of the classification device, and the like.
磁性導電性粒子として芯粒子の表面に高導電性金属を被覆したものを用いる場合 には、良好な導電性が得られる点から、粒子表面における高導電性金属の被覆率( 芯粒子の表面積に対する導電性金属の被覆面積の割合)が 40%以上であることが 好ましぐより好ましくは 45%以上、さらに好ましくは 47— 95%である。  In the case where a core particle having a surface coated with a highly conductive metal is used as the magnetic conductive particles, the coverage of the highly conductive metal on the particle surface (based on the surface area of the core particle) The ratio of the area covered by the conductive metal) is preferably 40% or more, more preferably 45% or more, and even more preferably 47 to 95%.
[0108] 高導電性金属の被覆量は、芯粒子に対して 0. 5— 50重量%であることが好ましぐ より好ましくは 1一 30重量%、さらに好ましくは 3— 25重量%、特に好ましくは 4一 20 重量%である。被覆される高導電性金属が金である場合には、その被覆量は、芯粒 子の 2— 30重量%であることが好ましぐより好ましくは 3— 20重量%、さらに好ましく は 3. 5— 17重量%である。  [0108] The coating amount of the highly conductive metal is preferably 0.5 to 50% by weight based on the core particles, more preferably 1 to 30% by weight, still more preferably 3 to 25% by weight, particularly preferably 3 to 25% by weight. Preferably it is 4-1 20% by weight. When the highly conductive metal to be coated is gold, the coating amount is preferably 2 to 30% by weight of the core particles, more preferably 3 to 20% by weight, and still more preferably 3. 5-17% by weight.
[0109] 磁性導電性粒子の具体的な形状は、特に限定されるものではな 、が、異方導電性 シート 22の基材である弾性高分子物質を形成するための高分子材料中に容易に分 散させることができる点から、球状、星形状、あるいは一次粒子が凝集した 2次粒子 による塊状であることが好まし 、。 [0109] The specific shape of the magnetic conductive particles is not particularly limited, but is easily included in the polymer material for forming the elastic polymer material that is the base material of the anisotropic conductive sheet 22. Secondary particles in which spherical, star-shaped, or primary particles aggregate because they can be dispersed It is preferred that they are massive.
[0110] 磁性導電性粒子として、その表面がシランカップリング剤などのカップリング剤で処 理されたものを用いてもょ ヽ。磁性導電性粒子の表面をカップリング剤で処理するこ とにより、磁性導電性粒子と弾性高分子基材との接着性が高くなり、その結果、得ら れる異方導電性シート 22の繰り返し使用における耐久性が高くなる。  [0110] As the magnetic conductive particles, particles whose surfaces have been treated with a coupling agent such as a silane coupling agent may be used. By treating the surface of the magnetic conductive particles with the coupling agent, the adhesion between the magnetic conductive particles and the elastic polymer base material is increased, and as a result, the resulting anisotropic conductive sheet 22 is used repeatedly. Endurance is increased.
[0111] 異方導電性シート 22には、弾性高分子物質の絶縁性を損なわない範囲で帯電防 止剤を含有させることができる。帯電防止剤を異方導電性シート 22に含有させること により、シート表面に電荷が蓄積されることが防止または抑制されるので、被検査回 路基板 1の電気検査時に、異方導電性シート 22から電荷が放出されることによる不 具合を防止することができるとともに、一層小さい加圧力で良好な導電性を得ることが できる。 [0111] The anisotropic conductive sheet 22 can contain an antistatic agent as long as the insulating property of the elastic polymer material is not impaired. By including an antistatic agent in the anisotropic conductive sheet 22, the accumulation of electric charges on the sheet surface is prevented or suppressed, so that during the electrical inspection of the circuit board 1 to be inspected, the anisotropic conductive sheet 22 is used. In addition, it is possible to prevent problems caused by discharge of electric charges from the substrate, and to obtain good conductivity with a smaller pressing force.
[0112] 異方導電性シート 22は、例えば次のようにして製造することができる。まず、硬化さ れて弾性高分子物質となる液状の高分子材料中に磁性導電性粒子を分散した流動 性の成形材料を調製する。また、図 9に示したように、非磁性シートからなる一対の成 形部材 93a, 93bを用意する。そして、片方の成形部材 93bの成形面上に、目的とす る異方導電性シート 22の平面形状に適合する形状の開口を有し、その厚みに対応 する厚みを有する枠状のスぺーサ 94を配置する。調製した成形材料 95をスぺーサ 9 4の開口内に塗布し、この成形材料 95の上に他方の成形部材 93aをその成形面が 成形材料 95に接するよう配置する。  [0112] The anisotropic conductive sheet 22 can be manufactured, for example, as follows. First, a fluid molding material is prepared in which magnetic conductive particles are dispersed in a liquid polymer material that is cured to become an elastic polymer material. Further, as shown in FIG. 9, a pair of forming members 93a and 93b made of a non-magnetic sheet are prepared. A frame-shaped spacer having an opening having a shape conforming to the planar shape of the target anisotropic conductive sheet 22 on the molding surface of one molding member 93b, and having a thickness corresponding to the thickness. Place 94. The prepared molding material 95 is applied to the opening of the spacer 94, and the other molding member 93 a is arranged on the molding material 95 such that the molding surface thereof is in contact with the molding material 95.
[0113] 成形部材 93a, 93bとして使用する非磁性シートとしては、ポリイミド榭脂、ポリエス テル榭脂、アクリル榭脂など力 なる榭脂シートを用いることができる。  [0113] As the non-magnetic sheet used as the molded members 93a and 93b, a strong resin sheet such as polyimide resin, polyester resin, or acrylic resin can be used.
図 8 (a)、図 8 (b)のように異方導電性シート 22の片面に粗面処理を施したものを作 製する場合、図 10に示したように、片方の成形部材 93aの成形面には、目的とする 異方導電性シート 22の表面 63における表面粗さに応じた粗面化処理が施される。 例えば、サンドブラスト法、エッチング法などの方法により成形面に凹部 99aおよび凸 部 99bが形成される。他方の成形部材 93bには、その成形面が平坦面であるものが 用いられる。  When manufacturing a sheet having a surface roughened on one side of the anisotropic conductive sheet 22 as shown in FIGS. 8 (a) and 8 (b), as shown in FIG. The molding surface is subjected to a surface roughening treatment according to the surface roughness of the surface 63 of the target anisotropic conductive sheet 22. For example, the concave portions 99a and the convex portions 99b are formed on the molding surface by a method such as a sand blast method or an etching method. The other molding member 93b has a molding surface that is a flat surface.
[0114] 成形部材 93a, 93bのシート厚みは、好ましくは 50— 500 μ m、より好ましくは 75— 300 /z mである。この厚みが 50 m未満である場合、成形部材として必要な強度が 得られないことがある。この厚みが 500 mを超える場合、導電性粒子を配列させる 際に成形材料に所望の強度の磁場を作用させることが困難となることがある。 [0114] The sheet thickness of the molded members 93a and 93b is preferably 50 to 500 µm, more preferably 75 to 500 µm. 300 / zm. If the thickness is less than 50 m, the strength required for a molded member may not be obtained. If the thickness exceeds 500 m, it may be difficult to apply a magnetic field of a desired strength to the molding material when arranging the conductive particles.
[0115] 次に、図 9に示したように、加圧ロール 91および支持ロール 92によって、成形材料 95を挟んだ成形部材 93a、 93bを挟圧することにより、成形材料を所定の厚さとする 。この状態では、図 10に示したように、成形材料 95の内部で導電性粒子 62が均一 に分散している。 Next, as shown in FIG. 9, the molding material 93a, 93b sandwiching the molding material 95 is sandwiched by the pressure roll 91 and the support roll 92, so that the molding material has a predetermined thickness. In this state, the conductive particles 62 are uniformly dispersed inside the molding material 95 as shown in FIG.
[0116] 次に、図 11に示したように、成形部材 93a, 93bの裏面側に、例えば一対の電磁石 98a, 98bを配置して、成形材料 95の厚み方向に平行磁場を作用させる。これにより 、成形材料中に分散されている導電性粒子 62が、図 12に示したように、面方向に分 散された状態を維持しながら厚み方向に並ぶよう配向し、厚み方向に延びる複数の 導電性粒子 62による連鎖が面方向に分散した状態で形成される。  Next, as shown in FIG. 11, for example, a pair of electromagnets 98a and 98b are arranged on the back side of the molding members 93a and 93b, and a parallel magnetic field is applied in the thickness direction of the molding material 95. As a result, as shown in FIG. 12, the conductive particles 62 dispersed in the molding material are oriented so as to be arranged in the thickness direction while maintaining the state of being dispersed in the plane direction, and a plurality of particles extending in the thickness direction are maintained. The chains formed by the conductive particles 62 are dispersed in the plane direction.
[0117] この状態で成形材料を硬化することにより、弾性高分子基材中に導電性粒子が厚 み方向に並ぶよう配向し、且つ面方向に分散された状態で含有された異方導電性シ ート 22が製造される。  [0117] By curing the molding material in this state, the conductive particles are oriented in the elastic polymer base material so as to line up in the thickness direction and are dispersed in the plane direction. Sheet 22 is manufactured.
成形材料の硬化処理は、平行磁場を作用させたままの状態で行ってもよぐ平行磁 場の作用を停止させた後に行ってもよい。成形材料に作用させる平行磁場の強度は 、平均で 0. 02- 1. 5テスラとなる大きさが好ましい。  The curing treatment of the molding material may be performed while the parallel magnetic field is applied, or may be performed after stopping the operation of the parallel magnetic field. The strength of the parallel magnetic field applied to the molding material is preferably such that the average is 0.02-1.5 Tesla.
[0118] 成形材料に平行磁場を作用させる手段として、電磁石の代わりに永久磁石を用い てもよい。永久磁石としては、上記の範囲の平行磁場強度が得られる点で、アルニコ (Fe— A1— Ni— Co系合金)、フェライトなど力 なるものが好ましい。  [0118] As means for applying a parallel magnetic field to the molding material, a permanent magnet may be used instead of an electromagnet. As the permanent magnet, a magnetic material such as alnico (Fe—A1-Ni—Co alloy) or ferrite is preferable because a parallel magnetic field strength in the above range can be obtained.
成形材料の硬化処理は、使用される材料にもよるが、通常は加熱処理によって行 われる。具体的な加熱温度および加熱時間は、高分子材料などの種類、導電性粒 子の移動に要する時間などを考慮して適宜設定される。  The curing treatment of the molding material is usually carried out by a heat treatment, depending on the material used. The specific heating temperature and heating time are appropriately set in consideration of the type of the polymer material and the like, the time required for the movement of the conductive particles, and the like.
[0119] 以上に説明した方法によれば、硬化処理した異方導電性シート自体に粗面化処理 を施す必要がなぐ異方導電性シートを簡易な工程で製造でき、さらに、後処理を施 すことによる異方導電性シートへの悪影響を回避することができる。  [0119] According to the method described above, an anisotropic conductive sheet which does not need to be subjected to surface roughening treatment on the cured anisotropic conductive sheet itself can be manufactured in a simple process, and further, post-treatment is performed. This can avoid adverse effects on the anisotropic conductive sheet.
[0120] また、成形部材として成形面が粗面化処理された非磁性体シートを用いて!/、るので 、成形材料に対して面方向において均一な強度の磁場を作用させることができる。す なわち、粗面化処理された成形面の凸部の位置に凹部の位置よりも大きい強度の磁 場が形成されることがないため、凸部の位置に導電性粒子の連鎖が選択的に形成さ れることがなぐ導電性粒子の連鎖は異方導電性シートの面方向に分散した状態で 形成され、これにより、異方導電性シートの粗面における凸部の位置にも導電性粒子 の連鎖が形成されることになる。このため、異方導電性シートの粗面における凸部の みが加圧された状態であっても、その厚み方向に導電性が得られる。したがって、小 さい加圧力で高い導電性を示す異方導電性シートが得られる。また、成形部材として 榭脂シートなどの非磁性シートを用いることにより、金型などの高価な成形部材を用 V、る場合に比べて製造コストを低減することができる。 [0120] Also, using a non-magnetic material sheet having a roughened molding surface as a molding member! In addition, a magnetic field having a uniform strength can be applied to the molding material in the plane direction. In other words, since a magnetic field having a higher intensity than the position of the concave portion is not formed at the position of the convex portion of the roughened molding surface, the chain of conductive particles is selectively formed at the position of the convex portion. The chain of conductive particles that cannot be formed on the anisotropic conductive sheet is formed in a state of being dispersed in the surface direction of the anisotropic conductive sheet. Will be formed. Therefore, even when only the convex portions on the rough surface of the anisotropic conductive sheet are pressed, conductivity can be obtained in the thickness direction. Therefore, an anisotropic conductive sheet showing high conductivity with a small pressing force can be obtained. In addition, by using a non-magnetic sheet such as a resin sheet as a molding member, manufacturing costs can be reduced as compared with a case where an expensive molding member such as a mold is used.
[0121] (1 c)第 2の異方導電性シート  [0121] (1c) Second anisotropic conductive sheet
ピッチ変換用基板 23の中継ピンユニット 31側に配置される第 2の異方導電性シー ト 26は、図 6に示したように、絶縁性の弾性高分子材料中に多数の導電性粒子 62が 厚み方向に配列して形成された導電路形成部 72と、それぞれの導電路形成部 72を 離間する絶縁部 71から構成されている。このように、導電性粒子 62は導電路形成部 72中にのみ、面方向に不均一に分散されている。  As shown in FIG. 6, the second anisotropic conductive sheet 26 arranged on the relay pin unit 31 side of the pitch conversion board 23 has a large number of conductive particles 62 in an insulating elastic polymer material. Are formed of conductive path forming portions 72 arranged in the thickness direction and insulating portions 71 separating the conductive path forming portions 72 from each other. Thus, the conductive particles 62 are non-uniformly dispersed only in the conductive path forming portion 72 in the plane direction.
[0122] 導電路形成部 72の厚み Wは、好ましくは 0. 1— 2mm、より好ましくは 0. 2-1. 5  [0122] The thickness W of the conductive path forming portion 72 is preferably 0.1 to 2 mm, more preferably 0.2 to 1.5.
2  2
mmである。この厚み Wが 0. 1mm未満である場合、厚み方向の加圧に対する吸収  mm. If this thickness W is less than 0.1 mm, the absorption in the thickness direction
2  2
能力が低ぐ検査時において検査治具による加圧力の吸収が小さくなり、回路基板 側コネクタ 21への衝撃を緩和する効果が減少する。このため、第 1の異方導電性シ ート 22の劣化を抑制しに《なり、結果として被検査回路基板 1の繰り返し検査時に おける第 1の異方導電性シート 22の交換回数が増力!]して、検査の効率が低下する。 一方、この厚み Wが 2mmを超える場合、厚み方向の電気抵抗が大きくなり易く電気  At the time of inspection with low capability, the absorption of the pressing force by the inspection jig is reduced, and the effect of alleviating the impact on the circuit board side connector 21 is reduced. Therefore, the deterioration of the first anisotropic conductive sheet 22 is suppressed, and as a result, the number of times of replacement of the first anisotropic conductive sheet 22 in the repeated inspection of the circuit board 1 to be inspected is increased! ] And the efficiency of the inspection is reduced. On the other hand, if the thickness W exceeds 2 mm, the electrical resistance in the thickness direction tends to increase,
2  2
検査が困難となることがある。  Inspection can be difficult.
[0123] 絶縁部 71の厚みは、導電路形成部 72の厚みと実質的に同一力、それよりも小さい ことが好ましい。図 6に示したように、絶縁部 71の厚みを導電路形成部 72の厚みより も小さくして導電路形成部 72が絶縁部 71より突出した突出部 73を形成することによ り、厚み方向の加圧に対して導電路形成部 72の変形が容易になり、加圧力の吸収 能力が増大するため、検査時において検査治具の加圧力を吸収し、回路基板側コ ネクタへ 21の衝撃を緩和することができる。 The thickness of the insulating portion 71 is preferably substantially the same as the thickness of the conductive path forming portion 72, and is preferably smaller than that. As shown in FIG. 6, the thickness of the insulating portion 71 is made smaller than the thickness of the conductive path forming portion 72 so that the conductive path forming portion 72 forms a protruding portion 73 protruding from the insulating portion 71. The conductive path forming part 72 is easily deformed by pressure in the direction and absorbs the pressing force. Since the capacity is increased, the pressure of the inspection jig can be absorbed at the time of inspection, and the impact of 21 to the connector on the circuit board side can be reduced.
[0124] 第 2の異方導電性シート 26を構成する導電性粒子 62に、磁性導電性粒子を使用 する場合、その数平均粒子径は好ましくは 5— 200 μ m、より好ましくは 5— 150 μ m 、さらに好ましくは 10— 100 /z mである。ここで、「磁性導電性粒子の数平均粒子径」 とは、レーザー回折散乱法によって測定されたものをいう。磁性導電性粒子の数平 均粒子径が 5 μ m以上であると、異方導電性シートの導電路形成部の加圧変形が容 易になる。また、その製造工程において磁場配向処理によって磁性導電性粒子を配 向させる場合、磁性導電性粒子の配向が容易である。磁性導電性粒子の数平均粒 子径が 200 m以下であると、異方導電性シートの導電路形成部 72の弾性が良好 で加圧変形が容易になる。  When magnetic conductive particles are used for the conductive particles 62 constituting the second anisotropic conductive sheet 26, the number average particle diameter is preferably 5 to 200 μm, more preferably 5 to 150 μm. μm, more preferably 10-100 / zm. Here, the “number average particle size of the magnetic conductive particles” refers to a value measured by a laser diffraction scattering method. When the number average particle diameter of the magnetic conductive particles is 5 μm or more, the pressurized deformation of the conductive path forming portion of the anisotropic conductive sheet becomes easy. When the magnetic conductive particles are oriented by a magnetic field orientation treatment in the manufacturing process, the orientation of the magnetic conductive particles is easy. When the number average particle diameter of the magnetic conductive particles is 200 m or less, the elasticity of the conductive path forming portion 72 of the anisotropic conductive sheet is good, and the pressure deformation becomes easy.
[0125] 導電路形成部 72の厚み W m)と、磁性導電性粒子の数平均粒子径 D ( μ m)  [0125] The thickness Wm of the conductive path forming portion 72 and the number average particle diameter D (μm) of the magnetic conductive particles
2 2 との比率 W ZDは 1. 1一 10であることが好ましい。  The ratio W ZD to 22 is preferably 1.1 to 10.
2 2  twenty two
比率 W ZDが 1. 1未満である場合、導電路形成部 72の厚みに対して磁性導電 If the ratio W ZD is less than 1.1, the magnetic conductive
2 2 twenty two
性粒子の直径が同等あるいはそれよりも大きくなるため、導電路形成部 72の弾性が 低くなり、その厚み方向の加圧力の吸収能力が小さくなる。このため、検査時におい て回路基板側コネクタ 21への衝撃を緩和する効果が減少するため、第 1の異方導電 性シート 22の劣化を抑制しに《なり、結果として被検査回路基板 1の繰り返し検査 時において、第 1の異方導電性シート 22の交換回数が増力!]して、検査の効率が低下 し易くなる。  Since the diameter of the conductive particles is equal to or larger than the diameter, the elasticity of the conductive path forming portion 72 decreases, and the ability to absorb the pressing force in the thickness direction decreases. For this reason, the effect of alleviating the impact on the circuit board side connector 21 at the time of inspection is reduced, so that the deterioration of the first anisotropic conductive sheet 22 is suppressed. At the time of repeated inspection, the number of times of replacement of the first anisotropic conductive sheet 22 increases!], And the efficiency of the inspection tends to decrease.
[0126] 一方、比率 W ZDが 10を超える場合、導電路形成部 72に多数の導電性粒子が  [0126] On the other hand, when the ratio W ZD exceeds 10, a large number of conductive particles are formed in the conductive path forming portion 72.
2 2  twenty two
配列して連鎖を形成することとなり、導電性粒子同士の接点が多数存在することにな るため、電気的抵抗値が高くなり易い。  Since the chains are arranged to form a chain, and a large number of contact points between the conductive particles are present, the electrical resistance value tends to increase.
導電路形成部 72の基材である弾性高分子物質は、そのタイプ Aデュロメータによつ て測定されたデュロメータ硬さが好ましくは 15— 60、より好ましくは 20— 50、さらに好 ましくは 25— 45である。  The elastic polymer substance as the base material of the conductive path forming section 72 preferably has a durometer hardness of 15 to 60, more preferably 20 to 50, still more preferably 25 to 25 as measured by a type A durometer. — 45.
[0127] 弾性高分子物質のデュロメータ硬さが 15よりも小さい場合、厚み方向に押圧された 際のシートの圧縮、変形が大きぐ大きな永久歪が生じるためシート形状が早期に変 形して検査時の電気的接続が困難となり易い。弾性高分子物質のデュロメータ硬さ が 60よりも大きい場合、厚み方向に押圧された際の変形力 、さくなるため、その厚み 方向の加圧力の吸収能力が小さくなる。このため、第 1の異方導電性シート 22の劣 化を抑制しにくくなり、結果として、被検査回路基板 1の繰り返し検査時において、第 1の異方導電性シート 22の交換回数が増加して、検査の効率が低下し易くなる。 [0127] If the durometer hardness of the elastic polymer material is smaller than 15, the sheet shape changes early due to the large permanent strain that occurs when the sheet is compressed and deformed when pressed in the thickness direction. It tends to be difficult to make electrical connection during inspection. If the durometer hardness of the elastic polymer material is greater than 60, the deformation force when pressed in the thickness direction is reduced, and the ability to absorb the pressing force in the thickness direction is reduced. For this reason, it is difficult to suppress the deterioration of the first anisotropic conductive sheet 22, and as a result, the number of times of replacement of the first anisotropic conductive sheet 22 increases during the repeated inspection of the circuit board 1 to be inspected. As a result, the efficiency of inspection tends to decrease.
[0128] 導電路形成部 72の基材となる弾性高分子物質としては、上記のデュロメータ硬さを 示すものであれば特に限定されないが、加工性および電気特性の点から、シリコーン ゴムを用いることが好まし 、。  [0128] The elastic polymer material serving as the base material of the conductive path forming portion 72 is not particularly limited as long as it exhibits the above durometer hardness, but from the viewpoint of processability and electrical characteristics, silicone rubber is preferably used. Is preferred,.
[0129] 第 2の異方導電性シート 26の絶縁部 71は、実質的に導電性粒子を含有しない絶 縁材料により形成される。絶縁材料としては、例えば、絶縁性の高分子材料、無機材 料、表面を絶縁ィ匕処理した金属材料などを用いることができるが、導電路形成部に 使用した弾性高分子と同一の材料を用いると生産が容易である。絶縁部の材料とし て弾性高分子物質を使用する場合、デュロメータ硬さが上記の範囲であるものを使 用することが好ましい。  [0129] The insulating portion 71 of the second anisotropic conductive sheet 26 is formed of an insulating material that does not substantially contain conductive particles. As the insulating material, for example, an insulating polymer material, an inorganic material, a metal material whose surface has been subjected to insulating treatment, and the like can be used, and the same material as the elastic polymer used for the conductive path forming portion can be used. It is easy to produce when used. When an elastic polymer material is used as a material for the insulating portion, it is preferable to use one having a durometer hardness within the above range.
[0130] 磁性導電性粒子としては、前述の第 1異方導電性シート 22に用いられる磁性導電 性粒子を用いることができる。  [0130] As the magnetic conductive particles, the magnetic conductive particles used in the first anisotropic conductive sheet 22 described above can be used.
第 2の異方導電性シート 26は、例えば、図 9一図 12に示した方法に準じた方法で 製造することができる。まず、それぞれ全体の形状が略平板状であって、互いに対応 する上型と下型とよりなり、上型と下型との間の成形空間内に充填された材料層に磁 場を作用させながら当該材料層を加熱硬化することができる構成の異方導電性シー ト成形用金型を用意する。  The second anisotropic conductive sheet 26 can be manufactured, for example, by a method according to the method shown in FIGS. First, the entire shape is substantially flat, and the upper and lower dies correspond to each other.A magnetic field acts on the material layer filled in the molding space between the upper and lower dies. Meanwhile, an anisotropic conductive sheet molding die having a configuration capable of heating and curing the material layer is prepared.
[0131] この異方導電性シート成形用金型は、材料層に磁場を作用させて適正な位置に導 電性を有する部分を形成するために、上型および下型の両方が、鉄、ニッケルなど の強磁性体からなる基板上に、金型内の磁場に強度分布を生じさせるための鉄、二 ッケルなどよりなる強磁性体部分と、銅などの非磁性金属若しくは榭脂よりなる非磁 性体部分とが互いに隣接するよう交互に配置されたモザイク状の層を有する構成の ものであり、強磁性体部分は、形成すべき導電路形成部のパターンに対応するバタ ーンに従って配列されている。 [0132] ここで、上型の成形面は平坦であり、下型の成形面は形成すべき異方導電性シー トの導電路形成部に対応してわずかに凹凸を有するものである。 [0131] In this anisotropic conductive sheet molding die, in order to form a conductive portion at an appropriate position by applying a magnetic field to the material layer, both the upper die and the lower die are made of iron, On a substrate made of a ferromagnetic material such as nickel, a ferromagnetic portion made of iron, nickel, or the like for generating an intensity distribution in a magnetic field in a mold, and a nonmagnetic metal made of a nonmagnetic metal such as copper or resin. The structure has a mosaic-like layer in which magnetic parts are alternately arranged so as to be adjacent to each other, and the ferromagnetic parts are arranged according to a pattern corresponding to a pattern of a conductive path forming part to be formed. Have been. [0132] Here, the molding surface of the upper die is flat, and the molding surface of the lower die has slight irregularities corresponding to the conductive path forming portions of the anisotropic conductive sheet to be formed.
この異方導電性シート成形用金型の成形空間内に、硬化されて弾性高分子物質と なる高分子物質材料中に磁性を示す導電性粒子が含有された成形材料を注入して 成形材料層を形成する。  A molding material containing conductive particles exhibiting magnetism in a polymer material that is cured to become an elastic polymer material is injected into the molding space of the anisotropic conductive sheet molding die, thereby forming a molding material layer. To form
[0133] 次に、上型および下型の各々における強磁性体部分および非磁性体部分を利用 し、形成された成形材料層に対してその面方向に強度分布を有する磁場を作用させ ることにより、その磁力の作用によって、導電性粒子を、上型における強磁性体部分 と、その直下に位置する下型における強磁性体部分との間に集合させ、導電性粒子 を厚み方向に並ぶように配向させる。そして、その状態で当該成形材料層を硬化処 理することにより、複数の柱状の導電路形成部が、絶縁部によって互い絶縁された構 成を有する異方導電性シートが製造される。  [0133] Next, a magnetic field having an intensity distribution in the surface direction is applied to the formed molding material layer by using the ferromagnetic portion and the nonmagnetic portion in each of the upper mold and the lower mold. By the action of the magnetic force, the conductive particles are gathered between the ferromagnetic part in the upper die and the ferromagnetic part in the lower die located immediately below, so that the conductive particles are arranged in the thickness direction. Orientation. Then, by curing the molding material layer in that state, an anisotropic conductive sheet having a configuration in which the plurality of columnar conductive path forming portions are insulated from each other by the insulating portion is manufactured.
[0134] (2)中継ピンユニット  [0134] (2) Relay pin unit
中継ピンユニット 31a, 31bは、図 1、図 2に示したように、上下方向を向くように並列 に、所定のピッチで設けられた多数の導電ピン 32a, 32bを備えている。また、中継ピ ンユニット 31a, 31bは、これらの導電ピン 32a, 32bの両端側に設けられ、導電ピン 3 2a, 32bを揷通支持する被検査回路基板 1側に配置された絶縁板 34a, 34bと、被 検査回路基板 1とは反対側に配置された絶縁板 35a, 35bの 2枚の (一対の)絶縁板 を備えている。  As shown in FIGS. 1 and 2, the relay pin units 31a and 31b are provided with a large number of conductive pins 32a and 32b provided at a predetermined pitch in parallel so as to face up and down. In addition, the relay pin units 31a and 31b are provided at both ends of the conductive pins 32a and 32b, and the insulating plates 34a and 31b are disposed on the side of the circuit board under test 1 that supports the conductive pins 32a and 32b. 34b, and two (a pair of) insulating plates, that is, insulating plates 35a and 35b arranged on the side opposite to the circuit board 1 to be inspected.
[0135] 導電ピン 32は、例えば図 13に示したように、直径の大きい中央部 82と、これよりも 直径の小さい端部 8 la, 8 lbと力もなる。  [0135] For example, as shown in FIG. 13, the conductive pin 32 also has a central portion 82 having a large diameter and ends la and 8 lb having a smaller diameter.
これらの一対の絶縁板 34および絶縁板 35には、導電ピン 32の端部 81a, 81bが 挿入される貫通孔 83が形成されている。そして、貫通孔 83の直径が、導電ピン 32の 端部 81の直径よりも大きぐ且つ中央部 82の直径よりも小さく形成され、これにより導 電ピン 32が脱落しな 、ように保持されて 、る。  The pair of insulating plates 34 and 35 have through holes 83 into which the ends 81a and 81b of the conductive pins 32 are inserted. Then, the diameter of the through hole 83 is formed to be larger than the diameter of the end portion 81 of the conductive pin 32 and smaller than the diameter of the central portion 82, whereby the conductive pin 32 is held so as not to fall off. RU
[0136] 2枚の絶縁板 34、 35は、支持ピン 33によりこれらの間隔が導電ピン 32の中央部 82 の長さよりも長くなるように固定され、これにより導電ピン 32が上下に可動するように 保持されている。 導電ピン 32の端部 81の長さは、絶縁板 34、 35の厚みよりも長くなるように形成され 、これにより、絶縁板 34、 35のうち少なくとも一方力も導電ピン 32が突出するようにな つている。 [0136] The two insulating plates 34 and 35 are fixed by the support pins 33 so that their interval is longer than the length of the central portion 82 of the conductive pins 32, so that the conductive pins 32 can move up and down. Is held. The length of the end portion 81 of the conductive pin 32 is formed to be longer than the thickness of the insulating plates 34, 35, so that the conductive pin 32 projects at least one force of the insulating plates 34, 35. I'm wearing
[0137] 中継ピンユニットは、多数の導電ピン力 一定ピッチ、例えば、 2. 54mm, 1. 8mm 、 1. 27mm、 1. 06mm、 0. 8mm、 0. / 5mm、 0. 5mm、 0. 45mm、 0. 3mmま 7こ は 0. 2mmのピッチの格子点上に配置されている。  [0137] The relay pin unit has a large number of conductive pins with a constant pitch, for example, 2.54mm, 1.8mm, 1.27mm, 1.06mm, 0.8mm, 0.5mm, 0.5mm, 0.45mm , 0.3 mm and 7 mm are arranged on grid points with a pitch of 0.2 mm.
中継ピンユニット 31の導電ピン 32の配置ピッチと、ピッチ変換用基板 23に設けられ た端子電極 24の配置ピッチとを同一とすることにより、導電ピン 32を介してピッチ変 換用基板 23がテスター側に電気的に接続されるようになっている。  By making the arrangement pitch of the conductive pins 32 of the relay pin unit 31 and the arrangement pitch of the terminal electrodes 24 provided on the pitch conversion board 23 the same, the pitch conversion board 23 is connected to the tester via the conductive pins 32. Side to be electrically connected.
[0138] なお、絶縁板 34と絶縁板 35との間の距離としては、特に限定されるものではないが 、 20mm以上、好ましくは 40mm以上とするのが望ましい。また、絶縁板 34および絶 縁板 35の各々の厚みは、これらを構成する材料の種類に応じて適宜選択されるが、 例えば、 1一 10mmであるのが望ましい。  [0138] The distance between insulating plate 34 and insulating plate 35 is not particularly limited, but is desirably 20 mm or more, preferably 40 mm or more. In addition, the thickness of each of the insulating plate 34 and the insulating plate 35 is appropriately selected according to the type of a material constituting the insulating plate 34 and the insulating plate 35, and is preferably, for example, 110 mm.
[0139] 絶縁板 34、 35の材料の具体例としては、固有抵抗が 1 X 1010 Ω ' cm以上の絶縁 性材料、例えばポリイミド榭脂、ポリエステル榭脂、ポリアミド榭脂、フエノール榭脂、 ポリアセタール樹脂、ポリブチレンテレフタレート榭脂、ポチエチレンテレフタレート榭 脂、シンジォタクチック'ポリスチレン榭脂、ポリフエ-レンサルファイド榭脂、ポリエー テルエチルケトン榭脂、フッ素榭脂、ポリエーテル-トリル榭脂、ポリエーテルサルホ ン榭脂、ポリアリレート榭脂、ポリアミドイミド榭脂等の機械的強度の高い榭脂材料、ガ ラス繊維補強型エポキシ榭脂、ガラス繊維補強型ポリエステル榭脂、ガラス繊維補強 型ポリイミド榭脂、ガラス繊維補強フエノール榭脂、ガラス繊維補強型フッ素榭脂等の ガラス繊維型複合榭脂材料、カーボン繊維補強型エポキシ榭脂、カーボン繊維補強 型ポリエステル榭脂、カーボン繊維補強型ポリイミド榭脂、カーボン繊維補強型フエノ ール榭脂、カーボン繊維補強型フッ素榭脂等のカーボン繊維型複合榭脂、エポキシ 榭脂、フエノール榭脂等にシリカ、アルミナ、ボロンナイトライド等の無機材料を充填し た複合榭脂材料、エポキシ榭脂、フエノール榭脂等にメッシュを含有した複合榭脂材 料などが挙げられる。また、これらの材料からなる板材を複数積層して構成された複 合板材等を用いてもよい。 [0140] (3)テスター側コネクタ [0139] Specific examples of the material of the insulating plate 34, 35, resistivity 1 X 10 10 Ω 'cm or more insulating materials, such as polyimide榭脂, polyester榭脂, polyamides榭脂, phenol榭脂, polyacetal Resin, polybutylene terephthalate resin, polyethylene terephthalate resin, syndiotactic polystyrene resin, polyphenylene sulfide resin, polyether ethyl ketone resin, fluorine resin, polyether-tolyl resin, polyether sulfo Resin materials with high mechanical strength such as resin, polyarylate resin, polyamideimide resin, glass fiber reinforced epoxy resin, glass fiber reinforced polyester resin, glass fiber reinforced polyimide resin, glass Glass fiber composite resin materials such as fiber reinforced phenol resin and glass fiber reinforced fluorine resin, carbon fiber Carbon fiber composite resin, epoxy such as strong epoxy resin, carbon fiber reinforced polyester resin, carbon fiber reinforced polyimide resin, carbon fiber reinforced phenol resin, carbon fiber reinforced fluorine resin, etc. Examples thereof include a composite resin material in which an inorganic material such as silica, alumina, and boron nitride is filled in a fat or phenol resin, or a composite resin material in which a mesh is included in an epoxy resin or a phenol resin. Further, a composite plate material formed by laminating a plurality of plate materials made of these materials may be used. [0140] (3) Tester side connector
テスター側コネクタ 41a, 41bは、図 1および図 2に示したように、第 3の異方導電性 シート 42a, 42bと、コネクタ基板 43a, 43bと、ベース板 46a, 46bとを備えて!/ヽる。第 3の異方導電性シート 42a, 42bは、前述した第 2の異方導電性シート 26と同様のも のが使用され、図 6に示したように、絶縁性の弾性高分子中に多数の導電性粒子が 厚み方向に配列して形成された導電路形成部と、それぞれの導電路形成部を離間 する絶縁部とから構成されて 、る。  The tester-side connectors 41a and 41b include third anisotropic conductive sheets 42a and 42b, connector boards 43a and 43b, and base plates 46a and 46b, as shown in FIGS. Puru. As the third anisotropic conductive sheets 42a and 42b, those similar to the above-described second anisotropic conductive sheet 26 are used, and as shown in FIG. A conductive path forming portion formed by arranging the conductive particles in the thickness direction, and an insulating portion separating the conductive path forming portions.
