WO2006009104A1 - Inspection equipment of circuit board and inspection method of circuit board - Google Patents

Inspection equipment of circuit board and inspection method of circuit board Download PDF

Info

Publication number
WO2006009104A1
WO2006009104A1 PCT/JP2005/013139 JP2005013139W WO2006009104A1 WO 2006009104 A1 WO2006009104 A1 WO 2006009104A1 JP 2005013139 W JP2005013139 W JP 2005013139W WO 2006009104 A1 WO2006009104 A1 WO 2006009104A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
conductive
holding plate
path forming
intermediate holding
Prior art date
Application number
PCT/JP2005/013139
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Kimura
Sugiro Shimoda
Satoshi Suzuki
Fujio Hara
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2006009104A1 publication Critical patent/WO2006009104A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • G01R1/07328Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support for testing printed circuit boards
    • G01R1/07335Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support for testing printed circuit boards for double-sided contacting or for testing boards with surface-mounted devices (SMD's)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips

Definitions

  • the present invention relates to a circuit board (hereinafter referred to as “circuit board to be inspected”) to be inspected for electrical inspection from both sides with a pair of first inspection jig and second inspection jig.
  • a circuit board inspection apparatus and circuit board inspection device that inspects the electrical characteristics of the circuit board to be inspected by clamping the electrodes so that the electrodes formed on both surfaces of the circuit board to be inspected are electrically connected to the tester. Regarding the method.
  • a printed circuit board for mounting an integrated circuit or the like Prior to mounting an integrated circuit or the like, a printed circuit board for mounting an integrated circuit or the like is inspected for electrical characteristics to confirm that the wiring pattern of the circuit board has a predetermined performance.
  • an inspection head is incorporated into an inspection tester having a circuit board transport mechanism, and different circuit boards are inspected by exchanging the inspection head portion.
  • Patent Document 1 an inspection jig having a structure in which a metal inspection pin that is in electrical contact with an inspection target electrode of a circuit board to be inspected is implanted on the substrate is provided. A method of use has been proposed.
  • Patent Document 2 a method of using an inspection jig in which an inspection head having a conductive pin, a circuit board for pitch conversion called an off-axis adapter, and an anisotropic conductive sheet are combined. Is known.
  • circuit boards have been miniaturized and densified, and when inspecting such a printed circuit board, in order to bring a large number of conductive pins into conductive contact with the inspected electrodes of the inspected circuit board at the same time. Needs to pressurize the inspection jig with high pressure, The electrode to be inspected is easily damaged.
  • FIG. 62 is a cross-sectional view of an inspection apparatus using such a universal type inspection jig.
  • This inspection apparatus includes a pair of first inspection jig 11 la and second inspection jig 11 lb.
  • These inspection jigs include circuit board side connectors 121a and 121b and relay pin units 131a and 131b.
  • tester side connectors 141a and 141b are included in the circuit board side connectors 121a and 121b.
  • the circuit board side connectors 121a and 121b include pitch conversion boards 123a and 123b, and anisotropic conductive sheets 122a, 122b, 126a, and 126b arranged on both sides thereof.
  • the relay pin units 131a and 131b have a large number of conductive pins 132a and 132b (for example, 5000 pins) arranged on a lattice point at a constant pitch (for example, 2.54 mm pitch), and the conductive pins 132a and 132b can be moved up and down. It has a pair of insulating plates 134a, 134b to support.
  • the tester side connectors 141a and 141b are connector boards 143a and 143a that electrically connect the tester and the conductive pins 132a and 132b when the circuit board 101 to be inspected is clamped by the inspection jigs 11 la and 111b.
  • 143b anisotropic conductive sheets 142a and 142b placed on the conductive pins 132a and 132bftlJ of the connector boards 143a and 143b, and base plates 146a and 146b.
  • the circuit board side connectors 121a and 121b are replaced with ones corresponding to the circuit board 101 under inspection.
  • the relay pin unit 13 la, 13 lb and the tester side connectors 141a, 141b can be used in common.
  • the printed circuit board 101 which is the circuit board 101 to be inspected has been multi-layered and densified.
  • the height variation due to the electrodes 102 and 103 to be inspected such as solder ball electrodes such as BGA, in the thickness direction. Or the substrate itself is warped. Therefore, in order to achieve electrical connection to the electrodes 102 and 103 to be inspected on the circuit board 101 to be inspected, the first inspection jig 11 la and the second inspection jig 11 lb are used. It is necessary to deform the circuit board 101 to be inspected flatly by applying high pressure.
  • the first inspection jig 11 la and the second inspection jig 11 lb need to follow the height of the electrodes 102 and 103 to be inspected. It becomes.
  • the press pressure when the circuit board 101 to be inspected is clamped by the first inspection jig 11la and the second inspection jig 111b is the same. It is absorbed by the upper and lower anisotropic conductive sheets 122a, 122b, 126a, 126b, 142a, 142b.
  • the insulating plates 134a and 134b having 10,000 or more through holes are formed with a 0.75 mm pitch, the insulating plates 134a and 134b If the thickness of the substrate is thin, the strength is low, and it may crack when bent. Therefore, it was necessary to increase the thickness of the insulating plates 134a and 134b.
  • the through-hole to be formed becomes fine, for example, about 0.5 mm, and the insulating plates 134a and 134b have a thickness of 5 mm or more
  • the through-hole is formed by a single drilling process. When doing so, the drill blades are often broken or broken due to the strength of the drill blades, and the insulation plate processing often fails.
  • the insulation plate is processed by drilling the half-thickness of the insulation plate to about half the thickness, and further forming a through hole by drilling the same part from the other side.
  • a drilling operation twice as many as the number of through-holes formed in the insulating plate is required, and the processing process becomes complicated.
  • a plurality of conductive path forming portions extending in the thickness direction, and these conductive paths are provided. It consists of an insulating part that insulates the forming part from each other, and the conductive particles are contained only in the conductive path forming part and dispersed unevenly in the plane direction, and the conductive path forming part protrudes on one side of the sheet.
  • a conductive sheet was used.
  • This anisotropic conductive sheet deteriorates the conductive path formation part (increase in resistance value) by repeated use in inspection, and when changing the anisotropic conductive sheet, the pitch of the anisotropic conductive sheet is changed every time it is replaced. It is necessary to align with the circuit board, and align the circuit board connector with the relay pin unit. As a result, this alignment work is complicated and causes a reduction in inspection efficiency.
  • the inspection is continuously performed on the plurality of circuit boards to be inspected using the anisotropic conductive sheet as described above.
  • the anisotropic conductive sheet is likely to be displaced due to repeated contact with the circuit board to be inspected.
  • the conductive path forming part of the anisotropic conductive sheet and the electrode position of the circuit board to be inspected do not match, and an excellent electrical connection cannot be obtained, so an excessive resistance value is measured.
  • the printed circuit board should be mistaken for a defective product.
  • connection electrode arranged according to a pattern corresponding to a test target electrode of a circuit board to be inspected is provided on the front surface, and a lattice point position is provided on the rear surface.
  • an adapter device comprising a pitch conversion substrate having terminal electrodes arranged thereon and an anisotropic conductive elastomer sheet integrally provided on the surface of the pitch conversion substrate (patent).
  • the separation distance S1 between the electrodes 102 (103) to be inspected is 50 m or less. End up.
  • the separation distance between the connection electrodes 125 of the pitch conversion substrate 123 is also set to 50 m or less, which is the same as the separation distance S1 between the electrodes to be inspected 102 (103).
  • the width of the insulating portions that insulate the conductive path forming portions of the anisotropic conductive sheet 122 from each other is also the same as the separation distance S1 between the electrodes 102 (103) to be inspected. Must be less than m.
  • an unevenly distributed anisotropic conductive elastomer sheet for inspecting a circuit board in which the electrodes to be inspected are arranged at a narrow pitch such that the distance between the electrodes to be inspected is 100 m or less is obtained.
  • insulation that insulates between adjacent conductive path forming portions from each other Force that needs to be formed so that the width of the part is 50 m or less In the conventional method of producing a sheet by mold forming, an insulating part of 50 m or less is formed due to the magnetic field action with the adjacent mold magnetic pole. It becomes difficult.
  • the lower limit for inspecting the distance between the electrodes of the circuit board is approximately 60 to 80 / ⁇ ⁇ , depending on the thickness of the sheet. In the meantime.
  • an unevenly anisotropic anisotropic conductive elastomer sheet for inspecting a circuit board in which the electrodes to be inspected are separated by 50 m or less and the electrodes to be inspected are arranged at a small pitch is formed by a mold method. Since it is extremely difficult to do so, it is virtually impossible to obtain.
  • each of the conductive path forming portions is formed in an independent state, the required insulation can be reliably obtained between adjacent conductive path forming portions.
  • the pitch conversion substrate may be damaged by laser processing.
  • the thin dispersion-type anisotropic conductive elastomer sheet whose thickness is about 30 m is one of the characteristics of the anisotropic conductive elastomer sheet, which is the elasticity of the sheet body. Since the ability to absorb mechanical shock due to electrical contact and the ability to achieve electrical connection by soft contact between electrodes are almost lost, a circuit board to be inspected that has electrodes to be inspected with numerous height variations can be used as an inspection device. In the case of connection, it becomes difficult to connect a large number of electrodes to be inspected at the same time due to the lowering of the step-level collection ability of the anisotropic conductive elastomer sheet.
  • the variation in height of each electrode is about 20 m.
  • the compression rate at which stable electrical conduction can be achieved when compressed in the thickness direction is about 20% or less. For example, if compression exceeds 20%, the electrical conduction in the lateral direction increases, and if the anisotropy of conduction is impaired, permanent deformation of the elastomer that becomes the base material by force occurs, making repeated use difficult. It becomes. For this reason, when inspecting a circuit board having an electrode including a height variation of about 20 m, it is necessary to use a distributed anisotropic conductive elastomer sheet having a thickness of 100 m or more.
  • the dispersion-type anisotropic conductive elastomer sheet with a small thickness is used when a circuit board is repeatedly inspected by using it as an adapter for circuit board inspection, which has a low ability to absorb mechanical shocks due to the low elasticity of the sheet body.
  • the anisotropic conductive elastomer sheet deteriorates quickly, so that the distributed anisotropic conductive elastomer sheet must be frequently replaced. This makes the replacement work complicated and reduces the inspection efficiency of the circuit board.
  • the separation distance between the connection electrodes 125 of the pitch conversion substrate 123 is as follows. It should be 50 / zm which is the same as the separation distance S1 between 03).
  • the pitch of one of the inspected electrodes 102 (103) on the circuit board to be inspected is Two electrodes (current supply electrode 127 and voltage measurement electrode 128) of conversion substrate 123 are connected.
  • the separation distance S2 between the current supply electrode 127 and the voltage measurement electrode 128 on the pitch conversion substrate 123 is further reduced.
  • the pitch P1 between the electrodes to be inspected 102 (103) of the pitch conversion substrate 123 is 200 m
  • the diameter R force S of the electrode 102 (103) to be inspected is about 100 m. Since both the current supply electrode 127 and the voltage measurement electrode 128 on the pitch conversion substrate 123 are connected to the inspection electrode 102 (103), the current supply electrode 127 and the voltage measurement electrode 128 are connected to each other.
  • the separation distance S2 can be provided only about 30 to 40 m.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 6-94768
  • Patent Document 2 Japanese Patent Laid-Open No. 5-159821
  • Patent Document 3 Japanese Patent Laid-Open No. 7-248350
  • Patent Document 4 JP-A-8-271569
  • Patent Document 5 JP-A-8-338858
  • Patent Document 7 JP-A-6-82531
  • Patent Document 8 JP 10-229270 A
  • the present invention provides a circuit board inspection apparatus capable of performing a highly reliable electrical inspection of a circuit board even if the circuit board to be inspected has minute electrodes with a fine pitch. And it aims at providing the inspection method of a circuit board.
  • the present invention provides a circuit board having a good followability to the height variation of the inspected electrode of the inspected circuit board to be inspected, causing no poor conduction, and capable of performing an accurate inspection. It is an object of the present invention to provide an inspection apparatus and a circuit board inspection method.
  • the present invention does not require the conductive pins to be arranged at regular intervals, so that the cost of drilling through holes in the insulating plate holding the conductive pins by drilling is reduced. It is an object of the present invention to provide a circuit board inspection apparatus and a circuit board inspection method that can be used.
  • the present invention is capable of inspecting with high resolution, absorbs a step due to the inspected electrode of the inspected circuit board, and has a circuit board inspection apparatus excellent in repeated use durability.
  • An object of the present invention is to provide a circuit board inspection method.
  • the circuit board inspection apparatus of the present invention includes a pair of first inspection jig and second inspection jig, and both surfaces of the circuit board to be inspected between the inspection jigs.
  • a circuit board inspection device that performs electrical inspection by sandwiching
  • the first inspection jig and the second inspection jig are respectively
  • a pitch converting substrate for converting an electrode pitch between one surface side and the other surface side of the substrate; a first anisotropic conductive sheet disposed on the circuit board to be inspected side of the pitch converting substrate;
  • a second anisotropic conductive sheet disposed on the opposite side to the circuit board to be inspected of the pitch conversion board;
  • a plurality of conductive pins arranged at a predetermined pitch
  • a connector board for electrically connecting the tester and the relay pin unit
  • a third anisotropic conductive sheet arranged on the relay pin unit side of the connector board; and a base plate arranged on the opposite side of the connector board on the relay pin unit;
  • the relay pin unit is
  • An intermediate holding plate disposed between the first insulating plate and the second insulating plate;
  • a first support pin disposed between the first insulating plate and the intermediate holding plate
  • a second support pin disposed between the second insulating plate and the intermediate holding plate
  • the first abutting support position of the first support pin with respect to the intermediate holding plate and the second abutting support position of the second support pin with respect to the intermediate holding plate are in the thickness direction of the intermediate holding plate. It is placed at different positions on the projected intermediate holding plate projection surface,
  • the first anisotropic conductive sheet includes a plurality of conductive path forming portions extending in the thickness direction and insulating portions that insulate the conductive path forming portions from each other, and the conductive particles are only in the conductive path forming portions. Contained, whereby the conductive particles are non-uniformly dispersed in the surface direction, and the conductive path forming portion protrudes on one side of the sheet,
  • the first anisotropic conductive sheet constitutes a pitch conversion adapter integrated with the pitch conversion substrate and the first anisotropic conductive sheet and the pitch conversion substrate.
  • the relay pin unit when electrical inspection is performed by clamping both surfaces of the circuit board to be inspected between the first inspection jig and the second inspection jig, In the initial stage, the relay pin unit is moved in the thickness direction by the conductive pins, the first anisotropic conductive sheet, the second anisotropic conductive sheet, and the third anisotropic conductive sheet rubber. Pressure by elastic compression By absorbing the force, it is possible to absorb some variation in the height of the electrodes to be inspected on the circuit board to be inspected.
  • the first contact support position of the first support pin with respect to the intermediate support plate and the second contact support position of the second support pin with respect to the intermediate support plate are the thickness of the intermediate support plate. Since the intermediate holding plate projection surface projected in the vertical direction is arranged at different positions, the circuit board to be inspected is further pressurized between the first inspection jig and the second inspection jig.
  • the first insulating plate of the relay pin unit Due to the panel elasticity of the second insulating plate and the intermediate holding plate disposed between the first insulating plate and the second insulating plate, the height variation of the electrodes to be inspected of the circuit board to be inspected, for example, solder ball electrodes
  • the pressure concentration can be dispersed to avoid local stress concentration for the height variation. That.
  • the first anisotropic conductive sheet is composed of a conductive path forming part and an insulating part, and the conductive particles are contained only in the conductive path forming part and are non-uniformly dispersed in the plane direction. Since an unevenly distributed anisotropic conductive sheet with a conductive path forming part projecting on one side is used, the applied pressure and impact due to the pressing of the inspection jig are absorbed by this sheet, and the circuit board electrodes, etc. The breakage will not be damaged.
  • the first anisotropic conductive sheet and the pitch conversion substrate side are integrated to form an integrated adapter for pitch conversion, these are different when performing repeated continuous inspections. This eliminates the need to correct the misalignment of the conductive sheet and improves the workability of the inspection.In addition, a good electrical connection is maintained stably against environmental changes such as thermal history due to temperature changes. High connection reliability can be obtained. [0038] Furthermore, regardless of the arrangement pattern of the electrodes to be inspected of the circuit board to be inspected, the required electrical inspection can be reliably performed on the circuit board to be inspected, and the circuit board to be inspected is inspected.
  • the first anisotropic conductive sheet constituting the pitch conversion adapter is integrated,
  • the releasable support plate is obtained by laser processing a conductive elastomer layer supported on a releasable support plate and dispersed in an elastic polymer material in a state where conductive particles exhibiting magnetism are oriented in the thickness direction. Forming a conductive path forming portion arranged in accordance with a predetermined pattern on the top;
  • An insulating material layer formed of a material that is cured to become an elastic polymer substance is formed between these conductive path forming portions, and then an insulating portion is formed by curing with It is characterized by that.
  • the conductive path forming portion is formed by laser processing of the conductive elastomer layer, the conductive path forming portion has the desired good conductivity.
  • a plurality of conductive path forming portions arranged according to a predetermined pattern are formed, and an insulating material layer made of a material that is cured to become an elastic polymer material is formed between the conductive path forming portions. Since the insulating part is formed by the curing process, there are no conductive particles in the insulating part.
  • the required electrical connection can be reliably achieved for each of the electrodes. Further, even when the electrodes to be connected are arranged with a small pitch and a high density, the required electrical connection is reliably achieved for each of the electrodes.
  • the first anisotropic conductive sheet can be manufactured at low cost.
  • the adapter for pitch conversion is integrated
  • the releasable support plate on which the conductive path forming portion is formed is a pin having an uncured insulating portion material layer made of a material that is cured to become an elastic polymer substance on the surface on the connection electrode side.
  • each connection electrode on the pitch conversion substrate is brought into contact with the corresponding conductive path forming portion
  • the insulating part material layer is cured to form an insulating part, and then the mold release support plate is removed to obtain the insulating part.
  • the conductive path forming portion is formed by laser processing one conductive elastomer layer, the conductive path forming portion may have the desired good conductivity.
  • a plurality of conductive path forming portions arranged according to a predetermined pattern are formed, and an insulating material layer made of a material that is cured to become an elastic polymer material is formed between the conductive path forming portions. Since the insulating part is formed by the curing process, there are no conductive particles in the insulating part.
  • the surface of the pitch conversion substrate is not damaged in forming the anisotropic conductive sheet.
  • the required electrical connection can be reliably achieved for each of the electrodes to be inspected regardless of the arrangement pattern of the electrodes to be inspected of the circuit board to be inspected.
  • the electrodes to be inspected are arranged with a small pitch and a high density, it is possible to reliably achieve the required electrical connection to each of the electrodes to be inspected.
  • manufacturing costs can be reduced.
  • high durability is obtained.
  • the first anisotropic conductive sheet having a small separation distance between the conductive path forming portions that is not affected by the magnetic field action with the mold magnetic pole to be processed, for example, the width of the insulating portion between the conductive path forming portions is 50 m or less is provided.
  • An integrated adapter for pitch conversion in a state integrated with the substrate for pitch conversion is obtained. Therefore, it is possible to inspect a circuit board to be inspected in which the electrodes to be inspected are 50 m or less and the electrodes to be inspected are arranged at a small pitch.
  • the conductive elastomer layer comprises:
  • a conductive elastomer material layer containing conductive particles exhibiting magnetism in a liquid elastomer material that is cured to become an elastic polymer substance is formed on a releasable support plate, and the conductive elastomer A metal mask made of a metal exhibiting magnetism is formed on the surface of the material layer according to the pattern of the conductive path forming portion to be formed,
  • the conductive particles are oriented in the thickness direction, and then the magnetic field is applied or the magnetic field is stopped. It is obtained by curing the material layer for conductive elastomer.
  • the conductive particles dispersed by applying a magnetic field in the thickness direction to the conductive elastomer material layer using a metal mask made of a metal exhibiting magnetism are obtained as follows.
  • the film is oriented in the thickness direction while concentrated on the mask portion.
  • a metal mask in the conductive elastomer material layer is formed, and the density of the conductive particles in that portion is reduced. This facilitates the formation of the conductive path forming portion by laser processing. Furthermore, since a thicker conductive elastomer layer can be easily processed by laser, a thick conductive path forming portion can be obtained with certainty.
  • the inspection apparatus according to the present invention using the first anisotropic conductive sheet obtained by such a manufacturing method is suitable for the electrodes regardless of the arrangement pattern of the electrodes to be inspected on the circuit board to be inspected.
  • the required electrical connection can be reliably achieved for each. Further, even when the electrodes to be connected are arranged with a small pitch and a high density, the required electrical connection can be reliably achieved for each of the electrodes.
  • the distance between adjacent conductive path forming portions may be 50 m or less. More preferably, it is 10 to 50 ⁇ m.
  • two inspection electrodes (for voltage and current) of the pitch conversion substrate are connected to one inspection electrode of the circuit substrate for inspection, so that the inspection electrode The distance between them is small, but even in such a case, electrical inspection can be performed reliably.
  • the circuit board inspection apparatus of the present invention sandwiches both surfaces of the circuit board to be inspected between the two inspection jigs by a pair of the first inspection jig and the second inspection jig.
  • the first inspection jig and the second inspection jig are respectively
  • a pitch conversion substrate for converting the electrode pitch between one surface side and the other surface side of the substrate, and a plurality of through holes formed on the substrate, arranged on the circuit board side to be inspected of the pitch conversion substrate.
  • the conductive path forming section includes an insulating section formed of a polymer substance and a conductive path forming section formed of an elastic polymer material containing conductive particles and penetrating the insulating section in the thickness direction.
  • a relay board for relaying the electrical connection between the pitch conversion board and the circuit board to be inspected;
  • a second anisotropic conductive sheet disposed on the opposite side of the pitch conversion substrate from the relay substrate;
  • a plurality of conductive pins arranged at a predetermined pitch
  • a connector board that electrically connects the tester and the relay pin unit; a third anisotropic conductive sheet disposed on the relay pin unit side of the connector board; and a side opposite to the relay pin unit of the connector board A base plate disposed on a tester ⁇ j connector with
  • the relay pin unit is
  • An intermediate holding plate disposed between the first insulating plate and the second insulating plate;
  • the first abutting support position of the first support pin with respect to the intermediate holding plate and the second abutting support position of the second support pin with respect to the intermediate holding plate are in the thickness direction of the intermediate holding plate. It is arranged at different positions on the projected intermediate holding plate projection surface.
  • the first abutting support position of the first support pin with respect to the intermediate holding plate and the second abutting support position of the second support pin with respect to the intermediate holding plate are the thickness of the intermediate holding plate. Since the intermediate holding plate projection surface projected in the vertical direction is arranged at different positions, the circuit board to be inspected is further pressurized between the first inspection jig and the second inspection jig.
  • the variation in height of the electrodes to be inspected on the circuit board to be inspected for example, the variation in the height of the solder ball electrodes
  • local stress concentration can be avoided by distributing pressure concentration.
  • the relay substrate is provided in which each of the plurality of through holes formed in the substrate has an elastic portion including the conductive path forming portion and the surrounding insulating portion. The pressing force and impact due to the pressing of the tool are absorbed by this elastic part, and the electrodes on the circuit board to be inspected will not be damaged.
  • the required electrical inspection can be reliably performed on the circuit board to be inspected. Even when the pitch is very small and densely arranged, the required electrical inspection can be reliably performed on the circuit board to be inspected.
  • the relay board includes:
  • An uncured insulating material layer made of a material that is supported on the second releasable support plate and cured to become an elastic polymer substance is formed on both side surfaces of the substrate and inside the through holes.
  • the first releasable support plate on which the conductive path forming portion is formed is superimposed on the substrate so that the conductive path forming portion is located in the through hole of the substrate. It is obtained by removing the first and second releasable support plates after forming the insulating part by curing the material layer
  • the conductive path forming portion is formed by laser processing of the conductive elastomer layer, the conductive path forming portion may have the desired good conductivity. Further, a plurality of conductive path forming portions arranged according to a predetermined pattern are formed, and an insulating material layer made of a material that is cured to become an elastic polymer material is formed between the conductive path forming portions. Since the insulating part is formed by the curing process, there are no conductive particles in the insulating part.
  • the required electrical connection can be reliably achieved for each of the electrodes. Further, even when the electrodes to be connected are arranged with a small pitch and a high density, the required electrical connection is reliably achieved for each of the electrodes.
  • the relay board can be manufactured at a low cost.
  • the anisotropic conductive sheet is not manufactured by conventional mold molding, the separation distance between the conductive path forming portions that is not affected by the magnetic field action between adjacent mold magnetic poles is small. An insulating part with a width of 50 m or less between the path forming parts is obtained.
  • the conductive elastomer layer is
  • a conductive elastomer material layer containing conductive particles exhibiting magnetism in a liquid elastomer material that is cured to become an elastic polymer substance is formed on a releasable support plate, and the conductive elastomer A metal mask made of a metal exhibiting magnetism is formed on the surface of the material layer according to the pattern of the conductive path forming portion to be formed,
  • the conductive particles are oriented in the thickness direction, and then the magnetic field is applied, or It is obtained by curing the material layer for conductive elastomer with the magnetic field stopped.
  • the conductive particles dispersed by applying a magnetic field in the thickness direction to the material layer for the conductive elastomer using a metal mask made of a metal exhibiting magnetism are obtained as follows.
  • the film is oriented in the thickness direction while concentrated on the mask portion.
  • a metal mask in the conductive elastomer material layer is formed, and the density of the conductive particles in that portion is reduced. This facilitates the formation of the conductive path forming portion by laser processing. Further, since laser processing of a thick conductive elastomer layer becomes easy, a thick conductive path forming portion can be obtained with certainty.
  • the inspection apparatus of the present invention using the relay substrate obtained by such a manufacturing method is necessary for each of the electrodes regardless of the arrangement pattern of the electrodes to be inspected on the circuit board to be inspected. An electrical connection can be reliably achieved. Further, even if the electrodes to be connected are arranged with a small pitch and a high density, it is possible to reliably achieve the required electrical connection to each of the electrodes.
  • the separation distance between adjacent conductive path forming portions is preferably 50 m or less, and more preferably 10 to 50. / ⁇ ⁇ .
  • two inspection electrodes (for voltage and current) on the pitch conversion substrate are connected to one inspection electrode on the circuit substrate to be inspected.
  • the distance becomes smaller, even in such a case, it is possible to perform electrical inspections reliably.
  • a first anisotropic conductive sheet in which conductive particles are arranged in the thickness direction and uniformly dispersed in the plane direction may be disposed on one side or both sides of the relay substrate.
  • the circuit board inspection apparatus according to the present invention includes:
  • the intermediate holding plate is sandwiched in the direction of the first insulating plate with the second contact support position of the second support pin with respect to the intermediate holding plate as a center.
  • the intermediate holding plate is held in opposite directions around the first contact support position and the second contact support position, so that the first inspection is performed.
  • the panel elastic force of the intermediate holding plate is further exerted.
  • the pressure concentration can be dispersed to avoid the local stress concentration, and the local breakage of the anisotropic conductive sheet is suppressed.
  • the durability of repeated use of the anisotropic conductive sheet is improved, so that the number of replacements of the anisotropic conductive sheet is reduced and the inspection work efficiency is improved.
  • the first contact support positions of the first support pins with respect to the intermediate holding plate are arranged in a grid pattern on the intermediate holding plate projection surface
  • Second contact support positions of the second support pins with respect to the intermediate holding plate are arranged in a grid pattern on the intermediate holding plate projection surface
  • one second abutment support position is arranged in a unit lattice region that also has four adjacent first abutment support position forces
  • one first abutment support position is disposed in a unit lattice region that also has four adjacent second abutment support position forces.
  • the first contact support position and the second contact support position are arranged in a lattice pattern, and the first contact support position and the second contact support position are arranged.
  • the positions of the grid points are all shifted.
  • the intermediate holding plate is pinched in opposite directions around the first contact support position and the second contact support position, and the first inspection jig and the second inspection jig
  • the panel elastic force of the intermediate holding plate is further exerted when the circuit board to be inspected is pressed between the two, and the height of the electrodes to be inspected on the circuit board to be inspected
  • the pressure concentration can be distributed to further avoid local stress concentrations. Therefore, anisotropic conduction As a result, localized damage of the anisotropic conductive sheet is suppressed, and as a result, the durability of repeated use of the anisotropic conductive sheet is improved, so that the number of times the anisotropic conductive sheet is replaced is reduced and the inspection work efficiency is improved.
  • the relay pin unit includes:
  • a plurality of intermediate holding plates disposed at a predetermined distance between the first insulating plate and the second insulating plate;
  • At least one of the intermediate holding plates is in contact with the intermediate holding plate from one surface side.
  • the contact support position of the first support pin, the second support pin, or the holding plate support pin with respect to the intermediate holding plate is located on the intermediate holding plate projection surface projected in the thickness direction of the intermediate holding plate. Are arranged at different positions.
  • the panel elasticity is further exhibited by the plurality of intermediate holding plates, and the pressure concentration is reduced with respect to the height variation of the electrodes to be inspected on the circuit board to be inspected. Dispersion can further avoid local stress concentration, and local breakage of the anisotropic conductive sheet is suppressed. As a result, the durability of repeated use of the anisotropic conductive sheet is improved, so that the number of replacements of the anisotropic conductive sheet is reduced and the inspection work efficiency is improved.
  • the holding plate supporting pins that are in contact with the intermediate holding plate by one surface side force are in contact with the intermediate holding plate.
  • a contact support position of the first support pin, the second support pin, or the holding plate support pin that contacts the intermediate holding plate with respect to the intermediate holding plate is characterized by being arranged at different positions on the intermediate holding plate projection surface projected in the thickness direction.
  • the panel elasticities of the plurality of intermediate holding plates are elastic. Will be further exerted, resulting in variations in the height of the electrodes to be inspected on the circuit board to be inspected.
  • the pressure concentration can be dispersed to further avoid the local stress concentration, and the local breakage of the anisotropic conductive sheet is suppressed. As a result, the durability of repeated use of the anisotropic conductive sheet is improved, so that the number of replacements of the anisotropic conductive sheet is reduced and the inspection work efficiency is improved.
  • the second anisotropic conductive sheet includes a plurality of conductive path forming portions extending in a thickness direction, and insulation that insulates the conductive path forming portions from each other.
  • the conductive particles are contained only in the conductive path forming portion, whereby the conductive particles are unevenly dispersed in the surface direction, and the conductive path forming portion protrudes on one side of the sheet. It is characterized by that.
  • the third anisotropic conductive sheet includes a plurality of conductive path forming portions extending in a thickness direction, and an insulating portion that insulates the conductive path forming portions from each other.
  • the conductive particles are contained only in the conductive path forming portion, whereby the conductive particles are dispersed unevenly in the surface direction, and the conductive path forming portion protrudes on one side of the sheet.
  • the second anisotropic conductive sheet and the third anisotropic conductive sheet are composed of the conductive path forming part and the insulating part, and the conductive particles are contained only in the conductive path forming part.
  • the plurality of conductive pins include a bar-shaped central portion that is shorter than the interval between the first insulating plate and the second insulating plate, and both end sides of the central portion. Formed with a diameter larger than the central portion and a pair of end portions,
  • Each of the pair of end portions passes through a through-hole having a diameter larger than that of the central portion formed in the first insulating plate and the second insulating plate and larger than that of the pair of end portions.
  • the conductive pin is supported so as to be movable in the axial direction.
  • the conductive pin can be held between the first insulating plate and the second insulating plate so as to be movable in the axial direction and without falling off. .
  • the second insulating plate is interposed between the first insulating plate and the intermediate holding plate.
  • a bent holding plate having a through hole through which the conductive pin is inserted is provided between the insulating plate and the intermediate holding plate, or between the intermediate holding plates.
  • the plurality of conductive pins are laterally pressed in opposite directions from each other around a through hole formed in the first and second insulating plates and a through hole formed in the bent holding plate. It is bent at the position of the through hole of the holding plate, and thereby the conductive pin is supported so as to be movable in the axial direction.
  • the conductive pin can be held between the first insulating plate and the second insulating plate so as to be movable in the axial direction and not to drop off. Furthermore, since a pin having a simple structure having a cylindrical shape can be used as the conductive pin, the cost of the conductive pin and the member holding it can be reduced.
  • the circuit board inspection method of the present invention is a circuit board inspection method using the circuit board inspection apparatus described above,
  • the electrical inspection is performed by sandwiching both surfaces of the circuit board to be inspected between the inspection jigs by the pair of the first inspection jig and the second inspection jig.
  • the circuit board to be inspected has a microelectrode with a fine pitch such that the distance between the electrodes to be inspected is 50 m or less, the circuit board is reliable. It is possible to perform an electrical inspection of a highly functional circuit board.
  • the followability to the height variation of the inspected electrode of the inspected circuit board to be inspected is good, and there is no conduction failure, and an accurate inspection can be performed.
  • inspection can be performed with high resolution, and a step due to the inspected electrode of the circuit board to be inspected can be absorbed well, and durability for repeated use is also high.
  • FIG. 1 is a cross-sectional view showing an embodiment of an inspection apparatus according to the present invention.
  • FIG. 2 is a cross-sectional view showing a stacked state when the inspection apparatus of FIG. 1 is used for inspection.
  • FIG. 3 is a diagram showing a surface of a pitch conversion board on the circuit board side.
  • FIG. 4 is a view showing a pin side surface of a pitch conversion substrate.
  • FIG. 5 is a cross-sectional view of the first anisotropic conductive sheet.
  • FIG. 6 is a cross-sectional view showing an integrated adapter for pitch conversion.
  • FIG. 7 is a cross-sectional view showing a state in which a conductive elastomer material layer is formed on a releasable support plate.
  • FIG. 8 is an enlarged cross-sectional view of a conductive elastomer material layer.
  • FIG. 9 is a cross-sectional view showing a state after a magnetic field is applied to the conductive elastomer material layer in the thickness direction.
  • FIG. 10 is a cross-sectional view showing a state where a conductive elastomer layer is formed on a releasable support plate.
  • FIG. 11 is a cross-sectional view showing a state in which a thin metal layer is formed on one conductive elastomer layer.
  • FIG. 12 is a cross-sectional view showing a state in which a resist layer having an opening is formed on a thin metal layer.
  • FIG. 13 is a cross-sectional view showing a state in which a metal mask is formed in the opening of the resist layer.
  • FIG. 14 is a cross-sectional view showing a state in which a plurality of conductive path forming portions are formed according to a specific pattern on a releasable support plate.
  • FIG. 15 is a cross-sectional view showing a process of forming a conductive path forming portion by laser processing.
  • FIG. 16 is a top view showing a process of forming a conductive path forming portion by laser processing.
  • FIG. 17 is a cross-sectional view showing a laminate in which a resist layer in which openings are formed in a thin metal layer is laminated.
  • FIG. 18 is a cross-sectional view of a composite film in which a metal mask is formed in the opening of the resist layer in FIG.
  • FIG. 19 is a cross-sectional view showing a state in which a conductive elastomer material layer is formed on a releasable support plate.
  • FIG. 20 is a cross-sectional view showing a state in which a composite film is superimposed on a conductive elastomer material layer.
  • FIG. 21 is a cross-sectional view showing a state after a magnetic field is applied in the thickness direction to the laminate shown in FIG.
  • FIG. 22 is a cross-sectional view showing a state where a conductive elastomer layer is formed on a releasable support plate.
  • FIG. 23 is a cross-sectional view showing a state after the thin metal layer in FIG. 22 is removed.
  • FIG. 24 is a cross-sectional view showing a state in which a plurality of conductive path forming portions are formed according to a specific pattern on the releasable support plate.
  • FIG. 25 is a cross-sectional view of a pitch conversion substrate.
  • FIG. 26 is a cross-sectional view showing a state in which an insulating material layer is formed on the surface of the pitch conversion substrate.
  • FIG. 27 is a cross-sectional view showing a state in which a releasable support plate on which a conductive path forming portion is formed is superimposed on a pitch conversion substrate on which an insulating material layer is formed. is there.
  • FIG. 28 is a cross-sectional view showing a state in which an insulating portion is formed between adjacent conductive path forming portions.
  • FIG. 29 is a cross-sectional view showing an integrated adapter for pitch conversion.
  • FIG. 30 is a cross-sectional view showing another example of an integrated pitch conversion adapter.
  • FIG. 31 is an enlarged sectional view of the pitch conversion adapter integrated in FIG.
  • FIG. 32 is a cross-sectional view showing a pitch conversion board constituting the pitch conversion adapter integrated body of FIG. 30.
  • FIG. 33 is a cross-sectional view of a second anisotropic conductive sheet.
  • FIG. 34 is a cross-sectional view of the relay pin unit.
  • FIG. 35 shows a part of the conductive pin, intermediate holding plate and insulating plate of the relay pin unit.
  • FIG. 36 is a cross-sectional view similar to FIG. 35, showing another example of the relay pin unit.
  • FIG. 37 is a cross-sectional view showing a process until a conductive pin is arranged between the first insulating plate and the second insulating plate in the configuration of FIG. 36.
  • FIG. 38 is a cross-sectional view of a relay pin unit in which a bent holding plate is arranged.
  • FIG. 39 is a partially enlarged view of the intermediate holding plate projection surface projected in the thickness direction of the intermediate holding plate of the relay pin unit.
  • FIG. 40 is a partial cross-sectional view showing an embodiment of an inspection apparatus of the present invention.
  • FIG. 41 is a cross-sectional view illustrating the usage state of the inspection apparatus of the present invention.
  • FIG. 42 is a cross-sectional view illustrating a usage state of the relay pin unit in the inspection apparatus of the present invention.
  • FIG. 43 is a cross-sectional view illustrating the usage state of the inspection apparatus of the present invention.
  • FIG. 44 is a partial cross-sectional view similar to FIG. 40, showing another embodiment of the inspection apparatus of the present invention.
  • FIG. 45 is a cross-sectional view of the relay pin unit in the embodiment of FIG. 44.
  • FIG. 46 is a cross-sectional view showing an embodiment of the inspection apparatus of the present invention.
  • FIG. 47 is a cross-sectional view showing a stacked state when the inspection apparatus of FIG. 46 is used for inspection.
  • FIG. 48 is a cross-sectional view showing a state in which a pitch conversion board, a relay board, and a circuit board to be inspected are stacked.
  • FIG. 49 (a) is a partial sectional view of a relay board
  • FIG. 49 (b) is an enlarged view thereof
  • FIG. 49 (c) is a partial top view of the relay board.
  • FIG. 50 is a cross-sectional view illustrating a manufacturing step of the relay board.
  • FIG. 51 is a cross-sectional view illustrating a manufacturing step for a relay board.
  • FIG. 52 is a partial cross-sectional view showing a state in which a pitch conversion substrate, a relay substrate, and a circuit board to be inspected are stacked via a first anisotropic conductive sheet.
  • FIG. 53 is a partial cross-sectional view of the first anisotropic conductive sheet.
  • FIG. 54 is a partial cross-sectional view showing an embodiment of the inspection apparatus of the present invention.
  • FIG. 55 is a cross-sectional view illustrating the usage state of the inspection apparatus of the present invention.
  • FIG. 56 is a cross-sectional view for explaining the usage state of the relay pin unit in the inspection apparatus of the present invention.
  • FIG. 57 is a cross-sectional view illustrating the usage state of the inspection apparatus of the present invention.
  • FIG. 58 is a partial cross-sectional view similar to FIG. 54, showing another embodiment of the inspection apparatus of the present invention.
  • FIG. 59 is a cross-sectional view of the relay pin unit in the embodiment of FIG. 58.
  • FIG. 60 is a diagram showing an evaluation test method for insulation resistance between paired connection electrodes in the pitch conversion adapter.
  • FIG. 61 is a diagram showing an insulation resistance evaluation test method in a comparative example.
  • FIG. 62 is a cross-sectional view of a conventional circuit board inspection apparatus.
  • FIG. 63 is a diagram showing the relationship between the pitch of the electrodes to be inspected on the circuit board to be inspected and the electrode separation distance.
  • FIG. 64 is a diagram showing the relationship between the pitch of the electrodes to be inspected on the circuit board to be inspected, the electrode separation distance, and the connection electrodes on the pitch conversion board.
  • FIG. 65 is a diagram showing the relationship between the pitch of the electrodes to be inspected of the circuit board to be inspected, the electrode separation distance, and the connection electrodes of the substrate for pitch conversion in the case of four-terminal inspection. Explanation of symbols
  • a Material layer for conductive elastomer B Conductive elastomer layer Insulation part
  • first inspection jig and the second inspection jig for example, the circuit board connector 21a and the circuit board connector 21b, the first anisotropic conductivity
  • the symbols “a” and “b” may be omitted (for example, the first anisotropic conductive sheet 22a and the first anisotropic conductive sheet 22a).
  • the first anisotropic conductive sheet 22b may be collectively referred to as “first anisotropic conductive sheet 22”).
  • FIG. 1 is a cross-sectional view showing an embodiment of the inspection apparatus of the present invention
  • FIG. 2 is a cross-sectional view showing a stacked state when the inspection apparatus of FIG. 1 is used for inspection.
  • This inspection apparatus measures the electrical resistance of a circuit board to be inspected by measuring the electrical resistance between electrodes to be inspected on a circuit board 1 to be inspected 1 such as a printed circuit board for mounting an integrated circuit. The inspection is to be performed.
  • the first inspection jig 11a disposed on the upper surface side of the circuit board 1 to be inspected and the lower surface side are disposed.
  • the second inspection jig l ib and force are arranged so as to face each other vertically.
  • the first inspection jig 11a includes a circuit board side connector 21a including anisotropic conductive sheets 22a and 26a on both sides thereof, and a relay pin unit 31a.
  • the first inspection jig 11a includes a tester side connector 41a including a connector base plate 43a in which the third anisotropic conductive sheet 42a is disposed on the relay pin unit 3la side and a base plate 46a. Prepare and speak.
  • the second inspection jig l ib is also configured in the same manner as the first inspection jig 11a, and includes a circuit board side connector 21b having anisotropic conductive sheets 22b and 26b on both sides thereof, and a relay pin. Unit 31b is provided. Further, the second inspection jig l ib includes a tester side connector 41b including a connector board 43b on which an anisotropic conductive sheet 42b is arranged on the relay pin unit 3 lb side and a base plate 46b. Yes.
  • an electrode 2 to be inspected is formed, and the lower surface thereof is also inspected.
  • the electrode 3 is formed so as to be electrically connected to each other.
  • the circuit board side connectors 21a and 21b have pitch conversion boards 23a and 23b, and first anisotropic conductive sheets 22a and 22b and second anisotropic conductive sheets 26a and 26b arranged on both sides thereof. ing.
  • FIG. 3 is a diagram showing the surface of the pitch conversion board on the circuit board side to be inspected
  • FIG. 4 is a diagram showing the surface on the relay pin unit side
  • FIG. 5 is a cross-sectional view showing a pitch conversion adapter integrated with a first anisotropic conductive sheet.
  • connection electrodes 25 are arranged so as to correspond to the patterns of the electrodes 2 and 3 to be inspected on the circuit board 1 to be inspected.
  • the conductive pins 32a and 32b of the relay pin unit 31 are electrically connected.
  • a plurality of terminal electrodes 24 to be connected are formed. These terminal electrodes 24 are, for example, 2.5 4 mm, 1.8 mm, 1.27 mm, 1.06 mm, 0.8 mm, 0.75 mm, 0.5 mm, 0.4 mm, 0.3 mm or 0.2 mm.
  • the pitch is the same as the pitch of the conductive pins 32a and 32b of the relay pin unit.
  • connection electrode 25 in FIG. 3 is electrically connected to the corresponding terminal electrode 24 in FIG. 4 by an internal wiring 53 (see FIG. 6) that penetrates the wiring 52 and the insulating substrate 51 in the thickness direction. Has been.
  • the insulating portion on the surface of the pitch conversion substrate 23 is composed of an insulating layer 54 formed on the surface of the insulating substrate 51 so that the connection electrodes 25 are exposed.
  • the thickness of the insulating layer 54 is preferably 5 to: L00 ⁇ m, more preferably 10 to 60 m. If this thickness is too small, it may be difficult to form an insulating layer having a small surface roughness. On the other hand, if the thickness is excessive, it may be difficult to electrically connect the connection electrode 25 and the first anisotropic conductive sheet 22.
  • a material for forming the insulating substrate 51 of the pitch conversion substrate a material generally used as a base material of a printed circuit board can be used. Specifically, for example, polyimide And glass fiber reinforced polyimide resin, glass fiber reinforced epoxy resin, and glass fiber reinforced bismaleimide triazine resin.
  • a polymer material that can be formed into a thin film can be used as a material for forming the insulating layers 54 and 55 in FIG. 6, a polymer material that can be formed into a thin film can be used. Specific examples thereof include an epoxy resin, an acrylic resin, a phenol resin, a polyimide resin, a polyamide resin, a mixture thereof, and a resist material.
  • the pitch conversion substrate 23 can be manufactured, for example, as follows. First, a laminated material in which a thin metal layer is laminated on both sides of a flat insulating substrate is prepared, and a composite material penetrating in the thickness direction of the laminated material corresponding to the pattern of the terminal electrode to be formed is prepared for this laminated material. A number of through-holes are formed by a numerically controlled drilling device, a photo etching process, a laser processing process, or the like.
  • the metal thin layer is subjected to a photo-etching process to form wiring patterns and connection electrodes on the surface of the insulating substrate, and terminal electrodes on the opposite surface.
  • an insulating layer 54 is formed on the surface of the insulating substrate 51 so that each connection electrode 25 is exposed, and each terminal electrode 24 is exposed on the opposite surface.
  • the pitch conversion substrate 23 is obtained by forming the insulating layer 55.
  • the thickness of the insulating layer 55 is preferably 5 to: LOO m, more preferably 10 to 60 m.
  • the pitch converting substrate 23 is integrated with the first anisotropic conductive sheet 22.
  • the first anisotropic conductive sheet 22 and the pitch conversion board 23 constitute a pitch conversion adapter integrated 60.
  • the first anisotropic conductive sheet 22 integrated with the pitch conversion circuit board 23 has a large number of conductive particles P in the thickness direction in an insulating elastic polymer material.
  • Conductive path forming portions 61 formed in an array, insulating portions 62 separating the respective conductive path forming portions 61, and force are also configured.
  • the conductive particles P are contained only in the conductive path forming portion 61, and thus, non-uniform in the surface direction. Are distributed.
  • the pattern of the conductive path forming portion 61 corresponds to the pattern of the electrode to be inspected on the circuit board to be inspected which is an electrode to be connected.
  • the conductive elastic particles P are contained in the insulating elastic polymer substance so as to be aligned in the thickness direction.
  • the insulating portion 62 does not contain any conductive particles P and is made of an elastic polymer material.
  • the elastic polymer material constituting the conductive path forming portion 61 and the elastic polymer material constituting the insulating portion 62 may be of different types or the same type.
  • the protrusion 61a By providing the protrusion 61a in this way, the degree of compression by the pressurization in the conductive path forming part 61 is larger than that of the insulating part 62, so that the resistance value is sufficiently low and the conductive path is ensured. Formed in 61. Thereby, the change in resistance value can be reduced with respect to the change in applied pressure. As a result, even if the applied pressure applied to the first anisotropic conductive sheet 22 is not uniform, it is possible to prevent variation in conductivity between the respective conductive path forming portions 61.
  • the elastic polymer substance constituting the conductive path forming part 61 and the insulating part 62 a polymer substance having a crosslinked structure is preferable.
  • the curable polymer material-forming material that can be used to obtain such an elastic polymer material include polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, acrylonitrile-butene. Conjugated gen rubbers such as gen copolymer rubber and hydrogenated products thereof, block copolymer rubbers such as styrene butadiene gen block copolymer rubber, styrene isoprene block copolymer, and hydrogenated products thereof. Examples include mouth-prene, urethane rubber, polyester rubber, epichlorohydrin rubber, silicone rubber, ethylene-propylene copolymer rubber, and ethylene propylene copolymer rubber.
  • the first anisotropic conductive sheet 22 is required to have weather resistance, it is preferable to use a material other than the conjugated-gen rubber, particularly from the viewpoint of moldability and electrical properties. It is preferable to use rubber.
  • the silicone rubber is preferably one obtained by crosslinking or condensing liquid silicone rubber.
  • the liquid silicone rubber has a viscosity of 10 5 poise or less at a strain rate of 10 _1 sec, either a condensation type, an addition type, or a butyl group or a hydroxyl group-containing one. May be.
  • dimethyl silicone raw rubber, methyl beer silicone raw rubber, methyl ferrule silicone raw rubber and the like can be mentioned.
  • the silicone rubber has a molecular weight Mw (referred to as a standard polystyrene conversion weight average molecular weight) force of 0000 to 40,000.
  • Mw molecular weight
  • the molecular weight distribution index is preferably 2 or less.
  • conductive particles P contained in the conductive path forming part 61 conductive particles exhibiting magnetism are used because the conductive particles can be easily aligned in the thickness direction by a method described later.
  • conductive particles include particles of a metal having magnetism such as iron, cobalt and nickel, particles of these alloys, particles containing these metals, or these particles.
  • the core particle may be a core particle, and the surface of the core particle may be coated with a conductive magnetic metal such as nickel or cobalt.
  • a nickel particle as a core particle and a surface thereof provided with gold metal having good conductivity.
  • Examples of the method for coating the surface of the core particle with the conductive metal include mechanical plating and electrolytic plating.
  • the conductive metal coverage on the particle surface (the conductive metal relative to the surface area of the core particle) is obtained because good conductivity is obtained.
  • the ratio of the coating area is preferably 40% or more, more preferably 45% or more, and particularly preferably 47 to 95%.
  • the coating amount of the conductive metal is more preferably 0.5 to 50% by mass of the core particles. 2 to 30% by mass, more preferably 3 to 25% by mass, and particularly preferably 4 to 20% by mass.
  • the coating amount is preferably 0.5 to 30% by mass of the core particles, more preferably 2 to 20% by mass, and still more preferably 3 to 15% by mass.
  • the particle size of the conductive particles is preferably 1-100 ⁇ m, more preferably 2-50.
  • ⁇ m more preferably 3 to 30 ⁇ m, particularly preferably 4 to 20 ⁇ m.
  • the particle size distribution (DwZDn) of the conductive particles P is preferably 1 to 10, more preferably 1.01 to 7, more preferably 1.05 to 5, particularly preferably 1.1 to 4.
  • the obtained conductive path forming part 61 can be easily deformed under pressure, and in the conductive path forming part 61, between the conductive particles. Sufficient electrical contact is obtained.
  • the shape of the conductive particles is not particularly limited, but spherical particles, star-shaped particles, or secondary particles in which these particles are aggregated can be easily dispersed in the polymer material-forming material. Is preferred to be.
  • the conductive particles particles whose surfaces are treated with a coupling agent such as a silane coupling agent or a lubricant can be appropriately used.
  • a coupling agent such as a silane coupling agent or a lubricant.
  • Such conductive particles are contained in the conductive path forming portion in a proportion of preferably 15 to 45%, more preferably 20 to 40% in terms of volume fraction. If this ratio is too small, the conductive path forming part 61 having a sufficiently small electric resistance value may not be obtained. On the other hand, when this ratio is excessive, the obtained conductive path forming part 61 becomes fragile, and the necessary elasticity as the conductive path forming part 61 may not be obtained immediately.
  • the thickness of the conductive path forming rod 61 is ⁇ , preferably ⁇ 20-250 ⁇ m, and more preferably ⁇ 30-200 ⁇ m. When this thickness is too small, the absorption capability with respect to the pressurization of the thickness direction becomes low. On the other hand, when the thickness is excessive, good conductivity may not be obtained.
  • the protrusion height of the protrusion 61a in the conductive path forming portion 61 is preferably 5 to 70% of the thickness of the conductive path forming portion 61, more preferably 10 to 60%.
  • a conductive elastomer material is prepared in which conductive particles exhibiting magnetism are dispersed in a liquid elastomer material that is cured to become an elastic polymer substance. Then, as shown in FIG. 7, a conductive elastomer material layer 61A is formed by applying a conductive elastomer material on a releasable support plate 65 for forming a conductive path forming portion. .
  • the conductive particles P exhibiting magnetism are contained in a randomly dispersed state.
  • the conductive elastomer material layer 61A was dispersed in the conductive elastomer material layer 61A as shown in FIG.
  • the conductive particles P are aligned in the thickness direction of the conductive elastomer material layer 61A.
  • the conductive elastomer material layer 61A is cured to obtain the structure shown in FIG. As shown, a conductive elastomer layer 61B containing conductive particles P in an elastic polymer material oriented in the thickness direction is formed in a state where it is supported on a releasable support plate 65. Is done.
  • a material constituting the releasable support plate 65 metals, ceramics, resin, and composite materials thereof can be used.
  • a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
  • the thickness of the conductive elastomer material layer 61A is set in accordance with the thickness of the conductive path forming portion to be formed.
  • an electromagnet As a means for applying a magnetic field to the conductive elastomer material layer 61A, an electromagnet, a permanent magnet, or the like can be used.
  • the strength of the magnetic field applied to the conductive elastomer material layer 61A is preferably 0.2 to 2.5 Tesla.
  • the curing process of the conductive elastomer material layer 61A is usually performed by a heating process.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of the elastomer material constituting the conductive elastomer material layer 61A, the time required for the movement of the conductive particles, and the like.
  • a plurality of conductive path forming portions 61 are formed according to a pattern corresponding to the connection electrode 25 of the pitch conversion substrate 23 as follows. (Fig. 1 1 to 14)
  • a thin metal layer 66 for a plating electrode is formed on the surface of the conductive elastomer layer 61B supported on the releasable support plate 65.
  • the metal thin layer 66 is used as a plating electrode, and electrolytic plating treatment is performed on the portion of the metal thin layer 66 exposed from the opening 67a of the resist layer 67. As a result, a metal mask 68 is formed in the opening 67a of the resist layer 67.
  • the conductive elastomer layer 61B, the thin metal layer 66, and the resist layer 67 are subjected to laser processing.
  • the resist layer 67 around the metal mask 68, the thin metal layer 66, and the conductive elastomer layer 61B are removed.
  • a plurality of conductive path forming portions 61 arranged according to a predetermined pattern are formed in a state of being supported on the releasable support plate 65.
  • a plurality of conductive path forming portions 61 arranged according to a predetermined pattern are formed in a state of being supported on the releasable support plate 65.
  • an electroless plating method, a snotter method, or the like can be used as a method of forming the thin metal layer 66 on the surface of the conductive elastomer layer 61B.
  • metal thin layer 66 As a material constituting the metal thin layer 66, copper, gold, aluminum, rhodium, or the like can be used.
  • the thickness of the thin metal layer 66 is preferably 0.05 to 2 m, more preferably 0.1 to 1 / z m. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by laser processing.
  • the thickness of the resist layer 67 is set according to the thickness of the metal mask 68 to be formed.
  • metal mask 68 As a material constituting the metal mask 68, copper, iron, aluminum, gold, rhodium or the like can be used.
  • the thickness of the metal mask 68 is preferably 2 ⁇ m or more, more preferably 5 to 20 ⁇ m. If this thickness is too small, it may be unsuitable as a mask for the laser.
  • the laser processing is preferably performed using a carbon dioxide laser or an ultraviolet laser, so that the conductive path forming portion 61 having a desired form can be reliably formed.
  • the conductive path forming part 61 in the first anisotropic conductive sheet 22 can be formed by the following method.
  • a resist layer 67 having a plurality of openings 67a is formed.
  • the thin metal layer 66 a metal foil, a metal plate, or the like can be used. Also ⁇ A metal foil integrated with an oil film, a thin metal layer formed on a resin film by an electroless plating method, a sputtering method, or the like can be used.
  • metal thin layer 66 copper, gold, aluminum, rhodium, or the like can be used.
  • the thickness of the thin metal layer 66 is preferably 0.05 to 2 m, more preferably 0.1 to 1 / z m. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by laser processing.
  • the thickness of the resist layer 67 is set according to the thickness of the metal mask 68 to be formed.
  • a metal exhibiting magnetism As a material constituting the metal mask 68, a metal exhibiting magnetism is used. Specific examples thereof include nickel, conolate, and alloys thereof.
  • the thickness of the metal mask 68 is preferably 2 ⁇ m or more, more preferably 5 to 20 ⁇ m. If this thickness is too small, it may be unsuitable as a mask for the laser.
  • a conductive elastomer material is prepared in which conductive particles exhibiting magnetism are dispersed in a liquid elastomer material that is cured to become an elastic polymer substance. Then, as shown in FIG. 19, the conductive elastomer material layer 61A is formed by applying a conductive elastomer material on the releasable support plate 65 for forming the conductive path forming portion. Form.
  • the conductive elastomer material layer 61A contains the conductive particles P exhibiting magnetism in a randomly dispersed state.
  • the composite film 69 is laminated so that the surface on which the metal thin layer 66 is not formed is in contact with the conductive elastomer material layer 61A.
  • the dispersed conductive particles P are made of a metal exhibiting magnetism, as shown in FIG.
  • the metal mask 68 is concentrated so that it is aligned in the thickness direction. Due to the action of the metal mask 68, which also has a metal force that exhibits magnetism, the strength of the magnetic field in the region of the metal mask 68 increases, so that the conductive particles P are concentrated on the portion of the metal mask 68. An orientation is made.
  • the density of the conductive particles P in the portion of the metal mask 68 increases, and the density of the conductive particles in the portion V, where the metal mask 68 is not formed, decreases.
  • the conductive elastomer material layer 61A is hardened.
  • a conductive elastomer layer 61B contained in an elastic polymer substance in a state in which conductive particles P are aligned in the thickness direction was supported on a releasable support plate 65. Formed in a state.
  • Material constituting releasable support plate 65 method of applying material for conductive elastomer, thickness of material layer 61A for conductive elastomer, magnetic field applied to material layer 61A for conductive elastomer The conditions at the time are as described in the method for forming the conductive path forming portion.
  • the thin metal layer 66 integrally formed on the surface of the conductive elastomer layer 61B is removed.
  • the thin metal layer 66 can be removed by etching, mechanical peeling, mechanical polishing, or the like.
  • a plurality of conductive path forming portions 61 are formed according to a pattern corresponding to the connection electrode 25 of the pitch conversion substrate 23 in accordance with the method described above. That is, by performing laser processing on the conductive elastomer layer 61B and the resist layer 67, the resist layer 67 and the conductive elastomer layer 61B around the metal mask 68 are removed. As a result, a plurality of conductive path forming portions 61 arranged according to a predetermined pattern are formed in a state of being supported on the releasable support plate 65.
  • the conductive elastomer layer 61B other than the conductive path forming portion 61 is peeled off to leave only the conductive path forming portion 61 on the releasable support plate 65, as shown in FIG. Then, the remaining metal mask 68 is peeled off from the surface of the conductive path forming portion 61.
  • the laser processing is preferably performed using a carbon dioxide laser or an ultraviolet laser, so that the conductive path forming part 61 having a desired form can be reliably formed.
  • a plurality of conductive path forming portions formed on the releasable support plate 65 obtained as described above. 61 is used to obtain the integrated adapter 60 for pitch conversion through the following steps. First, a liquid elastomer material that is cured to become an insulating elastic polymer material is applied to the surface of the pitch conversion substrate 23 shown in FIG. 25, thereby uncured as shown in FIG. The insulating part material layer 62A in the state is formed.
  • the releasable support plate 65 on which the plurality of conductive path forming portions 61 are formed is overlaid on the pitch conversion substrate 23 on which the insulating portion material layer 62A is formed.
  • each of the connection electrodes 25 of the pitch conversion substrate 23 and the corresponding conductive path forming portion 61 are brought into contact with each other.
  • the insulating material layer 62A is formed between the adjacent conductive path forming portions 61.
  • the insulating material layer 62A is cured to perform the process.
  • an insulating portion 62 that insulates them from each other is formed integrally with the conductive path forming portion 61 and the pitch conversion substrate 23.
  • the first anisotropic conductive sheet 22 is formed in a body-like manner on the surface of the pitch conversion substrate 23 by releasing from the releasable support plate 65.
  • the configuration shown in FIG. The integrated adapter for pitch conversion 60 is obtained.
  • a metal film 64 may be formed at the tip of the conductive path forming portion 61.
  • a metal film can be formed by various known methods such as a metal plating method, a vapor deposition method using a sputtering method, and a method in which a metal plate is attached to the tip of the conductive path forming unit 61 with an adhesive.
  • a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
  • the thickness of the insulating part material layer 62A is set according to the thickness of the insulating part 62 to be formed.
  • the curing process of the insulating part material layer 62A is usually performed by heat treatment.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of the elastomer material constituting the insulating part material layer 62A.
  • the conductive particles P The conductive path forming portion 61 having a desired shape is formed by performing laser processing on the conductive elastomer layer 61A dispersed in an aligned state in the thickness direction and removing a part thereof.
  • the material layer for conductive elastomer 61 is a metal mask that exhibits magnetism.
  • the density of the conductive particles in the portion where the metal mask is not formed is reduced. This facilitates the formation of the conductive path forming portion by laser processing. Further, since the laser processing of the thick conductive elastomer layer 61B becomes easy, the conductive path forming portion 61 having a large thickness can be obtained with certainty.
  • a plurality of conductive path forming portions 61 arranged on the releasable support plate 65 are formed according to a predetermined pattern corresponding to the connection electrodes 25 of the pitch conversion substrate 23, and these conductive path forming portions are formed.
  • An insulating part 62 is formed by forming an uncured elastomer material layer 62A between 61 and performing a curing process.
  • the first anisotropic conductive sheet 22 formed with the insulating part 62 in which the conductive particles P are not present can be obtained with certainty.
  • each of the conductive path forming portions 61 and the insulating portion 62 are integrally formed and are supported by the pitch conversion substrate 23, so that the conductive path formation portion 61 is removed from the pitch conversion substrate 23. There is nothing to do.
  • the pitch conversion substrate is formed when the first anisotropic conductive sheet 22 is formed. No damage to the 23 surface.
  • the integrated adapter 60 for pitch conversion obtained by such a method a required electrical circuit is provided for each of the electrodes to be inspected regardless of the arrangement pattern of the inspection electrodes of the circuit board to be inspected. Connection can be reliably achieved.
  • FIG. 30 is a cross-sectional view showing another configuration of the pitch conversion adapter
  • FIG. 31 is an enlarged cross-sectional view thereof
  • FIG. 32 is a cross-sectional view showing the pitch conversion substrate.
  • This pitch conversion adapter integrated 60 is used for, for example, a circuit device such as a printed circuit board to perform an electrical resistance measurement test of each wiring pattern, and also has a multilayer wiring board force.
  • a pitch conversion substrate 23 is provided.
  • connection electrode 25 comprising 27 and a voltage measurement electrode 28 for voltage measurement is formed.
  • connection electrodes 25 are arranged in accordance with the pattern of the electrode to be inspected of the circuit board to be inspected.
  • a plurality of terminal electrodes 24 are arranged according to lattice point positions of pitches of 0.8 mm, 0.75 mm, 1.5 mm, 1.8 mm, and 2.54 mm.
  • Each of current supply electrode 27 and voltage measurement electrode 28 is electrically connected to terminal electrode 24 by internal wiring 53.
  • a first anisotropic conductive sheet 22 is formed on the connection electrode 25 in a state of being physically adhered or closely adhered.
  • the first anisotropic conductive sheet 22 is formed so as to cover the entire surface of the pitch conversion substrate 23.
  • the first anisotropic conductive sheet 22 includes a plurality of conductive path forming portions 61 that are arranged in accordance with the pattern of the connection electrodes 25 on the pitch conversion substrate 23 and extend in the thickness direction. That is, each of the conductive path forming portions 61 is disposed on each of the current supply electrode 27 and the voltage measurement electrode 28 in the pitch conversion substrate 23. In addition, between these adjacent conductive path forming portions 61, the conductive path forming portions 61 formed in a state of being integrally bonded to each of the conductive path forming portions 61 are insulated to insulate the conductive path forming portions 61 from each other. Part 62 is provided.
  • the conductive path forming portion 61 and the insulating portion 62 of the first anisotropic conductive sheet 22 are basically the same as the first anisotropic conductive sheet 22 in the pitch conversion adapter integral 60 shown in FIG. The configuration is the same.
  • the second anisotropic conductive sheet 26 disposed on the relay pin unit 31 side of the pitch conversion substrate 23 is composed of a large number of conductive particles P in an insulating elastic polymer material.
  • conductive path forming portions 71 arranged in the thickness direction and insulating portions 72 that separate the respective conductive path forming portions 71.
  • the conductive particles P are nonuniformly dispersed in the plane direction only in the conductive path forming portion 71.
  • the thickness of the conductive path forming portion 71 is preferably 0.1 to 2 mm, more preferably 0.2 to 1.5 mm. If this thickness is too small, the absorption of the applied pressure by the inspection jig will be reduced at the time of inspection when the absorption capacity for pressure in the thickness direction is low, and the effect of mitigating the impact on the circuit board connector 21 will be reduced. . For this reason, it becomes difficult to suppress the deterioration of the first anisotropic conductive sheet 22, resulting in an increase in the number of replacements of the first anisotropic conductive sheet 22 during the repeated inspection of the circuit board 1 to be inspected. Decreases the efficiency. On the other hand, if this thickness is excessive, the electrical resistance in the thickness direction tends to increase and electrical inspection may be difficult.
  • the thickness of the insulating portion 72 is substantially the same as or smaller than the thickness of the conductive path forming portion 71. As shown in FIG. 33, the thickness of the insulating portion 72 is made smaller than the thickness of the conductive path forming portion 71, and the conductive path forming portion 71 forms a protruding portion 71a protruding from the insulating portion 72. Because the deformation of the conductive path forming part 72 becomes easier and the capacity to absorb the applied pressure increases, the applied pressure of the inspection jig is absorbed at the time of inspection, and the circuit board side connector 21 Impact can be mitigated.
  • the number average particle diameter thereof is preferably 5 to 200 ⁇ m, more preferably 5 to 150 m, more preferably 10: LOO m.
  • the “number average particle diameter of the magnetic conductive particles” means that measured by a laser diffraction scattering method.
  • the number average particle diameter of magnetic conductive particles is 5 m or more, pressure deformation of the conductive path forming part of the anisotropic conductive sheet is easy. Become. Further, when the magnetic conductive particles are oriented by magnetic field orientation treatment in the manufacturing process, the magnetic conductive particles can be easily oriented.
  • the number average particle size force S of the magnetic conductive particles is 200 m or less, the elasticity of the conductive path forming portion 71 of the anisotropic conductive sheet is good and the caloric pressure deformation becomes easy.
  • the ratio W ZD to 2 2 is preferably 1.1 to 10.
  • the diameter of the conductive particles is equal to or larger than that, the elasticity of the conductive path forming portion 71 is reduced, and the absorption capability of the applied pressure in the thickness direction is reduced. Since the absorption of the pressure applied by the inspection tool during inspection is reduced and the effect of mitigating the impact on the circuit board connector 21 is reduced, the deterioration of the first anisotropic conductive sheet 22 is suppressed. As a result, during the repeated inspection of the circuit board 1 to be inspected, the first anisotropic conductive sheet 22, that is, the first anisotropic conductive sheet 22 was integrated on the pitch converting substrate 23 side. The number of replacements of the pitch conversion adapter 60 is increased, and the inspection efficiency tends to decrease.
  • the elastic polymer (elastomer) that is the base material of the conductive path forming part 71 preferably has a durometer hardness measured by a type A durometer of 15 to 60, more preferably 20 to 50, still more preferably. 25-45.
  • the durometer hardness of the elastic polymer When the durometer hardness of the elastic polymer is smaller than 15, the sheet shape is deformed early when the sheet is pressed in the thickness direction. The electrical connection is likely to be difficult. If the durometer hardness of the elastic polymer is greater than 60, the deformation force when pressed in the thickness direction becomes small, so the ability to absorb pressure in the thickness direction becomes small. Therefore, the deterioration of the first anisotropic conductive sheet 22 is suppressed, and as a result, the first anisotropic conductive sheet 22, that is, the first anisotropic conductive sheet 22, during the repeated inspection of the circuit board 1 to be inspected. The anisotropic conductive sheet 22 of the pitch conversion adapter integrated with the pitch conversion board 23 is increased, and the number of replacements of the pitch conversion adapter 60 is increased. The rate tends to decrease.