[0141] コネクタ基板 43a, 43bは、絶縁基板を基材として構成され、その表面の中継ピンュ ニット 31側に、図 1および図 2に示したようにピン側電極 45a, 45bが形成されている 。これらのピン佃 J電極 45a, 45bは、一定ピッチ、 f列えば 2. 45mm, 1. 8mm、 1. 27 mm、 1. Oomm、 0. 8mm、 0. 5mm、 0. 5mm、 0. 45mm、 0. dmmま 7こ fま 0. 2 mmの間隔をおいた一定ピッチの格子点上に配置されており、その配置ピッチは中 継ピンユニットの導電ピンの配置ピッチと同一である。  [0141] The connector substrates 43a and 43b are formed using an insulating substrate as a base material, and the pin-side electrodes 45a and 45b are formed on the surface of the connector substrate 43 on the side of the relay pin unit 31 as shown in FIGS. 1 and 2. . These pin Tsukuda J electrodes 45a and 45b have a constant pitch, f rows: 2.45mm, 1.8mm, 1.27mm, 1.Oomm, 0.8mm, 0.5mm, 0.5mm, 0.45mm, They are arranged on grid points with a constant pitch of 0. dmm to 7 and f to 0.2 mm, and the arrangement pitch is the same as the arrangement pitch of the conductive pins of the relay pin unit.
それぞれのピン側電極 45a, 45bは、絶縁基板の表面に形成された配線パターン およびその内部に形成された内部配線によって、テスター側電極 44a, 44bに電気 的に接続されている。  The pin-side electrodes 45a and 45b are electrically connected to the tester-side electrodes 44a and 44b by a wiring pattern formed on the surface of the insulating substrate and an internal wiring formed therein.
[0142] 以上に説明した本実施形態の検査装置では、図 2に示したように、被検査回路基 板 1の電極 2および電極 3が、第 1の異方導電性シート 22a, 22b、ピッチ変換用基板 23a, 23b、第 2の異方導電性シー卜 26a, 26b、導電ピン 32a, 32b、第 3の異方導 電性シート 42a, 42b、コネクタ基板 43a, 43bを介して、最外側に配置されたベース 板 46a, 46bをテスターの加圧機構により規定の圧力で押圧することによってテスタ 一(図示せず)に電気的に接続され、被検査回路基板 1の電極間における電気抵抗 測定などの電気検査が行われる。  In the inspection apparatus of the present embodiment described above, as shown in FIG. 2, the electrodes 2 and 3 of the circuit board 1 to be inspected are the first anisotropic conductive sheets 22a and 22b, Outermost via conversion substrates 23a and 23b, second anisotropic conductive sheets 26a and 26b, conductive pins 32a and 32b, third anisotropic conductive sheets 42a and 42b, and connector boards 43a and 43b. By pressing the base plates 46a and 46b arranged on the tester with a specified pressure by the tester pressing mechanism, it is electrically connected to one tester (not shown), and the electric resistance between the electrodes of the circuit board 1 to be measured is measured. Electrical inspection such as is performed.
上側の第 1の検査治具 11aと、下側の第 2の検査治具 l ibによって被検査回路基 板 1を押圧する圧力は、例えば、 100— 250kgfである。  The pressure for pressing the circuit board 1 to be inspected by the upper first inspection jig 11a and the lower second inspection jig lib is, for example, 100 to 250 kgf.
[0143] 図 14は、本発明の検査装置の他の実施形態を示した断面図、図 15は、図 14の検 查装置の検査時における積層状態を示した断面図、図 16は、ピッチ変換用基板の 被検査回路基板側の表面を示した図、図 17は、ピッチ変換用基板の中継ピンュ-ッ ト側表面を示した図である。なお、前述した実施形態における構成要素に対応するも のは同一の符号で示し、その詳細な説明は省略する。 FIG. 14 is a cross-sectional view showing another embodiment of the inspection apparatus of the present invention, FIG. 15 is a cross-sectional view showing a stacked state of the inspection apparatus of FIG. 14 at the time of inspection, and FIG. FIG. 17 shows the surface of the conversion board on the side of the circuit board to be inspected. FIG. Note that components corresponding to the components in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0144] 本実施形態の検査装置の構成は、基本的には前述した実施形態と同様であるが、 被検査用電極に対する電流計測および電圧計測を行うのにさらに好適な構成となつ ている。具体的には、図 16、図 18および図 19に示したように、ピッチ変換用基板 23 a, 23b〖こ、電流用端子電極 27a, 27bと電圧用端子電極 28a, 28bとカゝらなる接続電 極 25a, 25bが配置され、コネクタ基板 43a, 43bに、電流用ピン側電極 47a, 47bと 電圧用ピン側電極 48a, 48bが配置されている。  The configuration of the inspection apparatus of this embodiment is basically the same as that of the above-described embodiment, but is more suitable for performing current measurement and voltage measurement on the electrode to be inspected. Specifically, as shown in FIG. 16, FIG. 18, and FIG. 19, the pitch conversion substrates 23a and 23b, the current terminal electrodes 27a and 27b, and the voltage terminal electrodes 28a and 28b The connection electrodes 25a, 25b are arranged, and the current pin side electrodes 47a, 47b and the voltage pin side electrodes 48a, 48b are arranged on the connector boards 43a, 43b.
[0145] ピッチ変換用基板 23aの接続電極 25aは、被検査回路基板 1の被検査電極 2のそ れぞれに対して一対の電流用端子電極 27aと電圧用端子電極 28aとが電気的に接 続するように配置されている。ピッチ変換用基板 23bの接続電極 25bは、被検査回路 基板 1の被検査電極 3のそれぞれに対して一対の電流用端子電極 27bと電圧用端 子電極 28bとが電気的に接続するように配置されて ヽる。  The connection electrode 25a of the pitch conversion board 23a is electrically connected to the pair of current terminal electrodes 27a and the voltage terminal electrodes 28a with respect to each of the electrodes 2 to be inspected of the circuit board 1 to be inspected. They are arranged to connect. The connection electrodes 25b of the pitch conversion board 23b are arranged so that a pair of current terminal electrodes 27b and voltage terminal electrodes 28b are electrically connected to each of the electrodes 3 to be inspected of the circuit board 1 to be inspected. Being done.
[0146] コネクタ基板 43aの電流用ピン側電極 47aは、ピッチ変換用基板 23aの電流用端 子電極 27aに電気的に接続するように配置され、電圧用ピン側電極 48aは、ピッチ変 換用基板 23aの電圧用端子電極 28aに電気的に接続するように配置されている。コ ネクタ基板 43bの電流用ピン側電極 47bは、ピッチ変換用基板 23bの電流用端子電 極 27bに電気的に接続するように配置され、電圧用ピン側電極 48bは、ピッチ変換用 基板 23bの電圧用端子電極 28bに電気的に接続するように配置されて ヽる。  [0146] The current pin-side electrode 47a of the connector board 43a is arranged so as to be electrically connected to the current terminal electrode 27a of the pitch conversion board 23a, and the voltage pin-side electrode 48a is connected to the pitch conversion board. It is arranged so as to be electrically connected to the voltage terminal electrode 28a of the substrate 23a. The current pin electrode 47b of the connector board 43b is arranged so as to be electrically connected to the current terminal electrode 27b of the pitch conversion board 23b, and the voltage pin electrode 48b is connected to the pitch conversion board 23b. It is arranged so as to be electrically connected to the voltage terminal electrode 28b.
[0147] ピッチ変換用基板 23の一方の表面、すなわち、被検査回路基板 1側には、図 16〖こ 示したように、被検査回路基板 1の被検査電極 2 (被検査電極 3)に電気的に接続さ れる複数の接続電極 25が形成されている。これらの接続電極 25は、被検査回路基 板 1の被検査電極 2 (被検査電極 3)のパターンに対応するように配置されて!、る。  [0147] On one surface of the pitch conversion board 23, that is, on the side of the circuit board 1 to be inspected, as shown in FIG. 16, the electrode 2 to be inspected (electrode 3 to be inspected) of the circuit board 1 to be inspected is provided. A plurality of connection electrodes 25 that are electrically connected are formed. These connection electrodes 25 are arranged so as to correspond to the pattern of the electrode 2 to be inspected (the electrode 3 to be inspected) of the circuit board 1 to be inspected.
[0148] また、この接続電極 25は、図 16、図 18および図 19に示したように、被検査回路基 板 1の被検査電極 2 (被検査電極 3)に対して、一対の相互に所定間隔離間した電流 用端子電極 27と電圧用端子電極 28とから構成されて ヽる。  Further, as shown in FIGS. 16, 18, and 19, the connection electrode 25 is connected to a pair of mutual electrodes with respect to the electrode 2 to be inspected (the electrode 3 to be inspected) of the circuit board 1 to be inspected. It comprises a current terminal electrode 27 and a voltage terminal electrode 28 separated by a predetermined distance.
電流用端子電極 27と電圧用端子電極 28の形状は、矩形状、円形状、三角形状な ど種々の形状とすることができる。また、これらの一対の電流用端子電極 27と電圧用 端子電極 28が占める領域が、被検査回路基板 1の被検査電極 2 (被検査電極 3)が 占める領域と略同一の領域内に配置されるのが、測定誤差を少なくするためには望 ましい。 The shapes of the current terminal electrode 27 and the voltage terminal electrode 28 can be various shapes such as a rectangular shape, a circular shape, and a triangular shape. Also, these pair of current terminal electrodes 27 and the voltage It is desirable that the area occupied by the terminal electrodes 28 be arranged in substantially the same area as the area occupied by the electrodes 2 to be inspected (electrodes 3 to be inspected) of the circuit board 1 to be inspected, in order to reduce measurement errors. No.
[0149] また、ピッチ変換用基板 23において、電流用端子電極 27と電圧用端子電極 28と の間の離間距離は、 10 m以上であることが好ましい。この離間距離が 10 mより 小さい場合には、第 1の異方導電性シート 22a, 22bを介して電流用端子電極 27と 電圧用端子電極 28との間に流れる電流が大きくなるため、高い精度で電気抵抗を 測定することが困難になることがあり、正確な電気特性検査を実施することができな い場合がある。  [0149] In the pitch conversion substrate 23, the distance between the current terminal electrode 27 and the voltage terminal electrode 28 is preferably 10 m or more. If the separation distance is smaller than 10 m, the current flowing between the current terminal electrode 27 and the voltage terminal electrode 28 via the first anisotropic conductive sheets 22a and 22b becomes large, so that high accuracy is achieved. In some cases, it may be difficult to measure the electrical resistance, and it may not be possible to perform an accurate electrical characteristic test.
[0150] 一方、電流用端子電極 27と電圧用端子電極 28との間の離間距離の上限は、被検 查回路基板 1の被検査用の電極 2、 3の寸法およびピッチ、ならびに電流用端子電 極 27と電圧用端子電極 28の寸法によって定まるものであって、特に限定されるもの ではないが、通常は 500 m以下である。この離間距離が大きすぎる場合には、サイ ズの小さい被検査回路基板 1の被検査電極 2 (被検査電極 3)に対して、電流用端子 電極 27と電圧用端子電極 28の両方を適切に配置することが困難となる。  On the other hand, the upper limit of the separation distance between the current terminal electrode 27 and the voltage terminal electrode 28 depends on the dimensions and pitch of the electrodes 2 and 3 to be inspected on the circuit board 1 to be inspected, and the current terminal. It is determined by the dimensions of the electrode 27 and the voltage terminal electrode 28 and is not particularly limited, but is usually 500 m or less. If this separation distance is too large, both the current terminal electrode 27 and the voltage terminal electrode 28 should be properly connected to the electrode 2 to be inspected (electrode 3 to be inspected) of the circuit board 1 to be inspected having a small size. It becomes difficult to arrange.
[0151] 一方、ピッチ変換用基板 23の他方の表面、すなわち、被検査回路基板 1の反対側 には、図 17に示したように、中継ピンユニット 31の導電ピン 32に電気的に接続される 複数の端子電極 24が形成されている。これらの端子電極 24は、例えば、ピッチが 2. 54mm、 1. 8mm、 1. 27mm、上. 06mm、 0. 8mm、 0. omm、 0. omm、 0. 45m m、 0. 3mmまたは 0. 2mmの一定ピッチの格子点上に配置されており、そのピッチ は中継ピンユニット 31の導電ピン 32の配置ピッチと同一である。  On the other hand, on the other surface of the pitch conversion board 23, that is, on the side opposite to the circuit board 1 to be inspected, as shown in FIG. 17, the conductive pins 32 of the relay pin unit 31 are electrically connected. A plurality of terminal electrodes 24 are formed. These terminal electrodes 24 have, for example, a pitch of 2.54 mm, 1.8 mm, 1.27 mm, top.06 mm, 0.8 mm, 0.omm, 0.omm, 0.45 mm, 0.3 mm or 0.3 mm. The relay pins are arranged on grid points having a constant pitch of 2 mm, and the pitch is the same as the arrangement pitch of the conductive pins 32 of the relay pin unit 31.
[0152] 図 18に示したように、図 16のそれぞれの接続電極 25、すなわち、電流用端子電極 27と電圧用端子電極 28はそれぞれ、別々の配線 52および絶縁基板 51の厚み方向 に貫通する内部配線 53によって、対応する図 17の端子電極 24に電気的に接続さ れている。  As shown in FIG. 18, each connection electrode 25 in FIG. 16, that is, the current terminal electrode 27 and the voltage terminal electrode 28 penetrate in the thickness direction of the separate wiring 52 and the insulating substrate 51, respectively. The internal wiring 53 is electrically connected to the corresponding terminal electrode 24 of FIG.
[0153] 一方、テスター側コネクタ 41のコネクタ基板 43には、その表面の中継ピンユニット 3 1側に、図 14、図 15および図 19に示したようにピン側電極 45が形成されている。こ れらのピン側電極 45は、図 19に示したように、ピッチ変換用基板 23の接続電極 25、 すなわち、電流用端子電極 27と電圧用端子電極 28とに別個にそれぞれ電気的に 接続するように、電流用ピン側電極 47と電圧用ピン側電極 48から構成されており、 中継ピンユニット 31の導電ピン 32に対応する位置に配置されている。 On the other hand, on the connector board 43 of the tester-side connector 41, a pin-side electrode 45 is formed on the surface of the connector board 43 on the side of the relay pin unit 31, as shown in FIG. 14, FIG. 15, and FIG. These pin-side electrodes 45 are connected to the connection electrodes 25 of the pitch conversion substrate 23, as shown in FIG. In other words, the current pin electrode 27 and the voltage pin electrode 48 are configured so as to be electrically connected to the current terminal electrode 27 and the voltage terminal electrode 28, respectively. It is arranged at a position corresponding to the conductive pin 32.
[0154] この場合、これらのピン側電極 45は、一定ピッチ、例えば、 2. 54mm, 1. 8mm、 1 . 2 /mm、 1. Oomm、 0. 8mm、 0. 5mm、 0. 5mm、 0. 45mm、 0. dmmま 7こ ίま 0 . 2mmの一定ピッチの格子点上に配置されており、その配置ピッチは中継ピンュ- ット 31の導電ピン 32の配置ピッチと同一である。 In this case, these pin-side electrodes 45 are arranged at a constant pitch, for example, 2.54 mm, 1.8 mm, 1.2 / mm, 1. Oomm, 0.8 mm, 0.5 mm, 0.5 mm, 0 mm They are arranged on grid points having a constant pitch of 45 mm, 7 mm or 0.2 mm, and 0.2 mm, and the arrangement pitch is the same as the arrangement pitch of the conductive pins 32 of the relay pin cut 31.
それぞれのピン側電極 45は、絶縁基板の表面に形成された配線パターンおよびそ の内部に形成された内部配線によって、テスター側電極 44に電気的に接続されてい る。  Each pin-side electrode 45 is electrically connected to the tester-side electrode 44 by a wiring pattern formed on the surface of the insulating substrate and an internal wiring formed therein.
[0155] なお、この実施形態では、ピン側電極 45をピン形状とした力 ピン側電極 45の形状 はピン形状に限定されるものではなぐ例えば、平坦な電極とするなど種々の変更が 可能である。  In this embodiment, the shape of the pin-side electrode 45 is not limited to the pin shape, and various modifications are possible, such as a flat electrode. is there.
このように構成される本実施形態の検査装置 10では、図 14に示したように、被検査 回路基板 1の電極 2および電極 3は、第 1の異方導電性シート 22a, 22b、ピッチ変換 用基板 23a, 23b,第 2の異方導電性シー卜 26a, 26b,導電ピン 32a, 32b,第 3の 異方導電性シート 42a, 42b、コネクタ基板 43a, 43bを介して、最外側に配置された ベース板 46a, 46bをテスターの加圧機構により規定の圧力で押圧することによって テスター(図示せず)に電気的に接続され、被検査回路基板 1の電極間における電 気抵抗測定などの電気検査が行われる。  In the inspection apparatus 10 of the present embodiment configured as described above, as shown in FIG. 14, the electrodes 2 and 3 of the circuit board 1 to be inspected are the first anisotropic conductive sheets 22a and 22b, Substrates 23a and 23b, second anisotropic conductive sheets 26a and 26b, conductive pins 32a and 32b, third anisotropic conductive sheets 42a and 42b, and connector boards 43a and 43b. The base plates 46a and 46b are pressed by a tester's pressing mechanism at a specified pressure to be electrically connected to a tester (not shown), thereby measuring electrical resistance between electrodes of the circuit board 1 to be inspected. An electrical test is performed.
[0156] この場合、図 19に示したように、被検査回路基板 1の被検査電極 2 (被検査電極 3) に対して、第 1の異方導電性シート 22を介して、ピッチ変換用基板 23の被検査回路 基板 1側における一対の電流用端子電極 27と電圧用端子電極 28が電気的に接続 される。 In this case, as shown in FIG. 19, the electrode 2 to be inspected (electrode 3 to be inspected) of the circuit board 1 to be inspected is subjected to pitch conversion via the first anisotropic conductive sheet 22. A pair of current terminal electrodes 27 and voltage terminal electrodes 28 on the circuit under test substrate 1 side of the substrate 23 are electrically connected.
そして、ピッチ変換用基板 23の被検査回路基板 1側における一対の電流用端子電 極 27と電圧用端子電極 28から、ピッチ変換用基板 23の被検査回路基板 1と反対側 の端子電極 24、第 2の異方導電性シート 26、中継ピンユニット 31の導電ピン 32、第 3の異方導電性シート 42を介して、ピッチ変換用基板 23の電流用端子電極 27が、コ ネクタ基板 43の電流用ピン側電極 47に電気的に接続されるとともに、ピッチ変換用 基板 23の電圧用端子電極 28が、コネクタ基板 43の電圧用端子電極 48に電気的に 接続されるようになっている。 Then, from the pair of current terminal electrodes 27 and voltage terminal electrodes 28 on the side of the circuit board under test 1 of the pitch conversion board 23, the terminal electrodes 24 of the pitch conversion board 23 on the side opposite to the circuit board 1 under test, Through the second anisotropic conductive sheet 26, the conductive pins 32 of the relay pin unit 31, and the third anisotropic conductive sheet 42, the current terminal electrodes 27 of the pitch conversion board 23 So that the voltage terminal electrode 28 of the pitch conversion board 23 is electrically connected to the voltage terminal electrode 48 of the connector board 43, while being electrically connected to the current pin side electrode 47 of the connector board 43. Has become.
[0157] これにより、図 19に示したように、被検査回路基板 1の各被検査用電極 2, 3に対し て、ピッチ変換用基板 23a, 23bの電流用端子電極 27a, 27bを介して、電流計測経 路 Iが構成されることになる、一方、被検査回路基板 1の各被検査用電極 2, 3に対し て、ピッチ変換用基板 23a, 23bの電圧用端子電極 28a, 28bを介して、電圧計測経 路 Vが構成されることになる。  As a result, as shown in FIG. 19, the electrodes 2 and 3 to be inspected of the circuit board 1 to be inspected are connected via the current terminal electrodes 27a and 27b of the pitch conversion boards 23a and 23b. Thus, the current measurement path I is configured.On the other hand, the voltage terminal electrodes 28a and 28b of the pitch conversion boards 23a and 23b are connected to the electrodes 2 and 3 of the circuit board 1 to be inspected. Thus, the voltage measurement path V is configured.
[0158] 従って、被検査回路基板 1の各被検査用電極 2, 3に対して、ピッチ変換用基板 23 a, 23bの電圧用端子電極 28a, 28bを介して、電圧計測経路 Vに電圧を印加しなが ら、ピッチ変換用基板 23, 23bの電流用端子電極 27a, 27bを介して、電流計測経 路 I〖こよって、被検査回路基板 1の各被検査用電極 2, 3を流れる電流を測定し、これ によって、被検査回路基板 1の配線パターンが所定の性能を有するか否かにっ 、て の電気的特性の確認試験を行うことができる。  Accordingly, a voltage is applied to the voltage measurement path V to each of the electrodes 2 and 3 of the circuit board 1 to be inspected via the voltage terminal electrodes 28a and 28b of the pitch conversion boards 23a and 23b. While the voltage is being applied, the current flows through each of the electrodes 2 and 3 of the circuit board 1 to be inspected via the current measuring path I through the current terminal electrodes 27a and 27b of the pitch conversion boards 23 and 23b. By measuring the current, it is possible to perform a test for confirming the electrical characteristics of the circuit pattern under test 1 based on whether or not the wiring pattern has a predetermined performance.
[0159] 逆に、被検査回路基板 1の各被検査用電極 2, 3に対して、ピッチ変換用基板 23a , 23bの電流用端子電極 27a, 27bを介して、電流計測経路 Iに電流を供給しながら 、ピッチ変換用基板 23a, 23bの電圧用端子電極 28a, 28bを介して、電圧計測経路 Vによって、被検査回路基板 1の各被検査用電極 2, 3に対して電圧を測定し、これ によって、被検査回路基板 1の配線パターンが所定の性能を有するか否かにっ 、て の電気的特性の確認試験を行うことができる。  [0159] Conversely, a current is applied to the current measurement path I to the electrodes 2 and 3 of the circuit board 1 to be inspected via the current terminal electrodes 27a and 27b of the pitch conversion boards 23a and 23b. While supplying, the voltage is measured for each of the electrodes 2 and 3 of the circuit board 1 to be inspected by the voltage measurement path V via the voltage terminal electrodes 28a and 28b of the pitch conversion boards 23a and 23b. Thus, it is possible to perform a confirmation test of the electrical characteristics based on whether the wiring pattern of the circuit board under test 1 has a predetermined performance.
[0160] このように、被検査回路基板 1の各被検査用電極 2, 3に対して、別個の電圧計測 経路 V、電流計測経路 Iを介して、別個に電圧と電流を測定することができるので、検 查回路基板の配線パターンが所定の性能を有するか否かについての電気的特性に ついて正確な確認試験を行うことができ、しカゝも、確認試験を短時間で実施すること ができる。  As described above, it is possible to separately measure the voltage and the current for each of the electrodes 2 and 3 of the circuit board 1 to be inspected through the separate voltage measurement path V and the current measurement path I. It is possible to conduct an accurate confirmation test on the electrical characteristics of whether or not the wiring pattern of the inspection circuit board has a predetermined performance, and the verification test should be performed in a short time. Can be.
また、被検査回路基板 1の被検査回路に対して、電流を供給しながら電圧を測定 できるので、従来の検査装置における導通抵抗値の良否判断の設定電圧よりも低い 設定電圧において、被検査回路基板 1の被検査回路の導通抵抗値を安定に測定す ることがでさる。 In addition, since the voltage can be measured while supplying a current to the circuit to be inspected on the circuit to be inspected 1, the circuit to be inspected can be measured at a setting voltage lower than the setting voltage for determining whether the conduction resistance is good or not in the conventional inspection apparatus. Measure the conduction resistance of the circuit under test on board 1 stably. You can do it.
[0161] すなわち、高精度な検査の要件として低い設定電圧での回路の良否判断が必要と される力 本実施形態の検査装置によれば、潜在的な電気的欠陥を有する被検査 回路基板を高い確率で不良品として判断し除去できるので、信頼性の高い回路基板 の確認試験を実施することが可能である。  [0161] That is, the power required to judge the quality of a circuit at a low set voltage as a requirement for high-precision inspection. According to the inspection apparatus of the present embodiment, a circuit board to be inspected having a potential electrical defect can be removed. Since it can be judged and removed as a defective product with a high probability, it is possible to conduct a highly reliable circuit board confirmation test.
なお、被検査回路基板 1の各被検査用電極 2, 3に対して、ピッチ変換用基板 23a , 23bの電圧用端子電極 28a, 28bを介して、例えば定電圧装置を用いて、電圧計 測経路 Vに対して一定の電圧を加えながら、ピッチ変換用基板 23a, 23bの電流用 端子電極 27a, 27bを介して、電流計測経路 Iに電流を供給し、被検査回路基板 1の 各被検査用電極 2, 3からの電流を電流計で測定することにより、被検査回路基板 1 の配線パターンが所定の性能を有するか否かについての電気的特性の確認試験を 行うことちでさる。  Note that the electrodes 2 and 3 to be inspected of the circuit board 1 to be inspected are subjected to voltage measurement using, for example, a constant voltage device via the voltage terminal electrodes 28a and 28b of the pitch conversion substrates 23a and 23b. While applying a constant voltage to the path V, a current is supplied to the current measurement path I via the current terminal electrodes 27a and 27b of the pitch conversion boards 23a and 23b, and each test target circuit board 1 is tested. By measuring the current from the electrodes 2 and 3 with an ammeter, a test for confirming electrical characteristics as to whether or not the wiring pattern of the circuit board 1 to be inspected has predetermined performance is performed.
[0162] 図 20は、本発明の回路基板の検査装置における他の実施形態を示した断面図、 図 21は、図 20の検査装置の検査時における積層状態を示した断面図である。なお 、前述した実施形態における構成要素に対応するものは同一の符号で示し、その詳 細な説明は省略する。  FIG. 20 is a cross-sectional view showing another embodiment of the circuit board inspection apparatus of the present invention, and FIG. 21 is a cross-sectional view showing a stacked state at the time of inspection of the inspection apparatus of FIG. Note that components corresponding to the components in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
本実施形態の検査装置の構成は、基本的には前述した実施形態と同様であるが、 中継ピンユニットが、高さバラツキを有する被検査回路基板の被検査電極に対してさ らに安定的な電気的接触が確保できる構成となっている。  The configuration of the inspection apparatus of this embodiment is basically the same as that of the above-described embodiment, except that the relay pin unit is more stable with respect to the electrode to be inspected of the circuit board to be inspected having a height variation. The structure is such that a secure electrical contact can be ensured.
[0163] 本実施形態における中継ピンユニット 31は、図 20、図 21、および図 22に示したよう に、上下方向を向くように並列に、所定のピッチで設けられた多数の導電ピン 32a, 3 2bを備えている。また、中継ピンユニット 31は、これらの導電ピン 32a, 32bの両端側 に設けられ、導電ピン 32a, 32bを揷通支持する被検査回路基板 1側に配置された 第 1の絶縁板 34a, 34bと、被検査回路基板 1側と反対側に配置された第 2の絶縁板 35a, 35bの 2枚の絶縁板を備えている。  As shown in FIG. 20, FIG. 21, and FIG. 22, the relay pin unit 31 according to the present embodiment includes a large number of conductive pins 32a, It has 3 2b. The relay pin units 31 are provided on both ends of the conductive pins 32a and 32b, and are disposed on the side of the circuit board under test 1 that supports the conductive pins 32a and 32b. And two insulating plates, second insulating plates 35a and 35b, disposed on the side opposite to the circuit board 1 to be inspected.
[0164] 導電ピン 32は、例えば、図 22に示したように、直径の大きい中央部 82と、これよりも 直径の小さい端部 8 la, 8 lbと力 S設けられている。  As shown in FIG. 22, for example, the conductive pin 32 is provided with a central portion 82 having a large diameter, and end portions 8 la and 8 lb having a smaller diameter than the central portion 82 and a force S.
第 1の絶縁板 34と、第 2の絶縁板 35には導電ピン 32の端部 81が挿入される貫通 孔 83が形成されている。そして、貫通孔 83の直径が、導電ピン 32の端部 81の直径 よりも大きぐ且つ中央部 82の直径よりも小さく形成され、これにより導電ピン 32が脱 落しな 、ように保持されて!、る。 The first insulating plate 34 and the second insulating plate 35 have through-holes into which the ends 81 of the conductive pins 32 are inserted. A hole 83 is formed. Then, the diameter of the through hole 83 is formed to be larger than the diameter of the end portion 81 of the conductive pin 32 and smaller than the diameter of the central portion 82, so that the conductive pin 32 is held so as not to fall off! RU
[0165] 第 1の絶縁板 34と第 2の絶縁板 35は、第 1の支持ピン 33および第 2の支持ピン 37 により、これらの間隔が導電ピン 32の中央部 82の長さよりも長くなるように固定され、 これにより導電ピン 32が上下に可動するように保持されて 、る。 The distance between the first insulating plate 34 and the second insulating plate 35 is longer than the length of the central portion 82 of the conductive pin 32 by the first support pin 33 and the second support pin 37. Thus, the conductive pin 32 is held so as to move up and down.
導電ピン 32の端部 81a, 81bの長さは、絶縁板 34, 35の厚みよりも長くなるように 形成され、これにより、絶縁板 34, 35のうち少なくとも一方力も導電ピン 32が突出す るようになっている。  The ends 81a and 81b of the conductive pins 32 are formed to be longer than the thicknesses of the insulating plates 34 and 35, whereby the conductive pins 32 protrude at least one of the forces of the insulating plates 34 and 35. It has become.
[0166] 中継ピンユニットは、多数の導電ピン力 一定ピッチ、例えば、 2. 54mm, 1. 8mm 、 1. 27mm、 1. 06mm、 0. 8mm、 0. / 5mm、 0. 5mm、 0. 45mm、 0. 3mmま 7こ は 0. 2mmのピッチの格子点上に配置されている。  [0166] The relay pin unit has a large number of conductive pin forces at a constant pitch, for example, 2.54 mm, 1.8 mm, 1.27 mm, 1.06 mm, 0.8 mm, 0.5 mm, 0.5 mm, 0.45 mm , 0.3 mm and 7 mm are arranged on grid points with a pitch of 0.2 mm.
中継ピンユニット 31の導電ピン 32の配置ピッチと、ピッチ変換用基板 23に設けられ た端子電極 24の配置ピッチとを同一とすることにより、導電ピン 32を介してピッチ変 換用基板 23がテスター側に電気的に接続されるようになっている。  By making the arrangement pitch of the conductive pins 32 of the relay pin unit 31 and the arrangement pitch of the terminal electrodes 24 provided on the pitch conversion board 23 the same, the pitch conversion board 23 is connected to the tester via the conductive pins 32. Side to be electrically connected.
[0167] また、図 20—図 22に示したように、中継ピンユニット 31には、第 1の絶縁板 34a, 3 4bと、第 2の絶縁板 35a, 35bとの間〖こ、中間保持板 36a, 36bが配置されている。 そして、第 1の絶縁板 34a, 34bと中間保持板 36a, 36bとの間には、第 1の支持ピ ン 33a, 33bが配置され、これによつて、第 1の絶縁板 34a, 34bと中間保持板 36a, 3 6bとの間を固定するようになっている。 As shown in FIG. 20 to FIG. 22, the relay pin unit 31 has a space between the first insulating plates 34a and 34b and the second insulating plates 35a and 35b, Plates 36a and 36b are arranged. And, between the first insulating plates 34a, 34b and the intermediate holding plates 36a, 36b, first supporting pins 33a, 33b are arranged, whereby the first insulating plates 34a, 34b and The space between the intermediate holding plates 36a and 36b is fixed.
同様に、第 2の絶縁板 35a, 35bと中間保持板 36a, 36bとの間には、第 2の支持ピ ン 37a, 37bが配置され、これによつて、第 2の絶縁板 35a, 35bと中間保持板 36a, 3 6bとの間を固定するようになっている。  Similarly, between the second insulating plates 35a, 35b and the intermediate holding plates 36a, 36b, second supporting pins 37a, 37b are arranged, whereby the second insulating plates 35a, 35b are provided. And the intermediate holding plates 36a, 36b.
[0168] この場合、第 1の支持ピン 33と、第 2の支持ピン 37の材質としては、特に限定される ものではなぐ例えば、真鍮、ステンレスなどの金属製である。 [0168] In this case, the material of the first support pin 33 and the second support pin 37 is not particularly limited, and is, for example, a metal such as brass or stainless steel.
なお、第 1の絶縁板 34と中間保持板 36との間の距離と、第 2の絶縁板 35と中間保 持板 36との間の距離としては、特に限定されるものではないが、後述するように、第 1 の絶縁板 34、中間保持板 36、および第 2の絶縁板 35の弾性による、被検査回路基 板 1の被検査電極 2, 3の高さバラツキの吸収性を考慮すれば、好ましくは 2mm以上 、より好ましくは 2. 5mm以上である。 The distance between the first insulating plate 34 and the intermediate holding plate 36 and the distance between the second insulating plate 35 and the intermediate holding plate 36 are not particularly limited, but will be described later. As a result, the circuit board under test is formed by the elasticity of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35. In consideration of the absorption of height variations of the electrodes 2 and 3 to be inspected on the plate 1, it is preferably 2 mm or more, more preferably 2.5 mm or more.
[0169] そして、図 23に示したように、第 1の支持ピン 33の中間保持板 36に対する第 1の当 接支持位置 38Aと、第 2の支持ピン 37の中間保持板 36に対する第 2の当接支持位 置 38Bとは、検査装置を中間保持板 36の厚さ方向(図 20において上方から下方に 向カゝぅ方向)に投影した中間保持板投影面 A上において異なる位置に配置されてい る。 Then, as shown in FIG. 23, a first contact supporting position 38 A of the first support pin 33 with respect to the intermediate holding plate 36 and a second contacting position 38 A of the second support pin 37 with respect to the intermediate holding plate 36. The contact support position 38B is located at a different position on the intermediate holding plate projection plane A where the inspection apparatus is projected in the thickness direction of the intermediate holding plate 36 (in the direction from the upper side to the lower side in FIG. 20). ing.
この場合、異なる位置としては、特に限定されるものではないが、第 1の当接支持位 置 38Aと、第 2の当接支持位置 38Bは、図 23に示したように、中間保持板投影面 A 上にぉ 、て格子上に形成されて 、ることが好ま 、。  In this case, the different positions are not particularly limited, but the first contact support position 38A and the second contact support position 38B are, as shown in FIG. Preferably, it is formed on the lattice and on the surface A.
[0170] 具体的には、図 23に示したように、中間保持板投影面 A上において、隣接する 4個 の第 1の当接支持位置 38Aからなる単位格子領域 R1に、 1個の第 2の当接支持位 置 38Bが配置される。また、中間保持板投影面 Aにおいて、隣接する 4個の第 2の当 接支持位置 38Bからなる単位格子領域 R2に、 1個の第 1の当接支持位置 38Aが配 置されるように構成されている。なお、図 23においては、第 1の当接支持位置 38Aを 黒丸、第 2の当接支持位置 38Bを白丸で示している。  [0170] Specifically, as shown in FIG. 23, on the intermediate holding plate projection plane A, one unit grid region R1 including four adjacent first contact support positions 38A is provided with one second The second contact support position 38B is arranged. Further, on the intermediate holding plate projection plane A, one first contact support position 38A is arranged in a unit lattice region R2 composed of four adjacent second contact support positions 38B. Have been. In FIG. 23, the first contact support position 38A is indicated by a black circle, and the second contact support position 38B is indicated by a white circle.