  • the elastic polymer serving as the base material of the conductive path forming portion 71 is not particularly limited as long as it exhibits the durometer hardness described above, but from the viewpoint of workability and electrical characteristics, silicone rubber may be used. preferable.
  • the insulating portion 72 of the second anisotropic conductive sheet 26 is formed of an insulating material that does not substantially contain conductive particles.
  • an insulating material for example, an insulating polymer material, an inorganic material, a metal material whose surface is insulated, etc. can be used, but the same material as the elastic polymer used for the conductive path forming portion is used. When used, production is easy.
  • an elastic polymer is used as the material for the insulating portion, it is preferable to use a material having a durometer hardness in the above range.
  • the magnetic conductive particles the conductive particles used in the first anisotropic conductive sheet described above can be used.
  • the second anisotropic conductive sheet 26 can be manufactured, for example, as follows. First, the overall shape is substantially a flat plate shape, each consisting of an upper mold and a lower mold that correspond to each other, and a magnetic field is applied to the material layer filled in the molding space between the upper mold and the lower mold. An anisotropic conductive sheet molding die having a configuration capable of heat-curing the material layer is prepared.
  • This anisotropic conductive sheet molding die has a magnetic field applied to the material layer to form a portion having conductivity at an appropriate position.
  • a substrate made of a ferromagnetic material such as nickel, a ferromagnetic material portion made of iron, nickel or the like for generating an intensity distribution in the magnetic field in the mold, and a non-magnetic metal such as copper or non-coating made of resin.
  • the magnetic material portions have mosaic layers alternately arranged so as to be adjacent to each other, and the ferromagnetic material portions are arranged according to a pattern corresponding to the conductive path forming portion to be formed. ing.
  • the molding surface of the upper mold is flat, and the molding surface of the lower mold has slight irregularities corresponding to the conductive path forming portion of the anisotropic conductive sheet to be formed.
  • an anisotropic conductive sheet is manufactured as follows. First, in the molding space of the mold for forming an anisotropic conductive sheet, conductive particles exhibiting magnetism are contained in a polymer material that is cured to become an elastic polymer material. The molding material thus formed is injected to form a molding material layer.
  • a magnetic field having an intensity distribution in the thickness direction is applied to the formed molding material layer using the ferromagnetic part and the non-magnetic part in each of the upper mold and the lower mold. Due to the action of the magnetic force, the conductive particles are aggregated between the ferromagnetic part in the upper mold and the ferromagnetic part in the lower mold located immediately below it, and the conductive particles are further thickened. Orient to align in the direction. Then, by hardening the molding material layer in this state, an anisotropic conductive sheet having a configuration in which a plurality of columnar conductive path forming portions are insulated from each other by an insulating portion is manufactured.
  • the tester-side connectors 41a and 41b include third anisotropic conductive sheets 42a and 42b, connector boards 43a and 43b, and base plates 46a and 46b. Prepare and speak.
  • the third anisotropic conductive sheet 42a, 42b the same one as the second anisotropic conductive sheet 26 described above is used. That is, as shown in FIG. 33, the conductive path forming portions formed by arranging a large number of conductive particles in the insulating elastic polymer material in the thickness direction are separated from the respective conductive path forming portions. An anisotropic conductive sheet composed of an insulating part is used.
  • the connector boards 43a and 43b are provided with an insulating board, and pin-side electrodes 45a and 45b are formed on the surface thereof on the relay pin unit 31 side, as shown in FIGS.
  • pin side electrodes 45 are, for example, 2.54 mm, 1.8 mm, 1.27 mm, 1.06 mm, 0.8 mm, 0.775 mm, 0.5 mm, 0.45 mm, 0.3 mm or 0.2 mm. They are arranged on lattice points with a constant pitch, and the arrangement pitch is the same as the arrangement pitch of the conductive pins 32 of the relay pin unit 31.
  • Each pin-side electrode 45 is electrically connected to the tester-side electrodes 44a, 44b by a wiring pattern formed on the surface of the insulating substrate and an internal wiring formed therein.
  • the relay pin unit 31 is A large number of conductive pins 32a and 32b provided at a predetermined pitch are provided in parallel so as to face each other. Further, the relay pin unit 31 is provided on both ends of the conductive pins 32a and 32b, and the first insulating plates 34a and 34a disposed on the circuit board 1 side to be inspected to support the conductive pins 32a and 32b. 34b And two insulating plates 35a and 35b disposed on the opposite side of the circuit board 1 to be inspected.
  • the conductive pin 32 includes a central portion 82 having a large diameter and end portions 81a and 81b having a smaller diameter.
  • the first insulating plate 34 and the second insulating plate 35 are formed with through holes 83 into which the end portions 81 of the conductive pins 32 are inserted.
  • the diameter of the through hole 83 is formed to be larger than the diameter of the end portions 81a and 81b of the conductive pin 32 and smaller than the diameter of the central portion 82, whereby the conductive pin 32 is held so as not to drop off. Speak.
  • the first insulating plate 34 and the second insulating plate 35 are separated from each other by the first support pin 33 and the second support pin 37 in FIG.
  • the conductive pin 32 is held so as to be movable up and down.
  • the length of the end 81 of the conductive pin 32 is formed so as to be longer than the thickness of the insulating plate 34, whereby the conductive pin 32 protrudes from at least one of the insulating plates 34.
  • the relay pin unit has a large number of conductive pins, for example, 2.54mm, 1.8mm, 1.27mm, 1.06mm, 0.8mm, 0.75mm, 0.5mm, 0.45mm, 0.5. It is placed on a grid point with a pitch of 3mm or 0.2mm.
  • the pitch conversion board 23 is connected to the tester via the conductive pins 32. It is designed to be electrically connected to the side.
  • the relay pin unit 31 includes an intermediate holding plate 36a between the first insulating plates 34a and 34b and the second insulating plates 35a and 35b. 36b force ⁇ ⁇ is placed! /, And the first support pins 33a, 33b are arranged between the first insulating plates 34a, 34b and the intermediate holding plates 36a, 36b. Therefore, the space between the first insulating plates 34a and 34b and the intermediate holding plates 36a and 36b is fixed.
  • second support pins 37a and 37b are arranged between the second insulating plates 35a and 35b and the intermediate holding plates 36a and 36b, whereby the second insulating plates The space between 35a, 35b and the intermediate holding plate 36a, 36b is fixed.
  • Examples of the material of the first support pin 33 and the second support pin 37 include brass and stainless steel. Such metals are used.
  • the distance L1 between the first insulating plate 34 and the intermediate holding plate 36 and the distance L2 between the second insulating plate 35 and the intermediate holding plate 36 in FIG. 34 are particularly limited.
  • the height of the electrodes 2 and 3 on the circuit board 1 to be inspected varies due to the elasticity of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35.
  • the thickness is preferably 2 mm or more, more preferably 2.5 mm or more.
  • the first contact support position 38A of the first support pin 33 with respect to the intermediate holding plate 36, and the second contact pin 38 of the second support pin 37 with respect to the intermediate holding plate 36 The abutting support position 38B is arranged at a different position on the intermediate holding plate projection surface A on which the inspection device is projected in the thickness direction of the intermediate holding plate (from the upper side to the lower side in FIG. 1). .
  • the different positions are not particularly limited, but the first abutting support position 38A and the second abutting support position 38B are projected on the intermediate holding plate as shown in FIG. It is preferable that the surface A is formed on the lattice and is formed on the surface A.
  • one unit cell region R1 composed of four adjacent first contact support positions 38A has one first 2 abutment support positions 38B are arranged. Further, on the intermediate holding plate projection surface A, one first abutting support position 38A is arranged in a unit lattice region R2 composed of four adjacent second abutting support positions 38B.
  • the first contact support position 38A is indicated by a black circle
  • the second contact support position group 38B is indicated by a white circle!
  • one second contact support position 38B is arranged at the center of the diagonal Q1 of the unit lattice region R1 of the first contact support position 38A, and the second contact support position is also provided.
  • One first abutting support position 38A is arranged at the center of the diagonal line Q2 of the unit lattice region R2 at the position 38B.
  • the relative positions of these are different positions on the intermediate holding plate projection plane A obtained by projecting the inspection apparatus in the thickness direction of the intermediate holding plate as described above. It suffices if they are arranged. That is, when not arranged in a grid pattern, the inspection apparatus is projected on the intermediate holding plate projection surface A as projected in the thickness direction of the intermediate holding plate as described above.
  • the separation distance between the first contact support positions 38A adjacent to each other and the separation distance between the second contact support positions 38B are preferably 10 to: LOOmm, more preferably It is 12 to 70 mm, particularly preferably 15 to 50 mm.
  • first insulating plate 34 As the forming material of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35, a flexible material is used. The flexibility of these plates is determined from above when both ends of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35 are horizontally arranged with 10 cm intervals. Stagnation force generated by pressurizing at a pressure of 50 kgf It is less than 0.02% of the width of these insulating plates, and destruction and permanent deformation do not occur even when pressurizing with a pressure of 200 kgf from above. I prefer to be there.
  • insulating materials such as polyimide ⁇ Resin, polyester resin, polyamide resin, phenol resin, polyacetal resin, polybutylene terephthalate resin, polyethylene tere
  • the thicknesses of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35 are the types of materials constituting the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35.
  • the force appropriately selected according to the pressure is preferably 1 to: LOmm.
  • a glass fiber reinforced epoxy resin having a thickness of 2 to 5 mm can be used.
  • FIGS. 36 to 38 As a method for movably supporting the conductive pin 32 on the first insulating plate 34 and the second insulating plate 35, the method shown in FIGS. 36 to 38 can be cited in addition to the method shown in FIG. it can.
  • a bent holding plate 84 is provided between the first insulating plate 34 and the second insulating plate 35.
  • conductive pins 32 cylindrical metal pins are used.
  • the bent holding plate 84 is formed with a through hole 85 through which the conductive pin 32 is inserted.
  • the conductive pin 32 has a through hole 83a formed in the first insulating plate 34, a through hole 83b formed in the second insulating plate 35, and a through hole 85 formed in the bent holding plate 84 as fulcrums. They are pressed laterally in opposite directions and bent at the position of the through hole 85 of the bending holding plate 84, whereby the conductive pin 32 is supported so as to be movable in the axial direction.
  • the intermediate holding plate 36 is formed with a through hole 86 having a diameter large enough not to contact the conductive pin 32, and the conductive pin 32 is passed through the through hole 86.
  • the conductive pin 32 is supported by the first insulating plate 34 and the second insulating plate 35 in the procedure shown in FIGS. 37 (a) to 37 (c).
  • the through hole 83a of the first insulating plate 34 and the through hole 83b formed in the second insulating plate 35 and the through hole 85 of the bent holding plate 84 are in the axial direction.
  • the bending holding plate 84 is disposed at a position aligned with the position of the bending holding plate 84.
  • the conductive pin 32 passes through the second insulating plate 35 from the through hole 83a of the first insulating plate 34 through the through hole 85 of the bent holding plate 84. Insert up to hole 83b.
  • the bending holding plate 84 is moved in the lateral direction (horizontal direction) perpendicular to the axial direction of the conductive pin 32, and the position of the bending holding plate 84 is adjusted by an appropriate means. Fix it.
  • the conductive pins 32 are opposite to each other with the through hole 83b formed in the first insulating plate 34 and the through hole 83b formed in the second insulating plate 35 and the through hole 85 of the bent holding plate 84 as fulcrums. It is pressed laterally in the direction and bent at the position of the through hole 85 of the bending holding plate 84, whereby the conductive pin 32 is supported so as to be movable in the axial direction.
  • the conductive pin 32 can be held between the first insulating plate 34 and the second insulating plate 35 so as to be movable in the axial direction and not fallen off.
  • a cylindrical pin having a simple structure can be used as the conductive pin 32, the overall cost of the conductive pin 32 and the member holding it can be suppressed.
  • the position where the bent holding plate 84 is disposed may be between the first insulating plate 34 and the intermediate holding plate 36.
  • the electrode 2 and the electrode 3 of the circuit board 1 to be inspected are the first anisotropic conductive sheets 22a, 22b. , Pitch conversion boards 23a, 23b, second anisotropic conductive sheet 26a, 26b, conductive pins 32a, 32b, third anisotropic conductive sheet 42a, 42b, connector boards 43a, 43b
  • the base plates 46a and 46b arranged on the outside are electrically connected to a tester (not shown) by pressing them with a tester's pressurizing mechanism, and the electrical connection between the electrodes of the circuit board 1 to be inspected. Electrical tests such as resistance measurements are performed.
  • the pressure pressed from the upper and lower first inspection jigs 11a and the second inspection jig l ib with respect to the circuit board to be inspected during measurement is, for example, 100 to 250 kgf.
  • electrical inspection is performed by sandwiching both surfaces of the circuit board 1 to be inspected between the first inspection jig 11a and the second inspection jig l ib.
  • the relay pin unit 31 moves in the thickness direction of the conductive pin 32, the first anisotropic conductive sheet 22, the second anisotropic conductive sheet 26, and the like.
  • the pressure is absorbed by the rubber elastic compression of the third anisotropic conductive sheet 42, and the height variation of the inspected electrode of the inspected circuit board 1 can be absorbed to some extent.
  • the first abutment support position between the first support pin and the intermediate holding plate and the second abutment support position between the second support pin and the intermediate holding plate are the intermediate holding plate.
  • the force acts in the vertical direction, as shown in FIG. 43.
  • the first anisotropic conductive sheet 22 When the circuit board 1 to be inspected is further pressed between the first inspection jig 11a and the second inspection jig l ib, the first anisotropic conductive sheet 22 and In addition to the rubber elastic compression of the second anisotropic conductive sheet 26 and the third anisotropic conductive sheet 42, the first insulating plate 34 of the relay pin unit 31 and the second insulating plate 35 Panel elasticity of the intermediate holding plate 36 disposed between the first insulating plate 34 and the second insulating plate 35 Accordingly, it is possible to disperse the pressure concentration with respect to the height variation of the electrode to be inspected of the circuit board 1 to be inspected, for example, the height variation of the solder ball electrode, and to avoid the local stress concentration.
  • the first holding pin 33 and the first holding support position 38A with respect to the intermediate holding plate 36 have the intermediate holding plate 36 as the second holding center. Hold in the direction of the insulating plate 35 (see the portion E surrounded by the one-dot chain line in FIG. 43), and hold the second support pin 37 and the intermediate holding plate 36 around the second contact support position 38B.
  • the plate 36 is sandwiched in the direction of the first insulating plate 34 (see the portion D surrounded by the one-dot chain line in FIG. 43).
  • “squeeze” and “stagnation direction” refer to the squeezing so that the intermediate holding plate 36 protrudes in the convex direction and the protruding direction.
  • the intermediate holding plate 36 is sandwiched in the opposite directions around the first contact support position 38A and the second contact support position 38B, so the first inspection jig When the circuit board 1 to be inspected is further pressed between the 11a and the second inspection jig l ib, the panel elastic force of the intermediate holding plate 36 is exhibited.
  • the height of the conductive pin 32b is absorbed by the compression of the protruding portion of the conductive path forming portion of the second anisotropic conductive sheet 26. , The pressure force that cannot be absorbed by the compression of this protruding part, will be applied to the first insulating plate 34b
  • the first insulating plate 34 and the second insulating plate 35 are also composed of the first support pin 33 and the second support pin 37.
  • the circuit board 1 to be inspected is further pressurized between the first inspection jig 11a and the second inspection jig l ib.
  • the panel elastic force of the first insulating plate 34 and the second insulating plate 35 is exhibited.
  • FIG. 44 is a cross-sectional view similar to FIG. 40 for explaining another embodiment of the inspection apparatus of the present invention (only the second inspection jig is shown for convenience), and FIG. 45 is a relay thereof. It is an expanded sectional view of a pin unit.
  • This inspection apparatus has basically the same configuration as the inspection apparatus shown in FIG. 1, and the same reference numerals are assigned to the same components.
  • a plurality (three in this embodiment) of intermediate holdings are provided between the first insulating plate 34 and the second insulating plate 35.
  • the plates 36 are spaced apart from each other by a predetermined distance, and the holding plate support pins 39 are arranged between the adjacent intermediate holding plates 36.
  • the holding support position of the holding plate support pin 39b that also contacts the intermediate holding plate 36b with one side side force with respect to the intermediate holding plate 36b, and the intermediate holding plate 36b The contact position of the first support pin 33b, the second support pin 37b, or the holding plate support pin 39b with which the other side force abuts against the intermediate holding plate 36b is the thickness direction of the intermediate holding plate 36b. It is necessary to arrange them at different positions on the projection surface of the intermediate holding plate projected onto the screen.
  • the holding plate support pins 39b that are in one-side force contact with the intermediate holding plate 36b are in contact with and supported by the intermediate holding plate 36b and the intermediate holding plate 36b.
  • the abutment support position of the first support pin 33b, the second support pin 37b, or the holding plate support pin 39b with which the other side force also abuts against the intermediate holding plate 36b is in the thickness direction of the intermediate holding plate 36b. They are arranged at different positions on the projected intermediate holding plate projection surface.
  • the "different position” refers to the first contact support position 38A between the first support pin 33 and the intermediate holding plate 36, and the second position.
  • An arrangement similar to the relative position described in relation to the relationship between the support pin 37 and the second contact support position 38B of the intermediate holding plate 36 can be made.
  • the upper intermediate holding plate 36b is in contact with the intermediate holding plate 36b by the holding plate support pin 39b that also contacts the intermediate holding plate 36b with one surface side force.
  • the support position 39A and the contact support position 38A with respect to the intermediate holding plate 36b of the first support pin 33b that also contacts the intermediate holding plate 36b with the other side force are projected in the thickness direction of the intermediate holding plate 36b.
  • the intermediate holding plate is arranged at different positions on the projection surface. [0181] Further, in the middle intermediate holding plate 36b among the three intermediate holding plates 36b, the holding plate support pin 39b that comes into contact with the intermediate holding plate 36b from one surface side is in contact with and supported by the intermediate holding plate 36b 39A.
  • the intermediate support plate projection projected in the thickness direction of the intermediate support plate 36b is the contact support position 39A with respect to the intermediate support plate 36b of the support plate support pin 39b that also contacts the intermediate support plate 36b with the other side force. Placed in different positions across the surface.
  • the holding plate support pins 39b that come into contact with the intermediate holding plate 36b from one surface side are in contact with the intermediate holding plate 36b.
  • the intermediate holding projected by 39A and the abutment support position 38B of the second support pin 37b that comes into contact with the intermediate holding plate 36b from the other surface side with respect to the intermediate holding plate 36b is projected in the thickness direction of the intermediate holding plate 36b. They are arranged at different positions on the plate projection plane.
  • the spring property is further exhibited by the plurality of intermediate holding plates 36, and with respect to the height variation of the electrodes to be inspected of the circuit board 1 to be inspected, Dispersion of pressure concentration can further avoid local stress concentration, and local breakage of the anisotropic conductive sheet can be suppressed. As a result, the repeated use durability of the anisotropic conductive sheet can be reduced. As a result, the number of times of anisotropic conductive sheet replacement is reduced and inspection work efficiency is improved.
  • the number of intermediate holding plates 36 is not particularly limited as long as it is plural.
  • FIG. 46 is a cross-sectional view showing another embodiment of the inspection apparatus of the present invention
  • FIG. 47 is a cross-sectional view showing a stacked state when the inspection apparatus of FIG. 46 is used for inspection.
  • the inspection apparatus of the present embodiment includes a first inspection jig 11a disposed on the upper surface side of the circuit board 1 to be inspected and a second inspection disposed on the lower surface side.
  • the jig 11b is arranged so as to face each other vertically.
  • the first inspection jig 11a includes a circuit board-side connector 21a having a relay board 29a and an anisotropic conductive sheet 26a on both sides thereof, and a relay pin unit 31a.
  • the first inspection jig 1 la is a tester-side connector 41 a provided with a connector board 43 a on which the third anisotropic conductive sheet 42 a is arranged on the relay pin unit 3 la side and a base plate 46 a. It is equipped with.
  • the second inspection jig l ib is also configured in the same manner as the first inspection jig 11a, and includes a circuit board side connector 21b having a relay board 29b and an anisotropic conductive sheet 26b on both sides thereof, It has 3 lb of relay pin unit. Further, the second inspection jig l ib includes a tester side connector 4 lb provided with a connector board 43b on which the anisotropic conductive sheet 42b is arranged on the relay pin unit 3 lb side and a base plate 46b. Yes.
  • An electrode 2 to be inspected is formed on the upper surface of the circuit board 1 to be inspected, and an electrode 3 to be inspected is also formed on the lower surface thereof, and these are electrically connected to each other. Talk!
  • the circuit board side connectors 21a and 21b are composed of the pitch converting boards 23a and 23b, the relay boards 29a and 29b arranged on one side thereof, and the second anisotropic conductive sheet 26a arranged on the other side. , 26b.
  • FIG. 48 is a cross-sectional view showing a state in which a pitch conversion board, a relay board, and a circuit board to be inspected are stacked.
  • connection electrodes 25 are arranged so as to correspond to the patterns of the electrodes 2 and 3 to be inspected on the circuit board 1 to be inspected.
  • electrically conductive pins 32a and 32b of the relay pin unit 31 are electrically connected as shown in FIG.
  • a plurality of terminal electrodes 24 to be connected are formed. These terminal electrodes 24 are, for example, 2.5 4 mm, 1.8 mm, 1.27 mm, 1.06 mm, 0.8 mm, 0.75 mm, 0.5 mm, 0.4 mm, 0.3 mm or 0.2 mm.
  • the pitch is the same as the pitch of the conductive pins 32a and 32b of the relay pin unit.
  • connection electrode 25 in FIG. 3 is electrically connected to the corresponding terminal electrode 24 in FIG. 4 by the internal wiring 53 (see FIG. 48) penetrating in the thickness direction of the wiring 52 and the insulating substrate 51. Has been.
  • Fig. 49 (a) is a cross-sectional view of the relay board
  • Fig. 49 (b) is a partially enlarged cross-sectional view
  • Fig. 49 (c) is FIG.
  • the substrate 73 of the relay substrate 29 is formed with a number of through holes in which the conductive path forming portions 61 are arranged according to the electrode pattern of the pitch conversion substrate 23.
  • An insulating part 62 is formed by embedding an elastic polymer substance in the through hole, and the conductive path forming part 61 is formed so as to be surrounded by the insulating part 76.
  • the insulating part 76 is integrally formed on both side surfaces of the substrate 73 and is continuous with the plurality of through holes.
  • the conductive path forming part 61 contains conductive particles exhibiting magnetism in an insulating elastic polymer substance in an aligned state in the thickness direction.
  • the insulating portion 62 is formed of an elastic polymer material that does not contain conductive particles.
  • the elastic polymer substance constituting the conductive path forming part 61 and the elastic polymer substance constituting the insulating part 62 may be of the same type or different types.
  • Specific examples of the material for forming the substrate 73 of the relay substrate include glass fiber reinforced polyimide resin, glass fiber reinforced epoxy resin, glass fiber reinforced bismaleimide triazine resin, and the like.
  • Examples thereof include meshes made of organic fibers such as fibers, aramid fibers, polyethylene fibers, polyarylate fibers, nylon fibers, polyester fibers, and liquid crystal polymer fibers, nonwoven fabrics, and metal meshes.
  • the thickness of the substrate 73 is a force depending on the forming material, preferably 20 to 200 ⁇ m, more preferably 30 to LOO ⁇ m.
  • a conductive path forming portion 61 corresponding to the connection electrode 25 is disposed.
  • a pair of conductive path forming portions 61 corresponding to the voltage supply electrode 27 and the voltage measurement electrode 28 in the four-terminal inspection is arranged in each of the through holes.
  • the number of conductive path forming portions 61 arranged in one through hole is not particularly limited, but is preferably 1 to 4, and corresponds to the connection electrode 25 of the pitch conversion substrate 23 and corresponds to the substrate 73.
  • the number of conductive path forming portions 75 may be different for each through hole.
  • the protruding portions 61a in which the conductive path forming portion 61 protrudes from the surface force of the insulating portion 62 are formed on both surfaces of the relay substrate 29, so that the protruding portions 61a in which the conductive path forming portion 61 protrudes from the surface force of the insulating portion 62 are formed. Forming the protrusion 61a in this way As a result, the degree of compression by pressurizing the conductive path forming part 61 is greater than that for the insulating part 62, so that a conductive path having a sufficiently low resistance value is reliably formed in the conductive path forming part 61, and the applied pressure is increased. The change of the resistance value with respect to the change of can be reduced. As a result, even if the pressure applied to each conductive path forming portion 61 of the relay substrate 29 is not uniform, it is possible to prevent variation in conductivity between the conductive path forming portions 61.
  • the elastic polymer substance constituting the conductive path forming part 61 and the insulating part 62 a polymer substance having a crosslinked structure is preferred.
  • the curable polymer material-forming material that can be used to obtain such an elastic polymer material include polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, acrylonitrile-butene. Conjugated gen rubbers such as gen copolymer rubber and hydrogenated products thereof, block copolymer rubbers such as styrene butadiene gen block copolymer rubber, styrene isoprene block copolymer, and hydrogenated products thereof. Examples include mouth-prene, urethane rubber, polyester rubber, epichlorohydrin rubber, silicone rubber, ethylene-propylene copolymer rubber, and ethylene propylene copolymer rubber.
  • the weather resistance is required for the relay substrate 29, it is preferable to use a material other than the conjugated-gen rubber.
  • silicone rubber is used from the viewpoint of molding cacheability and electrical characteristics. It is preferable.
  • the silicone rubber those obtained by crosslinking or condensing liquid silicone rubber are preferable.
  • the liquid silicone rubber has a viscosity of 10 5 poise at a strain rate of 10- ⁇ ec and is preferably a condensation type, an addition type, a vinyl group or a hydroxyl group-containing one. May be.
  • dimethyl silicone raw rubber, methyl beer silicone raw rubber, methyl ferrule silicone raw rubber and the like can be mentioned.
  • the silicone rubber has a molecular weight Mw (referred to as a standard polystyrene equivalent weight average molecular weight) force of 0000 to 40,000.
  • Mw molecular weight
  • the molecular weight distribution index is preferably 2 or less.
  • the conductive particles P contained in the conductive path forming part 61 can be easily aligned in the thickness direction by the method described later, and therefore, the conductive particles P exhibiting magnetism. Sex particles are used.
  • conductive particles include particles of metals having magnetism such as iron, cobalt and nickel, particles of alloys thereof, particles containing these metals, or these particles.
  • Core particles, and the surface of the core particles is coated with a metal with good conductivity such as gold, silver, noradium, rhodium, or non-magnetic metal particles or inorganic particles such as glass beads or polymer particles And the like, and the surface of the core particle is coated with a conductive magnetic metal such as -keckle or cobalt.
  • a nickel particle as a core particle and a surface having a gold mesh with good conductivity.
  • Examples of the method for coating the surface of the core particle with the conductive metal include mechanical plating and electrolytic plating.
  • the conductive metal coverage on the particle surface (the conductive metal relative to the surface area of the core particle) is obtained because good conductivity is obtained.
  • the ratio of the coating area is preferably 40% or more, more preferably 45% or more, and particularly preferably 47 to 95%.
  • the coating amount of the conductive metal is preferably 0.5 to 50% by mass of the core particles, more preferably 2 to 30% by mass, further preferably 3 to 25% by mass, and particularly preferably 4 to 20% by mass.
  • the coating amount is preferably 0.5 to 30% by mass of the core particles, more preferably 2 to 20% by mass, and still more preferably 3 to 15% by mass.
  • the particle size of the conductive particles is preferably 1-100 ⁇ m, more preferably 2-50 ⁇ m, even more preferably 3-30 ⁇ m, and particularly preferably 4-20 ⁇ m. m.
  • the particle size distribution (DwZDn) of the conductive particles P is preferably 1 to 10, more preferably 1.01 to 7, more preferably 1.05 to 5, particularly preferably 1.1 to 4.
  • the obtained conductive path forming part 61 is easily deformed under pressure, and in the conductive path forming part 61, the conductive particles are formed between the conductive particles. Sufficient electrical contact is obtained.
  • the shape of the conductive particles is not particularly limited, but in the polymer material forming material From the viewpoint of being easily dispersible, spherical particles, star-shaped particles, or secondary particles in which these particles are aggregated are preferable.
  • the conductive particles particles whose surfaces are treated with a coupling agent such as a silane coupling agent or a lubricant can be appropriately used.
  • a coupling agent such as a silane coupling agent or a lubricant.
  • Such conductive particles are contained in the conductive path forming portion in a proportion of preferably 15 to 45%, more preferably 20 to 40% in terms of volume fraction. If this ratio is too small, the conductive path forming part 61 having a sufficiently small electric resistance value may not be obtained. On the other hand, when this ratio is excessive, the obtained conductive path forming part 61 becomes fragile and the necessary elasticity as the conductive path forming part 61 may not be obtained immediately.
  • the thickness of the conductive path forming portion 61 is preferably 20 to 250 ⁇ m, more preferably 30 to 200 ⁇ m. When this thickness is too small, the absorption capability with respect to the pressurization of the thickness direction becomes low. On the other hand, when the thickness is excessive, good conductivity may not be obtained.
  • the protrusion height of the protrusion 61a in the conductive path forming portion 61 is preferably 5 to 70% of the thickness of the conductive path forming portion 61, more preferably 10 to 60%.
  • the conductive path forming part 61 is formed.
  • the conductive path forming portion 61 can be formed by the method shown in FIGS. 7 to 16 or the method shown in FIGS.
  • the relay substrate 29 is obtained by the following process.
  • a releasable support plate 70 is prepared, and on the surface of the releasable support plate 70, a liquid insulating material layer that is cured to become an insulating elastic polymer substance.
  • 62A is formed by a printing method or the like.
  • a substrate 73 having a through hole is placed on the insulating part material layer 62A. Then, from the upper surface side of the substrate 73, a liquid elastomer material that is cured to become an insulating elastic polymer material is filled into the through holes 75 of the substrate 73 by a printing method or the like. Further, by applying an elastomer material to the surface of the substrate 73, as shown in FIG. 50 (c), an insulating material layer 62A integrally formed on both side surfaces of the substrate 73 and the through holes 75 is obtained. .
  • the releasability support in which a plurality of conductive path forming portions 61 are formed.
  • the holding plate 65 By superposing the holding plate 65 on the releasable support plate 70 on which the substrate 73 is placed and the insulating material layer 62A is formed in both side surfaces and through holes 75, the conductive path forming portion 6 1 Each is brought into contact with the releasable support plate 70.
  • the insulating material layer 62A is formed around the conductive path forming portion 61.
  • the conductive path forming part 61 is compressed by pressurizing the releasable support plate 65, and the insulating part material layer 62A is cured. After the curing process, release the pressure from the releasable support plate 65 and the releasable support plate 70 and release them from the releasable support plate 65 and the releasable support plate 70, so that both ends of the conductive path forming part 61 The part protrudes from the insulating part 62. As a result, as shown in FIG.
  • the insulating portion 62 that insulates the pair of adjacent conductive path forming portions 61 and 61 from each other is formed integrally with the conductive path forming portion 61, and the conductive path
  • the relay substrate 29 in which the forming part 61 protrudes from the surface of the insulating part 62 is obtained.
  • the metal film 64 may be formed at the tip of the conductive path forming portion 61.
  • the metal film 64 may be formed at the tip portions on both sides of the conductive path forming portion 61 as shown in the figure, or may be formed at the tip portion on one side of the conductive path forming portion 61.
  • Such a metal film can be formed by various known methods such as a metal plating method, vapor deposition by a sputtering method, and a method of attaching a metal plate to the tip of the conductive path forming portion 61 with an adhesive.
  • the same material as the releasable support plate 65 for forming the conductive path forming portion 61 can be used.
  • Examples of methods for applying the material for the elastomer used for the insulating material layer 62A include printing methods such as screen printing, roll coating methods, blade coating methods, etc.
  • the thickness of the insulating material layer 62A is as follows. Is set according to the thickness of the insulating part 62 to be formed
  • the insulating part material layer 62A is normally cured by heat treatment.
  • the specific heating temperature and heating time are appropriately set in consideration of the type of elastomer material constituting the insulating material layer 62A.
  • the through-hole in the board 73 is a numerically controlled drilling device, photoetching process, laser processing It can be formed by a process.
  • FIG. 48 The cross-sectional view of FIG. 48 shows an example of performing a four-terminal inspection.
  • a relay board 29 is disposed between the circuit board 1 to be tested and the pitch conversion board 23.
  • the connecting electrode 25 is formed.
  • a pair of conductive path forming portions 61 are formed in one through hole of the relay substrate 29.
  • the pair of conductive path forming portions 61 and 61 are electrically connected to the current supply electrode 27 and the voltage measurement electrode 28 on one end side, and the test electrode 2 of the circuit board 1 to be tested on the other end side. Electrical inspection is performed in this state.
  • a dispersive anisotropic conductive sheet may be disposed on one side or both sides of the relay substrate 29, a dispersive anisotropic conductive sheet may be disposed.
  • the relay substrate 29 since the relay substrate 29 is provided, local stress concentration due to the electrodes of the circuit board 1 to be inspected can be sufficiently relaxed even if a thin dispersive anisotropic conductive sheet that does not impair the resolution is used.
  • . 52 (a) and 52 (b) are cross-sectional views showing an example in which a dispersive anisotropic conductive sheet is arranged. In FIG. 52 (a), between the pitch conversion board 23 and the relay board 29, FIG.
  • a first anisotropic conductive sheet 22 which is a distributed anisotropic conductive sheet, is arranged to form a pair of conductive paths for the current supply electrode 27 and voltage measurement electrode 28 of the pitch conversion board 23 and the relay board 29.
  • the parts 61 and 61 are electrically connected via the first anisotropic conductive sheet 22.
  • the first anisotropic conductive sheets 22, 22 which are distributed anisotropic conductive sheets are arranged on both sides of the relay substrate 29, and the current for the pitch conversion substrate 23 is supplied.
  • the electrode 27 and the voltage measuring electrode 28 and the pair of conductive path forming portions 61 and 61 of the relay substrate 29 are electrically connected via the first anisotropic conductive sheet 22 and the circuit under test is also connected. Electrically connect the electrode to be inspected 2 of the substrate 1 and the pair of conductive path forming portions 61 and 61 of the relay substrate 29 via the first anisotropic conductive sheet 22! /
  • the first anisotropic conductive sheet 22 constituting the circuit board side connector 21 and arranged adjacent to the relay board 29 has an insulating elastic polymer material force as shown in FIG. Sheet base
  • the material 63 contains a large number of conductive particles P dispersed in the plane direction and arranged in the thickness direction.
  • the thickness of the first anisotropic conductive sheet 22 is preferably 20 to 200 ⁇ m, more preferably 30 to 100 m.
  • the minimum thickness is less than 20 m, the mechanical strength of the first anisotropic conductive sheet 22 is low and the required durability may not be obtained.
  • the thickness of the first anisotropic conductive sheet 22 exceeds 200 / zm, the electrical resistance in the thickness direction tends to increase, and when the pitch of the electrodes to be connected is small, the pressure is increased. As a result, the required insulation cannot be obtained between the conductive paths formed by the above, and an electrical short circuit may occur between the electrodes to be inspected, making it difficult to electrically inspect the circuit board to be inspected.
  • the elastic polymer substance constituting the sheet base 63 of the first anisotropic conductive sheet 22 preferably has a durometer hardness of 30 to 90, more preferably 35 to 80, and still more preferably. 4 0-70.
  • “Du-mouth meter hardness” here refers to the value measured with a type A durometer based on the JIS K6253 durometer hardness test.
  • the durometer hardness of the elastic polymer material is less than 30, when the anisotropic conductive sheet is pressed in the thickness direction, the anisotropic conductive sheet is greatly compressed and deformed, resulting in a large permanent distortion. It becomes difficult to use for inspection due to deterioration and durability tends to be lowered.
  • the elastic polymer material constituting the base material of the first anisotropic conductive sheet 22 is not particularly limited as long as it exhibits the above-mentioned durometer hardness. However, from the viewpoint of forming workability and electrical properties. It is preferable to use silicone rubber!
  • the first anisotropic conductive sheet 22 has a thickness W m) and a number average particle size of magnetic conductive particles.
  • the ratio W ZD to the diameter D m) is preferably 1.1 to 10.
  • the “number average particle diameter of the functional particles” means that measured by a laser diffraction scattering method. If the ratio W ZD is less than 1.1, the magnetic conductivity with respect to the thickness of the anisotropic conductive sheet
  • this anisotropic conductive sheet Since the diameter of the particles is the same or larger, this anisotropic conductive sheet is less elastic, so when this anisotropic conductive sheet is placed on the circuit board to be inspected. In addition, the circuit board to be inspected is easily damaged.
  • the magnetic conductive particle is a saturated magnetic layer because the magnetic conductive particle can be easily moved by the action of a magnetic field in the sheet molding material for forming the anisotropic conductive sheet.
  • the saturation magnetization is 0.1 lWbZm 2 or more
  • the magnetically conductive particles can be surely moved by the action of a magnetic field in the production process to obtain a desired orientation state.
  • a chain of magnetic conductive particles can be formed.
  • magnetic conductive particles include particles of metals such as iron, nickel and cobalt, particles of alloys thereof, particles containing these metals, or particles containing these metals as core particles.
  • Composite particles with the surface of core particles coated with highly conductive metal, or inorganic substance particles such as non-magnetic metal particles or glass beads, or polymer particles are used as core particles.
  • highly conductive metal refers to a metal having a conductivity of 5 ⁇ 10 6 ⁇ — 1 !!! — 1 or higher at 0 ° C.
  • gold, silver, rhodium, platinum, chromium, and the like can be used as such a highly conductive metal.
  • gold is chemically stable and has high conductivity. Is preferred to use.
  • composite particles in which nickel particles are used as core particles and the surface thereof is plated with a highly conductive metal such as gold or silver are preferable.
  • the magnetic conductive particles preferably have a coefficient of variation of the number average particle diameter of 50% or less. More preferably, it is 40% or less, more preferably 30% or less, and particularly preferably 20% or less.
  • “the coefficient of variation of the number average particle diameter” is an expression: ( ⁇ ZDn) X 100 (where ⁇ indicates the value of the standard deviation of the particle diameter, and Dn indicates the number average particle diameter of the particle) )).
  • Such magnetic conductive particles can be obtained by making a metal material into particles by a conventional method, or preparing commercially available metal particles and classifying the particles.
  • the particle classification treatment can be performed, for example, by a classification device such as an air classification device or a sonic sieving device. Specific conditions for the classification treatment are appropriately set according to the number average particle diameter of the target conductive metal particles, the type of the classification device, and the like.
  • the specific shape of the magnetic conductive particles is not particularly limited! However, for example, secondary particles in which a plurality of spherical primary particles are integrally connected are preferably used.
  • the coverage of the highly conductive metal on the surface is preferably 40% or more, more preferably 45% or more, particularly preferably 47 to 95. %.
  • the coating amount of the highly conductive metal is preferably 2.5 to 50 mass%, more preferably 3 to 45 mass%, still more preferably 3.5 to 40 mass% of the weight of the core particles. % By mass, particularly preferably 5 to 30% by mass.
  • An anisotropic conductive sheet containing a large number of conductive particles dispersed in the surface direction and arranged in the thickness direction in such an insulating elastic polymer material is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-77560.
  • a flowable molding material containing conductive particles exhibiting magnetism in a polymer material that is cured to become an elastic polymer substance is prepared, and a molding made of this molding material is prepared.
  • the material layer is formed between the one-surface-side molded member that contacts one surface of the molding material layer and the other-surface-side molded member that contacts the other surface of the molding material layer. It can be manufactured by a method of applying a magnetic field to the shape material layer in the thickness direction and hardening the molding material layer.
  • the second anisotropic conductive sheet 26 arranged on the side of the relay pin unit 31 of the pitch conversion board 23 is composed of a large number of conductive materials in an insulating elastic polymer material as shown in FIG. 1 is composed of conductive path forming portions 71 formed by arranging the conductive particles P in the thickness direction, and insulating portions 72 that separate the respective conductive path forming portions 71, the details of which are shown in the embodiment of FIG. Same as the case.
  • the tester-side connectors 41a and 41b include third anisotropic conductive sheets 42a and 42b, connector boards 43a and 43b, and base plates 46a and 46b. Prepare and speak.
  • the third anisotropic conductive sheet 42a, 42b the same one as the second anisotropic conductive sheet 26 described above is used. That is, as shown in FIG. 33, the conductive path forming portions formed by arranging a large number of conductive particles in the insulating elastic polymer material in the thickness direction are separated from the respective conductive path forming portions. An anisotropic conductive sheet composed of an insulating part is used.
  • the connector boards 43a and 43b are provided with an insulating board, and pin-side electrodes 45a and 45b are formed on the surface thereof on the relay pin unit 31 side as shown in FIGS.
  • These pin side electrodes 45 are, for example, 2.54 mm, 1.8 mm, 1.27 mm, 1.06 mm, 0.8 mm, 0.775 mm, 0.5 mm, 0.45 mm, 0.3 mm or 0.2 mm. They are arranged on lattice points with a constant pitch, and the arrangement pitch is the same as the arrangement pitch of the conductive pins 32 of the relay pin unit 31.
  • Each pin-side electrode 45 is electrically connected to the tester-side electrodes 44a, 44b by a wiring pattern formed on the surface of the insulating substrate and an internal wiring formed therein.
  • the relay pin unit 31 is configured in the same manner as that shown in FIGS. The specific details are as described above.
  • the object to be inspected between the first inspection jig 1 la and the second inspection jig 1 lb When electrical inspection is performed by clamping both sides of the circuit board 1 to be inspected, the relay pin unit 31 moves in the thickness direction of the relay pin unit 31 and the elastic portion of the relay board 29 at the initial stage of pressurization. The pressure is absorbed by the rubber elastic compression of the second anisotropic conductive sheet 26 and the third anisotropic conductive sheet 42, and there is some variation in the height of the electrodes to be inspected on the circuit board 1 to be inspected. Can be absorbed.
  • the first contact support position between the first support pin and the intermediate holding plate and the second contact support position between the second support pin and the intermediate support plate are the intermediate support plate.
  • the force acts in the vertical direction as shown in Fig. 57.
  • the elastic portion of the relay board 29 and the first In addition to the elastic compression of the second anisotropic conductive sheet 26 and the third anisotropic conductive sheet 42, the first insulating plate 34, the second insulating plate 35 and the first insulating plate 34 of the relay pin unit 31
  • the panel holding elasticity of the intermediate holding plate 36 disposed between the insulating plate 34 and the second insulating plate 35 causes variations in the height of the electrodes to be inspected of the circuit board 1 to be inspected, for example, solder ball electrodes The height variation, by dispersing pressure concentration, as possible out to avoid local stress concentration.
  • the intermediate holding plate 36 has the second support center 33 about the first support pin 33 and the first holding support position 38A with respect to the intermediate holding plate 36. While holding in the direction of the insulating plate 35 (see the portion E surrounded by the one-dot chain line in FIG. 57), hold the second support pin 37 and the intermediate holding plate 36 around the second contact support position 38B. The plate 36 crawls in the direction of the first insulating plate 34 (see the portion D surrounded by the one-dot chain line in FIG. 57).
  • “squeeze” and “stagnation direction” refer to the squeezing so that the intermediate holding plate 36 protrudes in the convex direction and the protruding direction.
  • the intermediate holding plate 36 is sandwiched in opposite directions around the first contact support position 38A and the second contact support position 38B, so the first inspection jig When the circuit board 1 to be inspected is further pressed between the 11a and the second inspection jig l ib, the panel elastic force of the intermediate holding plate 36 is exhibited.
  • the second anisotropic conductive sheet 26 The height of the conductive pin 32b is absorbed by the compression of the protruding portion of the conductive path forming portion, but the pressure force that cannot be absorbed by the compression of the protruding portion is applied to the first insulating plate 34b.
  • the first insulating plate 34 and the second insulating plate 35 are also composed of the first support pin 33 and the second support pin 37.
  • the circuit board 1 to be inspected is further pressurized between the first inspection jig 11a and the second inspection jig l ib.
  • the panel elastic force of the first insulating plate 34 and the second insulating plate 35 is exhibited.
  • FIG. 58 is a cross-sectional view similar to FIG. 54 for explaining another embodiment of the inspection apparatus of the present invention (only the second inspection jig is shown for convenience), and FIG. 59 is a diagram of the relay pin unit. It is an expanded sectional view.
  • This inspection apparatus has basically the same configuration as the inspection apparatus shown in FIG. 46, and the same reference numerals are assigned to the same components.
  • a plurality of (three in this embodiment) intermediate holdings are provided between the first insulating plate 34 and the second insulating plate 35.
  • the plates 36 are spaced apart from each other by a predetermined distance, and the holding plate support pins 39 are arranged between the adjacent intermediate holding plates 36.
  • the holding support position of the holding plate support pin 39b that also contacts the intermediate holding plate 36b with one side side force with respect to the intermediate holding plate 36b, and the intermediate holding plate 36b The contact position of the first support pin 33b, the second support pin 37b, or the holding plate support pin 39b with which the other side force abuts against the intermediate holding plate 36b is the thickness direction of the intermediate holding plate 36b. It is necessary to arrange them at different positions on the projection surface of the intermediate holding plate projected onto the screen.
  • the holding plate support pins 39b that are in one-side force contact with the intermediate holding plate 36b are in contact with and supported by the intermediate holding plate 36b and the intermediate holding plate 36b.
  • the first support pin 33b, the second support pin 37b, Alternatively, the holding support position of the holding plate support pin 39b with respect to the intermediate holding plate 36b is arranged at a different position on the intermediate holding plate projection surface projected in the thickness direction of the intermediate holding plate 36b.
  • the "different position” refers to the first contact support position 38A between the first support pin 33 and the intermediate holding plate 36 and the second position in the above-described embodiment.
  • An arrangement similar to the relative position described in relation to the relationship between the support pin 37 and the second contact support position 38B of the intermediate holding plate 36 can be made.
  • the upper intermediate holding plate 36b is in contact with the intermediate holding plate 36b by the holding plate support pin 39b that also contacts the intermediate holding plate 36b with one surface side force.
  • the support position 39A and the contact support position 38A with respect to the intermediate holding plate 36b of the first support pin 33b that also contacts the intermediate holding plate 36b with the other side force are projected in the thickness direction of the intermediate holding plate 36b.
  • the intermediate holding plate is arranged at different positions on the projection surface.
  • the holding plate support pin 39b that comes into contact with the intermediate holding plate 36b from one surface side is in contact with and supported by the intermediate holding plate 36b 39A.
  • the intermediate support plate projection projected in the thickness direction of the intermediate support plate 36b is the contact support position 39A with respect to the intermediate support plate 36b of the support plate support pin 39b that also contacts the intermediate support plate 36b with the other side force. Placed in different positions across the surface.
  • the holding plate support pins 39b that come into contact with the intermediate holding plate 36b from one surface side are in contact with the intermediate holding plate 36b.
  • the intermediate holding projected by 39A and the abutment support position 38B of the second support pin 37b that comes into contact with the intermediate holding plate 36b from the other surface side with respect to the intermediate holding plate 36b is projected in the thickness direction of the intermediate holding plate 36b. They are arranged at different positions on the plate projection plane.
  • the spring property is further exhibited by the plurality of intermediate holding plates 36, and the variation in the height of the electrodes to be inspected on the circuit board 1 to be inspected Dispersion of pressure concentration can further avoid local stress concentration, and local breakage of the elastic part of the relay board 29 is suppressed, and as a result, repeated use durability of the relay board 29 is improved. As a result, the number of replacements of the relay board 29 is reduced, and the inspection work efficiency is improved.
  • the number of intermediate holding plates 36 is not particularly limited as long as it is plural.
  • the circuit board 1 to be inspected may be a semiconductor integrated circuit device such as a knock IC, MCM, or CSP, or a circuit device formed on a wafer, in addition to a printed circuit board.
  • the printed circuit board may be a single-sided printed circuit board as well as a double-sided printed circuit board.
  • the first inspection jig 11a and the second inspection jig Lib need not necessarily be the same in materials used, member structures, and the like, and they may be different.
  • the tester side connector may be configured by stacking a plurality of anisotropic conductive sheets and a circuit board such as a connector board.
  • a plurality of conductive path forming portions extending in the thickness direction and these conductive path forming portions are insulated from each other. It consists of an insulating part, and the conductive particles are contained only in the conductive path forming part, whereby the conductive particles are unevenly distributed in the surface direction, and the conductive path forming part protrudes on one side of the sheet.
  • the force using what is used is not necessarily limited to this.
  • a support pin 49 may be arranged between the pin 46 and the pin 46.
  • These support pins 49 provide the first support pin 33 and the second support pin 37 (the first support pin 33, the second support pin 37, and the holding plate support pin 39 in FIGS. 44 and 58).
  • Example 1 Circuit board inspection to inspect the following circuit board for evaluation as shown in Fig. 1, which is suitable for the inspection section of rail transport type automatic circuit board inspection machine (product name: STARREC V5) A device was made.
  • An evaluation circuit board 1 having the following specifications was prepared.
  • Diameter of the electrode to be inspected on the upper surface side 0.2 mm
  • Diameter of the electrode to be inspected on the bottom side 0.2 mm
  • Numerically controlled drilling on a laminated material (product name: R-1766, manufactured by Matsushita Electric Industrial Co., Ltd.) in which a thin metal layer made of copper with a thickness of 18 m is formed on both surfaces of an insulating substrate made of glass fiber reinforced epoxy resin.
  • an electroless plating process is performed on the laminated material in which the through holes are formed using an EDTA type copper plating solution, thereby forming a copper plating layer on the inner wall of each through hole.
  • an electrolytic copper plating process using a copper sulfate plating solution, a cylindrical via having a thickness of about 10 m is electrically connected to each thin metal layer on the surface of the laminated material in each through hole. A hole was formed.
  • a 25 ⁇ m thick dry film resist (Tokyo Ohka, product name: FP-225) is laminated on the thin metal layer on the surface of the laminated material to form a resist layer.
  • a protective seal was placed on the thin metal layer on the other side.
  • a photomask film is placed on the resist layer, and the resist layer is subjected to an exposure process using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), followed by a development process, whereby a resist pattern for etching is formed. Formed. Then, the thin metal layer on the surface on which the resist pattern is formed is etched.
  • a protective seal was applied to the surface of the insulating substrate on which the connection electrode and the pattern wiring portion were formed.
  • the protective seal on the thin metal layer on the other side of the laminated material was removed, and a dry film resist (product name: FP-225, 25 m thick) was applied on the thin metal layer on this side.
  • Lamination was performed to form a resist layer.
  • a photomask film is disposed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.).
  • a resist pattern for etching was formed on the thin metal layer.
  • 7200 terminal electrodes and a pattern wiring portion for electrically connecting each terminal electrode and via hole were formed on the back surface of the insulating substrate, and the resist pattern was removed.
  • a 38 ⁇ m thick dry film solder resist (product name: Congo Mask 2 015) was laminated on the back surface of the insulating substrate on which the terminal electrodes and the pattern wiring portion were formed.
  • An insulating layer is formed, a photomask film is disposed on the insulating layer, and then the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing) and then developed. 7200 openings with a diameter of 0.4 mm were formed to expose the electrodes.
  • the pitch conversion substrate 23a for the first inspection jig 11a was produced.
  • This pitch conversion board 23a has a vertical and horizontal dimension of 120mm x 160mm, a thickness of 0.5mm, and the connection electrodes are rectangular with a horizontal dimension of 60m and a vertical dimension of 120m.
  • a pitch conversion substrate 23b for the second inspection jig ib having 5200 connection electrodes on the front surface and 5200 terminal electrodes on the back surface was produced.
  • This pitch conversion board 23b has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, a connection electrode of 60 m in the horizontal direction and a rectangle of 120 m in the vertical direction.
  • the surface roughness is 0.02 m.
  • the first anisotropic conductive sheet 22 was integrated with the surface side of the pitch conversion substrate 23 by the method shown in FIGS. 7 to 16 to obtain a pitch conversion adapter integrated 60.
  • Conductive particles are dispersed by dispersing 400 parts by weight of conductive particles in which gold is coated on nickel core particles in 100 parts by weight of addition-type liquid silicone rubber (the ratio of gold to core particles is 2% by weight).
  • An elastomeric material was prepared. This conductive elastomer material was applied to the surface of a releasable support plate 65 made of stainless steel having a thickness of 5 mm by screen printing.
  • a conductive elastomer material layer 61A having a thickness of 0.05 mm was formed on the releasable support plate 65 (Figs. 7 and 8).
  • the conductive elastomer material layer 61A was subjected to a curing treatment at 120 ° C. for 1 hour while applying a magnetic field of 2 Tesla in the thickness direction by an electromagnet. As a result, a conductive elastomer layer 61B having a thickness of 0.05 mm supported on the support plate 65 was formed (FIGS. 9 and 10).
  • a thin metal layer 66 made of copper having a thickness of 0.3 m was formed by subjecting the surface of the conductive elastomer layer 61B supported on the releasable support plate 65 to electroless mesh treatment.
  • the laser processing uses a carbon dioxide laser processing machine "ML-605GTX” (manufactured by Mitsubishi Electric Corporation), and the laser beam diameter is 60 m and the laser output is 0.8 mJ. This was done by irradiating the processing point with 10 shots of laser beam.
  • an insulating material layer 62A having a thickness of 0.05 mm was formed. Then, on this insulating part material layer 62A, the releasable support plate 65 on which 7200 conductive path forming parts 61 are formed is aligned and overlapped to connect the pitch converting substrate 23a. Each of the electrodes 25 and the corresponding conductive path forming part 61 were brought into contact with each other.
  • the thickness of the insulating part material layer 62A is set to 0.04 mm, and the thickness of the conductive path forming part 61 is set to 0.0.
  • 05mm force was compressed to 0.04mm inertia.
  • the insulating portion 62 was formed between the adjacent conductive path forming portions 61 by curing the insulating portion material layer 62A under the conditions of 120 ° C. and 1 hour.
  • the anisotropic conductive sheet 22a of this pitch conversion adapter integrated 60a has 7200 number of force of the conductive path forming part 61, the thickness of the conductive path forming part 61 is 0.05 mm, the thickness of the insulating part 62 is 0.04 mm, The width of the insulating part between the adjacent conductive path forming parts 61 forming a pair is 30 m, and the projecting height force of the conductive path forming part 61 is 62 mm.
  • the number of conductive path forming parts 61 is 5200
  • the thickness of the conductive path forming part 61 is 0.05 mm
  • the insulating part 62 Thickness is 0 04mm
  • the width of the insulating part between the adjacent conductive path forming parts 61 forming a pair is 30 / zm.
  • the second inspection treatment in which the projecting height of the conductive path forming part 61 from the insulating part 62 is 0. Olmm.
  • a pitch conversion adapter integrated 60b for the tool l ib was produced.
  • this pitch conversion adapter integrated unit 60 On the back side of this pitch conversion adapter integrated unit 60, there are a plurality of conductive path forming parts extending in the thickness direction and insulating parts that insulate them from each other.
  • the circuit board side connector 21 was obtained by arranging the second anisotropic conductive sheet 26 made of a conductive sheet.
  • the second anisotropic conductive sheet 26 disposed between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 33, and specifically has the following configuration. The ones used were used.
  • Thickness of conductive path forming part 0.6mm
  • Projection height of conductive path forming part 0.05 mm
  • Conductive particles Material: Nickel particles plated with gold, average particle diameter; 35; ⁇ ⁇ , content of conductive particles in the conductive path forming part; 30% by volume
  • Elastic polymer material Material; Silicone rubber, Hardness; 30
  • the material of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35 is made of an insulating material having a specific resistance of IX 10 10 ⁇ 'cm or more, and a glass fiber reinforced epoxy resin. 1. A 9mm one was used.
  • the distance L1 between the first insulating plate 34 and the intermediate holding plate 36 is 36.3 mm, and the distance L2 between the second insulating plate 35 and the intermediate holding plate 36 is 3 mm.
  • the first support pin 33 (diameter 2 mm, length 36.3 mm) and the second support pin 37 (diameter 2 mm, length 3 mm) are fixedly supported and the first insulating plate Between the pin 34 and the second insulating plate 35, the conductive pin 32 having the following constituent force is arranged in the through hole 83 (0.4 mm in diameter) so that it can move freely. And produced.
  • the first contact support position 38A of the first support pin 33 with the intermediate holding plate 36 and the second contact support position 38B of the second support pin 37 with the intermediate holding plate 36 are shown in FIG. As shown in Fig. 1, they were arranged in a grid pattern.
  • the separation distance between the first contact support positions 38A adjacent to each other and the separation distance between the second contact support positions 38B were 17.5 mm.
  • the tester-side connector 41 is composed of a third anisotropic conductive sheet 42, a connector board 43, and a base plate 46.
  • the third anisotropic conductive sheet 42 was the same as the second anisotropic conductive sheet 26 described above.
  • the insulation resistance between the connecting electrodes forming a pair of pitch conversion adapters 60 was evaluated as follows.
  • the vertical direction is 100 mm
  • the horizontal direction is 100 mm
  • the thickness is 0.
  • the created inspection device was set in the inspection section of the rail transport type circuit board automatic inspection machine “STARREC V5”, and the glass epoxy board 76 was set on the inspection device (see FIG. 60).
  • the press pressure of the rail conveyance type automatic circuit board inspection machine rSTARREC V5j was changed stepwise within a range of 100 to 210 kgf. Then, the insulation resistance between each pair of inspection electrodes 25 provided in the integrated pitch conversion adapter 60a for the first inspection jig 11a was measured 10 times for each press pressure condition.
  • the conduction resistance value of the connection electrode 25 forming a pair was measured.
  • the insulation resistance value between the paired test electrodes 25, that is, the insulation part 62 between the paired conductive path forming parts 61 in the first anisotropically conductive sheet 21 provided integrally. The insulation resistance value of was measured.
  • the ratio of the electrode pair of the connection electrode for which the measured insulation resistance value was 100 ⁇ or more was judged to be good insulation, and the point judged to be good insulation with respect to the total number of inspection points (hereinafter referred to as the “insulation pass point ratio”). ) was calculated.
  • connection electrode 25 in the pitch conversion adapter integrated 60a for the first inspection jig 11a is 7
  • the insulating passing score ratio is 99.9% or more, and if the insulating passing score ratio is less than 99.9%, an inspection is required. Occasionally, a leakage current flows from the connection electrode used as the current supply electrode to the connection electrode used as the voltage measurement electrode.
  • the created inspection device was set in the inspection section of the rail transport type automatic circuit board inspection machine rSTARREC V5J, and the evaluation circuit board 1 prepared for the inspection device was set.
  • the inspection point (hereinafter referred to as “NG inspection point”) where the measured conduction resistance value is 10 ⁇ or more.
  • the NG inspection point ratio (hereinafter referred to as “NG inspection point ratio”) in the total inspection points is calculated as the continuity failure, and the lowest press pressure at which the NG inspection point ratio is 0.01% or less is calculated. The minimum pressing pressure was used.
  • the NG inspection point ratio is required to be 0.01% or less for practical use. If the NG inspection point ratio exceeds 0.01%, the product to be inspected is a good product. There is a possibility that an erroneous inspection result that the circuit board is defective may be obtained, so that it may not be possible to perform a reliable electrical inspection of the circuit board.
  • Low minimum press pressure means that the circuit board to be inspected can be electrically inspected with a low press pressure. If the pressurized pressure at the time of inspection can be set low, deterioration of the circuit board to be inspected, the anisotropic conductive sheet, and the substrate for pitch conversion due to the pressurized pressure at the time of inspection can be suppressed.
  • the structure of the inspection apparatus can be made small and compact.
  • the durability of the inspection device can be improved and the cost of manufacturing the inspection device can be reduced.
  • the created inspection device was set in the inspection section of the rSTARREC V5J rail transport type automatic circuit board inspection machine.
  • the conduction resistance value was measured 10 times when a current of 1 milliampere was applied to the electrode for inspection under the condition of a press pressure of 130 kgf.
  • NG inspection points where the measured conduction resistance value was 10 ⁇ or more were judged as continuity defects, and the ratio of NG inspection points to the total inspection points (NG inspection point ratio) was calculated.
  • the press pressure related to the measurement is released and the inspection device is returned to the non-pressurized state, and the next measurement of the conduction resistance value is a press pressure of a predetermined magnitude. Was performed again.
  • the created inspection device was set in the inspection section of the rail transport type automatic circuit board inspection machine rSTARREC V5J, and the evaluation circuit board 1 prepared for the inspection device was set.
  • the press pressure condition of the rail conveyance type automatic circuit board inspection machine “STARREC V5” is 150 kgf, and the electrodes to be inspected on the evaluation circuit board 1 are connected electrodes for current supply under the condition of the press pressure of 150 kgf.
  • the conduction resistance value was measured 10 times with the connection electrode for voltage measurement.
  • NG inspection points were judged as poor continuity, and the ratio of NG inspection points to the total inspection points (NG inspection point ratio) was calculated.
  • the setting of the conduction resistance value determined as the NG inspection point is changed stepwise to a resistance value lower than 100 ⁇ , and the evaluation circuit board is set for each set resistance value. A rating of 1 was made.
  • Example 1 As shown in FIG. 61, in the inspection apparatus of Example 1, the pitch conversion adapter integrated 60 is changed to the pitch conversion board 23, and a thickness of 100 is provided between the pitch conversion board 23 and the evaluation circuit board 1. A ⁇ m dispersed anisotropic conductive sheet 77 was disposed.
  • Example 1 shows the measurement results of insulation
  • Table 2 shows the measurement results of the minimum press
  • Table 3 shows the measurement results of the durability of the anisotropic conductive sheet
  • Table 4 shows the results of evaluation of the continuity failure of the circuit board under test. It was shown to.
  • the dispersed anisotropic conductive elastomer sheet having a thickness of 100 / z m used in Comparative Example 1 was replaced with a dispersed anisotropic conductive sheet 77 having a thickness of 40 m.
  • Example 1 shows the measurement results of the insulation
  • Table 2 shows the measurement results of the minimum press
  • Table 2 shows the measurement results of the durability of the anisotropic conductive sheet
  • Table 3 shows the results of the evaluation of the continuity failure of the circuit board under test.
  • Table 4 shows.
  • 25 parts by volume of conductive particles with an average particle size of 20 m are added to 100 parts by volume of a mixture of two liquid type addition type liquid silicone rubbers A and B mixed in equal proportions. And mixed.
  • a defoaming treatment by reduced pressure was performed to prepare a conductive elastomer material.
  • conductive particles nickel particles are used as core particles, and electroless gold plating is applied to these core particles. (Average coating amount: an amount that is 5% by weight of the weight of the core particles) was used.
  • a polyester resin sheet (product name: “Mattle Mirror S 10”, manufactured by Torayen Earth) with a glossy surface (surface roughness of 0.04 / zm) and a backside of non-glossy surface and a thickness of 0.1 mm. Two sheets were prepared. A frame-shaped spacer having a thickness of 100 ⁇ m and having a rectangular opening of 120 mm ⁇ 200 mm was disposed on the surface of one polyester resin sheet.
  • the prepared conductive elastomer material is applied in the opening of the spacer, and the other polyester resin sheet is applied to the conductive elastomer material on the surface thereof. The material was placed in contact with the material for use.
  • the conductive elastomer material is sandwiched between two polyester resin sheets, and the thickness of the conductive elastomer is 100 ⁇ m. A material layer was formed.
  • a rectangular conductive elastomer sheet having a thickness of 100 m was manufactured by curing the molding material layer at 0 ° C. for 30 minutes.
  • the proportion of conductive particles in the obtained conductive elastomer sheet was 12% in terms of volume fraction.
  • This conductive elastomer sheet was cut to 110 mm x 110 mm to obtain a dispersed anisotropic conductive elastomer sheet used in Comparative Example 1.
  • the thickness of the spacer was changed to 40 / zm, and a 40 ⁇ m thick dispersed anisotropic conductive sheet used in Comparative Example 2 was obtained in the same manner.
  • Example 1 0.52 0.14 0 0 0 0 130 Comparative Example 2 0.48 0.11 0 0 0 0 130
  • the anisotropic conductive sheet having good electrical insulation between the connection electrodes and low minimum pressing pressure is obtained. It can be seen that it is superior in durability, has little strength, and generates very little conduction failure.
  • Circuit board for inspecting the following evaluation circuit board as shown in Fig. 46 which conforms to the inspection part of rail transport type automatic circuit board inspection machine (product name: STARREC V5). An inspection device was produced.
  • An evaluation circuit board 1 having the following specifications was prepared.
  • Diameter of the electrode to be inspected on the bottom side 0.2 mm
  • a laminated material (made by Matsushita Electric Industrial Co., Ltd., product name: R-1766) in which a thin metal layer made of copper is formed on both sides of a 0.5mm thick insulating substrate made of glass fiber reinforced epoxy resin.
  • a total of 7200 circular through-holes with a diameter of 0.1 mm each penetrating in the thickness direction of the laminated material were formed by a numerically controlled drilling apparatus.
  • an electroless plating treatment is performed on the laminated material in which the through-holes are formed using an EDTA type copper plating solution to form a copper plating layer on the inner wall of each through-hole, and further, a copper sulfate plating solution.
  • electrolytic copper plating treatment a cylindrical via hole having a thickness of about 10 m was formed in each through hole to electrically connect the thin metal layers on the surface of the laminated material to each other.
  • a 25 ⁇ m thick dry film resist (Tokyo Ohka, product name: FP-225) is laminated on the thin metal layer on the surface of the laminated material to form a resist layer.
  • a protective seal was placed on the thin metal layer on the other side.
  • a photomask film is placed on the resist layer, and the resist layer is subjected to an exposure process using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), followed by a development process, whereby a resist pattern for etching is formed. Formed.
  • the thin metal layer on the other side of the laminated material was used as a common electrode, and 7200 connection electrodes were obtained by subjecting each connection electrode to an electrolytic copper plating process. Formed. Next, the resist pattern was removed.
  • a dry film resist product name: FP-225
  • 25 m thick 25 m thick
  • a resist layer was formed by minating. After that, a photomask film is placed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.). A resist pattern for etching was formed on the thin layer.
  • an insulating layer is formed by laminating a dry film solder resist (product name: Congo Mask 2 015) with a thickness of 38 ⁇ m on the back surface of the insulating substrate on which the terminal electrode and the pattern wiring portion are formed. Then, a photomask film is placed on the insulating layer, and then the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then developed to expose the electrode. 7200 openings with a diameter of 0.4 mm were formed.
  • the pitch conversion substrate 23a for the first inspection jig 11a was produced.
  • This pitch conversion substrate 23a has a vertical and horizontal dimension of 120mmX160mm, a thickness of 0.5mm, and the dimensional force of the exposed part of the insulating layer surface of the connection electrode 25.
  • the protruding height of the connection electrode 25 from the surface of the insulating layer is about 30 / zm
  • the separation distance between the connection electrodes 25 is 30 m
  • the diameter of the terminal electrode 24 is 0.4 mm
  • the arrangement pitch of the terminal electrodes 24 was 0.75 mm.
  • the pitch conversion substrate 23b for the second inspection jig l ib has 5200 connection electrodes 25 on the front surface and 5 200 terminal electrodes 24 on the back surface. Was made.
  • the pitch conversion substrate 23b has a vertical and horizontal dimension of 120mm x 160mm, a thickness of 0.5mm, and the connection electrode 25 exposed at the surface of the insulating layer is approximately 60 / zm in the horizontal direction and approximately 120m in the vertical direction.
  • the protruding height of the surface force of the insulating layer in the connection electrode 25 is about 30 ⁇ m, the distance between the pair of connection electrodes 25 is 30 / ⁇ ⁇ , the diameter of the terminal electrode 24 is 0.4 mm, the terminal electrode
  • the 24 pitch is 0.75mm.
  • a metal mask for laser processing made of copper having a thickness of 18 m having an opening corresponding to the through hole to be formed was laminated, and the metal mask for laser processing was formed by a carbon dioxide gas laser processing machine.
  • a predetermined through-hole was formed in the liquid crystal polymer sheet by irradiating laser light through the opening.
  • laser processing with a carbon dioxide laser device uses a carbon dioxide laser processing machine “ML-605GTX” (manufactured by Mitsubishi Electric Corporation) under the conditions of a laser beam diameter of 60 m and a laser output of 0.8 mJ. This was done by irradiating a single processing point with a laser beam for 10 shots.
  • ML-605GTX manufactured by Mitsubishi Electric Corporation
  • Conductive particles are dispersed by dispersing 400 parts by weight of conductive particles in which gold is coated on nickel core particles in 100 parts by weight of addition-type liquid silicone rubber (the ratio of gold to core particles is 2% by weight).
  • An elastomeric material was prepared. This conductive elastomer material is applied to the surface of a releasable support plate 65 made of stainless steel having a thickness of 5 mm by screen printing, whereby a thickness of 0.05 mm is formed on the releasable support plate 65.
  • a material layer 61 A for conductive elastomer was formed (FIG. 7).
  • a releasable support plate is obtained by subjecting the conductive elastomer material layer 65 to curing at 120 ° C. for 1 hour while applying a magnetic field of 2 Tesla in the thickness direction by an electromagnet.
  • a conductive elastomer layer 65B with a thickness of 0.05 mm supported on 65 was formed (Fig. 10).
  • a thin metal layer 66 made of copper having a thickness of 0.3 m is formed on the surface of the conductive elastomer layer 65B supported on the releasable support plate 65 by performing an electroless mesh treatment (Fig. 11).
  • a resist layer 67 having a thickness of 25 ⁇ m and having 7200 rectangular openings of 60 m in width and 120 m in length formed by a photolithographic technique (FIG. 12).
  • an electrolytic plating process was performed on the surface of the thin metal layer 66 to form a metal mask 68 made of copper having a thickness of about 20 m in the opening of the resist layer 67 (FIG. 13).
  • the conductive elastomer layer 65B, the metal thin layer 66, and the resist layer 67 around the metal mask 68 are subjected to laser processing by a carbon dioxide gas laser device, so that the releasable support plate 65 7200 conductive path forming parts 61 supported on the upper surface are formed (FIG. 15B), and then the remaining conductive elastomer layer obtained by cutting the conductive path forming part 61 by laser processing is peeled off to form a figure. 15 As shown in (c), only the conductive path forming part 61 is releasable. It remained on the support plate 65. Thereafter, the remaining thin metal layer 66 and metal mask 68 were removed from the surface of the conductive path forming portion 61 by etching.
  • the laser processing by the carbon dioxide laser device uses the carbon dioxide laser processing machine “ML-605GTX” (manufactured by Mitsubishi Electric Corporation), the laser beam diameter is 60 m, and the laser output is 0.8 mJ. Under these conditions, a laser beam was irradiated for 10 shots at one processing point.
  • a substrate 73 made of a liquid crystal polymer sheet is placed on the surface of the releasable support plate 70 via the above-mentioned silicone rubber layer (Fig. 50 (b)), and the additional liquid is placed in the through hole of the substrate 73.
  • silicone rubber By applying silicone rubber, an insulating material layer 62A with a total thickness of 0.05 mm was formed (Fig. 50 (c)), and 7200 conductive paths were formed on this insulating material layer 62A.
  • the releasable support plate 65 on which the part 61 was formed was aligned and overlapped (FIG. 51 (a)).
  • the thickness of the conductive path forming portion 61 is inertially compressed to 0.05 mm force and 0.04 mm, and in this state, 120 ° C
  • the insulating part 62 is cured between the adjacent conductive path forming parts 61 by curing the insulating part material layer 62 under the condition of one hour (FIG. 51 (b)), and then the mold release property By releasing from the support plate, a relay substrate 29a for the first inspection jig 1la was manufactured (FIG. 51 (c)).
  • the relay board 29a for the first inspection jig 11a created in this way has a dimensional force S90mm (length) X 90mm (width) X 25 m (thickness) of the board 73a, and the conductive path forming portion 61a 7200, the dimension of the conductive path forming part 61a is 60 m wide, 120 / zm long, the thickness is about 0.05 mm, the thickness of the insulating part 62a is about 0.03 mm, and between the adjacent conductive path forming parts 61a The width of the insulating part 62a was 30 m, and the total projecting height of the conductive path forming part 61a from the insulating part 62a was about 0.02 mm.
  • a relay board 29b for the second inspection jig l ib was produced by the same process as the relay board 29a for the first inspection jig 11a.
  • This relay substrate 29b has a number of forces of the conductive path forming part 61b ⁇ 5200, a dimensional force of the conductive path forming ⁇ lb S width 60 ⁇ m, length 120 ⁇ m, thickness force S about 0.05 m m, the thickness of the insulating part 62b is about 0.03 mm, the width of the insulating part 62b between the adjacent conductive path forming parts 61b is 30 m, and the protruding height of the conductive path forming part 61b from the insulating part 62b It was about 0.02 mm.
  • the relay board 29 is arranged on one side of the pitch conversion board 23, and a plurality of conductive path forming parts extending in the thickness direction on the back side and insulating parts that insulate them from each other.
  • the circuit board side connector 21 was formed by arranging a second anisotropic conductive sheet 26 made of an unevenly distributed anisotropic conductive sheet with a projecting portion protruding.
  • the second anisotropic conductive sheet 26 arranged between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 33, and specifically has the following configuration. The ones used were used.
  • Thickness of conductive path forming part 0.6mm
  • Projection height of conductive path forming part 0.05 mm
  • Conductive particles Material: Nickel particles plated with gold, average particle diameter; 35; ⁇ ⁇ , content of conductive particles in the conductive path forming part; 30% by volume
  • Elastic polymer material Material; Silicone rubber, Hardness; 30
  • the material of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35 is made of an insulating material having a specific resistance of IX 10 10 ⁇ 'cm or more, and a glass fiber reinforced epoxy resin. 1. A 9mm one was used.
  • the distance L1 between the first insulating plate 34 and the intermediate holding plate 36 is 36.3 mm, and the distance L2 between the second insulating plate 35 and the intermediate holding plate 36 is 3 mm.
  • the first support pin 33 (diameter 2 mm, length 36.3 mm) and the second support pin 37 (diameter 2 mm, length 3 mm) are fixedly supported and the first insulating plate Between the pin 34 and the second insulating plate 35, the conductive pin 32 having the following constituent force is arranged in the through hole 83 (0.4 mm in diameter) so as to be movable did.
  • the first contact support position 38A of the first support pin 33 with respect to the intermediate holding plate 36 and the second contact support position 38B of the second support pin 37 with respect to the intermediate support plate 36 are shown in FIG. As shown, they were arranged in a grid. The distance between the first contact support positions 38A adjacent to each other and the distance between the second contact support positions 38B were set to 17.5 mm.
  • the tester-side connector 41 includes a third anisotropic conductive sheet 42, a connector board 43, and a base plate 46.
  • the third anisotropic conductive sheet 42 was the same as the second anisotropic conductive sheet 26 described above.
  • the created inspection device was set in the inspection section of the rail transport type automatic circuit board inspection machine rSTARREC V5J, and the evaluation circuit board 1 prepared for the inspection device was set.
  • the pressure of the rail conveyance type automatic circuit board inspection machine rSTARREC V5j is changed stepwise within the range of 100 to 210 kgf, and the evaluation circuit board 1 is repeated 10 times for each press pressure condition.
  • the conduction resistance value was measured when a current of 1 milliampere was passed through the connection electrode for supplying current.
  • Inspection points with a measured conduction resistance value of 10 ⁇ or more are judged as continuity defects, and the ratio of NG inspection points to the total inspection points (hereinafter referred to as “NG inspection point ratio”).
  • the lowest press pressure at which the NG inspection point ratio was 0.01% or less was determined as the minimum press pressure.
  • the NG inspection point ratio is required to be 0.01% or less for practical use. If the NG inspection point ratio exceeds 0.01%, it is a non-defective product. Inspected times Since there is a case where an erroneous inspection result that the road board is defective is obtained, there is a possibility that a highly reliable electric inspection of the circuit board cannot be performed.
  • the press pressure related to the measurement is released to return the inspection device to the non-pressurized state, and the next measurement of the conduction resistance value is Again, a press pressure of a predetermined magnitude was applied.
  • the minimum press pressure is small means that the circuit board to be inspected can be electrically inspected with a low press pressure. If the pressurized pressure at the time of inspection can be set low, deterioration of the circuit board to be inspected, the anisotropic conductive sheet, and the substrate for pitch conversion due to the pressurized pressure at the time of inspection can be suppressed.
  • the structure of the inspection apparatus can be made small and compact.
  • the created inspection device was set in the inspection section of the rSTARREC V5J rail transport type automatic circuit board inspection machine.
  • An evaluation circuit board 1 prepared for the inspection device was set, and the press pressure condition of the rail transport type circuit board automatic inspection machine “STARREC V5” was set to 130 kgf, and pressurization was performed a predetermined number of times.
  • the conduction resistance value was measured 10 times when a current of 1 milliampere was applied to the inspection electrode under the condition of a press pressure of 130 kgf. The operation of measuring the conduction resistance value 10 times in the same manner under pressure was repeated. An inspection point (NG inspection point) with a measured conduction resistance value of 10 ⁇ or more is judged as a continuity failure. The ratio of NG inspection points to the total inspection points (NG inspection point ratio) was calculated.
  • the press pressure related to the measurement is released and the inspection device is returned to the non-pressurized state, and the next measurement of the conduction resistance value is a press pressure of a predetermined magnitude. Was performed again.
  • a glass epoxy substrate having a surface of 100 mm in the vertical direction, 100 mm in the horizontal direction and 0.8 mm in thickness and having an insulating coating on the surface was used.
  • the created inspection apparatus was set in the inspection section of the rail transport type automatic circuit board inspection machine rSTARREC V5j, and the glass epoxy board was set on the inspection apparatus.
  • the press pressure of the rail conveyance type automatic circuit board inspection machine “STARREC V5” was changed stepwise within the range of 100 to 210 kgf. Then, the insulation resistance between each pair of inspection electrodes 25 provided integrally with the adapter for the first inspection jig 11a was measured 10 times for each press pressure condition.
  • the conduction resistance value of the pair of test electrodes 25 was measured while applying a current of 1 milliampere through the terminal electrode 24 corresponding to the pair of connection electrodes 25.
  • the insulation resistance value between the paired connection electrodes 25, that is, the insulation resistance value of the insulation part 62 between the paired conductive path forming parts 61 in the relay substrate 29 was measured.
  • connection electrode pair whose measured insulation resistance value was 100 ⁇ or more was judged as good insulation, and the ratio of points judged as good insulation with respect to the total number of inspection points (hereinafter referred to as the “insulation pass point ratio”). was calculated.
  • the insulating passing score ratio is 99.9% or more. If the insulating passing score ratio is less than 99.9%, Occasionally, a leakage current flows from the connection electrode used as the current supply electrode to the connection electrode used as the voltage measurement electrode.
  • relay pin unit 31 of the first embodiment conventional relay pin units 131a and 131b as shown in FIG. 62 were used. That is, a large number (8000 pins) of conductive pins 132a and 132b arranged on a lattice point at a constant pitch (2.54 mm pitch), and insulating plates 134a and 134b that support the conductive pins 132a and 132b so as to be movable up and down. The thing which has was used. Other than that, an inspection apparatus for comparison was manufactured in the same configuration as in Example 2.
  • Table 5 shows the measurement results of the minimum press pressure
  • Table 6 shows the measurement results of the durability.
  • Example 2 In the inspection apparatus of Example 2, instead of the relay substrate 29, a distributed anisotropic conductive sheet having a thickness of 100 ⁇ m was disposed between the pitch conversion substrate 23 and the evaluation circuit substrate 1.
  • 25 parts by volume of conductive particles with an average particle size of 20 m are added to 100 parts by volume of a mixture of two liquid type addition type liquid silicone rubbers A and B mixed in equal proportions. And mixed.
  • a defoaming treatment by reduced pressure was performed to prepare a conductive elastomer material.
  • the conductive particles nickel particles were used as core particles, and the core particles were subjected to electroless gold plating (average coating amount: an amount corresponding to 5% by weight of the weight of the core particles).
  • a polyester resin sheet (product name: “Mattle Mirror S 10”, manufactured by Torayen Earth) with a glossy surface (surface roughness of 0.04 / zm) and a backside of non-glossy surface and a thickness of 0.1 mm. Two sheets were prepared. A frame-shaped spacer having a thickness of 100 ⁇ m and having a rectangular opening of 120 mm ⁇ 200 mm was disposed on the surface of one polyester resin sheet.
  • the prepared conductive elastomer material is applied into the opening of the spacer, and the other polyester resin sheet is applied to the conductive elastomer material on the surface thereof. The material was placed in contact with the material for use.
  • the conductive elastomer material is sandwiched between two polyester resin sheets, and the thickness of the conductive elastomer is 100 ⁇ m. A material layer was formed.
  • This conductive elastomer sheet was cut into 110 mm x 110 mm to obtain a dispersed anisotropic conductive elastomer sheet used in Comparative Example 2.
  • the thickness of the spacer was changed to 40 / zm, and a dispersion type anisotropic conductive elastomer sheet having a thickness of 40 ⁇ m used in Comparative Example 3 was obtained in the same manner. .
  • Example 2 99.9 ⁇ 99.9 ⁇ 99.9 ⁇ 99.9 + 99.9 ⁇ 99.9 ⁇ Good insulation Comparative example 4 ⁇ 93 ⁇ 93 ⁇ 93 ⁇ 93 Measurement impossible Comparative example 5 98.5 98.2 97.6 96.3 96,1 95.4 Low reliability

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Leads Or Probes (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

Inspection equipment and an inspection method of a circuit board capable of performing highly reliable electrical inspection even if a circuit board to be inspected has electrodes arranged at a fine pitch. An interconnection pin unit (31) is provided with an intermediate holding plate (36), a first supporting pin (33) arranged between a first insulation plate (34) and the intermediate holding plate (36), and a second supporting pin (37) arranged between a second insulation plate (35) and the intermediate holding plate (36), wherein the first butting/supporting position of the first supporting pin to the intermediate holding plate is located differently from a second butting/supporting position of the second supporting pin to the intermediate holding plate on the projection plane of the intermediate holding plate in the thickness direction thereof. A first anisotropic conductive sheets (22) consisting of conduction path forming parts formed by laser machining and a part insulating these conduction path forming parts from each other is integrated on a pitch conversion substrate (23) side to constitute a pitch conversion adaptor body (60). Alternatively, an interconnection substrate (29) having an insulating part (62) and a conduction path forming part (61) penetrating the insulating part (62) in the thickness direction is arranged in a plurality of through holes formed in a substrate (73), and electrical connection of the pitch conversion substrate (23) and a circuit board (1) to be inspected is interconnected.

Description

明 細 書  Specification
回路基板の検査装置および回路基板の検査方法  Circuit board inspection apparatus and circuit board inspection method
技術分野  Technical field
[0001] 本発明は、電気検査を行う検査対象である回路基板 (以下、「被検査回路基板」と いう。)を、一対の第 1の検査治具と第 2の検査治具で両面から挟圧することにより、 被検査回路基板の両面に形成された電極をテスターに電気的に接続された状態とし て、被検査回路基板の電気的特性を検査する回路基板の検査装置および回路基板 の検査方法に関する。  The present invention relates to a circuit board (hereinafter referred to as “circuit board to be inspected”) to be inspected for electrical inspection from both sides with a pair of first inspection jig and second inspection jig. A circuit board inspection apparatus and circuit board inspection device that inspects the electrical characteristics of the circuit board to be inspected by clamping the electrodes so that the electrodes formed on both surfaces of the circuit board to be inspected are electrically connected to the tester. Regarding the method.
背景技術  Background art
[0002] 集積回路などを実装するためのプリント回路基板は、集積回路などを実装する前に 、回路基板の配線パターンが所定の性能を有することを確認するために電気的特性 が検査される。  [0002] Prior to mounting an integrated circuit or the like, a printed circuit board for mounting an integrated circuit or the like is inspected for electrical characteristics to confirm that the wiring pattern of the circuit board has a predetermined performance.
この電気検査では、例えば、回路基板の搬送機構を備えた検査用テスターに検査 ヘッドを組み込み、検査ヘッド部分を交換することにより異なる回路基板の検査を行 つている。  In this electrical inspection, for example, an inspection head is incorporated into an inspection tester having a circuit board transport mechanism, and different circuit boards are inspected by exchanging the inspection head portion.
[0003] 例えば、特許文献 1に開示されて!ヽるように、被検査回路基板の被検査電極に接し て電気的に導通する金属の検査ピンを基板に植設した構造の検査治具を用いる方 法が提案されている。  [0003] For example, as disclosed in Patent Document 1, an inspection jig having a structure in which a metal inspection pin that is in electrical contact with an inspection target electrode of a circuit board to be inspected is implanted on the substrate is provided. A method of use has been proposed.
また、特許文献 2に開示されているように、導電ピンを有する検査ヘッドと、オフダリ ットアダプターと呼ばれるピッチ変換用の回路基板と、異方導電性シートとを組み合 わせた検査治具を用いる方法が知られて 、る。  Also, as disclosed in Patent Document 2, a method of using an inspection jig in which an inspection head having a conductive pin, a circuit board for pitch conversion called an off-axis adapter, and an anisotropic conductive sheet are combined. Is known.
[0004] しカゝしながら、特許文献 1のように、金属検査ピンを直接に被検査回路基板の被検 查電極に接触させる検査治具を用いる方法では、金属力 なる導電ピンとの接触に より被検査回路基板の電極が損傷する可能性がある。 However, as described in Patent Document 1, in the method using an inspection jig in which a metal inspection pin is brought into direct contact with an inspection target electrode of a circuit board to be inspected, contact with a conductive pin having a metal force is not possible. Further, there is a possibility that the electrode of the circuit board to be inspected is damaged.
特に、近年では回路基板における回路の微細化、高密度化が進み、このようなプリ ント回路基板を検査する場合、多数の導電ピンを被検査回路基板の被検査電極に 同時に導通接触させるためには、高い圧力で検査治具を加圧することが必要となり、 被検査電極が損傷し易くなる。 In particular, in recent years, circuit boards have been miniaturized and densified, and when inspecting such a printed circuit board, in order to bring a large number of conductive pins into conductive contact with the inspected electrodes of the inspected circuit board at the same time. Needs to pressurize the inspection jig with high pressure, The electrode to be inspected is easily damaged.
[0005] そして、このような微細化、高密度化されたプリント回路基板を検査するための検査 治具では、高密度で多数の金属ピンを基板に植設することが技術的に困難になりつ つある。また、その製造コストも高価となり、さらに、一部の金属ピンが損傷した場合に 、修理、交換することが困難である。  [0005] With such an inspection jig for inspecting a miniaturized and high-density printed circuit board, it becomes technically difficult to implant a large number of metal pins on the board at a high density. There is one. In addition, the manufacturing cost is high, and it is difficult to repair or replace some of the metal pins when they are damaged.
一方、特許文献 2のように、異方導電性シートを使用する検査治具では、被検査回 路基板の被検査電極が、異方導電性シートを介してピッチ変換用基板の電極と接触 することになるため、被検査回路基板の被検査電極が損傷しにくいという利点がある 。また、ピッチ変換を行う基板を使用しているため、基板に植設する検査ピンを、被検 查回路基板の被検査電極のピッチよりも広 、ピッチで植設することができるため、微 細ピッチで検査ピンを植設する必要がなぐ検査治具の製造コストを節約できるという 禾 IJ点ちある。  On the other hand, as in Patent Document 2, in the inspection jig using the anisotropic conductive sheet, the electrode to be inspected of the circuit board to be in contact comes into contact with the electrode of the substrate for pitch conversion through the anisotropic conductive sheet. Therefore, there is an advantage that the electrode to be inspected of the circuit board to be inspected is hardly damaged. In addition, since a substrate that performs pitch conversion is used, the inspection pins to be implanted on the substrate can be implanted with a pitch wider than the pitch of the electrodes to be inspected on the circuit board to be inspected. It is possible to save the manufacturing cost of inspection jigs that do not require the installation of inspection pins at the pitch.
[0006] し力しながら、この検査治具では、検査対象である被検査回路基板ごとに、ピッチ 変換用基板と、検査ピンを植設する検査治具とを作成する必要があるため、検査され る被検査回路基板であるプリント回路基板と同数の検査治具が必要となる。  [0006] However, with this inspection jig, it is necessary to create a pitch conversion board and an inspection jig in which an inspection pin is implanted for each circuit board to be inspected. The same number of inspection jigs as the printed circuit board that is the circuit board to be inspected are required.
このため、複数のプリント回路基板を生産している場合では、それに対応して複数 の検査治具を保有しなければならないという問題がある。特に、近年では電子機器の 製品サイクルが短縮し、製品に使用されるプリント回路基板の生産期間の短縮化が 進んでいるが、これに伴って検査治具を長期間使用することができなくなり、プリント 回路基板の生産が切り替わる度に検査治具を生産しなければならな 、と 、う問題が 生じている。  For this reason, when a plurality of printed circuit boards are produced, there is a problem that a plurality of inspection jigs must be held correspondingly. In particular, in recent years, the product cycle of electronic equipment has been shortened, and the production period of printed circuit boards used in products has been shortened. With this, inspection jigs cannot be used for a long time, The problem arises that inspection jigs must be produced each time printed circuit board production switches.
[0007] このような問題への対策として、例えば、特許文献 3〜5のような、中継ピンユニット を用いる、 、わゆるユニバーサルタイプの検査治具を用いた検査装置が提案されて いる。  [0007] As a countermeasure against such a problem, for example, as in Patent Documents 3 to 5, an inspection apparatus using a so-called universal type inspection jig using a relay pin unit has been proposed.
図 62は、このようなユニバーサルタイプの検査治具を用いた検査装置の断面図で ある。この検査装置は、一対の第 1の検査治具 11 laと第 2の検査治具 11 lbとを備え 、これらの検査治具は、回路基板側コネクタ 121a、 121bと、中継ピンユニット 131a、 131bと、テスター側コネクタ 141a、 141bとを備えている。 [0008] 回路基板側コネクタ 121a、 121bは、ピッチ変換用基板 123a、 123bと、その両面 側に配置される異方導電性シート 122a、 122b, 126a, 126bとを有している。 FIG. 62 is a cross-sectional view of an inspection apparatus using such a universal type inspection jig. This inspection apparatus includes a pair of first inspection jig 11 la and second inspection jig 11 lb. These inspection jigs include circuit board side connectors 121a and 121b and relay pin units 131a and 131b. And tester side connectors 141a and 141b. [0008] The circuit board side connectors 121a and 121b include pitch conversion boards 123a and 123b, and anisotropic conductive sheets 122a, 122b, 126a, and 126b arranged on both sides thereof.
中継ピンユニット 131a、 131bは、一定ピッチ(例えば 2. 54mmピッチ)で格子点上 に多数(例えば 5000ピン)配置された導電ピン 132a、 132bと、この導電ピン 132a、 132bを上下へ移動可能に支持する一対の絶縁板 134a、 134bとを有して 、る。  The relay pin units 131a and 131b have a large number of conductive pins 132a and 132b (for example, 5000 pins) arranged on a lattice point at a constant pitch (for example, 2.54 mm pitch), and the conductive pins 132a and 132b can be moved up and down. It has a pair of insulating plates 134a, 134b to support.
[0009] テスター側コネクタ 141a、 141bは、被検査回路基板 101を検査治具 11 la、 111b で挟圧した際に、テスターと導電ピン 132a、 132bとを電気的に接続するコネクタ基 板 143a、 143bと、コネクタ基板 143a、 143bの導電ピン 132a、 132bftlJに酉己置され る異方導電性シート 142a、 142bと、ベース板 146a、 146bとを有している。  [0009] The tester side connectors 141a and 141b are connector boards 143a and 143a that electrically connect the tester and the conductive pins 132a and 132b when the circuit board 101 to be inspected is clamped by the inspection jigs 11 la and 111b. 143b, anisotropic conductive sheets 142a and 142b placed on the conductive pins 132a and 132bftlJ of the connector boards 143a and 143b, and base plates 146a and 146b.
[0010] この中継ピンユニットを使用した検査治具は、異なる被検査対象であるプリント回路 基板を検査する際に、回路基板側コネクタ 121a、 121bを被検査回路基板 101に対 応するものに交換するだけでよぐ中継ピンユニット 13 la、 13 lbとテスター側コネク タ 141a、 141bは共通で使用できる。  [0010] In this inspection jig using the relay pin unit, when inspecting a printed circuit board which is a different object to be inspected, the circuit board side connectors 121a and 121b are replaced with ones corresponding to the circuit board 101 under inspection. The relay pin unit 13 la, 13 lb and the tester side connectors 141a, 141b can be used in common.
ところで、被検査回路基板 101であるプリント配線基板は、多層高密度化してきて おり、実際には厚み方向に、例えば、 BGAなどのハンダボール電極などの被検査電 極 102、 103による高さバラツキや基板自体の反りが生じている。そのため、被検査 回路基板 101上の検査点である被検査電極 102、 103に電気的接続を達成するた めには、第 1の検査治具 11 laと第 2の検査治具 11 lbとを高い圧力で加圧して、被 検査回路基板 101を平坦に変形する必要がある。また、被検査電極 102、 103の高 さバラツキに対しては、第 1の検査治具 11 laと第 2の検査治具 11 lbの被検査電極 1 02、 103の高さに対する追従性が必要となる。  By the way, the printed circuit board 101 which is the circuit board 101 to be inspected has been multi-layered and densified. Actually, for example, the height variation due to the electrodes 102 and 103 to be inspected, such as solder ball electrodes such as BGA, in the thickness direction. Or the substrate itself is warped. Therefore, in order to achieve electrical connection to the electrodes 102 and 103 to be inspected on the circuit board 101 to be inspected, the first inspection jig 11 la and the second inspection jig 11 lb are used. It is necessary to deform the circuit board 101 to be inspected flatly by applying high pressure. In addition, for the variations in the height of the electrodes 102 and 103 to be inspected, the first inspection jig 11 la and the second inspection jig 11 lb need to follow the height of the electrodes 102 and 103 to be inspected. It becomes.
[0011] 従来のこのようなユニバーサルタイプの検査治具では、被検査電極 102、 103の高 さに対する追従性を確保するために、導電ピン 132a、 132bの軸方向移動により追 従していた力 この導電ピン 132a、 132bの軸方向移動量にも限界があるため、この ような被検査電極 102、 103の高さに対する追従性が良好でない場合があり、導通 不良が発生して正確な検査ができないことになる。  [0011] In such a conventional universal type inspection jig, the force followed by the axial movement of the conductive pins 132a and 132b in order to ensure followability to the height of the electrodes 102 and 103 to be inspected. Since the amount of movement of the conductive pins 132a and 132b in the axial direction is also limited, the followability to the height of the electrodes 102 and 103 to be inspected may not be good. It will not be possible.
[0012] また、このようなユニバーサルタイプの検査治具では、第 1の検査治具 11 laと第 2 の検査治具 111bによって、被検査回路基板 101を挟圧した際のプレス圧力は、そ の上下の異方導電性シート 122a、 122b, 126a, 126b, 142a, 142bにて吸収して いる。 [0012] In such a universal type inspection jig, the press pressure when the circuit board 101 to be inspected is clamped by the first inspection jig 11la and the second inspection jig 111b is the same. It is absorbed by the upper and lower anisotropic conductive sheets 122a, 122b, 126a, 126b, 142a, 142b.
そのため、このようなユニバーサルタイプの検査治具では、ピッチ変換用基板 123a 、 123bを支持しプレス圧を分散させるために、一定間隔で導電ピン 132a、 132bを 配置する必要がある。  Therefore, in such a universal type inspection jig, it is necessary to arrange the conductive pins 132a and 132b at regular intervals in order to support the pitch conversion substrates 123a and 123b and disperse the press pressure.
[0013] また、従来のユニバーサルタイプの検査治具では、プレス圧力は導電ピン 132a、 1 32bで受けるようになつているため、一定間隔で多数の導電ピン 132a、 132bを配置 する必要がある。  [0013] Further, in the conventional universal type inspection jig, since the press pressure is received by the conductive pins 132a and 132b, it is necessary to arrange a large number of conductive pins 132a and 132b at regular intervals.
このため、被検査回路基板 101の電極の微細化に対応して、例えば、 0. 75mmピ ツチで 1万以上の貫通孔を有する絶縁板 134a、 134bを形成する場合、絶縁板 134 a、 134bの基板の厚さが薄いと強度が低くなり、曲げた時に割れることもあるので、絶 縁板 134a、 134bの厚さは厚めにする必要があった。  Therefore, in response to the miniaturization of the electrodes of the circuit board 101 to be inspected, for example, when the insulating plates 134a and 134b having 10,000 or more through holes are formed with a 0.75 mm pitch, the insulating plates 134a and 134b If the thickness of the substrate is thin, the strength is low, and it may crack when bent. Therefore, it was necessary to increase the thickness of the insulating plates 134a and 134b.
[0014] し力しながら、形成する貫通孔の径が例えば直径 0. 5mm程度と微細になり、絶縁 板 134a、 134bの厚さが 5mm以上になると、一回のドリル加工で貫通孔を形成しょう とする場合に、ドリルの刃の強度の関係で、ドリルの刃の欠損、折れが生じて絶縁板 の加工に失敗する場合が多くなる。  [0014] When the diameter of the through-hole to be formed becomes fine, for example, about 0.5 mm, and the insulating plates 134a and 134b have a thickness of 5 mm or more, the through-hole is formed by a single drilling process. When doing so, the drill blades are often broken or broken due to the strength of the drill blades, and the insulation plate processing often fails.
このため、絶縁板の片面力も厚みの半分程度までドリルカ卩ェし、さらに他面側から 同一部分にドリル加工を行うことにより貫通孔を形成することによって絶縁板の加工を 行っているが、この場合、絶縁板に形成する貫通孔数の 2倍のドリル加工作業が必 要となり、加工工程が煩雑となるという問題があった。  For this reason, the insulation plate is processed by drilling the half-thickness of the insulation plate to about half the thickness, and further forming a through hole by drilling the same part from the other side. In this case, a drilling operation twice as many as the number of through-holes formed in the insulating plate is required, and the processing process becomes complicated.
[0015] また、従来のこうしたユニバーサルタイプの検査治具では、回路基板側コネクタを構 成する異方導電性シート 122a、 122bとして、厚み方向に延びる複数の導電路形成 部と、これらの導電路形成部を互いに絶縁する絶縁部とからなり、導電性粒子が導電 路形成部中にのみ含有されて面方向に不均一に分散され、シート片面側に導電路 形成部が突出した偏在型の異方導電性シートを使用していた。この異方導電性シー トは検査での繰り返し使用により導電路形成部が劣化 (抵抗値の上昇)し、異方導電 性シートを交換する場合、交換の度に異方導電性シートとピッチ変換用基板との位 置合わせ、および回路基板側コネクタと中継ピンユニットとの位置合わせが必要であ り、この位置合わせ作業が煩雑で検査効率の低下の要因となっていた。 [0015] Further, in such a conventional universal type inspection jig, as the anisotropic conductive sheets 122a and 122b constituting the circuit board side connector, a plurality of conductive path forming portions extending in the thickness direction, and these conductive paths are provided. It consists of an insulating part that insulates the forming part from each other, and the conductive particles are contained only in the conductive path forming part and dispersed unevenly in the plane direction, and the conductive path forming part protrudes on one side of the sheet. A conductive sheet was used. This anisotropic conductive sheet deteriorates the conductive path formation part (increase in resistance value) by repeated use in inspection, and when changing the anisotropic conductive sheet, the pitch of the anisotropic conductive sheet is changed every time it is replaced. It is necessary to align with the circuit board, and align the circuit board connector with the relay pin unit. As a result, this alignment work is complicated and causes a reduction in inspection efficiency.
[0016] また、被検査回路基板の電極が、例えば 200 μ m以下のような微少ピッチになると 、上記のような異方導電性シートを用いて複数の被検査回路基板について検査を連 続して行った場合、被検査回路基板と繰り返し接触することにより異方導電性シート の位置ずれが生じ易くなる。すると異方導電性シートの導電路形成部と被検査回路 基板の電極位置とがー致しなくなり、良好な電気的接続が得られなくなるため過大な 抵抗値が測定され、本来は良品と判断されるべきプリント回路基板が不良品と誤判 断され易くなる。  [0016] Further, when the electrodes of the circuit board to be inspected have a minute pitch of, for example, 200 μm or less, the inspection is continuously performed on the plurality of circuit boards to be inspected using the anisotropic conductive sheet as described above. In this case, the anisotropic conductive sheet is likely to be displaced due to repeated contact with the circuit board to be inspected. As a result, the conductive path forming part of the anisotropic conductive sheet and the electrode position of the circuit board to be inspected do not match, and an excellent electrical connection cannot be obtained, so an excessive resistance value is measured. The printed circuit board should be mistaken for a defective product.
[0017] 従来、このような問題を解決するために、表面に検査対象である回路基板の被検 查電極に対応するパターンに従って配置された接続用電極を有し、裏面に格子点位 置に従って配置された端子電極を有するピッチ変換用基板と、このピッチ変換用基 板の表面上に一体的に設けられた異方導電性エラストマ一シートとからなるアダプタ 一装置が提案されて ヽる (特許文献 6および特許文献 7)。  Conventionally, in order to solve such a problem, a connection electrode arranged according to a pattern corresponding to a test target electrode of a circuit board to be inspected is provided on the front surface, and a lattice point position is provided on the rear surface. There has been proposed an adapter device comprising a pitch conversion substrate having terminal electrodes arranged thereon and an anisotropic conductive elastomer sheet integrally provided on the surface of the pitch conversion substrate (patent). Reference 6 and Patent reference 7).
[0018] このようなアダプター装置によれば、回路基板の電気的検査において、異方導電 性エラストマ一シートの位置合わせ作業が不要であり、また、温度変化による熱履歴 などの環境の変化に対しても良好な電気的接続状態が安定に維持され、従って高い 接続信頼性が得られる。  [0018] According to such an adapter device, it is not necessary to align the anisotropic conductive elastomer sheet in the electrical inspection of the circuit board, and it is possible to cope with environmental changes such as thermal history due to temperature changes. However, a good electrical connection state is stably maintained, and thus high connection reliability can be obtained.
しかしながら、図 63に示したように、被検査電極 102 (103)の間のピッチ P1が 100 m以下の場合には、被検査電極 102 (103)の間の離間距離 S1が 50 m以下に なってしまう。このため、図 64に示したように、ピッチ変換用基板 123の接続用電極 1 25の間の離間距離も、被検査電極 102 (103)の間の離間距離 S1と同じぐ 50 m 以下にする必要がある。  However, as shown in FIG. 63, when the pitch P1 between the electrodes 102 (103) to be inspected is 100 m or less, the separation distance S1 between the electrodes 102 (103) to be inspected is 50 m or less. End up. For this reason, as shown in FIG. 64, the separation distance between the connection electrodes 125 of the pitch conversion substrate 123 is also set to 50 m or less, which is the same as the separation distance S1 between the electrodes to be inspected 102 (103). There is a need.
[0019] 従って、異方導電性シート 122の導電路形成部間を相互に絶縁する絶縁部の幅も 、これに合わせて、被検査電極 102 (103)の間の離間距離 S1と同じぐ 50 m以下 にする必要がある。 [0019] Therefore, the width of the insulating portions that insulate the conductive path forming portions of the anisotropic conductive sheet 122 from each other is also the same as the separation distance S1 between the electrodes 102 (103) to be inspected. Must be less than m.
しカゝしながら、被検査電極間の離間距離が 100 m以下であるような、被検査電極 が狭ピッチで配置された回路基板を検査するための偏在型異方導電性エラストマ一 シートを得る場合、上記したように、隣接する導電路形成部間を相互に絶縁する絶縁 部の幅が 50 m以下となるように形成する必要がある力 金型成形によりシートを製 造する従来の方法では、隣接する金型磁極との磁場作用のため 50 m以下の絶縁 部の形成が困難となる。 However, an unevenly distributed anisotropic conductive elastomer sheet for inspecting a circuit board in which the electrodes to be inspected are arranged at a narrow pitch such that the distance between the electrodes to be inspected is 100 m or less is obtained. In this case, as described above, insulation that insulates between adjacent conductive path forming portions from each other Force that needs to be formed so that the width of the part is 50 m or less In the conventional method of producing a sheet by mold forming, an insulating part of 50 m or less is formed due to the magnetic field action with the adjacent mold magnetic pole. It becomes difficult.
[0020] このため、この従来の製法による偏在型異方導電性エラストマ一シートでは、シート の厚みにもよるが、回路基板の電極間距離の検査可能な下限は、約 60〜80 /ζ πιで めつに。 [0020] For this reason, in the unevenly distributed anisotropic conductive elastomer sheet according to this conventional manufacturing method, the lower limit for inspecting the distance between the electrodes of the circuit board is approximately 60 to 80 / ζ πι, depending on the thickness of the sheet. In the meantime.
このため、被検査電極の離間距離が 50 m以下である、被検査電極が小ピッチで 配置された回路基板を検査するための偏在型異方導電性エラストマ一シートは、金 型法によって成形することがきわめて困難であるため、実質的には得られていない。  Therefore, an unevenly anisotropic anisotropic conductive elastomer sheet for inspecting a circuit board in which the electrodes to be inspected are separated by 50 m or less and the electrodes to be inspected are arranged at a small pitch is formed by a mold method. Since it is extremely difficult to do so, it is virtually impossible to obtain.
[0021] また、アダプター装置として、ピッチ変換用基板の表面に導電性エラストマ一層を 形成した後、導電性エラストマ一層に対してレーザー加工を施してその一部を除去 することにより、ピッチ変換用基板の各接続用電極上に互いに独立した導電路形成 部が形成されたものが提案されて!、る (特許文献 8)。 [0021] Further, as an adapter device, after a conductive elastomer layer is formed on the surface of the pitch conversion substrate, laser processing is performed on the conductive elastomer layer and a part thereof is removed to thereby remove the pitch conversion substrate. There has been proposed a structure in which conductive path forming portions independent of each other are formed on each of the connection electrodes (Patent Document 8).
このようなアダプター装置によれば、導電路形成部の各々は互いに独立した状態 で形成されているため、隣接する導電路形成部間において所要の絶縁性が確実に 得られる。  According to such an adapter device, since each of the conductive path forming portions is formed in an independent state, the required insulation can be reliably obtained between adjacent conductive path forming portions.
[0022] し力しながら、このアダプター装置においては、導電路形成部の各々がピッチ変換 用基板の接続用電極のみによって支持されているため、ピッチ変換用基板力も脱落 し易く耐久性が低 、と 、う問題がある。  [0022] However, in this adapter device, since each of the conductive path forming portions is supported only by the connection electrodes of the pitch conversion board, the pitch conversion board force easily falls off and has low durability. There is a problem.
また、導電路形成部を形成する際には、レーザー加工によってピッチ変換用基板 に損傷を与えるおそれがある、という問題がある。  Further, when the conductive path forming portion is formed, there is a problem that the pitch conversion substrate may be damaged by laser processing.
[0023] 一方、導電性粒子が厚み方向に配列するとともに面方向に均一に分散された、い わゆる分散型の異方導電性エラストマ一シートでは、その厚みを小さくすることにより 高い分解能が得られるため、例えばその厚みを 30 m程度とすることにより、被検査 電極の離間距離が 50 m以下である回路基板を検査することが、その分解能として は可能となる。  On the other hand, in a so-called dispersion-type anisotropic conductive elastomer sheet in which conductive particles are arranged in the thickness direction and uniformly dispersed in the plane direction, high resolution can be obtained by reducing the thickness. Therefore, for example, by setting the thickness to about 30 m, it is possible to inspect a circuit board having a separation distance of electrodes to be inspected of 50 m or less as the resolution.
しかし、その厚みが 30 m程度であるような、薄い分散型異方導電性エラストマ一 シートでは、異方導電性エラストマ一シートの特性の一つである、シート本体の弾性 による機械的衝撃の吸収能力や、電極同士のソフトな接触による電気的接続を達成 する能力がほとんど無くなってしまうため、多数の高さバラツキを含む被検査電極を 有する被検査回路基板を検査装置に接続する場合に、異方導電性エラストマーシー トの段差級収能力の低下により、多数の被検査電極を同時に接続することが困難と なる。 However, the thin dispersion-type anisotropic conductive elastomer sheet whose thickness is about 30 m is one of the characteristics of the anisotropic conductive elastomer sheet, which is the elasticity of the sheet body. Since the ability to absorb mechanical shock due to electrical contact and the ability to achieve electrical connection by soft contact between electrodes are almost lost, a circuit board to be inspected that has electrodes to be inspected with numerous height variations can be used as an inspection device. In the case of connection, it becomes difficult to connect a large number of electrodes to be inspected at the same time due to the lowering of the step-level collection ability of the anisotropic conductive elastomer sheet.
[0024] 例えば、メツキにより多数の電極が形成される回路基板では、その各々の電極の高 さのバラツキが約 20 m程度となる。分散型異方導電性エラストマ一シートでは、厚 み方向に圧縮された際に、安定して電気的な導通を達成できる圧縮率は約 20%以 下である。例えば 20%を超えて圧縮を行うと、横方向の電気的導通が大きくなり導通 の異方性が損なわれるば力りでなぐ基材となるエラストマ一の永久変形が生じて繰り 返し使用が困難となる。このため、約 20 mの高さバラツキを含む電極を有する回路 基板の検査を行う場合、厚みが 100 m以上の分散型異方導電性エラストマーシー トを使用することが必要となる。  [0024] For example, in a circuit board on which a large number of electrodes are formed by the measurement, the variation in height of each electrode is about 20 m. In the case of a dispersed anisotropic conductive elastomer sheet, the compression rate at which stable electrical conduction can be achieved when compressed in the thickness direction is about 20% or less. For example, if compression exceeds 20%, the electrical conduction in the lateral direction increases, and if the anisotropy of conduction is impaired, permanent deformation of the elastomer that becomes the base material by force occurs, making repeated use difficult. It becomes. For this reason, when inspecting a circuit board having an electrode including a height variation of about 20 m, it is necessary to use a distributed anisotropic conductive elastomer sheet having a thickness of 100 m or more.
[0025] しかし、厚みが 100 μ m以上の分散型異方導電性エラストマ一シートを使用すると 、被検査電極が 50 m以下の小さいピッチで配置された回路基板を検査することが 、分解能が損なわれるために実質的に不可能となってしまう問題点があった。  However, when a dispersed anisotropic conductive elastomer sheet having a thickness of 100 μm or more is used, it is impossible to inspect a circuit board in which electrodes to be inspected are arranged at a small pitch of 50 m or less. Therefore, there is a problem that it becomes substantially impossible.
さらに、厚みの小さい分散型異方導電性エラストマ一シートは、シート本体の弾性 が低いために機械的衝撃の吸収能力が小さぐ回路基板検査用アダプターに用い て回路基板の繰り返し検査を行った場合に異方導電性エラストマ一シートの劣化が 早ぐそのため頻繁に分散型異方導電性エラストマ一シートを交換しなければならず 、交換作業が繁雑となり、回路基板の検査効率が低くなつてしまう。  In addition, the dispersion-type anisotropic conductive elastomer sheet with a small thickness is used when a circuit board is repeatedly inspected by using it as an adapter for circuit board inspection, which has a low ability to absorb mechanical shocks due to the low elasticity of the sheet body. In addition, the anisotropic conductive elastomer sheet deteriorates quickly, so that the distributed anisotropic conductive elastomer sheet must be frequently replaced. This makes the replacement work complicated and reduces the inspection efficiency of the circuit board.
[0026] 以上のことから、被検査電極が 50 μ m以下の小さ 、ピッチで配置された回路基板 を検査するための、異方導電性エラストマ一シートを用いた回路基板検査用アダプタ 一では、分解能、段差吸収能、繰り返し使用耐久性を全て満足するものが得られて いなかった。  [0026] Based on the above, in the circuit board inspection adapter using an anisotropic conductive elastomer sheet for inspecting a circuit board in which the electrodes to be inspected are as small as 50 μm or less and arranged at a pitch, A product that satisfies all of the resolution, step-absorbing ability, and durability for repeated use was not obtained.
図 64に示したように、被検査電極 102 (103)の間のピッチ P1が 100 mの場合に は、ピッチ変換基板 123の接続用電極 125の間の離間距離は、被検査電極 102 (1 03)の間の離間距離 S1と同じぐ 50 /z mであればよい。し力しながら、高い精度で回 路基板の潜在的な電気的欠陥を検出するために 4端子検査を行う場合、図 65に示 したように、被検査用回路基板の被検査電極 102 (103)の 1つに対して、ピッチ変換 基板 123の 2つの電極 (電流供給用電極 127および電圧測定用電極 128)を接続す ることになる。 As shown in FIG. 64, when the pitch P1 between the electrodes 102 (103) to be inspected is 100 m, the separation distance between the connection electrodes 125 of the pitch conversion substrate 123 is as follows. It should be 50 / zm which is the same as the separation distance S1 between 03). With high accuracy When performing a four-terminal inspection to detect potential electrical defects on the road board, as shown in Fig. 65, the pitch of one of the inspected electrodes 102 (103) on the circuit board to be inspected is Two electrodes (current supply electrode 127 and voltage measurement electrode 128) of conversion substrate 123 are connected.
[0027] そのため、ピッチ変換基板 123における電流供給用電極 127と電圧測定用電極 12 8との間の離間距離 S2はさらに小さくなる。例えば、ピッチ変換基板 123の被検査電 極間 102 (103)のピッチ P1が 200 mである場合、被検査電極 102 (103)の直径 R 力 S約 100 mとなり、この直径約 100 mの被検査電極 102 (103)に対して、ピッチ 変換用基板 123における電流供給用電極 127および電圧測定用電極 128が共に接 続されるので、電流供給用電極 127と電圧測定用電極 128との間の離間距離 S2は 、図 65に示したように、 30〜40 m程度しか設けることができない。  Therefore, the separation distance S2 between the current supply electrode 127 and the voltage measurement electrode 128 on the pitch conversion substrate 123 is further reduced. For example, if the pitch P1 between the electrodes to be inspected 102 (103) of the pitch conversion substrate 123 is 200 m, the diameter R force S of the electrode 102 (103) to be inspected is about 100 m. Since both the current supply electrode 127 and the voltage measurement electrode 128 on the pitch conversion substrate 123 are connected to the inspection electrode 102 (103), the current supply electrode 127 and the voltage measurement electrode 128 are connected to each other. As shown in FIG. 65, the separation distance S2 can be provided only about 30 to 40 m.
[0028] し力しながら、上述したように、従来では、偏在型異方導電性エラストマ一シート、分 散型異方導電性エラストマ一シートのいずれを用いた場合にも、ピッチ変換用基板 における接続用電極の離間距離 S2を 30〜40 μ mとしたアダプター装置は得られて いないのが現状である。  [0028] However, as described above, in the related art, in the case of using either an unevenly distributed anisotropic conductive elastomer sheet or a distributed anisotropic conductive elastomer sheet, At present, no adapter device has been obtained in which the distance S2 between the connecting electrodes is 30 to 40 μm.
以上のように、従来の偏在型異方導電性シートや分散型異方導電性シートを用い た回路基板の検査装置では、多数の被検査電極を有する回路基板を検査する際に 要求される分解能、段差吸収能、クッション性、耐久性に関して、その全てにおいて 性能が充分なものは得られて 、な力つた。  As described above, in the conventional circuit board inspection apparatus using the unevenly distributed anisotropic conductive sheet or the distributed anisotropic conductive sheet, the resolution required when inspecting a circuit board having a large number of electrodes to be inspected. In terms of step absorbability, cushioning, and durability, all of them had sufficient performance and were strong.
特許文献 1 特開平 6 - 94768号公報  Patent Document 1 Japanese Patent Application Laid-Open No. 6-94768
特許文献 2特開平 5 - 159821号公報  Patent Document 2 Japanese Patent Laid-Open No. 5-159821
特許文献 3特開平 7 - 248350号公報  Patent Document 3 Japanese Patent Laid-Open No. 7-248350
特許文献 4特開平 8 - 271569号公報  Patent Document 4 JP-A-8-271569
特許文献 5特開平 8 - 338858号公報  Patent Document 5 JP-A-8-338858
特許文献 6特開平 4 - 151564号公報  Patent Document 6 JP 4-151564 A
特許文献 7特開平 6 - 82531号公報  Patent Document 7 JP-A-6-82531
特許文献 8特開平 10 — 229270号公報  Patent Document 8 JP 10-229270 A
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0029] 本発明は、検査対象である被検査回路基板が微細ピッチの微小電極を有するもの であっても、信頼性の高い回路基板の電気的検査を行うことができる回路基板の検 查装置および回路基板の検査方法を提供することを目的とする。  [0029] The present invention provides a circuit board inspection apparatus capable of performing a highly reliable electrical inspection of a circuit board even if the circuit board to be inspected has minute electrodes with a fine pitch. And it aims at providing the inspection method of a circuit board.
また、本発明は、検査対象である被検査回路基板の被検査電極の高さバラツキに 対する追従性が良好で、導通不良が発生せず、正確な検査を実施することが可能な 回路基板の検査装置および回路基板の検査方法を提供することを目的とする。  Further, the present invention provides a circuit board having a good followability to the height variation of the inspected electrode of the inspected circuit board to be inspected, causing no poor conduction, and capable of performing an accurate inspection. It is an object of the present invention to provide an inspection apparatus and a circuit board inspection method.
[0030] また、本発明は、一定間隔で導電ピンを配置する必要がなく、そのため、導電ピン を保持する絶縁板への貫通孔のドリル加工による穿設作業が少なぐコストを低減す ることが可能な回路基板の検査装置および回路基板の検査方法を提供することを目 的とする。  [0030] In addition, the present invention does not require the conductive pins to be arranged at regular intervals, so that the cost of drilling through holes in the insulating plate holding the conductive pins by drilling is reduced. It is an object of the present invention to provide a circuit board inspection apparatus and a circuit board inspection method that can be used.
また、本発明は、検査対象である被検査回路基板について繰り返し連続検査を行 う際に、異方導電性シートの位置ずれを補正する必要が少なぐ複数の回路基板を 連続的に検査する際にも検査作業を円滑に行うことができる回路基板の検査装置お よび回路基板の検査方法を提供することを目的とする。  Further, the present invention provides a method for continuously inspecting a plurality of circuit boards that require less correction of misalignment of the anisotropic conductive sheet when repeatedly inspecting circuit boards to be inspected. Another object of the present invention is to provide a circuit board inspection apparatus and a circuit board inspection method capable of smoothly performing inspection work.
[0031] また、本発明は、高い分解能で検査が可能であり、被検査回路基板の被検査電極 による段差を良好に吸収するとともに、繰り返し使用耐久性にも優れた回路基板の検 查装置および回路基板の検査方法を提供することを目的とする。 [0031] Further, the present invention is capable of inspecting with high resolution, absorbs a step due to the inspected electrode of the inspected circuit board, and has a circuit board inspection apparatus excellent in repeated use durability. An object of the present invention is to provide a circuit board inspection method.
課題を解決するための手段  Means for solving the problem
[0032] 本発明の回路基板の検査装置は、一対の第 1の検査治具と第 2の検査治具によつ て、両検査治具の間で検査対象である被検査回路基板の両面を挟圧して電気検査 を行う回路基板の検査装置であって、 [0032] The circuit board inspection apparatus of the present invention includes a pair of first inspection jig and second inspection jig, and both surfaces of the circuit board to be inspected between the inspection jigs. A circuit board inspection device that performs electrical inspection by sandwiching
前記第 1の検査治具と第 2の検査治具がそれぞれ、  The first inspection jig and the second inspection jig are respectively
基板の一面側と他面側との間で電極ピッチを変換するピッチ変換用基板と、 前記ピッチ変換用基板の被検査回路基板側に配置される第 1の異方導電性シート と、  A pitch converting substrate for converting an electrode pitch between one surface side and the other surface side of the substrate; a first anisotropic conductive sheet disposed on the circuit board to be inspected side of the pitch converting substrate;
前記ピッチ変換用基板の被検査回路基板とは逆側に配置される第 2の異方導電性 シートと、 を備えた回路基板側コネクタと、 A second anisotropic conductive sheet disposed on the opposite side to the circuit board to be inspected of the pitch conversion board; A circuit board-side connector with
所定のピッチで配置された複数の導電ピンと、  A plurality of conductive pins arranged at a predetermined pitch;
前記導電ピンを軸方向へ移動可能に支持する、一対の離間した第 1の絶縁板と第 2の絶縁板と、  A pair of spaced apart first and second insulating plates that support the conductive pins movably in the axial direction;
を備えた中 «Iピンユニットと、 «I-pin unit with
テスターと前記中継ピンユニットとを電気的に接続するコネクタ基板と、  A connector board for electrically connecting the tester and the relay pin unit;
前記コネクタ基板の中継ピンユニット側に配置される第 3の異方導電性シートと、 前記コネクタ基板の中継ピンユニットとは逆側に配置されるベース板と、 を備えたテスター佃 jコネクタと、を備え、  A third anisotropic conductive sheet arranged on the relay pin unit side of the connector board; and a base plate arranged on the opposite side of the connector board on the relay pin unit; With
前記中継ピンユニットは、  The relay pin unit is
前記第 1の絶縁板と第 2の絶縁板との間に配置された中間保持板と、  An intermediate holding plate disposed between the first insulating plate and the second insulating plate;
前記第 1の絶縁板と中間保持板との間に配置された第 1の支持ピンと、  A first support pin disposed between the first insulating plate and the intermediate holding plate;
前記第 2の絶縁板と中間保持板との間に配置された第 2の支持ピンと、  A second support pin disposed between the second insulating plate and the intermediate holding plate;
を備えるとともに、 With
前記第 1の支持ピンの中間保持板に対する第 1の当接支持位置と、前記第 2の支 持ピンの中間保持板に対する第 2の当接支持位置とが、中間保持板の厚さ方向に投 影した中間保持板投影面において異なる位置に配置されており、  The first abutting support position of the first support pin with respect to the intermediate holding plate and the second abutting support position of the second support pin with respect to the intermediate holding plate are in the thickness direction of the intermediate holding plate. It is placed at different positions on the projected intermediate holding plate projection surface,
前記第 1の異方導電性シートは、厚み方向に延びる複数の導電路形成部と、これら の導電路形成部を互いに絶縁する絶縁部とからなり、導電性粒子が導電路形成部 中にのみ含有され、これにより該導電性粒子は面方向に不均一に分散されるとともに 、シート片面側に導電路形成部が突出しており、  The first anisotropic conductive sheet includes a plurality of conductive path forming portions extending in the thickness direction and insulating portions that insulate the conductive path forming portions from each other, and the conductive particles are only in the conductive path forming portions. Contained, whereby the conductive particles are non-uniformly dispersed in the surface direction, and the conductive path forming portion protrudes on one side of the sheet,
前記第 1の異方導電性シートは、前記ピッチ変換用基板と共に、該第 1の異方導電 性シートとピッチ変換用基板とが一体化されたピッチ変換用アダプタ一体を構成して いることを特徴とする。  The first anisotropic conductive sheet constitutes a pitch conversion adapter integrated with the pitch conversion substrate and the first anisotropic conductive sheet and the pitch conversion substrate. Features.
このように構成することによって、第 1の検査治具と第 2の検査治具との間で検査対 象である被検査回路基板の両面を挟圧して電気検査を行う際に、加圧の初期段階 では、中継ピンユニットの導電ピンによる厚み方向への移動と、第 1の異方導電性シ ートと、第 2の異方導電性シートと、第 3の異方導電性シートのゴム弾性圧縮にて圧 力を吸収して、被検査回路基板の被検査電極の高さバラツキをある程度吸収するこ とがでさる。 With this configuration, when electrical inspection is performed by clamping both surfaces of the circuit board to be inspected between the first inspection jig and the second inspection jig, In the initial stage, the relay pin unit is moved in the thickness direction by the conductive pins, the first anisotropic conductive sheet, the second anisotropic conductive sheet, and the third anisotropic conductive sheet rubber. Pressure by elastic compression By absorbing the force, it is possible to absorb some variation in the height of the electrodes to be inspected on the circuit board to be inspected.
[0034] そして、第 1の支持ピンの中間保持板に対する第 1の当接支持位置と、前記第 2の 支持ピンの中間保持板に対する第 2の当接支持位置とが、中間保持板の厚さ方向に 投影した中間保持板投影面において、異なる位置に配置されているので、第 1の検 查治具と第 2の検査治具の間で検査対象である被検査回路基板をさらに加圧した際 に、第 1の異方導電性シートと、第 2の異方導電性シートと、第 3の異方導電性シート のゴム弾性圧縮に加えて、中継ピンユニットの第 1の絶縁板と、第 2の絶縁板と、第 1 の絶縁板と第 2の絶縁板の間に配置された中間保持板のパネ弾性により、被検査回 路基板の被検査電極の高さバラツキ、例えば、ハンダボール電極の高さバラツキに 対して、圧力集中を分散させて、局部的な応力集中を回避することができる。  [0034] The first contact support position of the first support pin with respect to the intermediate support plate and the second contact support position of the second support pin with respect to the intermediate support plate are the thickness of the intermediate support plate. Since the intermediate holding plate projection surface projected in the vertical direction is arranged at different positions, the circuit board to be inspected is further pressurized between the first inspection jig and the second inspection jig. In addition to the rubber elastic compression of the first anisotropic conductive sheet, the second anisotropic conductive sheet, and the third anisotropic conductive sheet, the first insulating plate of the relay pin unit Due to the panel elasticity of the second insulating plate and the intermediate holding plate disposed between the first insulating plate and the second insulating plate, the height variation of the electrodes to be inspected of the circuit board to be inspected, for example, solder ball electrodes The pressure concentration can be dispersed to avoid local stress concentration for the height variation. That.
[0035] これにより、高さバラツキを有する被検査回路基板の被検査電極の各々に対しても 、安定的な電気的接触が確保され、さらに応力集中が低減されるので、異方導電性 シートの局部的な破損が抑制される。その結果、異方導電性シートの繰り返し使用耐 久性が向上するので、異方導電性シートの交換回数が減り、検査作業効率が向上す る。  [0035] Accordingly, stable electrical contact is ensured for each of the electrodes to be inspected of the circuit board to be inspected having a height variation, and stress concentration is further reduced, so that the anisotropic conductive sheet Local damage is suppressed. As a result, the durability of repeated use of the anisotropic conductive sheet is improved, so that the number of replacements of the anisotropic conductive sheet is reduced and the inspection work efficiency is improved.
また、一定間隔で導電ピンを配置する必要がないので、導電ピンを保持する絶縁 板への貫通孔のドリル加工による穿設作業が少なぐコストを低減することができる。  Further, since there is no need to arrange the conductive pins at regular intervals, the cost of drilling through holes in the insulating plate holding the conductive pins by drilling can be reduced.
[0036] さらに、第 1の異方導電性シートとして、導電路形成部と絶縁部とからなり、導電性 粒子が導電路形成部中にのみ含有されて面方向に不均一に分散され、シート片面 側に導電路形成部が突出した偏在型の異方導電性シートを使用しているので、検査 治具の押圧による加圧力や衝撃がこのシートで吸収され、被検査回路基板の電極な どを破損損傷することがない。  [0036] Further, the first anisotropic conductive sheet is composed of a conductive path forming part and an insulating part, and the conductive particles are contained only in the conductive path forming part and are non-uniformly dispersed in the plane direction. Since an unevenly distributed anisotropic conductive sheet with a conductive path forming part projecting on one side is used, the applied pressure and impact due to the pressing of the inspection jig are absorbed by this sheet, and the circuit board electrodes, etc. The breakage will not be damaged.
[0037] また、第 1の異方導電性シートとピッチ変換用基板側が一体化されて、これらによつ てピッチ変換用アダプタ一体を構成しているので、繰り返し連続検査を行う際に、異 方導電性シートの位置ずれを補正する必要が少なぐ検査の作業性が良好で、しか も、温度変化による熱履歴などの環境の変化に対して良好な電気的接続状態が安 定に維持され、高い接続信頼性が得られる。 [0038] さらに、検査対象である被検査回路基板の被検査電極の配置パターンに関わらず 、被検査回路基板について所要の電気的検査を確実に実行することができ、被検査 回路基板の被検査電極が、そのピッチが微小で高密度に配置されて ヽる場合であつ ても、被検査回路基板につ ヽて所要の電気的検査を確実に実施することができる。 本発明の回路基板の検査装置は、前記ピッチ変換用アダプタ一体を構成する第 1 の異方導電性シートが、 [0037] Further, since the first anisotropic conductive sheet and the pitch conversion substrate side are integrated to form an integrated adapter for pitch conversion, these are different when performing repeated continuous inspections. This eliminates the need to correct the misalignment of the conductive sheet and improves the workability of the inspection.In addition, a good electrical connection is maintained stably against environmental changes such as thermal history due to temperature changes. High connection reliability can be obtained. [0038] Furthermore, regardless of the arrangement pattern of the electrodes to be inspected of the circuit board to be inspected, the required electrical inspection can be reliably performed on the circuit board to be inspected, and the circuit board to be inspected is inspected. Even if the electrodes are arranged with a small pitch and a high density, the required electrical inspection can be reliably performed on the circuit board to be inspected. In the circuit board inspection apparatus of the present invention, the first anisotropic conductive sheet constituting the pitch conversion adapter is integrated,
離型性支持板上に支持され、磁性を示す導電性粒子が厚み方向に配向した状態 で弾性高分子物質中に分散された導電性エラストマ一層を、レーザー加工すること により、離型性支持板上に所定のパターンに従って配置された導電路形成部を形成 し、  The releasable support plate is obtained by laser processing a conductive elastomer layer supported on a releasable support plate and dispersed in an elastic polymer material in a state where conductive particles exhibiting magnetism are oriented in the thickness direction. Forming a conductive path forming portion arranged in accordance with a predetermined pattern on the top;
これらの導電路形成部の間に、硬化されて弾性高分子物質となる材料からなる絶 縁部用材料層を形成し、次 、で硬化処理することにより絶縁部を形成して得られたも のであることを特徴とする。  An insulating material layer formed of a material that is cured to become an elastic polymer substance is formed between these conductive path forming portions, and then an insulating portion is formed by curing with It is characterized by that.
[0039] このように、導電性エラストマ一層をレーザー加工して導電路形成部を形成してい るので、導電路形成部は所期の良好な導電性を有して ヽる。 [0039] As described above, since the conductive path forming portion is formed by laser processing of the conductive elastomer layer, the conductive path forming portion has the desired good conductivity.
また、所定のパターンに従って配置された複数の導電路形成部を形成し、これらの 導電路形成部の間に、硬化されて弾性高分子物質となる材料よりなる絶縁部用材料 層を形成して、硬化処理することにより絶縁部を形成するため、絶縁部には導電性粒 子が全く存在しない。  Further, a plurality of conductive path forming portions arranged according to a predetermined pattern are formed, and an insulating material layer made of a material that is cured to become an elastic polymer material is formed between the conductive path forming portions. Since the insulating part is formed by the curing process, there are no conductive particles in the insulating part.
[0040] し力も、従来の異方導電性シートを製造するために使用されていた多数の強磁性 体部が配列されてなる金型を用いることが不要である。  [0040] In addition, it is not necessary to use a mold in which a large number of ferromagnetic parts used to manufacture a conventional anisotropic conductive sheet are arranged.
従って、接続すべき被検査回路基板の被検査電極の配置パターンに関わらず、電 極の各々に対して所要の電気的接続が確実に達成される。また、接続すべき電極が 、そのピッチが微小で高密度に配置されている場合であっても、電極の各々に対して 所要の電気的接続が確実に達成される。しかも、第 1の異方導電性シートを低コスト で製造することができる。  Therefore, regardless of the arrangement pattern of the electrodes to be inspected on the circuit board to be inspected to be connected, the required electrical connection can be reliably achieved for each of the electrodes. Further, even when the electrodes to be connected are arranged with a small pitch and a high density, the required electrical connection is reliably achieved for each of the electrodes. In addition, the first anisotropic conductive sheet can be manufactured at low cost.
[0041] 本発明の回路基板の検査装置は、前記ピッチ変換用アダプタ一体が、 [0041] In the circuit board inspection apparatus of the present invention, the adapter for pitch conversion is integrated,
離型性支持板上に支持され、磁性を示す導電性粒子が厚み方向に配向した状態 で弾性高分子物質中に分散された導電性エラストマ一層を、レーザー加工すること により、離型性支持板上に所定のパターンに従って配置された導電路形成部を形成 し、 A state in which conductive particles which are supported on a releasable support plate and exhibit magnetism are oriented in the thickness direction Then, the conductive elastomer layer dispersed in the elastic polymer material is laser processed to form a conductive path forming portion arranged according to a predetermined pattern on the releasable support plate,
この導電路形成部が形成された離型性支持板を、硬化されて弾性高分子物質とな る材料からなる未硬化状態の絶縁部用材料層が接続用電極側の面に形成されたピ ツチ変換用基板上に重ね合わせ、  The releasable support plate on which the conductive path forming portion is formed is a pin having an uncured insulating portion material layer made of a material that is cured to become an elastic polymer substance on the surface on the connection electrode side. Overlaid on the substrate for the touch conversion,
これにより、ピッチ変換用基板におけるそれぞれの接続用電極と、これに対応する 導電路形成部とを対接させ、  As a result, each connection electrode on the pitch conversion substrate is brought into contact with the corresponding conductive path forming portion,
この状態で、絶縁部用材料層を硬化処理することにより絶縁部を形成した後、離型 性支持板を除去することにより得られたものであることを特徴とする。  In this state, the insulating part material layer is cured to form an insulating part, and then the mold release support plate is removed to obtain the insulating part.
[0042] このように、導電性エラストマ一層をレーザー加工して導電路形成部を形成してい るので、導電路形成部は所期の良好な導電性を有して ヽる。  [0042] Thus, since the conductive path forming portion is formed by laser processing one conductive elastomer layer, the conductive path forming portion may have the desired good conductivity.
また、所定のパターンに従って配置された複数の導電路形成部を形成し、これらの 導電路形成部の間に、硬化されて弾性高分子物質となる材料よりなる絶縁部用材料 層を形成して、硬化処理することにより絶縁部を形成するため、絶縁部には導電性粒 子が全く存在しない。  Further, a plurality of conductive path forming portions arranged according to a predetermined pattern are formed, and an insulating material layer made of a material that is cured to become an elastic polymer material is formed between the conductive path forming portions. Since the insulating part is formed by the curing process, there are no conductive particles in the insulating part.
[0043] また、導電路形成部の各々と絶縁部とがー体的に形成された第 1の異方導電性シ ートの全体がピッチ変換用基板に一体化されて支持されているため、導電路形成部 力 Sピッチ変換用基板力も脱落することがない。  [0043] Further, since the entire first anisotropic conductive sheet in which each of the conductive path forming portions and the insulating portion are formed in a body is integrally supported by the pitch conversion substrate, it is supported. In addition, the conductive path forming portion force S pitch conversion substrate force does not fall off.
また、レーザー加工による導電路形成部の形成工程は、離型性支持板上において 行われるため、異方導電性シートの形成において、ピッチ変換用基板の表面に損傷 を与えることがない。  In addition, since the formation process of the conductive path forming portion by laser processing is performed on the releasable support plate, the surface of the pitch conversion substrate is not damaged in forming the anisotropic conductive sheet.
[0044] 従って、検査対象である被検査回路基板の被検査電極の配置パターンに関わらず 、被検査電極の各々に対して、所要の電気的接続を確実に達成することができる。ま た、被検査電極が、そのピッチが微小で高密度に配置されている場合であっても、被 検査電極の各々に対して所要の電気的接続を確実に達成することができ、しカゝも、 製造コストの低減ィ匕を図ることができる。さらに、高い耐久性が得られる。  Therefore, the required electrical connection can be reliably achieved for each of the electrodes to be inspected regardless of the arrangement pattern of the electrodes to be inspected of the circuit board to be inspected. In addition, even if the electrodes to be inspected are arranged with a small pitch and a high density, it is possible to reliably achieve the required electrical connection to each of the electrodes to be inspected. In addition, manufacturing costs can be reduced. Furthermore, high durability is obtained.