[0171] なお、本実施形態では、第 1の当接支持位置 38Aの単位格子領域 R1の対角線 Q 1の中央に、 1個の第 2の当接支持位置 38Bを配置するとともに、第 2の当接支持位 置 38Bの単位格子領域 R2の対角線 Q2の中央に、 1個の第 1の当接支持位置 38A を配置している力 これらの相対的な位置は、特に限定されるものではなぐ検査装 置を中間保持板の厚さ方向に投影した中間保持板投影面 A上において異なる位置 に配置されていればよい。すなわち、格子状に配置されない場合には、このような相 対位置関係に拘束されるものではなぐ上記のように、検査装置 10を中間保持板の 厚さ方向に投影した中間保持板投影面 A上にぉ 、て異なる位置に配置されて!ヽれ ばよい。  In the present embodiment, one second contact support position 38B is disposed at the center of the diagonal line Q1 of the unit lattice region R1 of the first contact support position 38A, and the second contact support position 38B Force at which one first contact support position 38A is arranged at the center of the diagonal Q2 of the unit lattice region R2 of the contact support position 38B.The relative positions of these are not particularly limited. It is sufficient that the inspection device is arranged at a different position on the intermediate holding plate projection plane A where the inspection device is projected in the thickness direction of the intermediate holding plate. In other words, if they are not arranged in a lattice, they are not restricted by such a relative positional relationship. As described above, the inspection device 10 projects the intermediate holding plate projection surface A in the thickness direction of the intermediate holding plate.ぉ on the top, are located in different locations! You only have to do it.
[0172] また、この場合、互いに隣接する第 1の当接支持位置 38Aの間の離間距離、第 2の 当接支持位置 38Bの間の離間距離は、特に限定されるものではなぐ好ましくは 10 — 100mm,より好ましくは 12— 70mm、特に好ましくは 15— 50mmである。 なお、第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35としては、可撓性を有す るものが用いられる。第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35に要求され る可撓性の程度は、第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35の両端部を 、それぞれ 10cm間隔で支持した状態で水平に配置した場合において、上方から 50 kgfの圧力で加圧することによって生ずる橈み力 これらの絶縁板の幅の 0. 02%以 下であり、かつ上方から 200kgfの圧力で加圧することによつても破壊および永久変 形が生じな 、程度であることが好ま 、。 [0172] In this case, the distance between the first contact support positions 38A and the distance between the second contact support positions 38B that are adjacent to each other are not particularly limited. — 100 mm, more preferably 12-70 mm, particularly preferably 15-50 mm. As the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35, those having flexibility are used. The degree of flexibility required for the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35 depends on both ends of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35. Are placed horizontally at a distance of 10 cm from each other, and the radial force generated by applying a pressure of 50 kgf from above is 0.02% or less of the width of these insulating plates and It is preferable that destruction and permanent deformation do not occur even by pressurizing at a pressure of from 200 kgf to 200 kgf.
[0173] 第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35の具体的な材料としては、前述 した実施形態における中継ピンユニットの絶縁板と同様のものを用いることができ、例 えば、固有抵抗が 1 X 1Ο10 Ω ' cm以上の絶縁性材料が好ましい。 [0173] As a specific material of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35, the same material as the insulating plate of the relay pin unit in the above-described embodiment can be used. for example, resistivity 1 X 1Ο 10 Ω 'cm or more insulating materials are preferred.
第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35の各々の厚みは、第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35を構成する材料の種類に応じて適宜選択され る力 好ましくは 1一 10mmである。  The thickness of each of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35 depends on the type of the material forming the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35. The force is selected as appropriate, and is preferably 11 to 10 mm.
[0174] このように構成される本実施形態の検査装置では、図 21に示したように、被検査回 路基板 1の電極 2および電極 3は、第 1の異方導電性シート 22a, 22b、ピッチ変換用 基板 23a, 23b、第 2の異方導電性シー卜 26a, 26b、導電ピン 32a, 32b、第 3の異 方導電性シート 42a, 42b、コネクタ基板 43a, 43bを介して、最外側に配置されたべ ース板 46a, 46bをテスターの加圧機構により規定の圧力で押圧することによってテ スター(図示せず)に電気的に接続され、被検査回路基板 1の電極間における電気 抵抗測定などの電気検査が行われる。以下、図 24—図 27を参照しながら (便宜的に 、第 2の検査治具 l ibのみ示す)、第 1の検査治具 11aと第 2の検査治具 l ibとの間 で被検査回路基板 1の両面を挟圧した際における圧力吸収作用および圧力分散作 用について説明する。  In the inspection apparatus of the present embodiment configured as described above, as shown in FIG. 21, the electrodes 2 and 3 of the circuit board 1 to be inspected are the first anisotropic conductive sheets 22a and 22b. Through the pitch conversion boards 23a and 23b, the second anisotropic conductive sheets 26a and 26b, the conductive pins 32a and 32b, the third anisotropic conductive sheets 42a and 42b, and the connector boards 43a and 43b. The base plates 46a and 46b arranged on the outside are electrically connected to a tester (not shown) by pressing the base plates 46a and 46b with a predetermined pressure by a pressing mechanism of the tester. An electrical test such as resistance measurement is performed. Hereinafter, while referring to FIGS. 24 to 27 (only the second inspection jig lib is shown for convenience), the inspection is performed between the first inspection jig 11a and the second inspection jig lib. The pressure absorbing action and the pressure dispersing action when both sides of the circuit board 1 are pressed will be described.
[0175] 第 1の検査治具 11aと第 2の検査治具 l ibの間で検査対象である被検査回路基板 1の両面を挟圧して電気検査を行う際に、図 24の状態力ゝら各構成要素を積層させて 加圧を開始した初期段階では(図 25)、中継ピンユニット 31bの導電ピン 32bの移動 と、第 1の異方導電性シート 22bと、第 2の異方導電性シート 26bと、第 3の異方導電 性シート 42bのゴム弾性圧縮にて圧力を吸収して、被検査回路基板 1の被検査電極 の高さバラツキをある程度吸収することができる。 When the electrical inspection is performed by pressing both surfaces of the circuit board 1 to be inspected between the first inspection jig 11a and the second inspection jig l ib, the state force shown in FIG. In the initial stage when the components are stacked and pressurization is started (Fig. 25), the movement of the conductive pins 32b of the relay pin unit 31b, the first anisotropic conductive sheet 22b, and the second anisotropic conductive sheet 22b The pressure is absorbed by the rubber elastic compression of the conductive sheet 26b and the third anisotropic conductive sheet 42b, and the electrodes to be inspected of the circuit board 1 to be inspected. Can be absorbed to some extent.
[0176] そして、第 1の支持ピン 33bの中間保持板 36bに対する第 1の当接支持位置 38Aと 、第 2の支持ピン 37bの中間保持板 36bに対する第 2の当接支持位置 38Bとが、中 間保持板 36bの厚さ方向に投影した中間保持板投影面 Aにお ヽて異なる位置に配 置されているので、図 26の矢印で示したように、上下方向に力が作用することになつ て、図 27に示したように、第 1の検査治具 11aと第 2の検査治具 l ibの間で検査対象 である被検査回路基板 1をさらに加圧した際に、第 1の異方導電性シート 22bと、第 2 の異方導電性シート 26bと、第 3の異方導電性シート 42bのゴム弾性圧縮に加えて、 中継ピンユニット 31bの第 1の絶縁板 34bと、第 2の絶縁板 35bと、第 1の絶縁板 34b と第 2の絶縁板 35bの間に配置された中間保持板 36bのパネ弾性により、被検査回 路基板 1の被検査電極 3の高さバラツキ、例えば、ハンダボール電極の高さバラツキ に対して、圧力集中を分散させて、局部的な応力集中を回避することができる。  [0176] Then, the first contact support position 38A of the first support pin 33b with respect to the intermediate holding plate 36b and the second contact support position 38B of the second support pin 37b with the intermediate holding plate 36b are: Since the intermediate holding plate 36b is arranged at a different position on the intermediate holding plate projection plane A projected in the thickness direction of the intermediate holding plate 36b, a force acts in the vertical direction as shown by the arrow in FIG. As shown in FIG. 27, when the circuit board 1 to be inspected is further pressurized between the first inspection jig 11a and the second inspection jig lib, the first In addition to the rubber elastic compression of the anisotropic conductive sheet 22b, the second anisotropic conductive sheet 26b, and the third anisotropic conductive sheet 42b, the first insulating plate 34b of the relay pin unit 31b, Due to the panel elasticity of the second insulating plate 35b and the intermediate holding plate 36b disposed between the first insulating plate 34b and the second insulating plate 35b, the circuit board 1 Variations in height of the test electrodes 3, for example, can be a solder ball electrodes with respect to height variation, by dispersing pressure concentration, to avoid local stress concentration.
[0177] すなわち、図 26および図 27に示したように、第 1の支持ピン 33bの中間保持板 36b との第 iの当接支持位置 38Aを中心として、中間保持板 36bが、第 2の絶縁板 35bの 方向に橈むとともに(図 27の一点鎖線で囲んだ Eの部分参照)、第 2の支持ピン 37b の中間保持板 36bとの第 2の当接支持位置 38Bを中心として、中間保持板 36bが、 第 1の絶縁板 34bの方向に橈むことになる(図 27の一点鎖線で囲んだ Dの部分参照 )。なお、以下、本明細書で「橈む」および「橈み方向」とは中間保持板 36が凸状にな る方向に突出するように橈むことおよびその突出方向を言う。 [0177] That is, as shown in Figs. 26 and 27, the intermediate holding plate 36b is connected to the second supporting center 38a of the first support pin 33b with the intermediate holding plate 36b. While bending in the direction of the insulating plate 35b (see the portion E surrounded by the dashed line in FIG. 27), the second support pin 37b is held at the intermediate contact support position 38B with the intermediate holding plate 36b. The plate 36b is bent in the direction of the first insulating plate 34b (see a portion D surrounded by a dashed line in FIG. 27). Hereinafter, in the present specification, the “radius” and the “radial direction” refer to the radius of the intermediate holding plate 36 protruding in a direction in which the intermediate holding plate 36 becomes convex, and the protruding direction thereof.
[0178] このように、中間保持板 36bが、第 1の当接支持位置 38A、第 2の当接支持位置 38 Bを中心として、相互に反対方向に橈むので、第 1の検査治具 11aと第 2の検査治具 l ibの間で検査対象である被検査回路基板 1をさらに加圧した際に、中間保持板 36 bのパネ弾性力がさらに発揮されることになる。 [0178] As described above, since the intermediate holding plate 36b is deflected in opposite directions about the first contact support position 38A and the second contact support position 38B, the first inspection jig is provided. When the circuit board 1 to be inspected is further pressurized between 11a and the second inspection jig lib, the panel elasticity of the intermediate holding plate 36b is further exerted.
また、図 27の一点鎖線で囲んだ B部分で示したように、第 2の異方導電性シート 26 bの導電路形成部の突出部の圧縮によって、導電ピン 32bの高さが吸収されるが、こ の突出部の圧縮よつて吸収しきれない圧力力 第 1の絶縁板 34bに加わることになる これにより、図 27の一点鎖線で囲んだ C部分で示したように、第 1の絶縁板 34bと第 2の絶縁板 35bもそれぞれ、ある程度、第 1の支持ピン 33b、第 2の支持ピン 37bとの 当接位置で、相互に反対方向に橈むので、第 1の検査治具 11aと第 2の検査治具 11 bの間で検査対象である被検査回路基板 1をさらに加圧した際に、第 1の絶縁板 34b と第 2の絶縁板 35bのパネ弾性力がさらに発揮されることになる。 Further, as shown by a portion B surrounded by a dashed line in FIG. 27, the height of the conductive pin 32b is absorbed by the compression of the protrusion of the conductive path forming portion of the second anisotropic conductive sheet 26b. Is applied to the first insulating plate 34b, which cannot be absorbed by the compression of the protruding portion.As a result, as shown by the portion C surrounded by the dashed line in FIG. Plate 34b and the second The second insulating plate 35b also deflects in a direction opposite to each other to some extent at the contact position with the first support pin 33b and the second support pin 37b, so that the first inspection jig 11a and the second When the circuit board 1 to be inspected is further pressed between the inspection jigs 11b, the panel elasticity of the first insulating plate 34b and the second insulating plate 35b is further exerted. .
[0179] これにより、高さバラツキを有する被検査回路基板 1の被検査電極の各々に対して も、安定的な電気的接触が確保され、さらに応力集中が低減されるので、異方導電 性シートの局部的な破損が抑制される。その結果、異方導電性シートの繰り返し使用 耐久性が向上するので、異方導電性シートの交換回数が減り、検査作業効率が向上 すること〖こなる。 [0179] As a result, stable electrical contact is ensured with each of the electrodes to be inspected of the inspected circuit board 1 having variations in height, and stress concentration is further reduced. Local breakage of the sheet is suppressed. As a result, the durability of repeated use of the anisotropic conductive sheet is improved, so that the number of times of replacement of the anisotropic conductive sheet is reduced, and the inspection work efficiency is improved.
[0180] 図 28は、本発明の検査装置の他の実施形態を示した図 24と同様の断面図 (便宜 的に第 2の検査治具のみ示している)、図 29は、その中継ピンユニットの拡大断面図 である。なお、前述した実施形態における構成要素に対応するものは同一の符号で 示し、その詳細な説明は省略する。  FIG. 28 is a cross-sectional view similar to FIG. 24 showing another embodiment of the inspection apparatus of the present invention (only the second inspection jig is shown for convenience), and FIG. It is an expanded sectional view of a unit. Note that components corresponding to the components in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0181] 本実施形態の検査装置では、第 1の絶縁板 34bと第 2の絶縁板 35bの間に、複数 個 (この実施形態では 3個)の中間保持板 36bが所定間隔離間して配置されるととも に、これらの隣接する中間保持板 36b同士の間に、保持板支持ピン 39bが配置され ている。  [0181] In the inspection device of the present embodiment, a plurality of (three in this embodiment) intermediate holding plates 36b are arranged between the first insulating plate 34b and the second insulating plate 35b with a predetermined interval therebetween. At the same time, holding plate support pins 39b are arranged between the adjacent intermediate holding plates 36b.
[0182] この場合、少なくとも 1つの中間保持板 36bにおいて、中間保持板 36bに対して一 面側力も当接する保持板支持ピン 39bの中間保持板 36bに対する当接支持位置と、 中間保持板 36bに対して他面側力も当接する第 1の支持ピン 33b、第 2の支持ピン 3 7b、または保持板支持ピン 39bの中間保持板 36bに対する当接支持位置とが、中間 保持板 36bの厚さ方向に投影した中間保持板投影面において異なる位置に配置さ れて 、ることが必要である。  In this case, in at least one intermediate holding plate 36b, a contact supporting position of the holding plate support pin 39b that also contacts the one-side force against the intermediate holding plate 36b with the intermediate holding plate 36b, The contact support position of the first support pin 33b, the second support pin 37b, or the holding plate support pin 39b against the intermediate holding plate 36b, on which the other surface side abuts, is in the thickness direction of the intermediate holding plate 36b. It is necessary to be arranged at different positions on the projection plane of the intermediate holding plate projected on the surface.
[0183] 最も好ましくは、全ての中間保持板 36bにおいて、中間保持板 36bに対して一面側 力 当接する保持板支持ピン 39bの中間保持板 36bに対する当接支持位置と、中間 保持板 36bに対して他面側力も当接する第 1の支持ピン 33b、第 2の支持ピン 37b、 または保持板支持ピン 39bの中間保持板 36bに対する当接支持位置とが、中間保 持板 36bの厚さ方向に投影した中間保持板投影面において異なる位置に配置され る。 [0183] Most preferably, in all the intermediate holding plates 36b, the holding plate support pins 39b that are in one-side contact with the intermediate holding plate 36b are in contact with the intermediate holding plate 36b. The contact support position of the first support pin 33b, the second support pin 37b, or the holding plate support pin 39b against the intermediate holding plate 36b in the thickness direction of the intermediate holding plate 36b. The projected intermediate holding plate is located at a different position on the projection plane. The
[0184] 本実施形態では、 3つの中間保持板 36bのうち上側の中間保持板 36bにおいて、 中間保持板 36bに対して一面側力も当接する保持板支持ピン 39bの中間保持板 36 bに対する当接支持位置 39Aと、中間保持板 36bに対して他面側力も当接する第 1 の支持ピン 33bの中間保持板 36bに対する当接支持位置 38Aとが、中間保持板 36 bの厚さ方向に投影した中間保持板投影面にぉ 、て異なる位置に配置されて 、る。  [0184] In the present embodiment, in the upper intermediate holding plate 36b of the three intermediate holding plates 36b, the holding plate support pins 39b that also come into contact with the one-side force against the intermediate holding plate 36b abut on the intermediate holding plate 36b. The support position 39A and the contact support position 38A of the first support pin 33b, which also abuts the other surface side force on the intermediate holding plate 36b, against the intermediate holding plate 36b are projected in the thickness direction of the intermediate holding plate 36b. It is arranged at a different position from the projection surface of the intermediate holding plate.
[0185] また、 3つの中間保持板 36bのうち中央の中間保持板 36bにおいて、中間保持板 3 6bに対して一面側から当接する保持板支持ピン 39bの中間保持板 36bに対する当 接支持位置 39Aと、中間保持板 36bに対して他面側力も当接する保持板支持ピン 3 9bの中間保持板 36bに対する当接支持位置 39Aとが、中間保持板 36bの厚さ方向 に投影した中間保持板投影面にぉ ヽて異なる位置に配置されて ヽる。  In the middle intermediate holding plate 36b of the three intermediate holding plates 36b, the holding support positions 39A of the holding plate support pins 39b abutting against the intermediate holding plate 36b from one side with respect to the intermediate holding plate 36b. And the supporting position 39A of the holding plate support pin 39b against the intermediate holding plate 36b, which also contacts the other surface side force against the intermediate holding plate 36b, projected in the thickness direction of the intermediate holding plate 36b. It is located at a different position from the surface.
[0186] また、 3つの中間保持板 36bのうち下側の中間保持板 36bにおいて、中間保持板 3 6bに対して一面側から当接する保持板支持ピン 39bの中間保持板 36bに対する当 接支持位置 39Aと、中間保持板 36bに対して他面側から当接する第 2の支持ピン 37 bの中間保持板 36bに対する当接支持位置 38Bとが、中間保持板 36bの厚さ方向に 投影した中間保持板投影面において異なる位置に配置されている。  [0186] Also, in the lower intermediate holding plate 36b of the three intermediate holding plates 36b, the contact supporting position of the holding plate support pin 39b that contacts the intermediate holding plate 36b from one side with respect to the intermediate holding plate 36b. The intermediate support projected on the intermediate support plate 36b in the thickness direction of the intermediate support plate 36b with the contact support position 38B of the second support pin 37b that abuts the intermediate support plate 36b from the other side with respect to the intermediate support plate 36b. They are arranged at different positions on the plate projection plane.
[0187] このように構成することによって、これらの複数個の中間保持板 36bによってバネ弹 性がさらに発揮されることになり、被検査回路基板 1の被検査電極 3の高さバラツキに 対して、圧力集中を分散させて、局部的な応力集中をさらに回避することができ、第 1 の異方導電性シート 22bの局部的な破損が抑制され、その結果、第 1の異方導電性 シート 22bの繰り返し使用耐久性が向上するので、第 1の異方導電性シート 22bの交 換回数が減り、検査作業効率が向上する。  [0187] With this configuration, the plurality of intermediate holding plates 36b further exerts the spring property, and the height variation of the electrode 3 to be inspected of the circuit board 1 to be inspected is reduced. By dispersing the pressure concentration, the local stress concentration can be further avoided, the local damage of the first anisotropic conductive sheet 22b is suppressed, and as a result, the first anisotropic conductive sheet Since the durability of repeated use of 22b is improved, the number of times of replacement of the first anisotropic conductive sheet 22b is reduced, and the inspection work efficiency is improved.
なお、中間保持板 36の個数は複数個であれよぐ特に限定されるものではない。  The number of the intermediate holding plates 36 is not particularly limited as long as it is plural.
[0188] また、中間保持板 36を配置した上記の 2つの実施形態において、図 20、図 21、図 24、図 25、図 27および図 28に示したように、テスター側コネクタ 41におけるコネクタ 基板 43とベース版 46との間〖こ、支持ピン 49を配置してもよい。これらの支持ピン 49 によって、第 1の支持ピン 33、第 2の支持ピン 37 (図 28では第 1の支持ピン 33、第 2 の支持ピン 37および保持板支持ピン 39)が与える作用と同様にして、面圧を分散さ せる作用を与えることも可能である。 In the above two embodiments in which the intermediate holding plate 36 is arranged, as shown in FIGS. 20, 21, 24, 25, 27 and 28, the connector board in the tester side connector 41 is used. A support pin 49 may be arranged between 43 and the base plate 46. These support pins 49 have the same functions as the first support pins 33 and the second support pins 37 (the first support pins 33, the second support pins 37, and the holding plate support pins 39 in FIG. 28). And spread the surface pressure It is also possible to give the action to make it.
[0189] 以上に、中間保持板を配置した中継ピンユニットを用いた 2つの実施形態について 説明したが、この中間保持板を配置した中継ピンユニットを用いた検査装置について も、図 14一図 19において説明した実施形態の構成、すなわち被検査回路基板に対 して電流計測と電圧計測とを行うのに好適な構成を適用することができる。このような 検査装置の部分拡大断面図を図 30に示す。  [0189] Although the two embodiments using the relay pin unit on which the intermediate holding plate is arranged have been described above, the inspection apparatus using the relay pin unit on which the intermediate holding plate is arranged is also described in FIGS. , That is, a configuration suitable for performing current measurement and voltage measurement on a circuit board to be inspected can be applied. FIG. 30 shows a partially enlarged cross-sectional view of such an inspection apparatus.
[0190] 図示したように、被検査回路基板 1の被検査電極 2 (被検査電極 3)に対して、第 1 の異方導電性シート 22を介して、ピッチ変換用基板 23の被検査回路基板 1側の一 対の電流用端子電極 27と電圧用端子電極 28が電気的に接続される。なお、図 30 では、説明の便宜上、支持ピン 33、 37を省略した状態で図面を示している。  [0190] As shown in the figure, the circuit under test 2 on the circuit board 1 to be tested (electrode 3 under test) via the first anisotropic conductive sheet 22 with respect to the circuit under test 2 on the circuit under test 1 A pair of current terminal electrodes 27 and voltage terminal electrodes 28 on the substrate 1 side are electrically connected. Note that FIG. 30 shows the drawing with the support pins 33 and 37 omitted for convenience of explanation.
[0191] そして、ピッチ変換用基板 23の被検査回路基板 1側の一対の電流用端子電極 27 と電圧用端子電極 28から、ピッチ変換用基板 23の被検査回路基板 1と反対側の端 子電極 24、第 2の異方導電性シート 26、中継ピンユニット 31の導電ピン 32、第 3の 異方導電性シート 42を介して、ピッチ変換用基板 23の電流用端子電極 27が、コネ クタ基板 43の電流用ピン側電極 47に電気的に接続されるとともに、ピッチ変換用基 板 23の電圧用端子電極 28が、コネクタ基板 43の電圧用端子電極 48に電気的に接 続されるようになっている。  [0191] Then, a pair of terminals of the pitch conversion board 23 on the side opposite to the circuit board 1 to be inspected are obtained from a pair of the current terminal electrode 27 and the voltage terminal electrode 28 on the circuit board 1 to be inspected. Through the electrode 24, the second anisotropic conductive sheet 26, the conductive pin 32 of the relay pin unit 31, and the third anisotropic conductive sheet 42, the current terminal electrode 27 of the pitch conversion board 23 is connected to the connector. It is electrically connected to the current pin side electrode 47 of the board 43 and the voltage terminal electrode 28 of the pitch conversion board 23 is electrically connected to the voltage terminal electrode 48 of the connector board 43. It has become.
[0192] これにより、被検査回路基板 1の各被検査用電極 2, 3に対して、ピッチ変換用基板 23a, 23bの電流用端子電極 27a, 27bを介して、電流計測経路 Iが構成されることに なる、一方、被検査回路基板 1の各被検査用電極 2, 3に対して、ピッチ変換用基板 2 3a, 23bの電圧用端子電極 28a, 28bを介して、電圧計測経路 Vが構成されることに なる。  Thus, a current measurement path I is formed for each of the electrodes 2 and 3 of the circuit board 1 to be inspected via the current terminal electrodes 27a and 27b of the pitch conversion boards 23a and 23b. On the other hand, the voltage measurement path V is connected to each of the electrodes 2 and 3 of the circuit board 1 to be inspected via the voltage terminal electrodes 28a and 28b of the pitch conversion boards 23a and 23b. Will be composed.
[0193] 従って、被検査回路基板 1の各被検査用電極 2, 3に対して、ピッチ変換用基板 23 a, 23bの電圧用端子電極 28a, 28bを介して、電圧計測経路 Vに電圧を印加しなが ら、ピッチ変換用基板 23, 23bの電流用端子電極 27a, 27bを介して、電流計測経 路 I〖こよって、被検査回路基板 1の各被検査用電極 2, 3を流れる電流を測定し、これ によって、被検査回路基板 1の配線パターンが所定の性能を有するか否かにっ 、て の電気的特性の確認試験を行うことができる。 [0194] 逆に、被検査回路基板 1の各被検査用電極 2, 3に対して、ピッチ変換用基板 23a , 23bの電流用端子電極 27a, 27bを介して、電流計測経路 Iに電流を供給しながら 、ピッチ変換用基板 23a, 23bの電圧用端子電極 28a, 28bを介して、電圧計測経路 Vによって、被検査回路基板 1の各被検査用電極 2, 3に対して電圧を測定し、これ によって、被検査回路基板 1の配線パターンが所定の性能を有するか否かにっ 、て の電気的特性の確認試験を行うことができる。 Accordingly, a voltage is applied to the voltage measurement path V to each of the electrodes 2 and 3 of the circuit board 1 to be inspected via the voltage terminal electrodes 28a and 28b of the pitch conversion boards 23a and 23b. While the voltage is being applied, the current flows through each of the electrodes 2 and 3 of the circuit board 1 to be inspected via the current measuring path I through the current terminal electrodes 27a and 27b of the pitch conversion boards 23 and 23b. By measuring the current, it is possible to perform a test for confirming the electrical characteristics of the circuit pattern under test 1 based on whether or not the wiring pattern has a predetermined performance. [0194] Conversely, a current is applied to the current measurement path I to each of the electrodes 2 and 3 of the circuit board 1 to be inspected via the current terminal electrodes 27a and 27b of the pitch conversion boards 23a and 23b. While supplying, the voltage is measured for each of the electrodes 2 and 3 of the circuit board 1 to be inspected by the voltage measurement path V via the voltage terminal electrodes 28a and 28b of the pitch conversion boards 23a and 23b. Thus, it is possible to perform a confirmation test of the electrical characteristics based on whether the wiring pattern of the circuit board under test 1 has a predetermined performance.
[0195] 以上、本発明の実施形態について説明したが、本発明はこれらの実施形態に限定 されるものではなぐその要旨を逸脱しない範囲内において種々の変形、変更および 修正が可能である。  [0195] Embodiments of the present invention have been described above. However, the present invention is not limited to these embodiments, and various modifications, changes, and modifications can be made without departing from the scope of the invention.
例えば、被検査回路基板 1は、プリント回路基板以外に、ノ ッケージ IC、 MCM、 C SPなどの半導体集積回路装置、ウェハに形成された回路装置であってもよい。また 、プリント回路基板は、両面プリント回路基板だけではなく片面プリント回路基板であ つてもよい。  For example, the circuit substrate 1 to be inspected may be a semiconductor integrated circuit device such as a knock IC, MCM, or CSP, or a circuit device formed on a wafer, other than the printed circuit board. Further, the printed circuit board may be not only a double-sided printed circuit board but also a single-sided printed circuit board.
第 1の検査治具 11aと第 2の検査治具 l ibは、使用材料、部材構造などにおいて必 ずしも同一である必要はなぐこれらが異なるものであってもよい。また、第 1の検査治 具 1 laと第 2の検査治具 1 lbは、必ずしもこれらを上下に配置する必要はな!/、。 また、テスター側コネクタは、コネクタ基板のような回路基板と異方導電性シートを 複数積層して構成してもよ ヽ。  The first inspection jig 11a and the second inspection jig lib may be different as long as the materials used, the member structures, and the like do not necessarily need to be the same. Also, the first inspection jig 1 la and the second inspection jig 1 lb do not necessarily have to be arranged vertically. Further, the tester side connector may be configured by laminating a circuit board such as a connector board and a plurality of anisotropic conductive sheets.
[0196] 実施例 [0196] Example
以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるも のではない。  Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
[実施例 1]  [Example 1]
(評価用回路基板)  (Evaluation circuit board)
下記の仕様の評価用回路基板を用意した。  An evaluation circuit board having the following specifications was prepared.
寸法: 100mm (縦) X 100mm (横) X O. 8mm (厚み)  Dimensions: 100mm (length) X 100mm (width) X O. 8mm (thickness)
上面側の被検査電極の数: 7312個  Number of electrodes to be inspected on the top side: 7312
上面側の被検査電極の径: 0. 3mm  Diameter of the electrode to be inspected on the top side: 0.3 mm
上面側の被検査電極の最小配置ピッチ: 0. 4mm 下面側の被検査電極の数: 3784 Minimum arrangement pitch of electrodes to be inspected on the top side: 0.4 mm Number of electrodes to be inspected on the lower side: 3784
下面側の被検査電極の径: 0. 3mm  Diameter of the electrode to be inspected on the bottom side: 0.3 mm
下面側の被検査電極の最小配置ピッチ: 0. 4mm  Minimum arrangement pitch of electrodes to be inspected on the lower surface side: 0.4 mm
レール搬送型回路基板自動検査機 (日本電産リード社製,品名: STARREC V5 )の検査部に適合する、上記の評価用回路基板を検査するための回路基板検査装 置 (図 20)を作製した。  A circuit board inspection device (Fig. 20) for inspecting the above-mentioned evaluation circuit board, which is compatible with the inspection section of the rail transport type circuit board automatic inspection machine (manufactured by Nidec-Read Corporation, product name: STARREC V5) did.
[0197] (1)第 1の異方導電性シート 22 (1) First Anisotropic Conductive Sheet 22
導電性粒子が厚み方向に配列するとともに面方向に均一に分散された下記の第 1 の異方導電性シートを作製した。  The following first anisotropic conductive sheet was prepared in which conductive particles were arranged in the thickness direction and uniformly dispersed in the plane direction.
寸法: 110mm X I 10mm、厚み 0. lmm  Dimensions: 110mm X I 10mm, thickness 0.1mm
導電性粒子:材質;金メッキ処理を施したニッケル粒子、平均粒子径; 20 m、含有 率; 18体積%  Conductive particles: Material: nickel-plated nickel particles, average particle diameter: 20 m, content: 18% by volume
弾性高分子物質:材質;シリコーンゴム、硬度; 40  Elastic polymer material: Material; silicone rubber, hardness; 40
[0198] (2)ピッチ変換用基板 23  (2) Pitch Conversion Board 23
ガラス繊維補強型エポキシ榭脂からなる絶縁基板の両面全面に、厚みが 18 mの 銅からなる金属薄層を形成した積層材料 (松下電工社製,品名: R-1766)に、数値 制御型ドリリング装置によって、それぞれ積層材料の厚み方向に貫通する直径 0. 2 mmの円形の貫通孔を合計で 7312個形成した。  Numerically controlled drilling is performed on a laminated material (Matsushita Electric Works, product name: R-1766) in which a thin metal layer made of copper with a thickness of 18 m is formed on both sides of an insulating substrate made of glass fiber reinforced epoxy resin. The apparatus formed a total of 7312 circular through-holes each having a diameter of 0.2 mm penetrating in the thickness direction of the laminated material.
[0199] 次 、で、貫通孔が形成された積層材料に対して、 EDTAタイプ銅メツキ液を用いて 無電解メツキ処理を施すことにより、各貫通孔の内壁に銅メツキ層を形成し、さらに、 硫酸銅メツキ液を用いて電解銅メツキ処理を施すことにより、各貫通孔内に、積層材 料表面の各金属薄層を互いに電気的に接続する、厚さ約 10 mの円筒状のバイァ ホールを形成した。  Next, a copper plating layer was formed on the inner wall of each through-hole by performing an electroless plating process on the laminated material in which the through-holes were formed using an EDTA-type copper plating solution. By performing electrolytic copper plating using a copper sulfate plating solution, a cylindrical via having a thickness of about 10 m is used to electrically connect the thin metal layers on the surface of the laminated material to each other in each through hole. A hole was formed.
[0200] 次いで、積層材料表面の金属薄層上に、厚みが 25 μ mのドライフィルムレジスト( 東京応化製,品名: FP— 225)をラミネートしてレジスト層を形成するとともに、この積 層材料の他面側の金属薄層上に保護シールを配置した。このレジスト層上にフォトマ スクフィルムを配置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用い て露光処理を施した後、現像処理を行うことにより、エッチング用のレジストパターン を形成した。そして、レジストパターンを形成した面の金属薄層に対してエッチング処 理を施すことにより、絶縁基板の表面に、直径 200 mの 7312個の接続電極と、各 接続電極とバイァホールとを電気的に接続する線幅が 100 μ mのパターン配線部を 形成し、次いで、レジストパターンを除去した。 [0200] Next, a 25 µm-thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) was laminated on the thin metal layer on the surface of the laminated material to form a resist layer. A protective seal was placed on the other side of the thin metal layer. A photomask film is placed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then developed to obtain a resist pattern for etching. Was formed. Then, by etching the thin metal layer on the surface on which the resist pattern was formed, 7312 connection electrodes having a diameter of 200 m, and each connection electrode and via hole were electrically formed on the surface of the insulating substrate. A pattern wiring portion having a connecting line width of 100 μm was formed, and then the resist pattern was removed.
[0201] 接続電極およびパターン配線部が形成された絶縁基板の表面に、厚みが 25 μ m のドライフィルムソルダーレジスト(日立化成製、品名: SR— 2300G)をラミネートして 絶縁層を形成し、この絶縁層上にフォトマスクフィルムを配置して、絶縁層に対して平 行光露光機 (オーク製作所製)を用いて露光処理を施した後、現像処理を行うこと〖こ より、それぞれの接続電極を露出する、直径 200 mの 7312個の開口を形成した。 硫酸銅メツキ液を用い、積層材料の他面側の金属薄層を共通電極として用い、それ ぞれの接続電極に対して電解銅メツキ処理を施すことにより、絶縁層の表面から突出 する 7312個の接続電極を形成した。  [0201] A 25 µm-thick dry film solder resist (manufactured by Hitachi Chemical, product name: SR-2300G) is laminated on the surface of the insulating substrate on which the connection electrodes and the pattern wiring section are formed to form an insulating layer. A photomask film is placed on the insulating layer, and the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then subjected to development processing. 7312 openings with a diameter of 200 m were formed to expose the electrodes. Using a copper sulphate plating solution, using the thin metal layer on the other side of the laminated material as a common electrode, and applying electrolytic copper plating to each connection electrode, 7312 protruding from the surface of the insulating layer Was formed.