[0045] さらに、従来の金型成形により異方導電シートを製造する方法ではないので、隣接 する金型磁極との磁場作用の影響がなぐ導電路形成部の離間距離が小さい、例え ば、導電路形成部間の絶縁部の幅が 50 m以下である第 1の異方導電性シートが ピッチ変換用基板に一体化された状態のピッチ変換用アダプタ一体が得られる。 したがって、被検査電極の離間距離が 50 m以下である、被検査電極が小ピッチ で配置された被検査回路基板を検査することが可能である。 [0045] Furthermore, since it is not a method of manufacturing an anisotropic conductive sheet by conventional mold molding, The first anisotropic conductive sheet having a small separation distance between the conductive path forming portions that is not affected by the magnetic field action with the mold magnetic pole to be processed, for example, the width of the insulating portion between the conductive path forming portions is 50 m or less is provided. An integrated adapter for pitch conversion in a state integrated with the substrate for pitch conversion is obtained. Therefore, it is possible to inspect a circuit board to be inspected in which the electrodes to be inspected are 50 m or less and the electrodes to be inspected are arranged at a small pitch.
[0046] さらに、 4端子検査を行う場合、被検査用回路基板の被検査電極 1つに対してピッ チ変換用基板の 2つの検査電極 (電圧用および電流用)を接続することになり、検査 電極間の離間距離が小さくなるが、このような場合であっても、導電路形成部の離間 距離が充分に小さい第 1の異方導電性シートを備えているので、確実に電気的検査 を実施することができる。 [0046] Further, when performing a four-terminal inspection, two inspection electrodes (for voltage and current) of the pitch conversion substrate are connected to one inspection electrode of the circuit substrate for inspection, Although the separation distance between the inspection electrodes is small, even in such a case, the first anisotropic conductive sheet with a sufficiently small separation distance of the conductive path forming portion is provided, so electrical inspection is surely performed. Can be implemented.
[0047] 本発明の回路基板の検査装置は、前記導電性エラストマ一層が、 [0047] In the circuit board inspection apparatus of the present invention, the conductive elastomer layer comprises:
離型性支持板上に、硬化されて弾性高分子物質となる液状のエラストマ一用材料 中に磁性を示す導電性粒子が含有された導電性エラストマ一用材料層を形成し、 該導電性エラストマ一用材料層の表面に、形成すべき導電路形成部のパターンに 従って、磁性を示す金属からなる金属マスクを形成し、  A conductive elastomer material layer containing conductive particles exhibiting magnetism in a liquid elastomer material that is cured to become an elastic polymer substance is formed on a releasable support plate, and the conductive elastomer A metal mask made of a metal exhibiting magnetism is formed on the surface of the material layer according to the pattern of the conductive path forming portion to be formed,
前記導電性エラストマ一用材料層に対してその厚み方向に磁場を作用させることに より、導電性粒子を厚み方向に配向させ、次いで、磁場を作用させた状態で、または 磁場を停止した状態で前記導電性エラストマ一用材料層を硬化処理することにより 得られたものであることを特徴とする。  By applying a magnetic field in the thickness direction to the conductive elastomer material layer, the conductive particles are oriented in the thickness direction, and then the magnetic field is applied or the magnetic field is stopped. It is obtained by curing the material layer for conductive elastomer.
[0048] このように、磁性を示す金属からなる金属マスクを用いて導電性エラストマ一用材料 層に対してその厚み方向に磁場を作用させることにより、分散されて 、た導電性粒子 は、金属マスク部分に集中した状態で厚み方向に配向する。 [0048] In this way, the conductive particles dispersed by applying a magnetic field in the thickness direction to the conductive elastomer material layer using a metal mask made of a metal exhibiting magnetism are obtained as follows. The film is oriented in the thickness direction while concentrated on the mask portion.
これにより、導電性エラストマ一用材料層における金属マスクが形成されて 、な ヽ 部分の導電性粒子の密度が小さくなる。そのため、レーザー加工による導電路形成 部の形成が容易になる。さらに、厚みの大きい導電性エラストマ一層レーザー加工が 容易となるため、厚みの大きい導電路形成部を確実に得ることができる。  As a result, a metal mask in the conductive elastomer material layer is formed, and the density of the conductive particles in that portion is reduced. This facilitates the formation of the conductive path forming portion by laser processing. Furthermore, since a thicker conductive elastomer layer can be easily processed by laser, a thick conductive path forming portion can be obtained with certainty.
[0049] このような製法により得られた第 1の異方導電性シートを用いた本発明の検査装置 は、接続すべき被検査回路基板の被検査電極の配置パターンに関わらず、電極の 各々に対して所要の電気的接続を確実に達成できる。また、接続すべき電極が、そ のピッチが微小で高密度に配置されている場合であっても、電極の各々に対して所 要の電気的接続を確実に達成できる。 [0049] The inspection apparatus according to the present invention using the first anisotropic conductive sheet obtained by such a manufacturing method is suitable for the electrodes regardless of the arrangement pattern of the electrodes to be inspected on the circuit board to be inspected. The required electrical connection can be reliably achieved for each. Further, even when the electrodes to be connected are arranged with a small pitch and a high density, the required electrical connection can be reliably achieved for each of the electrodes.
[0050] 上記した本発明の検査装置では、前記第 1の異方導電性シートにおける少なくとも 一部の導電路形成部において、互いに隣接する導電路形成部の離間距離が 50 m以下であることが好ましぐより好ましくは 10〜50 μ mである。  [0050] In the inspection apparatus of the present invention described above, in at least some of the conductive path forming portions in the first anisotropic conductive sheet, the distance between adjacent conductive path forming portions may be 50 m or less. More preferably, it is 10 to 50 μm.
このようにすることで、被検査電極の離間距離が 50 m以下である、被検査電極が 微細ピッチで配置された被検査回路基板を検査することが可能である。  By doing so, it is possible to inspect a circuit board to be inspected in which the distance to be inspected is 50 m or less and the electrodes to be inspected are arranged at a fine pitch.
[0051] さらに、 4端子検査を行う場合、被検査用回路基板の被検査電極 1つに対してピッ チ変換用基板の 2つの検査電極 (電圧用および電流用)を接続するので、検査電極 間の離間距離が小さくなるが、このような場合であっても確実に電気的検査を実施す ることがでさる。  [0051] Further, when performing a four-terminal inspection, two inspection electrodes (for voltage and current) of the pitch conversion substrate are connected to one inspection electrode of the circuit substrate for inspection, so that the inspection electrode The distance between them is small, but even in such a case, electrical inspection can be performed reliably.
本発明の回路基板の検査装置は、一対の第 1の検査治具と第 2の検査治具によつ て、両検査治具の間で検査対象である被検査回路基板の両面を挟圧して電気検査 を行う回路基板の検査装置であって、  The circuit board inspection apparatus of the present invention sandwiches both surfaces of the circuit board to be inspected between the two inspection jigs by a pair of the first inspection jig and the second inspection jig. A circuit board inspection device that performs electrical inspection
前記第 1の検査治具と第 2の検査治具がそれぞれ、  The first inspection jig and the second inspection jig are respectively
基板の一面側と他面側との間で電極ピッチを変換するピッチ変換用基板と、 前記ピッチ変換用基板の被検査回路基板側に配置され、基板に形成された複数 の貫通孔に、弾性高分子物質カゝらなる絶縁部と、導電性粒子を含有する弾性高分 子物質からなり前記絶縁部を厚み方向へ貫通する導電路形成部とが形成された、該 導電路形成部によって前記ピッチ変換用基板と前記被検査回路基板との電気的接 続を中継する中継基板と、  A pitch conversion substrate for converting the electrode pitch between one surface side and the other surface side of the substrate, and a plurality of through holes formed on the substrate, arranged on the circuit board side to be inspected of the pitch conversion substrate. The conductive path forming section includes an insulating section formed of a polymer substance and a conductive path forming section formed of an elastic polymer material containing conductive particles and penetrating the insulating section in the thickness direction. A relay board for relaying the electrical connection between the pitch conversion board and the circuit board to be inspected;
前記ピッチ変換用基板の前記中継基板とは逆側に配置される第 2の異方導電性シ ートと、  A second anisotropic conductive sheet disposed on the opposite side of the pitch conversion substrate from the relay substrate;
を備えた回路基板側コネクタと、  A circuit board-side connector with
所定のピッチで配置された複数の導電ピンと、  A plurality of conductive pins arranged at a predetermined pitch;
前記導電ピンを軸方向へ移動可能に支持する、一対の離間した第 1の絶縁板と第 2の絶縁板と、 を備えた中 «Iピンユニットと、 A pair of spaced apart first and second insulating plates that support the conductive pins movably in the axial direction; «I-pin unit with
テスターと前記中継ピンユニットとを電気的に接続するコネクタ基板と、 前記コネクタ基板の中継ピンユニット側に配置される第 3の異方導電性シートと、 前記コネクタ基板の中継ピンユニットとは逆側に配置されるベース板と、 を備えたテスター佃 jコネクタと、を備え、  A connector board that electrically connects the tester and the relay pin unit; a third anisotropic conductive sheet disposed on the relay pin unit side of the connector board; and a side opposite to the relay pin unit of the connector board A base plate disposed on a tester 佃 j connector with
前記中継ピンユニットは、  The relay pin unit is
前記第 1の絶縁板と第 2の絶縁板との間に配置された中間保持板と、  An intermediate holding plate disposed between the first insulating plate and the second insulating plate;
前記第 1の絶縁板と中間保持板との間に配置された第 1の支持ピンと、 前記第 2の絶縁板と中間保持板との間に配置された第 2の支持ピンと、 を備えるとともに、  A first support pin disposed between the first insulating plate and the intermediate holding plate, and a second support pin disposed between the second insulating plate and the intermediate holding plate, and
前記第 1の支持ピンの中間保持板に対する第 1の当接支持位置と、前記第 2の支 持ピンの中間保持板に対する第 2の当接支持位置とが、中間保持板の厚さ方向に投 影した中間保持板投影面において異なる位置に配置されていることを特徴とする。  The first abutting support position of the first support pin with respect to the intermediate holding plate and the second abutting support position of the second support pin with respect to the intermediate holding plate are in the thickness direction of the intermediate holding plate. It is arranged at different positions on the projected intermediate holding plate projection surface.
[0052] このように構成することによって、第 1の検査治具と第 2の検査治具との間で検査対 象である被検査回路基板の両面を挟圧して電気検査を行う際に、加圧の初期段階 では、中継ピンユニットの導電ピンによる厚み方向への移動と、中継基板の弾性部分 と、第 2の異方導電性シートと、第 3の異方導電性シートのゴム弾性圧縮にて圧力を 吸収して、被検査回路基板の被検査電極の高さバラツキをある程度吸収することが できる。 [0052] With this configuration, when electrical inspection is performed by sandwiching both surfaces of the circuit board to be inspected between the first inspection jig and the second inspection jig, In the initial stage of pressurization, the relay pin unit is moved in the thickness direction by the conductive pin, and the elastic portion of the relay substrate, the second anisotropic conductive sheet, and the third anisotropic conductive sheet are elastically compressed by rubber. The pressure can be absorbed at, and the height variation of the electrode to be inspected on the circuit board to be inspected can be absorbed to some extent.
[0053] そして、第 1の支持ピンの中間保持板に対する第 1の当接支持位置と、前記第 2の 支持ピンの中間保持板に対する第 2の当接支持位置とが、中間保持板の厚さ方向に 投影した中間保持板投影面において、異なる位置に配置されているので、第 1の検 查治具と第 2の検査治具の間で検査対象である被検査回路基板をさらに加圧した際 に、中継基板の弾性部分と、第 2の異方導電性シートと、第 3の異方導電性シートの ゴム弾性圧縮に加えて、中継ピンユニットの第 1の絶縁板と、第 2の絶縁板と、第 1の 絶縁板と第 2の絶縁板の間に配置された中間保持板のパネ弾性により、被検査回路 基板の被検査電極の高さバラツキ、例えば、ハンダボール電極の高さバラツキに対し て、圧力集中を分散させて、局部的な応力集中を回避することができる。 [0054] これにより、高さバラツキを有する被検査回路基板の被検査電極の各々に対しても 、安定的な電気的接触が確保され、さらに応力集中が低減されるので、中継基板の 弾性部分の局部的な破損が抑制される。その結果、中継基板の繰り返し使用耐久性 が向上するので、中継基板の交換回数が減り、検査作業効率が向上する。 [0053] The first abutting support position of the first support pin with respect to the intermediate holding plate and the second abutting support position of the second support pin with respect to the intermediate holding plate are the thickness of the intermediate holding plate. Since the intermediate holding plate projection surface projected in the vertical direction is arranged at different positions, the circuit board to be inspected is further pressurized between the first inspection jig and the second inspection jig. In addition to the elastic elastic compression of the relay board, the second anisotropic conductive sheet, and the third anisotropic conductive sheet, the first insulating plate of the relay pin unit and the second Panel insulation between the first insulating plate and the first insulating plate and the second insulating plate, the variation in height of the electrodes to be inspected on the circuit board to be inspected, for example, the variation in the height of the solder ball electrodes On the other hand, local stress concentration can be avoided by distributing pressure concentration. [0054] Accordingly, stable electrical contact is ensured for each of the electrodes to be inspected of the circuit board to be inspected having a height variation, and further, the stress concentration is reduced. Local damage is suppressed. As a result, since the repeated use durability of the relay board is improved, the number of times of replacement of the relay board is reduced, and the inspection work efficiency is improved.
また、一定間隔で導電ピンを配置する必要がないので、導電ピンを保持する絶縁 板への貫通孔のドリル加工による穿設作業が少なぐコストを低減することができる。  Further, since there is no need to arrange the conductive pins at regular intervals, the cost of drilling through holes in the insulating plate holding the conductive pins by drilling can be reduced.
[0055] さらに本発明では、導電路形成部とその周囲の絶縁部とからなる弾性部分が基板 に形成された複数の貫通孔のそれぞれに設けられた中継基板を配置しているので、 検査治具の押圧による加圧力や衝撃がこの弾性部分で吸収され、被検査回路基板 の電極などを破損損傷することがな!、。  [0055] Further, in the present invention, the relay substrate is provided in which each of the plurality of through holes formed in the substrate has an elastic portion including the conductive path forming portion and the surrounding insulating portion. The pressing force and impact due to the pressing of the tool are absorbed by this elastic part, and the electrodes on the circuit board to be inspected will not be damaged.
さらに、検査対象である被検査回路基板の被検査電極の配置パターンに関わらず 、被検査回路基板について所要の電気的検査を確実に実行することができ、被検査 回路基板の被検査電極が、そのピッチが微小で高密度に配置されて ヽる場合であつ ても、被検査回路基板につ ヽて所要の電気的検査を確実に実施することができる。  Furthermore, regardless of the arrangement pattern of the electrodes to be inspected on the circuit board to be inspected, the required electrical inspection can be reliably performed on the circuit board to be inspected. Even when the pitch is very small and densely arranged, the required electrical inspection can be reliably performed on the circuit board to be inspected.
[0056] 本発明の回路基板の検査装置は、前記中継基板が、  [0056] In the circuit board inspection apparatus of the present invention, the relay board includes:
第 1の離型性支持板上に支持され、磁性を示す導電性粒子が厚み方向に配向し た状態で弾性高分子物質中に分散された導電性エラストマ一層を、レーザー加工す ることにより、第 1の離型性支持板上に所定のパターンに従って配置された導電路形 成部を形成し、  By conducting laser processing on the conductive elastomer layer supported on the first releasable support plate and dispersed in the elastic polymer material in a state where the conductive particles exhibiting magnetism are oriented in the thickness direction, Forming a conductive path forming portion arranged according to a predetermined pattern on the first releasable support plate;
第 2の離型性支持板上に支持され、硬化されて弾性高分子物質となる材料からな る未硬化状態の絶縁部用材料層が前記基板における両側表面および貫通孔の内 部に形成された当該基板に対して、導電路形成部が形成された前記第 1の離型性 支持板を、導電路形成部が前記基板の貫通孔に位置するように重ね合わせ、 この状態で、絶縁部用材料層を硬化処理することにより絶縁部を形成した後、第 1 および第 2の離型性支持板を除去することにより得られたものであることを特徴とする  An uncured insulating material layer made of a material that is supported on the second releasable support plate and cured to become an elastic polymer substance is formed on both side surfaces of the substrate and inside the through holes. In addition, the first releasable support plate on which the conductive path forming portion is formed is superimposed on the substrate so that the conductive path forming portion is located in the through hole of the substrate. It is obtained by removing the first and second releasable support plates after forming the insulating part by curing the material layer
[0057] このように、導電性エラストマ一層をレーザー加工して導電路形成部を形成してい るので、導電路形成部は所期の良好な導電性を有して ヽる。 また、所定のパターンに従って配置された複数の導電路形成部を形成し、これらの 導電路形成部の間に、硬化されて弾性高分子物質となる材料よりなる絶縁部用材料 層を形成して、硬化処理することにより絶縁部を形成するため、絶縁部には導電性粒 子が全く存在しない。 As described above, since the conductive path forming portion is formed by laser processing of the conductive elastomer layer, the conductive path forming portion may have the desired good conductivity. Further, a plurality of conductive path forming portions arranged according to a predetermined pattern are formed, and an insulating material layer made of a material that is cured to become an elastic polymer material is formed between the conductive path forming portions. Since the insulating part is formed by the curing process, there are no conductive particles in the insulating part.
[0058] し力も、従来の異方導電性シートを製造するために使用されていた多数の強磁性 体部が配列されてなる金型を用いることが不要である。  [0058] With regard to the force, it is not necessary to use a mold in which a large number of ferromagnetic parts used to manufacture a conventional anisotropic conductive sheet are arranged.
従って、接続すべき被検査回路基板の被検査電極の配置パターンに関わらず、電 極の各々に対して所要の電気的接続が確実に達成される。また、接続すべき電極が 、そのピッチが微小で高密度に配置されている場合であっても、電極の各々に対して 所要の電気的接続が確実に達成される。しかも、中継基板を低コストで製造すること ができる。  Therefore, regardless of the arrangement pattern of the electrodes to be inspected on the circuit board to be inspected to be connected, the required electrical connection can be reliably achieved for each of the electrodes. Further, even when the electrodes to be connected are arranged with a small pitch and a high density, the required electrical connection is reliably achieved for each of the electrodes. In addition, the relay board can be manufactured at a low cost.
[0059] さらに、従来の金型成形により異方導電シートを製造する方法ではないので、隣接 する金型磁極との磁場作用の影響がなぐ導電路形成部の離間距離が小さい、例え ば、導電路形成部間の絶縁部の幅が 50 m以下であるものが得られる。  [0059] Further, since the anisotropic conductive sheet is not manufactured by conventional mold molding, the separation distance between the conductive path forming portions that is not affected by the magnetic field action between adjacent mold magnetic poles is small. An insulating part with a width of 50 m or less between the path forming parts is obtained.
したがって、被検査電極の離間距離が 50 m以下である、被検査電極が小ピッチ で配置された被検査回路基板を検査することが可能である。  Therefore, it is possible to inspect a circuit board to be inspected in which the electrodes to be inspected are 50 m or less and the electrodes to be inspected are arranged at a small pitch.
[0060] さらに、 4端子検査を行う場合、被検査用回路基板の被検査電極 1つに対してピッ チ変換用基板の 2つの検査電極 (電圧用および電流用)を接続することになり、検査 電極間の離間距離が小さくなるが、このような場合であっても、導電路形成部の離間 距離が充分に小さ 、中継基板を備えて ヽるので、確実に電気的検査を実施すること ができる。  [0060] Furthermore, when performing a four-terminal inspection, two inspection electrodes (for voltage and current) of the pitch conversion substrate are connected to one inspection electrode of the circuit substrate for inspection, Although the separation distance between the inspection electrodes becomes small, even in such a case, the separation distance of the conductive path forming portion is sufficiently small and the relay board is provided, so that the electrical inspection should be performed reliably. Can do.
本発明の回路基板の検査装置は、前記導電性エラストマ一層が、  In the circuit board inspection apparatus of the present invention, the conductive elastomer layer is
離型性支持板上に、硬化されて弾性高分子物質となる液状のエラストマ一用材料 中に磁性を示す導電性粒子が含有された導電性エラストマ一用材料層を形成し、 該導電性エラストマ一用材料層の表面に、形成すべき導電路形成部のパターンに 従って、磁性を示す金属からなる金属マスクを形成し、  A conductive elastomer material layer containing conductive particles exhibiting magnetism in a liquid elastomer material that is cured to become an elastic polymer substance is formed on a releasable support plate, and the conductive elastomer A metal mask made of a metal exhibiting magnetism is formed on the surface of the material layer according to the pattern of the conductive path forming portion to be formed,
前記導電性エラストマ一用材料層に対してその厚み方向に磁場を作用させることに より、導電性粒子を厚み方向に配向させ、次いで、磁場を作用させた状態で、または 磁場を停止した状態で前記導電性エラストマ一用材料層を硬化処理することにより 得られたものであることを特徴とする。 By applying a magnetic field in the thickness direction to the conductive elastomer material layer, the conductive particles are oriented in the thickness direction, and then the magnetic field is applied, or It is obtained by curing the material layer for conductive elastomer with the magnetic field stopped.
[0061] このように、磁性を示す金属からなる金属マスクを用いて導電性エラストマ一用材料 層に対してその厚み方向に磁場を作用させることにより、分散されて 、た導電性粒子 は、金属マスク部分に集中した状態で厚み方向に配向する。  [0061] Thus, the conductive particles dispersed by applying a magnetic field in the thickness direction to the material layer for the conductive elastomer using a metal mask made of a metal exhibiting magnetism are obtained as follows. The film is oriented in the thickness direction while concentrated on the mask portion.
これにより、導電性エラストマ一用材料層における金属マスクが形成されて 、な ヽ 部分の導電性粒子の密度が小さくなる。そのため、レーザー加工による導電路形成 部の形成が容易になる。さらに、厚みの大きい導電性エラストマ一層のレーザー加工 が容易となるため、厚みの大きい導電路形成部を確実に得ることができる。  As a result, a metal mask in the conductive elastomer material layer is formed, and the density of the conductive particles in that portion is reduced. This facilitates the formation of the conductive path forming portion by laser processing. Further, since laser processing of a thick conductive elastomer layer becomes easy, a thick conductive path forming portion can be obtained with certainty.
[0062] このような製法により得られた中継基板を用いた本発明の検査装置は、接続すべき 被検査回路基板の被検査電極の配置パターンに関わらず、電極の各々に対して所 要の電気的接続を確実に達成できる。また、接続すべき電極が、そのピッチが微小 で高密度に配置されている場合であっても、電極の各々に対して所要の電気的接続 を確実に達成できる。  [0062] The inspection apparatus of the present invention using the relay substrate obtained by such a manufacturing method is necessary for each of the electrodes regardless of the arrangement pattern of the electrodes to be inspected on the circuit board to be inspected. An electrical connection can be reliably achieved. Further, even if the electrodes to be connected are arranged with a small pitch and a high density, it is possible to reliably achieve the required electrical connection to each of the electrodes.
上記した本発明の検査装置では、前記中継基板における少なくとも一部の導電路 形成部において、互いに隣接する導電路形成部の離間距離が 50 m以下であるこ と力 S好ましく、より好ましくは 10〜50 /ζ πιである。  In the inspection apparatus of the present invention described above, in at least some of the conductive path forming portions of the relay substrate, the separation distance between adjacent conductive path forming portions is preferably 50 m or less, and more preferably 10 to 50. / ζ πι.
[0063] このようにすることで、被検査電極の離間距離が 50 m以下である、被検査電極が 微細ピッチで配置された被検査回路基板を検査することが可能である。  In this way, it is possible to inspect a circuit board to be inspected in which the distance to be inspected is 50 m or less and the electrodes to be inspected are arranged at a fine pitch.
さらに、 4端子検査を行う場合、被検査用回路基板の被検査電極 1つに対してピッ チ変換用基板の 2つの検査電極 (電圧用および電流用)を接続するので、検査電極 間の離間距離が小さくなるが、このような場合であっても確実に電気的検査を実施す ることがでさる。  In addition, when performing 4-terminal inspection, two inspection electrodes (for voltage and current) on the pitch conversion substrate are connected to one inspection electrode on the circuit substrate to be inspected. Although the distance becomes smaller, even in such a case, it is possible to perform electrical inspections reliably.
[0064] なお、前記中継基板の片面側もしくは両面側には、導電性粒子が厚み方向に配列 するとともに面方向に均一に分散された第 1の異方導電性シートを配置してもよい。 本発明の回路基板の検査装置は、  [0064] Note that a first anisotropic conductive sheet in which conductive particles are arranged in the thickness direction and uniformly dispersed in the plane direction may be disposed on one side or both sides of the relay substrate. The circuit board inspection apparatus according to the present invention includes:
一対の第 1の検査治具と第 2の検査治具によって、両検査治具の間で検査対象で ある被検査回路基板の両面を挟圧した際に、 前記第 1の支持ピンの中間保持板に対する第 1の当接支持位置を中心として、前 記中間保持板が、前記第 2の絶縁板の方向に橈むとともに、 When the both sides of the circuit board to be inspected are clamped between the two inspection jigs by the pair of the first inspection jig and the second inspection jig, Centering on the first abutting support position of the first support pin with respect to the intermediate holding plate, the intermediate holding plate is sandwiched in the direction of the second insulating plate, and
前記第 2の支持ピンの中間保持板に対する第 2の当接支持位置を中心として、前 記中間保持板が、前記第 1の絶縁板の方向に橈むことを特徴とする。  The intermediate holding plate is sandwiched in the direction of the first insulating plate with the second contact support position of the second support pin with respect to the intermediate holding plate as a center.
[0065] このように構成すること〖こよって、中間保持板が、第 1の当接支持位置、第 2の当接 支持位置を中心として、相互に反対方向に橈むので、第 1の検査治具と第 2の検査 治具の間で検査対象である被検査回路基板をさらに加圧した際に、中間保持板の パネ弾性力がさらに発揮されることになり、被検査回路基板の被検査電極の高さバラ ツキに対して、圧力集中を分散させて局部的な応力集中を回避することができ、異方 導電性シートの局部的な破損が抑制される。その結果、異方導電性シートの繰り返し 使用耐久性が向上するので、異方導電性シートの交換回数が減り、検査作業効率が 向上する。 With this configuration, the intermediate holding plate is held in opposite directions around the first contact support position and the second contact support position, so that the first inspection is performed. When the circuit board to be inspected is further pressed between the jig and the second inspection jig, the panel elastic force of the intermediate holding plate is further exerted. With respect to the variation in the height of the inspection electrode, the pressure concentration can be dispersed to avoid the local stress concentration, and the local breakage of the anisotropic conductive sheet is suppressed. As a result, the durability of repeated use of the anisotropic conductive sheet is improved, so that the number of replacements of the anisotropic conductive sheet is reduced and the inspection work efficiency is improved.
[0066] 本発明の回路基板の検査装置は、前記第 1の支持ピンの中間保持板に対する第 1 の当接支持位置が、前記中間保持板投影面において格子状に配置され、  In the circuit board inspection apparatus of the present invention, the first contact support positions of the first support pins with respect to the intermediate holding plate are arranged in a grid pattern on the intermediate holding plate projection surface,
前記第 2の支持ピンの中間保持板に対する第 2の当接支持位置が、前記中間保持 板投影面において格子状に配置されており、  Second contact support positions of the second support pins with respect to the intermediate holding plate are arranged in a grid pattern on the intermediate holding plate projection surface,
前記中間保持板投影面において、隣接する 4個の第 1の当接支持位置力もなる単 位格子領域に、 1個の第 2の当接支持位置が配置されるとともに、  On the intermediate holding plate projection surface, one second abutment support position is arranged in a unit lattice region that also has four adjacent first abutment support position forces, and
前記中間保持板投影面において、隣接する 4個の第 2の当接支持位置力もなる単 位格子領域に、 1個の第 1の当接支持位置が配置されていることを特徴とする。  In the intermediate holding plate projection surface, one first abutment support position is disposed in a unit lattice region that also has four adjacent second abutment support position forces.
[0067] このように構成することによって、第 1の当接支持位置と第 2の当接支持位置が格子 状に配置され、しかも、第 1の当接支持位置と第 2の当接支持位置の格子点位置が 全てずれた位置に配置されることになる。 With this configuration, the first contact support position and the second contact support position are arranged in a lattice pattern, and the first contact support position and the second contact support position are arranged. The positions of the grid points are all shifted.
従って、中間保持板が、第 1の当接支持位置、第 2の当接支持位置を中心として、 相互に反対方向により橈むことになり、第 1の検査治具と第 2の検査治具の間で検査 対象である被検査回路基板を加圧した際に、中間保持板のパネ弾性力がさらに発 揮されることになり、被検査回路基板の被検査電極の高さバラツキに対して圧力集中 を分散させて、局部的な応力集中をさらに回避することができる。よって、異方導電 性シートの局部的な破損が抑制され、その結果、異方導電性シートの繰り返し使用 耐久性が向上するので、異方導電性シートの交換回数が減り、検査作業効率が向上 する。 Therefore, the intermediate holding plate is pinched in opposite directions around the first contact support position and the second contact support position, and the first inspection jig and the second inspection jig The panel elastic force of the intermediate holding plate is further exerted when the circuit board to be inspected is pressed between the two, and the height of the electrodes to be inspected on the circuit board to be inspected The pressure concentration can be distributed to further avoid local stress concentrations. Therefore, anisotropic conduction As a result, localized damage of the anisotropic conductive sheet is suppressed, and as a result, the durability of repeated use of the anisotropic conductive sheet is improved, so that the number of times the anisotropic conductive sheet is replaced is reduced and the inspection work efficiency is improved.
[0068] また、本発明の回路基板の検査装置は、前記中継ピンユニットが、  [0068] Further, in the circuit board inspection apparatus of the present invention, the relay pin unit includes:
前記第 1の絶縁板と第 2の絶縁板との間に所定間隔離間して配置された複数個の 中間保持板と、  A plurality of intermediate holding plates disposed at a predetermined distance between the first insulating plate and the second insulating plate;
隣接する中間保持板同士の間に配置された保持板支持ピンと、  Holding plate support pins arranged between adjacent intermediate holding plates;
を備えるとともに、  With
少なくとも 1つの中間保持板において、該中間保持板に対して一面側から当接する 保持板支持ピンの該中間保持板に対する当接支持位置と、該中間保持板に対して 他面側から当接する第 1の支持ピン、第 2の支持ピン、または保持板支持ピンの該中 間保持板に対する当接支持位置とが、該中間保持板の厚さ方向に投影した中間保 持板投影面にぉ 、て異なる位置に配置されて 、ることを特徴とする。  At least one of the intermediate holding plates is in contact with the intermediate holding plate from one surface side. The holding support position of the holding plate support pin with respect to the intermediate holding plate, and the second contact surface with respect to the intermediate holding plate from the other surface side. The contact support position of the first support pin, the second support pin, or the holding plate support pin with respect to the intermediate holding plate is located on the intermediate holding plate projection surface projected in the thickness direction of the intermediate holding plate. Are arranged at different positions.
[0069] このように構成することによって、これらの複数個の中間保持板によってパネ弾性が さらに発揮されることになり、被検査回路基板の被検査電極の高さバラツキに対して 、圧力集中を分散させて局部的な応力集中をさらに回避することができ、異方導電 性シートの局部的な破損が抑制される。その結果、異方導電性シートの繰り返し使用 耐久性が向上するので、異方導電性シートの交換回数が減り、検査作業効率が向上 する。 [0069] With this configuration, the panel elasticity is further exhibited by the plurality of intermediate holding plates, and the pressure concentration is reduced with respect to the height variation of the electrodes to be inspected on the circuit board to be inspected. Dispersion can further avoid local stress concentration, and local breakage of the anisotropic conductive sheet is suppressed. As a result, the durability of repeated use of the anisotropic conductive sheet is improved, so that the number of replacements of the anisotropic conductive sheet is reduced and the inspection work efficiency is improved.
[0070] また、本発明の回路基板の検査装置は、全ての前記中間保持板において、該中間 保持板に対して一面側力 当接する保持板支持ピンの該中間保持板に対する当接 支持位置と、該中間保持板に対して他面側力 当接する第 1の支持ピン、第 2の支 持ピン、または保持板支持ピンの該中間保持板に対する当接支持位置とが、該中間 保持板の厚さ方向に投影した中間保持板投影面にぉ 、て異なる位置に配置されて いることを特徴とする。  [0070] Further, in the circuit board inspection apparatus according to the present invention, in all the intermediate holding plates, the holding plate supporting pins that are in contact with the intermediate holding plate by one surface side force are in contact with the intermediate holding plate. A contact support position of the first support pin, the second support pin, or the holding plate support pin that contacts the intermediate holding plate with respect to the intermediate holding plate. It is characterized by being arranged at different positions on the intermediate holding plate projection surface projected in the thickness direction.
[0071] これによつて、隣接する中間保持板の間で、保持板支持ピンの中間保持板との当 接支持位置がずれた位置に配置されるので、これらの複数個の中間保持板のパネ 弾性がさらに発揮されることになり、被検査回路基板の被検査電極の高さバラツキに 対して圧力集中を分散させて、局部的な応力集中をさらに回避することができ、異方 導電性シートの局部的な破損が抑制される。その結果、異方導電性シートの繰り返し 使用耐久性が向上するので、異方導電性シートの交換回数が減り、検査作業効率が 向上する。 [0071] Thereby, since the contact support position of the holding plate support pin with the intermediate holding plate is shifted between the adjacent intermediate holding plates, the panel elasticities of the plurality of intermediate holding plates are elastic. Will be further exerted, resulting in variations in the height of the electrodes to be inspected on the circuit board to be inspected. On the other hand, the pressure concentration can be dispersed to further avoid the local stress concentration, and the local breakage of the anisotropic conductive sheet is suppressed. As a result, the durability of repeated use of the anisotropic conductive sheet is improved, so that the number of replacements of the anisotropic conductive sheet is reduced and the inspection work efficiency is improved.
[0072] また、本発明の回路基板の検査装置は、前記第 2の異方導電性シートが、厚み方 向に延びる複数の導電路形成部と、これらの導電路形成部を互いに絶縁する絶縁 部とからなり、導電性粒子が導電路形成部中にのみ含有され、これにより該導電性 粒子は面方向に不均一に分散されるとともに、シート片面側に導電路形成部が突出 していることを特徴とする。  [0072] Further, in the circuit board inspection apparatus according to the present invention, the second anisotropic conductive sheet includes a plurality of conductive path forming portions extending in a thickness direction, and insulation that insulates the conductive path forming portions from each other. The conductive particles are contained only in the conductive path forming portion, whereby the conductive particles are unevenly dispersed in the surface direction, and the conductive path forming portion protrudes on one side of the sheet. It is characterized by that.
また、本発明の回路基板の検査装置は、前記第 3の異方導電性シートが、厚み方 向に延びる複数の導電路形成部と、これらの導電路形成部を互いに絶縁する絶縁 部とからなり、導電性粒子が導電路形成部中にのみ含有され、これにより該導電性 粒子は面方向に不均一に分散されるとともに、シート片面側に導電路形成部が突出 していることを特徴とする。  In the circuit board inspection apparatus of the present invention, the third anisotropic conductive sheet includes a plurality of conductive path forming portions extending in a thickness direction, and an insulating portion that insulates the conductive path forming portions from each other. The conductive particles are contained only in the conductive path forming portion, whereby the conductive particles are dispersed unevenly in the surface direction, and the conductive path forming portion protrudes on one side of the sheet. And
[0073] このように、第 2の異方導電性シートおよび第 3の異方導電性シートとして、導電路 形成部と絶縁部とからなり、導電性粒子が導電路形成部中にのみ含有されて面方向 に不均一に分散され、シート片面側に導電路形成部が突出した偏在型の異方導電 性シートを使用することにより、検査治具の押圧による加圧力や衝撃がこれらのシー トで吸収され、これにより第 1の異方導電性シートの劣化が抑制される。  [0073] Thus, the second anisotropic conductive sheet and the third anisotropic conductive sheet are composed of the conductive path forming part and the insulating part, and the conductive particles are contained only in the conductive path forming part. By using an unevenly anisotropic anisotropic conductive sheet that is unevenly distributed in the surface direction and the conductive path forming part protrudes on one side of the sheet, the applied pressure and impact due to the pressing of the inspection jig are applied to these sheets. This suppresses the deterioration of the first anisotropic conductive sheet.
[0074] 本発明における一つの態様では、前記複数の導電ピンは、前記第 1の絶縁板と第 2の絶縁板との間の間隔よりも短い棒状の中央部と、該中央部の両端側に形成され 該中央部よりも径カ 、さい一対の端部とからなり、  [0074] In one aspect of the present invention, the plurality of conductive pins include a bar-shaped central portion that is shorter than the interval between the first insulating plate and the second insulating plate, and both end sides of the central portion. Formed with a diameter larger than the central portion and a pair of end portions,
前記一対の端部がそれぞれ、前記第 1の絶縁板と第 2の絶縁板とに形成された前 記中央部よりも径カ 、さく前記一対の端部よりも径が大きい貫通孔に揷通され、これ により、前記導電ピンが軸方向に移動可能に支持される。  Each of the pair of end portions passes through a through-hole having a diameter larger than that of the central portion formed in the first insulating plate and the second insulating plate and larger than that of the pair of end portions. Thus, the conductive pin is supported so as to be movable in the axial direction.
[0075] このように構成することで、導電ピンが、第 1の絶縁板と第 2の絶縁板との間に、軸 方向に移動可能に、且つ脱落しな 、ように保持することができる。  [0075] With this configuration, the conductive pin can be held between the first insulating plate and the second insulating plate so as to be movable in the axial direction and without falling off. .
本発明における他の態様では、前記第 1の絶縁板と中間保持板との間、前記第 2 の絶縁板と中間保持板との間、または中間保持板同士の間に、前記導電ピンが挿通 される貫通孔が形成された屈曲保持板が設けられ、 In another aspect of the present invention, the second insulating plate is interposed between the first insulating plate and the intermediate holding plate. A bent holding plate having a through hole through which the conductive pin is inserted is provided between the insulating plate and the intermediate holding plate, or between the intermediate holding plates.
前記複数の導電ピンは、前記第 1および第 2の絶縁板に形成された貫通孔と、前記 屈曲保持板に形成された貫通孔とを支点として互いに逆方向に横方向へ押圧され て前記屈曲保持板の貫通孔の位置で屈曲され、これにより前記導電ピンが軸方向に 移動可能に支持される。  The plurality of conductive pins are laterally pressed in opposite directions from each other around a through hole formed in the first and second insulating plates and a through hole formed in the bent holding plate. It is bent at the position of the through hole of the holding plate, and thereby the conductive pin is supported so as to be movable in the axial direction.
[0076] このように構成することで、導電ピンが、第 1の絶縁板と第 2の絶縁板との間に、軸 方向に移動可能に、且つ脱落しないように保持することができる。さらに、導電ピンと して円柱状である簡易な構造のピンを使用できるため、導電ピンおよびそれを保持 する部材の全体としてのコストを抑えることができる。 With this configuration, the conductive pin can be held between the first insulating plate and the second insulating plate so as to be movable in the axial direction and not to drop off. Furthermore, since a pin having a simple structure having a cylindrical shape can be used as the conductive pin, the cost of the conductive pin and the member holding it can be reduced.
本発明の回路基板の検査方法は、前述した回路基板の検査装置を用いた回路基 板の検査方法であって、  The circuit board inspection method of the present invention is a circuit board inspection method using the circuit board inspection apparatus described above,
一対の第 1の検査治具と第 2の検査治具によって、両検査治具の間で検査対象で ある被検査回路基板の両面を挟圧して電気検査を行うことを特徴とする。  The electrical inspection is performed by sandwiching both surfaces of the circuit board to be inspected between the inspection jigs by the pair of the first inspection jig and the second inspection jig.
発明の効果  The invention's effect
[0077] 本発明によれば、検査対象である被検査回路基板が、例えば被検査電極の離間 距離が 50 m以下であるような、微細ピッチの微小電極を有するものであっても、信 頼性の高い回路基板の電気的検査を行うことが可能である。  [0077] According to the present invention, even if the circuit board to be inspected has a microelectrode with a fine pitch such that the distance between the electrodes to be inspected is 50 m or less, the circuit board is reliable. It is possible to perform an electrical inspection of a highly functional circuit board.
また、検査対象である被検査回路基板の被検査電極の高さバラツキに対する追従 性が良好で、導通不良が発生せず、正確な検査を実施することが可能である。  Further, the followability to the height variation of the inspected electrode of the inspected circuit board to be inspected is good, and there is no conduction failure, and an accurate inspection can be performed.
[0078] また、一定間隔で導電ピンを配置する必要がな 、ので、導電ピンを保持する絶縁 板への貫通孔のドリル加工による穿設作業が少なぐコストを低減することができる。 また、検査対象である被検査回路基板について繰り返し連続検査を行う際に、異 方導電性シートの位置ずれを補正する必要が少なぐ複数の回路基板を連続的に 検査する際にも検査作業を円滑に行うことができる。 [0078] Further, since it is not necessary to arrange the conductive pins at regular intervals, it is possible to reduce the cost of the drilling work by drilling the through hole in the insulating plate holding the conductive pin. In addition, when performing repeated continuous inspections on circuit boards to be inspected, the inspection work is also performed when continuously inspecting multiple circuit boards where there is little need to correct the misalignment of the anisotropic conductive sheet. It can be done smoothly.
[0079] また、高分解能で検査が可能であり、且つ、被検査回路基板の被検査電極による 段差を良好に吸収できるとともに、繰り返し使用耐久性も高い。 [0079] In addition, inspection can be performed with high resolution, and a step due to the inspected electrode of the circuit board to be inspected can be absorbed well, and durability for repeated use is also high.
図面の簡単な説明 [図 1]図 1は、本発明の検査装置における一実施形態を示した断面図である。 Brief Description of Drawings FIG. 1 is a cross-sectional view showing an embodiment of an inspection apparatus according to the present invention.
[図 2]図 2は、図 1の検査装置の検査使用時における積層状態を示した断面図である  2 is a cross-sectional view showing a stacked state when the inspection apparatus of FIG. 1 is used for inspection.
[図 3]図 3は、ピッチ変換用基板の回路基板側の表面を示した図である。 [FIG. 3] FIG. 3 is a diagram showing a surface of a pitch conversion board on the circuit board side.
[図 4]図 4は、ピッチ変換用基板のピン側表面を示した図である。  FIG. 4 is a view showing a pin side surface of a pitch conversion substrate.
[図 5]図 5は、第 1の異方導電性シートの断面図である。  FIG. 5 is a cross-sectional view of the first anisotropic conductive sheet.
[図 6]図 6は、ピッチ変換用アダプタ一体を示した断面図である。  FIG. 6 is a cross-sectional view showing an integrated adapter for pitch conversion.
[図 7]図 7は、離型性支持板上に導電性エラストマ一用材料層が形成された状態を示 した断面図である。  FIG. 7 is a cross-sectional view showing a state in which a conductive elastomer material layer is formed on a releasable support plate.
[図 8]図 8は、導電性エラストマ一用材料層を拡大して示した断面図である。  FIG. 8 is an enlarged cross-sectional view of a conductive elastomer material layer.
[図 9]図 9は、導電性エラストマ一用材料層に対してその厚み方向に磁場を作用させ た後の状態を示した断面図である。  FIG. 9 is a cross-sectional view showing a state after a magnetic field is applied to the conductive elastomer material layer in the thickness direction.
[図 10]図 10は、離型性支持板上に導電性エラストマ一層が形成された状態を示した 断面図である。  FIG. 10 is a cross-sectional view showing a state where a conductive elastomer layer is formed on a releasable support plate.
[図 11]図 11は、導電性エラストマ一層上に金属薄層が形成された状態を示した断面 図である。  FIG. 11 is a cross-sectional view showing a state in which a thin metal layer is formed on one conductive elastomer layer.
[図 12]図 12は、金属薄層上に開口を有するレジスト層が形成された状態を示した断 面図である。  FIG. 12 is a cross-sectional view showing a state in which a resist layer having an opening is formed on a thin metal layer.
[図 13]図 13は、レジスト層の開口内に金属マスクが形成された状態を示した断面図 である。  FIG. 13 is a cross-sectional view showing a state in which a metal mask is formed in the opening of the resist layer.
[図 14]図 14は、離型性支持板上に特定のパターンに従って複数の導電路形成部が 形成された状態を示した断面図である。  FIG. 14 is a cross-sectional view showing a state in which a plurality of conductive path forming portions are formed according to a specific pattern on a releasable support plate.
[図 15]図 15は、レーザー加工によって導電路形成部を形成する工程を示した断面 図である。  FIG. 15 is a cross-sectional view showing a process of forming a conductive path forming portion by laser processing.
[図 16]図 16は、レーザー加工によって導電路形成部を形成する工程を示した上面 図である。  FIG. 16 is a top view showing a process of forming a conductive path forming portion by laser processing.
[図 17]図 17は、金属薄層に開口が形成されたレジスト層が積層された積層体を示し た断面図である。 [図 18]図 18は、図 17におけるレジスト層の開口内に金属マスクを形成した複合フィ ルムの断面図である。 FIG. 17 is a cross-sectional view showing a laminate in which a resist layer in which openings are formed in a thin metal layer is laminated. FIG. 18 is a cross-sectional view of a composite film in which a metal mask is formed in the opening of the resist layer in FIG.
[図 19]図 19は、離型性支持板上に導電性エラストマ一用材料層が形成された状態 を示した断面図である。  FIG. 19 is a cross-sectional view showing a state in which a conductive elastomer material layer is formed on a releasable support plate.
[図 20]図 20は、導電性エラストマ一用材料層上に複合フィルムを重ね合わせた状態 を示した断面図である。  FIG. 20 is a cross-sectional view showing a state in which a composite film is superimposed on a conductive elastomer material layer.
[図 21]図 21は、図 20の積層体に対してその厚み方向に磁場を作用させた後の状態 を示した断面図である。  FIG. 21 is a cross-sectional view showing a state after a magnetic field is applied in the thickness direction to the laminate shown in FIG.
[図 22]図 22は、離型性支持板上に導電性エラストマ一層が形成された状態を示した 断面図である。  FIG. 22 is a cross-sectional view showing a state where a conductive elastomer layer is formed on a releasable support plate.
[図 23]図 23は、図 22における金属薄層を除去した後の状態を示した断面図である。  FIG. 23 is a cross-sectional view showing a state after the thin metal layer in FIG. 22 is removed.
[図 24]図 24は、離型性支持板上に特定のパターンに従って複数の導電路形成部が 形成された状態を示した断面図である。 FIG. 24 is a cross-sectional view showing a state in which a plurality of conductive path forming portions are formed according to a specific pattern on the releasable support plate.
[図 25]図 25は、ピッチ変換用基板の断面図である。 FIG. 25 is a cross-sectional view of a pitch conversion substrate.
圆 26]図 26は、ピッチ変換用基板の表面に絶縁部用材料層が形成された状態を示 した断面図である。 [26] FIG. 26 is a cross-sectional view showing a state in which an insulating material layer is formed on the surface of the pitch conversion substrate.
[図 27]図 27は、絶縁部用材料層が形成されたピッチ変換用基板の上に、導電路形 成部が形成された離型性支持板が重ね合わされた状態を示した断面図である。  FIG. 27 is a cross-sectional view showing a state in which a releasable support plate on which a conductive path forming portion is formed is superimposed on a pitch conversion substrate on which an insulating material layer is formed. is there.
[図 28]図 28は、隣接する導電路形成部の間に絶縁部が形成された状態を示した断 面図である。 FIG. 28 is a cross-sectional view showing a state in which an insulating portion is formed between adjacent conductive path forming portions.
[図 29]図 29は、ピッチ変換用アダプタ一体を示した断面図である。  FIG. 29 is a cross-sectional view showing an integrated adapter for pitch conversion.
[図 30]図 30は、ピッチ変換用アダプタ一体における他の例を示した断面図である。  FIG. 30 is a cross-sectional view showing another example of an integrated pitch conversion adapter.
[図 31]図 31は、図 30のピッチ変換用アダプタ一体の拡大断面図である。  FIG. 31 is an enlarged sectional view of the pitch conversion adapter integrated in FIG.
[図 32]図 32は、図 30のピッチ変換用アダプタ一体を構成するピッチ変換用基板を示 した断面図である。  FIG. 32 is a cross-sectional view showing a pitch conversion board constituting the pitch conversion adapter integrated body of FIG. 30.
[図 33]図 33は、第 2の異方導電性シートの断面図である。  FIG. 33 is a cross-sectional view of a second anisotropic conductive sheet.
[図 34]図 34は、中継ピンユニットの断面図である。 FIG. 34 is a cross-sectional view of the relay pin unit.
[図 35]図 35は、中継ピンユニットの導電ピン、中間保持板および絶縁板の一部を示 した断面図である。 [FIG. 35] FIG. 35 shows a part of the conductive pin, intermediate holding plate and insulating plate of the relay pin unit. FIG.
[図 36]図 36は、中継ピンユニットにおける他の例を示した図 35と同様の断面図であ る。  FIG. 36 is a cross-sectional view similar to FIG. 35, showing another example of the relay pin unit.
[図 37]図 37は、図 36の構成において第 1の絶縁板と第 2の絶縁板との間に導電ピン を配置するまでの工程を示した断面図である。  FIG. 37 is a cross-sectional view showing a process until a conductive pin is arranged between the first insulating plate and the second insulating plate in the configuration of FIG. 36.
[図 38]図 38は、屈曲保持板を配置した中継ピンユニットの断面図である。  FIG. 38 is a cross-sectional view of a relay pin unit in which a bent holding plate is arranged.
[図 39]図 39は、中継ピンユニットの中間保持板の厚さ方向に投影した中間保持板投 影面の部分拡大図である。  FIG. 39 is a partially enlarged view of the intermediate holding plate projection surface projected in the thickness direction of the intermediate holding plate of the relay pin unit.
[図 40]図 40は、本発明の検査装置の実施形態を示した一部断面図である。  FIG. 40 is a partial cross-sectional view showing an embodiment of an inspection apparatus of the present invention.
[図 41]図 41は、本発明の検査装置の使用状態を説明する断面図である。  FIG. 41 is a cross-sectional view illustrating the usage state of the inspection apparatus of the present invention.
[図 42]図 42は、本発明の検査装置における中継ピンユニットの使用状態を説明する 断面図である。  FIG. 42 is a cross-sectional view illustrating a usage state of the relay pin unit in the inspection apparatus of the present invention.
[図 43]図 43は、本発明の検査装置の使用状態を説明する断面図である。  FIG. 43 is a cross-sectional view illustrating the usage state of the inspection apparatus of the present invention.
[図 44]図 44は、本発明の検査装置における他の実施形態を示した図 40と同様の一 部断面図である。  FIG. 44 is a partial cross-sectional view similar to FIG. 40, showing another embodiment of the inspection apparatus of the present invention.
[図 45]図 45は、図 44の実施形態における中継ピンユニットの断面図である。  FIG. 45 is a cross-sectional view of the relay pin unit in the embodiment of FIG. 44.
[図 46]図 46は、本発明の検査装置における一実施形態を示した断面図である。  FIG. 46 is a cross-sectional view showing an embodiment of the inspection apparatus of the present invention.
[図 47]図 47は、図 46の検査装置の検査使用時における積層状態を示した断面図で ある。  FIG. 47 is a cross-sectional view showing a stacked state when the inspection apparatus of FIG. 46 is used for inspection.
[図 48]図 48は、ピッチ変換用基板、中継基板および被検査回路基板を積層した状 態を示した断面図である。  FIG. 48 is a cross-sectional view showing a state in which a pitch conversion board, a relay board, and a circuit board to be inspected are stacked.
[図 49]図 49 (a)は、中継基板の部分断面図、図 49 (b)は、その拡大図、図 49 (c)は 、中継基板の部分上面図である。  FIG. 49 (a) is a partial sectional view of a relay board, FIG. 49 (b) is an enlarged view thereof, and FIG. 49 (c) is a partial top view of the relay board.
[図 50]図 50は、中継基板の製造工程を説明する断面図である。  FIG. 50 is a cross-sectional view illustrating a manufacturing step of the relay board.
[図 51]図 51は、中継基板の製造工程を説明する断面図である。  FIG. 51 is a cross-sectional view illustrating a manufacturing step for a relay board.
[図 52]図 52は、ピッチ変換用基板、中継基板および被検査回路基板を、第 1の異方 導電性シートを介して積層した状態を示した部分断面図である。  FIG. 52 is a partial cross-sectional view showing a state in which a pitch conversion substrate, a relay substrate, and a circuit board to be inspected are stacked via a first anisotropic conductive sheet.
[図 53]図 53は、第 1の異方導電性シートの部分断面図である。 [図 54]図 54は、本発明の検査装置の実施形態を示した一部断面図である。 FIG. 53 is a partial cross-sectional view of the first anisotropic conductive sheet. FIG. 54 is a partial cross-sectional view showing an embodiment of the inspection apparatus of the present invention.
[図 55]図 55は、本発明の検査装置の使用状態を説明する断面図である。  FIG. 55 is a cross-sectional view illustrating the usage state of the inspection apparatus of the present invention.
[図 56]図 56は、本発明の検査装置における中継ピンユニットの使用状態を説明する 断面図である。  FIG. 56 is a cross-sectional view for explaining the usage state of the relay pin unit in the inspection apparatus of the present invention.
[図 57]図 57は、本発明の検査装置の使用状態を説明する断面図である。  FIG. 57 is a cross-sectional view illustrating the usage state of the inspection apparatus of the present invention.
[図 58]図 58は、本発明の検査装置における他の実施形態を示した図 54と同様の一 部断面図である。  FIG. 58 is a partial cross-sectional view similar to FIG. 54, showing another embodiment of the inspection apparatus of the present invention.
[図 59]図 59は、図 58の実施形態における中継ピンユニットの断面図である。  FIG. 59 is a cross-sectional view of the relay pin unit in the embodiment of FIG. 58.
[図 60]図 60は、ピッチ変換用アダプタ一体における対をなす接続電極間の絶縁抵 抗の評価試験方法を示した図である。  FIG. 60 is a diagram showing an evaluation test method for insulation resistance between paired connection electrodes in the pitch conversion adapter.
[図 61]図 61は、比較例における絶縁抵抗の評価試験方法を示した図である。  FIG. 61 is a diagram showing an insulation resistance evaluation test method in a comparative example.
[図 62]図 62は、従来における回路基板の検査装置の断面図である。  FIG. 62 is a cross-sectional view of a conventional circuit board inspection apparatus.
[図 63]図 63は、被検査回路基板の被検査電極のピッチと、電極離間距離との関係を 示した図である。  FIG. 63 is a diagram showing the relationship between the pitch of the electrodes to be inspected on the circuit board to be inspected and the electrode separation distance.
[図 64]図 64は、被検査回路基板の被検査電極のピッチと、電極離間距離と、ピッチ 変換用基板の接続用電極との関係を示した図である。  FIG. 64 is a diagram showing the relationship between the pitch of the electrodes to be inspected on the circuit board to be inspected, the electrode separation distance, and the connection electrodes on the pitch conversion board.
[図 65]図 65は、 4端子検査の場合における、被検査回路基板の被検査電極のピッチ と、電極離間距離と、ピッチ変換用基板の接続用電極との関係を示した図である。 符号の説明  [FIG. 65] FIG. 65 is a diagram showing the relationship between the pitch of the electrodes to be inspected of the circuit board to be inspected, the electrode separation distance, and the connection electrodes of the substrate for pitch conversion in the case of four-terminal inspection. Explanation of symbols
1 被検査回路基板 1 Circuit board to be inspected
2 被検査電極 2 Inspected electrode
3 被検査電極 3 Inspected electrode
11a 第 1の検査治具 11a First inspection jig
l ib 第 2の検査治具 l ib Second inspection jig
21a, 21b 回路基板側コネクタ 21a, 21b Circuit board connector
22a, 22b 第 1の異方導電性シート 22a, 22b First anisotropic conductive sheet
23a, 23b ピッチ変換用基板 23a, 23b Pitch conversion board
24a, 24b 端子電極 a, 25b 接続用電極24a, 24b terminal electrode a, 25b Connecting electrode
a, 26b 第 2の異方導電性シートa, 27b 電流供給用電極a, 28b 電圧測定用電極a, 29b 中継基板a, 26b Second anisotropic conductive sheet a, 27b Current supply electrode a, 28b Voltage measurement electrode a, 29b Relay board
a, 31b 中継ピンユニットa, 32b 導電ピンa, 31b Relay pin unit a, 32b Conductive pin
a, 33b 第 1の支持ピンa, 34b 第 1の絶縁板a, 33b First support pin a, 34b First insulating plate
a, 35b 第 2の絶縁板a, 35b Second insulation plate
a, 36b 中間保持板a, 36b Intermediate holding plate
a, 37b 第 2の支持ピンa, 37b Second support pin
A 第 1の当接支持位置A First abutment support position
B 第 2の当接支持位置 B Second contact support position
保持板支持ピン Holding plate support pin
A 当接支持位置A Contact support position
a, 41b テスター側コネクタa, 42b 第 3の異方導電性シートa, 43b コネクタ基板a, 41b Tester side connector a, 42b Third anisotropic conductive sheet a, 43b Connector board
a, 44b テスター側電極a, 45b ピン側電極a, 44b Tester side electrode a, 45b Pin side electrode
a, 46b ベース板a, 46b Base plate
a,49b 支持ピン a, 49b Support pin
絶縁基板  Insulating substrate
配線  Wiring
内部配線  Internal wiring
絶縁層  Insulation layer
絶縁層 ピッチ変換用アダプタ一体 導電路形成部Insulation layer Pitch conversion adapter integrated conductive path forming part
a 突出部 a Protrusion
A 導電性エラストマ一用材料層B 導電性エラストマ一層 絶縁部A Material layer for conductive elastomer B Conductive elastomer layer Insulation part
A 絶縁部用材料層 A Insulation material layer
シート基材  Sheet base material
金属膜  Metal film
離型性支持板  Releasable support plate
金属薄層  Thin metal layer
レジスト層 Resist layer
a 開口 a opening
金属マスク  Metal mask
複合フィルム  Composite film
導電路形成部 Conductive path forming part
a 突出部 a Protrusion
絶縁部  Insulation
基板  Substrate
貫通孔  Through hole
ガラスエポキシ基板 分散型異方導電性シートa, 81b 端部  Glass epoxy substrate Dispersed anisotropic conductive sheet a, 81b Edge
中央部 Center
, 83a, 83b 貫通孔 , 83a, 83b Through hole
屈曲保持板  Bent holding plate
貫通孔  Through hole
貫通孔 101 被検査回路基板 Through hole 101 Circuit board under test
102 被検査電極 102 Inspected electrode
103 被検査電極 103 Inspected electrode
11 1a 第 1の検査治具  11 1a First inspection jig
111b 第 2の検査治具  111b Second inspection jig
121aゝ 121b 回路基板側コネクタ 121a ゝ 121b Circuit board side connector
122a, 122b 第 1の異方導電性シ -卜122a, 122b First anisotropic conductive film
123a, 123b ピッチ変換用基板123a, 123b Pitch conversion board
124a, 124b 端子電極 124a, 124b terminal electrode
125a, 125b 接続用電極  125a, 125b connection electrode
126a, 126b 第 2の異方導電性シ -卜 126a, 126b Second anisotropic conductive film
127a, 127b 電流供給用電極 127a, 127b Electrode for current supply
128a, 128b 電圧測定用電極  128a, 128b Voltage measurement electrode
131a, 131b 中継ピンユニット 131a, 131b Relay pin unit
132a, 132b 導電ピン 132a, 132b Conductive pin
133a, 133b 支持ピン  133a, 133b Support pin
134a, 134b 絶縁板  134a, 134b Insulation plate
141a, 141b テスター側コネクタ 141a, 141b Tester side connector
142a, 142b 第 3の異方導電性シ -卜142a, 142b 3rd anisotropic conductive film
143a, 143b コネ、クタ基板 143a, 143b Connector, Kuta board
144a, 144b テスター側電極  144a, 144b Tester side electrode
145a, 145b ピン側電極  145a, 145b Pin side electrode
146a, 146b ベース板  146a, 146b Base plate
A 中間保持板投影面  A Intermediate holding plate projection surface
P 導電性粒子 P conductive particles
L1 距離 L1 distance
L2 距離 L2 distance
Q1 対角線 Q2 対角線 Q1 diagonal Q2 Diagonal
Rl 単位格子領域  Rl unit cell region
R2 単位格子領域  R2 unit cell region
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0082] 以下、図面を参照しながら本発明の実施形態について説明する。なお、以降の記 述において、第 1の検査治具と第 2の検査治具における一対の同一の構成要素 (例 えば回路基板側コネクタ 21aと回路基板側コネクタ 21b、第 1の異方導電性シート 22 aと第 1の異方導電性シート 22bなど)を総称する場合には、記号「a」、「b」を省略す ることがある (例えば、第 1の異方導電性シート 22aと第 1の異方導電性シート 22bとを 総称して「第 1の異方導電性シート 22」と記述することがある)。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, a pair of identical components in the first inspection jig and the second inspection jig (for example, the circuit board connector 21a and the circuit board connector 21b, the first anisotropic conductivity) When the sheet 22a and the first anisotropic conductive sheet 22b are collectively referred to, the symbols “a” and “b” may be omitted (for example, the first anisotropic conductive sheet 22a and the first anisotropic conductive sheet 22a). The first anisotropic conductive sheet 22b may be collectively referred to as “first anisotropic conductive sheet 22”).
[0083] 図 1は、本発明の検査装置の実施形態を示した断面図、図 2は、図 1の検査装置の 検査使用時における積層状態を示した断面図である。  FIG. 1 is a cross-sectional view showing an embodiment of the inspection apparatus of the present invention, and FIG. 2 is a cross-sectional view showing a stacked state when the inspection apparatus of FIG. 1 is used for inspection.
この検査装置は、集積回路などを実装するためのプリント回路基板などの検査対象 である被検査回路基板 1にお 、て、被検査電極間の電気抵抗を測定することにより 被検査回路基板の電気検査を行うものである。  This inspection apparatus measures the electrical resistance of a circuit board to be inspected by measuring the electrical resistance between electrodes to be inspected on a circuit board 1 to be inspected 1 such as a printed circuit board for mounting an integrated circuit. The inspection is to be performed.
[0084] そして、この検査装置には、図 1および図 2に示したように、被検査回路基板 1の上 面側に配置される第 1の検査治具 11aと、下面側に配置される第 2の検査治具 l ibと 力 上下に互いに対向するように配置されている。  Then, in this inspection apparatus, as shown in FIGS. 1 and 2, the first inspection jig 11a disposed on the upper surface side of the circuit board 1 to be inspected and the lower surface side are disposed. The second inspection jig l ib and force are arranged so as to face each other vertically.
第 1の検査治具 11aは、その両側に異方導電性シート 22a、 26aを備えた回路基板 側コネクタ 21aと、中継ピンユニット 31aを備えている。また、第 1の検査治具 11aは、 その中継ピンユニット 3 la側に第 3の異方導電性シート 42aが配置されるコネクタ基 板 43aと、ベース板 46aとを備えたテスター側コネクタ 41aを備えて ヽる。  The first inspection jig 11a includes a circuit board side connector 21a including anisotropic conductive sheets 22a and 26a on both sides thereof, and a relay pin unit 31a. The first inspection jig 11a includes a tester side connector 41a including a connector base plate 43a in which the third anisotropic conductive sheet 42a is disposed on the relay pin unit 3la side and a base plate 46a. Prepare and speak.
[0085] 第 2の検査治具 l ibも、第 1の検査治具 11aと同様に構成され、その両側に異方導 電性シート 22b、 26bを備えた回路基板側コネクタ 21bと、中継ピンユニット 31bを備 えている。また、第 2の検査治具 l ibは、その中継ピンユニット 3 lb側に異方導電性 シート 42bが配置されるコネクタ基板 43bと、ベース板 46bとを備えたテスター側コネ クタ 41bを備えている。  [0085] The second inspection jig l ib is also configured in the same manner as the first inspection jig 11a, and includes a circuit board side connector 21b having anisotropic conductive sheets 22b and 26b on both sides thereof, and a relay pin. Unit 31b is provided. Further, the second inspection jig l ib includes a tester side connector 41b including a connector board 43b on which an anisotropic conductive sheet 42b is arranged on the relay pin unit 3 lb side and a base plate 46b. Yes.
[0086] 被検査回路基板 1の上面には、被検査用の電極 2が形成され、その下面にも被検 查用の電極 3が形成されており、これらは互 ヽに電気的に接続されて!ヽる。 [0086] On the upper surface of the circuit board 1 to be inspected, an electrode 2 to be inspected is formed, and the lower surface thereof is also inspected. The electrode 3 is formed so as to be electrically connected to each other.
回路基板側コネクタ 21a, 21bは、ピッチ変換用基板 23a, 23bと、その両側に配置 される第 1の異方導電性シート 22a, 22bおよび第 2の異方導電性シート 26a, 26bを 有している。  The circuit board side connectors 21a and 21b have pitch conversion boards 23a and 23b, and first anisotropic conductive sheets 22a and 22b and second anisotropic conductive sheets 26a and 26b arranged on both sides thereof. ing.
[0087] 図 3は、ピッチ変換用基板の被検査回路基板側の表面を示した図、図 4は、その中 継ピンユニット側の表面を示した図、図 6は、ピッチ変換用基板と第 1の異方導電性 シートとからなるピッチ変換用アダプタ一体を示した断面図である。  [0087] FIG. 3 is a diagram showing the surface of the pitch conversion board on the circuit board side to be inspected, FIG. 4 is a diagram showing the surface on the relay pin unit side, and FIG. FIG. 5 is a cross-sectional view showing a pitch conversion adapter integrated with a first anisotropic conductive sheet.
ピッチ変換用基板 23の一方の表面、すなわち、被検査回路基板 1側には、図 3〖こ 示したように、被検査回路基板 1の電極 2、 3に電気的に接続される複数の接続用電 極 25が形成されている。これらの接続電極 25は、被検査回路基板 1の被検査電極 2 , 3のパターンに対応するように配置されている。  On one surface of the pitch conversion board 23, that is, the circuit board 1 side to be inspected, a plurality of connections electrically connected to the electrodes 2 and 3 of the circuit board 1 to be inspected as shown in FIG. A working electrode 25 is formed. These connection electrodes 25 are arranged so as to correspond to the patterns of the electrodes 2 and 3 to be inspected on the circuit board 1 to be inspected.
[0088] 一方、ピッチ変換用基板 23の他方の表面、すなわち、被検査回路基板 1と反対側 には、図 4に示したように、中継ピンユニット 31の導電ピン 32a、 32bに電気的に接続 される複数の端子電極 24が形成されている。これらの端子電極 24は、例えば、 2. 5 4mm、 1. 8mm、 1. 27mm、 1. 06mm、 0. 8mm、 0. 75mm、 0. 5mm、 0. 4om m、 0. 3mmまたは 0. 2mmである一定ピッチの格子点上に配置されており、そのピ ツチは中継ピンユニットの導電ピン 32a、 32bの配置ピッチと同一である。  On the other hand, on the other surface of the pitch conversion board 23, that is, on the side opposite to the circuit board 1 to be inspected, as shown in FIG. 4, the conductive pins 32a and 32b of the relay pin unit 31 are electrically connected. A plurality of terminal electrodes 24 to be connected are formed. These terminal electrodes 24 are, for example, 2.5 4 mm, 1.8 mm, 1.27 mm, 1.06 mm, 0.8 mm, 0.75 mm, 0.5 mm, 0.4 mm, 0.3 mm or 0.2 mm. The pitch is the same as the pitch of the conductive pins 32a and 32b of the relay pin unit.
[0089] 図 3のそれぞれの接続電極 25は、配線 52および絶縁基板 51の厚み方向に貫通 する内部配線 53 (図 6を参照)によって、対応する図 4の端子電極 24に電気的に接 続されている。  [0089] Each connection electrode 25 in FIG. 3 is electrically connected to the corresponding terminal electrode 24 in FIG. 4 by an internal wiring 53 (see FIG. 6) that penetrates the wiring 52 and the insulating substrate 51 in the thickness direction. Has been.
ピッチ変換用基板 23の表面における絶縁部は、例えば、図 6に示したように、絶縁 基板 51の表面に、それぞれの接続電極 25が露出するように形成された絶縁層 54で 構成される。この絶縁層 54の厚みは、好ましくは 5〜: L00 μ m、より好ましくは 10〜6 0 mである。この厚みが過小である場合、表面粗さが小さい絶縁層を形成すること が困難となることがある。一方、この厚みが過大である場合、接続電極 25と第 1の異 方導電性シート 22との電気的接続が困難となることがある。  For example, as shown in FIG. 6, the insulating portion on the surface of the pitch conversion substrate 23 is composed of an insulating layer 54 formed on the surface of the insulating substrate 51 so that the connection electrodes 25 are exposed. The thickness of the insulating layer 54 is preferably 5 to: L00 μm, more preferably 10 to 60 m. If this thickness is too small, it may be difficult to form an insulating layer having a small surface roughness. On the other hand, if the thickness is excessive, it may be difficult to electrically connect the connection electrode 25 and the first anisotropic conductive sheet 22.
[0090] ピッチ変換用基板の絶縁基板 51を形成する材料としては、一般にプリント回路基 板の基材として使用されるものを用いることができる。具体的には、例えばポリイミド榭 脂、ガラス繊維補強型ポリイミド榭脂、ガラス繊維補強型エポキシ榭脂、ガラス繊維補 強型ビスマレイミドトリアジン榭脂などを挙げることができる。 [0090] As a material for forming the insulating substrate 51 of the pitch conversion substrate, a material generally used as a base material of a printed circuit board can be used. Specifically, for example, polyimide And glass fiber reinforced polyimide resin, glass fiber reinforced epoxy resin, and glass fiber reinforced bismaleimide triazine resin.
図 6の絶縁層 54、 55の形成材料としては、薄膜状に成形可能な高分子材料を用 いることができる。その具体例としては、例えばエポキシ榭脂、アクリル榭脂、フエノー ル榭脂、ポリイミド榭脂、ポリアミド榭脂、これらの混合物、レジスト材料などを挙げるこ とがでさる。  As a material for forming the insulating layers 54 and 55 in FIG. 6, a polymer material that can be formed into a thin film can be used. Specific examples thereof include an epoxy resin, an acrylic resin, a phenol resin, a polyimide resin, a polyamide resin, a mixture thereof, and a resist material.
[0091] ピッチ変換用基板 23は、例えば、次のようにして製造することができる。まず、平板 状の絶縁基板の両面に金属薄層を積層した積層材料を用意し、この積層材料に対 して、形成すべき端子電極のパターンに対応し、積層材料の厚み方向に貫通する複 数の貫通孔を、数値制御型ドリリング装置、フォトエッチング処理、レーザー加工処理 などにより形成する。  [0091] The pitch conversion substrate 23 can be manufactured, for example, as follows. First, a laminated material in which a thin metal layer is laminated on both sides of a flat insulating substrate is prepared, and a composite material penetrating in the thickness direction of the laminated material corresponding to the pattern of the terminal electrode to be formed is prepared for this laminated material. A number of through-holes are formed by a numerically controlled drilling device, a photo etching process, a laser processing process, or the like.
[0092] 次いで、積層材料に形成された貫通孔内に無電解メツキおよび電解メツキを施すこ とによって、基板両面の金属薄層に連結されたノィァホールを形成する。その後、金 属薄層に対してフォトエッチング処理を施すことにより、絶縁基板の表面に配線パタ ーンおよび接続電極を形成するとともに、反対側の表面に端子電極を形成する。 そして、図 6に示したように、絶縁基板 51の表面に、それぞれの接続電極 25が露 出するように絶縁層 54を形成するとともに、反対側の表面に、それぞれの端子電極 2 4が露出するように絶縁層 55を形成することにより、ピッチ変換用基板 23が得られる oなお、絶縁層 55の厚みは、好ましくは 5〜: LOO m、より好ましくは 10〜60 mで ある。  [0092] Next, by applying electroless plating and electrolytic plating in the through holes formed in the laminated material, a no hole connected to the thin metal layers on both sides of the substrate is formed. Thereafter, the metal thin layer is subjected to a photo-etching process to form wiring patterns and connection electrodes on the surface of the insulating substrate, and terminal electrodes on the opposite surface. Then, as shown in FIG. 6, an insulating layer 54 is formed on the surface of the insulating substrate 51 so that each connection electrode 25 is exposed, and each terminal electrode 24 is exposed on the opposite surface. Thus, the pitch conversion substrate 23 is obtained by forming the insulating layer 55. o The thickness of the insulating layer 55 is preferably 5 to: LOO m, more preferably 10 to 60 m.
[0093] 図 6に示したように、ピッチ変換用基板 23は、第 1の異方導電性シート 22に一体ィ匕 されている。第 1の異方導電性シート 22とピッチ変換用基板 23とにより、ピッチ変換 用アダプタ一体 60が構成されている。  As shown in FIG. 6, the pitch converting substrate 23 is integrated with the first anisotropic conductive sheet 22. The first anisotropic conductive sheet 22 and the pitch conversion board 23 constitute a pitch conversion adapter integrated 60.
このピッチ変換用回路基板 23と一体化される第 1の異方導電性シート 22は、図 5に 示したように、絶縁性の弾性高分子材料中に多数の導電性粒子 Pが厚み方向に配 列して形成された導電路形成部 61と、それぞれの導電路形成部 61を離間する絶縁 部 62と、力も構成されている。  As shown in FIG. 5, the first anisotropic conductive sheet 22 integrated with the pitch conversion circuit board 23 has a large number of conductive particles P in the thickness direction in an insulating elastic polymer material. Conductive path forming portions 61 formed in an array, insulating portions 62 separating the respective conductive path forming portions 61, and force are also configured.
[0094] 導電性粒子 Pは導電路形成部 61中にのみ含有され、これにより、面方向に不均一 に分散されている。 [0094] The conductive particles P are contained only in the conductive path forming portion 61, and thus, non-uniform in the surface direction. Are distributed.
導電路形成部 61のパターンは、接続すべき電極である被検査回路基板の被検査 電極のパターンに対応して 、る。  The pattern of the conductive path forming portion 61 corresponds to the pattern of the electrode to be inspected on the circuit board to be inspected which is an electrode to be connected.
導電路形成部 61では、絶縁性の弾性高分子物質中に、磁性を示す導電性粒子 P が厚み方向に並ぶよう配向した状態で含有されている。これに対し、絶縁部 62は、 導電性粒子 Pを全く含有しな!ヽ弾性高分子物質により構成されて!ヽる。導電路形成 部 61を構成する弾性高分子物質と絶縁部 62を構成する弾性高分子物質とは、互い に異なる種類のものであっても同じ種類のものであってもよい。  In the conductive path forming part 61, the conductive elastic particles P are contained in the insulating elastic polymer substance so as to be aligned in the thickness direction. In contrast, the insulating portion 62 does not contain any conductive particles P and is made of an elastic polymer material. The elastic polymer material constituting the conductive path forming portion 61 and the elastic polymer material constituting the insulating portion 62 may be of different types or the same type.
[0095] 図 5に示したように、第 1の異方導電性シート 22における被検査回路基板と接する 側の面には、導電路形成部 61が絶縁部 62の表面力も突出した突出部 61aが形成さ れている。 [0095] As shown in FIG. 5, on the surface of the first anisotropic conductive sheet 22 on the side in contact with the circuit board to be inspected, a protruding portion 61a in which the conductive path forming portion 61 protrudes also from the surface force of the insulating portion 62. Is formed.
このように突出部 61aを設けることで、導電路形成部 61における加圧による圧縮の 程度が絶縁部 62よりも大きくなるので、充分に抵抗値の低!、導電路が確実に導電路 形成部 61に形成される。これにより、加圧力の変化に対して抵抗値の変化を小さくす ることができる。その結果、第 1の異方導電性シート 22に作用される加圧力が不均一 であっても、それぞれの導電路形成部 61間における導電性のバラツキを防止するこ とがでさる。  By providing the protrusion 61a in this way, the degree of compression by the pressurization in the conductive path forming part 61 is larger than that of the insulating part 62, so that the resistance value is sufficiently low and the conductive path is ensured. Formed in 61. Thereby, the change in resistance value can be reduced with respect to the change in applied pressure. As a result, even if the applied pressure applied to the first anisotropic conductive sheet 22 is not uniform, it is possible to prevent variation in conductivity between the respective conductive path forming portions 61.
[0096] 導電路形成部 61および絶縁部 62を構成する弾性高分子物質としては、架橋構造 を有する高分子物質が好まし 、。このような弾性高分子物質を得るために用いること のできる硬化性の高分子物質形成材料の具体例としては、ポリブタジエンゴム、天然 ゴム、ポリイソプレンゴム、スチレン一ブタジエン共重合体ゴム、アクリロニトリル一ブタ ジェン共重合体ゴムなどの共役ジェン系ゴムおよびこれらの水素添加物、スチレン ブタジエン ジェンブロック共重合体ゴム、スチレン イソプレンブロック共重合体な どのブロック共重合体ゴムおよびこれらの水素添カ卩物、クロ口プレン、ウレタンゴム、ポ リエステル系ゴム、ェピクロルヒドリンゴム、シリコーンゴム、エチレン一プロピレン共重 合体ゴム、エチレン プロピレン ジェン共重合体ゴムなどが挙げられる。  [0096] As the elastic polymer substance constituting the conductive path forming part 61 and the insulating part 62, a polymer substance having a crosslinked structure is preferable. Specific examples of the curable polymer material-forming material that can be used to obtain such an elastic polymer material include polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, acrylonitrile-butene. Conjugated gen rubbers such as gen copolymer rubber and hydrogenated products thereof, block copolymer rubbers such as styrene butadiene gen block copolymer rubber, styrene isoprene block copolymer, and hydrogenated products thereof. Examples include mouth-prene, urethane rubber, polyester rubber, epichlorohydrin rubber, silicone rubber, ethylene-propylene copolymer rubber, and ethylene propylene copolymer rubber.
[0097] 第 1の異方導電性シート 22に耐候性が要求される場合には、共役ジェン系ゴム以 外のものを用いることが好ましぐ特に、成形加工性および電気特性の観点からシリコ ーンゴムを用いることが好ましい。シリコーンゴムとしては、液状シリコーンゴムを架橋 または縮合したものが好ましい。液状シリコーンゴムは、その粘度が歪速度 10_1secで 105ポアズ以下であることが好ましぐ縮合型のもの、付加型のもの、ビュル基ゃヒドロ キシル基を含有するものなどのいずれであってもよい。具体的には、例えばジメチル シリコーン生ゴム、メチルビ-ルシリコーン生ゴム、メチルフエ-ルビ-ルシリコーン生 ゴムなどを挙げることができる。 [0097] When the first anisotropic conductive sheet 22 is required to have weather resistance, it is preferable to use a material other than the conjugated-gen rubber, particularly from the viewpoint of moldability and electrical properties. It is preferable to use rubber. The silicone rubber is preferably one obtained by crosslinking or condensing liquid silicone rubber. The liquid silicone rubber has a viscosity of 10 5 poise or less at a strain rate of 10 _1 sec, either a condensation type, an addition type, or a butyl group or a hydroxyl group-containing one. May be. Specifically, for example, dimethyl silicone raw rubber, methyl beer silicone raw rubber, methyl ferrule silicone raw rubber and the like can be mentioned.
[0098] また、シリコーンゴムは、その分子量 Mw (標準ポリスチレン換算重量平均分子量を いう。)力 0000〜40000であること力 子ましい。また、耐熱性の点から、分子量分布 指数 (標準ポリスチレン換算重量平均分子量 Mwと標準ポリスチレン換算数平均分 子量 Mnとの比 MwZMnの値をいう。 )が 2以下であることが好ましい。 [0098] In addition, the silicone rubber has a molecular weight Mw (referred to as a standard polystyrene conversion weight average molecular weight) force of 0000 to 40,000. From the viewpoint of heat resistance, the molecular weight distribution index (the ratio of the standard polystyrene-converted weight average molecular weight Mw to the standard polystyrene-converted number average molecular weight Mn) is preferably 2 or less.
導電路形成部 61に含有される導電性粒子 Pとしては、後述する方法により導電性 粒子を容易に厚み方向に並ぶよう配向させることができることから、磁性を示す導電 性粒子が用いられる。  As the conductive particles P contained in the conductive path forming part 61, conductive particles exhibiting magnetism are used because the conductive particles can be easily aligned in the thickness direction by a method described later.
[0099] このような導電性粒子の具体例としては、鉄、コバルト、ニッケルなどの磁性を有す る金属の粒子若しくはこれらの合金の粒子またはこれらの金属を含有する粒子、また はこれらの粒子を芯粒子とし、芯粒子の表面に金、銀、ノ ラジウム、ロジウムなどの導 電性の良好な金属のメツキを施したもの、あるいは非磁性金属粒子若しくはガラスビ ーズなどの無機物質粒子またはポリマー粒子を芯粒子とし、芯粒子の表面に、 -ッケ ル、コバルトなどの導電性磁性金属のメツキを施したものなどが挙げられる。  [0099] Specific examples of such conductive particles include particles of a metal having magnetism such as iron, cobalt and nickel, particles of these alloys, particles containing these metals, or these particles. Core particles with a surface of the core particles coated with a metal with good conductivity such as gold, silver, noradium or rhodium, or non-magnetic metal particles or inorganic particles or polymers such as glass beads For example, the core particle may be a core particle, and the surface of the core particle may be coated with a conductive magnetic metal such as nickel or cobalt.
[0100] これらの中では、ニッケル粒子を芯粒子とし、その表面に導電性の良好な金のメッ キを施したものを用いることが好ま 、。  [0100] Among these, it is preferable to use a nickel particle as a core particle and a surface thereof provided with gold metal having good conductivity.
芯粒子の表面に導電性金属を被覆する方法としては、例えばィ匕学メツキ、電解メッ キなどを挙げることができる。  Examples of the method for coating the surface of the core particle with the conductive metal include mechanical plating and electrolytic plating.
導電性粒子として芯粒子の表面に導電性金属を被覆したものを用いる場合には、 良好な導電性が得られる点から、粒子表面における導電性金属の被覆率 (芯粒子の 表面積に対する導電性金属の被覆面積の割合)が 40%以上であることが好ましく、 さらに好ましくは 45%以上、特に好ましくは 47〜95%である。  When using a conductive particle coated with a conductive metal on the surface of the core particle, the conductive metal coverage on the particle surface (the conductive metal relative to the surface area of the core particle) is obtained because good conductivity is obtained. The ratio of the coating area is preferably 40% or more, more preferably 45% or more, and particularly preferably 47 to 95%.
[0101] 導電性金属の被覆量は、芯粒子の 0. 5〜50質量%であることが好ましぐより好ま しくは 2〜30質量%、さらに好ましくは 3〜25質量%、特に好ましくは 4〜20質量% である。被覆される導電性金属が金である場合には、その被覆量は、芯粒子の 0. 5 〜30質量%であることが好ましぐより好ましくは 2〜20質量%、さらに好ましくは 3〜 15質量%でぁる。 [0101] The coating amount of the conductive metal is more preferably 0.5 to 50% by mass of the core particles. 2 to 30% by mass, more preferably 3 to 25% by mass, and particularly preferably 4 to 20% by mass. When the conductive metal to be coated is gold, the coating amount is preferably 0.5 to 30% by mass of the core particles, more preferably 2 to 20% by mass, and still more preferably 3 to 15% by mass.
[0102] 導電性粒子の粒子径は、 1-100 μ mであることが好ましぐより好ましくは 2〜50  [0102] The particle size of the conductive particles is preferably 1-100 μm, more preferably 2-50.
μ m、さらに好ましくは 3〜30 μ m、特〖こ好ましくは 4〜20 μ mである。  μm, more preferably 3 to 30 μm, particularly preferably 4 to 20 μm.
導電性粒子 Pの粒子径分布(DwZDn)は、 1〜10であることが好ましぐより好まし くは 1. 01〜7、さらに好ましくは 1. 05〜5、特に好ましくは 1. 1〜4である。  The particle size distribution (DwZDn) of the conductive particles P is preferably 1 to 10, more preferably 1.01 to 7, more preferably 1.05 to 5, particularly preferably 1.1 to 4.
[0103] このような条件を満足する導電性粒子を用いることにより、得られる導電路形成部 6 1は、加圧変形が容易なものとなり、また、導電路形成部 61において導電性粒子間 に十分な電気的接触が得られる。  [0103] By using conductive particles satisfying such conditions, the obtained conductive path forming part 61 can be easily deformed under pressure, and in the conductive path forming part 61, between the conductive particles. Sufficient electrical contact is obtained.
導電性粒子の形状は、特に限定されるものではないが、高分子物質形成材料中に 容易に分散させることができる点で、球状のもの、星形状のものあるいはこれらが凝 集した 2次粒子であることが好まし 、。  The shape of the conductive particles is not particularly limited, but spherical particles, star-shaped particles, or secondary particles in which these particles are aggregated can be easily dispersed in the polymer material-forming material. Is preferred to be.
[0104] また、導電性粒子として、その表面がシランカップリング剤などのカップリング剤や 潤滑剤で処理されたものを適宜用いることができる。カップリング剤や潤滑剤で粒子 表面を処理することにより、異方導電性シートの耐久性が向上する。  [0104] As the conductive particles, particles whose surfaces are treated with a coupling agent such as a silane coupling agent or a lubricant can be appropriately used. By treating the particle surface with a coupling agent or a lubricant, the durability of the anisotropic conductive sheet is improved.
このような導電性粒子は、導電路形成部中に体積分率で好ましくは 15〜45%、よ り好ましくは 20〜40%となる割合で含有される。この割合が過小である場合には、十 分に電気抵抗値の小さい導電路形成部 61が得られないことがある。一方、この割合 が過大である場合には、得られる導電路形成部 61は脆弱なものとなりやすぐ導電 路形成部 61として必要な弾性が得られな ヽことがある。  Such conductive particles are contained in the conductive path forming portion in a proportion of preferably 15 to 45%, more preferably 20 to 40% in terms of volume fraction. If this ratio is too small, the conductive path forming part 61 having a sufficiently small electric resistance value may not be obtained. On the other hand, when this ratio is excessive, the obtained conductive path forming part 61 becomes fragile, and the necessary elasticity as the conductive path forming part 61 may not be obtained immediately.
[0105] 導電路形成咅 61の厚み ίま、好ましく ίま 20〜250 μ m、より好ましく ίま 30〜200 μ mである。この厚み過小である場合、厚み方向の加圧に対する吸収能力が低くなる。 一方、この厚み過大である場合、良好な導電性が得られないことがある。  [0105] The thickness of the conductive path forming rod 61 is ί, preferably ί 20-250 μm, and more preferably ί 30-200 μm. When this thickness is too small, the absorption capability with respect to the pressurization of the thickness direction becomes low. On the other hand, when the thickness is excessive, good conductivity may not be obtained.
導電路形成部 61における突出部 61aの突出高さは、導電路形成部 61の厚みの 5 〜70%であることが好ましぐより好ましくは 10〜60%である。  The protrusion height of the protrusion 61a in the conductive path forming portion 61 is preferably 5 to 70% of the thickness of the conductive path forming portion 61, more preferably 10 to 60%.
[0106] 以下に、第 1の異方導電性シート 22がピッチ変換用基板 23側に一体化されたピッ チ変換用アダプタ一体 60の製造方法の一例を説明する。先ず、第 1の異方導電性 シート 22における導電路形成部 61を形成する。 [0106] In the following, a pipe in which the first anisotropic conductive sheet 22 is integrated on the pitch conversion substrate 23 side will be described. An example of a method for manufacturing the H conversion adapter integrated 60 will be described. First, the conductive path forming portion 61 in the first anisotropic conductive sheet 22 is formed.
1.導電性エラストマ一層の形成  1. Formation of conductive elastomer layer
先ず、硬化されて弾性高分子物質となる液状のエラストマ一用材料中に磁性を示 す導電性粒子が分散された導電性エラストマ一用材料を調製する。そして、図 7に示 したように、導電路形成部を形成するための離型性支持板 65上に、導電性エラスト マー用材料を塗布することによって導電性エラストマ一用材料層 61Aを形成する。こ こで、導電性エラストマ一用材料層 61A中には、図 8に示したように、磁性を示す導 電性粒子 Pがランダムに分散された状態で含有されている。  First, a conductive elastomer material is prepared in which conductive particles exhibiting magnetism are dispersed in a liquid elastomer material that is cured to become an elastic polymer substance. Then, as shown in FIG. 7, a conductive elastomer material layer 61A is formed by applying a conductive elastomer material on a releasable support plate 65 for forming a conductive path forming portion. . Here, in the conductive elastomer material layer 61A, as shown in FIG. 8, the conductive particles P exhibiting magnetism are contained in a randomly dispersed state.
[0107] 次いで、導電性エラストマ一用材料層 61Aに対してその厚み方向に磁場を作用さ せることにより、図 9に示したように、導電性エラストマ一用材料層 61A中に分散され ていた導電性粒子 Pを、導電性エラストマ一用材料層 61Aの厚み方向に並ぶよう配 向させる。 Next, by applying a magnetic field to the conductive elastomer material layer 61A in the thickness direction, the conductive elastomer material layer 61A was dispersed in the conductive elastomer material layer 61A as shown in FIG. The conductive particles P are aligned in the thickness direction of the conductive elastomer material layer 61A.
そして、導電性エラストマ一用材料層 61Aに対する磁場の作用を継続しながら、ま たは、磁場の作用を停止した後に、導電性エラストマ一用材料層 61Aの硬化処理を 行うことにより、図 10に示したように、弾性高分子物質中に導電性粒子 Pが厚み方向 に並ぶよう配向した状態で含有された導電性エラストマ一層 61Bが、離型性支持板 6 5上に支持された状態で形成される。  Then, while continuing the action of the magnetic field on the conductive elastomer material layer 61A, or after stopping the action of the magnetic field, the conductive elastomer material layer 61A is cured to obtain the structure shown in FIG. As shown, a conductive elastomer layer 61B containing conductive particles P in an elastic polymer material oriented in the thickness direction is formed in a state where it is supported on a releasable support plate 65. Is done.
[0108] 離型性支持板 65を構成する材料としては、金属、セラミックス、榭脂およびこれらの 複合材などを用いることができる。 [0108] As a material constituting the releasable support plate 65, metals, ceramics, resin, and composite materials thereof can be used.
導電性エラストマ一用材料を塗布する方法としては、スクリーン印刷などの印刷法、 ロール塗布法、ブレード塗布法などを利用することができる。  As a method of applying the conductive elastomer material, a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
導電性エラストマ一用材料層 61Aの厚みは、形成すべき導電路形成部の厚みに 応じて設定される。  The thickness of the conductive elastomer material layer 61A is set in accordance with the thickness of the conductive path forming portion to be formed.
[0109] 導電性エラストマ一用材料層 61Aに磁場を作用させる手段としては、電磁石、永久 磁石などを用いることができる。  [0109] As a means for applying a magnetic field to the conductive elastomer material layer 61A, an electromagnet, a permanent magnet, or the like can be used.
導電性エラストマ一用材料層 61Aに作用させる磁場の強度は、 0. 2〜2. 5テスラと なる大きさが好ましい。 導電性エラストマ一用材料層 61Aの硬化処理は、通常、加熱処理によって行われ る。具体的な加熱温度および加熱時間は、導電性エラストマ一用材料層 61Aを構成 するエラストマ一用材料の種類、導電性粒子の移動に要する時間などを考慮して適 宜設定される。 The strength of the magnetic field applied to the conductive elastomer material layer 61A is preferably 0.2 to 2.5 Tesla. The curing process of the conductive elastomer material layer 61A is usually performed by a heating process. The specific heating temperature and heating time are appropriately set in consideration of the type of the elastomer material constituting the conductive elastomer material layer 61A, the time required for the movement of the conductive particles, and the like.
[0110] この導電性エラストマ一層 61Bから、以下のようにして、ピッチ変換用基板 23の接 続用電極 25に対応したパターンに従って複数の導電路形成部 61を形成する。(図 1 1〜図 14)  [0110] From the conductive elastomer layer 61B, a plurality of conductive path forming portions 61 are formed according to a pattern corresponding to the connection electrode 25 of the pitch conversion substrate 23 as follows. (Fig. 1 1 to 14)
2.導電路形成部 61の形成  2.Formation of conductive path forming part 61
図 11に示したように、離型性支持板 65上に支持された導電性エラストマ一層 61B の表面に、メツキ電極用の金属薄層 66を形成する。  As shown in FIG. 11, a thin metal layer 66 for a plating electrode is formed on the surface of the conductive elastomer layer 61B supported on the releasable support plate 65.
[0111] 次いで、図 12に示したように、この金属薄層 66上に、フォトリソグラフィ一の手法に より、形成すべき導電路形成部のパターン、すなわち接続すべき電極のパターンに 対応する所定のパターンに従って、複数の開口 67aが形成されたレジスト層 67を形 成する。 Next, as shown in FIG. 12, a predetermined pattern corresponding to the pattern of the conductive path forming portion to be formed, that is, the pattern of the electrode to be connected, is formed on this thin metal layer 66 by a photolithography method. According to the pattern, a resist layer 67 having a plurality of openings 67a is formed.
その後、図 13、図 15 (a)および図 16 (a)に示したように、金属薄層 66をメツキ電極 として、金属薄層 66におけるレジスト層 67の開口 67aから露出した部分に電解メツキ 処理を施すことにより、レジスト層 67の開口 67a内に金属マスク 68を形成する。  Thereafter, as shown in FIG. 13, FIG. 15 (a) and FIG. 16 (a), the metal thin layer 66 is used as a plating electrode, and electrolytic plating treatment is performed on the portion of the metal thin layer 66 exposed from the opening 67a of the resist layer 67. As a result, a metal mask 68 is formed in the opening 67a of the resist layer 67.
[0112] 次に、導電性エラストマ一層 61Bと、金属薄層 66と、レジスト層 67に対してレーザ 一加工を施すことにより、図 15 (b)および図 16 (b)に示したように、金属マスク 68の 周辺のレジスト層 67と、金属薄層 66と、導電性エラストマ一層 61 Bとを除去する。こ れにより、所定のパターンに従って配置された複数の導電路形成部 61が離型性支 持板 65上に支持された状態で形成される。  Next, as shown in FIGS. 15 (b) and 16 (b), the conductive elastomer layer 61B, the thin metal layer 66, and the resist layer 67 are subjected to laser processing. The resist layer 67 around the metal mask 68, the thin metal layer 66, and the conductive elastomer layer 61B are removed. As a result, a plurality of conductive path forming portions 61 arranged according to a predetermined pattern are formed in a state of being supported on the releasable support plate 65.
[0113] その後、導電路形成部 61以外の導電性エラストマ一層 61Bを剥離除去することに より、図 14、図 15 (c)および図 16 (c)に示したように、離型性支持板 65上に導電路 形成部 61のみを残す。そして、導電路形成部 61の表面力も残存する金属薄層 66と 金属マスク 68を剥離する。  [0113] After that, by removing and removing the conductive elastomer layer 61B other than the conductive path forming portion 61, as shown in FIGS. 14, 15 (c) and 16 (c), the releasable support plate Only the conductive path forming part 61 is left on the 65. Then, the metal thin layer 66 and the metal mask 68 which also have the surface force of the conductive path forming part 61 are peeled off.
これにより、所定のパターンに従って配置された複数の導電路形成部 61が、離型 性支持板 65上に支持された状態で形成される。 [0114] 導電性エラストマ一層 61Bの表面に金属薄層 66を形成する方法としては、無電解 メツキ法、スノッタ法などを利用することができる。 As a result, a plurality of conductive path forming portions 61 arranged according to a predetermined pattern are formed in a state of being supported on the releasable support plate 65. [0114] As a method of forming the thin metal layer 66 on the surface of the conductive elastomer layer 61B, an electroless plating method, a snotter method, or the like can be used.
金属薄層 66を構成する材料としては、銅、金、アルミニウム、ロジウムなどを用いる ことができる。  As a material constituting the metal thin layer 66, copper, gold, aluminum, rhodium, or the like can be used.
金属薄層 66の厚みは、 0. 05〜2 mであることが好ましぐより好ましくは 0. 1〜1 /z mである。この厚みが過小である場合には、均一な薄層が形成されず、メツキ電極 として不適なものとなることがある。一方、この厚みが過大である場合には、レーザー 加工によって除去することが困難となることがある。  The thickness of the thin metal layer 66 is preferably 0.05 to 2 m, more preferably 0.1 to 1 / z m. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by laser processing.
[0115] レジスト層 67の厚みは、形成すべき金属マスク 68の厚みに応じて設定される。 [0115] The thickness of the resist layer 67 is set according to the thickness of the metal mask 68 to be formed.
金属マスク 68を構成する材料としては、銅、鉄、アルミゥニム、金、ロジウムなどを用 いることがでさる。  As a material constituting the metal mask 68, copper, iron, aluminum, gold, rhodium or the like can be used.
金属マスク 68の厚みは、 2 μ m以上であることが好ましぐより好ましくは 5〜20 μ m である。この厚みが過小である場合には、レーザーに対するマスクとして不適なものと なることがある。  The thickness of the metal mask 68 is preferably 2 μm or more, more preferably 5 to 20 μm. If this thickness is too small, it may be unsuitable as a mask for the laser.
[0116] レーザー加工は、炭酸ガスレーザーまたは紫外線レーザーによるものが好ましぐこ れにより、 目的とする形態の導電路形成部 61を確実に形成することができる。  [0116] The laser processing is preferably performed using a carbon dioxide laser or an ultraviolet laser, so that the conductive path forming portion 61 having a desired form can be reliably formed.
第 1の異方導電性シート 22における導電路形成部 61は、上述した方法の他に、以 下の方法によって形成することができる。  In addition to the method described above, the conductive path forming part 61 in the first anisotropic conductive sheet 22 can be formed by the following method.
1.複合フィルムの形成  1. Formation of composite film
図 17に示したように、メツキ電極用の金属薄層 66上に、フォトリソグラフィ一の手法 により、形成すべき導電路形成部のパターン、すなわち接続すべき電極のパターン に対応する所定のパターンに従って複数の開口 67aが形成されたレジスト層 67を形 成する。  As shown in FIG. 17, on the thin metal layer 66 for the plating electrode, according to a predetermined pattern corresponding to the pattern of the conductive path forming portion to be formed, that is, the pattern of the electrode to be connected, by a photolithography technique. A resist layer 67 having a plurality of openings 67a is formed.
[0117] その後、図 18に示したように、金属薄層 66をメツキ電極として、金属薄層 66におけ るレジスト層 67の開口 67aから露出した部分に電解メツキ処理を施すことにより、レジ スト層 67の開口 67a内に金属マスク 68を形成する。これにより、複合フィルム 69が得 られる。  Then, as shown in FIG. 18, by using the thin metal layer 66 as a plating electrode, an electrolytic plating treatment is performed on the exposed portion of the resist layer 67 in the thin metal layer 66 from the opening 67a. A metal mask 68 is formed in the opening 67 a of the layer 67. As a result, a composite film 69 is obtained.
ここで、金属薄層 66としては、金属箔、金属板などを用いることができる。また、榭 脂フィルムに一体化された金属箔ゃ、無電解メツキ法、スパッタ法などにより榭脂フィ ルム上に形成した金属薄層などを用いることができる。 Here, as the thin metal layer 66, a metal foil, a metal plate, or the like can be used. Also 榭 A metal foil integrated with an oil film, a thin metal layer formed on a resin film by an electroless plating method, a sputtering method, or the like can be used.
[0118] 金属薄層 66の材料としては、銅、金、アルミニウム、ロジウムなどを用いることができ る。  [0118] As a material of the metal thin layer 66, copper, gold, aluminum, rhodium, or the like can be used.
金属薄層 66の厚みは、 0. 05〜2 mであることが好ましぐより好ましくは 0. 1〜1 /z mである。この厚みが過小である場合には、均一な薄層が形成されず、メツキ電極 として不適なものとなることがある。一方、この厚みが過大である場合には、レーザー 加工によって除去することが困難となることがある。  The thickness of the thin metal layer 66 is preferably 0.05 to 2 m, more preferably 0.1 to 1 / z m. If this thickness is too small, a uniform thin layer may not be formed, which may be inappropriate as a plating electrode. On the other hand, if this thickness is excessive, it may be difficult to remove by laser processing.
[0119] レジスト層 67の厚みは、形成すべき金属マスク 68の厚みに応じて設定される。 The thickness of the resist layer 67 is set according to the thickness of the metal mask 68 to be formed.
金属マスク 68を構成する材料としては、磁性を示す金属が使用される。その具体例 としては、ニッケル、コノ レト、およびこれらの合金などを挙げることができる。  As a material constituting the metal mask 68, a metal exhibiting magnetism is used. Specific examples thereof include nickel, conolate, and alloys thereof.
金属マスク 68の厚みは、 2 μ m以上であることが好ましぐより好ましくは 5〜20 μ m である。この厚みが過小である場合には、レーザーに対するマスクとして不適なものと なることがある。  The thickness of the metal mask 68 is preferably 2 μm or more, more preferably 5 to 20 μm. If this thickness is too small, it may be unsuitable as a mask for the laser.
2.導電性エラストマ一層の形成  2. Formation of one layer of conductive elastomer
先ず、硬化されて弾性高分子物質となる液状のエラストマ一用材料中に磁性を示 す導電性粒子が分散された導電性エラストマ一用材料を調製する。そして、図 19〖こ 示したように、導電路形成部を形成するための離型性支持板 65上に、導電性エラス トマ一用材料を塗布することによって導電性エラストマ一用材料層 61Aを形成する。 ここで、導電性エラストマ一用材料層 61A中は、磁性を示す導電性粒子 Pがランダム に分散された状態で含有されて 、る。  First, a conductive elastomer material is prepared in which conductive particles exhibiting magnetism are dispersed in a liquid elastomer material that is cured to become an elastic polymer substance. Then, as shown in FIG. 19, the conductive elastomer material layer 61A is formed by applying a conductive elastomer material on the releasable support plate 65 for forming the conductive path forming portion. Form. Here, the conductive elastomer material layer 61A contains the conductive particles P exhibiting magnetism in a randomly dispersed state.
[0120] 次いで、複合フィルム 69を、その金属薄層 66が形成されていない側の面が導電性 エラストマ一用材料層 61Aに接するようにして積層する。 [0120] Next, the composite film 69 is laminated so that the surface on which the metal thin layer 66 is not formed is in contact with the conductive elastomer material layer 61A.
その後、導電性エラストマ一用材料層 61Aに対してその厚み方向に磁場を作用さ せることにより、図 21に示したように、分散されていた導電性粒子 Pを、磁性を示す金 属からなる金属マスク 68の部分に集中させると共に、厚み方向に並ぶように配向させ る。磁性を示す金属力もなる金属マスク 68の作用により、金属マスク 68の領域にお ける磁場の強度が強くなるので、導電性粒子 Pが金属マスク 68の部分に集中しつつ 配向がなされる。これにより、導電性エラストマ一用材料層 61Aにおいて、金属マスク 68の部分における導電性粒子 Pの密度が高くなり、金属マスク 68が形成されていな V、部分では導電性粒子の密度が低くなる。 Thereafter, by applying a magnetic field in the thickness direction to the conductive elastomer material layer 61A, the dispersed conductive particles P are made of a metal exhibiting magnetism, as shown in FIG. The metal mask 68 is concentrated so that it is aligned in the thickness direction. Due to the action of the metal mask 68, which also has a metal force that exhibits magnetism, the strength of the magnetic field in the region of the metal mask 68 increases, so that the conductive particles P are concentrated on the portion of the metal mask 68. An orientation is made. As a result, in the conductive elastomer material layer 61A, the density of the conductive particles P in the portion of the metal mask 68 increases, and the density of the conductive particles in the portion V, where the metal mask 68 is not formed, decreases.
[0121] そして、導電性エラストマ一用材料層 61Aに対する磁場の作用を継続しながら、ま たは、磁場の作用を停止した後に、導電性エラストマ一用材料層 61Aの硬化処理を 行うことにより、図 22に示したように、弾性高分子物質中に導電性粒子 Pが厚み方向 に並ぶよう配向した状態で含有された導電性エラストマ一層 61Bが、離型性支持板 6 5上に支持された状態で形成される。  [0121] Then, by continuing the action of the magnetic field on the conductive elastomer material layer 61A or after stopping the magnetic field action, the conductive elastomer material layer 61A is hardened. As shown in FIG. 22, a conductive elastomer layer 61B contained in an elastic polymer substance in a state in which conductive particles P are aligned in the thickness direction was supported on a releasable support plate 65. Formed in a state.
[0122] 離型性支持板 65を構成する材料、導電性エラストマ一用材料を塗布する方法、導 電性エラストマ一用材料層 61Aの厚み、導電性エラストマ一用材料層 61Aに磁場を 作用させるときの条件等は、前述した導電路形成部の形成方法において説明したと おりである。  [0122] Material constituting releasable support plate 65, method of applying material for conductive elastomer, thickness of material layer 61A for conductive elastomer, magnetic field applied to material layer 61A for conductive elastomer The conditions at the time are as described in the method for forming the conductive path forming portion.
その後、図 23に示したように、この導電性エラストマ一層 61Bの表面に一体ィ匕され た金属薄層 66を除去する。金属薄層 66の除去は、エッチング、機械的剥離、機械 的研磨等により行うことができる。  Thereafter, as shown in FIG. 23, the thin metal layer 66 integrally formed on the surface of the conductive elastomer layer 61B is removed. The thin metal layer 66 can be removed by etching, mechanical peeling, mechanical polishing, or the like.
2.導電路形成部 61の形成  2.Formation of conductive path forming part 61
この導電性エラストマ一層 61Bから、前述した方法に準じて、ピッチ変換用基板 23 の接続用電極 25に対応したパターンに従って複数の導電路形成部 61を形成する。 すなわち、導電性エラストマ一層 61Bとレジスト層 67に対してレーザー加工を施すこ とにより、金属マスク 68の周辺のレジスト層 67と導電性エラストマ一層 61Bとを除去 する。これにより、所定のパターンに従って配置された複数の導電路形成部 61が離 型性支持板 65上に支持された状態で形成される。  From the conductive elastomer layer 61B, a plurality of conductive path forming portions 61 are formed according to a pattern corresponding to the connection electrode 25 of the pitch conversion substrate 23 in accordance with the method described above. That is, by performing laser processing on the conductive elastomer layer 61B and the resist layer 67, the resist layer 67 and the conductive elastomer layer 61B around the metal mask 68 are removed. As a result, a plurality of conductive path forming portions 61 arranged according to a predetermined pattern are formed in a state of being supported on the releasable support plate 65.
[0123] その後、導電路形成部 61以外の導電性エラストマ一層 61Bを剥離除去することに より、図 24に示したように、離型性支持板 65上に導電路形成部 61のみを残す。そし て、導電路形成部 61の表面から残存する金属マスク 68を剥離する。 [0123] Thereafter, the conductive elastomer layer 61B other than the conductive path forming portion 61 is peeled off to leave only the conductive path forming portion 61 on the releasable support plate 65, as shown in FIG. Then, the remaining metal mask 68 is peeled off from the surface of the conductive path forming portion 61.
レーザー加工は、炭酸ガスレーザーまたは紫外線レーザーによるものが好ましぐこ れにより、目的とする形態の導電路形成部 61を確実に形成することができる。  The laser processing is preferably performed using a carbon dioxide laser or an ultraviolet laser, so that the conductive path forming part 61 having a desired form can be reliably formed.
[0124] 以上のようにして得られた、離型性支持板 65上に形成された複数の導電路形成部 61を用いて、以下の工程によってピッチ変換用アダプタ一体 60を得る。先ず、図 25 に示したピッチ変換用基板 23の表面に、硬化されて絶縁性の弾性高分子物質とな る液状のエラストマ一用材料を塗布することにより、図 26に示したように未硬化状態 の絶縁部用材料層 62Aを形成する。 [0124] A plurality of conductive path forming portions formed on the releasable support plate 65 obtained as described above. 61 is used to obtain the integrated adapter 60 for pitch conversion through the following steps. First, a liquid elastomer material that is cured to become an insulating elastic polymer material is applied to the surface of the pitch conversion substrate 23 shown in FIG. 25, thereby uncured as shown in FIG. The insulating part material layer 62A in the state is formed.
[0125] 次いで、図 27に示したように、複数の導電路形成部 61が形成された離型性支持板 65を、絶縁部用材料層 62Aが形成されたピッチ変換用基板 23上に重ね合わせ、ピ ツチ変換用基板 23の接続用電極 25の各々と、これに対応する導電路形成部 61とを 対接させる。これにより、隣接する導電路形成部 61の間に絶縁部用材料層 62Aが形 成された状態となる。 Next, as shown in FIG. 27, the releasable support plate 65 on which the plurality of conductive path forming portions 61 are formed is overlaid on the pitch conversion substrate 23 on which the insulating portion material layer 62A is formed. In addition, each of the connection electrodes 25 of the pitch conversion substrate 23 and the corresponding conductive path forming portion 61 are brought into contact with each other. As a result, the insulating material layer 62A is formed between the adjacent conductive path forming portions 61.
[0126] その後、この状態で、または、離型性支持板 65を加圧して導電路形成部 61を弾性 的に圧縮した状態で、絶縁部用材料層 62Aの硬化処理を行うことにより、図 28に示 したように、隣接する導電路形成部 61の間にこれらを相互に絶縁する絶縁部 62が、 導電路形成部 61とピッチ変換用基板 23に一体的に形成される。  [0126] Thereafter, in this state or in a state where the releasable support plate 65 is pressed and the conductive path forming portion 61 is elastically compressed, the insulating material layer 62A is cured to perform the process. As shown in FIG. 28, between the adjacent conductive path forming portions 61, an insulating portion 62 that insulates them from each other is formed integrally with the conductive path forming portion 61 and the pitch conversion substrate 23.
そして、離型性支持板 65から離型させることにより、ピッチ変換用基板 23の表面に 第 1の異方導電性シート 22がー体的に形成された、図 29 (a)に示した構成のピッチ 変換用アダプタ一体 60が得られる。  Then, the first anisotropic conductive sheet 22 is formed in a body-like manner on the surface of the pitch conversion substrate 23 by releasing from the releasable support plate 65. The configuration shown in FIG. The integrated adapter for pitch conversion 60 is obtained.
[0127] なお、図 29 (b)に示したように、導電路形成部 61の先端部に、金属膜 64を形成し てもよい。このような金属膜は、例えば金属メツキによる方法、スパッタ法などによる蒸 着、金属プレートを接着剤によって導電路形成部 61の先端部に貼付する方法など、 公知である各種の方法で形成できる。  Note that, as shown in FIG. 29 (b), a metal film 64 may be formed at the tip of the conductive path forming portion 61. Such a metal film can be formed by various known methods such as a metal plating method, a vapor deposition method using a sputtering method, and a method in which a metal plate is attached to the tip of the conductive path forming unit 61 with an adhesive.
エラストマ一用材料を塗布する方法としては、スクリーン印刷などの印刷法、ロール 塗布法、ブレード塗布法などを利用することができる。  As a method of applying the elastomer material, a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used.
[0128] 絶縁部用材料層 62Aの厚みは、形成すべき絶縁部 62の厚みに応じて設定される 絶縁部用材料層 62Aの硬化処理は、通常、加熱処理によって行われる。具体的な 加熱温度および加熱時間は、絶縁部用材料層 62Aを構成するエラストマ一材料の 種類などを考慮して適宜設定される。  [0128] The thickness of the insulating part material layer 62A is set according to the thickness of the insulating part 62 to be formed. The curing process of the insulating part material layer 62A is usually performed by heat treatment. The specific heating temperature and heating time are appropriately set in consideration of the type of the elastomer material constituting the insulating part material layer 62A.
以上に説明したピッチ変換用アダプタ一体 60製造方法によれば、導電性粒子 Pが 厚み方向に並ぶよう配向した状態で分散された導電性エラストマ一層 61Aに対して レーザー加工を施してその一部を除去することによって目的とする形状の導電路形 成部 61を形成している。 According to the pitch conversion adapter integrated 60 manufacturing method described above, the conductive particles P The conductive path forming portion 61 having a desired shape is formed by performing laser processing on the conductive elastomer layer 61A dispersed in an aligned state in the thickness direction and removing a part thereof.
[0129] 従って、所要の量の導電性粒子 Pが充填され、所期の導電性を有する導電路形成 部 61が形成された第 1の異方導電性シート 22を確実に得ることができる。 Accordingly, it is possible to reliably obtain the first anisotropic conductive sheet 22 filled with a required amount of the conductive particles P and having the conductive path forming portion 61 having the desired conductivity.
また、磁性を示す金属力もなる金属マスクを用いて導電性エラストマ一用材料層 61 In addition, using a metal mask that exhibits magnetism, the material layer for conductive elastomer 61
Aに対して磁場配向を行う方法を適用することにより、金属マスクが形成されていない 部分の導電性粒子の密度が小さくなる。そのため、レーザー加工による導電路形成 部の形成が容易になる。さらに、厚みの大きい導電性エラストマ一層 61Bのレーザー 加工が容易となるため、厚みの大きい導電路形成部 61を確実に得ることができる。 By applying the magnetic field orientation method to A, the density of the conductive particles in the portion where the metal mask is not formed is reduced. This facilitates the formation of the conductive path forming portion by laser processing. Further, since the laser processing of the thick conductive elastomer layer 61B becomes easy, the conductive path forming portion 61 having a large thickness can be obtained with certainty.
[0130] また、ピッチ変換用基板 23の接続用電極 25に対応する所定のパターンに従って 離型性支持板 65上に配置された複数の導電路形成部 61を形成し、これらの導電路 形成部 61の間に、未硬化状態のエラストマ一用材料層 62Aを形成して硬化処理す ることにより、絶縁部 62を形成している。 [0130] Further, a plurality of conductive path forming portions 61 arranged on the releasable support plate 65 are formed according to a predetermined pattern corresponding to the connection electrodes 25 of the pitch conversion substrate 23, and these conductive path forming portions are formed. An insulating part 62 is formed by forming an uncured elastomer material layer 62A between 61 and performing a curing process.
これにより、導電性粒子 Pが全く存在しない絶縁部 62が形成された第 1の異方導電 性シート 22を確実に得ることができる。  As a result, the first anisotropic conductive sheet 22 formed with the insulating part 62 in which the conductive particles P are not present can be obtained with certainty.
[0131] し力も、従来の異方導電性シートを製造するために使用されていた、多数の強磁性 体部が配列された高価な金型が不要である。 [0131] In addition, an expensive mold in which a large number of ferromagnetic parts are arranged, which has been used for manufacturing a conventional anisotropic conductive sheet, is unnecessary.
また、導電路形成部 61の各々と絶縁部 62とが一体的に形成され、これら全体がピ ツチ変換用基板 23に支持されているため、導電路形成部 61がピッチ変換用基板 23 力 脱落することがない。  In addition, each of the conductive path forming portions 61 and the insulating portion 62 are integrally formed and are supported by the pitch conversion substrate 23, so that the conductive path formation portion 61 is removed from the pitch conversion substrate 23. There is nothing to do.
[0132] また、レーザー加工による導電路形成部 61の形成工程は、離型性支持板 65上に おいて行われるため、第 1の異方導電性シート 22の形成時においてピッチ変換用基 板 23の表面に損傷を与えることがない。 [0132] In addition, since the formation process of the conductive path forming portion 61 by laser processing is performed on the releasable support plate 65, the pitch conversion substrate is formed when the first anisotropic conductive sheet 22 is formed. No damage to the 23 surface.
従って、このような方法によって得られるピッチ変換用アダプタ一体 60によれば、検 查対象である被検査回路基板の検査電極の配置パターンに関わらず、被検査電極 の各々に対して所要の電気的接続を確実に達成することができる。  Therefore, according to the integrated adapter 60 for pitch conversion obtained by such a method, a required electrical circuit is provided for each of the electrodes to be inspected regardless of the arrangement pattern of the inspection electrodes of the circuit board to be inspected. Connection can be reliably achieved.
[0133] また、被検査電極が、そのピッチが微小で高密度に配置されている場合であっても 、被検査電極の各々に対して所要の電気的接続を確実に達成することができ、しか も、製造コストの低減ィ匕を図ることができ、さらに高い耐久性が得られる。 [0133] Further, even when the electrodes to be inspected are arranged with a small pitch and a high density, The required electrical connection can be reliably achieved for each of the electrodes to be inspected. However, the manufacturing cost can be reduced, and higher durability can be obtained.
図 30は、ピッチ変換用アダプタ一体における他の構成を示した断面図、図 31は、 その拡大断面図、図 32は、そのピッチ変換用基板を示した断面図である。  FIG. 30 is a cross-sectional view showing another configuration of the pitch conversion adapter, FIG. 31 is an enlarged cross-sectional view thereof, and FIG. 32 is a cross-sectional view showing the pitch conversion substrate.
[0134] このピッチ変換用アダプタ一体 60は、例えば、プリント回路基板などの回路装置に っ 、て、各配線パターンの電気抵抗測定試験を行うために用いられるものであって、 多層配線板力もなるピッチ変換用基板 23を備えている。 [0134] This pitch conversion adapter integrated 60 is used for, for example, a circuit device such as a printed circuit board to perform an electrical resistance measurement test of each wiring pattern, and also has a multilayer wiring board force. A pitch conversion substrate 23 is provided.
ピッチ変換用基板 23の表面(図 30〜図 32において上面)には、それぞれ同一の 被検査電極に電気的に接続される互 ヽに離間して配置された電流供給用の電流供 給用電極 27および電圧測定用の電圧測定用電極 28からなる接続用電極 25が形成 されている。  On the surface of the pitch conversion substrate 23 (upper surface in FIGS. 30 to 32), current supply electrodes for supplying current that are electrically connected to the same electrode to be inspected and spaced apart from each other are provided. A connection electrode 25 comprising 27 and a voltage measurement electrode 28 for voltage measurement is formed.
[0135] これらの接続用電極 25は、検査対象である被検査回路基板の被検査電極のバタ ーンに従って配置されて 、る。  [0135] These connection electrodes 25 are arranged in accordance with the pattern of the electrode to be inspected of the circuit board to be inspected.
ピッチ変換用基板 23の裏面には、例えば、ピッチが 0. 8mm, 0. 75mm, 1. 5mm 、 1. 8mm、 2. 54mmの格子点位置に従って複数の端子電極 24が配置されている  On the back surface of the pitch conversion substrate 23, for example, a plurality of terminal electrodes 24 are arranged according to lattice point positions of pitches of 0.8 mm, 0.75 mm, 1.5 mm, 1.8 mm, and 2.54 mm.
[0136] そして、電流供給用電極 27および電圧測定用電極 28の各々は、内部配線 53によ つて端子電極 24に電気的に接続されている。 Each of current supply electrode 27 and voltage measurement electrode 28 is electrically connected to terminal electrode 24 by internal wiring 53.
ピッチ変換用基板 23の表面には、その接続用電極 25上に、第 1の異方導電性シ ート 22がー体的に接着または密着した状態で形成されている。図 30の例では、ピッ チ変換用基板 23の表面全体を覆うよう第 1の異方導電性シート 22が形成されている  On the surface of the pitch conversion substrate 23, a first anisotropic conductive sheet 22 is formed on the connection electrode 25 in a state of being physically adhered or closely adhered. In the example of FIG. 30, the first anisotropic conductive sheet 22 is formed so as to cover the entire surface of the pitch conversion substrate 23.
[0137] この第 1の異方導電性シート 22は、ピッチ変換用基板 23における接続用電極 25の ノターンに従って配置された、それぞれ厚み方向に延びる複数の導電路形成部 61 を備えている。すなわち、それぞれの導電路形成部 61は、ピッチ変換用基板 23にお ける電流供給用電極 27および電圧測定用電極 28の各々の上に配置されている。 また、これらの隣接する導電路形成部 61の間に、導電路形成部 61の各々に一体 的に接着した状態で形成された、これらの導電路形成部 61を相互に絶縁する絶縁 部 62を備えている。 The first anisotropic conductive sheet 22 includes a plurality of conductive path forming portions 61 that are arranged in accordance with the pattern of the connection electrodes 25 on the pitch conversion substrate 23 and extend in the thickness direction. That is, each of the conductive path forming portions 61 is disposed on each of the current supply electrode 27 and the voltage measurement electrode 28 in the pitch conversion substrate 23. In addition, between these adjacent conductive path forming portions 61, the conductive path forming portions 61 formed in a state of being integrally bonded to each of the conductive path forming portions 61 are insulated to insulate the conductive path forming portions 61 from each other. Part 62 is provided.
[0138] この第 1の異方導電性シート 22の導電路形成部 61と絶縁部 62は、図 29に示した ピッチ変換用アダプタ一体 60における第 1の異方導電性シート 22と基本的に同様の 構成である。  [0138] The conductive path forming portion 61 and the insulating portion 62 of the first anisotropic conductive sheet 22 are basically the same as the first anisotropic conductive sheet 22 in the pitch conversion adapter integral 60 shown in FIG. The configuration is the same.
ピッチ変換用基板 23の中継ピンユニット 31側に配置される第 2の異方導電性シー ト 26は、図 33に示したように、絶縁性の弾性高分子材料中に多数の導電性粒子 Pが 厚み方向に配列して形成された導電路形成部 71と、それぞれの導電路形成部 71を 離間する絶縁部 72から構成されている。このように、導電性粒子 Pは導電路形成部 7 1中にのみ、面方向に不均一に分散されている。  As shown in FIG. 33, the second anisotropic conductive sheet 26 disposed on the relay pin unit 31 side of the pitch conversion substrate 23 is composed of a large number of conductive particles P in an insulating elastic polymer material. Are formed of conductive path forming portions 71 arranged in the thickness direction and insulating portions 72 that separate the respective conductive path forming portions 71. As described above, the conductive particles P are nonuniformly dispersed in the plane direction only in the conductive path forming portion 71.
[0139] 導電路形成部 71の厚みは、好ましくは 0. l〜2mm、より好ましくは 0. 2〜1. 5mm である。この厚みが過小である場合、厚み方向の加圧に対する吸収能力が低ぐ検 查時において検査治具による加圧力の吸収が小さくなり、回路基板側コネクタ 21へ の衝撃を緩和する効果が減少する。このため、第 1の異方導電性シート 22の劣化を 抑制しにくくなり、結果として被検査回路基板 1の繰り返し検査時における第 1の異方 導電性シート 22の交換回数が増加して、検査の効率が低下する。一方、この厚みが 過大である場合、厚み方向の電気抵抗が大きくなり易く電気検査が困難となることが ある。 [0139] The thickness of the conductive path forming portion 71 is preferably 0.1 to 2 mm, more preferably 0.2 to 1.5 mm. If this thickness is too small, the absorption of the applied pressure by the inspection jig will be reduced at the time of inspection when the absorption capacity for pressure in the thickness direction is low, and the effect of mitigating the impact on the circuit board connector 21 will be reduced. . For this reason, it becomes difficult to suppress the deterioration of the first anisotropic conductive sheet 22, resulting in an increase in the number of replacements of the first anisotropic conductive sheet 22 during the repeated inspection of the circuit board 1 to be inspected. Decreases the efficiency. On the other hand, if this thickness is excessive, the electrical resistance in the thickness direction tends to increase and electrical inspection may be difficult.
[0140] 絶縁部 72の厚みは、導電路形成部 71の厚みと実質的に同一力、それよりも小さい ことが好ましい。図 33に示したように、絶縁部 72の厚みを導電路形成部 71の厚みよ りも小さくして導電路形成部 71が絶縁部 72より突出した突出部 71aを形成することに より、厚み方向の加圧に対して導電路形成部 72の変形が容易になり、加圧力の吸収 能力が増大するため、検査時において検査治具の加圧力を吸収し、回路基板側コ ネクタへ 21の衝撃を緩和することができる。  [0140] It is preferable that the thickness of the insulating portion 72 is substantially the same as or smaller than the thickness of the conductive path forming portion 71. As shown in FIG. 33, the thickness of the insulating portion 72 is made smaller than the thickness of the conductive path forming portion 71, and the conductive path forming portion 71 forms a protruding portion 71a protruding from the insulating portion 72. Because the deformation of the conductive path forming part 72 becomes easier and the capacity to absorb the applied pressure increases, the applied pressure of the inspection jig is absorbed at the time of inspection, and the circuit board side connector 21 Impact can be mitigated.
[0141] 第 2の異方導電性シート 26を構成する導電性粒子 Pに、磁性導電性粒子を使用す る場合、その数平均粒子径は好ましくは 5〜200 μ m、より好ましくは 5〜 150 m、さ らに好ましくは 10〜: LOO mである。ここで、「磁性導電性粒子の数平均粒子径」とは 、レーザー回折散乱法によって測定されたものをいう。磁性導電性粒子の数平均粒 子径が 5 m以上であると、異方導電性シートの導電路形成部の加圧変形が容易に なる。また、その製造工程において磁場配向処理によって磁性導電性粒子を配向さ せる場合、磁性導電性粒子の配向が容易である。磁性導電性粒子の数平均粒子径 力 S 200 m以下であると、異方導電性シートの導電路形成部 71の弾性が良好でカロ 圧変形が容易になる。 [0141] When magnetic conductive particles are used as the conductive particles P constituting the second anisotropic conductive sheet 26, the number average particle diameter thereof is preferably 5 to 200 μm, more preferably 5 to 150 m, more preferably 10: LOO m. Here, the “number average particle diameter of the magnetic conductive particles” means that measured by a laser diffraction scattering method. When the number average particle diameter of magnetic conductive particles is 5 m or more, pressure deformation of the conductive path forming part of the anisotropic conductive sheet is easy. Become. Further, when the magnetic conductive particles are oriented by magnetic field orientation treatment in the manufacturing process, the magnetic conductive particles can be easily oriented. When the number average particle size force S of the magnetic conductive particles is 200 m or less, the elasticity of the conductive path forming portion 71 of the anisotropic conductive sheet is good and the caloric pressure deformation becomes easy.
[0142] 導電路形成部 71の厚み W m)と、磁性導電性粒子の数平均粒子径 D ( μ m)  [0142] The thickness W m) of the conductive path forming part 71 and the number average particle diameter D (μm) of the magnetic conductive particles
2 2 との比率 W ZDは 1. 1〜10であることが好ましい。  The ratio W ZD to 2 2 is preferably 1.1 to 10.
2 2  twenty two
比率 W ZDが 1. 1未満である場合、導電路形成部 71の厚みに対して磁性導電 When the ratio W ZD is less than 1.1, the magnetic
2 2 twenty two
性粒子の直径が同等あるいはそれよりも大きくなるため、導電路形成部 71の弾性が 低くなり、その厚み方向の加圧力の吸収能力が小さくなる。検査時における検査治 具の加圧圧力を吸収が小さくなり、回路基板側コネクタ 21への衝撃を緩和する効果 が減少するため、第 1の異方導電性シート 22の劣化を抑制しに《なり、結果として 被検査回路基板 1の繰り返し検査時において、第 1の異方導電性シート 22、すなわ ち、第 1の異方導電性シート 22が、ピッチ変換用基板 23側に一体化されたピッチ変 換用アダプタ一体 60の交換回数が増加して、検査の効率が低下し易くなる。  Since the diameter of the conductive particles is equal to or larger than that, the elasticity of the conductive path forming portion 71 is reduced, and the absorption capability of the applied pressure in the thickness direction is reduced. Since the absorption of the pressure applied by the inspection tool during inspection is reduced and the effect of mitigating the impact on the circuit board connector 21 is reduced, the deterioration of the first anisotropic conductive sheet 22 is suppressed. As a result, during the repeated inspection of the circuit board 1 to be inspected, the first anisotropic conductive sheet 22, that is, the first anisotropic conductive sheet 22 was integrated on the pitch converting substrate 23 side. The number of replacements of the pitch conversion adapter 60 is increased, and the inspection efficiency tends to decrease.
[0143] 一方、比率 W ZDが 10を超える場合、導電路形成部 71に多数の導電性粒子が [0143] On the other hand, when the ratio W ZD exceeds 10, a large number of conductive particles are present in the conductive path forming portion 71.
2 2  twenty two
配列して連鎖を形成することとなり、導電性粒子同士の接点が多数存在することにな るため、電気的抵抗値が高くなり易い。  As a result of the arrangement, a chain is formed, and there are a large number of contacts between the conductive particles, so that the electrical resistance value tends to be high.
導電路形成部 71の基材である弾性高分子 (エラストマ一)は、そのタイプ Aデュロメ ータによって測定されたデュロメータ硬さが好ましくは 15〜60、より好ましくは 20〜5 0、さらに好ましくは 25〜45である。  The elastic polymer (elastomer) that is the base material of the conductive path forming part 71 preferably has a durometer hardness measured by a type A durometer of 15 to 60, more preferably 20 to 50, still more preferably. 25-45.
[0144] 弾性高分子のデュロメータ硬さが、 15よりも小さい場合、厚み方向に押圧された際 のシートの圧縮、変形が大きぐ大きな永久歪が生じるためシート形状が早期に変形 して検査時の電気的接続が困難となり易い。弾性高分子のデュロメータ硬さが、 60よ りも大きい場合、厚み方向に押圧された際の変形力 、さくなるため、その厚み方向の 加圧力の吸収能力が小さくなる。このため、第 1の異方導電性シート 22の劣化を抑 制しに《なり、結果として、被検査回路基板 1の繰り返し検査時において、第 1の異 方導電性シート 22、すなわち、第 1の異方導電性シート 22が、ピッチ変換用基板 23 側に一体ィ匕されたピッチ変換用アダプタ一体 60の交換回数が増加して、検査の効 率が低下しやすくなる。 [0144] When the durometer hardness of the elastic polymer is smaller than 15, the sheet shape is deformed early when the sheet is pressed in the thickness direction. The electrical connection is likely to be difficult. If the durometer hardness of the elastic polymer is greater than 60, the deformation force when pressed in the thickness direction becomes small, so the ability to absorb pressure in the thickness direction becomes small. Therefore, the deterioration of the first anisotropic conductive sheet 22 is suppressed, and as a result, the first anisotropic conductive sheet 22, that is, the first anisotropic conductive sheet 22, during the repeated inspection of the circuit board 1 to be inspected. The anisotropic conductive sheet 22 of the pitch conversion adapter integrated with the pitch conversion board 23 is increased, and the number of replacements of the pitch conversion adapter 60 is increased. The rate tends to decrease.
[0145] 導電路形成部 71の基材となる弾性高分子としては、上記のデュロメータ硬さを示す ものであれば特に限定されないが、加工性および電気特性の点から、シリコーンゴム を用いることが好ましい。  [0145] The elastic polymer serving as the base material of the conductive path forming portion 71 is not particularly limited as long as it exhibits the durometer hardness described above, but from the viewpoint of workability and electrical characteristics, silicone rubber may be used. preferable.
第 2の異方導電性シート 26の絶縁部 72は、実質的に導電性粒子を含有しない絶 縁材料により形成される。絶縁材料としては、例えば、絶縁性の高分子材料、無機材 料、表面を絶縁ィ匕処理した金属材料などを用いることができるが、導電路形成部に 使用した弾性高分子と同一の材料を用いると生産が容易である。絶縁部の材料とし て弾性高分子を使用する場合、デュロメータ硬さが上記の範囲であるものを使用する ことが好ましい。  The insulating portion 72 of the second anisotropic conductive sheet 26 is formed of an insulating material that does not substantially contain conductive particles. As the insulating material, for example, an insulating polymer material, an inorganic material, a metal material whose surface is insulated, etc. can be used, but the same material as the elastic polymer used for the conductive path forming portion is used. When used, production is easy. When an elastic polymer is used as the material for the insulating portion, it is preferable to use a material having a durometer hardness in the above range.
[0146] 磁性導電性粒子としては、前述した第 1の異方導電性シートに用いられる導電性粒 子を用いることができる。  [0146] As the magnetic conductive particles, the conductive particles used in the first anisotropic conductive sheet described above can be used.
第 2の異方導電性シート 26は、例えば、以下のようにして製造することができる。先 ず、それぞれ全体の形状が略平板状であって、互いに対応する上型と下型とよりなり 、上型と下型との間の成形空間内に充填された材料層に磁場を作用させながら材料 層を加熱硬化することができる構成の異方導電性シート成形用金型を用意する。  The second anisotropic conductive sheet 26 can be manufactured, for example, as follows. First, the overall shape is substantially a flat plate shape, each consisting of an upper mold and a lower mold that correspond to each other, and a magnetic field is applied to the material layer filled in the molding space between the upper mold and the lower mold. An anisotropic conductive sheet molding die having a configuration capable of heat-curing the material layer is prepared.
[0147] この異方導電性シート成形用金型は、材料層に磁場を作用させて適正な位置に導 電性を有する部分を形成するために、上型および下型の両方は、鉄、ニッケルなど の強磁性体からなる基板上に、金型内の磁場に強度分布を生じさせるための鉄、二 ッケルなどよりなる強磁性体部分と、銅などの非磁性金属若しくは榭脂よりなる非磁 性体部分とが互いに隣接するよう交互に配置されたモザイク状の層を有する構成の ものであり、強磁性体部分は、形成すべき導電路形成部に対応するパターンに従つ て配列されている。  [0147] This anisotropic conductive sheet molding die has a magnetic field applied to the material layer to form a portion having conductivity at an appropriate position. On a substrate made of a ferromagnetic material such as nickel, a ferromagnetic material portion made of iron, nickel or the like for generating an intensity distribution in the magnetic field in the mold, and a non-magnetic metal such as copper or non-coating made of resin. The magnetic material portions have mosaic layers alternately arranged so as to be adjacent to each other, and the ferromagnetic material portions are arranged according to a pattern corresponding to the conductive path forming portion to be formed. ing.
[0148] ここで、上型の成形面は平坦であり、下型の成形面は形成すべき異方導電性シー トの導電路形成部に対応してわずかに凹凸を有するものである。  [0148] Here, the molding surface of the upper mold is flat, and the molding surface of the lower mold has slight irregularities corresponding to the conductive path forming portion of the anisotropic conductive sheet to be formed.
そして、上記の異方導電性シート成形用金型を用いて、以下のようにして異方導電 性シートが製造される。先ず、異方導電性シート成形用金型の成形空間内に、硬化 されて弾性高分子物質となる高分子物質材料中に磁性を示す導電性粒子が含有さ れてなる成形材料を注入して成形材料層を形成する。 Then, using the anisotropic conductive sheet molding die, an anisotropic conductive sheet is manufactured as follows. First, in the molding space of the mold for forming an anisotropic conductive sheet, conductive particles exhibiting magnetism are contained in a polymer material that is cured to become an elastic polymer material. The molding material thus formed is injected to form a molding material layer.
[0149] 次に、上型および下型の各々における強磁性体部分および非磁性体部分を利用 し、形成された成形材料層に対してその厚み方向に強度分布を有する磁場を作用さ せることにより、その磁力の作用によって、導電性粒子を、上型における強磁性体部 分と、その直下に位置する下型における強磁性体部分との間に集合させ、更には導 電性粒子を厚み方向に並ぶように配向させる。そして、その状態で成形材料層を硬 化処理することにより、複数の柱状の導電路形成部が、絶縁部によって互い絶縁さ れてなる構成を有する異方導電性シートが製造される。  Next, a magnetic field having an intensity distribution in the thickness direction is applied to the formed molding material layer using the ferromagnetic part and the non-magnetic part in each of the upper mold and the lower mold. Due to the action of the magnetic force, the conductive particles are aggregated between the ferromagnetic part in the upper mold and the ferromagnetic part in the lower mold located immediately below it, and the conductive particles are further thickened. Orient to align in the direction. Then, by hardening the molding material layer in this state, an anisotropic conductive sheet having a configuration in which a plurality of columnar conductive path forming portions are insulated from each other by an insulating portion is manufactured.