[0202] 次 、で、積層材料の他面側の金属薄層上の保護シールを除去し、この面の金属薄 層上に、厚みが 25 mのドライフィルムレジスト (東京応化製,品名: FP— 225)をラミ ネートしてレジスト層を形成した。その後、このレジスト層上にフォトマスクフィルムを配 置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用いて露光処理を施し た後、現像処理を行うことにより、積層材料における金属薄層上にエッチング用のレ ジストパターンを形成した。次いでエッチング処理を施すことにより、絶縁性基板の裏 面に 7312個の端子電極と、各端子電極とバイァホールとを電気的に接続するパタ ーン配線部を形成し、レジストパターンを除去した。  [0202] Next, the protective seal on the thin metal layer on the other side of the laminated material was removed, and a 25 m thick dry film resist (manufactured by Tokyo Ohka, product name: FP — 225) was laminated to form a resist layer. After that, a photomask film is disposed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then subjected to a development treatment to obtain a laminated material. A resist pattern for etching was formed on the thin metal layer. Next, by performing an etching process, 7312 terminal electrodes and a pattern wiring portion for electrically connecting each terminal electrode to the via hole were formed on the back surface of the insulating substrate, and the resist pattern was removed.
[0203] 次 、で、端子電極およびパターン配線部が形成された絶縁基板の裏面に、厚みが 38 μ mのドライフィルムソルダーレジスト(-チゴーモートン製、品名:コンフォマスク 2 015)をラミネートして絶縁層を形成し、この絶縁層上にフォトマスクフィルムを配置し 、次いで、絶縁層に対して、平行光露光機 (オーク製作所製)を用いて露光処理を施 した後、現像処理することにより、電極を露出する直径 0. 4mmの開口を 7312個形 成した。  [0203] Next, a 38 µm-thick dry film solder resist (-Tigo Morton, product name: ComfoMask 2015) was laminated on the back surface of the insulating substrate on which the terminal electrodes and the pattern wiring portions were formed. An insulating layer is formed, a photomask film is disposed on the insulating layer, and then the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then developed. Then, 7312 openings of 0.4 mm in diameter were formed to expose the electrodes.
以上のようにして、第 1の検査治具 11a用のピッチ変換用基板 23aを作製した。この ピッチ変換用基板 23aは、縦横の寸法が 120mmX 160mm,厚みが 0. 5mm、接 続電極の絶縁層表面力 露出した部分の直径が約 300 m、接続電極の絶縁層表 面からの突出高さが約 25 m、接続電極の最小配置ピッチが 0. 4mm,端子電極の 直径が 0. 4mm、端子電極の配置ピッチが 0. 75mmであり、接続電極が形成された 面側の絶縁層の表面粗さが 0. 02 mであった。 As described above, the pitch conversion substrate 23a for the first inspection jig 11a was manufactured. This pitch conversion substrate 23a has a vertical and horizontal dimension of 120 mm × 160 mm, a thickness of 0.5 mm, Surface of the insulation layer of the connection electrode The diameter of the exposed part is about 300 m, the height of the connection electrode protruding from the surface of the insulation layer is about 25 m, the minimum arrangement pitch of the connection electrodes is 0.4 mm, and the diameter of the terminal electrode is The arrangement pitch of the terminal electrodes was 0.4 mm, and the surface roughness of the insulating layer on the side where the connection electrodes were formed was 0.02 m.
[0204] また、上記と同様にして、表面に 3784個の接続電極を有すると共に裏面に 3784 個の端子電極を有する、第 2の検査治具 l ib用のピッチ変換用基板 23bを作製した 。このピッチ変換用基板 23bは、縦横の寸法が 120mm X 160mm、厚みが 0. 5mm 、接続電極における絶縁層の表面に露出した部分の直径が約 300 /ζ πι、接続電極 における絶縁層の表面力もの突出高さが約 25 m、接続電極の最小配置ピッチが 0 . 4mm、端子電極の直径が 0. 4mm、端子電極の配置ピッチが 0. 75mmであり、表 面 (接続電極が形成された面)側の絶縁層の表面粗さが 0. 02 mのものである。  [0204] Further, in the same manner as above, a pitch conversion substrate 23b for a second inspection jig lib having 3784 connection electrodes on the front surface and 3784 terminal electrodes on the back surface was produced. The pitch conversion substrate 23b has a vertical and horizontal dimension of 120 mm × 160 mm, a thickness of 0.5 mm, a diameter of a portion of the connection electrode exposed on the surface of the insulating layer is about 300 / ζπι, and a surface force of the insulating layer on the connection electrode. The projecting height is about 25 m, the minimum arrangement pitch of the connection electrodes is 0.4 mm, the diameter of the terminal electrodes is 0.4 mm, the arrangement pitch of the terminal electrodes is 0.75 mm, and the surface (the connection electrodes are formed) The surface roughness of the insulating layer on the (face) side is 0.02 m.
[0205] (3)回路基板側コネクタ 21  (3) Circuit board side connector 21
このピッチ変換用基板 23の表面側に、上記の第 1の異方導電性シート 22を配置し 、裏面側に、厚み方向に延びる多数の導電路形成部と、これらを互いに絶縁する絶 縁部とからなり、片面に導電路形成部が突出した偏在型異方導電性シートからなる 第 2の異方導電性シート 26を配置することにより、回路基板側コネクタ 21とした。 なお、ピッチ変換用基板 23と中継ピンユニット 31との間に配置される第 2の異方導 電性シート 26は、図 6に示される形状であり、具体的には以下の構成のものを使用し た。  The first anisotropic conductive sheet 22 is disposed on the front side of the pitch conversion substrate 23, and on the back side, a large number of conductive path forming portions extending in the thickness direction and insulating portions for insulating these from each other. The circuit board side connector 21 was formed by disposing a second anisotropic conductive sheet 26 made of an unevenly distributed anisotropic conductive sheet having a conductive path forming portion protruding on one surface. The second anisotropic conductive sheet 26 disposed between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 6, and specifically has the following configuration. used.
〔第 2の異方導電性シート 26〕  [Second anisotropic conductive sheet 26]
寸法: 11 Omm X 150mm  Dimensions: 11 Omm X 150mm
導電路形成部の厚み: 0. 6mm  Thickness of conductive path forming part: 0.6mm
導電路形成部の外径: 0. 35mm  Outer diameter of conductive path forming part: 0.35mm
導電路形成部の突出高さ: 0. 05mm  Projection height of conductive path forming part: 0.05 mm
導電性粒子:材質;金メッキ処理を施したニッケル粒子、平均粒子径; 35 ;ζ ΐη、導電 路形成部における導電性粒子の含有率; 30体積%  Conductive particles: Material: nickel-plated nickel particles, average particle size; 35; ζ ΐη, content of conductive particles in conductive path forming portion; 30% by volume
弾性高分子物質:材質;シリコーンゴム、硬度; 30  Elastic polymer material: Material; silicone rubber, hardness; 30
(W /Ό = 17) [0206] (4)中 ϋピンユニット 31 (W / Ό = 17) [0206] (4) Medium ϋ pin unit 31
第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35の材料として、固有抵抗が I X 1Ο10 Ω 'cm以上の絶縁性材料、ガラス繊維補強型エポキシ榭脂よりなり、その厚みが 1. 9mmのものを用いた。 The first insulating plate 34, the intermediate holding plate 36, as the material of the second insulating plate 35, resistivity IX 1Ο 10 Ω 'cm or more insulating material, made of glass fiber-reinforced epoxy榭脂, its thickness 1. A 9mm one was used.
そして、第 1の絶縁板 34と中間保持板 36との間の距離 L1が、 36. 3mm,第 2の絶 縁板 35と中間保持板 36との間の距離 L2が、 3mmとなるように、第 1の支持ピン 33 ( 直径 2mm、長さ 36. 3mm)と、第 2の支持ピン 37 (直径 2mm、長さ 3mm)によって 固定支持するようにするとともに、第 1の絶縁板 34と第 2の絶縁板 35との間に、下記 の構成力もなる導電ピン 32を移動自在となるように貫通孔 83 (直径 0. 4mm)に配置 して作製した。  Then, the distance L1 between the first insulating plate 34 and the intermediate holding plate 36 is 36.3 mm, and the distance L2 between the second insulating plate 35 and the intermediate holding plate 36 is 3 mm. The first support pin 33 (diameter 2 mm, length 36.3 mm) and the second support pin 37 (diameter 2 mm, length 3 mm) are fixed and supported, and the first insulating plate 34 and the The conductive pin 32 having the following constitutional force was arranged between the insulating plate 35 and the through-hole 83 (0.4 mm in diameter) so as to be movable.
〔導電ピン〕  [Conductive pin]
材質:金メッキ処理を施した真鍮  Material: Brass with gold plating
先端部 81aの寸法:外径 0. 35mm、全長 2. lmm  Tip 81a dimensions: 0.35mm outer diameter, 2.lmm overall length
中央部 82の寸法:外径 0. 45mm,全長 41mm  Dimensions of central part 82: outer diameter 0.45mm, total length 41mm
基端部 8 lbの寸法:外径 0. 35mm、全長 2. lmm  Base end 8 lb dimensions: 0.35 mm outer diameter, 2.lmm overall length
なお、第 1の支持ピン 33の中間保持板 36に対する第 1の当接支持位置 38Aと、第 2の支持ピン 37の中間保持板 36に対する第 2の当接支持位置 38Bは、図 23に示し たように、格子状に配置した。なお、互いに隣接する第 1の当接支持位置 38Aの間 の離間距離、第 2の当接支持位置 38Bの間の離間距離を、 17. 5mmとした。  FIG. 23 shows a first contact support position 38A of the first support pin 33 with respect to the intermediate holding plate 36 and a second contact support position 38B of the second support pin 37 with the intermediate holding plate 36. As shown in FIG. The distance between the adjacent first contact support positions 38A and the distance between the second contact support positions 38B were 17.5 mm.
[0207] (5)テスター側コネクタ 41 [0207] (5) Tester side connector 41
図 20に示したように、テスター側コネクタ 41を、第 3の異方導電性シート 42と、コネ クタ基板 43と、ベース板 46とから構成した。なお、第 3の異方導電性シート 42は、前 述した第 2の異方導電性シート 26と同様のものを用いた。  As shown in FIG. 20, the tester side connector 41 was composed of a third anisotropic conductive sheet 42, a connector board 43, and a base plate 46. The third anisotropic conductive sheet 42 used was the same as the second anisotropic conductive sheet 26 described above.
[0208] 〔性能試験〕 [Performance test]
1.最低プレス圧力の測定  1. Measurement of minimum press pressure
作製した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットし、評価用回路基板 1を検査装置に対してセットして、レール搬送型回 路基板自動検査機「STARREC V5Jのプレス圧力を 100— 210kgfの範囲内にお いて段階的に変化させ、各プレス圧力条件毎に各 10回づつ、評価用回路基板 1の 被検査電極にっ 、て、検査用電極に 1ミリアンペアの電流を印加したときの導通抵抗 値を測定した。 The fabricated inspection device is set in the inspection section of the rSTARREC V5J rail transfer type circuit board automatic inspection machine, and the evaluation circuit board 1 is set in the inspection device, and the rail transfer type circuit board automatic inspection machine “STARREC V5J Press pressure within the range of 100-210kgf And stepwisely change the resistance value when a current of 1 mA is applied to the electrode under test of the circuit board for evaluation 1, 10 times for each press pressure condition. did.
[0209] 測定された導通抵抗値が 100 Ω以上となった検査点(以下、「NG検査点」という。) を導通不良と判定し、総検査点における NG検査点の割合 (以下、「NG検査点割合 」という。)を算出し、 NG検査点割合が 0. 01%以下となった最も低いプレス圧力を最 低プレス圧力とした。  [0209] Inspection points having a measured conduction resistance value of 100 Ω or more (hereinafter, referred to as "NG inspection points") are determined to have poor conduction, and the percentage of NG inspection points in the total inspection points (hereinafter, "NG inspection points"). Inspection point ratio ”) was calculated, and the lowest press pressure at which the NG inspection point ratio was 0.01% or less was determined as the lowest press pressure.
この導通抵抗値の測定においては、一の導通抵抗値の測定が終了した後に、当該 測定に係るプレス圧力を開放して検査装置を無加圧状態に戻し、次の導通抵抗値 の測定は、再度、所定の大きさのプレス圧力を作用させることによって行った。  In the measurement of the conduction resistance value, after the measurement of one conduction resistance value is completed, the press pressure related to the measurement is released to return the inspection device to a non-pressurized state, and the next measurement of the conduction resistance value is performed as follows. Again, this was performed by applying a predetermined amount of press pressure.
[0210] 具体的に、 NG検査点割合は、評価用回路基板 1の上面被検査電極数は 7312点 、下面被検査電極数は 3784点であり、各プレス圧力条件において 10回の測定を行 つたこと力ら、式(7312 + 3784) X 10= 110960によって算出される 110960点の 検査点に占める、 NG検査点の割合を示す。 [0210] Specifically, the number of NG test points was 7312 for the upper surface of the circuit board 1 for evaluation and 3784 for the lower surface of the circuit board 1 for evaluation, and the measurement was performed 10 times under each press pressure condition. The percentage of NG inspection points in the 110960 inspection points calculated by the formula (7312 + 3784) X 10 = 110960 is shown.
この場合、「最低プレス圧が小さい」とは、低いプレス圧力で被検査回路基板の電 気的検査が行えることを意味している。検査装置においては、検査時の加圧力を低く 設定できれば、検査時の加圧力による被検査回路基板および異方導電性シート並 びに検査用回路基板の劣化が抑制できるば力りでなぐ検査装置の構成部材として 、耐久性強度の低い部品を使用することが可能となることから、検査装置の構造を小 さくコンパクトにすることができ、その結果、検査装置の耐久性の向上、検査装置の製 造のコスト削減が達成されるので好まし 、。  In this case, “the minimum press pressure is small” means that the circuit board to be inspected can be electrically inspected with a low press pressure. In inspection equipment, if the pressure during inspection can be set low, deterioration of the circuit board to be inspected, the anisotropic conductive sheet, and the inspection circuit board due to the pressure during inspection can be suppressed. Since it is possible to use components with low durability and strength as constituent members, the structure of the inspection device can be made small and compact, and as a result, the durability of the inspection device can be improved and the production of the inspection device can be improved. Preferred because the cost savings of construction are achieved.
[0211] 2.異方導電性シートの耐久性の測定  [0211] 2. Measurement of durability of anisotropic conductive sheet
作成した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットし、当該検査装置に対して評価用回路基板 1をセットして、レール搬送 型回路基板自動検査機「STARREC V5」のプレス圧力条件を 130kgfとし、所定 回数の加圧を行った後、評価用回路基板 1の被検査電極について、プレス圧力 130 kgfの条件下にて、検査用電極に 1ミリアンペアの電流を印加したときの導通抵抗値 を 10回測定し、所定回数の加圧を行い同様に導通抵抗値を 10回測定する作業を 繰り返した。 The created inspection device is set in the inspection section of the rail transport type automatic circuit board inspection machine rSTARREC V5J, and the evaluation circuit board 1 is set for the inspection device. The press pressure condition is set to 130 kgf and pressurized a predetermined number of times, and then a current of 1 mA is applied to the test electrode under the condition of a press pressure of 130 kgf for the test electrode of the evaluation circuit board 1. Measure the conduction resistance 10 times, pressurize it a predetermined number of times, and measure the conduction resistance 10 times in the same manner. Repeated.
[0212] 測定された導通抵抗値が 100 Ω以上となった検査点 (NG検査点)を導通不良と判 定し、総検査点における NG検査点の割合 (NG検査点割合)を算出した。  [0212] Inspection points where the measured conduction resistance value was 100 Ω or more (NG inspection points) were determined to be poor conduction, and the percentage of NG inspection points in the total inspection points (NG inspection point ratio) was calculated.
次いで、検査装置の異方導電性シートを新しいものに交換し、プレス圧力条件を 1 50kgfに変更したこと以外は上記と同様の条件によって所定回数の加圧を行い、そ の後、プレス圧力条件を 150kgfとしたこと以外は上記と同様の手法によって NG検 查点割合を算出した。  Next, the anisotropic conductive sheet of the inspection device was replaced with a new one, and a predetermined number of pressurizations were performed under the same conditions as above except that the press pressure condition was changed to 150 kgf. The NG inspection point ratio was calculated by the same method as above, except that was changed to 150 kgf.
[0213] この異方導電性シートの耐久性に係る導通抵抗値を測定においては、一の導通抵 抗値の測定が終了した後に、当該測定に係るプレス圧力を開放して検査装置を無加 圧状態に戻し、次の導通抵抗値の測定は、再度、所定の大きさのプレス圧力を作用 させることによって行った。  [0213] In the measurement of the conduction resistance value related to the durability of the anisotropic conductive sheet, after the measurement of one conduction resistance value is completed, the press pressure related to the measurement is released and the inspection device is not operated. The state was returned to the pressure state, and the next measurement of the conduction resistance was performed again by applying a predetermined magnitude of press pressure.
また、具体的に、 NG検査点割合は、評価用回路基板 1の上面被検査電極数は 73 12点、下面被検査電極数は 3784点であり、各プレス回数条件において 10回の測 定を行ったこと力ら、式(7312 + 3784) X 10= 110960によって算出される 11096 0点の検査点に占める、 NG検査点の割合を示す。  Specifically, the number of NG test points is 73 12 for the upper surface of the circuit board 1 to be inspected and 3784 for the lower surface of the circuit board 1 for evaluation. The percentage of the NG inspection points in the 110,960 inspection points calculated by the formula (7312 + 3784) X 10 = 110960 is shown.
[0214] この場合、検査装置においては、実用上、 NG検査点割合が 0. 01%以下であるこ とが必要とされており、 NG検査点割合が 0. 01%を超える場合には、良品である被 検査回路基板に対して不良品であるとの誤った検査結果が得られる場合があること から、信頼性の高 、回路基板の電気的検査を行うことができなくなるおそれがある。 最低プレスの測定結果を表 1に、異方導電性シートの耐久性の測定結果を表 2に 示す。  [0214] In this case, the inspection apparatus requires that the percentage of NG inspection points be 0.01% or less for practical use. If the percentage of NG inspection points exceeds 0.01%, non-defective products In some cases, an erroneous inspection result indicating that the circuit board to be inspected is defective may be obtained, which may make it impossible to perform an electrical inspection of the circuit board with high reliability. Table 1 shows the measurement results of the minimum press, and Table 2 shows the measurement results of the durability of the anisotropic conductive sheet.
[0215] [実施例 2]  [0215] [Example 2]
上記の中継ピンユニット 31の代わりに、図 1の中継ピンユニット 31a、 31bを用いた 。すなわち、一定ピッチ(2. 54mmピッチ)で格子点上に多数(8000ピン)配置され た導電ピン 32a、 32bと、この導電ピン 32a、 32bを上下へ移動可能に支持する絶縁 板 34a、 34bおよび 35a、 35bとからなる中継ピンユニットを用い、それ以外は実施例 1と同様の構成として検査装置を作製した。  The relay pin units 31a and 31b of FIG. 1 were used instead of the relay pin unit 31 described above. That is, a large number (8000 pins) of conductive pins 32a and 32b are arranged on a grid point at a constant pitch (2.54 mm pitch), and insulating plates 34a and 34b that support the conductive pins 32a and 32b so as to be movable up and down. An inspection apparatus was manufactured having the same configuration as that of Example 1 except that a relay pin unit composed of 35a and 35b was used.
この検査装置について、実施例 1と同様な方法により、最低プレス圧および異方導 電性シートの耐久性を測定した。最低プレスの測定結果を表 1に、異方導電性シート の耐久性の測定結果を表 2に示す。 With this inspection device, the minimum press pressure and anisotropic The durability of the conductive sheet was measured. Table 1 shows the measurement results of the minimum press, and Table 2 shows the measurement results of the durability of the anisotropic conductive sheet.
[0216] [表 1] [0216] [Table 1]
Figure imgf000059_0001
Figure imgf000059_0001
[0217] [表 2]  [0217] [Table 2]
Figure imgf000059_0002
Figure imgf000059_0002
[0218] [実施例 3]  [Example 3]
以下において、表面粗さは、ザィゴ社製の 3次元表面構造解析顕微鏡「New Vie w 200」を用い、 JIS B0601による中心平均粗さ Raを、カットオフ値 0. 8mm、測定 長さ 0. 25mmの条件で測定した値である。  In the following, the surface roughness was measured using a three-dimensional surface structure analysis microscope `` New View 200 '' manufactured by Zigo, and the center average roughness Ra according to JIS B0601 was cut off 0.8 mm, measurement length 0.25 mm This is a value measured under the conditions.
(評価用回路基板)  (Evaluation circuit board)
下記の仕様の評価用回路基板を用意した。  An evaluation circuit board having the following specifications was prepared.
寸法: 100mm (縦) X 100mm (横) X O. 8mm (厚み)  Dimensions: 100mm (length) X 100mm (width) X O. 8mm (thickness)
上面側の被検査電極の数: 7312個  Number of electrodes to be inspected on the top side: 7312
上面側の被検査電極の径: 0. 3mm  Diameter of the electrode to be inspected on the top side: 0.3 mm
上面側の被検査電極の最小配置ピッチ: 0. 4mm  Minimum arrangement pitch of electrodes to be inspected on the top side: 0.4 mm
下面側の被検査電極の数: 3784  Number of electrodes to be inspected on the lower side: 3784
下面側の被検査電極の径: 0. 3mm  Diameter of the electrode to be inspected on the bottom side: 0.3 mm
下面側の被検査電極の最小配置ピッチ: 0. 4mm  Minimum arrangement pitch of electrodes to be inspected on the lower surface side: 0.4 mm
レール搬送型回路基板自動検査機 (日本電産リード社製,品名: STARREC V5 )の検査部に適合する、上記の評価用回路基板を検査するための回路基板検査装 置 (図 1)を作製した。 Circuit board inspection equipment for inspecting the above-mentioned circuit board for evaluation, which is compatible with the inspection section of the rail transfer type circuit board automatic inspection machine (manufactured by Nidec-Read Corporation, product name: STARREC V5) (Fig. 1).
[0219] (1)第 1の異方導電性シート 22 (1) First Anisotropic Conductive Sheet 22
二液型の付加型液状シリコーンゴムの A液と B液とを等量となる割合で混合した。こ の混合物 100重量部に平均粒子径が 20 μ mの導電性粒子 100重量部を添加して 混合した後、減圧による脱泡処理を行うことにより、成形材料を調製した。  Liquid A and liquid B of the two-part addition type liquid silicone rubber were mixed in equal proportions. 100 parts by weight of conductive particles having an average particle diameter of 20 μm were added to 100 parts by weight of this mixture, mixed, and then subjected to defoaming treatment under reduced pressure to prepare a molding material.
[0220] 付加型液状シリコーンゴムとして、 A液および B液の粘度がそれぞれ 500Pで、その 硬化物の 150°Cにおける圧縮永久歪 (JIS K 6249に準拠した測定方法による)が[0220] As an addition-type liquid silicone rubber, the viscosity of liquid A and liquid B is 500P each, and the compression set of the cured product at 150 ° C (by the measuring method in accordance with JIS K 6249) is as follows.
6%、 23°Cにおける引き裂き強度 (JIS K 6249に準拠した測定方法による)が 25k6%, tear strength at 23 ° C (measured according to JIS K 6249) is 25k
NZmのものを用いた。 The one of NZm was used.
導電性粒子として、ニッケル粒子を芯粒子とし、この芯粒子に無電解金メッキを施し たもの(平均被覆量:芯粒子の重量の 5重量%となる量)を用いた。  As the conductive particles, nickel particles were used as core particles, and the core particles were subjected to electroless gold plating (average coating amount: amount of 5% by weight of the core particles).
[0221] 一方の成形部材の成形面に、 120mm X 200mmの矩形の開口を有する、厚みが[0221] One molding member has a rectangular opening of 120mm x 200mm on the molding surface, and the thickness is
0. 08mmの枠状のスぺーサを配置した後、スぺーサの開口内に、調製した成形材 料を塗布し、この成形材料上に他方の成形部材をその成形面が成形材料に接する よう配置した。 After placing a 0.08 mm framed spacer, apply the prepared molding material into the opening of the spacer, and place the other molding member on this molding material so that the molding surface contacts the molding material. It was arranged as follows.
一方の成形部材には、厚みが 0. 1mmのポリエステル榭脂シート (東レ社製,品名「 マットルミラー S10」)を、その非光沢面 (表面粗さが 1 m)を成形面として使用し、他 方の成形部材には、厚みが 0. 1mmのポリエステル榭脂シート (東レ社製,品名「マツ トルミラー S 10」)を、その光沢面 (表面粗さが 0. 04 /z m)を成形面として使用した。  On one molded member, a 0.1 mm thick polyester resin sheet (made by Toray Industries, “Mattle Mirror S10”) was used, and its non-glossy surface (surface roughness: 1 m) was used as the molding surface. The other molded member was a polyester resin sheet with a thickness of 0.1 mm (manufactured by Toray Industries, Inc., product name: “Matsutorumirror S10”), and its glossy surface (surface roughness: 0.04 / zm) was molded. Used as
[0222] 次!、で、加圧ロールおよび支持ロールからなる加圧ロール装置を用い、これらの成 形部材によって成形材料を挟圧し、成形材料の厚みを 0. 08mmとした。  [0222] Next, using a pressure roll device composed of a pressure roll and a support roll, the molding material was pressed by these molding members, and the thickness of the molding material was set to 0.08 mm.
各成形部材の裏面に電磁石を配置し、成形材料に対してその厚み方向に 0. 3Tの 平行磁場を作用させながら、 120°C、 30分間の条件で成形材料の硬化処理を行うこ とにより、厚みが 0. 1mmの矩形の異方導電性シートを製造した。  An electromagnet is placed on the back of each molded member, and a curing process is performed on the molding material at 120 ° C for 30 minutes while applying a 0.3T parallel magnetic field to the molding material in the thickness direction. Then, a rectangular anisotropic conductive sheet having a thickness of 0.1 mm was produced.
[0223] 得られた異方導電性シートは、その一面における表面粗さが 1. 4 μ mで、他面に おける表面粗さが 0. 12 mであり、導電性粒子の割合が体積分率で 12%であった 。この異方導電性エラストマ一シートを「異方導電性シート (a)」とする。  [0223] The obtained anisotropic conductive sheet had a surface roughness on one side of 1.4 µm and a surface roughness on the other side of 0.12 m, and the proportion of the conductive particles was a volume fraction. The rate was 12%. This anisotropic conductive elastomer sheet is referred to as “anisotropic conductive sheet (a)”.
[0224] (2)ピッチ変換用基板 23 ガラス繊維補強型エポキシ榭脂からなる絶縁基板の両面全面に、厚みが 18 mの 銅からなる金属薄層を形成した積層材料 (松下電工社製,品名: R-1766)に、数値 制御型ドリリング装置によって、それぞれ積層材料の厚み方向に貫通する直径 0. 2 mmの円形の貫通孔を合計で 7312個形成した。次いで、貫通孔が形成された積層 材料に対して、 EDTAタイプ銅メツキ液を用いて無電解メツキ処理を施すことにより、 各貫通孔の内壁に銅メツキ層を形成し、さらに、硫酸銅メツキ液を用いて電解銅メツキ 処理を施すことにより、各貫通孔内に、積層材料表面の各金属薄層を互いに電気的 に接続する、厚さ約 10 mの円筒状のバイァホールを形成した。 [0224] (2) Pitch conversion board 23 Numerically controlled drilling is performed on a laminated material (Matsushita Electric Works, product name: R-1766) in which a thin metal layer made of copper with a thickness of 18 m is formed on both sides of an insulating substrate made of glass fiber reinforced epoxy resin. The apparatus formed a total of 7312 circular through-holes each having a diameter of 0.2 mm penetrating in the thickness direction of the laminated material. Next, an electroless plating process is performed on the laminated material in which the through holes are formed by using an EDTA type copper plating solution to form a copper plating layer on the inner wall of each through hole, and further, a copper sulfate plating solution is formed. By performing electrolytic copper plating using, a cylindrical via hole having a thickness of about 10 m was formed in each through hole to electrically connect the thin metal layers on the surface of the laminated material to each other.
[0225] 次いで、積層材料表面の金属薄層上に、厚みが 25 μ mのドライフィルムレジスト( 東京応化製,品名: FP— 225)をラミネートしてレジスト層を形成するとともに、この積 層材料の他面側の金属薄層上に保護シールを配置した。このレジスト層上にフォトマ スクフィルムを配置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用い て露光処理を施した後、現像処理を行うことにより、エッチング用のレジストパターン を形成した。そして、レジストパターンを形成した面の金属薄層に対してエッチング処 理を施すことにより、絶縁基板の表面に、直径 200 mの 7312個の接続電極と、各 接続電極とバイァホールとを電気的に接続する線幅が 100 μ mのパターン配線部を 形成し、次いで、レジストパターンを除去した。  [0225] Next, a 25 µm thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) was laminated on the thin metal layer on the surface of the laminated material to form a resist layer. A protective seal was placed on the other side of the thin metal layer. A photomask film is placed on this resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then developed to form a resist pattern for etching. Formed. Then, by etching the thin metal layer on the surface on which the resist pattern was formed, 7312 connection electrodes having a diameter of 200 m, and each connection electrode and via hole were electrically formed on the surface of the insulating substrate. A pattern wiring portion having a connecting line width of 100 μm was formed, and then the resist pattern was removed.
[0226] 接続電極およびパターン配線部が形成された絶縁基板の表面に、厚みが 25 μ m のドライフィルムソルダーレジスト(日立化成製、品名: SR— 2300G)をラミネートして 絶縁層を形成し、この絶縁層上にフォトマスクフィルムを配置して、絶縁層に対して平 行光露光機 (オーク製作所製)を用いて露光処理を施した後、現像処理を行うこと〖こ より、それぞれの接続電極を露出する、直径 200 mの 7312個の開口を形成した。 硫酸銅メツキ液を用い、積層材料の他面側の金属薄層を共通電極として用い、それ ぞれの接続電極に対して電解銅メツキ処理を施すことにより、絶縁層の表面から突出 する 7312個の接続電極を形成した。  [0226] A 25 µm-thick dry film solder resist (manufactured by Hitachi Chemical, product name: SR-2300G) was laminated on the surface of the insulating substrate on which the connection electrodes and the pattern wiring portion were formed to form an insulating layer. A photomask film is placed on the insulating layer, and the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then subjected to development processing. 7312 openings with a diameter of 200 m were formed to expose the electrodes. Using a copper sulphate plating solution, using the thin metal layer on the other side of the laminated material as a common electrode, and applying electrolytic copper plating to each connection electrode, 7312 protruding from the surface of the insulating layer Was formed.
[0227] 次 、で、積層材料の他面側の金属薄層上の保護シールを除去し、この面の金属薄 層上に、厚みが 25 mのドライフィルムレジスト (東京応化製,品名: FP— 225)をラミ ネートしてレジスト層を形成した。その後、このレジスト層上にフォトマスクフィルムを配 置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用いて露光処理を施し た後、現像処理を施すことにより、積層材料における金属薄層上にエッチング用のレ ジストパターンを形成した。次いでエッチング処理を施すことにより、絶縁性基板の裏 面に 7312個の端子電極と、各端子電極とバイァホールとを電気的に接続するパタ ーン配線部を形成し、レジストパターンを除去した。 [0227] Next, the protective seal on the thin metal layer on the other side of the laminated material was removed, and a 25 m thick dry film resist (manufactured by Tokyo Ohka, product name: FP — 225) was laminated to form a resist layer. After that, a photomask film is placed on this resist layer. The resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then developed to form a resist pattern for etching on the thin metal layer of the laminated material. Formed. Next, by performing an etching process, 7312 terminal electrodes and a pattern wiring portion for electrically connecting each terminal electrode to the via hole were formed on the back surface of the insulating substrate, and the resist pattern was removed.
[0228] 次 、で、端子電極およびパターン配線部が形成された絶縁基板の裏面に、厚みが 38 μ mのドライフィルムソルダーレジスト(-チゴーモートン製、品名:コンフォマスク 2 015)をラミネートして絶縁層を形成し、この絶縁層上にフォトマスクフィルムを配置し 、次いで、絶縁層に対して、平行光露光機 (オーク製作所製)を用いて露光処理を施 した後、現像処理することにより、電極を露出する直径 0. 4mmの開口を 7312個形 成した。 Next, a 38 μm-thick dry film solder resist (manufactured by Tigo Morton, product name: ConfoMask 2015) was laminated on the back surface of the insulating substrate on which the terminal electrodes and the pattern wiring portions were formed. An insulating layer is formed, a photomask film is disposed on the insulating layer, and then the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then developed. Then, 7312 openings of 0.4 mm in diameter were formed to expose the electrodes.
[0229] 以上のようにして、ピッチ変換用基板 23aを作製した。このピッチ変換用基板は、縦 横の寸法が 120mm X 160mm、厚みが 0. 5mm,接続電極の絶縁層表面から露出 した部分の直径が約 300 μ m、接続電極の絶縁層表面からの突出高さが約 25 μ m 、接続電極の最小配置ピッチが 0. 4mm、端子電極の直径が 0. 4mm、端子電極の 配置ピッチが 0. 75mmであり、接続電極が形成された面側の絶縁層の表面粗さが 0 . 02 μ mであった。  [0229] As described above, the pitch conversion substrate 23a was manufactured. The pitch conversion board has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, a diameter of the portion of the connection electrode exposed from the insulating layer surface is about 300 μm, and a height of the connection electrode protruding from the insulating layer surface. Approximately 25 μm, the minimum arrangement pitch of the connection electrodes is 0.4 mm, the diameter of the terminal electrodes is 0.4 mm, the arrangement pitch of the terminal electrodes is 0.75 mm, and the insulating layer on the side where the connection electrodes are formed Had a surface roughness of 0.02 μm.
[0230] このピッチ変換用基板の表面側に、上記の異方導電性シート (a)を配置し、裏面側 に、厚み方向に延びる多数の導電路形成部と、これらを互いに絶縁する絶縁部とか らなり、片面に導電路形成部が突出した偏在型異方導電性シートを配置することによ り、上部側の回路基板側コネクタ 21 aとした。  [0230] The anisotropic conductive sheet (a) described above is arranged on the front surface side of the pitch conversion substrate, and on the back surface side, a number of conductive path forming portions extending in the thickness direction, and an insulating portion for insulating these from each other. The circuit board side connector 21a on the upper side is formed by disposing an unevenly distributed anisotropic conductive sheet having a conductive path forming portion protruding on one surface.
なお、ピッチ変換用基板 23と中継ピンユニット 31との間に配置される第 2の異方導 電性シート 26は、図 6に示される形状であり、具体的には以下の構成のものを使用し た。  The second anisotropic conductive sheet 26 disposed between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 6, and specifically has the following configuration. used.