[0150] 一方、テスター側コネクタ 41a, 41bは、図 1に示したように、第 3の異方導電性シー 卜 42a, 42bと、コネクタ基板 43a, 43bと、ベース板 46a, 46bと、を備えて ヽる。第 3 の異方導電性シート 42a, 42bには、前述した第 2の異方導電性シート 26と同様のも のが使用される。すなわち、図 33に示したような、絶縁性の弾性高分子材料中に多 数の導電性粒子が厚み方向に配列して形成された導電路形成部と、それぞれの導 電路形成部を離間する絶縁部とから構成された異方導電性シートが使用される。  On the other hand, as shown in FIG. 1, the tester-side connectors 41a and 41b include third anisotropic conductive sheets 42a and 42b, connector boards 43a and 43b, and base plates 46a and 46b. Prepare and speak. As the third anisotropic conductive sheet 42a, 42b, the same one as the second anisotropic conductive sheet 26 described above is used. That is, as shown in FIG. 33, the conductive path forming portions formed by arranging a large number of conductive particles in the insulating elastic polymer material in the thickness direction are separated from the respective conductive path forming portions. An anisotropic conductive sheet composed of an insulating part is used.
[0151] コネクタ基板 43a, 43bは、絶縁基板を備えており、その表面の中継ピンユニット 31 側に、図 1および図 2に示したようにピン側電極 45a, 45bが形成されている。  [0151] The connector boards 43a and 43b are provided with an insulating board, and pin-side electrodes 45a and 45b are formed on the surface thereof on the relay pin unit 31 side, as shown in FIGS.
これらのピン側電極 45は、例えば、 2. 54mm, 1. 8mm、 1. 27mm, 1. 06mm, 0. 8mm、 0. 75mm, 0. 5mm、 0. 45mm, 0. 3mmまたは 0. 2mmの一定ピッチ の格子点上に配置されており、その配置ピッチは中継ピンユニット 31の導電ピン 32 の配置ピッチと同一である。  These pin side electrodes 45 are, for example, 2.54 mm, 1.8 mm, 1.27 mm, 1.06 mm, 0.8 mm, 0.775 mm, 0.5 mm, 0.45 mm, 0.3 mm or 0.2 mm. They are arranged on lattice points with a constant pitch, and the arrangement pitch is the same as the arrangement pitch of the conductive pins 32 of the relay pin unit 31.
[0152] それぞれのピン側電極 45は、絶縁基板の表面に形成された配線パターンおよびそ の内部に形成された内部配線によって、テスター側電極 44a, 44bへ電気的に接続 されている。  [0152] Each pin-side electrode 45 is electrically connected to the tester-side electrodes 44a, 44b by a wiring pattern formed on the surface of the insulating substrate and an internal wiring formed therein.
中継ピンユニット 31は、図 1、図 2、図 34 (図 34は、説明の便宜上、中継ピンュ-ッ ト 31aについて示している)、および図 40〜図 43に示したように、上下方向を向くよう に並列に、所定のピッチで設けられた多数の導電ピン 32a, 32bを備えている。また、 中継ピンユニット 31は、これらの導電ピン 32a, 32bの両端側に設けられ、導電ピン 3 2a, 32bを揷通支持する被検査回路基板 1側に配置された第 1の絶縁板 34a, 34b と、被検査回路基板 1側とは反対側に配置された第 2の絶縁板 35a, 35bの 2枚の絶 縁板を備えている。 As shown in FIGS. 1, 2, and 34 (FIG. 34 shows the relay pin unit 31a for convenience of explanation) and FIGS. 40 to 43, the relay pin unit 31 is A large number of conductive pins 32a and 32b provided at a predetermined pitch are provided in parallel so as to face each other. Further, the relay pin unit 31 is provided on both ends of the conductive pins 32a and 32b, and the first insulating plates 34a and 34a disposed on the circuit board 1 side to be inspected to support the conductive pins 32a and 32b. 34b And two insulating plates 35a and 35b disposed on the opposite side of the circuit board 1 to be inspected.
[0153] 導電ピン 32は、例えば、図 35に示したように、直径の大きい中央部 82と、これよりも 直径の小さい端部 81a, 81bとからなる。第 1の絶縁板 34と第 2の絶縁板 35には、導 電ピン 32の端部 81が挿入される貫通孔 83が形成されている。そして、貫通孔 83の 直径が、導電ピン 32の端部 81a, 81bの直径よりも大きぐ且つ中央部 82の直径より も小さく形成され、これにより導電ピン 32が脱落しな ヽように保持されて ヽる。  [0153] As shown in Fig. 35, for example, the conductive pin 32 includes a central portion 82 having a large diameter and end portions 81a and 81b having a smaller diameter. The first insulating plate 34 and the second insulating plate 35 are formed with through holes 83 into which the end portions 81 of the conductive pins 32 are inserted. The diameter of the through hole 83 is formed to be larger than the diameter of the end portions 81a and 81b of the conductive pin 32 and smaller than the diameter of the central portion 82, whereby the conductive pin 32 is held so as not to drop off. Speak.
[0154] 第 1の絶縁板 34および第 2の絶縁板 35は、図 1の第 1の支持ピン 33および第 2の 支持ピン 37によって、これらの間隔が導電ピン 32の中央部 82の長さよりも長くなるよ うに固定され、これにより導電ピン 32が上下へ移動可能に保持されている。導電ピン 32の端部 81の長さは、絶縁板 34の厚みよりも長くなるように形成され、これにより、 少なくとも一方の絶縁板 34から導電ピン 32が突出するようになっている。  [0154] The first insulating plate 34 and the second insulating plate 35 are separated from each other by the first support pin 33 and the second support pin 37 in FIG. The conductive pin 32 is held so as to be movable up and down. The length of the end 81 of the conductive pin 32 is formed so as to be longer than the thickness of the insulating plate 34, whereby the conductive pin 32 protrudes from at least one of the insulating plates 34.
[0155] 中継ピンユニットは、多数の導電ピンが、例えば、 2. 54mm, 1. 8mm、 1. 27mm 、 1. 06mm、 0. 8mm、 0. 75mm、 0. 5mm、 0. 45mm、 0. 3mmまたは 0. 2mm のピッチの格子点上に配置されている。  [0155] The relay pin unit has a large number of conductive pins, for example, 2.54mm, 1.8mm, 1.27mm, 1.06mm, 0.8mm, 0.75mm, 0.5mm, 0.45mm, 0.5. It is placed on a grid point with a pitch of 3mm or 0.2mm.
中継ピンユニット 31の導電ピン 32の配置ピッチと、ピッチ変換用基板 23に設けられ た端子電極 24の配置ピッチとを同一とすることにより、導電ピン 32を介してピッチ変 換用基板 23がテスター側に電気的に接続されるようになっている。  By making the arrangement pitch of the conductive pins 32 of the relay pin unit 31 the same as the arrangement pitch of the terminal electrodes 24 provided on the pitch conversion board 23, the pitch conversion board 23 is connected to the tester via the conductive pins 32. It is designed to be electrically connected to the side.
[0156] また、図 1および図 34に示したように、中継ピンユニット 31には、第 1の絶縁板 34a , 34bと、第 2の絶縁板 35a, 35bとの間に、中間保持板 36a、 36b力 ^酉己置されて!/、る そして、第 1の絶縁板 34a, 34bと中間保持板 36a, 36bとの間には、第 1の支持ピ ン 33a, 33bが配置され、これによつて、第 1の絶縁板 34a, 34bと中間保持板 36a, 3 6bとの間を固定している。  Further, as shown in FIGS. 1 and 34, the relay pin unit 31 includes an intermediate holding plate 36a between the first insulating plates 34a and 34b and the second insulating plates 35a and 35b. 36b force ^ 酉 is placed! /, And the first support pins 33a, 33b are arranged between the first insulating plates 34a, 34b and the intermediate holding plates 36a, 36b. Therefore, the space between the first insulating plates 34a and 34b and the intermediate holding plates 36a and 36b is fixed.
[0157] 同様に、第 2の絶縁板 35a, 35bと中間保持板 36a, 36bとの間には、第 2の支持ピ ン 37a, 37bが配置され、これによつて、第 2の絶縁板 35a, 35bと中間保持板 36a, 3 6bとの間を固定している。 [0157] Similarly, second support pins 37a and 37b are arranged between the second insulating plates 35a and 35b and the intermediate holding plates 36a and 36b, whereby the second insulating plates The space between 35a, 35b and the intermediate holding plate 36a, 36b is fixed.
第 1の支持ピン 33と、第 2の支持ピン 37の材質としては、例えば、真鍮、ステンレス などの金属が使用される。 Examples of the material of the first support pin 33 and the second support pin 37 include brass and stainless steel. Such metals are used.
[0158] なお、図 34における第 1の絶縁板 34と中間保持板 36との間の距離 L1と、第 2の絶 縁板 35と中間保持板 36との間の距離 L2としては、特に限定されるものではないが、 後述するように、第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35の弾性による、 被検査回路基板 1の被検査電極 2, 3の高さバラツキの吸収性を考慮すれば、 2mm 以上が好ましぐより好ましくは 2. 5mm以上である。  Note that the distance L1 between the first insulating plate 34 and the intermediate holding plate 36 and the distance L2 between the second insulating plate 35 and the intermediate holding plate 36 in FIG. 34 are particularly limited. However, as will be described later, the height of the electrodes 2 and 3 on the circuit board 1 to be inspected varies due to the elasticity of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35. Considering the absorbency, the thickness is preferably 2 mm or more, more preferably 2.5 mm or more.
[0159] そして、図 34に示したように、第 1の支持ピン 33の中間保持板 36に対する第 1の当 接支持位置 38Aと、第 2の支持ピン 37の中間保持板 36に対する第 2の当接支持位 置 38Bとは、検査装置を中間保持板の厚さ方向に(図 1において上方から下方に向 カゝつて)投影した中間保持板投影面 A上において異なる位置に配置されている。 この場合、異なる位置としては、特に限定されるものではないが、第 1の当接支持位 置 38Aと、第 2の当接支持位置 38Bは、図 39に示したように、中間保持板投影面 A 上にぉ 、て格子上に形成されて 、ることが好ま 、。  Then, as shown in FIG. 34, the first contact support position 38A of the first support pin 33 with respect to the intermediate holding plate 36, and the second contact pin 38 of the second support pin 37 with respect to the intermediate holding plate 36 The abutting support position 38B is arranged at a different position on the intermediate holding plate projection surface A on which the inspection device is projected in the thickness direction of the intermediate holding plate (from the upper side to the lower side in FIG. 1). . In this case, the different positions are not particularly limited, but the first abutting support position 38A and the second abutting support position 38B are projected on the intermediate holding plate as shown in FIG. It is preferable that the surface A is formed on the lattice and is formed on the surface A.
[0160] 具体的には、図 39に示したように、中間保持板投影面 A上において、隣接する 4個 の第 1の当接支持位置 38Aからなる単位格子領域 R1に、 1個の第 2の当接支持位 置 38Bが配置される。また、中間保持板投影面 Aにおいて、隣接する 4個の第 2の当 接支持位置 38Bからなる単位格子領域 R2に、 1個の第 1の当接支持位置 38Aが配 置される。なお、図 39では、第 1の当接支持位置 38Aを黒丸、第 2の当接支持位置 群 38Bを白丸で示して!/、る。  Specifically, as shown in FIG. 39, on the intermediate holding plate projection plane A, one unit cell region R1 composed of four adjacent first contact support positions 38A has one first 2 abutment support positions 38B are arranged. Further, on the intermediate holding plate projection surface A, one first abutting support position 38A is arranged in a unit lattice region R2 composed of four adjacent second abutting support positions 38B. In FIG. 39, the first contact support position 38A is indicated by a black circle, and the second contact support position group 38B is indicated by a white circle!
[0161] なお、ここでは、第 1の当接支持位置 38Aの単位格子領域 R1の対角線 Q1の中央 に、 1個の第 2の当接支持位置 38Bを配置するとともに、第 2の当接支持位置 38Bの 単位格子領域 R2の対角線 Q2の中央に、 1個の第 1の当接支持位置 38Aを配置し ている。し力しながら、これらの相対的な位置は、特に限定されるものではなぐ上記 のように、検査装置を中間保持板の厚さ方向に投影した中間保持板投影面 A上にお いて異なる位置に配置されていればよい。すなわち、格子状に配置されない場合に は、このような相対位置関係に拘束されるものではなぐ上記のように、検査装置を中 間保持板の厚さ方向に投影した中間保持板投影面 A上にぉ ヽて異なる位置に配置 されていればよい。 [0162] また、この場合、互いに隣接する第 1の当接支持位置 38Aの間の離間距離、第 2の 当接支持位置 38Bの間の離間距離は、好ましくは 10〜: LOOmm、より好ましくは 12 〜70mm、特に好ましくは 15〜50mmである。 [0161] Here, one second contact support position 38B is arranged at the center of the diagonal Q1 of the unit lattice region R1 of the first contact support position 38A, and the second contact support position is also provided. One first abutting support position 38A is arranged at the center of the diagonal line Q2 of the unit lattice region R2 at the position 38B. However, as described above, the relative positions of these are different positions on the intermediate holding plate projection plane A obtained by projecting the inspection apparatus in the thickness direction of the intermediate holding plate as described above. It suffices if they are arranged. That is, when not arranged in a grid pattern, the inspection apparatus is projected on the intermediate holding plate projection surface A as projected in the thickness direction of the intermediate holding plate as described above. It is sufficient that they are arranged at different positions. [0162] In this case, the separation distance between the first contact support positions 38A adjacent to each other and the separation distance between the second contact support positions 38B are preferably 10 to: LOOmm, more preferably It is 12 to 70 mm, particularly preferably 15 to 50 mm.
第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35の形成材料には、可撓性を有 するものが用いられる。これらの板の可撓性は、第 1の絶縁板 34、中間保持板 36、 第 2の絶縁板 35の両端部を、それぞれ 10cm間隔で支持した状態で水平に配置し た場合において、上方から 50kgfの圧力で加圧することによって生ずる橈み力 これ らの絶縁板の幅の 0. 02%以下であり、かつ上方から 200kgfの圧力で加圧すること によっても破壊および永久変形が生じな 、程度であることが好ま 、。  As the forming material of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35, a flexible material is used. The flexibility of these plates is determined from above when both ends of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35 are horizontally arranged with 10 cm intervals. Stagnation force generated by pressurizing at a pressure of 50 kgf It is less than 0.02% of the width of these insulating plates, and destruction and permanent deformation do not occur even when pressurizing with a pressure of 200 kgf from above. I prefer to be there.
[0163] 第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35の材料としては、具体的には、 固有抵抗が 1 X 1Ο10Ω 'cm以上の絶縁性材料、例えばポリイミド榭脂、ポリエステル 榭脂、ポリアミド榭脂、フエノール榭脂、ポリアセタール榭脂、ポリブチレンテレフタレ ート榭脂、ポチエチレンテレフタレート榭脂、シンジオタクチック'ポリスチレン榭脂、ポ リフエ二レンサルファイド榭脂、ポリエーテルェチルケトン榭脂、フッ素榭脂、ポリエー テル-トリル榭脂、ポリエーテルサルホン榭脂、ポリアリレート榭脂、ポリアミドイミド榭 脂等の機械的強度の高い榭脂材料、ガラス繊維補強型エポキシ榭脂、ガラス繊維補 強型ポリエステル榭脂、ガラス繊維補強型ポリイミド榭脂、ガラス繊維補強フエノール 榭脂、ガラス繊維補強型フッ素榭脂等のガラス繊維型複合榭脂材料、カーボン繊維 補強型エポキシ榭脂、カーボン繊維補強型ポリエステル榭脂、カーボン繊維補強型 ポリイミド榭脂、カーボン繊維補強型フエノール榭脂、カーボン繊維補強型フッ素榭 脂等のカーボン繊維型複合榭脂、エポキシ榭脂、フエノール榭脂等にシリカ、アルミ ナ、ボロンナイトライド等の無機材料を充填した複合榭脂材料、エポキシ榭脂、フエノ 一ル榭脂等にメッシュを含有した複合榭脂材料などが挙げられる。また、これらの材 料力もなる板材を複数積層して構成された複合板材等も用いることができる。 [0163 first insulator plate 34, the intermediate holding plate 36, as the material of the second insulating plate 35, specifically, resistivity 1 X 1Ο 10 Ω 'cm or more insulating materials, such as polyimide榭Resin, polyester resin, polyamide resin, phenol resin, polyacetal resin, polybutylene terephthalate resin, polyethylene terephthalate resin, syndiotactic 'polystyrene resin, polyethylene disulfide resin, poly Ethereal ketone resin, fluorine resin, polyether-tolyl resin, polyethersulfone resin, polyarylate resin, polyamideimide resin, and other high mechanical strength resin materials, glass fiber reinforced epoxy Resin, glass fiber reinforced polyester resin, glass fiber reinforced polyimide resin, glass fiber reinforced phenol resin, glass fiber reinforced fluorine resin, etc. Carbon fiber reinforced epoxy resin, carbon fiber reinforced epoxy resin, carbon fiber reinforced polyester resin, carbon fiber reinforced polyimide resin, carbon fiber reinforced phenol resin, carbon fiber reinforced fluorine resin, etc. Fiber composite resin, epoxy resin, phenol resin, etc. containing silica, alumina, boron nitride and other inorganic materials, composite resin material, epoxy resin, phenol resin, etc. contain mesh Examples include composite resin materials. Further, a composite plate material formed by laminating a plurality of plate materials having these material forces can also be used.
[0164] 第 1の絶縁板 34、中間保持板 36、および第 2の絶縁板 35の厚みは、第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35を構成する材料の種類に応じて適宜選択され る力 好ましくは 1〜: LOmmである。例えば、ガラス繊維補強型エポキシ榭脂からなり 、その厚みが 2〜5mmであるものを使用することができる。 第 1の絶縁板 34および第 2の絶縁板 35に導電ピン 32を移動可能に支持する方法 としては、図 34に示した方法の他に、図 36〜図 38に示した方法を挙げることができ る。この例では、導電ピン 32として図示したように、この例では第 1の絶縁板 34と第 2 の絶縁板 35との間に、屈曲保持板 84が設けられて 、る。 [0164] The thicknesses of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35 are the types of materials constituting the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35. The force appropriately selected according to the pressure is preferably 1 to: LOmm. For example, a glass fiber reinforced epoxy resin having a thickness of 2 to 5 mm can be used. As a method for movably supporting the conductive pin 32 on the first insulating plate 34 and the second insulating plate 35, the method shown in FIGS. 36 to 38 can be cited in addition to the method shown in FIG. it can. In this example, as illustrated as the conductive pin 32, in this example, a bent holding plate 84 is provided between the first insulating plate 34 and the second insulating plate 35.
[0165] また、導電ピン 32として、円柱形状である金属ピンを用いている。  [0165] Further, as the conductive pins 32, cylindrical metal pins are used.
図 36に示したように、屈曲保持板 84には導電ピン 32が挿通される貫通孔 85が形 成されている。導電ピン 32は、第 1の絶縁板 34に形成された貫通孔 83aおよび第 2 の絶縁板 35に形成された貫通孔 83bと、屈曲保持板 84に形成された貫通孔 85とを 支点として、互いに逆方向に横方向へ押圧されて、屈曲保持板 84の貫通孔 85の位 置で屈曲され、これにより導電ピン 32が軸方向へ移動可能に支持されて 、る。  As shown in FIG. 36, the bent holding plate 84 is formed with a through hole 85 through which the conductive pin 32 is inserted. The conductive pin 32 has a through hole 83a formed in the first insulating plate 34, a through hole 83b formed in the second insulating plate 35, and a through hole 85 formed in the bent holding plate 84 as fulcrums. They are pressed laterally in opposite directions and bent at the position of the through hole 85 of the bending holding plate 84, whereby the conductive pin 32 is supported so as to be movable in the axial direction.
[0166] なお、中間保持板 36には、導電ピン 32と接触しない程度に径を大きくした貫通孔 8 6が形成され、この貫通孔 86に導電ピン 32が揷通されている。  [0166] The intermediate holding plate 36 is formed with a through hole 86 having a diameter large enough not to contact the conductive pin 32, and the conductive pin 32 is passed through the through hole 86.
導電ピン 32は、図 37 (a)〜図 37 (c)に示した手順で第 1の絶縁板 34および第 2の 絶縁板 35に支持される。図 37 (a)に示したように、第 1の絶縁板 34の貫通孔 83aお よび第 2の絶縁板 35に形成された貫通孔 83bと、屈曲保持板 84の貫通孔 85とが軸 方向に位置合わせされた位置に屈曲保持板 84を配置する。  The conductive pin 32 is supported by the first insulating plate 34 and the second insulating plate 35 in the procedure shown in FIGS. 37 (a) to 37 (c). As shown in FIG. 37 (a), the through hole 83a of the first insulating plate 34 and the through hole 83b formed in the second insulating plate 35 and the through hole 85 of the bent holding plate 84 are in the axial direction. The bending holding plate 84 is disposed at a position aligned with the position of the bending holding plate 84.
[0167] 次に、図 37 (b)に示したように、導電ピン 32を、第 1の絶縁板 34の貫通孔 83aから 屈曲保持板 84の貫通孔 85を通して第 2の絶縁板 35の貫通孔 83bまで挿入する。 次に、図 37 (c)に示したように、屈曲保持板 84を、導電ピン 32の軸方向と垂直な横 方向(水平方向)に移動し、適宜の手段によって屈曲保持板 84の位置を固定する。 これによつて、導電ピン 32は、第 1の絶縁板 34の貫通孔 83aおよび第 2の絶縁板 35 に形成された貫通孔 83bと、屈曲保持板 84の貫通孔 85とを支点として互いに逆方 向に横方向へ押圧されて、屈曲保持板 84の貫通孔 85の位置で屈曲され、これによ り導電ピン 32が軸方向に移動可能に支持される。  Next, as shown in FIG. 37 (b), the conductive pin 32 passes through the second insulating plate 35 from the through hole 83a of the first insulating plate 34 through the through hole 85 of the bent holding plate 84. Insert up to hole 83b. Next, as shown in FIG. 37 (c), the bending holding plate 84 is moved in the lateral direction (horizontal direction) perpendicular to the axial direction of the conductive pin 32, and the position of the bending holding plate 84 is adjusted by an appropriate means. Fix it. Accordingly, the conductive pins 32 are opposite to each other with the through hole 83b formed in the first insulating plate 34 and the through hole 83b formed in the second insulating plate 35 and the through hole 85 of the bent holding plate 84 as fulcrums. It is pressed laterally in the direction and bent at the position of the through hole 85 of the bending holding plate 84, whereby the conductive pin 32 is supported so as to be movable in the axial direction.
[0168] このように構成することで、導電ピン 32が、第 1の絶縁板 34と第 2の絶縁板 35との 間に、軸方向へ移動可能に、且つ脱落しないように保持することができるとともに、導 電ピン 32として円柱状である簡易な構造のピンを使用できるため、導電ピン 32およ びそれを保持する部材の全体としてのコストを抑えることができる。 なお、屈曲保持板 84が配置される位置は、第 1の絶縁板 34と中間保持板 36との 間であってもよい。 [0168] With this configuration, the conductive pin 32 can be held between the first insulating plate 34 and the second insulating plate 35 so as to be movable in the axial direction and not fallen off. In addition, since a cylindrical pin having a simple structure can be used as the conductive pin 32, the overall cost of the conductive pin 32 and the member holding it can be suppressed. The position where the bent holding plate 84 is disposed may be between the first insulating plate 34 and the intermediate holding plate 36.
[0169] このように構成された本実施形態の検査装置では、図 2に示したように、被検査回 路基板 1の電極 2および電極 3が、第 1の異方導電性シート 22a, 22b、ピッチ変換用 基板 23a, 23b、第 2の異方導電性シー卜 26a, 26b、導電ピン 32a, 32b、第 3の異 方導電性シート 42a, 42b、コネクタ基板 43a, 43bを介して、最外側に配置されたべ ース板 46a, 46bをテスターの加圧機構により規定の圧力で押圧することによってテ スター(図示せず)に電気的に接続され、被検査回路基板 1の電極間における電気 抵抗測定などの電気検査が行われる。  In the inspection apparatus of the present embodiment configured as described above, as shown in FIG. 2, the electrode 2 and the electrode 3 of the circuit board 1 to be inspected are the first anisotropic conductive sheets 22a, 22b. , Pitch conversion boards 23a, 23b, second anisotropic conductive sheet 26a, 26b, conductive pins 32a, 32b, third anisotropic conductive sheet 42a, 42b, connector boards 43a, 43b The base plates 46a and 46b arranged on the outside are electrically connected to a tester (not shown) by pressing them with a tester's pressurizing mechanism, and the electrical connection between the electrodes of the circuit board 1 to be inspected. Electrical tests such as resistance measurements are performed.
[0170] 測定時に被検査回路基板に対して上側および下側の第 1の検査治具 11a,第 2の 検査治具 l ibから押圧する圧力は、例えば、 100〜250kgfである。  [0170] The pressure pressed from the upper and lower first inspection jigs 11a and the second inspection jig l ib with respect to the circuit board to be inspected during measurement is, for example, 100 to 250 kgf.
以下、図 40〜図 43を参照しながら (便宜的に、第 2の検査治具 l ibのみ示す)、第 1の検査治具 1 laと第 2の検査治具 1 lbとの間で被検査回路基板 1の両面を挟圧し た際における圧力吸収作用および圧力分散作用について説明する。  Hereinafter, referring to FIGS. 40 to 43 (for the sake of convenience, only the second inspection jig l ib is shown), the first inspection jig 1 la and the second inspection jig 1 lb are covered. A pressure absorbing action and a pressure dispersing action when both surfaces of the inspection circuit board 1 are clamped will be described.
[0171] 図 41に示したように、第 1の検査治具 11aと第 2の検査治具 l ibとの間で検査対象 である被検査回路基板 1の両面を挟圧して電気検査を行う際に、加圧の初期段階で は、中継ピンユニット 31の導電ピン 32の厚み方向への移動と、第 1の異方導電性シ ート 22と、第 2の異方導電性シート 26と、第 3の異方導電性シート 42のゴム弾性圧縮 により圧力を吸収して、被検査回路基板 1の被検査電極の高さバラツキをある程度吸 収することができる。  As shown in FIG. 41, electrical inspection is performed by sandwiching both surfaces of the circuit board 1 to be inspected between the first inspection jig 11a and the second inspection jig l ib. At the initial stage of pressurization, the relay pin unit 31 moves in the thickness direction of the conductive pin 32, the first anisotropic conductive sheet 22, the second anisotropic conductive sheet 26, and the like. The pressure is absorbed by the rubber elastic compression of the third anisotropic conductive sheet 42, and the height variation of the inspected electrode of the inspected circuit board 1 can be absorbed to some extent.
[0172] そして、第 1の支持ピンと中間保持板との第 1の当接支持位置と、前記第 2の支持ピ ンと中間保持板との第 2の当接支持位置とが、中間保持板の厚さ方向に投影した中 間保持板投影面にぉ ヽて異なる位置に配置されて ヽるので、図 42の矢印で示した ように、上下方向に力が作用し、図 43に示したように、第 1の検査治具 11aと第 2の検 查治具 l ibの間で検査対象である被検査回路基板 1をさらに加圧した際に、第 1の 異方導電性シート 22と、第 2の異方導電性シート 26と、第 3の異方導電性シート 42 のゴム弾性圧縮に加えて、中継ピンユニット 31の第 1の絶縁板 34と、第 2の絶縁板 3 5と、第 1の絶縁板 34と第 2の絶縁板 35の間に配置された中間保持板 36のパネ弾性 により、被検査回路基板 1の被検査電極の高さバラツキ、例えば、ハンダボール電極 の高さバラツキに対して、圧力集中を分散させて、局部的な応力集中を回避すること ができる。 [0172] The first abutment support position between the first support pin and the intermediate holding plate and the second abutment support position between the second support pin and the intermediate holding plate are the intermediate holding plate. As shown by the arrows in FIG. 42, the force acts in the vertical direction, as shown in FIG. 43. When the circuit board 1 to be inspected is further pressed between the first inspection jig 11a and the second inspection jig l ib, the first anisotropic conductive sheet 22 and In addition to the rubber elastic compression of the second anisotropic conductive sheet 26 and the third anisotropic conductive sheet 42, the first insulating plate 34 of the relay pin unit 31 and the second insulating plate 35 Panel elasticity of the intermediate holding plate 36 disposed between the first insulating plate 34 and the second insulating plate 35 Accordingly, it is possible to disperse the pressure concentration with respect to the height variation of the electrode to be inspected of the circuit board 1 to be inspected, for example, the height variation of the solder ball electrode, and to avoid the local stress concentration.
[0173] すなわち、図 42および図 43に示したように、第 1の支持ピン 33と中間保持板 36に 対する第 1の当接支持位置 38Aを中心として、中間保持板 36が、第 2の絶縁板 35の 方向に橈むとともに(図 43の一点鎖線で囲んだ Eの部分参照)、第 2の支持ピン 37と 中間保持板 36との第 2の当接支持位置 38Bを中心として、中間保持板 36が、第 1の 絶縁板 34の方向に橈むことになる(図 43の一点鎖線で囲んだ Dの部分参照)。なお 、ここで「橈む」および「橈み方向」とは中間保持板 36が凸状になる方向に突出するよ うに橈むことおよびその突出方向を言う。  That is, as shown in FIGS. 42 and 43, the first holding pin 33 and the first holding support position 38A with respect to the intermediate holding plate 36 have the intermediate holding plate 36 as the second holding center. Hold in the direction of the insulating plate 35 (see the portion E surrounded by the one-dot chain line in FIG. 43), and hold the second support pin 37 and the intermediate holding plate 36 around the second contact support position 38B. The plate 36 is sandwiched in the direction of the first insulating plate 34 (see the portion D surrounded by the one-dot chain line in FIG. 43). Here, “squeeze” and “stagnation direction” refer to the squeezing so that the intermediate holding plate 36 protrudes in the convex direction and the protruding direction.
[0174] このように、中間保持板 36が、第 1の当接支持位置 38A、第 2の当接支持位置 38 Bを中心として、相互に反対方向に橈むので、第 1の検査治具 11aと第 2の検査治具 l ibとの間で検査対象である被検査回路基板 1をさらに加圧した際に、中間保持板 3 6のパネ弾性力が発揮されることになる。  In this way, the intermediate holding plate 36 is sandwiched in the opposite directions around the first contact support position 38A and the second contact support position 38B, so the first inspection jig When the circuit board 1 to be inspected is further pressed between the 11a and the second inspection jig l ib, the panel elastic force of the intermediate holding plate 36 is exhibited.
また、図 43の一点鎖線で囲んだ B部分で示したように、第 2の異方導電性シート 26 の導電路形成部の突出部の圧縮によって、導電ピン 32bの高さが吸収されるが、こ の突出部の圧縮よつて吸収しきれない圧力力 第 1の絶縁板 34bに加わることになる  Further, as shown by the portion B surrounded by the one-dot chain line in FIG. 43, the height of the conductive pin 32b is absorbed by the compression of the protruding portion of the conductive path forming portion of the second anisotropic conductive sheet 26. , The pressure force that cannot be absorbed by the compression of this protruding part, will be applied to the first insulating plate 34b
[0175] したがって、図 43の一点鎖線で囲んだ C部分で示したように、第 1の絶縁板 34と第 2の絶縁板 35も、第 1の支持ピン 33、第 2の支持ピン 37との当接位置で、相互に反 対方向に橈むので、第 1の検査治具 11aと第 2の検査治具 l ibとの間で検査対象で ある被検査回路基板 1をさらに加圧した際に、第 1の絶縁板 34と第 2の絶縁板 35の パネ弾性力が発揮されることになる。 Therefore, as shown by the portion C surrounded by the one-dot chain line in FIG. 43, the first insulating plate 34 and the second insulating plate 35 are also composed of the first support pin 33 and the second support pin 37. In other words, the circuit board 1 to be inspected is further pressurized between the first inspection jig 11a and the second inspection jig l ib. At this time, the panel elastic force of the first insulating plate 34 and the second insulating plate 35 is exhibited.
[0176] これにより、高さバラツキを有する被検査回路基板 1の被検査電極のそれぞれに対 して安定的な電気的接触が確保され、さらに応力集中が低減されるので、第 1の異 方導電性シート 22の局部的な破損が抑制される。その結果、第 1の異方導電性シー ト 22の繰り返し使用耐久性が向上するので、その交換回数が減り、検査作業効率が 向上することになる。 [0177] 図 44は、本発明の検査装置の他の実施形態を説明する図 40と同様な断面図 (便 宜的に第 2の検査治具のみ示している)、図 45は、その中継ピンユニットの拡大断面 図である。この検査装置は、図 1に示した検査装置と基本的には同様な構成であり、 同一の構成部材には同一の参照番号を付している。この検査装置では、図 44およ び図 45に示したように、第 1の絶縁板 34と第 2の絶縁板 35との間に、複数個(本実 施形態では 3個)の中間保持板 36が所定間隔離間して配置されるとともに、これらの 隣接する中間保持板 36同士の間に、保持板支持ピン 39が配置されて 、る。 [0176] This ensures stable electrical contact with each of the electrodes to be inspected 1 of the circuit board 1 to be inspected having a height variation, and further reduces the stress concentration. Local breakage of the conductive sheet 22 is suppressed. As a result, the repeated use durability of the first anisotropic conductive sheet 22 is improved, so that the number of replacements is reduced and the inspection work efficiency is improved. 44 is a cross-sectional view similar to FIG. 40 for explaining another embodiment of the inspection apparatus of the present invention (only the second inspection jig is shown for convenience), and FIG. 45 is a relay thereof. It is an expanded sectional view of a pin unit. This inspection apparatus has basically the same configuration as the inspection apparatus shown in FIG. 1, and the same reference numerals are assigned to the same components. In this inspection device, as shown in FIGS. 44 and 45, a plurality (three in this embodiment) of intermediate holdings are provided between the first insulating plate 34 and the second insulating plate 35. The plates 36 are spaced apart from each other by a predetermined distance, and the holding plate support pins 39 are arranged between the adjacent intermediate holding plates 36.
[0178] この場合、少なくとも 1つの中間保持板 36bにおいて、中間保持板 36bに対して一 面側力も当接する保持板支持ピン 39bの中間保持板 36bに対する当接支持位置と、 中間保持板 36bに対して他面側力も当接する第 1の支持ピン 33b、第 2の支持ピン 3 7b、または保持板支持ピン 39bの中間保持板 36bに対する当接支持位置とが、中間 保持板 36bの厚さ方向に投影した中間保持板投影面において異なる位置に配置さ れて 、ることが必要である。  In this case, in at least one intermediate holding plate 36b, the holding support position of the holding plate support pin 39b that also contacts the intermediate holding plate 36b with one side side force with respect to the intermediate holding plate 36b, and the intermediate holding plate 36b The contact position of the first support pin 33b, the second support pin 37b, or the holding plate support pin 39b with which the other side force abuts against the intermediate holding plate 36b is the thickness direction of the intermediate holding plate 36b. It is necessary to arrange them at different positions on the projection surface of the intermediate holding plate projected onto the screen.
[0179] 最も好ましくは、全ての中間保持板 36bにおいて、中間保持板 36bに対して一面側 力 当接する保持板支持ピン 39bの中間保持板 36bに対する当接支持位置と、中間 保持板 36bに対して他面側力も当接する第 1の支持ピン 33b、第 2の支持ピン 37b、 または保持板支持ピン 39bの中間保持板 36bに対する当接支持位置とが、中間保 持板 36bの厚さ方向に投影した中間保持板投影面において異なる位置に配置され る。  [0179] Most preferably, in all the intermediate holding plates 36b, the holding plate support pins 39b that are in one-side force contact with the intermediate holding plate 36b are in contact with and supported by the intermediate holding plate 36b and the intermediate holding plate 36b. The abutment support position of the first support pin 33b, the second support pin 37b, or the holding plate support pin 39b with which the other side force also abuts against the intermediate holding plate 36b is in the thickness direction of the intermediate holding plate 36b. They are arranged at different positions on the projected intermediate holding plate projection surface.
[0180] この場合、詳述しないが、「異なる位置」とは、前述した実施形態において、第 1の 支持ピン 33と中間保持板 36との第 1の当接支持位置 38Aと、第 2の支持ピン 37と中 間保持板 36との第 2の当接支持位置 38Bとの間の関係で説明した相対位置と同様 な配置とすることが可能である。  [0180] In this case, although not described in detail, in the above-described embodiment, the "different position" refers to the first contact support position 38A between the first support pin 33 and the intermediate holding plate 36, and the second position. An arrangement similar to the relative position described in relation to the relationship between the support pin 37 and the second contact support position 38B of the intermediate holding plate 36 can be made.
本実施形態では、 3つの中間保持板 36bのうち上側の中間保持板 36bにお 、て、 中間保持板 36bに対して一面側力も当接する保持板支持ピン 39bの中間保持板 36 bに対する当接支持位置 39Aと、中間保持板 36bに対して他面側力も当接する第 1 の支持ピン 33bの中間保持板 36bに対する当接支持位置 38Aとが、中間保持板 36 bの厚さ方向に投影した中間保持板投影面にぉ 、て異なる位置に配置されて 、る。 [0181] また、 3つの中間保持板 36bのうち中央の中間保持板 36bにおいて、中間保持板 3 6bに対して一面側から当接する保持板支持ピン 39bの中間保持板 36bに対する当 接支持位置 39Aと、中間保持板 36bに対して他面側力も当接する保持板支持ピン 3 9bの中間保持板 36bに対する当接支持位置 39Aとが、中間保持板 36bの厚さ方向 に投影した中間保持板投影面にぉ ヽて異なる位置に配置されて ヽる。 In the present embodiment, of the three intermediate holding plates 36b, the upper intermediate holding plate 36b is in contact with the intermediate holding plate 36b by the holding plate support pin 39b that also contacts the intermediate holding plate 36b with one surface side force. The support position 39A and the contact support position 38A with respect to the intermediate holding plate 36b of the first support pin 33b that also contacts the intermediate holding plate 36b with the other side force are projected in the thickness direction of the intermediate holding plate 36b. The intermediate holding plate is arranged at different positions on the projection surface. [0181] Further, in the middle intermediate holding plate 36b among the three intermediate holding plates 36b, the holding plate support pin 39b that comes into contact with the intermediate holding plate 36b from one surface side is in contact with and supported by the intermediate holding plate 36b 39A. The intermediate support plate projection projected in the thickness direction of the intermediate support plate 36b is the contact support position 39A with respect to the intermediate support plate 36b of the support plate support pin 39b that also contacts the intermediate support plate 36b with the other side force. Placed in different positions across the surface.
[0182] また、 3つの中間保持板 36bのうち下側の中間保持板 36bにおいて、中間保持板 3 6bに対して一面側から当接する保持板支持ピン 39bの中間保持板 36bに対する当 接支持位置 39Aと、中間保持板 36bに対して他面側から当接する第 2の支持ピン 37 bの中間保持板 36bに対する当接支持位置 38Bとが、中間保持板 36bの厚さ方向に 投影した中間保持板投影面において異なる位置に配置されている。  [0182] Further, in the lower intermediate holding plate 36b among the three intermediate holding plates 36b, the holding plate support pins 39b that come into contact with the intermediate holding plate 36b from one surface side are in contact with the intermediate holding plate 36b. The intermediate holding projected by 39A and the abutment support position 38B of the second support pin 37b that comes into contact with the intermediate holding plate 36b from the other surface side with respect to the intermediate holding plate 36b is projected in the thickness direction of the intermediate holding plate 36b. They are arranged at different positions on the plate projection plane.
[0183] このように構成することによって、これらの複数個の中間保持板 36によってバネ弹 性がさらに発揮されることになり、被検査回路基板 1の被検査電極の高さバラツキに 対して、圧力集中を分散させて、局部的な応力集中をさらに回避することができ、異 方導電性シートの局部的な破損が抑制され、その結果、異方導電性シートの繰り返 し使用耐久性が向上するので、異方導電性シートの交換回数が減り、検査作業効率 が向上する。  [0183] With this configuration, the spring property is further exhibited by the plurality of intermediate holding plates 36, and with respect to the height variation of the electrodes to be inspected of the circuit board 1 to be inspected, Dispersion of pressure concentration can further avoid local stress concentration, and local breakage of the anisotropic conductive sheet can be suppressed. As a result, the repeated use durability of the anisotropic conductive sheet can be reduced. As a result, the number of times of anisotropic conductive sheet replacement is reduced and inspection work efficiency is improved.
[0184] なお、中間保持板 36の個数としては、複数個であればよぐ特に限定されるもので はない。  [0184] The number of intermediate holding plates 36 is not particularly limited as long as it is plural.
図 46は、本発明の検査装置における他の実施形態を示した断面図、図 47は、図 4 6の検査装置の検査使用時における積層状態を示した断面図である。  46 is a cross-sectional view showing another embodiment of the inspection apparatus of the present invention, and FIG. 47 is a cross-sectional view showing a stacked state when the inspection apparatus of FIG. 46 is used for inspection.
本実施形態の検査装置は、図 46および図 47に示したように、被検査回路基板 1の 上面側に配置される第 1の検査治具 11aと、下面側に配置される第 2の検査治具 11 bとが、上下に互いに対向するように配置されて 、る。  As shown in FIGS. 46 and 47, the inspection apparatus of the present embodiment includes a first inspection jig 11a disposed on the upper surface side of the circuit board 1 to be inspected and a second inspection disposed on the lower surface side. The jig 11b is arranged so as to face each other vertically.
[0185] 第 1の検査治具 11aは、その両側に中継基板 29aおよび異方導電性シート 26aを 備えた回路基板側コネクタ 21aと、中継ピンユニット 31aを備えている。また、第 1の検 查治具 1 laは、その中継ピンユニット 3 la側に第 3の異方導電性シート 42aが配置さ れるコネクタ基板 43aと、ベース板 46aとを備えたテスター側コネクタ 41aを備えて ヽ る。 [0186] 第 2の検査治具 l ibも、第 1の検査治具 11aと同様に構成され、その両側に中継基 板 29bおよび異方導電性シート 26bを備えた回路基板側コネクタ 21bと、中継ピンュ ニット 3 lbを備えている。また、第 2の検査治具 l ibは、その中継ピンユニット 3 lb側 に異方導電性シート 42bが配置されるコネクタ基板 43bと、ベース板 46bとを備えた テスター側コネクタ 4 lbを備えている。 [0185] The first inspection jig 11a includes a circuit board-side connector 21a having a relay board 29a and an anisotropic conductive sheet 26a on both sides thereof, and a relay pin unit 31a. The first inspection jig 1 la is a tester-side connector 41 a provided with a connector board 43 a on which the third anisotropic conductive sheet 42 a is arranged on the relay pin unit 3 la side and a base plate 46 a. It is equipped with. [0186] The second inspection jig l ib is also configured in the same manner as the first inspection jig 11a, and includes a circuit board side connector 21b having a relay board 29b and an anisotropic conductive sheet 26b on both sides thereof, It has 3 lb of relay pin unit. Further, the second inspection jig l ib includes a tester side connector 4 lb provided with a connector board 43b on which the anisotropic conductive sheet 42b is arranged on the relay pin unit 3 lb side and a base plate 46b. Yes.
[0187] 被検査回路基板 1の上面には、被検査用の電極 2が形成され、その下面にも被検 查用の電極 3が形成されており、これらは互 ヽに電気的に接続されて!ヽる。  [0187] An electrode 2 to be inspected is formed on the upper surface of the circuit board 1 to be inspected, and an electrode 3 to be inspected is also formed on the lower surface thereof, and these are electrically connected to each other. Talk!
回路基板側コネクタ 21a, 21bは、ピッチ変換用基板 23a, 23bと、その一方の面に 配置される中継基板 29a, 29bと、他方の面に配置される第 2の異方導電性シート 26 a, 26bを有している。  The circuit board side connectors 21a and 21b are composed of the pitch converting boards 23a and 23b, the relay boards 29a and 29b arranged on one side thereof, and the second anisotropic conductive sheet 26a arranged on the other side. , 26b.
[0188] ピッチ変換用基板 23の構成は、図 1の実施形態と同様であり、その被検査回路基 板側の表面および中継ピンユニット側の表面は、図 3および図 4に示したように構成さ れている。図 48は、ピッチ変換用基板、中継基板および被検査回路基板を積層した 状態を示した断面図である。  The configuration of the pitch conversion board 23 is the same as that of the embodiment of FIG. 1, and the surface on the circuit board side to be inspected and the surface on the side of the relay pin unit are as shown in FIG. 3 and FIG. It is configured. FIG. 48 is a cross-sectional view showing a state in which a pitch conversion board, a relay board, and a circuit board to be inspected are stacked.
ピッチ変換用基板 23の一方の表面、すなわち、被検査回路基板 1側には、図 3〖こ 示したように、被検査回路基板 1の電極 2、 3に電気的に接続される複数の接続用電 極 25が形成されている。これらの接続電極 25は、被検査回路基板 1の被検査電極 2 , 3のパターンに対応するように配置されている。  On one surface of the pitch conversion board 23, that is, the circuit board 1 side to be inspected, a plurality of connections electrically connected to the electrodes 2 and 3 of the circuit board 1 to be inspected as shown in FIG. A working electrode 25 is formed. These connection electrodes 25 are arranged so as to correspond to the patterns of the electrodes 2 and 3 to be inspected on the circuit board 1 to be inspected.
[0189] 一方、ピッチ変換用基板 23の他方の表面、すなわち、被検査回路基板 1と反対側 には、図 4に示したように、中継ピンユニット 31の導電ピン 32a、 32bに電気的に接続 される複数の端子電極 24が形成されている。これらの端子電極 24は、例えば、 2. 5 4mm、 1. 8mm、 1. 27mm、 1. 06mm、 0. 8mm、 0. 75mm、 0. 5mm、 0. 4om m、 0. 3mmまたは 0. 2mmである一定ピッチの格子点上に配置されており、そのピ ツチは中継ピンユニットの導電ピン 32a、 32bの配置ピッチと同一である。  On the other hand, on the other surface of the pitch conversion board 23, that is, on the side opposite to the circuit board 1 to be inspected, electrically conductive pins 32a and 32b of the relay pin unit 31 are electrically connected as shown in FIG. A plurality of terminal electrodes 24 to be connected are formed. These terminal electrodes 24 are, for example, 2.5 4 mm, 1.8 mm, 1.27 mm, 1.06 mm, 0.8 mm, 0.75 mm, 0.5 mm, 0.4 mm, 0.3 mm or 0.2 mm. The pitch is the same as the pitch of the conductive pins 32a and 32b of the relay pin unit.
[0190] 図 3のそれぞれの接続電極 25は、配線 52および絶縁基板 51の厚み方向に貫通 する内部配線 53 (図 48を参照)によって、対応する図 4の端子電極 24に電気的に接 続されている。  [0190] Each connection electrode 25 in FIG. 3 is electrically connected to the corresponding terminal electrode 24 in FIG. 4 by the internal wiring 53 (see FIG. 48) penetrating in the thickness direction of the wiring 52 and the insulating substrate 51. Has been.
図 49 (a)は、中継基板の断面図、図 49 (b)は、その部分拡大断面図、図 49 (c)は 、その部分上面図である。この中継基板 29の基板 73には、ピッチ変換用基板 23の 電極パターンに従って導電路形成部 61が配置される多数の貫通孔が形成されてい る。この貫通孔内には、弾性高分子物質を埋設することにより絶縁部 62が形成され、 導電路形成部 61が、この絶縁部 76に囲まれるように貫通形成されている。絶縁部 7 6は基板 73の両側表面にも一体的に形成され、複数の貫通孔に連続している。 Fig. 49 (a) is a cross-sectional view of the relay board, Fig. 49 (b) is a partially enlarged cross-sectional view, and Fig. 49 (c) is FIG. The substrate 73 of the relay substrate 29 is formed with a number of through holes in which the conductive path forming portions 61 are arranged according to the electrode pattern of the pitch conversion substrate 23. An insulating part 62 is formed by embedding an elastic polymer substance in the through hole, and the conductive path forming part 61 is formed so as to be surrounded by the insulating part 76. The insulating part 76 is integrally formed on both side surfaces of the substrate 73 and is continuous with the plurality of through holes.
[0191] 導電路形成部 61には、絶縁性の弾性高分子物質中に磁性を示す導電性粒子が 厚み方向に並ぶよう配向した状態で含有されている。 [0191] The conductive path forming part 61 contains conductive particles exhibiting magnetism in an insulating elastic polymer substance in an aligned state in the thickness direction.
これに対し、絶縁部 62は、導電性粒子を含有しない弾性高分子物質により形成さ れている。導電路形成部 61を構成する弾性高分子物質と絶縁部 62を構成する弾性 高分子物質とは、互いに同じ種類のものであっても異なる種類のものであってもよい  On the other hand, the insulating portion 62 is formed of an elastic polymer material that does not contain conductive particles. The elastic polymer substance constituting the conductive path forming part 61 and the elastic polymer substance constituting the insulating part 62 may be of the same type or different types.
[0192] 中継基板の基板 73を形成する材料としては、具体的には、例えばガラス繊維補強 型ポリイミド榭脂、ガラス繊維補強型エポキシ榭脂、ガラス繊維補強型ビスマレイミドト リアジン榭脂、等の複合榭脂材料、ポリイミド榭脂、ポリエステル榭脂、ポリアラミド榭 脂、ポリアミド榭脂、ビスマレイミド 'トリアジン榭脂、液晶ポリマー等の機械的強度の 高い榭脂材料、ステンレス等の金属材料、フッ素榭脂繊維、ァラミド繊維、ポリエチレ ン繊維、ポリアリレート繊維、ナイロン繊維、ポリエステル繊維、液晶ポリマー繊維等の 有機繊維よりなるメッシュ、不織布、金属メッシュなどを挙げることができる。基板 73の 厚みは、形成材料にもよる力 好ましくは 20〜200 μ m、より好ましくは 30〜: LOO μ mである。 [0192] Specific examples of the material for forming the substrate 73 of the relay substrate include glass fiber reinforced polyimide resin, glass fiber reinforced epoxy resin, glass fiber reinforced bismaleimide triazine resin, and the like. Composite resin materials, polyimide resins, polyester resins, polyaramid resins, polyamide resins, bismaleimide 'triazine resins, liquid crystal polymers and other high mechanical strength materials, stainless steel and other metal materials, fluorine resins Examples thereof include meshes made of organic fibers such as fibers, aramid fibers, polyethylene fibers, polyarylate fibers, nylon fibers, polyester fibers, and liquid crystal polymer fibers, nonwoven fabrics, and metal meshes. The thickness of the substrate 73 is a force depending on the forming material, preferably 20 to 200 μm, more preferably 30 to LOO μm.
[0193] この基板 73に形成された多数の貫通孔のそれぞれに、接続用電極 25に対応した 導電路形成部 61が配置される。例えば、 4端子検査における電圧供給用電極 27と 電圧測定用電極 28に対応した導電路形成部 61の対が貫通孔のそれぞれに配置さ れる。一つの貫通孔に配置される導電路形成部 61の数は、特に限定されないが、好 ましくは 1〜4個であり、ピッチ変換用基板 23の接続用電極 25に対応して、基板 73 の各貫通孔毎に導電路形成部 75の数が異なって 、てもよ 、。  In each of a large number of through holes formed in this substrate 73, a conductive path forming portion 61 corresponding to the connection electrode 25 is disposed. For example, a pair of conductive path forming portions 61 corresponding to the voltage supply electrode 27 and the voltage measurement electrode 28 in the four-terminal inspection is arranged in each of the through holes. The number of conductive path forming portions 61 arranged in one through hole is not particularly limited, but is preferably 1 to 4, and corresponds to the connection electrode 25 of the pitch conversion substrate 23 and corresponds to the substrate 73. The number of conductive path forming portions 75 may be different for each through hole.
[0194] 図示の例では、中継基板 29の両面において、導電路形成部 61が絶縁部 62の表 面力も突出した突出部 61aが形成されている。このように突出部 61aを形成すること によって、導電路形成部 61に対する加圧による圧縮の程度が絶縁部 62に対するそ れよりも大きくなるため、導電路形成部 61には充分に抵抗値の低い導電路が確実に 形成され、加圧力の変化に対する抵抗値の変化を小さくすることができる。その結果 、中継基板 29のそれぞれの導電路形成部 61に作用する加圧力が不均一であっても 、各導電路形成部 61間における導電性のバラツキを防止することができる。 In the illustrated example, on both surfaces of the relay substrate 29, the protruding portions 61a in which the conductive path forming portion 61 protrudes from the surface force of the insulating portion 62 are formed. Forming the protrusion 61a in this way As a result, the degree of compression by pressurizing the conductive path forming part 61 is greater than that for the insulating part 62, so that a conductive path having a sufficiently low resistance value is reliably formed in the conductive path forming part 61, and the applied pressure is increased. The change of the resistance value with respect to the change of can be reduced. As a result, even if the pressure applied to each conductive path forming portion 61 of the relay substrate 29 is not uniform, it is possible to prevent variation in conductivity between the conductive path forming portions 61.
[0195] 導電路形成部 61および絶縁部 62を構成する弾性高分子物質としては、架橋構造 を有する高分子物質が好まし 、。このような弾性高分子物質を得るために用いること のできる硬化性の高分子物質形成材料の具体例としては、ポリブタジエンゴム、天然 ゴム、ポリイソプレンゴム、スチレン一ブタジエン共重合体ゴム、アクリロニトリル一ブタ ジェン共重合体ゴムなどの共役ジェン系ゴムおよびこれらの水素添加物、スチレン ブタジエン ジェンブロック共重合体ゴム、スチレン イソプレンブロック共重合体な どのブロック共重合体ゴムおよびこれらの水素添カ卩物、クロ口プレン、ウレタンゴム、ポ リエステル系ゴム、ェピクロルヒドリンゴム、シリコーンゴム、エチレン一プロピレン共重 合体ゴム、エチレン プロピレン ジェン共重合体ゴムなどが挙げられる。  [0195] As the elastic polymer substance constituting the conductive path forming part 61 and the insulating part 62, a polymer substance having a crosslinked structure is preferred. Specific examples of the curable polymer material-forming material that can be used to obtain such an elastic polymer material include polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, acrylonitrile-butene. Conjugated gen rubbers such as gen copolymer rubber and hydrogenated products thereof, block copolymer rubbers such as styrene butadiene gen block copolymer rubber, styrene isoprene block copolymer, and hydrogenated products thereof. Examples include mouth-prene, urethane rubber, polyester rubber, epichlorohydrin rubber, silicone rubber, ethylene-propylene copolymer rubber, and ethylene propylene copolymer rubber.
[0196] 中継基板 29に耐候性が要求される場合には、共役ジェン系ゴム以外のものを用い ることが好ましぐ特に、成形カ卩ェ性および電気特性の観点からシリコーンゴムを用い ることが好ましい。シリコーンゴムとしては、液状シリコーンゴムを架橋または縮合した ものが好ましい。液状シリコーンゴムは、その粘度が歪速度 10— ^ecで 105ポアズ以下 であることが好ましぐ縮合型のもの、付加型のもの、ビニル基ゃヒドロキシル基を含 有するものなどのいずれであってもよい。具体的には、例えばジメチルシリコーン生ゴ ム、メチルビ-ルシリコーン生ゴム、メチルフエ-ルビ-ルシリコーン生ゴムなどを挙げ ることがでさる。 [0196] When the weather resistance is required for the relay substrate 29, it is preferable to use a material other than the conjugated-gen rubber. In particular, silicone rubber is used from the viewpoint of molding cacheability and electrical characteristics. It is preferable. As the silicone rubber, those obtained by crosslinking or condensing liquid silicone rubber are preferable. The liquid silicone rubber has a viscosity of 10 5 poise at a strain rate of 10- ^ ec and is preferably a condensation type, an addition type, a vinyl group or a hydroxyl group-containing one. May be. Specifically, for example, dimethyl silicone raw rubber, methyl beer silicone raw rubber, methyl ferrule silicone raw rubber and the like can be mentioned.
[0197] また、シリコーンゴムは、その分子量 Mw (標準ポリスチレン換算重量平均分子量を いう。)力 0000〜40000であること力 子ましい。また、耐熱性の点から、分子量分布 指数 (標準ポリスチレン換算重量平均分子量 Mwと標準ポリスチレン換算数平均分 子量 Mnとの比 MwZMnの値をいう。 )が 2以下であることが好ましい。  [0197] In addition, the silicone rubber has a molecular weight Mw (referred to as a standard polystyrene equivalent weight average molecular weight) force of 0000 to 40,000. From the viewpoint of heat resistance, the molecular weight distribution index (the ratio of the standard polystyrene-converted weight average molecular weight Mw to the standard polystyrene-converted number average molecular weight Mn) is preferably 2 or less.
導電路形成部 61に含有される導電性粒子 Pとしては、後述する方法により導電性 粒子を容易に厚み方向に並ぶよう配向させることができることから、磁性を示す導電 性粒子が用いられる。 As the conductive particles P contained in the conductive path forming part 61, the conductive particles can be easily aligned in the thickness direction by the method described later, and therefore, the conductive particles P exhibiting magnetism. Sex particles are used.
[0198] このような導電性粒子の具体例としては、鉄、コバルト、ニッケルなどの磁性を有す る金属の粒子若しくはこれらの合金の粒子またはこれらの金属を含有する粒子、また はこれらの粒子を芯粒子とし、芯粒子の表面に金、銀、ノラジウム、ロジウムなどの導 電性の良好な金属のメツキを施したもの、あるいは非磁性金属粒子若しくはガラスビ ーズなどの無機物質粒子またはポリマー粒子を芯粒子とし、芯粒子の表面に、 -ッケ ル、コバルトなどの導電性磁性金属のメツキを施したものなどが挙げられる。  [0198] Specific examples of such conductive particles include particles of metals having magnetism such as iron, cobalt and nickel, particles of alloys thereof, particles containing these metals, or these particles. Core particles, and the surface of the core particles is coated with a metal with good conductivity such as gold, silver, noradium, rhodium, or non-magnetic metal particles or inorganic particles such as glass beads or polymer particles And the like, and the surface of the core particle is coated with a conductive magnetic metal such as -keckle or cobalt.
[0199] これらの中では、ニッケル粒子を芯粒子とし、その表面に導電性の良好な金のメッ キを施したものを用いることが好ま 、。  [0199] Among these, it is preferable to use a nickel particle as a core particle and a surface having a gold mesh with good conductivity.
芯粒子の表面に導電性金属を被覆する方法としては、例えばィ匕学メツキ、電解メッ キなどを挙げることができる。  Examples of the method for coating the surface of the core particle with the conductive metal include mechanical plating and electrolytic plating.
導電性粒子として芯粒子の表面に導電性金属を被覆したものを用いる場合には、 良好な導電性が得られる点から、粒子表面における導電性金属の被覆率 (芯粒子の 表面積に対する導電性金属の被覆面積の割合)が 40%以上であることが好ましく、 さらに好ましくは 45%以上、特に好ましくは 47〜95%である。  When using a conductive particle coated with a conductive metal on the surface of the core particle, the conductive metal coverage on the particle surface (the conductive metal relative to the surface area of the core particle) is obtained because good conductivity is obtained. The ratio of the coating area is preferably 40% or more, more preferably 45% or more, and particularly preferably 47 to 95%.
[0200] 導電性金属の被覆量は、芯粒子の 0. 5〜50質量%であることが好ましぐより好ま しくは 2〜30質量%、さらに好ましくは 3〜25質量%、特に好ましくは 4〜20質量% である。被覆される導電性金属が金である場合には、その被覆量は、芯粒子の 0. 5 〜30質量%であることが好ましぐより好ましくは 2〜20質量%、さらに好ましくは 3〜 15質量%でぁる。  [0200] The coating amount of the conductive metal is preferably 0.5 to 50% by mass of the core particles, more preferably 2 to 30% by mass, further preferably 3 to 25% by mass, and particularly preferably 4 to 20% by mass. When the conductive metal to be coated is gold, the coating amount is preferably 0.5 to 30% by mass of the core particles, more preferably 2 to 20% by mass, and still more preferably 3 to 15% by mass.
[0201] 導電性粒子の粒子径は、 1-100 μ mであることが好ましぐより好ましくは 2〜50 μ m、さらに好ましくは 3〜30 μ m、特〖こ好ましくは 4〜20 μ mである。  [0201] The particle size of the conductive particles is preferably 1-100 μm, more preferably 2-50 μm, even more preferably 3-30 μm, and particularly preferably 4-20 μm. m.
導電性粒子 Pの粒子径分布(DwZDn)は、 1〜10であることが好ましぐより好まし くは 1. 01〜7、さらに好ましくは 1. 05〜5、特に好ましくは 1. 1〜4である。  The particle size distribution (DwZDn) of the conductive particles P is preferably 1 to 10, more preferably 1.01 to 7, more preferably 1.05 to 5, particularly preferably 1.1 to 4.
[0202] このような条件を満足する導電性粒子を用いることにより、得られる導電路形成部 6 1は、加圧変形が容易なものとなり、また、導電路形成部 61において導電性粒子間 に十分な電気的接触が得られる。 [0202] By using conductive particles satisfying such conditions, the obtained conductive path forming part 61 is easily deformed under pressure, and in the conductive path forming part 61, the conductive particles are formed between the conductive particles. Sufficient electrical contact is obtained.
導電性粒子の形状は、特に限定されるものではないが、高分子物質形成材料中に 容易に分散させることができる点で、球状のもの、星形状のものあるいはこれらが凝 集した 2次粒子であることが好まし 、。 The shape of the conductive particles is not particularly limited, but in the polymer material forming material From the viewpoint of being easily dispersible, spherical particles, star-shaped particles, or secondary particles in which these particles are aggregated are preferable.
[0203] また、導電性粒子として、その表面がシランカップリング剤などのカップリング剤や 潤滑剤で処理されたものを適宜用いることができる。カップリング剤や潤滑剤で粒子 表面を処理することにより、異方導電性シートの耐久性が向上する。  [0203] As the conductive particles, particles whose surfaces are treated with a coupling agent such as a silane coupling agent or a lubricant can be appropriately used. By treating the particle surface with a coupling agent or a lubricant, the durability of the anisotropic conductive sheet is improved.
このような導電性粒子は、導電路形成部中に体積分率で好ましくは 15〜45%、よ り好ましくは 20〜40%となる割合で含有される。この割合が過小である場合には、十 分に電気抵抗値の小さい導電路形成部 61が得られないことがある。一方、この割合 が過大である場合には、得られる導電路形成部 61は脆弱なものとなりやすぐ導電 路形成部 61として必要な弾性が得られなヽことがある。  Such conductive particles are contained in the conductive path forming portion in a proportion of preferably 15 to 45%, more preferably 20 to 40% in terms of volume fraction. If this ratio is too small, the conductive path forming part 61 having a sufficiently small electric resistance value may not be obtained. On the other hand, when this ratio is excessive, the obtained conductive path forming part 61 becomes fragile and the necessary elasticity as the conductive path forming part 61 may not be obtained immediately.
[0204] 導電路形成部 61の厚みは、好ましくは 20〜250 μ m、より好ましくは 30〜200 μ mである。この厚み過小である場合、厚み方向の加圧に対する吸収能力が低くなる。 一方、この厚み過大である場合、良好な導電性が得られないことがある。  [0204] The thickness of the conductive path forming portion 61 is preferably 20 to 250 μm, more preferably 30 to 200 μm. When this thickness is too small, the absorption capability with respect to the pressurization of the thickness direction becomes low. On the other hand, when the thickness is excessive, good conductivity may not be obtained.
導電路形成部 61における突出部 61aの突出高さは、導電路形成部 61の厚みの 5 〜70%であることが好ましぐより好ましくは 10〜60%である。  The protrusion height of the protrusion 61a in the conductive path forming portion 61 is preferably 5 to 70% of the thickness of the conductive path forming portion 61, more preferably 10 to 60%.
[0205] 以下、中継基板 29の製造方法の一例を説明する。先ず、導電路形成部 61を形成 する。導電路形成部 61は、図 7〜図 16に示した方法、あるいは図 17〜図 24に示し た方法によって形成することができる。離型性支持板 65上に形成された複数の導電 路形成部 61を用いて、以下の工程によって中継基板 29を得る。図 50 (a)に示したよ うに、離型性支持板 70を用意し、この離型性支持板 70の表面に、硬化されて絶縁性 の弾性高分子物質となる液状の絶縁部用材料層 62Aを印刷法などにより形成する。  [0205] Hereinafter, an example of a method for manufacturing the relay substrate 29 will be described. First, the conductive path forming part 61 is formed. The conductive path forming portion 61 can be formed by the method shown in FIGS. 7 to 16 or the method shown in FIGS. Using the plurality of conductive path forming portions 61 formed on the releasable support plate 65, the relay substrate 29 is obtained by the following process. As shown in FIG. 50 (a), a releasable support plate 70 is prepared, and on the surface of the releasable support plate 70, a liquid insulating material layer that is cured to become an insulating elastic polymer substance. 62A is formed by a printing method or the like.
[0206] 次いで、図 50 (b)に示したように、絶縁部用材料層 62Aの上に、貫通孔を有する基 板 73を載置する。そして基板 73の上面側から、硬化されて絶縁性の弾性高分子物 質となる液状のエラストマ一用材料を、印刷法などによって基板 73の貫通孔 75内に 充填する。さらに、エラストマ一用材料を基板 73の表面に塗布することにより、図 50 ( c)に示したように基板 73の両側表面および貫通孔 75に一体に形成された絶縁部用 材料層 62Aを得る。  [0206] Next, as shown in Fig. 50 (b), a substrate 73 having a through hole is placed on the insulating part material layer 62A. Then, from the upper surface side of the substrate 73, a liquid elastomer material that is cured to become an insulating elastic polymer material is filled into the through holes 75 of the substrate 73 by a printing method or the like. Further, by applying an elastomer material to the surface of the substrate 73, as shown in FIG. 50 (c), an insulating material layer 62A integrally formed on both side surfaces of the substrate 73 and the through holes 75 is obtained. .
[0207] 次いで、図 51 (a)に示したように、複数の導電路形成部 61が形成された離型性支 持板 65を、基板 73が載置され、その両側表面および貫通孔 75内に絶縁部用材料 層 62Aが形成された離型性支持板 70上に重ね合わせることにより、導電路形成部 6 1の各々を離型性支持板 70に接触させる。これにより、導電路形成部 61の周囲に絶 縁部用材料層 62Aが形成された状態となる。 Next, as shown in FIG. 51 (a), the releasability support in which a plurality of conductive path forming portions 61 are formed. By superposing the holding plate 65 on the releasable support plate 70 on which the substrate 73 is placed and the insulating material layer 62A is formed in both side surfaces and through holes 75, the conductive path forming portion 6 1 Each is brought into contact with the releasable support plate 70. Thus, the insulating material layer 62A is formed around the conductive path forming portion 61.
[0208] 次いで図 51 (b)に示したように、離型性支持板 65を加圧することにより導電路形成 部 61を圧縮し、絶縁部用材料層 62Aの硬化処理を行う。硬化処理後、離型性支持 板 65および離型性支持板 70による圧力を開放し、離型性支持板 65および離型性 支持板 70から離型させることにより、導電路形成部 61の両端部を絶縁部 62から突 出させる。これにより、図 51 (c)に示したように、隣接する一対の導電路形成部 61, 6 1を相互に絶縁する絶縁部 62が、導電路形成部 61と一体的に形成され、導電路形 成部 61が絶縁部 62の表面より突出した中継基板 29が得られる。  Next, as shown in FIG. 51 (b), the conductive path forming part 61 is compressed by pressurizing the releasable support plate 65, and the insulating part material layer 62A is cured. After the curing process, release the pressure from the releasable support plate 65 and the releasable support plate 70 and release them from the releasable support plate 65 and the releasable support plate 70, so that both ends of the conductive path forming part 61 The part protrudes from the insulating part 62. As a result, as shown in FIG. 51 (c), the insulating portion 62 that insulates the pair of adjacent conductive path forming portions 61 and 61 from each other is formed integrally with the conductive path forming portion 61, and the conductive path The relay substrate 29 in which the forming part 61 protrudes from the surface of the insulating part 62 is obtained.