〔第 2の異方導電性シート 26〕  [Second anisotropic conductive sheet 26]
寸法: 11 Omm X 150mm  Dimensions: 11 Omm X 150mm
導電路形成部の厚み: 0. 6mm  Thickness of conductive path forming part: 0.6mm
導電路形成部の外径: 0. 35mm 導電路形成部の突出高さ: 0. 05mm Outer diameter of conductive path forming part: 0.35mm Projection height of conductive path forming part: 0.05 mm
導電性粒子:材質;金メッキ処理を施したニッケル粒子、平均粒子径; 35 ;ζ ΐη、導電 路形成部における導電性粒子の含有率; 30体積%  Conductive particles: Material: nickel-plated nickel particles, average particle size; 35; ζ ΐη, content of conductive particles in conductive path forming portion; 30% by volume
弾性高分子物質:材質;シリコーンゴム、硬度; 30  Elastic polymer material: Material; silicone rubber, hardness; 30
(W /Ό = 17)  (W / Ό = 17)
2 2  twenty two
[0231] 上記と同様にして、表面に 3784個の接続電極を有するともに、裏面に 3784個の 端子電極を有する下部側検査用治具用のピッチ変換用基板 23bを作製した。このピ ツチ変換用基板は、縦横の寸法が 120mm X 160mm、厚みが 0. 5mm、接続電極 の絶縁層表面に露出した部分の直径が約 300 m、接続電極の絶縁層表面からの 突出高さが約 25 m、接続電極の最小配置ピッチが 0. 4mm、端子電極の直径が 0 . 4mm,端子電極の配置ピッチが 0. 75mmであり、接続電極が形成された面側の 絶縁層の表面粗さが 0. 02 mであった。  [0231] In the same manner as above, a pitch conversion substrate 23b for a lower inspection jig having 3784 connection electrodes on the front surface and 3784 terminal electrodes on the back surface was manufactured. The pitch conversion board has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, a diameter of a portion of the connection electrode exposed on the insulating layer surface is about 300 m, and a height of the connection electrode protruding from the insulating layer surface. Is about 25 m, the minimum arrangement pitch of the connection electrodes is 0.4 mm, the diameter of the terminal electrodes is 0.4 mm, the arrangement pitch of the terminal electrodes is 0.75 mm, and the surface of the insulating layer on the side where the connection electrodes are formed The roughness was 0.02 m.
[0232] このピッチ変換用基板の表面側に、上記の異方導電性シート (a)を配置し、裏面側 に、厚み方向に延びる多数の導電路形成部と、これらを互いに絶縁する絶縁部とか らなり、片面に導電路形成部が突出した偏在型異方導電性シートを配置することによ り、下部側の回路基板側コネクタ 2 lbとした。  The anisotropic conductive sheet (a) is disposed on the front side of the pitch conversion substrate, and on the back side, a number of conductive path forming portions extending in the thickness direction and an insulating portion for insulating these from each other By placing an eccentrically-distributed anisotropic conductive sheet with a conductive path protruding part on one side, the lower circuit board side connector was 2 lb.
これらの上部側および下部側の回路基板側コネクタ 21a、 21bを用いて、図 1に示 したように中継ピンユニット 31a、 31bおよびテスター側コネクタ 41a、 41bを配置する ことにより検査装置を構成した。  Using these upper and lower circuit board side connectors 21a and 21b, an inspection apparatus was configured by arranging the relay pin units 31a and 31b and the tester side connectors 41a and 41b as shown in FIG.
[0233] 〔性能試験〕  [Performance test]
レール搬送型回路基板自動検査機 rSTARREC V5J (日本電産リード社製)に検 查装置を装着し、下記の方法により、接続安定性試験 (最低プレス圧力の測定)およ び異方導電性シートの剥離試験を行った。  Attach the inspection device to the rail transport type circuit board automatic inspection machine rSTARREC V5J (manufactured by Nidec Reed Co., Ltd.), and perform the connection stability test (measurement of minimum pressing pressure) and anisotropic conductive sheet by the following method. Was subjected to a peel test.
1.最低プレス圧力の測定  1. Measurement of minimum press pressure
作製した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットし、検査装置に対して評価用回路基板 1をセットして、レール搬送型回 路基板自動検査機「STARREC V5Jのプレス圧力を 100— 250kgfの範囲内にお いて段階的に変化させ、各プレス圧力条件毎に各 10回づつ、評価用回路基板 1の 被検査電極にっ 、て、検査用電極に 1ミリアンペアの電流を印加したときの導通抵抗 値を測定した。 The fabricated inspection device is set in the inspection section of the rail transport type circuit board automatic inspection machine rSTARREC V5J, and the evaluation circuit board 1 is set in the inspection device. The press pressure of the circuit board for evaluation 1 was changed stepwise within the range of 100-250 kgf, 10 times for each press pressure condition. With respect to the electrode to be inspected, the conduction resistance when a current of 1 mA was applied to the electrode for inspection was measured.
[0234] 測定された導通抵抗値が 100 Ω以上となった検査点(以下、「NG検査点」という。) を導通不良と判定し、総検査点における NG検査点の割合 (以下、「NG検査点割合 」という。)を算出し、 NG検査点割合が 0. 01%以下となった最も低いプレス圧力を最 低プレス圧力とした。  [0234] Inspection points having a measured conduction resistance value of 100 Ω or more (hereinafter, referred to as "NG inspection points") are determined to have poor conduction, and the percentage of NG inspection points in the total inspection points (hereinafter, "NG inspection points"). Inspection point ratio ”) was calculated, and the lowest press pressure at which the NG inspection point ratio was 0.01% or less was determined as the lowest press pressure.
この導通抵抗値の測定においては、一の導通抵抗値の測定が終了した後に、当該 測定に係るプレス圧力を開放して検査装置を無加圧状態に戻し、次の導通抵抗値 の測定は、再度、所定の大きさのプレス圧力を作用させることによって行った。  In the measurement of the conduction resistance value, after the measurement of one conduction resistance value is completed, the press pressure related to the measurement is released to return the inspection device to a non-pressurized state, and the next measurement of the conduction resistance value is performed as follows. Again, this was performed by applying a predetermined amount of press pressure.
[0235] 具体的に、 NG検査点割合は、評価用回路基板 1の上面被検査電極数は 7312点 、下面被検査電極数は 3784点であり、各プレス圧力条件において 10回の測定を行 つたこと力ら、式(7312 + 3784) X 10= 110960によって算出される 110960点の 検査点に占める、 NG検査点の割合を示す。測定結果を表 3に示した。  [0235] Specifically, the number of NG test points was 7312 on the upper surface of the circuit board 1 for evaluation and 3784 on the lower surface of the circuit board 1 for evaluation, and the measurement was performed 10 times under each press pressure condition. The percentage of NG inspection points in the 110960 inspection points calculated by the formula (7312 + 3784) X 10 = 110960 is shown. Table 3 shows the measurement results.
[0236] 2.剥離性試験  [0236] 2. Peelability test
検査装置に上記の評価用回路基板を搬送させてセットし、 150kgfのプレス荷重で 評価用回路基板に対して加圧した。この状態で、 2つのコネクタの接続電極と電気的 に接続された評価用回路基板に 1ミリアンペアの電流を印カロした際の電気抵抗値を 測定し、次いで評価用回路基板に対する加圧を解除した。この操作を 10回行った後 、評価用回路基板を検査装置の検査領域から搬送した。  The above-described circuit board for evaluation was transported and set in an inspection apparatus, and pressed against the circuit board for evaluation with a press load of 150 kgf. In this state, the electric resistance was measured when a current of 1 mA was applied to the evaluation circuit board electrically connected to the connection electrodes of the two connectors, and then the pressure on the evaluation circuit board was released. . After performing this operation 10 times, the circuit board for evaluation was transported from the inspection area of the inspection apparatus.
[0237] 上記の工程を 100枚の評価用回路基板につ!/、て行 、、評価用回路基板を検査装 置の検査領域力も搬送した際に、異方導電性シート (a)がピッチ変換用基板力も離 脱して評価用回路基板に接着して 、た回数 (搬送エラー回数)を測定した。測定結 果を表 3に示した。  [0237] The above process was performed for 100 evaluation circuit boards! When the evaluation circuit board was conveyed with the inspection area force of the inspection device, the anisotropic conductive sheet (a) The force of the conversion substrate was also released and adhered to the evaluation circuit board, and the number of times of transfer (the number of transfer errors) was measured. Table 3 shows the measurement results.
[0238] [実施例 4]  [Example 4]
実施例 3で作製した検査装置において、異方導電性エラストマーシー Ha)の代わ りに下記の異方導電性エラストマ一シート (b)を用いて検査装置を構成し、実施例 3 と同様にして接続安定性試験および剥離性試験を行った。測定結果を表 3に示した 一方の成形部材の成形面に、 120mm X 200mmの矩形の開口を有し、厚みが 0. 08mmである枠状のスぺーサを配置した後、スぺーサの開口内に、実施例 1と同様 にして調製した成形材料を塗布し、この成形材料上に他方の成形部材を、その成形 面が成形材料に接するよう配置した。 In the inspection device manufactured in Example 3, an inspection device was configured using the following anisotropic conductive elastomer sheet (b) instead of the anisotropic conductive elastomer sheet Ha), and the same as in Example 3 was performed. A connection stability test and a peelability test were performed. Table 3 shows the measurement results. After forming a frame-shaped spacer having a rectangular opening of 120 mm x 200 mm and a thickness of 0.08 mm on the molding surface of one molded member, the same as in Example 1 in the opening of the spacer. The molding material prepared in the same manner was applied, and the other molding member was arranged on this molding material such that the molding surface was in contact with the molding material.
[0239] 両方の成形部材には、厚みが 0. 1mmのポリエステル榭脂シート (東レネ土製,品名「 マットルミラー S10」)を、その光沢面 (表面粗さが 0. 04 m)を成形面として使用した 次いで、加圧ロールおよび支持ロールよりなる加圧ロール装置を用い、各成形部材 によって成形材料を挟圧することにより、厚み 0. 08mmの成形材料層を形成した。 各成形部材の裏面に電磁石を配置し、成形材料層に対してその厚み方向に 0. 3T の平行磁場を作用させながら、 120°Cで 30分間成形材料層の硬化処理を行うこと〖こ より、厚み 0. 1mmの矩形の異方導電性シートを作製した。 [0239] Both molded members were made of a 0.1 mm thick polyester resin sheet (made by Toray Sene Co., product name "Mattle Mirror S10"), and its glossy surface (surface roughness: 0.04 m) was molded. Next, a molding material layer having a thickness of 0.08 mm was formed by pressing the molding material between the molding members using a pressure roll device including a pressure roll and a support roll. An electromagnet is placed on the back side of each molded member, and the molding material layer is cured at 120 ° C for 30 minutes while applying a 0.3T parallel magnetic field to the molding material layer in the thickness direction. Then, a rectangular anisotropic conductive sheet having a thickness of 0.1 mm was produced.
[0240] 得られた異方導電性シート (b)は、一方の表面における表面粗さが 0. m、他 方の表面における表面粗さが 0. 12 mであり、導電性粒子の割合が体積分率で 12 %であった。  [0240] The obtained anisotropic conductive sheet (b) had a surface roughness of 0.1 m on one surface and a surface roughness of 0.12 m on the other surface. The volume fraction was 12%.
[0241] [表 3]  [0241] [Table 3]
Figure imgf000065_0001
Figure imgf000065_0001
[実施例 5]  [Example 5]
以下において、表面粗さは、ザィゴ社製の 3次元表面構造解析顕微鏡「New Vie w 200」を用い、 JIS B0601による中心平均粗さ Raを、カットオフ値 0. 8mm、測定 長さ 0. 25mmの条件で測定した値である。  In the following, the surface roughness was measured using a three-dimensional surface structure analysis microscope `` New View 200 '' manufactured by Zigo, and the center average roughness Ra according to JIS B0601 was cut off 0.8 mm, measurement length 0.25 mm This is a value measured under the conditions.
(評価用回路基板)  (Evaluation circuit board)
下記の仕様の評価用回路基板を用意した。  An evaluation circuit board having the following specifications was prepared.
寸法: 100mm (縦) X 100mm (横) X O. 8mm (厚み)  Dimensions: 100mm (length) X 100mm (width) X O. 8mm (thickness)
上面側の被検査電極の数: 7312個 上面側の被検査電極の径: 0. 3mm Number of electrodes to be inspected on the top side: 7312 Diameter of the electrode to be inspected on the top side: 0.3 mm
上面側の被検査電極の最小配置ピッチ: 0. 4mm  Minimum arrangement pitch of electrodes to be inspected on the top side: 0.4 mm
下面側の被検査電極の数: 3784  Number of electrodes to be inspected on the lower side: 3784
下面側の被検査電極の径: 0. 3mm  Diameter of the electrode to be inspected on the bottom side: 0.3 mm
下面側の被検査電極の最小配置ピッチ: 0. 4mm  Minimum arrangement pitch of electrodes to be inspected on the lower surface side: 0.4 mm
レール搬送型回路基板自動検査機 (日本電産リード社製,品名: STARREC V5 )の検査部に適合する、上記の評価用回路基板を検査するための回路基板検査装 置 (図 20)を作製した。  A circuit board inspection device (Fig. 20) for inspecting the above-mentioned evaluation circuit board, which is compatible with the inspection section of the rail transport type circuit board automatic inspection machine (manufactured by Nidec-Read Corporation, product name: STARREC V5) did.
[0243] (1)第 1の異方導電性シート 22 [0243] (1) First anisotropic conductive sheet 22
二液型の付加型液状シリコーンゴムの A液と B液とを等量となる割合で混合した。こ の混合物 100重量部に平均粒子径が 20 μ mの導電性粒子 100重量部を添加して 混合した後、減圧による脱泡処理を行うことにより、成形材料を調製した。  Liquid A and liquid B of the two-part addition type liquid silicone rubber were mixed in equal proportions. 100 parts by weight of conductive particles having an average particle diameter of 20 μm were added to 100 parts by weight of this mixture, mixed, and then subjected to defoaming treatment under reduced pressure to prepare a molding material.
付加型液状シリコーンゴムとして、 A液および B液の粘度がそれぞれ 500Pで、その 硬化物の 150°Cにおける圧縮永久歪 (JIS K 6249に準拠した測定方法による)が 6%、 23°Cにおける引き裂き強度 (JIS K 6249に準拠した測定方法による)が 25k NZmのものを用いた。  As an addition-type liquid silicone rubber, the viscosity of liquid A and liquid B is 500P each, and the cured product has a compression set at 150 ° C (by the measuring method in accordance with JIS K 6249) of 6% and a tear at 23 ° C. The strength (measured according to JIS K 6249) was 25 kNZm.
[0244] 導電性粒子として、ニッケル粒子を芯粒子とし、この芯粒子に無電解金メッキを施し たもの(平均被覆量:芯粒子の重量の 5重量%となる量)を用いた。  [0244] As the conductive particles, nickel particles were used as core particles, and the core particles were subjected to electroless gold plating (average coating amount: amount of 5% by weight of the core particles).
一方の成形部材の成形面に、 120mm X 200mmの矩形の開口を有する、厚みが 0. 08mmの枠状のスぺーサを配置した後、スぺーサの開口内に、調製した成形材 料を塗布し、この成形材料上に他方の成形部材をその成形面が成形材料に接する よう配置した。  After placing a 0.08 mm thick frame-shaped spacer having a rectangular opening of 120 mm x 200 mm on the molding surface of one molded member, the prepared molding material is placed in the opening of the spacer. It was applied, and the other molding member was arranged on this molding material so that its molding surface was in contact with the molding material.
[0245] 一方の成形部材には、厚みが 0. 1mmのポリエステル榭脂シート (東レネ土製,品名「 マットルミラー S10」)を、その非光沢面 (表面粗さが 1 m)を成形面として使用し、他 方の成形部材には、厚みが 0. 1mmのポリエステル榭脂シート (東レ社製,品名「マツ トルミラー S 10」)を、その光沢面 (表面粗さが 0. 04 /z m)を成形面として使用した。 次いで、加圧ロールおよび支持ロールからなる加圧ロール装置を用い、これらの成 形部材によって成形材料を挟圧し、成形材料の厚みを 0. 08mmとした。 [0246] 各成形部材の裏面に電磁石を配置し、成形材料に対してその厚み方向に 0. 3Tの 平行磁場を作用させながら、 120°C、 30分間の条件で成形材料の硬化処理を行うこ とにより、厚みが 0. 1mmの矩形の異方導電性シートを製造した。 [0245] On one molded member, a polyester resin sheet having a thickness of 0.1 mm (made by Toray Dentsu Co., Ltd., product name: "Mattle Mirror S10") was used with its non-glossy surface (surface roughness: 1 m) as the molding surface. The other molded member used was a polyester resin sheet with a thickness of 0.1 mm (manufactured by Toray Industries, Inc., product name: “Pantle Miller S10”) with a glossy surface (surface roughness of 0.04 / zm). Was used as the molding surface. Next, using a pressure roll device composed of a pressure roll and a support roll, the molding material was sandwiched between these molding members to make the thickness of the molding material 0.08 mm. [0246] An electromagnet is arranged on the back surface of each molding member, and the molding material is cured at 120 ° C for 30 minutes while applying a 0.3 T parallel magnetic field to the molding material in the thickness direction. Thus, a rectangular anisotropic conductive sheet having a thickness of 0.1 mm was produced.
得られた異方導電性シートは、その一面における表面粗さが 1. で、他面に おける表面粗さが 0. 12 mであり、導電性粒子の割合が体積分率で 12%であった 。この異方導電性エラストマ一シートを「異方導電性シート (a)」とする。  The obtained anisotropic conductive sheet had a surface roughness on one side of 0.1, a surface roughness on the other side of 0.12 m, and a conductive particle ratio of 12% by volume. Was This anisotropic conductive elastomer sheet is referred to as “anisotropic conductive sheet (a)”.
[0247] (2)ピッチ変換用基板 23  [0247] (2) Pitch conversion board 23
ガラス繊維補強型エポキシ榭脂からなる絶縁基板の両面全面に、厚みが 18 mの 銅からなる金属薄層を形成した積層材料 (松下電工社製,品名: R-1766)に、数値 制御型ドリリング装置によって、それぞれ積層材料の厚み方向に貫通する直径 0. 2 mmの円形の貫通孔を合計で 7312個形成した。  Numerically controlled drilling is performed on a laminated material (Matsushita Electric Works, product name: R-1766) in which a thin metal layer made of copper with a thickness of 18 m is formed on both sides of an insulating substrate made of glass fiber reinforced epoxy resin. The apparatus formed a total of 7312 circular through-holes each having a diameter of 0.2 mm penetrating in the thickness direction of the laminated material.
[0248] 次 、で、貫通孔が形成された積層材料に対して、 EDTAタイプ銅メツキ液を用いて 無電解メツキ処理を施すことにより、各貫通孔の内壁に銅メツキ層を形成し、さらに、 硫酸銅メツキ液を用いて電解銅メツキ処理を施すことにより、各貫通孔内に、積層材 料表面の各金属薄層を互いに電気的に接続する、厚さ約 10 mの円筒状のバイァ ホールを形成した。  Next, a copper plating layer was formed on the inner wall of each through-hole by performing an electroless plating process on the laminated material in which the through-hole was formed using an EDTA-type copper plating solution. By performing electrolytic copper plating using a copper sulfate plating solution, a cylindrical via having a thickness of about 10 m is used to electrically connect the thin metal layers on the surface of the laminated material to each other in each through hole. A hole was formed.
[0249] 次いで、積層材料表面の金属薄層上に、厚みが 25 μ mのドライフィルムレジスト( 東京応化製,品名: FP— 225)をラミネートしてレジスト層を形成するとともに、この積 層材料の他面側の金属薄層上に保護シールを配置した。このレジスト層上にフォトマ スクフィルムを配置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用い て露光処理を施した後、現像処理を行うことにより、エッチング用のレジストパターン を形成した。そして、レジストパターンを形成した面の金属薄層に対してエッチング処 理を施すことにより、絶縁基板の表面に、直径 200 mの 7312個の接続電極と、各 接続電極とバイァホールとを電気的に接続する線幅が 100 μ mのパターン配線部を 形成し、次いで、レジストパターンを除去した。  [0249] Next, a 25 µm-thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) was laminated on the thin metal layer on the surface of the laminated material to form a resist layer. A protective seal was placed on the other side of the thin metal layer. A photomask film is placed on this resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then developed to form a resist pattern for etching. Formed. Then, by etching the thin metal layer on the surface on which the resist pattern was formed, 7312 connection electrodes having a diameter of 200 m, and each connection electrode and via hole were electrically formed on the surface of the insulating substrate. A pattern wiring portion having a connecting line width of 100 μm was formed, and then the resist pattern was removed.
[0250] 接続電極およびパターン配線部が形成された絶縁基板の表面に、厚みが 25 μ m のドライフィルムソルダーレジスト(日立化成製、品名: SR— 2300G)をラミネートして 絶縁層を形成し、この絶縁層上にフォトマスクフィルムを配置して、絶縁層に対して平 行光露光機 (オーク製作所製)を用いて露光処理を施した後、現像処理を行うこと〖こ より、それぞれの接続電極を露出する、直径 200 mの 7312個の開口を形成した。 硫酸銅メツキ液を用い、積層材料の他面側の金属薄層を共通電極として用い、それ ぞれの接続電極に対して電解銅メツキ処理を施すことにより、絶縁層の表面から突出 する 7312個の接続電極を形成した。 [0250] A 25 µm-thick dry film solder resist (manufactured by Hitachi Chemical Co., Ltd., product name: SR-2300G) was laminated on the surface of the insulating substrate on which the connection electrodes and the pattern wiring portion were formed to form an insulating layer. A photomask film is disposed on the insulating layer, and is flat with respect to the insulating layer. Exposure treatment was performed using a line light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then development treatment was performed to form 7312 openings with a diameter of 200 m exposing each connection electrode. Using a copper sulphate plating solution, using the thin metal layer on the other side of the laminated material as a common electrode, and applying electrolytic copper plating to each connection electrode, 7312 protruding from the surface of the insulating layer Was formed.
[0251] 次いで、積層材料の他面側の金属薄層上の保護シールを除去し、この面の金属薄 層上に、厚みが 25 mのドライフィルムレジスト (東京応化製,品名: FP— 225)をラミ ネートしてレジスト層を形成した。その後、このレジスト層上にフォトマスクフィルムを配 置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用いて露光処理を施し た後、現像処理を行うことにより、積層材料における金属薄層上にエッチング用のレ ジストパターンを形成した。次いでエッチング処理を施すことにより、絶縁性基板の裏 面に 7312個の端子電極と、各端子電極とバイァホールとを電気的に接続するパタ ーン配線部を形成し、レジストパターンを除去した。  [0251] Next, the protective seal on the metal thin layer on the other side of the laminated material was removed, and a 25 m thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) was placed on the metal thin layer on this surface. ) Was laminated to form a resist layer. After that, a photomask film is disposed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then subjected to a development treatment to obtain a laminated material. A resist pattern for etching was formed on the thin metal layer. Next, by performing an etching process, 7312 terminal electrodes and a pattern wiring portion for electrically connecting each terminal electrode to the via hole were formed on the back surface of the insulating substrate, and the resist pattern was removed.
[0252] 次 、で、端子電極およびパターン配線部が形成された絶縁基板の裏面に、厚みが 38 μ mのドライフィルムソルダーレジスト(-チゴーモートン製、品名:コンフォマスク 2 015)をラミネートして絶縁層を形成し、この絶縁層上にフォトマスクフィルムを配置し 、次いで、絶縁層に対して、平行光露光機 (オーク製作所製)を用いて露光処理を施 した後、現像処理することにより、電極を露出する直径 0. 4mmの開口を 7312個形 成した。  Next, a 38 μm-thick dry film solder resist (manufactured by Tigo Morton, product name: ConfoMask 2015) was laminated on the back surface of the insulating substrate on which the terminal electrodes and the pattern wiring portions were formed. An insulating layer is formed, a photomask film is disposed on the insulating layer, and then the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then developed. Then, 7312 openings of 0.4 mm in diameter were formed to expose the electrodes.
[0253] 以上のようにして、第 1の検査治具 11a用のピッチ変換用基板 23aを作製した。この ピッチ変換用基板 23aは、縦横の寸法が 120mm X 160mm,厚みが 0. 5mm、接 続電極の絶縁層表面力 露出した部分の直径が約 300 m、接続電極の絶縁層表 面からの突出高さが約 25 m、接続電極の最小配置ピッチが 0. 4mm,端子電極の 直径が 0. 4mm、端子電極の配置ピッチが 0. 75mmであり、接続電極が形成された 面側の絶縁層の表面粗さが 0. 02 mであった。  [0253] As described above, the pitch conversion substrate 23a for the first inspection jig 11a was manufactured. The pitch conversion board 23a has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, the surface of the insulating layer of the connecting electrode has a diameter of about 300 m, and the connecting electrode protrudes from the surface of the insulating layer. The height is about 25 m, the minimum arrangement pitch of the connection electrodes is 0.4 mm, the diameter of the terminal electrodes is 0.4 mm, and the arrangement pitch of the terminal electrodes is 0.75 mm.The insulating layer on the side where the connection electrodes are formed Had a surface roughness of 0.02 m.
[0254] また、上記と同様にして、表面に 3784個の接続電極を有すると共に裏面に 3784 個の端子電極を有する、第 2の検査治具 l ib用のピッチ変換用基板 23bを作製した 。このピッチ変換用基板 23bは、縦横の寸法が 120mm X 160mm、厚みが 0. 5mm 、接続電極における絶縁層の表面に露出した部分の直径が約 300 /ζ πι、接続電極 における絶縁層の表面力もの突出高さが約 25 m、接続電極の最小配置ピッチが 0 . 4mm、端子電極の直径が 0. 4mm、端子電極の配置ピッチが 0. 75mmであり、表 面 (接続電極が形成された面)側の絶縁層の表面粗さが 0. 02 mのものである。 [0254] In the same manner as described above, a pitch conversion substrate 23b for a second inspection jig lib having 3784 connection electrodes on the front surface and 3784 terminal electrodes on the back surface was manufactured. The pitch conversion board 23b has a vertical and horizontal dimension of 120 mm X 160 mm and a thickness of 0.5 mm. The diameter of the part of the connection electrode exposed on the surface of the insulating layer is about 300 / ζπι, the surface strength of the insulating layer at the connection electrode is about 25 m, the minimum height of the connection electrodes is 0.4 mm, and the terminal is The electrode diameter is 0.4 mm, the arrangement pitch of the terminal electrodes is 0.75 mm, and the surface roughness of the insulating layer on the surface (the surface on which the connection electrodes are formed) is 0.02 m.
[0255] (3)回路基板側コネクタ 21 [0255] (3) Circuit board side connector 21
このピッチ変換用基板 23の表面側に、上記の第 1の異方導電性シート 22を配置し 、裏面側に、厚み方向に延びる多数の導電路形成部と、これらを互いに絶縁する絶 縁部とからなり、片面に導電路形成部が突出した偏在型異方導電性シートからなる 第 2の異方導電性シート 26を配置することにより、回路基板側コネクタ 21とした。 なお、ピッチ変換用基板 23と中継ピンユニット 31との間に配置される第 2の異方導 電性シート 26は、図 6に示される形状であり、具体的には以下の構成のものを使用し た。  The first anisotropic conductive sheet 22 is disposed on the front side of the pitch conversion substrate 23, and on the back side, a large number of conductive path forming portions extending in the thickness direction and insulating portions for insulating these from each other. The circuit board side connector 21 was formed by disposing a second anisotropic conductive sheet 26 made of an unevenly distributed anisotropic conductive sheet having a conductive path forming portion protruding on one surface. The second anisotropic conductive sheet 26 disposed between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 6, and specifically has the following configuration. used.
〔第 2の異方導電性シート 26〕  [Second anisotropic conductive sheet 26]
寸法: 11 Omm X 150mm  Dimensions: 11 Omm X 150mm
導電路形成部の厚み: 0. 6mm  Thickness of conductive path forming part: 0.6mm
導電路形成部の外径: 0. 35mm  Outer diameter of conductive path forming part: 0.35mm
導電路形成部の突出高さ: 0. 05mm  Projection height of conductive path forming part: 0.05 mm
導電性粒子:材質;金メッキ処理を施したニッケル粒子、平均粒子径; 35 ;ζ ΐη、導電 路形成部における導電性粒子の含有率; 30体積%  Conductive particles: Material: nickel-plated nickel particles, average particle size; 35; ζ ΐη, content of conductive particles in conductive path forming portion; 30% by volume
弾性高分子物質:材質;シリコーンゴム、硬度; 30  Elastic polymer material: Material; silicone rubber, hardness; 30
(W /Ό = 17)  (W / Ό = 17)
2 2  twenty two
[0256] (4)中継ピンユニット 31  [0256] (4) Relay pin unit 31
第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35の材料として、固有抵抗が I X As a material of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35, the specific resistance is I X
1010 Ω ' cm以上の絶縁性材料、ガラス繊維補強型エポキシ榭脂よりなり、その厚みが10 10 Ω'cm or more of insulating material, glass fiber reinforced epoxy resin
1. 9mmのものを用いた。 1. A 9mm one was used.
[0257] そして、第 1の絶縁板 34と中間保持板 36との間の距離 L1が、 36. 3mm、第 2の絶 縁板 35と中間保持板 36との間の距離 L2が、 3mmとなるように、第 1の支持ピン 33 ( 直径 2mm、長さ 36. 3mm)と、第 2の支持ピン 37 (直径 2mm、長さ 3mm)によって 固定支持するとともに、第 1の絶縁板 34と第 2の絶縁板 35との間に、下記の構成から なる導電ピン 32を移動自在となるように貫通孔 83 (直径 0. 4mm)に配置して作製し た。 [0257] The distance L1 between the first insulating plate 34 and the intermediate holding plate 36 is 36.3 mm, and the distance L2 between the second insulating plate 35 and the intermediate holding plate 36 is 3 mm. The first support pin 33 (diameter 2 mm, length 36.3 mm) and the second support pin 37 (diameter 2 mm, length 3 mm) In addition to being fixedly supported, a conductive pin 32 having the following configuration is disposed in the through hole 83 (0.4 mm in diameter) between the first insulating plate 34 and the second insulating plate 35 so as to be movable. It was produced.
〔導電ピン〕  [Conductive pin]
材質:金メッキ処理を施した真鍮  Material: Brass with gold plating
先端部 81aの寸法:外径 0. 35mm、全長 2. lmm  Tip 81a dimensions: 0.35mm outer diameter, 2.lmm overall length
中央部 82の寸法外径 0. 45mm,全長 41mm  Central part 82 dimension outer diameter 0.45mm, total length 41mm
基端部 8 lbの寸法:外径 0. 35mm、全長 2. lmm  Base end 8 lb dimensions: 0.35 mm outer diameter, 2.lmm overall length
なお、第 1の支持ピン 33の中間保持板 36との第 1の当接支持位置 38Aと、第 2の 支持ピン 37の中間保持板 36との第 2の当接支持位置 38Bは、図 23に示したように、 格子状に配置した。また、互いに隣接する第 1の当接支持位置 38Aの間の離間距離 The first contact support position 38A of the first support pin 33 with the intermediate holding plate 36 and the second contact support position 38B of the second support pin 37 with the intermediate holding plate 36 are shown in FIG. As shown in the figure, they were arranged in a grid. Also, the separation distance between the adjacent first contact support positions 38A.
、第 2の当接支持位置 38Bの間の離間距離を、 17. 5mmとした。 The distance between the second contact support positions 38B was 17.5 mm.
[0258] (5)テスター側コネクタ 41 [5] (5) Tester side connector 41
図 20に示したように、テスター側コネクタ 41を、第 3の異方導電性シート 42と、コネ クタ基板 43と、ベース板 46とから構成した。なお、第 3の異方導電性シート 42は、前 述した第 2の異方導電性シート 26と同様のものを用いた。  As shown in FIG. 20, the tester side connector 41 was composed of a third anisotropic conductive sheet 42, a connector board 43, and a base plate 46. The third anisotropic conductive sheet 42 used was the same as the second anisotropic conductive sheet 26 described above.
[0259] 〔性能試験〕 [Performance test]
レール搬送型回路基板自動検査機 rSTARREC V5J (日本電産リード社製)に検 查装置を装着し、下記の方法により、接続安定性試験 (最低プレス圧力の測定)およ び異方導電性シートの剥離試験を行った。  Attach the inspection device to the rail transport type circuit board automatic inspection machine rSTARREC V5J (manufactured by Nidec Reed Co., Ltd.), and perform the connection stability test (measurement of minimum pressing pressure) and anisotropic conductive sheet by the following method. Was subjected to a peel test.
1.最低プレス圧力の測定  1. Measurement of minimum press pressure
作成した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットし、検査装置に対して評価用回路基板 1をセットして、レール搬送型回 路基板自動検査機「STARREC V5Jのプレス圧力を 100— 210kgfの範囲内にお いて段階的に変化させ、各プレス圧力条件毎に各 10回づつ、評価用回路基板 1の 被検査電極にっ 、て、検査用電極に 1ミリアンペアの電流を印加したときの導通抵抗 値を測定した。  The created inspection device is set in the inspection section of the rail transport type circuit board automatic inspection machine rSTARREC V5J, the evaluation circuit board 1 is set in the inspection device, and the rail transport type circuit board automatic inspection machine “STARREC V5J The press pressure of the test circuit was changed stepwise within the range of 100-210 kgf, and each test pressure condition was changed 10 times, and the test electrodes of the evaluation circuit board 1 and the test electrodes were 1 mA each. The conduction resistance when a current of? Was applied was measured.
[0260] 測定された導通抵抗値が 100 Ω以上となった検査点(以下、「NG検査点」という。) を導通不良と判定し、総検査点における NG検査点の割合 (以下、「NG検査点割合 」という。)を算出し、 NG検査点割合が 0. 01%以下となった最も低いプレス圧力を最 低プレス圧力とした。 [0260] Inspection point at which the measured conduction resistance value is 100 Ω or more (hereinafter, referred to as "NG inspection point") Is determined to be a conduction failure, and the ratio of NG inspection points in the total inspection points (hereinafter referred to as “NG inspection point ratio”) is calculated. The lowest press pressure at which the NG inspection point ratio becomes 0.01% or less is determined. The minimum press pressure was used.
この導通抵抗値の測定においては、一の導通抵抗値の測定が終了した後に、当該 測定に係るプレス圧力を開放して検査装置を無加圧状態に戻し、次の導通抵抗値 の測定は、再度、所定の大きさのプレス圧力を作用させることによって行った。  In the measurement of the conduction resistance value, after the measurement of one conduction resistance value is completed, the press pressure related to the measurement is released to return the inspection device to a non-pressurized state, and the next measurement of the conduction resistance value is performed as follows. Again, this was performed by applying a predetermined amount of press pressure.
[0261] 具体的に、 NG検査点割合は、評価用回路基板 1の上面被検査電極数は 7312点 、下面被検査電極数は 3784点であり、各プレス圧力条件において 10回の測定を行 つたこと力ら、式(7312 + 3784) X 10= 110960によって算出される 110960点の 検査点に占める、 NG検査点の割合を示す。測定結果を表 4に示した。  [0261] Specifically, the ratio of NG inspection points is that the number of electrodes to be inspected on the upper surface of the evaluation circuit board 1 is 7312, and the number of electrodes to be inspected on the lower surface is 3784, and measurement is performed 10 times under each press pressure condition. The percentage of NG inspection points in the 110960 inspection points calculated by the formula (7312 + 3784) X 10 = 110960 is shown. Table 4 shows the measurement results.
[0262] 2.剥離性試験  [0262] 2. Peelability test
検査装置に上記の評価用回路基板を搬送させてセットし、 130kgfのプレス荷重で 評価用回路基板に対して加圧した。この状態で、 2つのコネクタの接続電極と電気的 に接続された評価用回路基板に 1ミリアンペアの電流を印カロした際の電気抵抗値を 測定し、次いで評価用回路基板に対する加圧を解除した。この操作を 10回行った後 、評価用回路基板を検査装置の検査領域から搬送した。  The above-described circuit board for evaluation was transported and set in an inspection device, and pressed against the circuit board for evaluation with a press load of 130 kgf. In this state, the electric resistance was measured when a current of 1 mA was applied to the evaluation circuit board electrically connected to the connection electrodes of the two connectors, and then the pressure on the evaluation circuit board was released. . After performing this operation 10 times, the circuit board for evaluation was transported from the inspection area of the inspection apparatus.
[0263] 上記の工程を 100枚の評価用回路基板につ!/、て行 、、評価用回路基板を検査装 置の検査領域力も搬送した際に、異方導電性シート (a)がピッチ変換用基板力も離 脱して評価用回路基板に接着して 、た回数 (搬送エラー回数)を測定した。測定結 果を表 4に示した。  [0263] The above process was performed on 100 evaluation circuit boards. When the evaluation circuit board was also transported with the inspection area force of the inspection device, the anisotropic conductive sheet (a) pitched. The force of the conversion substrate was also released and adhered to the evaluation circuit board, and the number of times of transfer (the number of transfer errors) was measured. Table 4 shows the measurement results.
[0264] [実施例 6]  [Example 6]
実施例 5で作製した検査装置において、異方導電性エラストマーシー Ha)の代わ りに下記の異方導電性エラストマ一シート (b)を用いて検査装置を構成し、実施例 5 と同様にして接続安定性試験および剥離性試験を行った。測定結果を表 4に示した 一方の成形部材の成形面に、 120mm X 200mmの矩形の開口を有し、厚みが 0. 08mmである枠状のスぺーサを配置した後、スぺーサの開口内に、実施例 1と同様 にして調製した成形材料を塗布し、この成形材料上に他方の成形部材を、その成形 面が成形材料に接するよう配置した。 In the inspection device manufactured in Example 5, an inspection device was configured using the following anisotropic conductive elastomer sheet (b) instead of the anisotropic conductive elastomer sheet Ha), and the same as in Example 5 was performed. A connection stability test and a peelability test were performed. The measurement results are shown in Table 4. A frame-shaped spacer having a rectangular opening of 120 mm x 200 mm and a thickness of 0.08 mm was placed on the molding surface of one molded member. The molding material prepared in the same manner as in Example 1 is applied to the opening, and the other molding member is molded on the molding material. The surface was arranged so as to be in contact with the molding material.
[0265] 両方の成形部材には、厚みが 0. 1mmのポリエステル榭脂シート (東レネ土製,品名「 マットルミラー S 10」)を、その光沢面 (表面粗さが 0. 04 m)を成形面として使用した 次いで、加圧ロールおよび支持ロールよりなる加圧ロール装置を用い、各成形部材 によって成形材料を挟圧することにより、厚み 0. 08mmの成形材料層を形成した。 各成形部材の裏面に電磁石を配置し、成形材料層に対してその厚み方向に 0. 3T の平行磁場を作用させながら、 120°Cで 30分間成形材料層の硬化処理を行うこと〖こ より、厚み 0. 1mmの矩形の異方導電性シートを作製した。  [0265] Both molded members were molded from a 0.1 mm thick polyester resin sheet (made by Toray Dentsu Co., Ltd., product name: "Mattle Mirror S10"), and its glossy surface (surface roughness: 0.04 m) was formed. Next, a molding material layer having a thickness of 0.08 mm was formed by sandwiching the molding material between the molding members using a pressure roll device comprising a pressure roll and a support roll. An electromagnet is placed on the back side of each molded member, and the molding material layer is cured at 120 ° C for 30 minutes while applying a 0.3T parallel magnetic field to the molding material layer in the thickness direction. Then, a rectangular anisotropic conductive sheet having a thickness of 0.1 mm was produced.
[0266] 得られた異方導電性シート (b)は、一方の表面における表面粗さが 0. m、他 方の表面における表面粗さが 0. 12 mであり、導電性粒子の割合が体積分率で 12 %であった。  [0266] The obtained anisotropic conductive sheet (b) had a surface roughness of 0.1 m on one surface and a surface roughness of 0.12 m on the other surface, and the ratio of the conductive particles was The volume fraction was 12%.
[0267] [表 4]  [0267] [Table 4]
Figure imgf000072_0001
Figure imgf000072_0001
[実施例 7]  [Example 7]
(評価用回路基板)  (Evaluation circuit board)
下記の仕様の評価用回路基板を用意した。  An evaluation circuit board having the following specifications was prepared.
寸法: 100mm (縦) X 100mm (横) X O. 8mm (厚み)  Dimensions: 100mm (length) X 100mm (width) X O. 8mm (thickness)
上面側の被検査電極の数: 3400個  Number of electrodes to be inspected on the upper surface: 3400
上面側の被検査電極の径: 0. 3mm  Diameter of the electrode to be inspected on the top side: 0.3 mm
上面側の被検査電極の最小配置ピッチ: 0. 4mm  Minimum arrangement pitch of electrodes to be inspected on the top side: 0.4 mm
下面側の被検査電極の数: 2500  Number of electrodes to be inspected on the lower side: 2500
下面側の被検査電極の径: 0. 3mm  Diameter of the electrode to be inspected on the bottom side: 0.3 mm
下面側の被検査電極の最小配置ピッチ: 0. 4mm  Minimum arrangement pitch of electrodes to be inspected on the lower surface side: 0.4 mm
レール搬送型回路基板自動検査機 (日本電産リード社製,品名: STARREC V5 )の検査部に適合する、上記の評価用回路基板を検査するための回路基板検査装 置 (図 14)を作製した。 Rail transport type circuit board automatic inspection machine (manufactured by Nidec-Read Corporation, product name: STARREC V5 A circuit board inspection device (Fig. 14) for testing the above-mentioned circuit board for evaluation, which is compatible with the inspection section of (1), was prepared.
[0269] (1)第 1の異方導電性シート 22 [0269] (1) First anisotropic conductive sheet 22
導電性粒子が厚み方向に配列するとともに面方向に均一に分散された下記の第 1 の異方導電性シートを作製した。  The following first anisotropic conductive sheet was prepared in which conductive particles were arranged in the thickness direction and uniformly dispersed in the plane direction.
寸法: 110mm X I 10mm、厚み 0. lmm  Dimensions: 110mm X I 10mm, thickness 0.1mm
導電性粒子:材質;金メッキ処理を施したニッケル粒子、平均粒子径; 20 m、含有 率; 18体積%  Conductive particles: Material: nickel-plated nickel particles, average particle diameter: 20 m, content: 18% by volume
弾性高分子物質:材質;シリコーンゴム、硬度; 40  Elastic polymer material: Material; silicone rubber, hardness; 40
[0270] (2)ピッチ変換用基板 23  [0270] (2) Pitch conversion board 23
ガラス繊維補強型エポキシ榭脂からなる厚さ 0. 5mmの絶縁基板の両面全面に、 厚みが の銅カゝらなる金属薄層を形成した積層材料 (松下電工社製,品名: R -1766)に、数値制御型ドリリング装置によって、それぞれ積層材料の厚み方向に貫 通する直径 0. lmmの円形の貫通孔を合計で 6800個形成した。  Laminated material in which a thin metal layer made of copper is formed on both sides of a 0.5 mm thick insulating substrate made of glass fiber reinforced epoxy resin (Matsushita Electric Works, product name: R-1766) Then, a total of 6,800 circular through-holes having a diameter of 0.1 mm and penetrating in the thickness direction of the laminated material were formed by a numerically controlled drilling device.
この場合、貫通孔の形成は 2個を一組として、評価用回路基板の上面側の被検査 電極に対応する位置に形成し、一組の貫通孔は 0. lmmの間隙を設けて形成した( すなわち、貫通孔 A=0. lmmと貫通孔 B = 0. lmmの間の間隙 =0. lmmとなる ように設定することを意味する)。  In this case, two through-holes were formed as a set at a position corresponding to the electrode to be inspected on the upper surface side of the evaluation circuit board, and a set of through-holes was formed with a gap of 0.1 mm (That is, it means that the gap between the through hole A = 0.1 mm and the through hole B = 0.1 mm is set to 0.1 mm.)
[0271] その後、貫通孔が形成された積層材料に対し、 EDTAタイプ銅メツキ液を用いて無 電解メツキ処理を施すことにより、各貫通孔の内壁に銅メツキ層を形成し、さらに、硫 酸銅メツキ液を用いて電解銅メツキ処理を施すことにより、各貫通孔内に、積層材料 表面の各金属薄層を互いに電気的に接続する、厚さ約 10 mの円筒状のバイァホ ールを形成した。  [0271] Thereafter, the laminated material in which the through-holes were formed was subjected to electroless plating using an EDTA-type copper plating solution to form a copper plating layer on the inner wall of each through-hole. By performing electrolytic copper plating using a copper plating solution, a cylindrical via hole with a thickness of about 10 m that electrically connects the thin metal layers on the surface of the laminated material to each other in each through hole. Formed.
[0272] 次いで、積層材料表面の金属薄層上に、厚みが 25 μ mのドライフィルムレジスト( 東京応化製,品名: FP— 225)をラミネートしてレジスト層を形成するとともに、この積 層材料の他面側の金属薄層上に保護シールを配置した。このレジスト層上にフォトマ スクフィルムを配置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用い て露光処理を施した後、現像処理を行うことにより、エッチング用のレジストパターン を形成した。そして、レジストパターンを形成した面の金属薄層に対してエッチング処 理を施すことにより、絶縁基板の表面に、横 60 m、縦 150 mの 6800個の接続電 極と、各接続電極とバイァホールとを電気的に接続する線幅が 100 mのパターン 配線部を形成し、次いで、レジストパターンを除去した。 [0272] Next, a 25 µm-thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) was laminated on the thin metal layer on the surface of the laminated material to form a resist layer. A protective seal was placed on the other side of the thin metal layer. A photomask film is placed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then developed to obtain a resist pattern for etching. Was formed. Then, by etching the thin metal layer on the surface on which the resist pattern was formed, 6800 connection electrodes 60 m wide and 150 m long, and each connection electrode and via hole were formed on the surface of the insulating substrate. Then, a pattern wiring part having a line width of 100 m for electrically connecting the resist pattern was formed, and then the resist pattern was removed.
[0273] 次に、積層材料の接続電極とパターン配線部を形成した側の面に、厚みが 50 μ m のドライフィルムレジスト (東京応化製,品名: FP— 225)をラミネートしてレジスト層を 形成し、このレジスト層の上にフォトマスクフィルムを配置して、レジスト層に対して平 行光露光機 (オーク製作所製)を用いて露光処理を施した後、現像処理を行うこと〖こ より、それぞれの接続電極を露出する、横方向 60 /ζ πι、縦方向 150 /z mの矩形の 68 00個の開口を形成した。  [0273] Next, a dry film resist (manufactured by Tokyo Ohka, product name: FP-225) having a thickness of 50 µm was laminated on the surface of the laminated material on the side where the connection electrodes and the pattern wiring portions were formed, and a resist layer was formed. After forming a photomask film on this resist layer, subjecting the resist layer to exposure processing using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), development processing is performed. 6,800 rectangular openings of 60 / ζπι in the horizontal direction and 150 / zm in the vertical direction were formed to expose the respective connection electrodes.
[0274] そして、硫酸銅メツキ液を用い、積層材料の他面側の金属薄層を共通電極として用 V、、それぞれの接続電極に対して電解銅メツキ処理を施すことにより 6800個の接続 電極を形成した。次 、でレジストパターンを除去した。  [0274] Then, using a copper sulfate plating solution, a thin metal layer on the other surface side of the laminated material was used as a common electrode V. Electrolytic copper plating was performed on each of the connection electrodes to make 6800 connection electrodes Was formed. Next, the resist pattern was removed.
次いで、積層材料の他面側の金属薄層上の保護シールを除去し、この面の金属薄 層上に、厚みが 25 mのドライフィルムレジスト (東京応化製,品名: FP— 225)をラミ ネートしてレジスト層を形成した。その後、このレジスト層上にフォトマスクフィルムを配 置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用いて露光処理を施し た後、現像処理を行うことにより、積層材料における金属薄層上にエッチング用のレ ジストパターンを形成した。  Next, the protective seal on the thin metal layer on the other side of the laminated material was removed, and a 25 m thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) was laminated on the thin metal layer on this surface. To form a resist layer. After that, a photomask film is disposed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then subjected to a development treatment to obtain a laminated material. A resist pattern for etching was formed on the thin metal layer.
[0275] 次 、で、積層材料の接続電極を形成した側の面に保護シールを施した後に、エツ チング処理を施すことにより、絶縁性基板の裏面に 6800個の端子電極と、各端子電 極とバイァホールとを電気的に接続するパターン配線部を形成し、レジストパターン を除去した。  [0275] Next, after a protective seal was applied to the surface on the side on which the connection electrodes of the laminated material were formed, an etching process was performed, so that 6800 terminal electrodes were formed on the back surface of the insulating substrate, and each terminal electrode was formed. A pattern wiring portion for electrically connecting the pole and the via hole was formed, and the resist pattern was removed.
[0276] 次 、で、端子電極およびパターン配線部が形成された絶縁基板の裏面に、厚みが 38 μ mのドライフィルムソルダーレジスト(-チゴーモートン製、品名:コンフォマスク 2 015)をラミネートして絶縁層を形成し、この絶縁層上にフォトマスクフィルムを配置し 、次いで、絶縁層に対して、平行光露光機 (オーク製作所製)を用いて露光処理を施 した後、現像処理することにより、電極を露出する直径 0. 4mmの開口を 6800個形 成した。 Next, a 38 μm-thick dry film solder resist (manufactured by Tigo Morton, product name: ConfoMask 20105) was laminated on the back surface of the insulating substrate on which the terminal electrodes and the pattern wiring portions were formed. An insulating layer is formed, a photomask film is disposed on the insulating layer, and then the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then developed. 6800 apertures with 0.4mm diameter to expose electrodes Done.
[0277] 以上のようにして、ピッチ変換用基板 23aを作製した。このピッチ変換用基板 23は、 縦横の寸法が 120mm X 160mm、厚みが 0. 5mm、接続電極 25の絶縁層表面から 露出した部分の寸法力 横方向約 60 mで、縦方向約 150 m、接続電極 25の絶 縁層表面力もの突出高さが約 60 m、対をなす接続電極間 25の離間距離が 100 m、端子電極 24の直径が 0. 4mm、端子電極 24の配置ピッチが 0. 75mmであり、 接続電極 24が形成された面側の絶縁層の表面粗さが 0. 02 mであった。  [0277] As described above, the pitch conversion substrate 23a was manufactured. The pitch conversion substrate 23 has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, and a dimensional force of a portion of the connection electrode 25 exposed from the surface of the insulating layer. The protruding height of the insulating layer surface of the electrode 25 is about 60 m, the distance between the pair of connecting electrodes 25 is 100 m, the diameter of the terminal electrode 24 is 0.4 mm, and the arrangement pitch of the terminal electrodes 24 is 0. It was 75 mm, and the surface roughness of the insulating layer on the side where the connection electrode 24 was formed was 0.02 m.
[0278] また、上記と同様にして、表面に 5000個の接続電極 25を有すると共に裏面に 500 0個の端子電極 24を有する、第 2の検査治具 l ib用のピッチ変換用基板 23bを作製 した。  In the same manner as described above, the pitch conversion substrate 23b for the second inspection jig l ib having 5000 connection electrodes 25 on the front surface and 5000 terminal electrodes 24 on the back surface is provided. It was made.
このピッチ変換用基板 23bは、縦横の寸法が 120mm X 160mm、厚みが 0. 5mm 、接続電極 25における絶縁層の表面に露出した部分の横方向約 60 /z mで、縦方向 約 150 /ζ πι、接続電極 25における絶縁層の表面力もの突出高さが約 60 m、対を なす接続電極間の離間距離が 100 m、端子電極 24の直径が 0. 4mm、端子電極 24の配置ピッチが 0. 75mmであり、表面 (接続電極が形成された面)側の絶縁層の 表面粗さが 0. 02 mのものである。  The pitch conversion substrate 23b has a vertical and horizontal dimension of 120 mm × 160 mm, a thickness of 0.5 mm, a width of about 60 / zm in a portion of the connection electrode 25 exposed on the surface of the insulating layer, and a length of about 150 / ζπι. The surface height of the insulating layer at the connection electrode 25 is about 60 m, the separation distance between the pair of connection electrodes is 100 m, the diameter of the terminal electrode 24 is 0.4 mm, and the arrangement pitch of the terminal electrodes 24 is 0. 75 mm, and the surface roughness of the insulating layer on the front surface (the surface on which the connection electrode is formed) is 0.02 m.
[0279] (3)回路基板側コネクタ 21 (3) Circuit board side connector 21
このピッチ変換用基板 23の表面側に、上記の第 1の異方導電性シート 22を配置し 、裏面側に、厚み方向に延びる多数の導電路形成部と、これらを互いに絶縁する絶 縁部とからなり、片面に導電路形成部が突出した偏在型異方導電性シートからなる 第 2の異方導電性シート 26を配置することにより、回路基板側コネクタ 21とした。 なお、ピッチ変換用基板 23と中継ピンユニット 31との間に配置される第 2の異方導 電性シート 26は、図 6に示される形状であり、具体的には以下の構成のものを使用し た。  The first anisotropic conductive sheet 22 is disposed on the front side of the pitch conversion substrate 23, and on the back side, a large number of conductive path forming portions extending in the thickness direction and insulating portions for insulating these from each other. The circuit board side connector 21 was formed by disposing a second anisotropic conductive sheet 26 made of an unevenly distributed anisotropic conductive sheet having a conductive path forming portion protruding on one surface. The second anisotropic conductive sheet 26 disposed between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 6, and specifically has the following configuration. used.
〔第 2の異方導電性シート 26〕  [Second anisotropic conductive sheet 26]
寸法: 11 Omm X 150mm  Dimensions: 11 Omm X 150mm
導電路形成部の厚み: 0. 6mm  Thickness of conductive path forming part: 0.6mm
導電路形成部の外径: 0. 35mm 導電路形成部の突出高さ: 0. 05mm Outer diameter of conductive path forming part: 0.35mm Projection height of conductive path forming part: 0.05 mm
導電性粒子:材質;金メッキ処理を施したニッケル粒子、平均粒子径; 35 ;ζ ΐη、導電 路形成部における導電性粒子の含有率; 30体積%  Conductive particles: Material: nickel-plated nickel particles, average particle size; 35; ζ ΐη, content of conductive particles in conductive path forming portion; 30% by volume
弾性高分子物質:材質;シリコーンゴム、硬度; 30  Elastic polymer material: Material; silicone rubber, hardness; 30
(W /Ό = 17)  (W / Ό = 17)
2 2  twenty two
[0280] (4)中継ピンユニット 31  [0280] (4) Relay pin unit 31
絶縁板 34, 35の材料として、固有抵抗が 1 X 1010 Ω ' cm以上の絶縁性材料、ガラ ス繊維補強型エポキシ榭脂よりなり、その厚みが 6mmのものを用いた。 As the material of the insulating plates 34 and 35, an insulating material having a specific resistance of 1 × 10 10 Ω'cm or more and a glass fiber reinforced epoxy resin having a thickness of 6 mm were used.
そして、絶縁板 34と絶縁板 35との間の距離が 52mmとなるように支持ピン 33にこ れらを取り付け、下記の構成力もなる導電ピン 32を移動自在となるように貫通孔 83に 配置した。  Then, these are attached to the support pins 33 so that the distance between the insulating plate 34 and the insulating plate 35 is 52 mm, and the conductive pins 32 having the following constitutional force are arranged in the through holes 83 so as to be movable. did.
〔導電ピン〕  [Conductive pin]
材質:金メッキ処理を施した真鍮  Material: Brass with gold plating
先端部の寸法:外径 0. 35mm、全長 6. 7mm  Tip dimensions: 0.35mm outer diameter, 6.7mm overall length
中央部の寸法外径 0. 45mm,全長 5 lmm  0.45mm outside diameter, total length 5 lmm
基端部の寸法:外径 0. 35mm、全長 6. 7mm  Base end dimensions: 0.35mm outer diameter, 6.7mm overall length
隣接検査ピン間離間距離: 0. 75mm  Separation distance between adjacent test pins: 0.75mm
[0281] (5)テスター側コネクタ 41 [0281] (5) Tester side connector 41
図 14に示したように、テスター側コネクタ 41を、第 3の異方導電性シート 42と、コネ クタ基板 43と、ベース板 46とから構成した。なお、第 3の異方導電性シート 42は、前 述した第 2の異方導電性シート 26と同様のものを用いた。  As shown in FIG. 14, the tester side connector 41 was composed of a third anisotropic conductive sheet 42, a connector board 43, and a base plate 46. The third anisotropic conductive sheet 42 used was the same as the second anisotropic conductive sheet 26 described above.
[0282] 〔性能試験〕 [Performance test]
1.最低プレス圧力の測定  1. Measurement of minimum press pressure
作成した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットし、検査装置に対して評価用回路基板 1をセットして、レール搬送型回 路基板自動検査機「STARREC V5Jのプレス圧力を 100— 250kgfの範囲内にお いて段階的に変化させ、各プレス圧力条件毎に各 10回づつ、評価用回路基板 1の 被検査電極について、電流供給用電極より検査用電極に 1ミリアンペアの電流を供 給したときの導通抵抗値を電圧測定電極にて測定した。 The created inspection device is set in the inspection section of the rail transport type circuit board automatic inspection machine rSTARREC V5J, the evaluation circuit board 1 is set in the inspection device, and the rail transport type circuit board automatic inspection machine “STARREC V5J Pressing pressure is changed stepwise within the range of 100-250 kgf, and the electrode to be inspected on the circuit board for evaluation 1 is changed from the electrode for current supply to the electrode for inspection by 10 times for each pressing pressure condition. Provides 1 mA of current The conduction resistance value when supplied was measured with a voltage measurement electrode.
測定された導通抵抗値が 100 Ω以上となった検査点(以下、「NG検査点」という。 ) を導通不良と判定し、総検査点における NG検査点の割合 (以下、「NG検査点割合 」という。)を算出し、 NG検査点割合が 0. 01%以下となった最も低いプレス圧力を最 低プレス圧力とした。  Inspection points where the measured conduction resistance value is 100 Ω or more (hereinafter referred to as “NG inspection points”) are judged to be poor conduction, and the percentage of NG inspection points in the total inspection points (hereinafter “NG inspection point ratio”) The lowest press pressure at which the percentage of NG inspection points fell below 0.01% was taken as the lowest press pressure.
[0283] この導通抵抗値の測定においては、一の導通抵抗値の測定が終了した後に、当該 測定に係るプレス圧力を開放して検査装置を無加圧状態に戻し、次の導通抵抗値 の測定は、再度、所定の大きさのプレス圧力を作用させることによって行った。  [0283] In the measurement of the conduction resistance value, after the measurement of one conduction resistance value is completed, the press pressure related to the measurement is released to return the inspection device to the non-pressurized state, and the next conduction resistance value is measured. The measurement was performed again by applying a predetermined magnitude of press pressure.
具体的に、 NG検査点割合は、評価用回路基板 1の上面被検査電極数は 3400点 、下面被検査電極数は 2500点であり、各プレス圧力条件において 10回の測定を行 つたこと力ら、式(3400 + 2500) X 10 = 59000によって算出される 59000点ゝの検 查点に占める、 NG検査点の割合を示す。測定結果を表 5に示す。  Specifically, the ratio of NG test points is that the number of electrodes to be inspected on the upper surface of the evaluation circuit board 1 is 3400, the number of electrodes to be inspected on the lower surface is 2500, and that the measurement was performed 10 times under each press pressure condition. This shows the percentage of NG inspection points in the inspection points of 59,000 points calculated by the formula (3400 + 2500) X 10 = 59000. Table 5 shows the measurement results.
[0284] 2.異方導電性シートの耐久性の測定  [0284] 2. Measurement of durability of anisotropic conductive sheet
作成した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットし、当該検査装置に対して用意した評価用回路基板 1をセットして、レー ル搬送型回路基板自動検査機 rSTARREC V5Jのプレス圧力条件を 150kgfとし 、所定回数の加圧を行った後、評価用回路基板 1の被検査電極について、プレス圧 力 150kgfの条件下にて、電流供給用電極より検査用電極に 1ミリアンペアの電流を 供給したときの導通抵抗値を電圧測定電極にて 10回測定した。  The created inspection device is set on the inspection part of rSTARREC V5J, a rail transport type circuit board automatic inspection machine, and the evaluation circuit board 1 prepared for the inspection device is set. After the press pressure condition of rSTARREC V5J is set to 150 kgf and pressurized a predetermined number of times, the electrodes to be inspected of the evaluation circuit board 1 are switched from the current supply electrodes to the test electrodes under the press pressure of 150 kgf. The conduction resistance when a current of 1 mA was supplied was measured 10 times with a voltage measurement electrode.
[0285] 測定された導通抵抗値が 100 Ω以上となった検査点 (NG検査点)を導通不良と判 定し、総検査点における NG検査点の割合 (NG検査点割合)を算出した。  [0285] Inspection points (NG inspection points) where the measured conduction resistance value was 100 Ω or more were determined as poor conduction, and the ratio of NG inspection points to the total inspection points (NG inspection point ratio) was calculated.
次いで、検査装置における異方導電性シートを新しいものに交換し、プレス圧力条 件を 180kgfに変更したこと以外は上記と同様の条件によって所定回数の加圧を行 い、その後、プレス圧力条件を 180kgfとしたこと以外は上記と同様の手法によって N G検査点割合を算出した。  Next, the anisotropic conductive sheet in the inspection device was replaced with a new one, and a predetermined number of pressurizations were performed under the same conditions as above except that the press pressure condition was changed to 180 kgf. The NG inspection point ratio was calculated by the same method as above except that the weight was 180 kgf.
[0286] この異方導電性シートの耐久性に係る導通抵抗値を測定においては、一の導通抵 抗値の測定が終了した後に、当該測定に係るプレス圧力を開放して検査装置を無加 圧状態に戻し、次の導通抵抗値の測定は、再度、所定の大きさのプレス圧力を作用 させることによって行った。 [0286] In the measurement of the conduction resistance value relating to the durability of the anisotropic conductive sheet, after the measurement of one conduction resistance value is completed, the press pressure related to the measurement is released and the inspection device is not applied. Pressure state, and the next measurement of the conduction resistance again applies the predetermined pressure. It was done by letting.
また、具体的に、 NG検査点割合は、評価用回路基板 1の上面被検査電極数は 34 00点、下面被検査電極数は 2500点であり、各プレス回数条件において 10回の測 定を行ったこと力ら、式(3400 + 2500) X 10 = 59000によって算出される 59000点、 の検査点に占める、 NG検査点の割合を示す。  Also, specifically, the number of NG test points is 3400 for the upper electrode to be inspected and 2500 for the lower electrode to be tested on the circuit board 1 for evaluation. The ratio of NG inspection points to the inspection points of 59000 points calculated by the formula (3400 + 2500) X 10 = 59000 is shown.
この場合、検査装置においては、実用上、 NG検査点割合が 0. 01%以下であるこ とが必要とされており、 NG検査点割合が 0. 01%を超える場合には、良品である被 検査回路基板に対して不良品であるとの誤った検査結果が得られる場合があること から、信頼性の高 、回路基板の電気的検査を行うことができなくなるおそれがある。 測定結果を表 6に示す。  In this case, the inspection equipment is required to have the NG inspection point ratio of 0.01% or less for practical use, and if the NG inspection point ratio exceeds 0.01%, the inspection device is considered to be a non-defective product. Since an erroneous inspection result indicating that the inspection circuit board is defective may be obtained, there is a possibility that the electrical inspection of the circuit board cannot be performed with high reliability. Table 6 shows the measurement results.
[0287] 3.被検査回路基板の導通不良の評価 [0287] 3. Evaluation of conduction failure of circuit board to be inspected
作製した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットし、当該検査装置に対して用意した評価用回路基板 1をセットして、レー ル搬送型回路基板自動検査機 rSTARREC V5Jのプレス圧力条件を 150kgfとし 、評価用回路基板 1の被検査電極について、プレス圧力 150kgfの条件下にて、電 流供給用電極より検査用電極に 1ミリアンペアの電流を供給したときの導通抵抗値を 電圧測定電極にて 10回測定し、設定した導通抵抗値(100 Ω )以上の導通抵抗値 が検出された検査点 (NG検査点割合)を NG検査点と判断し、総検査点における N G検査点の割合 (NG検査点割合)を算出した。  The fabricated inspection device is set in the inspection section of the rSTARREC V5J automatic circuit board inspection machine, and the evaluation circuit board 1 prepared for the inspection device is set. rSTARREC V5J was pressed at 150 kgf, and the test electrode on the circuit board for evaluation 1 was supplied with a current of 1 mA from the current supply electrode to the test electrode under the press pressure of 150 kgf. The resistance value is measured 10 times with the voltage measurement electrode, and the inspection point (NG inspection point ratio) where the conduction resistance value equal to or higher than the set conduction resistance value (100 Ω) is detected is judged as NG inspection point, and the total inspection point The percentage of NG inspection points at (NG inspection point ratio) was calculated.
そして、同一の評価用回路基板 1に対して NG検査点と判断する導通抵抗値の設 定を 100 Ωより低い抵抗値に変化させて、評価用回路基板 1の評価を行った。測定 結果を表 7に示す。  Then, the evaluation circuit board 1 was evaluated by changing the setting of the conduction resistance value, which is determined as an NG inspection point, to a resistance value lower than 100 Ω for the same evaluation circuit board 1. Table 7 shows the measurement results.
[0288] [実施例 8] [Example 8]
実施例 7の検査装置にお ヽて、ピッチ変換用基板を下記のものに変更した。  In the inspection device of Example 7, the substrate for pitch conversion was changed to the following.
ガラス繊維補強型エポキシ榭脂からなる厚さ 0. 5mmの絶縁基板の両面全面に、 厚みが の銅カゝらなる金属薄層を形成した積層材料 (松下電工社製,品名: R -1766)に、数値制御型ドリリング装置によって、それぞれ積層材料の厚み方向に貫 通する直径 0. 2mmの円形の貫通孔を合計で 3400個形成した。 [0289] 実施例 7のピッチ変換用基板の製造方法にぉ ヽて、接続電極用のレジストの開口 パターンを直径 200 mの円形に変更した以外は同様にして、上側用のピッチ変換 基板 23aを製造した。 Laminated material in which a thin metal layer made of copper is formed on both sides of a 0.5 mm thick insulating substrate made of glass fiber reinforced epoxy resin (Matsushita Electric Works, product name: R-1766) Then, a total of 3400 circular through-holes having a diameter of 0.2 mm penetrating in the thickness direction of the laminated material were formed by a numerically controlled drilling device. An upper pitch conversion substrate 23a was manufactured in the same manner as in the method of manufacturing the pitch conversion substrate of Example 7, except that the opening pattern of the connection electrode resist was changed to a circle having a diameter of 200 m. Manufactured.
得られた上側用のピッチ変換基板 23aは、縦横の寸法が 120mm X 160mm、厚 みが 0. 5mm,接続電極 25の絶縁層表面カゝら露出した部分の寸法が直径約 250 m、接続電極 25の絶縁層表面からの突出高さが約 60 m、接続電極の 1個が被検 查回路基板の被検査電極の 1個に接続するように接続電極 25が配置されていて、端 子電極 24の直径が 0. 4mm、端子電極 24の配置ピッチが 0. 75mmであり、接続電 極 24が形成された面側の絶縁層の表面粗さが 0. 02 mであった。  The obtained pitch conversion board 23a for the upper side has a vertical and horizontal dimension of 120 mm × 160 mm, a thickness of 0.5 mm, a dimension of a portion of the connection electrode 25 exposed on the surface of the insulating layer of the connection electrode 25 having a diameter of about 250 m, and a connection electrode of about 250 m. The protruding height from the surface of the insulating layer is about 60 m, and one of the connecting electrodes is connected to one of the electrodes to be tested on the circuit board. The diameter of 24 was 0.4 mm, the arrangement pitch of the terminal electrodes 24 was 0.75 mm, and the surface roughness of the insulating layer on the side where the connection electrodes 24 were formed was 0.02 m.
[0290] また、上記と同様にして、表面に 2500個の接続電極 25を有すると共に裏面に 250 0個の端子電極 24を有する下側用のピッチ変換基板 23bを作成した。  [0290] Further, in the same manner as described above, a lower pitch conversion substrate 23b having 2500 connection electrodes 25 on the front surface and 2500 terminal electrodes 24 on the rear surface was prepared.
この下側用のピッチ変換基板 23bは、縦横の寸法が 120mm X 160mm,厚みが 0 . 5mm,接続電極 25における絶縁層の表面に露出した部分の直径が約 250 /z m 接続電極 25における絶縁層の表面力ゝらの突出高さが約 60 /ζ πι、接続電極の 1個が 被検査回路基板の被検査電極の 1個に接続するように接続電極 25が配置されてい て、端子電極 24の直径が 0. 4mm、端子電極 24の配置ピッチが 0. 75mmであり、 表面 (接続電極が形成された面)側の絶縁層の表面粗さが 0. 02 mのものである。  The pitch conversion board 23b for the lower side has a vertical and horizontal dimension of 120 mm X 160 mm, a thickness of 0.5 mm, and a diameter of a portion exposed on the surface of the insulating layer in the connection electrode 25 is about 250 / zm. The connection electrode 25 is arranged so that the protruding height of the surface force is about 60 / ζπι, and one of the connection electrodes is connected to one of the electrodes to be inspected on the circuit board to be inspected. Is 0.4 mm, the arrangement pitch of the terminal electrodes 24 is 0.75 mm, and the surface roughness of the insulating layer on the front surface (the surface on which the connection electrode is formed) is 0.02 m.
[0291] 作製した検査装置について、実施例 7と同様の方法により、最低プレス圧、異方導 電性シートの耐久性、および被検査回路基板の導通不良の評価を測定した。最低プ レスの測定結果を表 5に、異方導電性シートの耐久性の測定結果を表 6に、被検査 回路基板の導通不良の評価を表 7に示す。  [0291] For the manufactured inspection device, the minimum press pressure, the durability of the anisotropic conductive sheet, and the evaluation of the conduction failure of the circuit board to be inspected were measured in the same manner as in Example 7. Table 5 shows the measurement results of the minimum press, Table 6 shows the measurement results of the durability of the anisotropic conductive sheet, and Table 7 shows the evaluation of the conduction failure of the circuit board to be inspected.