[0209] なお、図 51 (d)に示したように、導電路形成部 61の先端部に、金属膜 64を形成し てもよい。この金属膜 64は、同図のように導電路形成部 61における両側の先端部に 形成してもよぐあるいは導電路形成部 61におけるいずれか一方の片側の先端部に 形成してもよい。このような金属膜は、例えば金属メツキによる方法、スパッタ法などに よる蒸着、金属プレートを接着剤によって導電路形成部 61の先端部に貼付する方法 など、公知である各種の方法で形成できる。  Note that, as shown in FIG. 51 (d), the metal film 64 may be formed at the tip of the conductive path forming portion 61. The metal film 64 may be formed at the tip portions on both sides of the conductive path forming portion 61 as shown in the figure, or may be formed at the tip portion on one side of the conductive path forming portion 61. Such a metal film can be formed by various known methods such as a metal plating method, vapor deposition by a sputtering method, and a method of attaching a metal plate to the tip of the conductive path forming portion 61 with an adhesive.
[0210] 離型性支持板 70を構成する材料としては、導電路形成部 61を形成するための離 型性支持板 65と同様のものを用いることができる。  [0210] As a material constituting the releasable support plate 70, the same material as the releasable support plate 65 for forming the conductive path forming portion 61 can be used.
絶縁部用材料層 62Aに用いられるエラストマ一用材料を塗布する方法としては、ス クリーン印刷などの印刷法、ロール塗布法、ブレード塗布法などを挙げることができる 絶縁部用材料層 62Aの厚みは、形成すべき絶縁部 62の厚みに応じて設定される  Examples of methods for applying the material for the elastomer used for the insulating material layer 62A include printing methods such as screen printing, roll coating methods, blade coating methods, etc. The thickness of the insulating material layer 62A is as follows. Is set according to the thickness of the insulating part 62 to be formed
[0211] 絶縁部用材料層 62A硬化処理は、通常、加熱処理によって行われる。具体的な加 熱温度および加熱時間は、絶縁部用材料層 62Aを構成するエラストマ一材料の種 類などを考慮して適宜設定される。 [0211] The insulating part material layer 62A is normally cured by heat treatment. The specific heating temperature and heating time are appropriately set in consideration of the type of elastomer material constituting the insulating material layer 62A.
基板 73の貫通孔は、数値制御型ドリリング装置、フォトエッチング処理、レーザー加 ェ処理などにより形成することができる。 The through-hole in the board 73 is a numerically controlled drilling device, photoetching process, laser processing It can be formed by a process.
[0212] 図 48の断面図では、 4端子検査を行う場合の例を示している。図示したように、被 検査回路基板 1とピッチ変換用基板 23との間に中継基板 29が配置されている。 ピッチ変換用基板 23の表面には、それぞれ同一の被検査電極に電気的に接続さ れる互いに離間して配置された電流供給用の電流供給用電極 27および電圧測定 用の電圧測定用電極 28からなる接続用電極 25が形成されている。  [0212] The cross-sectional view of FIG. 48 shows an example of performing a four-terminal inspection. As shown in the figure, a relay board 29 is disposed between the circuit board 1 to be tested and the pitch conversion board 23. On the surface of the pitch conversion substrate 23, there are a current supply electrode 27 for current supply and a voltage measurement electrode 28 for voltage measurement, which are electrically connected to the same electrode to be inspected and spaced apart from each other. The connecting electrode 25 is formed.
[0213] ピッチ変換用基板 23の電流供給用電極 27および電圧測定用電極 28に対応して、 中継基板 29の 1つの貫通孔内には、一対の導電路形成部 61が形成されている。こ の一対の導電路形成部 61, 61は、その一端側で電流供給用電極 27および電圧測 定用電極 28と電気的に接続され、他端側で被検査回路基板 1の被検査電極 2と電 気的に接続され、この状態で電気検査が行われる。  In correspondence with the current supply electrode 27 and the voltage measurement electrode 28 of the pitch conversion substrate 23, a pair of conductive path forming portions 61 are formed in one through hole of the relay substrate 29. The pair of conductive path forming portions 61 and 61 are electrically connected to the current supply electrode 27 and the voltage measurement electrode 28 on one end side, and the test electrode 2 of the circuit board 1 to be tested on the other end side. Electrical inspection is performed in this state.
[0214] 中継基板 29の片面側もしくは両面側には、分散型異方導電性シートを配置するよ うにしてもよい。本発明では中継基板 29を備えているので、分解能を損なわない薄 い分散型異方導電性シートを用いても、被検査回路基板 1の電極による局部的な応 力集中が充分に緩和される。図 52 (a) , (b)は、分散型異方導電性シートを配置した 例を示した断面図であり、図 52 (a)では、ピッチ変換用基板 23と中継基板 29との間 に分散型異方導電性シートである第 1の異方導電性シート 22を配置し、ピッチ変換 用基板 23の電流供給用電極 27および電圧測定用電極 28と、中継基板 29の一対 の導電路形成部 61, 61とを、第 1の異方導電性シート 22を介して電気的に接続して いる。  [0214] On one side or both sides of the relay substrate 29, a dispersive anisotropic conductive sheet may be disposed. In the present invention, since the relay substrate 29 is provided, local stress concentration due to the electrodes of the circuit board 1 to be inspected can be sufficiently relaxed even if a thin dispersive anisotropic conductive sheet that does not impair the resolution is used. . 52 (a) and 52 (b) are cross-sectional views showing an example in which a dispersive anisotropic conductive sheet is arranged. In FIG. 52 (a), between the pitch conversion board 23 and the relay board 29, FIG. A first anisotropic conductive sheet 22, which is a distributed anisotropic conductive sheet, is arranged to form a pair of conductive paths for the current supply electrode 27 and voltage measurement electrode 28 of the pitch conversion board 23 and the relay board 29. The parts 61 and 61 are electrically connected via the first anisotropic conductive sheet 22.
[0215] 図 52 (b)では、中継基板 29の両面側に分散型異方導電性シートである第 1の異方 導電性シート 22, 22を配置し、ピッチ変換用基板 23の電流供給用電極 27および電 圧測定用電極 28と、中継基板 29の一対の導電路形成部 61, 61とを、第 1の異方導 電性シート 22を介して電気的に接続するとともに、被検査回路基板 1の被検査電極 2と、中継基板 29の一対の導電路形成部 61, 61とを、第 1の異方導電性シート 22を 介して電気的に接続して!/、る。  [0215] In FIG. 52 (b), the first anisotropic conductive sheets 22, 22 which are distributed anisotropic conductive sheets are arranged on both sides of the relay substrate 29, and the current for the pitch conversion substrate 23 is supplied. The electrode 27 and the voltage measuring electrode 28 and the pair of conductive path forming portions 61 and 61 of the relay substrate 29 are electrically connected via the first anisotropic conductive sheet 22 and the circuit under test is also connected. Electrically connect the electrode to be inspected 2 of the substrate 1 and the pair of conductive path forming portions 61 and 61 of the relay substrate 29 via the first anisotropic conductive sheet 22! /
[0216] 回路基板側コネクタ 21を構成し、中継基板 29に隣接して配置される第 1の異方導 電性シート 22は、図 53に示したように、絶縁性の弾性高分子物質力もなるシート基 材 63中に多数の導電性粒子 Pが面方向に分散されるとともに厚み方向に配列した 状態で含有されている。 [0216] The first anisotropic conductive sheet 22 constituting the circuit board side connector 21 and arranged adjacent to the relay board 29 has an insulating elastic polymer material force as shown in FIG. Sheet base The material 63 contains a large number of conductive particles P dispersed in the plane direction and arranged in the thickness direction.
第 1の異方導電性シート 22の厚みは、好ましくは 20〜200 μ m、より好ましくは 30 〜100 mである。この最小厚みが 20 m未満である場合には、第 1の異方導電性 シート 22の機械的強度が低くなり易ぐ必要な耐久性が得られないことがある。一方 、この第 1の異方導電性シート 22の厚みが 200 /z mを超える場合には、厚み方向の 電気抵抗が大きくなり易ぐまた、接続すべき電極のピッチが小さい場合には、加圧 により形成される導電路間において所要の絶縁性が得られず、被検査電極間で電気 的な短絡が生じて検査対象回路基板の電気的検査が困難となることがある。  The thickness of the first anisotropic conductive sheet 22 is preferably 20 to 200 μm, more preferably 30 to 100 m. When the minimum thickness is less than 20 m, the mechanical strength of the first anisotropic conductive sheet 22 is low and the required durability may not be obtained. On the other hand, when the thickness of the first anisotropic conductive sheet 22 exceeds 200 / zm, the electrical resistance in the thickness direction tends to increase, and when the pitch of the electrodes to be connected is small, the pressure is increased. As a result, the required insulation cannot be obtained between the conductive paths formed by the above, and an electrical short circuit may occur between the electrodes to be inspected, making it difficult to electrically inspect the circuit board to be inspected.
[0217] 第 1の異方導電性シート 22のシート基材 63を構成する弾性高分子物質は、そのデ ュロメータ硬さが好ましくは 30〜90であり、より好ましくは 35〜80、さらに好ましくは 4 0〜70である。なお、ここで「デュ口メータ硬さ」とは、 JIS K6253のデュロメータ硬さ 試験に基づいてタイプ Aデュロメータによって測定されたものをいう。 [0217] The elastic polymer substance constituting the sheet base 63 of the first anisotropic conductive sheet 22 preferably has a durometer hardness of 30 to 90, more preferably 35 to 80, and still more preferably. 4 0-70. “Du-mouth meter hardness” here refers to the value measured with a type A durometer based on the JIS K6253 durometer hardness test.
弾性高分子物質のデュロメータ硬さが 30未満である場合、厚み方向に押圧された 際に、異方導電性シートの圧縮、変形が大きぐ大きな永久歪みが生じるため、異方 導電性シートが早期に劣化して検査使用が困難となり耐久性が低くなり易い。  When the durometer hardness of the elastic polymer material is less than 30, when the anisotropic conductive sheet is pressed in the thickness direction, the anisotropic conductive sheet is greatly compressed and deformed, resulting in a large permanent distortion. It becomes difficult to use for inspection due to deterioration and durability tends to be lowered.
[0218] 一方、弾性高分子物質のデュロメータ硬さが 90を超える場合、異方導電性シートが 厚み方向に押圧された際に、厚み方向の変形量が不十分となるため、良好な接続信 頼性が得られず、接続不良が発生し易くなる。 [0218] On the other hand, when the durometer hardness of the elastic polymer material exceeds 90, the amount of deformation in the thickness direction becomes insufficient when the anisotropic conductive sheet is pressed in the thickness direction. Reliability is not obtained and connection failure is likely to occur.
第 1の異方導電性シート 22の基材を構成する弾性高分子物質としては、上記のデ ュロメータ硬さを示すものであれば特に限定されな ヽが、形成加工性および電気特 性の観点から、シリコーンゴムを用いることが好まし!/、。  The elastic polymer material constituting the base material of the first anisotropic conductive sheet 22 is not particularly limited as long as it exhibits the above-mentioned durometer hardness. However, from the viewpoint of forming workability and electrical properties. It is preferable to use silicone rubber!
[0219] 第 1の異方導電性シート 22は、その厚み W m)と、磁性導電性粒子の数平均粒 [0219] The first anisotropic conductive sheet 22 has a thickness W m) and a number average particle size of magnetic conductive particles.
1  1
子径 D m)との比率 W ZDが 1. 1〜10であることが好ましい。ここで、「磁性導電 The ratio W ZD to the diameter D m) is preferably 1.1 to 10. Here, “magnetic conduction
1 1 1 1 1 1
性粒子の数平均粒子径」とは、レーザー回折散乱法によって測定されたものをいう。 比率 W ZDが 1. 1未満である場合、異方導電性シートの厚みに対して磁性導電性 The “number average particle diameter of the functional particles” means that measured by a laser diffraction scattering method. If the ratio W ZD is less than 1.1, the magnetic conductivity with respect to the thickness of the anisotropic conductive sheet
1 1 1 1
粒子の直径が同等あるいはそれよりも大きくなるため、この異方導電性シートはその 弾性が低くなり、このため、この異方導電性シートを被検査回路基板側に配置する際 に被検査回路基板が傷つきやすくなる。 Since the diameter of the particles is the same or larger, this anisotropic conductive sheet is less elastic, so when this anisotropic conductive sheet is placed on the circuit board to be inspected. In addition, the circuit board to be inspected is easily damaged.
[0220] 一方、比率 W ZDが 10を超える場合には、厚み方向に多数の導電性粒子が配列  [0220] On the other hand, when the ratio W ZD exceeds 10, many conductive particles are arranged in the thickness direction.
1 1  1 1
して連鎖が形成されるので、多数の導電性粒子同士の接点が存在し、電気的抵抗 値が高くなり易い。  As a result, a chain is formed, and there are many contact points between the conductive particles, and the electrical resistance value tends to be high.
磁性導電性粒子としては、異方導電性シートを形成するためのシート成形材料中 にお 、て、磁性導電性粒子を磁場の作用によって容易に移動させることができる点 から、その飽和磁ィ匕が好ましくは 0. lWb/m2以上、より好ましくは 0. 3Wb/m2以 上、特に好ましくは 0. 5Wb/m2以上のものが使用される。 The magnetic conductive particle is a saturated magnetic layer because the magnetic conductive particle can be easily moved by the action of a magnetic field in the sheet molding material for forming the anisotropic conductive sheet. is preferably 0. lWb / m 2 or more, more preferably 0. 3Wb / m 2 or more on, particularly preferably 0. 5Wb / m 2 or more ones are used.
[0221] 飽和磁化が 0. lWbZm2以上であることにより、その製造工程において磁性導電 性粒子を磁場の作用によって確実に移動させて所望の配向状態とすることができる ため、異方導電性シートを使用する際に磁性導電性粒子の連鎖を形成することがで きる。 [0221] Since the saturation magnetization is 0.1 lWbZm 2 or more, the magnetically conductive particles can be surely moved by the action of a magnetic field in the production process to obtain a desired orientation state. When used, a chain of magnetic conductive particles can be formed.
磁性導電性粒子の具体例としては、鉄、ニッケル、コバルトなどの磁性を示す金属 の粒子もしくはこれらの合金の粒子またはこれらの金属を含有する粒子、あるいはこ れらの粒子を芯粒子とし、この芯粒子の表面に高導電性金属を被覆した複合粒子、 あるいは非磁性金属粒子もしくはガラスビーズなどの無機物質粒子またはポリマー粒 子を芯粒子とし、この芯粒子の表面に、高導電性金属のメツキを施した複合粒子、あ るいは芯粒子に、フェライト、金属間化合物などの導電性磁性体および高導電性金 属の両方を被覆した複合粒子などが挙げられる。  Specific examples of magnetic conductive particles include particles of metals such as iron, nickel and cobalt, particles of alloys thereof, particles containing these metals, or particles containing these metals as core particles. Composite particles with the surface of core particles coated with highly conductive metal, or inorganic substance particles such as non-magnetic metal particles or glass beads, or polymer particles are used as core particles. And composite particles in which core particles are coated with both a conductive magnetic material such as ferrite and an intermetallic compound and a highly conductive metal.
[0222] ここで、「高導電性金属」とは、 0°Cにおける導電率が 5 X 106 Ω—1!!!—1以上の金属を いう。このような高導電性金属としては、具体的には、金、銀、ロジウム、白金、クロム などを用いることができ、これらの中では、化学的に安定でかつ高い導電率を有する 点で金を用いることが好まし 、。 Here, “highly conductive metal” refers to a metal having a conductivity of 5 × 10 6 Ω— 1 !!! — 1 or higher at 0 ° C. Specifically, gold, silver, rhodium, platinum, chromium, and the like can be used as such a highly conductive metal. Among these, gold is chemically stable and has high conductivity. Is preferred to use.
上記の磁性導電性粒子の中では、ニッケル粒子を芯粒子とし、その表面に金や銀 などの高導電性金属のメツキを施した複合粒子が好ましい。  Among the above magnetic conductive particles, composite particles in which nickel particles are used as core particles and the surface thereof is plated with a highly conductive metal such as gold or silver are preferable.
[0223] 芯粒子の表面に高導電性金属を被覆する手段として、例えば、無電解メツキ法を 用!/、ることができる。  [0223] As a means for coating the surface of the core particles with a highly conductive metal, for example, an electroless plating method can be used!
磁性導電性粒子は、その数平均粒子径の変動係数が 50%以下であることが好まし ぐより好ましくは 40%以下、さらに好ましくは 30%以下、特に好ましくは 20%以下で ある。ここで、「数平均粒子径の変動係数」とは、式:( σ ZDn) X 100 (但し、 σは、 粒子径の標準偏差の値を示し、 Dnは、粒子の数平均粒子径を示す。 )によって求め られるちのである。 The magnetic conductive particles preferably have a coefficient of variation of the number average particle diameter of 50% or less. More preferably, it is 40% or less, more preferably 30% or less, and particularly preferably 20% or less. Here, “the coefficient of variation of the number average particle diameter” is an expression: (σ ZDn) X 100 (where σ indicates the value of the standard deviation of the particle diameter, and Dn indicates the number average particle diameter of the particle) )).
[0224] 磁性導電性粒子の数平均粒子径の変動係数が 50%以下であることにより、粒子径 の不揃いの程度が小さくなるため、得られる異方導電性シートにおける部分的な導 電性のバラツキを小さくすることができる。  [0224] When the coefficient of variation of the number average particle diameter of the magnetic conductive particles is 50% or less, the degree of unevenness of the particle diameter is reduced, so that the partial conductivity of the anisotropic conductive sheet obtained is reduced. Variations can be reduced.
このような磁性導電性粒子は、金属材料を常法により粒子化し、あるいは市販の金 属粒子を用意し、この粒子に対して分級処理を行うことにより得ることができる。粒子 の分級処理は、例えば、空気分級装置、音波ふるい装置などの分級装置によって行 うことができる。分級処理の具体的な条件は、目的とする導電性金属粒子の数平均 粒子径、分級装置の種類などに応じて適宜設定される。  Such magnetic conductive particles can be obtained by making a metal material into particles by a conventional method, or preparing commercially available metal particles and classifying the particles. The particle classification treatment can be performed, for example, by a classification device such as an air classification device or a sonic sieving device. Specific conditions for the classification treatment are appropriately set according to the number average particle diameter of the target conductive metal particles, the type of the classification device, and the like.
[0225] 磁性導電性粒子の具体的な形状は、特に限定されな!、が、例えば複数の球形の 一次粒子が一体的に連結された二次粒子が好ましく用いられる。  [0225] The specific shape of the magnetic conductive particles is not particularly limited! However, for example, secondary particles in which a plurality of spherical primary particles are integrally connected are preferably used.
磁性導電性粒子として、芯粒子の表面に高導電性金属が被覆された複合粒子 (導 電性複合金属粒子)を用いる場合、良好な導電性が得られる点から、導電性複合金 属粒子の表面における高導電性金属の被覆率 (芯粒子の表面積に対する高導電性 金属の被覆面積の割合)が 40%以上であることが好ましぐさらに好ましくは 45%以 上、特に好ましくは 47〜95%である。  When using composite particles in which the surface of the core particle is coated with a highly conductive metal (conductive composite metal particles) as the magnetic conductive particles, good conductivity can be obtained. The coverage of the highly conductive metal on the surface (ratio of the coated area of the highly conductive metal to the surface area of the core particles) is preferably 40% or more, more preferably 45% or more, particularly preferably 47 to 95. %.
[0226] また、高導電性金属の被覆量は、芯粒子の重量の 2. 5〜50質量%であることが好 ましぐより好ましくは 3〜45質量%、さらに好ましくは 3. 5〜40質量%、特に好ましく は 5〜30質量%である。  [0226] Further, the coating amount of the highly conductive metal is preferably 2.5 to 50 mass%, more preferably 3 to 45 mass%, still more preferably 3.5 to 40 mass% of the weight of the core particles. % By mass, particularly preferably 5 to 30% by mass.
このような、絶縁性の弾性高分子物質中に多数の導電性粒子が面方向に分散し厚 み方向に配列した状態で含有された異方導電性シートは、例えば特開 2003— 775 60号公報に示されるように、硬化されて弾性高分子物質となる高分子物質用材料中 に、磁性を示す導電性粒子が含有された流動性の成形材料を調製し、この成形材 料からなる成形材料層を、当該成形材料層における一面に接する一面側成形部材 と、当該成形材料層における他面に接する他面側成形部材との間に形成し、この成 形材料層に対してその厚み方向に磁場を作用させると共に、当該成形材料層を硬 化処理する方法等により製造することができる。 An anisotropic conductive sheet containing a large number of conductive particles dispersed in the surface direction and arranged in the thickness direction in such an insulating elastic polymer material is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-77560. As shown in the official gazette, a flowable molding material containing conductive particles exhibiting magnetism in a polymer material that is cured to become an elastic polymer substance is prepared, and a molding made of this molding material is prepared. The material layer is formed between the one-surface-side molded member that contacts one surface of the molding material layer and the other-surface-side molded member that contacts the other surface of the molding material layer. It can be manufactured by a method of applying a magnetic field to the shape material layer in the thickness direction and hardening the molding material layer.
[0227] ピッチ変換用基板 23の中継ピンユニット 31側に配置される第 2の異方導電性シー ト 26は、図 33に示したような、絶縁性の弾性高分子材料中に多数の導電性粒子 Pが 厚み方向に配列して形成された導電路形成部 71と、それぞれの導電路形成部 71を 離間する絶縁部 72から構成されたものであり、その詳細は図 1の実施形態における 場合と同様である。  [0227] The second anisotropic conductive sheet 26 arranged on the side of the relay pin unit 31 of the pitch conversion board 23 is composed of a large number of conductive materials in an insulating elastic polymer material as shown in FIG. 1 is composed of conductive path forming portions 71 formed by arranging the conductive particles P in the thickness direction, and insulating portions 72 that separate the respective conductive path forming portions 71, the details of which are shown in the embodiment of FIG. Same as the case.
[0228] 一方、テスター側コネクタ 41a, 41bは、図 1に示したように、第 3の異方導電性シー 卜 42a, 42bと、コネクタ基板 43a, 43bと、ベース板 46a, 46bと、を備えて ヽる。第 3 の異方導電性シート 42a, 42bには、前述した第 2の異方導電性シート 26と同様のも のが使用される。すなわち、図 33に示したような、絶縁性の弾性高分子材料中に多 数の導電性粒子が厚み方向に配列して形成された導電路形成部と、それぞれの導 電路形成部を離間する絶縁部とから構成された異方導電性シートが使用される。  On the other hand, as shown in FIG. 1, the tester-side connectors 41a and 41b include third anisotropic conductive sheets 42a and 42b, connector boards 43a and 43b, and base plates 46a and 46b. Prepare and speak. As the third anisotropic conductive sheet 42a, 42b, the same one as the second anisotropic conductive sheet 26 described above is used. That is, as shown in FIG. 33, the conductive path forming portions formed by arranging a large number of conductive particles in the insulating elastic polymer material in the thickness direction are separated from the respective conductive path forming portions. An anisotropic conductive sheet composed of an insulating part is used.
[0229] コネクタ基板 43a, 43bは、絶縁基板を備えており、その表面の中継ピンユニット 31 側に、図 46および図 47に示したようにピン側電極 45a, 45bが形成されている。 これらのピン側電極 45は、例えば、 2. 54mm, 1. 8mm、 1. 27mm, 1. 06mm, 0. 8mm、 0. 75mm, 0. 5mm、 0. 45mm, 0. 3mmまたは 0. 2mmの一定ピッチ の格子点上に配置されており、その配置ピッチは中継ピンユニット 31の導電ピン 32 の配置ピッチと同一である。  [0229] The connector boards 43a and 43b are provided with an insulating board, and pin-side electrodes 45a and 45b are formed on the surface thereof on the relay pin unit 31 side as shown in FIGS. These pin side electrodes 45 are, for example, 2.54 mm, 1.8 mm, 1.27 mm, 1.06 mm, 0.8 mm, 0.775 mm, 0.5 mm, 0.45 mm, 0.3 mm or 0.2 mm. They are arranged on lattice points with a constant pitch, and the arrangement pitch is the same as the arrangement pitch of the conductive pins 32 of the relay pin unit 31.
[0230] それぞれのピン側電極 45は、絶縁基板の表面に形成された配線パターンおよびそ の内部に形成された内部配線によって、テスター側電極 44a, 44bへ電気的に接続 されている。  [0230] Each pin-side electrode 45 is electrically connected to the tester-side electrodes 44a, 44b by a wiring pattern formed on the surface of the insulating substrate and an internal wiring formed therein.
中継ピンユニット 31は、図 34〜図 39に示したものと同様に構成されている。その具 体的な詳細は前述したとおりである。  The relay pin unit 31 is configured in the same manner as that shown in FIGS. The specific details are as described above.
[0231] 以下、図 54〜図 57を参照しながら (便宜的に、第 2の検査治具 l ibのみ示す)、第 1の検査治具 1 laと第 2の検査治具 1 lbとの間で被検査回路基板 1の両面を挟圧し た際における圧力吸収作用および圧力分散作用について説明する。 [0231] Hereinafter, referring to FIGS. 54 to 57 (for convenience, only the second inspection jig l ib is shown), the first inspection jig 1 la and the second inspection jig 1 lb A pressure absorbing action and a pressure dispersing action when both surfaces of the circuit board 1 to be inspected are sandwiched between them will be described.
図 55に示したように、第 1の検査治具 1 laと第 2の検査治具 1 lbとの間で検査対象 である被検査回路基板 1の両面を挟圧して電気検査を行う際に、加圧の初期段階で は、中継ピンユニット 31の導電ピン 32の厚み方向への移動と、中継基板 29の弾性 部と、第 2の異方導電性シート 26と、第 3の異方導電性シート 42のゴム弾性圧縮によ り圧力を吸収して、被検査回路基板 1の被検査電極の高さバラツキをある程度吸収 することができる。 As shown in Fig. 55, the object to be inspected between the first inspection jig 1 la and the second inspection jig 1 lb When electrical inspection is performed by clamping both sides of the circuit board 1 to be inspected, the relay pin unit 31 moves in the thickness direction of the relay pin unit 31 and the elastic portion of the relay board 29 at the initial stage of pressurization. The pressure is absorbed by the rubber elastic compression of the second anisotropic conductive sheet 26 and the third anisotropic conductive sheet 42, and there is some variation in the height of the electrodes to be inspected on the circuit board 1 to be inspected. Can be absorbed.
[0232] そして、第 1の支持ピンと中間保持板との第 1の当接支持位置と、前記第 2の支持ピ ンと中間保持板との第 2の当接支持位置とが、中間保持板の厚さ方向に投影した中 間保持板投影面にぉ ヽて異なる位置に配置されて ヽるので、図 56の矢印で示した ように、上下方向に力が作用し、図 57に示したように、第 1の検査治具 11aと第 2の検 查治具 l ibの間で検査対象である被検査回路基板 1をさらに加圧した際に、中継基 板 29の弾性部と、第 2の異方導電性シート 26と、第 3の異方導電性シート 42のゴム 弾性圧縮に加えて、中継ピンユニット 31の第 1の絶縁板 34と、第 2の絶縁板 35と、第 1の絶縁板 34と第 2の絶縁板 35の間に配置された中間保持板 36のパネ弾性により 、被検査回路基板 1の被検査電極の高さバラツキ、例えば、ハンダボール電極の高 さバラツキに対して、圧力集中を分散させて、局部的な応力集中を回避することがで きる。  [0232] The first contact support position between the first support pin and the intermediate holding plate and the second contact support position between the second support pin and the intermediate support plate are the intermediate support plate. As shown by the arrows in Fig. 56, the force acts in the vertical direction as shown in Fig. 57. Thus, when the circuit board 1 to be inspected is further pressurized between the first inspection jig 11a and the second inspection jig l ib, the elastic portion of the relay board 29 and the first In addition to the elastic compression of the second anisotropic conductive sheet 26 and the third anisotropic conductive sheet 42, the first insulating plate 34, the second insulating plate 35 and the first insulating plate 34 of the relay pin unit 31 The panel holding elasticity of the intermediate holding plate 36 disposed between the insulating plate 34 and the second insulating plate 35 causes variations in the height of the electrodes to be inspected of the circuit board 1 to be inspected, for example, solder ball electrodes The height variation, by dispersing pressure concentration, as possible out to avoid local stress concentration.
[0233] すなわち、図 56および図 57に示したように、第 1の支持ピン 33と中間保持板 36に 対する第 1の当接支持位置 38Aを中心として、中間保持板 36が、第 2の絶縁板 35の 方向に橈むとともに(図 57の一点鎖線で囲んだ Eの部分参照)、第 2の支持ピン 37と 中間保持板 36との第 2の当接支持位置 38Bを中心として、中間保持板 36が、第 1の 絶縁板 34の方向に橈むことになる(図 57の一点鎖線で囲んだ Dの部分参照)。なお 、ここで「橈む」および「橈み方向」とは中間保持板 36が凸状になる方向に突出するよ うに橈むことおよびその突出方向を言う。  That is, as shown in FIG. 56 and FIG. 57, the intermediate holding plate 36 has the second support center 33 about the first support pin 33 and the first holding support position 38A with respect to the intermediate holding plate 36. While holding in the direction of the insulating plate 35 (see the portion E surrounded by the one-dot chain line in FIG. 57), hold the second support pin 37 and the intermediate holding plate 36 around the second contact support position 38B. The plate 36 crawls in the direction of the first insulating plate 34 (see the portion D surrounded by the one-dot chain line in FIG. 57). Here, “squeeze” and “stagnation direction” refer to the squeezing so that the intermediate holding plate 36 protrudes in the convex direction and the protruding direction.
[0234] このように、中間保持板 36が、第 1の当接支持位置 38A、第 2の当接支持位置 38 Bを中心として、相互に反対方向に橈むので、第 1の検査治具 11aと第 2の検査治具 l ibとの間で検査対象である被検査回路基板 1をさらに加圧した際に、中間保持板 3 6のパネ弾性力が発揮されることになる。  [0234] In this way, the intermediate holding plate 36 is sandwiched in opposite directions around the first contact support position 38A and the second contact support position 38B, so the first inspection jig When the circuit board 1 to be inspected is further pressed between the 11a and the second inspection jig l ib, the panel elastic force of the intermediate holding plate 36 is exhibited.
また、図 57の一点鎖線で囲んだ B部分で示したように、第 2の異方導電性シート 26 の導電路形成部の突出部の圧縮によって、導電ピン 32bの高さが吸収されるが、こ の突出部の圧縮よつて吸収しきれない圧力力 第 1の絶縁板 34bに加わることになる In addition, as shown by a portion B surrounded by a one-dot chain line in FIG. 57, the second anisotropic conductive sheet 26 The height of the conductive pin 32b is absorbed by the compression of the protruding portion of the conductive path forming portion, but the pressure force that cannot be absorbed by the compression of the protruding portion is applied to the first insulating plate 34b.
[0235] したがって、図 57の一点鎖線で囲んだ C部分で示したように、第 1の絶縁板 34と第 2の絶縁板 35も、第 1の支持ピン 33、第 2の支持ピン 37との当接位置で、相互に反 対方向に橈むので、第 1の検査治具 11aと第 2の検査治具 l ibとの間で検査対象で ある被検査回路基板 1をさらに加圧した際に、第 1の絶縁板 34と第 2の絶縁板 35の パネ弾性力が発揮されることになる。 Therefore, as shown by the portion C surrounded by the one-dot chain line in FIG. 57, the first insulating plate 34 and the second insulating plate 35 are also composed of the first support pin 33 and the second support pin 37. In other words, the circuit board 1 to be inspected is further pressurized between the first inspection jig 11a and the second inspection jig l ib. At this time, the panel elastic force of the first insulating plate 34 and the second insulating plate 35 is exhibited.
[0236] これにより、高さバラツキを有する被検査回路基板 1の被検査電極のそれぞれに対 して安定的な電気的接触が確保され、さらに応力集中が低減されるので、中継基板 29の弾性部の局部的な破損が抑制される。その結果、中継基板 29の繰り返し使用 耐久性が向上するので、その交換回数が減り、検査作業効率が向上することになる。 図 58は、本発明の検査装置の他の実施形態を説明する図 54と同様な断面図 (便 宜的に第 2の検査治具のみ示している)、図 59は、その中継ピンユニットの拡大断面 図である。この検査装置は、図 46に示した検査装置と基本的には同様な構成であり 、同一の構成部材には同一の参照番号を付している。この検査装置では、図 58およ び図 59に示したように、第 1の絶縁板 34と第 2の絶縁板 35との間に、複数個(本実 施形態では 3個)の中間保持板 36が所定間隔離間して配置されるとともに、これらの 隣接する中間保持板 36同士の間に、保持板支持ピン 39が配置されて 、る。  [0236] This ensures stable electrical contact with each of the electrodes to be inspected of the circuit board 1 to be inspected having variations in height, and further reduces the stress concentration. Local damage of the part is suppressed. As a result, the durability of repeated use of the relay board 29 is improved, so that the number of replacements is reduced and the inspection work efficiency is improved. FIG. 58 is a cross-sectional view similar to FIG. 54 for explaining another embodiment of the inspection apparatus of the present invention (only the second inspection jig is shown for convenience), and FIG. 59 is a diagram of the relay pin unit. It is an expanded sectional view. This inspection apparatus has basically the same configuration as the inspection apparatus shown in FIG. 46, and the same reference numerals are assigned to the same components. In this inspection device, as shown in FIGS. 58 and 59, a plurality of (three in this embodiment) intermediate holdings are provided between the first insulating plate 34 and the second insulating plate 35. The plates 36 are spaced apart from each other by a predetermined distance, and the holding plate support pins 39 are arranged between the adjacent intermediate holding plates 36.
[0237] この場合、少なくとも 1つの中間保持板 36bにおいて、中間保持板 36bに対して一 面側力も当接する保持板支持ピン 39bの中間保持板 36bに対する当接支持位置と、 中間保持板 36bに対して他面側力も当接する第 1の支持ピン 33b、第 2の支持ピン 3 7b、または保持板支持ピン 39bの中間保持板 36bに対する当接支持位置とが、中間 保持板 36bの厚さ方向に投影した中間保持板投影面において異なる位置に配置さ れて 、ることが必要である。  In this case, in at least one intermediate holding plate 36b, the holding support position of the holding plate support pin 39b that also contacts the intermediate holding plate 36b with one side side force with respect to the intermediate holding plate 36b, and the intermediate holding plate 36b The contact position of the first support pin 33b, the second support pin 37b, or the holding plate support pin 39b with which the other side force abuts against the intermediate holding plate 36b is the thickness direction of the intermediate holding plate 36b. It is necessary to arrange them at different positions on the projection surface of the intermediate holding plate projected onto the screen.
[0238] 最も好ましくは、全ての中間保持板 36bにおいて、中間保持板 36bに対して一面側 力 当接する保持板支持ピン 39bの中間保持板 36bに対する当接支持位置と、中間 保持板 36bに対して他面側力も当接する第 1の支持ピン 33b、第 2の支持ピン 37b、 または保持板支持ピン 39bの中間保持板 36bに対する当接支持位置とが、中間保 持板 36bの厚さ方向に投影した中間保持板投影面において異なる位置に配置され る。 [0238] Most preferably, in all the intermediate holding plates 36b, the holding plate support pins 39b that are in one-side force contact with the intermediate holding plate 36b are in contact with and supported by the intermediate holding plate 36b and the intermediate holding plate 36b. The first support pin 33b, the second support pin 37b, Alternatively, the holding support position of the holding plate support pin 39b with respect to the intermediate holding plate 36b is arranged at a different position on the intermediate holding plate projection surface projected in the thickness direction of the intermediate holding plate 36b.
[0239] この場合、詳述しないが、「異なる位置」とは、前述した実施形態において、第 1の 支持ピン 33と中間保持板 36との第 1の当接支持位置 38Aと、第 2の支持ピン 37と中 間保持板 36との第 2の当接支持位置 38Bとの間の関係で説明した相対位置と同様 な配置とすることが可能である。  [0239] In this case, although not described in detail, the "different position" refers to the first contact support position 38A between the first support pin 33 and the intermediate holding plate 36 and the second position in the above-described embodiment. An arrangement similar to the relative position described in relation to the relationship between the support pin 37 and the second contact support position 38B of the intermediate holding plate 36 can be made.
本実施形態では、 3つの中間保持板 36bのうち上側の中間保持板 36bにお 、て、 中間保持板 36bに対して一面側力も当接する保持板支持ピン 39bの中間保持板 36 bに対する当接支持位置 39Aと、中間保持板 36bに対して他面側力も当接する第 1 の支持ピン 33bの中間保持板 36bに対する当接支持位置 38Aとが、中間保持板 36 bの厚さ方向に投影した中間保持板投影面にぉ 、て異なる位置に配置されて 、る。  In the present embodiment, of the three intermediate holding plates 36b, the upper intermediate holding plate 36b is in contact with the intermediate holding plate 36b by the holding plate support pin 39b that also contacts the intermediate holding plate 36b with one surface side force. The support position 39A and the contact support position 38A with respect to the intermediate holding plate 36b of the first support pin 33b that also contacts the intermediate holding plate 36b with the other side force are projected in the thickness direction of the intermediate holding plate 36b. The intermediate holding plate is arranged at different positions on the projection surface.
[0240] また、 3つの中間保持板 36bのうち中央の中間保持板 36bにおいて、中間保持板 3 6bに対して一面側から当接する保持板支持ピン 39bの中間保持板 36bに対する当 接支持位置 39Aと、中間保持板 36bに対して他面側力も当接する保持板支持ピン 3 9bの中間保持板 36bに対する当接支持位置 39Aとが、中間保持板 36bの厚さ方向 に投影した中間保持板投影面にぉ ヽて異なる位置に配置されて ヽる。  [0240] Further, in the middle intermediate holding plate 36b among the three intermediate holding plates 36b, the holding plate support pin 39b that comes into contact with the intermediate holding plate 36b from one surface side is in contact with and supported by the intermediate holding plate 36b 39A. The intermediate support plate projection projected in the thickness direction of the intermediate support plate 36b is the contact support position 39A with respect to the intermediate support plate 36b of the support plate support pin 39b that also contacts the intermediate support plate 36b with the other side force. Placed in different positions across the surface.
[0241] また、 3つの中間保持板 36bのうち下側の中間保持板 36bにおいて、中間保持板 3 6bに対して一面側から当接する保持板支持ピン 39bの中間保持板 36bに対する当 接支持位置 39Aと、中間保持板 36bに対して他面側から当接する第 2の支持ピン 37 bの中間保持板 36bに対する当接支持位置 38Bとが、中間保持板 36bの厚さ方向に 投影した中間保持板投影面において異なる位置に配置されている。  [0241] Further, in the lower intermediate holding plate 36b among the three intermediate holding plates 36b, the holding plate support pins 39b that come into contact with the intermediate holding plate 36b from one surface side are in contact with the intermediate holding plate 36b. The intermediate holding projected by 39A and the abutment support position 38B of the second support pin 37b that comes into contact with the intermediate holding plate 36b from the other surface side with respect to the intermediate holding plate 36b is projected in the thickness direction of the intermediate holding plate 36b. They are arranged at different positions on the plate projection plane.
[0242] このように構成することによって、これらの複数個の中間保持板 36によってバネ弹 性がさらに発揮されることになり、被検査回路基板 1の被検査電極の高さバラツキに 対して、圧力集中を分散させて、局部的な応力集中をさらに回避することができ、中 継基板 29の弾性部の局部的な破損が抑制され、その結果、中継基板 29の繰り返し 使用耐久性が向上するので、中継基板 29の交換回数が減り、検査作業効率が向上 する。 [0243] なお、中間保持板 36の個数としては、複数個であればよぐ特に限定されるもので はない。 [0242] With this configuration, the spring property is further exhibited by the plurality of intermediate holding plates 36, and the variation in the height of the electrodes to be inspected on the circuit board 1 to be inspected Dispersion of pressure concentration can further avoid local stress concentration, and local breakage of the elastic part of the relay board 29 is suppressed, and as a result, repeated use durability of the relay board 29 is improved. As a result, the number of replacements of the relay board 29 is reduced, and the inspection work efficiency is improved. [0243] The number of intermediate holding plates 36 is not particularly limited as long as it is plural.
以上、本発明の実施形態について説明したが、本発明はこれらの実施形態に限定 されるものではなぐその要旨を逸脱しない範囲内において種々の変形、変更が可 能である。  Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes can be made without departing from the scope of the present invention.
例えば、被検査回路基板 1は、プリント回路基板以外に、ノ ッケージ IC、 MCM、 C SPなどの半導体集積回路装置、ウェハに形成された回路装置であってもよい。また 、プリント回路基板は、両面プリント回路基板だけではなく片面プリント回路基板であ つてもよい。  For example, the circuit board 1 to be inspected may be a semiconductor integrated circuit device such as a knock IC, MCM, or CSP, or a circuit device formed on a wafer, in addition to a printed circuit board. The printed circuit board may be a single-sided printed circuit board as well as a double-sided printed circuit board.
[0244] 第 1の検査治具 11aと第 2の検査治具 l ibは、使用材料、部材構造などにおいて必 ずしも同一である必要はなぐこれらが異なるものであってもよい。  [0244] The first inspection jig 11a and the second inspection jig Lib need not necessarily be the same in materials used, member structures, and the like, and they may be different.
テスター側コネクタは、コネクタ基板のような回路基板と異方導電性シートを複数積 層して構成してもよい。  The tester side connector may be configured by stacking a plurality of anisotropic conductive sheets and a circuit board such as a connector board.
上記の実施形態では、第 2の異方導電性シート 26および第 3の異方導電性シート 4 2として、厚み方向に延びる複数の導電路形成部と、これらの導電路形成部を互いに 絶縁する絶縁部とからなり、導電性粒子が導電路形成部中にのみ含有され、これに より該導電性粒子は面方向に不均一に分散されるとともに、シート片面側に導電路 形成部が突出しているものを用いた力 必ずしもこれに限定されるものではない。  In the above embodiment, as the second anisotropic conductive sheet 26 and the third anisotropic conductive sheet 42, a plurality of conductive path forming portions extending in the thickness direction and these conductive path forming portions are insulated from each other. It consists of an insulating part, and the conductive particles are contained only in the conductive path forming part, whereby the conductive particles are unevenly distributed in the surface direction, and the conductive path forming part protrudes on one side of the sheet. The force using what is used is not necessarily limited to this.
[0245] また、図 1,図 2,図 40,図 41,図 43,図 44,図 54,図 55,図 57,図 58に示したよ うに、テスター側コネクタ 41におけるコネクタ基板 43とベース板 46との間に、支持ピ ン 49を配置してもよい。これらの支持ピン 49によって、第 1の支持ピン 33、第 2の支 持ピン 37 (図 44および図 58では第 1の支持ピン 33、第 2の支持ピン 37および保持 板支持ピン 39)が与える作用と同様にして、面圧を分散させる作用を与えることも可 能である。この面圧分散作用を与えるためには、支持ピン 49の位置と、第 2の支持ピ ン 37の位置とが面方向にぉ 、て互いに異なるようにこれらを配置することが好ま Uヽ [0245] As shown in Fig. 1, Fig. 2, Fig. 40, Fig. 41, Fig. 43, Fig. 44, Fig. 54, Fig. 55, Fig. 57, and Fig. 58, the connector board 43 and the base plate in the tester side connector 41 A support pin 49 may be arranged between the pin 46 and the pin 46. These support pins 49 provide the first support pin 33 and the second support pin 37 (the first support pin 33, the second support pin 37, and the holding plate support pin 39 in FIGS. 44 and 58). In the same manner as the action, it is possible to give an action of dispersing the surface pressure. In order to provide this surface pressure dispersion action, it is preferable to arrange them so that the position of the support pin 49 and the position of the second support pin 37 are different from each other in the surface direction.
[0246] 以下に、本発明の具体的な実施例および比較例を示す。 [0246] Specific examples and comparative examples of the present invention are shown below.
[実施例 1] レール搬送型回路基板自動検査機 (日本電産リード社製,品名: STARREC V5 )の検査部に適合する、図 1に示したような、下記の評価用回路基板を検査するため の回路基板検査装置を作製した。 [Example 1] Circuit board inspection to inspect the following circuit board for evaluation as shown in Fig. 1, which is suitable for the inspection section of rail transport type automatic circuit board inspection machine (product name: STARREC V5) A device was made.
(1)評価用回路基板 1  (1) Circuit board for evaluation 1
下記の仕様の評価用回路基板 1を用意した。  An evaluation circuit board 1 having the following specifications was prepared.
寸法: 100mm (縦) X 100mm (横) X O. 8mm (厚み)  Dimensions: 100mm (length) X 100mm (width) X O. 8mm (thickness)
上面側の被検査電極の数: 3600個  Number of electrodes on top side: 3600
上面側の被検査電極の径: 0. 2mm  Diameter of the electrode to be inspected on the upper surface side: 0.2 mm
上面側の被検査電極の最小配置ピッチ: 0. 4mm  Minimum pitch of electrodes to be inspected on the upper surface side: 0.4 mm
下面側の被検査電極の数: 2600個  Number of electrodes on the bottom side: 2600
下面側の被検査電極の径: 0. 2mm  Diameter of the electrode to be inspected on the bottom side: 0.2 mm
下面側の被検査電極の最小配置ピッチ: 0. 4mm  Minimum pitch of electrodes to be inspected on the bottom side: 0.4 mm
(2)ピッチ変換用基板 23  (2) Pitch conversion board 23
ガラス繊維補強型エポキシ榭脂からなる絶縁基板の両面全面に、厚みが 18 mの 銅からなる金属薄層を形成した積層材料 (松下電工社製,品名: R— 1766)に、数値 制御型ドリリング装置によって、それぞれ積層材料の厚み方向に貫通する直径 0. 2 mmの円形の貫通孔を合計で 7200個形成した。  Numerically controlled drilling on a laminated material (product name: R-1766, manufactured by Matsushita Electric Industrial Co., Ltd.) in which a thin metal layer made of copper with a thickness of 18 m is formed on both surfaces of an insulating substrate made of glass fiber reinforced epoxy resin. A total of 7200 circular through-holes with a diameter of 0.2 mm, each penetrating in the thickness direction of the laminated material, were formed by the apparatus.
[0247] 次 、で、貫通孔が形成された積層材料に対して、 EDTAタイプ銅メツキ液を用いて 無電解メツキ処理を施すことにより、各貫通孔の内壁に銅メツキ層を形成し、さらに、 硫酸銅メツキ液を用いて電解銅メツキ処理を施すことにより、各貫通孔内に、積層材 料表面の各金属薄層を互いに電気的に接続する、厚さ約 10 mの円筒状のバイァ ホールを形成した。 [0247] Next, an electroless plating process is performed on the laminated material in which the through holes are formed using an EDTA type copper plating solution, thereby forming a copper plating layer on the inner wall of each through hole. By applying an electrolytic copper plating process using a copper sulfate plating solution, a cylindrical via having a thickness of about 10 m is electrically connected to each thin metal layer on the surface of the laminated material in each through hole. A hole was formed.
[0248] 次いで、積層材料表面の金属薄層上に、厚みが 25 μ mのドライフィルムレジスト( 東京応化製,品名: FP— 225)をラミネートしてレジスト層を形成するとともに、この積 層材料の他面側の金属薄層上に保護シールを配置した。このレジスト層上にフォトマ スクフィルムを配置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用い て露光処理を施した後、現像処理を行うことにより、エッチング用のレジストパターン を形成した。そして、レジストパターンを形成した面の金属薄層に対してエッチング処 理を施すことにより、絶縁基板の表面に、横方向 60 m、縦方向 120 mの矩形の 7 200個の接続電極と、各接続電極とバイァホールとを電気的に接続する線幅が 100 mのパターン配線部を形成し、次いで、レジストパターンを除去した。 [0248] Next, a 25 μm thick dry film resist (Tokyo Ohka, product name: FP-225) is laminated on the thin metal layer on the surface of the laminated material to form a resist layer. A protective seal was placed on the thin metal layer on the other side. A photomask film is placed on the resist layer, and the resist layer is subjected to an exposure process using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), followed by a development process, whereby a resist pattern for etching is formed. Formed. Then, the thin metal layer on the surface on which the resist pattern is formed is etched. As a result, 7 200 connecting electrodes of 60 m in the horizontal direction and 120 m in the vertical direction are formed on the surface of the insulating substrate, and the line width for electrically connecting each connecting electrode and the via hole is 100 m. A pattern wiring portion was formed, and then the resist pattern was removed.
[0249] 接続電極およびパターン配線部が形成された絶縁基板の表面に保護シールを施 した。次いで、積層材料の他面側の金属薄層上の保護シールを除去し、この面の金 属薄層上に、厚みが 25 mのドライフィルムレジスト (東京応化製,品名: FP— 225) をラミネートしてレジスト層を形成した。その後、このレジスト層上にフォトマスクフィル ムを配置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用いて露光処 理を施した後、現像処理を行うことにより、積層材料における金属薄層上にエツチン グ用のレジストパターンを形成した。次いでエッチング処理を施すことにより、絶縁性 基板の裏面に 7200個の端子電極と、各端子電極とバイァホールとを電気的に接続 するパターン配線部を形成し、レジストパターンを除去した。  [0249] A protective seal was applied to the surface of the insulating substrate on which the connection electrode and the pattern wiring portion were formed. Next, the protective seal on the thin metal layer on the other side of the laminated material was removed, and a dry film resist (product name: FP-225, 25 m thick) was applied on the thin metal layer on this side. Lamination was performed to form a resist layer. Thereafter, a photomask film is disposed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.). A resist pattern for etching was formed on the thin metal layer. Next, by performing an etching process, 7200 terminal electrodes and a pattern wiring portion for electrically connecting each terminal electrode and via hole were formed on the back surface of the insulating substrate, and the resist pattern was removed.
[0250] 次 、で、端子電極およびパターン配線部が形成された絶縁基板の裏面に、厚みが 38 μ mのドライフィルムソルダーレジスト(-チゴーモートン製、品名:コンフォマスク 2 015)をラミネートして絶縁層を形成し、この絶縁層上にフォトマスクフィルムを配置し 、次いで、絶縁層に対して、平行光露光機 (オーク製作所製)を用いて露光処理を施 した後、現像処理することにより、電極を露出する直径 0. 4mmの開口を 7200個形 成した。  [0250] Next, a 38 μm thick dry film solder resist (product name: Congo Mask 2 015) was laminated on the back surface of the insulating substrate on which the terminal electrodes and the pattern wiring portion were formed. An insulating layer is formed, a photomask film is disposed on the insulating layer, and then the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing) and then developed. 7200 openings with a diameter of 0.4 mm were formed to expose the electrodes.
[0251] 以上のようにして、第 1の検査治具 11a用のピッチ変換用基板 23aを作製した。この ピッチ変換用基板 23aは、縦横の寸法が 120mm X 160mm,厚みが 0. 5mm、接 続電極は横方向 60 m、縦方向 120 mの矩形で、対をなす接続電極間の離間距 離(電極間の絶縁部の幅) 30 μ m、端子電極の直径が 0. 4mm、端子電極の配置ピ ツチが 0. 45mmであり、接続電極が形成された面側の絶縁層の表面粗さが 0. 02 μ mであった。  [0251] As described above, the pitch conversion substrate 23a for the first inspection jig 11a was produced. This pitch conversion board 23a has a vertical and horizontal dimension of 120mm x 160mm, a thickness of 0.5mm, and the connection electrodes are rectangular with a horizontal dimension of 60m and a vertical dimension of 120m. The width of the insulating part between the electrodes) 30 μm, the terminal electrode diameter is 0.4 mm, the terminal electrode placement pitch is 0.45 mm, and the surface roughness of the insulating layer on the side where the connection electrode is formed is It was 0.02 μm.
[0252] また、上記と同様にして、表面に 5200個の接続電極を有すると共に裏面に 5200 個の端子電極を有する、第 2の検査治具 l ib用のピッチ変換用基板 23bを作製した 。このピッチ変換用基板 23bは、縦横の寸法が 120mm X 160mm、厚みが 0. 5mm 、接続電極は横方向 60 m、縦方向 120 mの矩形で、対をなす接続電極間の離 間距離 (電極間の絶縁部の幅) 30 m、端子電極の直径が 0. 4mm、端子電極の配 置ピッチが 0. 45mmであり、表面 (接続電極が形成された面)側の絶縁層の表面粗 さが 0. 02 mのものである。 [0252] Further, in the same manner as described above, a pitch conversion substrate 23b for the second inspection jig ib having 5200 connection electrodes on the front surface and 5200 terminal electrodes on the back surface was produced. This pitch conversion board 23b has a vertical and horizontal dimension of 120 mm x 160 mm, a thickness of 0.5 mm, a connection electrode of 60 m in the horizontal direction and a rectangle of 120 m in the vertical direction. Distance (insulation width between electrodes) 30 m, terminal electrode diameter 0.4 mm, terminal electrode placement pitch 0.45 mm, insulation layer on the surface (surface on which connection electrodes are formed) side The surface roughness is 0.02 m.
(3)ピッチ変換用アダプタ一体 60  (3) Integrated adapter for pitch conversion 60
図 7〜図 16に示した方法により、第 1の異方導電性シート 22を上記のピッチ変換用 基板 23の表面側に一体ィ匕して、ピッチ変換用アダプタ一体 60を得た。  The first anisotropic conductive sheet 22 was integrated with the surface side of the pitch conversion substrate 23 by the method shown in FIGS. 7 to 16 to obtain a pitch conversion adapter integrated 60.
(i)導電性エラストマ一層 61Bの形成  (i) Formation of conductive elastomer layer 61B
付加型液状シリコーンゴム 100重量部中に、ニッケルよりなる芯粒子に金が被覆さ れてなる導電性粒子 (芯粒子に対する金の割合が 2重量%) 400重量部を分散させ ることにより、導電性エラストマ一用材料を調製した。この導電性エラストマ一用材料 を、厚みが 5mmのステンレスよりなる離型性支持板 65の表面に、スクリーン印刷によ り塗布した。  Conductive particles are dispersed by dispersing 400 parts by weight of conductive particles in which gold is coated on nickel core particles in 100 parts by weight of addition-type liquid silicone rubber (the ratio of gold to core particles is 2% by weight). An elastomeric material was prepared. This conductive elastomer material was applied to the surface of a releasable support plate 65 made of stainless steel having a thickness of 5 mm by screen printing.
[0253] これにより、離型性支持板 65上に、厚みが 0. 05mmの導電性エラストマ一用材料 層 61Aを形成した(図 7および図 8)。  [0253] Thus, a conductive elastomer material layer 61A having a thickness of 0.05 mm was formed on the releasable support plate 65 (Figs. 7 and 8).
次いで、導電性エラストマ一用材料層 61Aに対して、電磁石によって厚み方向に 2 テスラの磁場を作用させながら、 120°C、 1時間の条件で硬化処理を行った。その結 果、支持板 65上に支持された厚みが 0. 05mmの導電性エラストマ一層 61Bを形成 した(図 9および図 10)。  Next, the conductive elastomer material layer 61A was subjected to a curing treatment at 120 ° C. for 1 hour while applying a magnetic field of 2 Tesla in the thickness direction by an electromagnet. As a result, a conductive elastomer layer 61B having a thickness of 0.05 mm supported on the support plate 65 was formed (FIGS. 9 and 10).
(ii)導電路形成部 61の形成  (ii) Formation of the conductive path forming part 61
離型性支持板 65上に支持された導電性エラストマ一層 61Bの表面に、無電解メッ キ処理を施すことによって、厚みが 0. 3 mの銅よりなる金属薄層 66を形成した。  A thin metal layer 66 made of copper having a thickness of 0.3 m was formed by subjecting the surface of the conductive elastomer layer 61B supported on the releasable support plate 65 to electroless mesh treatment.
[0254] そして、この金属薄層 66上に、フォトリソグラフィ一の手法により、ピッチ変換用基板 23aに設けられた接続電極 25aに対応する位置に、それぞれ寸法が、 60 m X 120 μ mの矩形の 7200個の開口 67aが形成された、厚みが 25 μ mのレジスト層 67を形 成した(図 12)。 [0254] Then, on this thin metal layer 66, a rectangle of 60 m x 120 μm in size is formed at a position corresponding to the connection electrode 25a provided on the pitch conversion substrate 23a by one photolithography technique. Thus, a resist layer 67 having a thickness of 25 μm was formed (FIG. 12).
その後、金属薄層 66の表面に電解メツキ処理を施すことにより、レジスト層 67の開 口 67a内に、厚みが 20 μ mの銅よりなる金属マスク 68を形成した(図 13)。  Thereafter, an electrolytic plating process was performed on the surface of the thin metal layer 66 to form a metal mask 68 made of copper having a thickness of 20 μm in the opening 67a of the resist layer 67 (FIG. 13).
[0255] そして、この状態で、導電性エラストマ一層 61Bと、金属薄層 66と、レジスト層 67に 対して、炭酸ガスレーザー装置によって、レーザー加工を施した(図 15 (b)および図 16 (b) ) G [0255] In this state, the conductive elastomer layer 61B, the thin metal layer 66, and the resist layer 67 On the other hand, laser processing was performed with a carbon dioxide laser device (Fig. 15 (b) and Fig. 16 (b)) G
これにより、それぞれ離型性支持板 65上に支持された 7200個の導電路形成部 61 を形成した、次いで、導電路形成部 61以外の導電性エラストマ一層 61Bを剥離除去 し(図 14、図 15 (c)および図 16 (c) )、その後、導電路形成部 61の表面から残存する 金属薄層 66と、金属マスク 68とをエッチング処理により剥離した。  As a result, 7200 conductive path forming portions 61 each supported on the releasable support plate 65 were formed, and then the conductive elastomer layer 61B other than the conductive path forming portion 61 was peeled and removed (FIG. 14, FIG. 15 (c) and FIG. 16 (c)), and thereafter, the metal thin layer 66 remaining from the surface of the conductive path forming portion 61 and the metal mask 68 were removed by etching.
[0256] なお、レーザー加工は、炭酸ガスレーザー加工機「ML— 605GTX」(三菱電機( 株)製)を用い、レーザービーム径が直径 60 m,レーザー出力が 0. 8mJの条件で 、 1つの加工点にレーザービームを 10ショット照射することにより行った。  [0256] In addition, the laser processing uses a carbon dioxide laser processing machine "ML-605GTX" (manufactured by Mitsubishi Electric Corporation), and the laser beam diameter is 60 m and the laser output is 0.8 mJ. This was done by irradiating the processing point with 10 shots of laser beam.
(iii)絶縁部 62の形成  (iii) Formation of insulating part 62
ピッチ変換用基板 23aの表面に、付加型液状シリコーンゴムを塗布することにより、 厚みが 0. 05mmの絶縁部用材料層 62Aを形成した。そして、この絶縁部用材料層 62A上に、 7200個の導電路形成部 61が形成された離型性支持板 65を位置合わ せして、重ね合わせることにより、ピッチ変換用基板 23aの接続用電極 25の各々と、 これに対応する導電路形成部 61とを対接させた。  By applying addition-type liquid silicone rubber to the surface of the pitch conversion substrate 23a, an insulating material layer 62A having a thickness of 0.05 mm was formed. Then, on this insulating part material layer 62A, the releasable support plate 65 on which 7200 conductive path forming parts 61 are formed is aligned and overlapped to connect the pitch converting substrate 23a. Each of the electrodes 25 and the corresponding conductive path forming part 61 were brought into contact with each other.
[0257] そして、離型性支持板 65に、 20kgfの圧力を加えることにより、絶縁部用材料層 62 Aの厚みを、 0. 04mmとするとともに、導電路形成部 61の厚みを、 0. 05mm力ら 0. 04mmに弹性的に圧縮させた。  [0257] Then, by applying a pressure of 20 kgf to the releasable support plate 65, the thickness of the insulating part material layer 62A is set to 0.04 mm, and the thickness of the conductive path forming part 61 is set to 0.0. 05mm force was compressed to 0.04mm inertia.
この状態で、 120°C、 1時間の条件で、絶縁部用材料層 62Aの硬化処理を行うこと により、隣接する導電路形成部 61の間に、絶縁部 62を形成した。  In this state, the insulating portion 62 was formed between the adjacent conductive path forming portions 61 by curing the insulating portion material layer 62A under the conditions of 120 ° C. and 1 hour.
[0258] その後、離型性支持板 65から離型させることにより、第 1の検査治具 11a用のピッ チ変換アダプタ一体 60aを製造した。  [0258] After that, by releasing from the releasable support plate 65, a pitch conversion adapter integrated 60a for the first inspection jig 11a was manufactured.
このピッチ変換アダプタ一体 60aの異方導電性シート 22aは、導電路形成部 61の 数力 7200個、導電路形成部 61の厚みが、 0. 05mm,絶縁部 62の厚み力 0. 04 mm、対を成す隣接する導電路形成部 61の間の絶縁部の幅が 30 m、絶縁部 62 力もの導電路形成部 61の突出高さ力 0. 01mmである。  The anisotropic conductive sheet 22a of this pitch conversion adapter integrated 60a has 7200 number of force of the conductive path forming part 61, the thickness of the conductive path forming part 61 is 0.05 mm, the thickness of the insulating part 62 is 0.04 mm, The width of the insulating part between the adjacent conductive path forming parts 61 forming a pair is 30 m, and the projecting height force of the conductive path forming part 61 is 62 mm.
[0259] 第 1の検査治具 11a用のピッチ変換アダプタ一体 60aと同様にして、導電路形成部 61の数力 5200個、導電路形成部 61の厚みが、 0. 05mm,絶縁部 62の厚みが 0 . 04mm,対を成す隣接する導電路形成部 61の間の絶縁部の幅が 30 /z m 絶縁部 62からの導電路形成部 61の突出高さが 0. Olmmである、第 2の検査治具 l ib用の ピッチ変換アダプタ一体 60bを作製した。 [0259] In the same manner as the pitch conversion adapter integrated 60a for the first inspection jig 11a, the number of conductive path forming parts 61 is 5200, the thickness of the conductive path forming part 61 is 0.05 mm, and the insulating part 62 Thickness is 0 04mm, the width of the insulating part between the adjacent conductive path forming parts 61 forming a pair is 30 / zm. The second inspection treatment in which the projecting height of the conductive path forming part 61 from the insulating part 62 is 0. Olmm. A pitch conversion adapter integrated 60b for the tool l ib was produced.
(4)回路基板側コネクタ 21  (4) Circuit board connector 21
このピッチ変換用アダプタ一体 60の裏面側に、厚み方向に延びる多数の導電路形 成部と、これらを互いに絶縁する絶縁部とからなり、片面に導電路形成部が突出した 偏在型異方導電性シートからなる第 2の異方導電性シート 26を配置することにより、 回路基板側コネクタ 21とした。  On the back side of this pitch conversion adapter integrated unit 60, there are a plurality of conductive path forming parts extending in the thickness direction and insulating parts that insulate them from each other. The circuit board side connector 21 was obtained by arranging the second anisotropic conductive sheet 26 made of a conductive sheet.
[0260] なお、ピッチ変換用基板 23と中継ピンユニット 31との間に配置される第 2の異方導 電性シート 26は、図 33に示される形状であり、具体的には以下の構成のものを使用 した。 [0260] The second anisotropic conductive sheet 26 disposed between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 33, and specifically has the following configuration. The ones used were used.
〔第 2の異方導電性シート 26〕  [Second anisotropic conductive sheet 26]
寸法: 11 Omm X 150mm  Dimensions: 11 Omm X 150mm
導電路形成部の厚み: 0. 6mm  Thickness of conductive path forming part: 0.6mm
導電路形成部の外径: 0. 35mm  Outside diameter of conductive path forming part: 0.35mm
導電路形成部の突出高さ: 0. 05mm  Projection height of conductive path forming part: 0.05 mm
導電性粒子:材質;金メッキ処理を施したニッケル粒子、平均粒子径; 35 ;ζ ΐη、導電 路形成部における導電性粒子の含有率; 30体積%  Conductive particles: Material: Nickel particles plated with gold, average particle diameter; 35; ζ ΐη, content of conductive particles in the conductive path forming part; 30% by volume
弾性高分子物質:材質;シリコーンゴム、硬度; 30  Elastic polymer material: Material; Silicone rubber, Hardness; 30
(5)中継ピンユニット 31  (5) Relay pin unit 31
第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35の材料として、固有抵抗が I X 1010 Ω 'cm以上の絶縁性材料、ガラス繊維補強型エポキシ榭脂よりなり、その厚みが 1. 9mmのものを用いた。 The material of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35 is made of an insulating material having a specific resistance of IX 10 10 Ω'cm or more, and a glass fiber reinforced epoxy resin. 1. A 9mm one was used.
[0261] そして、第 1の絶縁板 34と中間保持板 36との間の距離 L1が、 36. 3mm,第 2の絶 縁板 35と中間保持板 36との間の距離 L2が、 3mmとなるように、第 1の支持ピン 33 ( 直径 2mm、長さ 36. 3mm)と、第 2の支持ピン 37 (直径 2mm、長さ 3mm)によって 固定支持するようにするとともに、第 1の絶縁板 34と第 2の絶縁板 35との間に、下記 の構成力もなる導電ピン 32を移動自在となるように貫通孔 83 (直径 0. 4mm)に配置 して作製した。 [0261] The distance L1 between the first insulating plate 34 and the intermediate holding plate 36 is 36.3 mm, and the distance L2 between the second insulating plate 35 and the intermediate holding plate 36 is 3 mm. The first support pin 33 (diameter 2 mm, length 36.3 mm) and the second support pin 37 (diameter 2 mm, length 3 mm) are fixedly supported and the first insulating plate Between the pin 34 and the second insulating plate 35, the conductive pin 32 having the following constituent force is arranged in the through hole 83 (0.4 mm in diameter) so that it can move freely. And produced.
〔導電ピン〕  [Conductive pin]
材質:金メッキ処理を施した真鍮  Material: Brass plated with gold
先端部 81aの寸法:外径 0. 35mm、全長 2. lmm  Tip 81a dimensions: outer diameter 0.35mm, total length 2. lmm
中央部 32の寸法外径 0. 45mm,全長 41mm  Center part 32 dimension outer diameter 0.45mm, total length 41mm
基端部 8 lbの寸法:外径 0. 35mm、全長 2. lmm  Base end 8 lb dimensions: OD 0.35mm, total length 2. lmm
なお、第 1の支持ピン 33の中間保持板 36との第 1の当接支持位置 38Aと、第 2の 支持ピン 37の中間保持板 36との第 2の当接支持位置 38Bは、図 39に示したように、 格子状に配置した。互いに隣接する第 1の当接支持位置 38Aの間の離間距離、第 2 の当接支持位置 38Bの間の離間距離は、 17. 5mmとした。  The first contact support position 38A of the first support pin 33 with the intermediate holding plate 36 and the second contact support position 38B of the second support pin 37 with the intermediate holding plate 36 are shown in FIG. As shown in Fig. 1, they were arranged in a grid pattern. The separation distance between the first contact support positions 38A adjacent to each other and the separation distance between the second contact support positions 38B were 17.5 mm.
(6)テスター側コネクタ 41  (6) Tester side connector 41
テスター側コネクタ 41を、図 1に示したように、第 3の異方導電性シート 42と、コネク タ基板 43と、ベース板 46とから構成した。なお、第 3の異方導電性シート 42は、前述 した第 2の異方導電性シート 26と同様のものを用いた。  As shown in FIG. 1, the tester-side connector 41 is composed of a third anisotropic conductive sheet 42, a connector board 43, and a base plate 46. The third anisotropic conductive sheet 42 was the same as the second anisotropic conductive sheet 26 described above.
性能試験  performance test
1.ピッチ変換用アダプタ一体の絶縁性の評価  1.Evaluation of insulation of pitch conversion adapter
以下のようにして、ピッチ変換用アダプタ一体 60の対をなす接続電極間の絶縁抵 抗を評価した。  The insulation resistance between the connecting electrodes forming a pair of pitch conversion adapters 60 was evaluated as follows.
[0262] 接続用電極間の絶縁抗性の評価には、縦方向 100mm、横方向 100mm、厚さ 0.  [0262] In order to evaluate the insulation resistance between the connecting electrodes, the vertical direction is 100 mm, the horizontal direction is 100 mm, and the thickness is 0.