[0292] [表 5]  [0292] [Table 5]
Figure imgf000079_0001
Figure imgf000079_0001
[0293] [表 6] N G検査点割合 (%) プレス回数 (回) 1 1000 5000 10000 30000 実施例 7 Tレス圧力 ISOkgi' 0 0 0.09 0.22 1.4 [0293] [Table 6] NG inspection point ratio (%) Number of presses (times) 1 1000 5000 10000 30000 Example 7 T-less pressure ISOkgi '0 0 0.09 0.22 1.4
7'レス圧力 210kgf 0 0.02 0.13 0.25 2.1 実施例 8 rレス圧力 i80kgf 0 0 0.12 0.24 1.5  7'less pressure 210kgf 0 0.02 0.13 0.25 2.1 Example 8 r less pressure i80kgf 0 0 0.12 0.24 1.5
7°レス圧力 210kgf 0 0.04 0.15 0.38 2.3  7 ° less pressure 210kgf 0 0.04 0.15 0.38 2.3
[0294] [表 7] [Table 7]
Figure imgf000080_0001
Figure imgf000080_0001
[0295] [実施例 9] [Example 9]
(評価用回路基板)  (Evaluation circuit board)
下記の仕様の評価用回路基板 1を用意した。  An evaluation circuit board 1 having the following specifications was prepared.
寸法: 100mm (縦) X 100mm (横) X O. 8mm (厚み)  Dimensions: 100mm (length) X 100mm (width) X O. 8mm (thickness)
上面側の被検査電極の数: 3600個  Number of electrodes to be inspected on the upper surface: 3600
上面側の被検査電極の径: 0. 3mm  Diameter of the electrode to be inspected on the top side: 0.3 mm
上面側の被検査電極の最小配置ピッチ: 0. 4mm  Minimum arrangement pitch of electrodes to be inspected on the top side: 0.4 mm
下面側の被検査電極の数: 2600個  Number of electrodes to be inspected on the lower side: 2600
下面側の被検査電極の径: 0. 3mm  Diameter of the electrode to be inspected on the bottom side: 0.3 mm
下面側の被検査電極の最小配置ピッチ: 0. 4mm  Minimum arrangement pitch of electrodes to be inspected on the lower surface side: 0.4 mm
レール搬送型回路基板自動検査機 (日本電産リード社製,品名: STARREC V5 )の検査部に適合する、上記の評価用回路基板を検査するための回路基板検査装 置 (図 30)を作製した。  Produced a circuit board inspection device (Fig. 30) for inspecting the above-mentioned evaluation circuit board, which is compatible with the inspection section of a rail transport type circuit board automatic inspection machine (manufactured by Nidec-Read Corporation, product name: STARREC V5). did.
[0296] (1)第 1の異方導電性シート 22 (1) First Anisotropic Conductive Sheet 22
導電性粒子が厚み方向に配列するとともに面方向に均一に分散された下記の第 1 の異方導電性シートを作製した。 寸法: 110mm X I 10mm、厚み 0. lmm The following first anisotropic conductive sheet was prepared in which conductive particles were arranged in the thickness direction and uniformly dispersed in the plane direction. Dimensions: 110mm XI 10mm, thickness 0. lmm
導電性粒子:材質;金メッキ処理を施したニッケル粒子、平均粒子径; 20 m、含有 率; 18体積%  Conductive particles: Material: nickel-plated nickel particles, average particle diameter: 20 m, content: 18% by volume
弾性高分子物質:材質;シリコーンゴム、硬度; 40  Elastic polymer material: Material; silicone rubber, hardness; 40
[0297] (2)ピッチ変換用基板 23  (2) Pitch conversion board 23
ガラス繊維補強型エポキシ榭脂からなる厚さ 0. 5mmの絶縁基板の両面全面に、 厚みが の銅カゝらなる金属薄層を形成した積層材料 (松下電工社製,品名: R -1766)に、数値制御型ドリリング装置によって、それぞれ積層材料の厚み方向に貫 通する直径 0. lmmの円形の貫通孔を合計で 7200個形成した。  Laminated material in which a thin metal layer made of copper is formed on both sides of a 0.5 mm thick insulating substrate made of glass fiber reinforced epoxy resin (Matsushita Electric Works, product name: R-1766) Then, using a numerically controlled drilling device, a total of 7,200 circular through-holes each having a diameter of 0.1 mm and penetrating in the thickness direction of the laminated material were formed.
この場合、貫通孔の形成は 2個を一組として、評価用回路基板の上面側の被検査 電極に対応する位置に形成し、一組の貫通孔は 0. lmmの間隙を設けて形成した( すなわち、貫通孔 A=0. lmmと貫通孔 B = 0. lmmの間の間隙 =0. lmmとなる ように設定することを意味する)。  In this case, two through-holes were formed as a set at a position corresponding to the electrode to be inspected on the upper surface side of the evaluation circuit board, and a set of through-holes was formed with a gap of 0.1 mm (That is, it means that the gap between the through hole A = 0.1 mm and the through hole B = 0.1 mm is set to 0.1 mm.)
[0298] その後、貫通孔が形成された積層材料に対し、 EDTAタイプ銅メツキ液を用いて無 電解メツキ処理を施すことにより、各貫通孔の内壁に銅メツキ層を形成し、さらに、硫 酸銅メツキ液を用いて電解銅メツキ処理を施すことにより、各貫通孔内に、積層材料 表面の各金属薄層を互いに電気的に接続する、厚さ約 10 mの円筒状のバイァホ ールを形成した。  [0298] Thereafter, the laminated material in which the through holes were formed was subjected to an electroless plating process using an EDTA type copper plating solution to form a copper plating layer on the inner wall of each through hole. By performing electrolytic copper plating using a copper plating solution, a cylindrical via hole with a thickness of about 10 m that electrically connects the thin metal layers on the surface of the laminated material to each other in each through hole. Formed.
次いで、積層材料表面の金属薄層上に、厚みが 25 μ mのドライフィルムレジスト( 東京応化製,品名: FP— 225)をラミネートしてレジスト層を形成するとともに、この積 層材料の他面側の金属薄層上に保護シールを配置した。このレジスト層上にフォトマ スクフィルムを配置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用い て露光処理を施した後、現像処理を行うことにより、エッチング用のレジストパターン を形成した。そして、レジストパターンを形成した面の金属薄層に対してエッチング処 理を施すことにより、絶縁基板の表面に、横 60 /ζ πι、縦 150 mの 7200個の接続電 極と、各接続電極とバイァホールとを電気的に接続する線幅が 100 mのパターン 配線部を形成し、次いで、レジストパターンを除去した。  Next, a 25 μm thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) is laminated on the thin metal layer on the surface of the laminated material to form a resist layer, and the other surface of the laminated material is formed. A protective seal was placed on the side thin metal layer. A photomask film is placed on this resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then developed to form a resist pattern for etching. Formed. Then, by etching the thin metal layer on the surface on which the resist pattern was formed, 7200 connection electrodes of 60 / ζπι and 150 m in length and each connection electrode were formed on the surface of the insulating substrate. A pattern wiring portion having a line width of 100 m for electrically connecting the via hole and the via hole was formed, and then the resist pattern was removed.
[0299] 次に、積層材料の接続電極とパターン配線部を形成した側の面に、厚みが 50 μ m のドライフィルムレジスト (東京応化製,品名: FP— 225)をラミネートしてレジスト層を 形成し、このレジスト層の上にフォトマスクフィルムを配置して、レジスト層に対して平 行光露光機 (オーク製作所製)を用いて露光処理を施した後、現像処理を行うこと〖こ より、それぞれの接続電極を露出する、横方向 60 /ζ πι、縦方向 150 /z mの矩形の 72 00個の開口を形成した。 [0299] Next, a 50 μm thick A dry film resist (Tokyo Ohka, product name: FP-225) is laminated to form a resist layer, a photomask film is placed on this resist layer, and a parallel light exposure machine ( (Oak Manufacturing Co., Ltd.), and then perform development processing, exposing each connection electrode to form 7200 rectangular 60 / ζπι and 150 / zm rectangular An opening was formed.
[0300] そして、硫酸銅メツキ液を用い、積層材料の他面側の金属薄層を共通電極として用 い、それぞれの接続電極に対して電解銅メツキ処理を施すことにより 7200個の接続 電極を形成した。次 、でレジストパターンを除去した。  [0300] Then, using a copper sulfate plating solution, a thin metal layer on the other surface side of the laminated material was used as a common electrode, and each connection electrode was subjected to electrolytic copper plating treatment, whereby 7,200 connection electrodes were formed. Formed. Next, the resist pattern was removed.
次いで、積層材料の他面側の金属薄層上の保護シールを除去し、この面の金属薄 層上に、厚みが 25 mのドライフィルムレジスト (東京応化製,品名: FP— 225)をラミ ネートしてレジスト層を形成した。その後、このレジスト層上にフォトマスクフィルムを配 置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用いて露光処理を施し た後、現像処理を行うことにより、積層材料における金属薄層上にエッチング用のレ ジストパターンを形成した。  Next, the protective seal on the thin metal layer on the other side of the laminated material was removed, and a 25 m thick dry film resist (manufactured by Tokyo Ohka, product name: FP-225) was laminated on the thin metal layer on this surface. To form a resist layer. After that, a photomask film is disposed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then subjected to a development treatment to obtain a laminated material. A resist pattern for etching was formed on the thin metal layer.
[0301] 次 、で、積層材料の接続電極を形成した側の面に保護シールを施した後に、エツ チング処理を施すことにより、絶縁性基板の裏面に 7200個の端子電極と、各端子電 極とバイァホールとを電気的に接続するパターン配線部を形成し、レジストパターン を除去した。  [0301] Next, a protective seal was applied to the surface on the side where the connection electrodes of the laminated material were formed, and then an etching process was performed. A pattern wiring portion for electrically connecting the pole and the via hole was formed, and the resist pattern was removed.
次いで、端子電極およびパターン配線部が形成された絶縁基板の裏面に、厚みが 38 μ mのドライフィルムソルダーレジスト(-チゴーモートン製、品名:コンフォマスク 2 015)をラミネートして絶縁層を形成し、この絶縁層上にフォトマスクフィルムを配置し 、次いで、絶縁層に対して、平行光露光機 (オーク製作所製)を用いて露光処理を施 した後、現像処理することにより、電極を露出する直径 0. 4mmの開口を 7200個形 成した。  Next, a 38 μm-thick dry film solder resist (manufactured by Tigo Morton, product name: ComfoMask 2015) is laminated on the back surface of the insulating substrate on which the terminal electrodes and the pattern wiring portion are formed to form an insulating layer. A photomask film is arranged on the insulating layer, and then the electrode is exposed by subjecting the insulating layer to an exposure process using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.) and then performing a development process. 7,200 openings with a diameter of 0.4 mm were formed.
[0302] 以上のようにして、ピッチ変換用基板 23を作製した。このピッチ変換用基板 23は、 縦横の寸法が 120mm X 160mm、厚みが 0. 5mm、接続電極 25の絶縁層表面から 露出した部分の寸法力 横方向約 60 mで、縦方向約 150 m、接続電極 25の絶 縁層表面力もの突出高さが約 60 m、対をなす接続電極間 25の離間距離が 100 m、端子電極 24の直径が 0. 4mm、端子電極 24の配置ピッチが 0. 75mmであり、 接続電極 24が形成された面側の絶縁層の表面粗さが 0. 02 mであった。 [0302] As described above, the pitch conversion substrate 23 was manufactured. The pitch conversion substrate 23 has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, and a dimensional force of a portion of the connection electrode 25 exposed from the surface of the insulating layer. The surface height of the insulating layer of electrode 25 is about 60 m, and the distance between paired connecting electrodes 25 is 100. m, the diameter of the terminal electrode 24 was 0.4 mm, the arrangement pitch of the terminal electrodes 24 was 0.75 mm, and the surface roughness of the insulating layer on the side where the connection electrode 24 was formed was 0.02 m.
[0303] また、上記と同様にして、表面に 5200個の接続電極 25を有すると共に裏面に 520 0個の端子電極 24を有する、第 2の検査治具 l ib用のピッチ変換用基板 23bを作製 した。 [0303] In the same manner as described above, the pitch conversion substrate 23b for the second inspection jig l ib having 5200 connection electrodes 25 on the front surface and 5200 terminal electrodes 24 on the back surface is provided. It was made.
このピッチ変換用基板 23bは、縦横の寸法が 120mm X 160mm、厚みが 0. 5mm 、接続電極 25における絶縁層の表面に露出した部分の横方向約 60 /z mで、縦方向 約 150 /ζ πι、接続電極 25における絶縁層の表面力もの突出高さが約 60 m、対を なす接続電極間の離間距離が 100 m、端子電極 24の直径が 0. 4mm、端子電極 24の配置ピッチが 0. 75mmであり、表面 (接続電極が形成された面)側の絶縁層の 表面粗さが 0. 02 mのものである。  The pitch conversion substrate 23b has a vertical and horizontal dimension of 120 mm × 160 mm, a thickness of 0.5 mm, a width of about 60 / zm in a portion of the connection electrode 25 exposed on the surface of the insulating layer, and a length of about 150 / ζπι. The surface height of the insulating layer at the connection electrode 25 is about 60 m, the separation distance between the pair of connection electrodes is 100 m, the diameter of the terminal electrode 24 is 0.4 mm, and the arrangement pitch of the terminal electrodes 24 is 0. 75 mm, and the surface roughness of the insulating layer on the front surface (the surface on which the connection electrode is formed) is 0.02 m.
[0304] (3)回路基板側コネクタ 21 [0304] (3) Circuit board side connector 21
このピッチ変換用基板 23の表面側に、上記の第 1の異方導電性シート 22を配置し 、裏面側に、厚み方向に延びる多数の導電路形成部と、これらを互いに絶縁する絶 縁部とからなり、片面に導電路形成部が突出した偏在型異方導電性シートからなる 第 2の異方導電性シート 26を配置することにより、回路基板側コネクタ 21とした。 なお、ピッチ変換用基板 23と中継ピンユニット 31との間に配置される第 2の異方導 電性シート 26は、図 6に示される形状であり、具体的には以下の構成のものを使用し た。  The first anisotropic conductive sheet 22 is disposed on the front side of the pitch conversion substrate 23, and on the back side, a large number of conductive path forming portions extending in the thickness direction and insulating portions for insulating these from each other. The circuit board side connector 21 was formed by disposing a second anisotropic conductive sheet 26 made of an unevenly distributed anisotropic conductive sheet having a conductive path forming portion protruding on one surface. The second anisotropic conductive sheet 26 disposed between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 6, and specifically has the following configuration. used.
〔第 2の異方導電性シート 26〕  [Second anisotropic conductive sheet 26]
寸法: 11 Omm X 150mm  Dimensions: 11 Omm X 150mm
導電路形成部の厚み: 0. 6mm  Thickness of conductive path forming part: 0.6mm
導電路形成部の外径: 0. 35mm  Outer diameter of conductive path forming part: 0.35mm
導電路形成部の突出高さ: 0. 05mm  Projection height of conductive path forming part: 0.05 mm
導電性粒子:材質;金メッキ処理を施したニッケル粒子、平均粒子径; 35 ;ζ ΐη、導電 路形成部における導電性粒子の含有率; 30体積%  Conductive particles: Material: nickel-plated nickel particles, average particle size; 35; ζ ΐη, content of conductive particles in conductive path forming portion; 30% by volume
弾性高分子物質:材質;シリコーンゴム、硬度; 30  Elastic polymer material: Material; silicone rubber, hardness; 30
(W /Ό = 17) [0305] (4)中 ϋピンユニット 31 (W / Ό = 17) [0305] (4) Medium ϋ pin unit 31
第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35の材料として、固有抵抗が I X 1Ο10 Ω 'cm以上の絶縁性材料、ガラス繊維補強型エポキシ榭脂よりなり、その厚みが 1. 9mmのものを用いた。 The first insulating plate 34, the intermediate holding plate 36, as the material of the second insulating plate 35, resistivity IX 1Ο 10 Ω 'cm or more insulating material, made of glass fiber-reinforced epoxy榭脂, its thickness 1. A 9mm one was used.
そして、第 1の絶縁板 34と中間保持板 36との間の距離 L1が、 36. 3mm,第 2の絶 縁板 35と中間保持板 36との間の距離 L2が、 3mmとなるように、第 1の支持ピン 33 ( 直径 2mm、長さ 36. 3mm)と、第 2の支持ピン 37 (直径 2mm、長さ 3mm)によって 固定支持するとともに、第 1の絶縁板 34と第 2の絶縁板 35との間に、下記の構成から なる導電ピン 32を移動自在となるように貫通孔 83 (直径 0. 4mm)に配置して作製し た。  Then, the distance L1 between the first insulating plate 34 and the intermediate holding plate 36 is 36.3 mm, and the distance L2 between the second insulating plate 35 and the intermediate holding plate 36 is 3 mm. The first support pin 33 (diameter 2 mm, length 36.3 mm) and the second support pin 37 (diameter 2 mm, length 3 mm) are fixed and supported, and the first insulation plate 34 and the second insulation The conductive pin 32 having the following configuration was disposed between the plate 35 and the through-hole 83 (0.4 mm in diameter) so as to be movable.
〔導電ピン〕  [Conductive pin]
材質:金メッキ処理を施した真鍮  Material: Brass with gold plating
先端部 81aの寸法:外径 0. 35mm、全長 2. lmm  Tip 81a dimensions: 0.35mm outer diameter, 2.lmm overall length
中央部 32の寸法外径 0. 45mm,全長 41mm  Dimension of central part 32 Outer diameter 0.45mm, total length 41mm
基端部 8 lbの寸法:外径 0. 35mm、全長 2. lmm  Base end 8 lb dimensions: 0.35 mm outer diameter, 2.lmm overall length
[0306] なお、第 1の支持ピン 33の中間保持板 36との第 1の当接支持位置 38Aと、第 2の 支持ピン 37の中間保持板 36との第 2の当接支持位置 38Bは、格子状に配置した。 なお、互いに隣接する第 1の当接支持位置 38Aの間の離間距離、第 2の当接支持 位置 38Bの間の離間距離を、 17. 5mmとした。 [0306] The first contact support position 38A of the first support pin 33 with the intermediate holding plate 36 and the second contact support position 38B of the second support pin 37 with the intermediate holding plate 36 are , Arranged in a grid. The distance between the adjacent first contact support positions 38A and the distance between the second contact support positions 38B were 17.5 mm.
[0307] (5)テスター側コネクタ 41 (5) Tester side connector 41
テスター側コネクタ 41を、第 3の異方導電性シート 42と、コネクタ基板 43と、ベース 板 46とから構成した。なお、第 3の異方導電性シート 42は、前述した第 2の異方導電 性シート 26と同様のものを用いた。  The tester-side connector 41 is composed of a third anisotropic conductive sheet 42, a connector board 43, and a base plate 46. The third anisotropic conductive sheet 42 used was the same as the second anisotropic conductive sheet 26 described above.
〔性能試験〕  〔performance test〕
1.最低プレス圧力の測定  1. Measurement of minimum press pressure
作成した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットし、検査装置に対して用意した評価用回路基板 1をセットして、レール搬 送型回路基板自動検査機「STARREC V5Jのプレス圧力を 100— 210kgfの範囲 内において段階的に変化させ、各プレス圧力条件毎に各 10回づつ、評価用回路基 板 1の被検査電極について、電流供給用電極より検査用電極に 1ミリアンペアの電流 を印カロしたときの導通抵抗値を電圧測定用電極で測定した。 The created inspection device is set in the inspection section of the rSTARREC V5J automatic circuit board inspection machine, and the evaluation circuit board 1 prepared for the inspection device is set. STARREC V5J press pressure in the range of 100-210kgf Of the test electrode of the circuit board for evaluation 10 times for each press pressure condition, when a current of 1 mA was applied to the test electrode from the current supply electrode. The conduction resistance value was measured with a voltage measuring electrode.
[0308] 測定された導通抵抗値が 10 Ω以上となった検査点(以下、「NG検査点」という。)を 導通不良と判定し、総検査点における NG検査点の割合 (以下、「NG検査点割合」と いう。)を算出し、 NG検査点割合が 0. 01%以下となった最も低いプレス圧力を最低 プレス圧力とした。  [0308] Inspection points having a measured conduction resistance value of 10 Ω or more (hereinafter, referred to as "NG inspection points") are determined to be continuity failures, and the percentage of NG inspection points in the total inspection points (hereinafter, "NG inspection points"). Inspection point ratio ”) was calculated, and the lowest press pressure at which the NG inspection point ratio was 0.01% or less was determined as the minimum press pressure.
この導通抵抗値の測定においては、一の導通抵抗値の測定が終了した後に、当該 測定に係るプレス圧力を開放して検査装置を無加圧状態に戻し、次の導通抵抗値 の測定は、再度、所定の大きさのプレス圧力を作用させることによって行った。  In the measurement of the conduction resistance value, after the measurement of one conduction resistance value is completed, the press pressure related to the measurement is released to return the inspection device to a non-pressurized state, and the next measurement of the conduction resistance value is performed as follows. Again, this was performed by applying a predetermined amount of press pressure.
[0309] 具体的に、 NG検査点割合は、評価用回路基板 1の上面被検査電極数は 3600点 、下面被検査電極数は 2600点であり、各プレス圧力条件において 10回の測定を行 つたこと力ら、式(3600 + 2600) X 10 = 62000によって算出される 62000点ゝの検 查点に占める、 NG検査点の割合を示す。測定結果を表 8に示す。  [0309] Specifically, the number of NG test points was 3600 on the upper surface of the circuit board 1 for evaluation and 2600 on the lower surface of the circuit board 1 for evaluation, and the measurement was performed 10 times under each press pressure condition. This shows the percentage of NG inspection points in the 62,000 inspection points calculated by the formula (3600 + 2600) X 10 = 62000. Table 8 shows the measurement results.
[0310] 2.異方導電性シートの耐久性の測定  [0310] 2. Measurement of durability of anisotropic conductive sheet
作製した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットし、当該検査装置に対して用意した評価用回路基板 1をセットして、レー ル搬送型回路基板自動検査機 rSTARREC V5Jのプレス圧力条件を 130kgfとし 、所定回数の加圧を行った後、評価用回路基板 1の被検査電極について、プレス圧 力 130kgfの条件下にて、電流供給用電極より検査用電極に 1ミリアンペアの電流を 印カロしたときの導通抵抗値を 10回測定し、所定回数の加圧を行い同様に導通抵抗 値を電圧測定用電極にて 10回測定する作業を繰り返した。  The fabricated inspection device is set in the inspection section of the rSTARREC V5J automatic circuit board inspection machine, and the evaluation circuit board 1 prepared for the inspection device is set. After the press pressure condition of rSTARREC V5J is set to 130 kgf and pressurization is performed a predetermined number of times, the electrode to be inspected of the evaluation circuit board 1 is changed from the current supply electrode to the test electrode under the condition of the press pressure of 130 kgf. Conduction resistance was measured 10 times when a current of 1 mA was applied, and the operation of applying pressure a predetermined number of times and similarly measuring the conduction resistance 10 times with a voltage measurement electrode was repeated.
[0311] 測定された導通抵抗値が 10 Ω以上となった検査点 (NG検査点)を導通不良と判 定し、総検査点における NG検査点の割合 (NG検査点割合)を算出した。  [0311] Inspection points where the measured conduction resistance value was 10 Ω or more (NG inspection points) were determined to be poor conduction, and the percentage of NG inspection points in the total inspection points (NG inspection point ratio) was calculated.
次いで、検査装置における異方導電性シートを新しいものに交換し、プレス圧力条 件を 150kgfに変更したこと以外は上記と同様の条件によって所定回数の加圧を行 い、その後、プレス圧力条件を 150kgfとしたこと以外は上記と同様の手法によって N G検査点割合を算出した。 [0312] この異方導電性シートの耐久性に係る導通抵抗値を測定においては、一の導通抵 抗値の測定が終了した後に、当該測定に係るプレス圧力を開放して検査装置を無加 圧状態に戻し、次の導通抵抗値の測定は、再度、所定の大きさのプレス圧力を作用 させることによって行った。 Next, the anisotropic conductive sheet in the inspection device was replaced with a new one, and a predetermined number of pressurizations were performed under the same conditions as above except that the press pressure condition was changed to 150 kgf. The NG inspection point ratio was calculated by the same method as above except that the weight was set to 150 kgf. [0312] In measuring the conduction resistance value related to the durability of the anisotropic conductive sheet, after the measurement of one conduction resistance value is completed, the press pressure related to the measurement is released and the inspection device is not operated. The state was returned to the pressurized state, and the next measurement of the conduction resistance was performed again by applying a predetermined magnitude of press pressure.
具体的に、 NG検査点割合は、評価用回路基板 1の上面被検査電極数は 3600点 、下面被検査電極数は 2600点であり、各プレス回数条件において 10回の測定を行 つたこと力ら、式(3600 + 2600) X 10 = 62000によって算出される 62000点ゝの検 查点に占める、 NG検査点の割合を示す。  Specifically, the ratio of NG test points is that the number of electrodes to be inspected on the upper surface of the evaluation circuit board 1 is 3600, and the number of electrodes to be inspected on the lower surface is 2600. This shows the percentage of NG inspection points in the 62,000 inspection points calculated by the formula (3600 + 2600) X 10 = 62000.
[0313] この場合、検査装置においては、実用上、 NG検査点割合が 0. 01%以下であるこ とが必要とされており、 NG検査点割合が 0. 01%を超える場合には、良品である被 検査回路基板に対して不良品であるとの誤った検査結果が得られる場合があること から、信頼性の高 、回路基板の電気的検査を行うことができなくなるおそれがある。 測定結果を表 9に示す。  [0313] In this case, the inspection device requires that the percentage of NG inspection points be 0.01% or less for practical use, and if the percentage of NG inspection points exceeds 0.01%, a non-defective product In some cases, an erroneous inspection result indicating that the circuit board to be inspected is defective may be obtained, which may make it impossible to perform an electrical inspection of the circuit board with high reliability. Table 9 shows the measurement results.
[0314] 3.被検査回路基板の導通不良の評価  [0314] 3. Evaluation of conduction failure of circuit board to be inspected
作製した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットし、当該検査装置に対して用意した評価用回路基板 1をセットして、レー ル搬送型回路基板自動検査機 rSTARREC V5Jのプレス圧力条件を 150kgfとし 、評価用回路基板 1の被検査電極について、プレス圧力 150kgfの条件下にて、電 流供給用電極より検査用電極に 1ミリアンペアの電流を供給したときの導通抵抗値を 電圧測定電極にて 10回測定し、設定した導通抵抗値(100 Ω )以上の導通抵抗値 が検出された検査点 (NG検査点割合)を NG検査点と判断し、総検査点における N G検査点の割合 (NG検査点割合)を算出した。  The fabricated inspection device is set in the inspection section of the rSTARREC V5J automatic circuit board inspection machine, and the evaluation circuit board 1 prepared for the inspection device is set. rSTARREC V5J was pressed at 150 kgf, and the test electrode on the circuit board for evaluation 1 was supplied with a current of 1 mA from the current supply electrode to the test electrode under the press pressure of 150 kgf. The resistance value is measured 10 times with the voltage measurement electrode, and the inspection point (NG inspection point ratio) where the conduction resistance value equal to or higher than the set conduction resistance value (100 Ω) is detected is judged as NG inspection point, and the total inspection point The percentage of NG inspection points at (NG inspection point ratio) was calculated.
そして、同一の評価用回路基板 1に対して NG検査点と判断する導通抵抗値の設 定を 100 Ωより低い抵抗値に変化させて、評価用回路基板 1の評価を行った。測定 結果を表 10に示す。  Then, the evaluation circuit board 1 was evaluated by changing the setting of the conduction resistance value, which is determined as an NG inspection point, to a resistance value lower than 100 Ω for the same evaluation circuit board 1. Table 10 shows the measurement results.
[0315] [実施例 10]  [0315] [Example 10]
実施例 9の中継ピンユニット 31の代わりに、図 1に示したような中継ピンユニット 31a 、 31bを用いた。すなわち、一定ピッチ(2. 54mmピッチ)で格子点上に多数(8000 ピン)配置された導電ピン 32a、 32bと、この導電ピン 32a、 32bを上下へ移動可能に 支持する絶縁板 34a、 34bおよび 35a、 35bを有するものを用いた。 In place of the relay pin unit 31 of the ninth embodiment, relay pin units 31a and 31b as shown in FIG. 1 were used. That is, a large number (8000) at a fixed pitch (2.54 mm pitch) Pins) were used having conductive pins 32a, 32b arranged thereon and insulating plates 34a, 34b and 35a, 35b for supporting the conductive pins 32a, 32b movably up and down.
作製した検査装置について、実施例 9と同様な方法により、最低プレス圧および異 方導電性シートの耐久性を測定した。最低プレスの測定結果を表 8に、異方導電性 シートの耐久性の測定結果を表 9に示す。  With respect to the manufactured inspection device, the minimum press pressure and the durability of the anisotropic conductive sheet were measured in the same manner as in Example 9. Table 8 shows the measurement results of the minimum press, and Table 9 shows the measurement results of the durability of the anisotropic conductive sheet.
[0316] [実施例 11] [0316] [Example 11]
実施例 9の検査装置にお ヽて、ピッチ変換用基板を下記のものに変更した。  In the inspection device of Example 9, the substrate for pitch conversion was changed to the following.
ガラス繊維補強型エポキシ榭脂からなる厚さ 0. 5mmの絶縁基板の両面全面に、 厚みが の銅カゝらなる金属薄層を形成した積層材料 (松下電工社製,品名: R -1766)に、数値制御型ドリリング装置によって、それぞれ積層材料の厚み方向に貫 通する直径 0. 2mmの円形の貫通孔を合計で 3600個形成した。  Laminated material in which a thin metal layer made of copper is formed on both sides of a 0.5 mm thick insulating substrate made of glass fiber reinforced epoxy resin (Matsushita Electric Works, product name: R-1766) Then, a numerically controlled drilling device was used to form a total of 3600 circular through holes each having a diameter of 0.2 mm and penetrating in the thickness direction of the laminated material.
[0317] 実施例 9のピッチ変換基板の製造方法において、接続電極用のレジストの開口パ ターンを直径 200 mの円形に変更した以外は実施例 9と同様にして、上側用のピッ チ変換基板を製造した。 [0317] In the method of manufacturing the pitch conversion substrate of Example 9, the pitch conversion substrate for the upper side was manufactured in the same manner as in Example 9 except that the opening pattern of the resist for the connection electrode was changed to a circle having a diameter of 200 m. Was manufactured.
得られた上側用のピッチ変換基板は、表面に 3600個の接続電極 25を有するもの で、縦横の寸法が 120mm X 160mm,厚みが 0. 5mm、接続電極 25の絶縁層表面 力も露出した部分の寸法が直径約 250 m、接続電極 25の絶縁層表面力もの突出 高さが約 60 m、接続電極の 1個が被検査回路基板の被検査電極の 1個に接続す るように接続電極 25が配置されていて、端子電極 24の直径が 0. 4mm、端子電極 2 4の配置ピッチが 0. 75mmであり、接続電極 24が形成された面側の絶縁層の表面 粗さが 0. 02 mであった。  The obtained pitch conversion board for the upper side has 3600 connection electrodes 25 on the surface, the vertical and horizontal dimensions are 120 mm X 160 mm, the thickness is 0.5 mm, and the surface of the insulating layer of the connection electrodes 25 is also exposed. The dimensions of the connection electrode 25 are about 250 m, the surface of the insulation layer of the connection electrode 25 is protruding, and the height of the connection electrode is about 60 m. Are arranged, the diameter of the terminal electrode 24 is 0.4 mm, the arrangement pitch of the terminal electrodes 24 is 0.75 mm, and the surface roughness of the insulating layer on the side where the connection electrode 24 is formed is 0.02. m.
[0318] また、上記と同様にして、表面に 2600個の接続電極 25を有すると共に裏面に 260 0個の端子電極 24を有する下側用のピッチ変換基板を作成した。 Also, in the same manner as above, a lower pitch conversion substrate having 2600 connection electrodes 25 on the front surface and 2600 terminal electrodes 24 on the rear surface was prepared.
この下側用のピッチ変換基板は、縦横の寸法が 120mm X 160mm、厚みが 0. 5 mm、接続電極 25における絶縁層の表面に露出した部分の直径が約 250 m、接 続電極 25における絶縁層の表面力もの突出高さが約 60 m、接続電極の 1個が被 検査回路基板の被検査電極の 1個に接続するように接続電極 25が配置されていて、 端子電極 24の直径が 0. 4mm、端子電極 24の配置ピッチが 0. 75mmであり、表面 (接続電極が形成された面)側の絶縁層の表面粗さが 0. 02 mのものである。 The pitch conversion board for the lower side has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, a diameter of a portion of the connection electrode 25 exposed on the surface of the insulating layer of about 250 m, and an insulation of the connection electrode 25. The connection electrode 25 is arranged so that the protruding height of the surface force of the layer is about 60 m, and one of the connection electrodes is connected to one of the electrodes to be inspected on the circuit board to be inspected. 0.4 mm, the pitch of terminal electrodes 24 is 0.75 mm, The surface roughness of the insulating layer on the side where the connection electrode is formed is 0.02 m.
[0319] 作製した検査装置について、実施例 9と同様の方法により、最低プレス圧および異 方導電性シートの耐久性を測定した。異方導電性シートの耐久性の測定結果を表 1 0に示し、被検査回路基板の導通不良の NG検査点と判断する導通抵抗値を 100 Ω より低 ヽ抵抗値に変化させて行った評価の結果を表 11に示す。 [0319] With respect to the produced inspection device, the minimum press pressure and the durability of the anisotropic conductive sheet were measured in the same manner as in Example 9. The measurement results of the durability of the anisotropic conductive sheet are shown in Table 10, and the evaluation was performed by changing the conduction resistance value, which is judged as the NG inspection point of the conduction failure of the circuit board to be inspected, to a resistance value lower than 100 Ω. Table 11 shows the results.
なお、表 8および表 9の場合には、 4端子検査の場合であるので、設定電圧を 10 Ω に設定し、表 10および表 11の場合には、 2端子検査の場合 (実施例 11)を含んでい るので、設定電圧を 100 Ωに設定して試験を行っている。  Note that in Tables 8 and 9, the four-terminal test was used, so the set voltage was set to 10 Ω, and in Tables 10 and 11, two-terminal test was used (Example 11). Therefore, the test was conducted with the set voltage set to 100 Ω.
[0320] [表 8] [0320] [Table 8]
Figure imgf000088_0001
Figure imgf000088_0001
[0321] [表 9] [0321] [Table 9]
Figure imgf000088_0002
Figure imgf000088_0002
[0322] [表 10]  [0322] [Table 10]
Figure imgf000088_0003
Figure imgf000088_0003
[0323] [表 11] N G検査点割合 (%) [0323] [Table 11] NG inspection point ratio (%)
設定抵抗値 ( Ω ) 100 50 10 1 0.5 0.1 0.01 実施例 9 ダレス圧力 180kgf 0 0 0 0.01 0.03 4.2 8.5 ス圧力 210kgf 0 0 0 0.02 0.02 3.8 9.0 実施例 1 1 1'レス圧力 180kgf 0 0.5 4.2 測定 測定 測定 測定 不能 不能 不能 不能 フ'レス圧力 210kgf 0 0.6 3.9 測定 測定 測定 測定 不能 不能 不能 不能  Set resistance (Ω) 100 50 10 1 0.5 0.1 0.01 Example 9 Dulles pressure 180kgf 0 0 0 0.01 0.03 4.2 8.5 Pressure 210kgf 0 0 0 0.02 0.02 3.8 9.0 Example 1 1 1'less pressure 180kgf 0 0.5 4.2 Measurement Measurement Measurement Measurement impossible impossible impossible impossible impossible Freeze pressure 210 kgf 0 0.6 3.9 measurement measurement measurement measurement impossible impossible impossible impossible impossible

Claims

請求の範囲 The scope of the claims
[1] 一対の第 1の検査治具と第 2の検査治具によって、両検査治具の間で検査対象で ある被検査回路基板の両面を挟圧して電気検査を行う回路基板の検査装置であつ て、  [1] A circuit board inspection apparatus that performs an electrical inspection by pressing both sides of a circuit board to be inspected between both inspection jigs with a pair of a first inspection jig and a second inspection jig. And
前記第 1の検査治具と第 2の検査治具がそれぞれ、  The first inspection jig and the second inspection jig are each
基板の一面側と他面側との間で電極ピッチを変換するピッチ変換用基板と、 前記ピッチ変換用基板の被検査回路基板側に配置される第 1の異方導電性シート と、  A pitch conversion substrate for converting an electrode pitch between one surface side and the other surface side of the substrate; a first anisotropic conductive sheet disposed on the circuit board to be inspected side of the pitch conversion substrate;
前記ピッチ変換用基板の被検査回路基板とは逆側に配置される第 2の異方導電性 シートと、  A second anisotropic conductive sheet disposed on the opposite side of the pitch conversion board from the circuit board to be inspected;
を備えた回路基板側コネクタと、  A circuit board side connector having
所定のピッチで配置された複数の導電ピンと、  A plurality of conductive pins arranged at a predetermined pitch,
前記導電ピンを軸方向に移動可能に支持する、一対の離間した第 1の絶縁板と第 2の絶縁板と、  A pair of spaced first and second insulating plates that support the conductive pins movably in the axial direction,
を備えた中 «Iピンユニットと、  With «I-pin unit and
テスターと前記中継ピンユニットとを電気的に接続するコネクタ基板と、 前記コネクタ基板の中継ピンユニット側に配置される第 3の異方導電性シートと、 前記コネクタ基板の中継ピンユニットとは逆側に配置されるベース板と、 を備えたテスター佃 jコネクタと、を備え、  A connector board for electrically connecting the tester to the relay pin unit; a third anisotropic conductive sheet disposed on the relay pin unit side of the connector board; and an opposite side of the connector board to the relay pin unit And a tester Tsukuda j connector provided with:
前記第 1の異方導電性シートが、導電性粒子が厚み方向に配列するとともに面方 向に均一に分散された異方導電性シートであることを特徴とする回路基板の検査装 置。  A circuit board inspection apparatus, wherein the first anisotropic conductive sheet is an anisotropic conductive sheet in which conductive particles are arranged in a thickness direction and uniformly dispersed in a surface direction.
[2] 前記第 1の異方導電性シートの厚み Wが 0. 03-0. 5mmであり、導電性粒子の  [2] The thickness W of the first anisotropic conductive sheet is 0.03 to 0.5 mm,
1  1
数平均粒子径 D力 ¾一 50 μ mであり、厚み Wと数平均粒子径 Dとの比 W /Όが 1  The number average particle diameter D force is 50 μm, and the ratio W / Ό between the thickness W and the number average particle diameter D is 1
1 1 1 1 1 1 1 1 1 1
. 1一 10であり、シート基材を構成する絶縁性エラストマ一のデュロメータ硬さが 30— 90であることを特徴とする請求項 1に記載の回路基板の検査装置。 2. The circuit board inspection apparatus according to claim 1, wherein the durometer hardness of the insulating elastomer constituting the sheet base material is 30 to 90.
[3] 前記第 1の異方導電性シートは、被検査回路基板に接する側の表面における表面 粗さが 0. 5— 5 mであり、ピッチ変換用基板に接する側の表面における表面粗さが [3] The first anisotropic conductive sheet has a surface roughness of 0.5 to 5 m on a surface in contact with the circuit board to be inspected, and a surface roughness on a surface in contact with the pitch conversion substrate. But
0. 3 /z m以下であり、 0.3 / z m or less,
前記ピッチ変換用基板は、第 1の異方導電性シートに接する側の表面における絶 縁部の表面粗さが 0. 2 m以下であることを特徴とする請求項 1または 2に記載の回 路基板の検査装置。  3. The circuit according to claim 1, wherein the pitch conversion substrate has a surface roughness of 0.2 m or less at an insulating portion on a surface in contact with the first anisotropic conductive sheet. 4. Road board inspection equipment.
[4] 前記第 2の異方導電性シートが、厚み方向に延びる複数の導電路形成部と、これら の導電路形成部を互いに絶縁する絶縁部とからなり、導電性粒子が導電路形成部 中にのみ含有され、これにより該導電性粒子は面方向に不均一に分散されるとともに 、シート片面側に導電路形成部が突出していることを特徴とする請求項 1一 3のいず れかに記載の回路基板の検査装置。  [4] The second anisotropic conductive sheet is composed of a plurality of conductive path forming portions extending in the thickness direction and an insulating portion for insulating these conductive path forming portions from each other, and the conductive particles are formed in the conductive path forming portion. 13. The conductive particles according to claim 13, wherein the conductive particles are non-uniformly dispersed in the plane direction, and the conductive path forming portions protrude on one side of the sheet. A circuit board inspection apparatus according to any one of the above.
[5] 前記第 2の異方導電性シートにおける導電路形成部の厚み Wが 0. 1— 2mmであ  [5] The thickness W of the conductive path forming portion in the second anisotropic conductive sheet is 0.1 to 2 mm.
2  2
り、導電性粒子の数平均粒子径 Dが 5 200 μ mであり、厚み Wと数平均粒子径 D  The conductive particles have a number average particle diameter D of 5 200 μm, a thickness W and a number average particle diameter D.
2 2 2 との比 W /Dが 1· 1一 10であり、シート基材を構成する絶縁性エラストマ一のデュロ The ratio W / D to 2 2 1 is 1.1-10, and the durometer of the insulating elastomer constituting the sheet base material
2 2 twenty two
メータ硬さが 15— 60であることを特徴とする請求項 4に記載の回路基板の検査装置  The circuit board inspection device according to claim 4, wherein the meter hardness is 15-60.
[6] 前記第 3の異方導電性シートが、厚み方向に延びる複数の導電路形成部と、これら の導電路形成部を互いに絶縁する絶縁部とからなり、導電性粒子が導電路形成部 中にのみ含有され、これにより該導電性粒子は面方向に不均一に分散されるとともに 、シート片面側に導電路形成部が突出していることを特徴とする請求項 1一 5のいず れかに記載の回路基板の検査装置。 [6] The third anisotropic conductive sheet includes a plurality of conductive path forming portions extending in the thickness direction, and an insulating portion that insulates the conductive path forming portions from each other. The conductive particles are non-uniformly dispersed in the surface direction, and the conductive path forming portion protrudes on one surface side of the sheet. A circuit board inspection apparatus according to any one of the above.
[7] 前記ピッチ変換用基板に、一対の電流用端子電極と電圧用端子電極とからなる接 続電極が設けられ、該接続電極は、被検査回路基板の各被検査電極に対して前記 一対の電流用端子電極と電圧用端子電極とが電気的に接続するようにピッチ変換用 基板に配置されており、  [7] The pitch conversion substrate is provided with a connection electrode composed of a pair of a current terminal electrode and a voltage terminal electrode, and the connection electrode is connected to each of the electrodes to be inspected of the circuit board to be inspected. Are arranged on the pitch conversion board so that the current terminal electrode and the voltage terminal electrode are electrically connected to each other.
前記コネクタ基板に、前記ピッチ変換用基板の電流用端子電極と電圧用端子電極 とにそれぞれ電気的に接続するように、電流用ピン側電極と電圧用ピン側電極が配 置されていることを特徴とする請求項 1一 6のいずれかに記載の回路基板の検査装 置。  A current pin-side electrode and a voltage pin-side electrode are arranged on the connector board so as to be electrically connected to the current terminal electrode and the voltage terminal electrode of the pitch conversion board, respectively. 17. The circuit board inspection apparatus according to claim 16, wherein the inspection apparatus is a circuit board inspection apparatus.
[8] 前記中継ピンユニットが、 前記第 1の絶縁板と第 2の絶縁板との間に配置された中間保持板と、 [8] The relay pin unit, An intermediate holding plate disposed between the first insulating plate and the second insulating plate,
前記第 1の絶縁板と中間保持板との間に配置された第 1の支持ピンと、  A first support pin disposed between the first insulating plate and the intermediate holding plate,
前記第 2の絶縁板と中間保持板との間に配置された第 2の支持ピンと、  A second support pin disposed between the second insulating plate and the intermediate holding plate,
を備えるとともに、 With
前記第 1の支持ピンの中間保持板に対する第 1の当接支持位置と、前記第 2の支 持ピンの中間保持板に対する第 2の当接支持位置とが、中間保持板の厚さ方向に投 影した中間保持板投影面において異なる位置に配置されていることを特徴とする請 求項 1一 7の 、ずれかに記載の回路基板の検査装置。  A first contact support position of the first support pin with respect to the intermediate holding plate and a second contact support position of the second support pin with respect to the intermediate holding plate are in the thickness direction of the intermediate holding plate. 18. The circuit board inspection apparatus according to claim 17, wherein the apparatus is arranged at a different position on the projected intermediate holding plate projection plane.
一対の第 1の検査治具と第 2の検査治具によって、両検査治具の間で検査対象で ある被検査回路基板の両面を挟圧した際に、  When a pair of the first inspection jig and the second inspection jig sandwiches both sides of the circuit board to be inspected between the two inspection jigs,
前記第 1の支持ピンの中間保持板に対する第 1の当接支持位置を中心として、前 記中間保持板が、前記第 2の絶縁板の方向に橈むとともに、  The intermediate holding plate is bent in the direction of the second insulating plate around a first contact support position of the first support pin with respect to the intermediate holding plate,
前記第 2の支持ピンの中間保持板に対する第 2の当接支持位置を中心として、前 記中間保持板が、前記第 1の絶縁板の方向に橈むように構成されていることを特徴と する請求項 8に記載の回路基板の検査装置。  The intermediate holding plate is configured so as to extend in the direction of the first insulating plate around a second contact support position of the second support pin with respect to the intermediate holding plate. Item 9. The circuit board inspection apparatus according to Item 8.
前記第 1の支持ピンの中間保持板に対する第 1の当接支持位置が、前記中間保持 板投影面において格子状に配置され、  First contact support positions of the first support pins with respect to the intermediate holding plate are arranged in a grid on the intermediate holding plate projection plane,
前記第 2の支持ピンの中間保持板に対する第 2の当接支持位置が、前記中間保持 板投影面において格子状に配置されており、  A second contact support position of the second support pin with respect to the intermediate holding plate is arranged in a grid on the intermediate holding plate projection plane,
前記中間保持板投影面において、隣接する 4個の第 1の当接支持位置力もなる単 位格子領域に、 1個の第 2の当接支持位置が配置されるとともに、  On the intermediate holding plate projection plane, one second contact support position is arranged in a unit lattice area where four adjacent first contact support position forces are also provided,
前記中間保持板投影面において、隣接する 4個の第 2の当接支持位置力もなる単 位格子領域に、 1個の第 1の当接支持位置が配置されるように構成されていることを 特徴とする請求項 8または 9に記載の回路基板の検査装置。  In the intermediate holding plate projection plane, one first contact support position is arranged in a unit lattice region where four adjacent second contact support position forces are also provided. The circuit board inspection apparatus according to claim 8 or 9, wherein
前記中継ピンユニットが、  The relay pin unit,
前記第 1の絶縁板と第 2の絶縁板との間に所定間隔離間して配置された複数個の 中間保持板と、  A plurality of intermediate holding plates disposed at predetermined intervals between the first insulating plate and the second insulating plate;
隣接する中間保持板同士の間に配置された保持板支持ピンと、 を備えるとともに、 Holding plate support pins arranged between adjacent intermediate holding plates, With
少なくとも 1つの中間保持板において、該中間保持板に対して一面側から当接する 保持板支持ピンの該中間保持板に対する当接支持位置と、該中間保持板に対して 他面側から当接する第 1の支持ピン、第 2の支持ピン、または保持板支持ピンの該中 間保持板に対する当接支持位置とが、該中間保持板の厚さ方向に投影した中間保 持板投影面において異なる位置に配置されていることを特徴とする請求項 1一 7のい ずれかに記載の回路基板の検査装置。  In at least one intermediate holding plate, a holding support position of the holding plate support pin abutting against the intermediate holding plate from one surface side, and a second holding position abutting against the intermediate holding plate from the other surface side. The contact support position of the first support pin, the second support pin, or the support plate support pin with respect to the intermediate support plate is different on the intermediate support plate projection plane projected in the thickness direction of the intermediate support plate. The circuit board inspection apparatus according to any one of claims 17 to 17, wherein the circuit board inspection apparatus is arranged in a circuit board.
[12] 全ての前記中間保持板において、該中間保持板に対して一面側力 当接する保 持板支持ピンの該中間保持板に対する当接支持位置と、該中間保持板に対して他 面側力も当接する第 1の支持ピン、第 2の支持ピン、または保持板支持ピンの該中間 保持板に対する当接支持位置とが、該中間保持板の厚さ方向に投影した中間保持 板投影面にぉ 、て異なる位置に配置されて 、ることを特徴とする請求項 11に記載の 回路基板の検査装置。 [12] In all of the intermediate holding plates, a holding support position of the holding plate support pin, which is in contact with the intermediate holding plate on one surface side, and the other surface side with respect to the intermediate holding plate. The contact support position of the first support pin, the second support pin, or the support plate support pin with which the force comes into contact with the intermediate support plate is defined on the intermediate support plate projection surface projected in the thickness direction of the intermediate support plate. The circuit board inspection apparatus according to claim 11, wherein the inspection apparatus is arranged at different positions.
[13] 請求項 1一 12に記載の回路基板の検査装置を用いた回路基板の検査方法であつ て、  [13] A method for inspecting a circuit board using the circuit board inspection apparatus according to claim 11,
一対の第 1の検査治具と第 2の検査治具によって、両検査治具の間で検査対象で ある被検査回路基板の両面を挟圧して電気検査を行うことを特徴とする回路基板の 検査方法。  A circuit board is characterized in that a pair of first and second inspection jigs presses both sides of a circuit board to be inspected between the two inspection jigs to perform an electrical inspection. Inspection methods.
PCT/JP2005/003448 2004-03-02 2005-03-02 Circuit substrate inspection device and circuit substrate inspection method WO2005083453A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2005800068200A CN1926437B (en) 2004-03-02 2005-03-02 Circuit board inspecting device and circuit board inspection method

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2004-058282 2004-03-02
JP2004058282 2004-03-02
JP2004110144A JP3705366B1 (en) 2004-04-02 2004-04-02 Circuit board inspection equipment
JP2004-110144 2004-04-02
JP2004-131386 2004-04-27
JP2004131386 2004-04-27
JP2004-138955 2004-05-07
JP2004138955A JP2005321280A (en) 2004-05-07 2004-05-07 Circuit board inspection device and circuit board inspection method
JP2004-185441 2004-06-23
JP2004185441 2004-06-23
JP2004-194035 2004-06-30
JP2004194035 2004-06-30

Publications (1)

Publication Number Publication Date
WO2005083453A1 true WO2005083453A1 (en) 2005-09-09

Family

ID=34916629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003448 WO2005083453A1 (en) 2004-03-02 2005-03-02 Circuit substrate inspection device and circuit substrate inspection method

Country Status (4)

Country Link
KR (1) KR20070007124A (en)
CN (1) CN1926437B (en)
TW (1) TW200530602A (en)
WO (1) WO2005083453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174417A (en) * 2011-02-18 2012-09-10 Jsr Corp Anisotropic conductive sheet, method for connecting electronic member, and electronic part

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101344569B (en) * 2008-08-06 2010-12-22 广东生益科技股份有限公司 Test device and method for interlaminar voltage resistance performance of copper clad plate
CN102928724A (en) * 2011-08-08 2013-02-13 深圳麦逊电子有限公司 Multi-test fixture grid test system and test method for printed circuit boards (PCB)
KR101397373B1 (en) * 2013-03-27 2014-05-20 삼성전기주식회사 Jig for electrical inspection
CN104676368B (en) * 2013-12-02 2017-04-12 苏州璨宇光学有限公司 Backlight module and testing method
CN103698644B (en) * 2013-12-18 2016-06-01 马震远 Based on PCB method for detecting short circuit and the detection device of hall sensing device array
JP6611251B2 (en) * 2016-03-22 2019-11-27 ヤマハファインテック株式会社 Inspection jig, inspection device, and inspection method
CN108020770A (en) * 2017-10-31 2018-05-11 东莞华贝电子科技有限公司 The test system and method for circuit board assemblies
KR102004501B1 (en) * 2017-12-28 2019-07-26 (주)새한마이크로텍 Anisotropic conductive sheet
JP7010143B2 (en) * 2018-05-24 2022-02-10 三菱電機株式会社 Insulation substrate inspection method, inspection equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344521A (en) * 1998-06-01 1999-12-14 Jsr Corp Stacked connector device, and inspection device of circuit substrate
JP2000074965A (en) * 1998-09-01 2000-03-14 Jsr Corp Electric resistance measuring device
JP2003077560A (en) * 2001-08-31 2003-03-14 Jsr Corp Anisotropic conductive sheet and manufacturing method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501278B1 (en) * 2001-06-29 2002-12-31 Intel Corporation Test structure apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344521A (en) * 1998-06-01 1999-12-14 Jsr Corp Stacked connector device, and inspection device of circuit substrate
JP2000074965A (en) * 1998-09-01 2000-03-14 Jsr Corp Electric resistance measuring device
JP2003077560A (en) * 2001-08-31 2003-03-14 Jsr Corp Anisotropic conductive sheet and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174417A (en) * 2011-02-18 2012-09-10 Jsr Corp Anisotropic conductive sheet, method for connecting electronic member, and electronic part

Also Published As

Publication number Publication date
KR20070007124A (en) 2007-01-12
TW200530602A (en) 2005-09-16
CN1926437B (en) 2010-05-05
CN1926437A (en) 2007-03-07

Similar Documents

Publication Publication Date Title
JP3775509B2 (en) Circuit board inspection apparatus and circuit board inspection method
WO2005083453A1 (en) Circuit substrate inspection device and circuit substrate inspection method
US7309244B2 (en) Anisotropic conductive connector device and production method therefor and circuit device inspection device
US7922497B2 (en) Anisotropic conductive connector and inspection equipment of circuit device
US7821283B2 (en) Circuit board apparatus for wafer inspection, probe card, and wafer inspection apparatus
WO2005080996A1 (en) Adapter for circuit board examination and device for circuit board examination
WO2006087877A1 (en) Composite conductive sheet, method for producing the same, anisotropic conductive connector, adapter, and circuit device electric inspection device
JP2004342597A (en) Anisotropic conductive sheet and its manufacturing method, adapter device and its manufacturing method as well as electrical testing device of circuit device
JP4631620B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP4725318B2 (en) COMPOSITE CONDUCTIVE SHEET AND METHOD FOR MANUFACTURING THE SAME, ANISOTROPIC CONDUCTIVE CONNECTOR, ADAPTER DEVICE, AND ELECTRIC INSPECTION DEVICE FOR CIRCUIT DEVICE
JP2005283571A (en) Circuit board inspecting device and circuit board inspection method
JP3722228B1 (en) Circuit board inspection apparatus and circuit board inspection method
JP4631621B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP4396429B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP2006053139A (en) Device and method for inspection of circuit board
WO2006001303A1 (en) Inspection device for circuit board and inspection method for circuit board
WO2007026877A1 (en) Circuit board inspecting apparatus and circuit board inspecting method
JP3705366B1 (en) Circuit board inspection equipment
JP2007064934A (en) Relay substrate, its manufacturing method, inspection apparatus using relay substrate, and method for inspecting circuit board using the same
JP3707559B1 (en) Circuit board inspection apparatus and circuit board inspection method
WO2006009104A1 (en) Inspection equipment of circuit board and inspection method of circuit board
JP3722227B1 (en) Circuit board inspection apparatus and circuit board inspection method
JP2006053138A (en) Device and method for inspection of circuit board
JP2004241377A (en) Anisotropic conductive connector, manufacturing method of anisotropic conductive connector, and inspection device for circuit device
JP2007064935A (en) Relay substrate, its manufacturing method, inspection apparatus using relay substrate, and method for inspecting circuit board using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580006820.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067020445

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067020445

Country of ref document: KR

122 Ep: pct application non-entry in european phase