8mmの、表面を絶縁性コートを施したガラスエポキシ基板を使用した。  An 8 mm glass epoxy substrate with an insulating coating on the surface was used.
作成した検査装置を、レール搬送型回路基板自動検査機「STARREC V5」の検 查部にセットし、検査装置に対して上記のガラスエポキシ基板 76をセットした(図 60 を参照)。  The created inspection device was set in the inspection section of the rail transport type circuit board automatic inspection machine “STARREC V5”, and the glass epoxy board 76 was set on the inspection device (see FIG. 60).
[0263] そして、レール搬送型回路基板自動検査機 rSTARREC V5jのプレス圧力を、 1 00〜210kgfの範囲内において段階的に変化させた。そして、各プレス圧力条件毎 に各 10回づつ、第 1の検査治具 11a用のピッチ変換アダプタ一体 60aに設けられた 、各々の対をなす検査電極 25の間の絶縁抵抗を測定した。  [0263] Then, the press pressure of the rail conveyance type automatic circuit board inspection machine rSTARREC V5j was changed stepwise within a range of 100 to 210 kgf. Then, the insulation resistance between each pair of inspection electrodes 25 provided in the integrated pitch conversion adapter 60a for the first inspection jig 11a was measured 10 times for each press pressure condition.
具体的には、対をなす接続用電極 25に対応する端子電極 24を通じて、 1ミリアン ペアの電流を印加しつつ、対をなす接続用電極 25の導通抵抗値を測定した。 Specifically, through the terminal electrode 24 corresponding to the connecting electrode 25 that makes a pair, While applying a pair of currents, the conduction resistance value of the connection electrode 25 forming a pair was measured.
[0264] この方法にて、対をなす検査電極 25間の絶縁抵抗値、すなわち一体的に設けられ た第 1の異方導電性シート 21における対をなす導電路形成部 61間の絶縁部 62の 絶縁抵抗値を測定した。 [0264] With this method, the insulation resistance value between the paired test electrodes 25, that is, the insulation part 62 between the paired conductive path forming parts 61 in the first anisotropically conductive sheet 21 provided integrally. The insulation resistance value of was measured.
測定された絶縁抵抗値が 100 Ω以上となった接続用電極の電極対を絶縁良好と 判定し、総検査点数に対する絶縁良好と判定された点の割合 (以下「絶縁性合格点 割合」という。)を算出した。  The ratio of the electrode pair of the connection electrode for which the measured insulation resistance value was 100 Ω or more was judged to be good insulation, and the point judged to be good insulation with respect to the total number of inspection points (hereinafter referred to as the “insulation pass point ratio”). ) Was calculated.
[0265] 第 1の検査治具 11a用のピッチ変換アダプタ一体 60aにおける接続用電極 25は、 7[0265] The connection electrode 25 in the pitch conversion adapter integrated 60a for the first inspection jig 11a is 7
200個力 600個の対となっており、すなわち 3600個の接続電極対が存在し、各プ レス圧力条件において 10回の測定を行ったことから、絶縁性合格点割合は、式(36There are 600 pairs of 200 forces, that is, there are 3600 connecting electrode pairs, and 10 measurements were performed under each press pressure condition.
00) X 10 = 36000によって算出される 36000点の検査点に占める NG検査点の割 合を示す。 00) Indicates the percentage of NG inspection points in the 36000 inspection points calculated by X 10 = 36000.
[0266] この検査装置においては、実用上、絶縁性合格点割合が 99. 9%以上であること が必要とされており、絶縁性合格点割合が 99. 9%未満の場合には、検査時におい て、電流供給用電極として使用する接続用電極から、電圧測定用電極として使用す る接続用電極へリーク電流が流れることになる。  [0266] In this inspection device, it is necessary for practical use that the insulating passing score ratio is 99.9% or more, and if the insulating passing score ratio is less than 99.9%, an inspection is required. Occasionally, a leakage current flows from the connection electrode used as the current supply electrode to the connection electrode used as the voltage measurement electrode.
その結果、被検査回路基板の良品である被検査回路基板に対して、不良品である との誤った検査結果が得られる場合があるため、信頼性の高い回路基板の電気的検 查を行うことができなくなるおそれがある。  As a result, an erroneous test result may be obtained for a circuit board to be inspected, which is a non-defective product, and a highly reliable circuit board electrical inspection is performed. There is a risk that it will not be possible.
[0267] 測定結果を表 1に示した。 [0267] The measurement results are shown in Table 1.
2.最低プレス圧力の測定  2.Measurement of minimum press pressure
作成した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットし、検査装置に対して用意した評価用回路基板 1をセットした。  The created inspection device was set in the inspection section of the rail transport type automatic circuit board inspection machine rSTARREC V5J, and the evaluation circuit board 1 prepared for the inspection device was set.
そして、レール搬送型回路基板自動検査機「STARREC V5」のプレス圧力を、 1 And press pressure of rail conveyance type automatic circuit board inspection machine “STARREC V5”, 1
00〜210kgfの範囲内において段階的に変化させ、各プレス圧力条件毎に各 10回 づっ、評価用回路基板 1の被検査電極について、電流供給用の接続用電極に 1ミリ アンペアの電流を流したときの導通抵抗値を測定した。 Change the voltage stepwise within the range of 00 to 210 kgf, and apply a current of 1 mA to the connection electrode for current supply for the electrode to be inspected on the evaluation circuit board 1 for each press pressure condition 10 times. The conduction resistance value was measured.
[0268] 測定された導通抵抗値が 10 Ω以上となった検査点(以下、「NG検査点」という。)を 導通不良と判定し、総検査点における NG検査点の割合 (以下、「NG検査点割合」と いう。)を算出し、 NG検査点割合が 0. 01%以下となった最も低いプレス圧力を最低 プレス圧力とした。 [0268] The inspection point (hereinafter referred to as “NG inspection point”) where the measured conduction resistance value is 10 Ω or more. The NG inspection point ratio (hereinafter referred to as “NG inspection point ratio”) in the total inspection points is calculated as the continuity failure, and the lowest press pressure at which the NG inspection point ratio is 0.01% or less is calculated. The minimum pressing pressure was used.
この検査装置においては、実用上、 NG検査点割合が 0. 01%以下であることが必 要とされており、 NG検査点割合が 0. 01%を超える場合には、良品である被検査回 路基板に対して、不良品であるとの誤った検査結果が得られる場合があることから、 信頼性の高い回路基板の電気的検査を行うことができなくなるおそれがある。  For this inspection device, the NG inspection point ratio is required to be 0.01% or less for practical use. If the NG inspection point ratio exceeds 0.01%, the product to be inspected is a good product. There is a possibility that an erroneous inspection result that the circuit board is defective may be obtained, so that it may not be possible to perform a reliable electrical inspection of the circuit board.
[0269] この導通抵抗値の測定においては、一の導通抵抗値の測定が終了した後に、測定 に係るプレス圧力を開放して検査装置を無加圧状態に戻し、次の導通抵抗値の測 定は、再度、所定の大きさのプレス圧力を作用させることによって行った。 [0269] In the measurement of the conduction resistance value, after the measurement of one conduction resistance value is completed, the press pressure related to the measurement is released to return the inspection apparatus to the non-pressurized state, and the next conduction resistance value is measured. The determination was performed again by applying a press pressure of a predetermined magnitude.
評価用回路基板 1の上面被検査電極数は 3600点、下面被検査電極数は 2600点 であり、各プレス圧力条件において 10回の測定を行ったことから、 NG検査点割合は 、式(3600 + 2600) X 10 = 62000【こよって算出される 62000, の検査, 【こ占める NG検査点の割合を示す。  The number of electrodes to be inspected on the upper surface of the evaluation circuit board 1 is 3600 points, and the number of electrodes to be inspected on the bottom surface is 2600 points. Since the measurement was performed 10 times under each press pressure condition, + 2600) X 10 = 62000 [62000, calculated by this, [Indicating the percentage of NG inspection points occupied.
[0270] 測定結果を表 2に示した。 [0270] The measurement results are shown in Table 2.
なお、「最低プレス圧が小さい」とは、低いプレス圧力で被検査回路基板の電気的 検査が行えることを意味している。検査時の加圧圧力を低く設定できれば、検査時の 加圧圧力による被検査回路基板、異方導電性シートおよびピッチ変換用基板の劣化 が抑制できる。  “Low minimum press pressure” means that the circuit board to be inspected can be electrically inspected with a low press pressure. If the pressurized pressure at the time of inspection can be set low, deterioration of the circuit board to be inspected, the anisotropic conductive sheet, and the substrate for pitch conversion due to the pressurized pressure at the time of inspection can be suppressed.
し力も、検査装置の構成部材として、耐久性強度の低い部品を使用することが可能 となることから、検査装置の構造を小さくコンパクトにすることができる。  In addition, since it is possible to use a component having low durability as a component of the inspection apparatus, the structure of the inspection apparatus can be made small and compact.
[0271] その結果、検査装置の耐久性の向上、検査装置の製造のコスト削減が達成できる As a result, the durability of the inspection device can be improved and the cost of manufacturing the inspection device can be reduced.
3.異方導電性シートの耐久性の測定 3.Measurement of durability of anisotropic conductive sheet
作成した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットした。  The created inspection device was set in the inspection section of the rSTARREC V5J rail transport type automatic circuit board inspection machine.
検査装置に対して用意した評価用回路基板 1をセットして、レール搬送型回路基板 自動検査機「STARREC V5」のプレス圧力条件を 130kgfとし、所定回数の加圧を 行った。 Set the evaluation circuit board 1 prepared for the inspection device, set the press pressure condition of the rail transport type circuit board automatic inspection machine “STARREC V5” to 130 kgf, and apply a predetermined number of pressurizations. went.
[0272] その後、評価用回路基板 1の被検査電極について、プレス圧力 130kgfの条件下 にて、検査用電極に 1ミリアンペアの電流を印加したときの導通抵抗値を 10回測定し [0272] Then, for the electrode to be inspected on the circuit board for evaluation 1, the conduction resistance value was measured 10 times when a current of 1 milliampere was applied to the electrode for inspection under the condition of a press pressure of 130 kgf.
、所定回数の加圧を行い同様に導通抵抗値を 10回測定する作業を繰り返した。 測定された導通抵抗値が 10 Ω以上となった検査点 (NG検査点)を導通不良と判 定し、総検査点における NG検査点の割合 (NG検査点割合)を算出した。 Then, a predetermined number of times of pressurization was performed, and the work of measuring the conduction resistance value 10 times was repeated. The inspection points (NG inspection points) where the measured conduction resistance value was 10 Ω or more were judged as continuity defects, and the ratio of NG inspection points to the total inspection points (NG inspection point ratio) was calculated.
[0273] 次いで、検査装置の異方導電性シートを新しいものに交換し、プレス圧力条件を 1[0273] Next, the anisotropic conductive sheet of the inspection device is replaced with a new one, and the press pressure condition is 1
50kgfに変更したこと以外は上記と同様の条件によって所定回数の加圧を行い、上 記と同様の手法によって NG検査点割合を算出した。 Except for changing to 50 kgf, pressurization was performed a predetermined number of times under the same conditions as above, and the NG inspection point ratio was calculated using the same method as above.
なお、一の導通抵抗値の測定が終了した後に、測定に係るプレス圧力を開放して 検査装置を無加圧状態に戻し、次の導通抵抗値の測定は、所定の大きさのプレス圧 力を再度作用させることによって行った。  After the measurement of one conduction resistance value is completed, the press pressure related to the measurement is released and the inspection device is returned to the non-pressurized state, and the next measurement of the conduction resistance value is a press pressure of a predetermined magnitude. Was performed again.
[0274] 測定結果を表 3に示した。 [0274] Table 3 shows the measurement results.
4.被検査回路基板の導通不良の評価  4.Evaluation of continuity failure of circuit board under test
作成した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットし、検査装置に対して用意した評価用回路基板 1をセットした。  The created inspection device was set in the inspection section of the rail transport type automatic circuit board inspection machine rSTARREC V5J, and the evaluation circuit board 1 prepared for the inspection device was set.
そして、レール搬送型回路基板自動検査機「STARREC V5」のプレス圧力条件 を 150kgfとし、評価用回路基板 1の被検査電極について、プレス圧力 150kgfの条 件下にて、電流供給用の接続用電極より 1ミリアンペアの電流を供給したときの導通 抵抗値を電圧測定用の接続用電極にて 10回測定した。  Then, the press pressure condition of the rail conveyance type automatic circuit board inspection machine “STARREC V5” is 150 kgf, and the electrodes to be inspected on the evaluation circuit board 1 are connected electrodes for current supply under the condition of the press pressure of 150 kgf. When the current of 1 milliampere was supplied, the conduction resistance value was measured 10 times with the connection electrode for voltage measurement.
[0275] その結果、設定した導通抵抗値(100 Ω )以上の導通抵抗値が検出された検査点([0275] As a result, the inspection point where a conduction resistance value greater than the set conduction resistance value (100 Ω) was detected (
NG検査点)を導通不良と判断し、総検査点における NG検査点の割合 (NG検査点 割合)を算出した。 NG inspection points) were judged as poor continuity, and the ratio of NG inspection points to the total inspection points (NG inspection point ratio) was calculated.
そして、同一の評価用回路基板 1に対して、 NG検査点と判断する導通抵抗値の設 定を、 100 Ωより低い抵抗値に段階的に変化させて、各設定抵抗値において評価用 回路基板 1の評価を行つた。  Then, for the same evaluation circuit board 1, the setting of the conduction resistance value determined as the NG inspection point is changed stepwise to a resistance value lower than 100 Ω, and the evaluation circuit board is set for each set resistance value. A rating of 1 was made.
[0276] 測定結果を表 4に示した。 [0276] Table 4 shows the measurement results.
[比較例 1] 図 61に示したように、実施例 1の検査装置において、ピッチ変換用アダプタ一体 60 をピッチ変換用基板 23に変更し、ピッチ変換基板 23と評価用回路基板 1との間に、 厚さ 100 μ mの分散型異方導電性シート 77を配置した。 [Comparative Example 1] As shown in FIG. 61, in the inspection apparatus of Example 1, the pitch conversion adapter integrated 60 is changed to the pitch conversion board 23, and a thickness of 100 is provided between the pitch conversion board 23 and the evaluation circuit board 1. A μm dispersed anisotropic conductive sheet 77 was disposed.
[0277] そして、作製した比較用の検査装置について、実施例 1と同様な方法により、ピッチ 変換用アダプタ一体の絶縁性の測定、最低プレス圧の測定、異方導電性シートの耐 久性の測定および被検査回路基板の導通不良の評価を行った。絶縁性の測定結果 を表 1に、最低プレスの測定結果を表 2に、異方導電性シートの耐久性の測定結果 を表 3に、被検査回路基板の導通不良の評価の結果を表 4に示した。  [0277] Then, with respect to the manufactured comparative inspection device, the same method as in Example 1 was used to measure the insulation with the pitch conversion adapter, measure the minimum press pressure, and check the durability of the anisotropic conductive sheet. Measurement and evaluation of poor conduction of the circuit board to be inspected were performed. Table 1 shows the measurement results of insulation, Table 2 shows the measurement results of the minimum press, Table 3 shows the measurement results of the durability of the anisotropic conductive sheet, and Table 4 shows the results of evaluation of the continuity failure of the circuit board under test. It was shown to.
[0278] なお、絶縁性の評価は、図 61に示したように、実施例 1の検査装置に対するピッチ 変換用アダプタ一体の絶縁性の評価に準じて実施した。  [0278] As shown in FIG. 61, the evaluation of the insulation was performed according to the evaluation of the insulation of the pitch conversion adapter integrated with the inspection apparatus of Example 1.
[比較例 2]  [Comparative Example 2]
比較例 1において使用した厚さ 100 /z mの分散型異方導電性エラストマ一シートを 、厚み 40 mの分散型異方導電性シート 77に交換した。  The dispersed anisotropic conductive elastomer sheet having a thickness of 100 / z m used in Comparative Example 1 was replaced with a dispersed anisotropic conductive sheet 77 having a thickness of 40 m.
[0279] そして、作製した比較用の検査装置について、実施例 1と同様な方法により、ピッチ 変換用アダプタ一体の絶縁性の測定、最低プレス圧の測定、異方導電性シートの耐 久性の測定および被検査回路基板の導通不良の評価を行った。絶縁性の測定結果 を表 1に、最低プレスの測定結果を、表 2に、異方導電性シートの耐久性の測定結果 を、表 3に、被検査回路基板の導通不良の評価の結果を、表 4に示した。  [0279] Then, for the manufactured comparative inspection device, the same method as in Example 1 was used to measure the insulation with the pitch conversion adapter, measure the minimum press pressure, and check the durability of the anisotropic conductive sheet. Measurement and evaluation of poor conduction of the circuit board to be inspected were performed. Table 1 shows the measurement results of the insulation, Table 2 shows the measurement results of the minimum press, Table 2 shows the measurement results of the durability of the anisotropic conductive sheet, and Table 3 shows the results of the evaluation of the continuity failure of the circuit board under test. Table 4 shows.
[0280] 絶縁性の評価は、図 61に示したように、実施例 1の検査装置に対するピッチ変換 用アダプタ一体の絶縁性の評価に準じて実施した。  [0280] As shown in FIG. 61, the evaluation of the insulation was performed according to the evaluation of the insulation integrated with the pitch conversion adapter for the inspection apparatus of Example 1.
なお、比較例 1および比較例 2において使用した分散型異方導電性シートは、以下 のようにして得た。  The dispersed anisotropic conductive sheets used in Comparative Example 1 and Comparative Example 2 were obtained as follows.
<分散型異方導電性シートの製造 >  <Manufacture of dispersive anisotropic conductive sheet>
二液型の付加型液状シリコーンゴムの A液と B液とを、等量となる割合で混合した混 合物 100容量部に、平均粒子径が 20 mの導電性粒子を 25容量部添加して混合 した。  25 parts by volume of conductive particles with an average particle size of 20 m are added to 100 parts by volume of a mixture of two liquid type addition type liquid silicone rubbers A and B mixed in equal proportions. And mixed.
[0281] その後、減圧による脱泡処理を行うことにより、導電性エラストマ一用材料を調製し た。導電性粒子としては、ニッケル粒子を芯粒子とし、この芯粒子に無電解金メッキ が施されたもの(平均被覆量:芯粒子の重量の 5重量%となる量)を用いた。 [0281] Thereafter, a defoaming treatment by reduced pressure was performed to prepare a conductive elastomer material. As conductive particles, nickel particles are used as core particles, and electroless gold plating is applied to these core particles. (Average coating amount: an amount that is 5% by weight of the weight of the core particles) was used.
表面が光沢面 (表面粗さが 0. 04 /z m)で、裏面が非光沢面である、厚みが 0. lm mのポリエステル榭脂シート (東レネ土製,品名「マットルミラー S 10」)を 2枚用意した。 そして、一方のポリエステル榭脂シートの表面上に、 120mm X 200mmの矩形の開 口を有する、厚みが 100 μ mの枠状のスぺーサーを配置した。  A polyester resin sheet (product name: “Mattle Mirror S 10”, manufactured by Torayen Earth) with a glossy surface (surface roughness of 0.04 / zm) and a backside of non-glossy surface and a thickness of 0.1 mm. Two sheets were prepared. A frame-shaped spacer having a thickness of 100 μm and having a rectangular opening of 120 mm × 200 mm was disposed on the surface of one polyester resin sheet.
[0282] このスぺーサ一の開口内に、調製した導電性エラストマ一用材料を塗布し、この導 電性エラストマ一用材料上に、他方のポリエステル榭脂シートを、その表面が導電性 エラストマ一用材料に接するよう配置した。 [0282] The prepared conductive elastomer material is applied in the opening of the spacer, and the other polyester resin sheet is applied to the conductive elastomer material on the surface thereof. The material was placed in contact with the material for use.
その後、加圧ロールと支持ロールとからなる加圧ロール装置を用い、 2枚のポリエス テル榭脂シートによって導電性エラストマ一用材料を挟圧することにより、厚みが 100 μ mの導電性エラストマ一用材料層を形成した。  After that, by using a pressure roll device consisting of a pressure roll and a support roll, the conductive elastomer material is sandwiched between two polyester resin sheets, and the thickness of the conductive elastomer is 100 μm. A material layer was formed.
[0283] 次 、で、 2枚のポリエステル榭脂シートの各々の裏面に電磁石を配置し、導電性ェ ラストマー材料層に対して、その厚み方向に 0. 3Tの平行磁場を作用させながら、 12[0283] Next, an electromagnet was placed on the back surface of each of the two polyester resin sheets, and a 0.3 T parallel magnetic field was applied to the conductive elastomer material layer in the thickness direction.
0°C、 30分間の条件で、成形材料層の硬化処理を行うことにより、厚みが 100 mの 矩形の導電性エラストマ一シートを製造した。得られた導電性エラストマ一シートにお ける導電性粒子の割合は、体積分率で 12%であった。 A rectangular conductive elastomer sheet having a thickness of 100 m was manufactured by curing the molding material layer at 0 ° C. for 30 minutes. The proportion of conductive particles in the obtained conductive elastomer sheet was 12% in terms of volume fraction.
[0284] この導電性エラストマ一シートを、 110mm X 110mmに切断し、比較例 1に使用さ れる分散型異方導電性エラストマ一シートとした。 [0284] This conductive elastomer sheet was cut to 110 mm x 110 mm to obtain a dispersed anisotropic conductive elastomer sheet used in Comparative Example 1.
また、上記において、スぺーサ一の厚みを 40 /z mに変更し、同様の方法にて、比 較例 2に使用される厚み 40 μ mの分散型異方導電性シートを得た。  In addition, in the above, the thickness of the spacer was changed to 40 / zm, and a 40 μm thick dispersed anisotropic conductive sheet used in Comparative Example 2 was obtained in the same manner.
[0285] [表 1] [0285] [Table 1]
Figure imgf000084_0001
Figure imgf000084_0001
[0286] [表 2] N G検査点割合 (%) 最低プレス rレス圧力 100 110 130 150 180 210 圧力[0286] [Table 2] NG inspection point ratio (%) Minimum press r-less pressure 100 110 130 150 180 210 Pressure
(kg£) (kg£) 実施例 1 0.52 0.14 0 0 0 0 130 比較例 2 0.48 0.11 0 0 0 0 130 (kg £) (kg £) Example 1 0.52 0.14 0 0 0 0 130 Comparative Example 2 0.48 0.11 0 0 0 0 130
[0287] [表 3] [0287] [Table 3]
Figure imgf000085_0001
Figure imgf000085_0001
[0288] [表 4]  [0288] [Table 4]
Figure imgf000085_0002
Figure imgf000085_0002
[0289] これらの表 1〜表 4から明らかなように、本発明の検査装置によれば、接続用電極 の間の電気絶縁性が良好で、最低プレス圧も低ぐ異方導電性シートの耐久性に優 れ、し力も、導通不良の発生も極めて小さいことがわかる。  [0289] As is apparent from Table 1 to Table 4, according to the inspection apparatus of the present invention, the anisotropic conductive sheet having good electrical insulation between the connection electrodes and low minimum pressing pressure is obtained. It can be seen that it is superior in durability, has little strength, and generates very little conduction failure.
[実施例 2]  [Example 2]
レール搬送型回路基板自動検査機 (日本電産リード社製,品名: STARREC V5 )の検査部に適合する、図 46に示したような、下記の評価用回路基板を検査するた めの回路基板検査装置を作製した。  Circuit board for inspecting the following evaluation circuit board as shown in Fig. 46, which conforms to the inspection part of rail transport type automatic circuit board inspection machine (product name: STARREC V5). An inspection device was produced.
(1)評価用回路基板 1  (1) Circuit board for evaluation 1
下記の仕様の評価用回路基板 1を用意した。  An evaluation circuit board 1 having the following specifications was prepared.
寸法: 100mm (縦) X 100mm (横) X O. 8mm (厚み)  Dimensions: 100mm (length) X 100mm (width) X O. 8mm (thickness)
上面側の被検査電極の数: 3600個 上面側の被検査電極の径: 0. 2mm Number of electrodes on top side: 3600 Diameter of the electrode to be inspected on the upper surface side: 0.2 mm
上面側の被検査電極の最小配置ピッチ: 0. 4mm  Minimum pitch of electrodes to be inspected on the upper surface side: 0.4 mm
下面側の被検査電極の数: 2600個  Number of electrodes on the bottom side: 2600
下面側の被検査電極の径: 0. 2mm  Diameter of the electrode to be inspected on the bottom side: 0.2 mm
下面側の被検査電極の最小配置ピッチ: 0. 4mm  Minimum pitch of electrodes to be inspected on the bottom side: 0.4 mm
(2)ピッチ変換用基板 23  (2) Pitch conversion board 23
ガラス繊維補強型エポキシ榭脂からなる厚さ 0. 5mmの絶縁基板の両面全面に、 厚みが の銅カゝらなる金属薄層を形成した積層材料 (松下電工社製,品名: R - 1766)に、数値制御型ドリリング装置によって、それぞれ積層材料の厚み方向に 貫通する直径 0. 1mmの円形の貫通孔を合計で 7200個形成した。  A laminated material (made by Matsushita Electric Industrial Co., Ltd., product name: R-1766) in which a thin metal layer made of copper is formed on both sides of a 0.5mm thick insulating substrate made of glass fiber reinforced epoxy resin. In addition, a total of 7200 circular through-holes with a diameter of 0.1 mm each penetrating in the thickness direction of the laminated material were formed by a numerically controlled drilling apparatus.
[0290] この場合、貫通孔の形成は 2個を一組として、評価用回路基板の上面側の被検査 電極に対応する位置に形成し、一組の貫通孔は 0. 1mmの間隙を設けて形成した( すなわち、貫通孔 A=0. 1mmと貫通孔 B=0. 1mmとの間の間隙 =0. 1mmとなる ように設定することを意味する)。 [0290] In this case, the two through holes are formed as a set at a position corresponding to the electrode to be inspected on the upper surface side of the circuit board for evaluation, and the set of through holes is provided with a gap of 0.1 mm. (That is, setting the gap between the through hole A = 0. 1 mm and the through hole B = 0. 1 mm to be 0.1 mm).
その後、貫通孔が形成された積層材料に対し、 EDTAタイプ銅メツキ液を用いて無 電解メツキ処理を施すことにより、各貫通孔の内壁に銅メツキ層を形成し、さらに、硫 酸銅メツキ液を用いて電解銅メツキ処理を施すことにより、各貫通孔内に、積層材料 表面の各金属薄層を互いに電気的に接続する、厚さ約 10 mの円筒状のバイァホ ールを形成した。  Thereafter, an electroless plating treatment is performed on the laminated material in which the through-holes are formed using an EDTA type copper plating solution to form a copper plating layer on the inner wall of each through-hole, and further, a copper sulfate plating solution. By using electrolytic copper plating treatment, a cylindrical via hole having a thickness of about 10 m was formed in each through hole to electrically connect the thin metal layers on the surface of the laminated material to each other.
[0291] 次いで、積層材料表面の金属薄層上に、厚みが 25 μ mのドライフィルムレジスト( 東京応化製,品名: FP— 225)をラミネートしてレジスト層を形成するとともに、この積 層材料の他面側の金属薄層上に保護シールを配置した。このレジスト層上にフォトマ スクフィルムを配置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用い て露光処理を施した後、現像処理を行うことにより、エッチング用のレジストパターン を形成した。そして、レジストパターンを形成した面の金属薄層に対してエッチング処 理を施すことにより、絶縁基板の表面に、横 60 /ζ πι、縦 120 mの矩形の 7200個の 接続電極と、各接続電極とバイァホールとを電気的に接続する線幅が 100 mのパ ターン配線部を形成し、次いで、レジストパターンを除去した。 [0292] 次に、積層材料の接続電極とパターン配線部を形成した側の面に、厚みが 25 μ m のドライフィルムレジスト (東京応化製,品名: FP— 225)をラミネートしてレジスト層を 形成し、このレジスト層の上にフォトマスクフィルムを配置して、レジスト層に対して平 行光露光機 (オーク製作所製)を用いて露光処理を施した後、現像処理を行うこと〖こ より、それぞれの接続電極を露出する、横方向 60 m、縦方向 120 mの矩形の 72 00個の開口を形成した。 [0291] Next, a 25 μm thick dry film resist (Tokyo Ohka, product name: FP-225) is laminated on the thin metal layer on the surface of the laminated material to form a resist layer. A protective seal was placed on the thin metal layer on the other side. A photomask film is placed on the resist layer, and the resist layer is subjected to an exposure process using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), followed by a development process, whereby a resist pattern for etching is formed. Formed. Then, by etching the thin metal layer on the surface where the resist pattern is formed, 7200 connecting electrodes with a rectangular width of 60 / ζ πι and a height of 120 m are formed on the surface of the insulating substrate, and each connection is made. A pattern wiring portion having a line width of 100 m for electrically connecting the electrode and the via hole was formed, and then the resist pattern was removed. [0292] Next, a 25 µm thick dry film resist (product name: FP-225) was laminated on the side of the laminated material where the connection electrode and pattern wiring part were formed, and the resist layer was laminated. After forming the photomask film on the resist layer and subjecting the resist layer to an exposure process using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), a development process is performed. Then, 7200 rectangular openings of 60 m in the horizontal direction and 120 m in the vertical direction were formed to expose the respective connection electrodes.
[0293] そして、硫酸銅メツキ液を用い、積層材料の他面側の金属薄層を共通電極として用 い、それぞれの接続電極に対して電解銅メツキ処理を施すことにより 7200個の接続 電極を形成した。次 、でレジストパターンを除去した。  [0293] Then, using a copper sulfate plating solution, the thin metal layer on the other side of the laminated material was used as a common electrode, and 7200 connection electrodes were obtained by subjecting each connection electrode to an electrolytic copper plating process. Formed. Next, the resist pattern was removed.
次いで、積層材料の他面側の金属薄層上の保護シールを除去し、この面の金属薄 層上に、厚みが 25 mのドライフィルムレジスト (東京応化製,品名: FP— 225)をラ ミネートしてレジスト層を形成した。その後、このレジスト層上にフォトマスクフィルムを 配置し、レジスト層に対して、平行光露光機 (オーク製作所製)を用いて露光処理を 施した後、現像処理を行うことにより、積層材料における金属薄層上にエッチング用 のレジストパターンを形成した。  Next, the protective seal on the thin metal layer on the other side of the laminated material was removed, and a dry film resist (product name: FP-225), 25 m thick, was applied on the thin metal layer on this side. A resist layer was formed by minating. After that, a photomask film is placed on the resist layer, and the resist layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.). A resist pattern for etching was formed on the thin layer.
[0294] 次 、で、積層材料の接続電極を形成した側の面に保護シールを施した後に、エツ チング処理を施すことにより、絶縁性基板の裏面に 7200個の端子電極と、各端子電 極とバイァホールとを電気的に接続するパターン配線部を形成し、レジストパターン を除去した。  [0294] Next, after applying a protective seal to the surface on which the connection electrode of the laminated material was formed, and then performing an etching treatment, 7200 terminal electrodes and each terminal electrode were formed on the back surface of the insulating substrate. A pattern wiring part was formed to electrically connect the pole and the via hole, and the resist pattern was removed.
次いで、端子電極およびパターン配線部が形成された絶縁基板の裏面に、厚みが 38 μ mのドライフィルムソルダーレジスト(-チゴーモートン製、品名:コンフォマスク 2 015)をラミネートして絶縁層を形成し、この絶縁層上にフォトマスクフィルムを配置し 、次いで、絶縁層に対して、平行光露光機 (オーク製作所製)を用いて露光処理を施 した後、現像処理することにより、電極を露出する直径 0. 4mmの開口を 7200個形 成した。  Next, an insulating layer is formed by laminating a dry film solder resist (product name: Congo Mask 2 015) with a thickness of 38 μm on the back surface of the insulating substrate on which the terminal electrode and the pattern wiring portion are formed. Then, a photomask film is placed on the insulating layer, and then the insulating layer is exposed to light using a parallel light exposure machine (manufactured by Oak Manufacturing Co., Ltd.), and then developed to expose the electrode. 7200 openings with a diameter of 0.4 mm were formed.
[0295] 以上のようにして、第 1の検査治具 11a用のピッチ変換用基板 23aを作製した。この ピッチ変換用基板 23aは、縦横の寸法が 120mmX 160mm,厚みが 0. 5mm、接 続用電極 25の絶縁層表面力も露出した部分の寸法力 横方向約 60 mで、縦方向 約 120 /ζ πι、接続用電極 25の絶縁層表面からの突出高さが約 30 /z m 対をなす接 続用電極 25間の離間距離が 30 m、端子電極 24の直径が 0. 4mm、端子電極 24 の配置ピッチが 0. 75mmであった。 [0295] As described above, the pitch conversion substrate 23a for the first inspection jig 11a was produced. This pitch conversion substrate 23a has a vertical and horizontal dimension of 120mmX160mm, a thickness of 0.5mm, and the dimensional force of the exposed part of the insulating layer surface of the connection electrode 25. About 120 / ζ πι, the protruding height of the connection electrode 25 from the surface of the insulating layer is about 30 / zm, the separation distance between the connection electrodes 25 is 30 m, the diameter of the terminal electrode 24 is 0.4 mm, The arrangement pitch of the terminal electrodes 24 was 0.75 mm.
[0296] また、上記と同様にして、表面に 5200個の接続用電極 25を有すると共に裏面に 5 200個の端子電極 24を有する、第 2の検査治具 l ib用のピッチ変換用基板 23bを作 製した。 [0296] Further, in the same manner as described above, the pitch conversion substrate 23b for the second inspection jig l ib has 5200 connection electrodes 25 on the front surface and 5 200 terminal electrodes 24 on the back surface. Was made.
このピッチ変換用基板 23bは、縦横の寸法が 120mm X 160mm、厚みが 0. 5mm 、接続用電極 25における絶縁層の表面に露出した部分の横方向約 60 /z mで、縦方 向約 120 m、接続用電極 25における絶縁層の表面力もの突出高さが約 30 μ m、 対をなす接続用電極 25間の離間距離が 30 /ζ πι、端子電極 24の直径が 0. 4mm、 端子電極 24の配置ピッチが 0. 75mmのものである。  The pitch conversion substrate 23b has a vertical and horizontal dimension of 120mm x 160mm, a thickness of 0.5mm, and the connection electrode 25 exposed at the surface of the insulating layer is approximately 60 / zm in the horizontal direction and approximately 120m in the vertical direction. The protruding height of the surface force of the insulating layer in the connection electrode 25 is about 30 μm, the distance between the pair of connection electrodes 25 is 30 / ζ πι, the diameter of the terminal electrode 24 is 0.4 mm, the terminal electrode The 24 pitch is 0.75mm.
(3)中継基板 29  (3) Relay board 29
1.基板の製造  1.Manufacture of substrates
両面に銅箔を備えた厚みが 25 μ mの液晶ポリマー銅張積層板 (新日鐡ィ匕学:エス パネックス LB18— 25— 18NEP)に対してエッチングを行い、両面の銅箔を除去 すること〖こより厚み 25 μ mの液晶ポリマーシートを得た。  Etch the liquid crystal polymer copper-clad laminate with a thickness of 25 μm with copper foil on both sides (Nippon Chemical Engineering: Espanex LB18-25-18NEP) to remove the copper foil on both sides A liquid crystal polymer sheet having a thickness of 25 μm was obtained from Tsujiko.
[0297] この液晶ポリマーシートに、形成するべき貫通孔に対応する開口を有する厚さ 18 mの銅よりなるレーザー加工用金属マスクを積層し、炭酸ガスレーザー加工機にて、 レーザー加工用金属マスクの開口部を介してレーザー光を照射することにより液晶ポ リマーシートに所定の貫通孔を形成した。 [0297] On this liquid crystal polymer sheet, a metal mask for laser processing made of copper having a thickness of 18 m having an opening corresponding to the through hole to be formed was laminated, and the metal mask for laser processing was formed by a carbon dioxide gas laser processing machine. A predetermined through-hole was formed in the liquid crystal polymer sheet by irradiating laser light through the opening.
以上において、炭酸ガスレーザー装置によるレーザー加工は、炭酸ガスレーザー 加工機「ML— 605GTX」(三菱電機 (株)製)を用い、レーザービーム径が直径 60 m,レーザー出力が 0. 8mJの条件で、 1つの加工点にレーザービームを 10ショット照 射することにより行った。  In the above, laser processing with a carbon dioxide laser device uses a carbon dioxide laser processing machine “ML-605GTX” (manufactured by Mitsubishi Electric Corporation) under the conditions of a laser beam diameter of 60 m and a laser output of 0.8 mJ. This was done by irradiating a single processing point with a laser beam for 10 shots.
[0298] 得られた基板 73の寸法、貫通孔の数および直径は以下のとおりである。 [0298] The dimensions, number of through-holes, and diameter of the obtained substrate 73 are as follows.
〔上側の中継基板 29a用の基板 73a〕  [Substrate 73a for upper relay substrate 29a]
寸法: 90mm (縦) X 90mm (横) X 25 m (厚み)  Dimensions: 90mm (vertical) X 90mm (horizontal) X 25m (thickness)
貫通孔の数: 3600個 貫通孔の直径: 0. 3mm Number of through holes: 3600 Through-hole diameter: 0.3 mm
〔下側の中継基板 29b用の基板 73b〕  [Substrate 73b for lower relay substrate 29b]
寸法: 90mm (縦) X 90mm (横) X 25 m (厚み) Dimensions: 90mm (vertical) X 90mm (horizontal) X 25m (thickness)
貫通孔の数: 2600個 Number of through holes: 2600
貫通孔の直径: 0. 3mm Through-hole diameter: 0.3mm
2.導電性エラストマ一層の形成  2. Formation of one layer of conductive elastomer
付加型液状シリコーンゴム 100重量部中に、ニッケルよりなる芯粒子に金が被覆さ れてなる導電性粒子 (芯粒子に対する金の割合が 2重量%) 400重量部を分散させ ることにより、導電性エラストマ一用材料を調製した。この導電性エラストマ一用材料 を、厚みが 5mmのステンレスよりなる離型性支持板 65の表面に、スクリーン印刷によ り塗布することにより、離型性支持板 65上に、厚みが 0. 05mmの導電性エラストマ 一用材料層 61 Aを形成した(図 7)。  Conductive particles are dispersed by dispersing 400 parts by weight of conductive particles in which gold is coated on nickel core particles in 100 parts by weight of addition-type liquid silicone rubber (the ratio of gold to core particles is 2% by weight). An elastomeric material was prepared. This conductive elastomer material is applied to the surface of a releasable support plate 65 made of stainless steel having a thickness of 5 mm by screen printing, whereby a thickness of 0.05 mm is formed on the releasable support plate 65. A material layer 61 A for conductive elastomer was formed (FIG. 7).
次いで、導電性エラストマ一用材料層 65に対して、電磁石によって厚み方向に 2テ スラの磁場を作用させながら、 120°C、 1時間の条件で硬化処理を行うことにより、離 型性支持板 65上に支持された厚みが 0. 05mmの導電性エラストマ一層 65Bを形成 した(図 10)。  Next, a releasable support plate is obtained by subjecting the conductive elastomer material layer 65 to curing at 120 ° C. for 1 hour while applying a magnetic field of 2 Tesla in the thickness direction by an electromagnet. A conductive elastomer layer 65B with a thickness of 0.05 mm supported on 65 was formed (Fig. 10).
3.導電路形成部の形成  3.Formation of conductive path forming part
離型性支持板 65上に支持された導電性エラストマ一層 65Bの表面に、無電解メッ キ処理を施すことによって、厚みが 0. 3 mの銅よりなる金属薄層 66を形成し(図 11 )、この金属薄層 66上に、フォトリソグラフィ一の手法によって横 60 m、縦 120 m の矩形の 7200個の開口が形成された、厚みが 25 μ mのレジスト層 67を形成した( 図 12)。その後、金属薄層 66の表面に電解メツキ処理を施すことにより、レジスト層 6 7の開口内に厚みが約 20 mの銅よりなる金属マスク 68を形成した(図 13)。そして 、この状態で、金属マスク 68の周辺部の導電性エラストマ一層 65B、金属薄層 66お よびレジスト層 67に対して、炭酸ガスレーザー装置によってレーザー加工を施すこと により、離型性支持板 65上に支持された 7200個の導電路形成部 61を形成し(図 15 B)、次に、導電路形成部 61をレーザー加工により切り離した残余の導電性エラスト マー層を剥離することにより、図 15 (c)に示したように導電路形成部 61のみを離型性 支持板 65上に残存させた。その後、導電路形成部 61の表面から残存する金属薄層 66および金属マスク 68をエッチングにより除去した。 A thin metal layer 66 made of copper having a thickness of 0.3 m is formed on the surface of the conductive elastomer layer 65B supported on the releasable support plate 65 by performing an electroless mesh treatment (Fig. 11). On the thin metal layer 66, a resist layer 67 having a thickness of 25 μm and having 7200 rectangular openings of 60 m in width and 120 m in length formed by a photolithographic technique (FIG. 12). ). Thereafter, an electrolytic plating process was performed on the surface of the thin metal layer 66 to form a metal mask 68 made of copper having a thickness of about 20 m in the opening of the resist layer 67 (FIG. 13). Then, in this state, the conductive elastomer layer 65B, the metal thin layer 66, and the resist layer 67 around the metal mask 68 are subjected to laser processing by a carbon dioxide gas laser device, so that the releasable support plate 65 7200 conductive path forming parts 61 supported on the upper surface are formed (FIG. 15B), and then the remaining conductive elastomer layer obtained by cutting the conductive path forming part 61 by laser processing is peeled off to form a figure. 15 As shown in (c), only the conductive path forming part 61 is releasable. It remained on the support plate 65. Thereafter, the remaining thin metal layer 66 and metal mask 68 were removed from the surface of the conductive path forming portion 61 by etching.
[0300] 以上において、炭酸ガスレーザー装置によるレーザー加工は、炭酸ガスレーザー 加工機「ML— 605GTX」(三菱電機 (株)製)を用い、レーザービーム径が直径 60 m、レーザー出力が 0. 8mJの条件で、 1つの加工点にレーザービームを 10ショット照 射することにより行った。 [0300] In the above, the laser processing by the carbon dioxide laser device uses the carbon dioxide laser processing machine “ML-605GTX” (manufactured by Mitsubishi Electric Corporation), the laser beam diameter is 60 m, and the laser output is 0.8 mJ. Under these conditions, a laser beam was irradiated for 10 shots at one processing point.
4.絶縁部の形成  4. Formation of insulation
離型性支持板 70の表面に付加型液状シリコーンゴムを塗布して厚み 15 mのシリ コーンゴム層を設けた(図 50 (a) )。  An additional liquid silicone rubber was applied to the surface of the releasable support plate 70 to provide a silicone rubber layer having a thickness of 15 m (FIG. 50 (a)).
[0301] 離型性支持板 70の表面に、液晶ポリマーシートからなる基板 73を上記のシリコー ンゴム層を介して載置し(図 50 (b) )、基板 73の貫通孔内に付加型液状シリコーンゴ ムを塗布することにより、合計の厚みが 0. 05mmの絶縁部用材料層 62Aを形成し( 図 50 (c) )、この絶縁部用材料層 62A上に、 7200個の導電路形成部 61が形成され た離型性支持板 65を位置合わせして重ね合わせた(図 51 (a) )。  [0301] A substrate 73 made of a liquid crystal polymer sheet is placed on the surface of the releasable support plate 70 via the above-mentioned silicone rubber layer (Fig. 50 (b)), and the additional liquid is placed in the through hole of the substrate 73. By applying silicone rubber, an insulating material layer 62A with a total thickness of 0.05 mm was formed (Fig. 50 (c)), and 7200 conductive paths were formed on this insulating material layer 62A. The releasable support plate 65 on which the part 61 was formed was aligned and overlapped (FIG. 51 (a)).
[0302] そして、離型性支持板 65に 20kgfの圧力を加えることにより、導電路形成部 61の 厚みを 0. 05mm力ら 0. 04mmに弹性的に圧縮させ、この状態で、 120°C、 1時間の 条件で、絶縁部用材料層 62の硬化処理を行うことにより、隣接する導電路形成部 61 の間に絶縁部 62を形成し(図 51 (b) )、その後、離型性支持板から離型させること〖こ より、第 1の検査治具 1 la用の中継基板 29aを製造した(図 51 (c) )。  [0302] Then, by applying a pressure of 20 kgf to the releasable support plate 65, the thickness of the conductive path forming portion 61 is inertially compressed to 0.05 mm force and 0.04 mm, and in this state, 120 ° C The insulating part 62 is cured between the adjacent conductive path forming parts 61 by curing the insulating part material layer 62 under the condition of one hour (FIG. 51 (b)), and then the mold release property By releasing from the support plate, a relay substrate 29a for the first inspection jig 1la was manufactured (FIG. 51 (c)).
[0303] このようにして作成した第 1の検査治具 11a用の中継基板 29aは、基板 73aの寸法 力 S90mm (縦) X 90mm (横) X 25 m (厚み)、導電路形成部 61aの数が 7200個、 導電路形成部 61aの寸法が横 60 m、縦 120 /z m、厚みが約 0. 05mm,絶縁部 6 2aの厚みが約 0. 03mm,隣接する導電路形成部 61a間の絶縁部 62aの幅が 30 m、絶縁部 62aからの導電路形成部 61aの突出高さが上下を合計して約 0. 02mm であった。  [0303] The relay board 29a for the first inspection jig 11a created in this way has a dimensional force S90mm (length) X 90mm (width) X 25 m (thickness) of the board 73a, and the conductive path forming portion 61a 7200, the dimension of the conductive path forming part 61a is 60 m wide, 120 / zm long, the thickness is about 0.05 mm, the thickness of the insulating part 62a is about 0.03 mm, and between the adjacent conductive path forming parts 61a The width of the insulating part 62a was 30 m, and the total projecting height of the conductive path forming part 61a from the insulating part 62a was about 0.02 mm.
[0304] また、第 1の検査治具 11a用の中継基板 29aと同様の工程によって、第 2の検査治 具 l ib用の中継基板 29bを作成した。この中継基板 29bは、導電路形成部 61bの数 力 ^5200偶、導電路形成咅 lbの寸法力 S横 60 μ m、縦 120 μ m、厚み力 S約 0. 05m m、絶縁部 62bの厚みが約 0. 03mm,隣接する導電路形成部 61b間の絶縁部 62b の幅が 30 m、絶縁部 62bからの導電路形成部 61bの突出高さが上下を合計して 約 0. 02mmであった。 [0304] Further, a relay board 29b for the second inspection jig l ib was produced by the same process as the relay board 29a for the first inspection jig 11a. This relay substrate 29b has a number of forces of the conductive path forming part 61b ^ 5200, a dimensional force of the conductive path forming 咅 lb S width 60 μm, length 120 μm, thickness force S about 0.05 m m, the thickness of the insulating part 62b is about 0.03 mm, the width of the insulating part 62b between the adjacent conductive path forming parts 61b is 30 m, and the protruding height of the conductive path forming part 61b from the insulating part 62b It was about 0.02 mm.
(4)回路基板側コネクタ 21  (4) Circuit board connector 21
上記のピッチ変換用基板 23の一面側に、中継基板 29を配置し、裏面側に、厚み 方向に延びる多数の導電路形成部と、これらを互いに絶縁する絶縁部とからなり、片 面に導電路形成部が突出した偏在型異方導電性シートからなる第 2の異方導電性シ ート 26を配置することにより、回路基板側コネクタ 21とした。  The relay board 29 is arranged on one side of the pitch conversion board 23, and a plurality of conductive path forming parts extending in the thickness direction on the back side and insulating parts that insulate them from each other. The circuit board side connector 21 was formed by arranging a second anisotropic conductive sheet 26 made of an unevenly distributed anisotropic conductive sheet with a projecting portion protruding.
[0305] なお、ピッチ変換用基板 23と中継ピンユニット 31との間に配置される第 2の異方導 電性シート 26は、図 33に示される形状であり、具体的には以下の構成のものを使用 した。 [0305] The second anisotropic conductive sheet 26 arranged between the pitch conversion board 23 and the relay pin unit 31 has the shape shown in FIG. 33, and specifically has the following configuration. The ones used were used.
〔第 2の異方導電性シート 26〕  [Second anisotropic conductive sheet 26]
寸法: 11 Omm X 150mm  Dimensions: 11 Omm X 150mm
導電路形成部の厚み: 0. 6mm  Thickness of conductive path forming part: 0.6mm
導電路形成部の外径: 0. 35mm  Outside diameter of conductive path forming part: 0.35mm
導電路形成部の突出高さ: 0. 05mm  Projection height of conductive path forming part: 0.05 mm
導電性粒子:材質;金メッキ処理を施したニッケル粒子、平均粒子径; 35 ;ζ ΐη、導電 路形成部における導電性粒子の含有率; 30体積%  Conductive particles: Material: Nickel particles plated with gold, average particle diameter; 35; ζ ΐη, content of conductive particles in the conductive path forming part; 30% by volume
弾性高分子物質:材質;シリコーンゴム、硬度; 30  Elastic polymer material: Material; Silicone rubber, Hardness; 30
(5)中継ピンユニット 31  (5) Relay pin unit 31
第 1の絶縁板 34、中間保持板 36、第 2の絶縁板 35の材料として、固有抵抗が I X 1010 Ω 'cm以上の絶縁性材料、ガラス繊維補強型エポキシ榭脂よりなり、その厚みが 1. 9mmのものを用いた。 The material of the first insulating plate 34, the intermediate holding plate 36, and the second insulating plate 35 is made of an insulating material having a specific resistance of IX 10 10 Ω'cm or more, and a glass fiber reinforced epoxy resin. 1. A 9mm one was used.
[0306] そして、第 1の絶縁板 34と中間保持板 36との間の距離 L1が、 36. 3mm、第 2の絶 縁板 35と中間保持板 36との間の距離 L2が、 3mmとなるように、第 1の支持ピン 33 ( 直径 2mm、長さ 36. 3mm)と、第 2の支持ピン 37 (直径 2mm、長さ 3mm)によって 固定支持するようにするとともに、第 1の絶縁板 34と第 2の絶縁板 35との間に、下記 の構成力もなる導電ピン 32を移動自在となるように貫通孔 83 (直径 0. 4mm)に配置 した。 [0306] The distance L1 between the first insulating plate 34 and the intermediate holding plate 36 is 36.3 mm, and the distance L2 between the second insulating plate 35 and the intermediate holding plate 36 is 3 mm. The first support pin 33 (diameter 2 mm, length 36.3 mm) and the second support pin 37 (diameter 2 mm, length 3 mm) are fixedly supported and the first insulating plate Between the pin 34 and the second insulating plate 35, the conductive pin 32 having the following constituent force is arranged in the through hole 83 (0.4 mm in diameter) so as to be movable did.
〔導電ピン〕  [Conductive pin]
材質:金メッキ処理を施した真鍮  Material: Brass plated with gold
先端部 81aの寸法:外径 0. 35mm、全長 2. lmm  Tip 81a dimensions: outer diameter 0.35mm, total length 2. lmm
中央部 32の寸法外径 0. 45mm,全長 41mm  Center part 32 dimension outer diameter 0.45mm, total length 41mm
基端部 8 lbの寸法:外径 0. 35mm、全長 2. lmm  Base end 8 lb dimensions: OD 0.35mm, total length 2. lmm
なお、第 1の支持ピン 33の中間保持板 36との第 1の当接支持位置 38Aと、第 2の 支持ピン 37の中間保持板 36に対する第 2の当接支持位置 38Bは、図 39に示したよ うに、格子状に配置した。なお、互いに隣接する第 1の当接支持位置 38Aの間の離 間距離、第 2の当接支持位置 38Bの間の離間距離を、 17. 5mmとした。  The first contact support position 38A of the first support pin 33 with respect to the intermediate holding plate 36 and the second contact support position 38B of the second support pin 37 with respect to the intermediate support plate 36 are shown in FIG. As shown, they were arranged in a grid. The distance between the first contact support positions 38A adjacent to each other and the distance between the second contact support positions 38B were set to 17.5 mm.
(6)テスター側コネクタ 41  (6) Tester side connector 41
テスター側コネクタ 41を、図 46に示したように、第 3の異方導電性シート 42と、コネ クタ基板 43と、ベース板 46とから構成した。なお、第 3の異方導電性シート 42は、前 述した第 2の異方導電性シート 26と同様のものを用いた。  As shown in FIG. 46, the tester-side connector 41 includes a third anisotropic conductive sheet 42, a connector board 43, and a base plate 46. The third anisotropic conductive sheet 42 was the same as the second anisotropic conductive sheet 26 described above.
性能試験  performance test
1.最低プレス圧力の測定  1.Minimum press pressure measurement
作成した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットし、検査装置に対して用意した評価用回路基板 1をセットした。  The created inspection device was set in the inspection section of the rail transport type automatic circuit board inspection machine rSTARREC V5J, and the evaluation circuit board 1 prepared for the inspection device was set.
[0307] そして、レール搬送型回路基板自動検査機 rSTARREC V5jのプレス圧力を、 1 00〜210kgfの範囲内において段階的に変化させ、各プレス圧力条件毎に各 10回 づっ、評価用回路基板 1の被検査電極について、電流供給用の接続用電極に 1ミリ アンペアの電流を流したときの導通抵抗値を測定した。 [0307] Then, the pressure of the rail conveyance type automatic circuit board inspection machine rSTARREC V5j is changed stepwise within the range of 100 to 210 kgf, and the evaluation circuit board 1 is repeated 10 times for each press pressure condition. For the electrodes to be inspected, the conduction resistance value was measured when a current of 1 milliampere was passed through the connection electrode for supplying current.
測定された導通抵抗値が 10 Ω以上となった検査点(以下、「NG検査点」という。)を 導通不良と判定し、総検査点における NG検査点の割合 (以下、「NG検査点割合」と いう。)を算出し、 NG検査点割合が 0. 01%以下となった最も低いプレス圧力を最低 プレス圧力とした。  Inspection points with a measured conduction resistance value of 10 Ω or more (hereinafter referred to as “NG inspection points”) are judged as continuity defects, and the ratio of NG inspection points to the total inspection points (hereinafter referred to as “NG inspection point ratio”). The lowest press pressure at which the NG inspection point ratio was 0.01% or less was determined as the minimum press pressure.
[0308] この検査装置においては、実用上、 NG検査点割合が 0. 01%以下であることが必 要とされており、 NG検査点割合が 0. 01%を超える場合には、良品である被検査回 路基板に対して、不良品であるとの誤った検査結果が得られる場合があることから、 信頼性の高い回路基板の電気的検査を行うことができなくなるおそれがある。 [0308] In this inspection device, the NG inspection point ratio is required to be 0.01% or less for practical use. If the NG inspection point ratio exceeds 0.01%, it is a non-defective product. Inspected times Since there is a case where an erroneous inspection result that the road board is defective is obtained, there is a possibility that a highly reliable electric inspection of the circuit board cannot be performed.
この導通抵抗値の測定においては、一の導通抵抗値の測定が終了した後に、測定 に係るプレス圧力を開放して検査装置を無加圧状態に戻し、次の導通抵抗値の測 定は、再度、所定の大きさのプレス圧力を作用させることによって行った。  In the measurement of the conduction resistance value, after the measurement of one conduction resistance value is completed, the press pressure related to the measurement is released to return the inspection device to the non-pressurized state, and the next measurement of the conduction resistance value is Again, a press pressure of a predetermined magnitude was applied.
[0309] 評価用回路基板 1の上面被検査電極数は 3600点、下面被検査電極数は 2600点 であり、各プレス圧力条件において 10回の測定を行ったことから、 NG検査点割合は 、式(3600 + 2600) X 10 = 62000【こよって算出される 62000, の検査, 【こ占める NG検査点の割合を示す。  [0309] The number of test electrodes on the upper surface of the evaluation circuit board 1 was 3600, and the number of test electrodes on the lower surface was 2600. Since the measurement was performed 10 times under each press pressure condition, the ratio of NG test points was Formula (3600 + 2600) X 10 = 62000 [62000, calculated by this, [The percentage of NG inspection points occupied].
測定結果を表 5に示した。  The measurement results are shown in Table 5.
[0310] なお、「最低プレス圧が小さい」とは、低いプレス圧力で被検査回路基板の電気的 検査が行えることを意味している。検査時の加圧圧力を低く設定できれば、検査時の 加圧圧力による被検査回路基板、異方導電性シートおよびピッチ変換用基板の劣化 が抑制できる。  [0310] Note that "the minimum press pressure is small" means that the circuit board to be inspected can be electrically inspected with a low press pressure. If the pressurized pressure at the time of inspection can be set low, deterioration of the circuit board to be inspected, the anisotropic conductive sheet, and the substrate for pitch conversion due to the pressurized pressure at the time of inspection can be suppressed.
し力も、検査装置の構成部材として、耐久性強度の低い部品を使用することが可能 となることから、検査装置の構造を小さくコンパクトにすることができる。  In addition, since it is possible to use a component having low durability as a component of the inspection apparatus, the structure of the inspection apparatus can be made small and compact.
[0311] その結果、検査装置の耐久性の向上、検査装置の製造のコスト削減が達成できる [0311] As a result, the durability of the inspection device can be improved and the cost of manufacturing the inspection device can be reduced.
2.中継基板の耐久性の測定 2.Measurement of durability of relay board
作成した検査装置をレール搬送型回路基板自動検査機 rSTARREC V5Jの検 查部にセットした。  The created inspection device was set in the inspection section of the rSTARREC V5J rail transport type automatic circuit board inspection machine.
検査装置に対して用意した評価用回路基板 1をセットして、レール搬送型回路基板 自動検査機「STARREC V5」のプレス圧力条件を 130kgfとし、所定回数の加圧を 行った。  An evaluation circuit board 1 prepared for the inspection device was set, and the press pressure condition of the rail transport type circuit board automatic inspection machine “STARREC V5” was set to 130 kgf, and pressurization was performed a predetermined number of times.
[0312] その後、評価用回路基板 1の被検査電極について、プレス圧力 130kgfの条件下 にて、検査用電極に 1ミリアンペアの電流を印加したときの導通抵抗値を 10回測定し 、所定回数の加圧を行い同様に導通抵抗値を 10回測定する作業を繰り返した。 測定された導通抵抗値が 10 Ω以上となった検査点 (NG検査点)を導通不良と判 定し、総検査点における NG検査点の割合 (NG検査点割合)を算出した。 [0312] Then, for the electrode to be inspected on the evaluation circuit board 1, the conduction resistance value was measured 10 times when a current of 1 milliampere was applied to the inspection electrode under the condition of a press pressure of 130 kgf. The operation of measuring the conduction resistance value 10 times in the same manner under pressure was repeated. An inspection point (NG inspection point) with a measured conduction resistance value of 10 Ω or more is judged as a continuity failure. The ratio of NG inspection points to the total inspection points (NG inspection point ratio) was calculated.
[0313] 次いで、検査装置の中継基板を新しいものに交換し、プレス圧力条件を 150kgfに 変更したこと以外は上記と同様の条件によって所定回数の加圧を行い、上記と同様 の手法によって NG検査点割合を算出した。 [0313] Next, except that the relay board of the inspection device was replaced with a new one, and the press pressure condition was changed to 150 kgf, pressurization was performed a predetermined number of times under the same conditions as above, and NG inspection was performed using the same method as above. The point ratio was calculated.
なお、一の導通抵抗値の測定が終了した後に、測定に係るプレス圧力を開放して 検査装置を無加圧状態に戻し、次の導通抵抗値の測定は、所定の大きさのプレス圧 力を再度作用させることによって行った。  After the measurement of one conduction resistance value is completed, the press pressure related to the measurement is released and the inspection device is returned to the non-pressurized state, and the next measurement of the conduction resistance value is a press pressure of a predetermined magnitude. Was performed again.
[0314] 測定結果を表 6に示した。 [0314] Table 6 shows the measurement results.
3.絶縁性の評価  3. Evaluation of insulation
以下のようにして、ピッチ変換用基板 23および中継基板 29からなるアダプタ一体 における対をなす接続用電極間の絶縁抵抗を評価した。  In the following manner, the insulation resistance between the connecting electrodes forming a pair in the adapter integrated with the pitch conversion board 23 and the relay board 29 was evaluated.
接続用電極間の絶縁抗性の評価には、縦方向 100mm、横方向 100mm、厚さ 0. 8mmの、表面を絶縁性コートを施したガラスエポキシ基板を使用した。  For the evaluation of the insulation resistance between the connecting electrodes, a glass epoxy substrate having a surface of 100 mm in the vertical direction, 100 mm in the horizontal direction and 0.8 mm in thickness and having an insulating coating on the surface was used.
[0315] 作成した検査装置を、レール搬送型回路基板自動検査機 rSTARREC V5jの検 查部にセットし、検査装置に対して上記のガラスエポキシ基板をセットした。 [0315] The created inspection apparatus was set in the inspection section of the rail transport type automatic circuit board inspection machine rSTARREC V5j, and the glass epoxy board was set on the inspection apparatus.
そして、レール搬送型回路基板自動検査機「STARREC V5」のプレス圧力を、 1 00〜210kgfの範囲内において段階的に変化させた。そして、各プレス圧力条件毎 に各 10回づつ、第 1の検査治具 11a用の上記アダプタ一体に設けられた、各々の対 をなす検査電極 25の間の絶縁抵抗を測定した。  The press pressure of the rail conveyance type automatic circuit board inspection machine “STARREC V5” was changed stepwise within the range of 100 to 210 kgf. Then, the insulation resistance between each pair of inspection electrodes 25 provided integrally with the adapter for the first inspection jig 11a was measured 10 times for each press pressure condition.
[0316] 具体的には、対をなす接続用電極 25に対応する端子電極 24を通じて 1ミリアンぺ ァの電流を印加しつつ、対をなす検査電極 25の導通抵抗値を測定した。 [0316] Specifically, the conduction resistance value of the pair of test electrodes 25 was measured while applying a current of 1 milliampere through the terminal electrode 24 corresponding to the pair of connection electrodes 25.
この方法にて、対をなす接続用電極 25間の絶縁抵抗値、すなわち中継基板 29に おける対をなす導電路形成部 61間の絶縁部 62の絶縁抵抗値を測定した。  By this method, the insulation resistance value between the paired connection electrodes 25, that is, the insulation resistance value of the insulation part 62 between the paired conductive path forming parts 61 in the relay substrate 29 was measured.
測定された絶縁抵抗値が 100 Ω以上となった接続用電極対を絶縁良好と判定し、 総検査点数に対する絶縁良好と判定された点の割合 (以下「絶縁性合格点割合」と いう。)を算出した。  The connection electrode pair whose measured insulation resistance value was 100 Ω or more was judged as good insulation, and the ratio of points judged as good insulation with respect to the total number of inspection points (hereinafter referred to as the “insulation pass point ratio”). Was calculated.
[0317] 第 1の検査治具 11a用の上記アダプタ一体における接続用電極 25は、 7200個が 3600個の対となっており、すなわち 3600個の接続電極対が存在し、各プレス圧力 条件において 10回の測定を行ったことから、絶縁性合格点割合は、式(3600) X 10 = 36000によって算出される 36000点の検査点に占める NG検査点の割合を示す [0317] The connection electrode 25 in the above-mentioned adapter integrated for the first inspection jig 11a has 7200 pairs of 3600 pieces, that is, 3600 connection electrode pairs exist, and each press pressure Since the measurement was performed 10 times under the conditions, the insulating passing point ratio indicates the ratio of NG inspection points to 36000 inspection points calculated by the formula (3600) X 10 = 36000
[0318] この検査装置においては、実用上、絶縁性合格点割合が 99. 9%以上であること が必要とされており、絶縁性合格点割合が 99. 9%未満の場合には、検査時におい て、電流供給用電極として使用する接続用電極から、電圧測定用電極として使用す る接続用電極へリーク電流が流れることになる。 [0318] In this inspection device, it is necessary for practical use that the insulating passing score ratio is 99.9% or more. If the insulating passing score ratio is less than 99.9%, Occasionally, a leakage current flows from the connection electrode used as the current supply electrode to the connection electrode used as the voltage measurement electrode.
その結果、被検査回路基板の良品である被検査回路基板に対して、不良品である との誤った検査結果が得られる場合があるため、信頼性の高い回路基板の電気的検 查を行うことができなくなるおそれがある。  As a result, an erroneous test result may be obtained for a circuit board to be inspected, which is a non-defective product, and a highly reliable circuit board electrical inspection is performed. There is a risk that it will not be possible.
[0319] 評価結果を表 7に示した。  [0319] The evaluation results are shown in Table 7.
[比較例 3]  [Comparative Example 3]
実施例 1の中継ピンユニット 31の代わりに、図 62に示したような従来の中継ピンュ ニット 131a、 131bを用いた。すなわち、一定ピッチ(2. 54mmピッチ)で格子点上に 多数(8000ピン)配置された導電ピン 132a, 132bと、この導電ピン 132a, 132bを 上下へ移動可能に支持する絶縁板 134a, 134bとを有しているものを用いた。それ 以外は実施例 2と同様の構成として、比較用の検査装置を作製した。  Instead of the relay pin unit 31 of the first embodiment, conventional relay pin units 131a and 131b as shown in FIG. 62 were used. That is, a large number (8000 pins) of conductive pins 132a and 132b arranged on a lattice point at a constant pitch (2.54 mm pitch), and insulating plates 134a and 134b that support the conductive pins 132a and 132b so as to be movable up and down. The thing which has was used. Other than that, an inspection apparatus for comparison was manufactured in the same configuration as in Example 2.
[0320] 作製した比較用検査装置について、実施例 2と同様な方法により、最低プレス圧お よび中継基板の耐久性を測定した。 [0320] With respect to the manufactured comparative inspection apparatus, the minimum press pressure and the durability of the relay substrate were measured in the same manner as in Example 2.
最低プレス圧の測定結果を表 5に、耐久性の測定結果を表 6に示した。  Table 5 shows the measurement results of the minimum press pressure, and Table 6 shows the measurement results of the durability.
[比較例 4]  [Comparative Example 4]
実施例 2の検査装置において、中継基板 29の代わりに、ピッチ変換基板 23と評価 用回路基板 1の間に厚さ 100 μ mの分散型異方導電性シートを配置した。  In the inspection apparatus of Example 2, instead of the relay substrate 29, a distributed anisotropic conductive sheet having a thickness of 100 μm was disposed between the pitch conversion substrate 23 and the evaluation circuit substrate 1.
[0321] 作製した比較用検査装置におけるピッチ変換用基板と分散型異方導電性シートと 力もなるアダプタ一体について、上述した方法にて絶縁性の評価を行った。絶縁性 の評価結果を表 7に示した。 [0321] With respect to the integrated adapter having the force for the pitch conversion substrate and the dispersed anisotropic conductive sheet in the manufactured comparative inspection apparatus, the insulation was evaluated by the method described above. Table 7 shows the results of the insulation evaluation.
[比較例 5]  [Comparative Example 5]
比較例 4において使用した厚さ 100 mの分散型異方導電性シートを、厚み 40 mの分散型異方導電性シートに交換した。 The dispersion-type anisotropic conductive sheet having a thickness of 100 m used in Comparative Example 4 The m was replaced with a dispersed anisotropic conductive sheet.
[0322] そして作製した比較用検査装置について、実施例 2と同様な方法により、最低プレ ス圧の測定、異方導電性シートの耐久性の測定および絶縁性の評価を行った。最低 プレス圧の測定結果を表 5に、耐久性の測定結果を表 6に、絶縁性の評価結果を表 7に示した。 [0322] With respect to the produced comparative inspection apparatus, the minimum pressure was measured, the durability of the anisotropic conductive sheet was measured, and the insulation was evaluated in the same manner as in Example 2. Table 5 shows the minimum press pressure measurement results, Table 6 shows the durability measurement results, and Table 7 shows the insulation evaluation results.
なお、比較例 4および比較例 5にお 、て使用した分散型異方導電性シートは以下 のようにして得た。  In Comparative Example 4 and Comparative Example 5, the dispersed anisotropic conductive sheet used in the above was obtained as follows.
<分散型異方導電性シートの製造 >  <Manufacture of dispersive anisotropic conductive sheet>
二液型の付加型液状シリコーンゴムの A液と B液とを、等量となる割合で混合した混 合物 100容量部に、平均粒子径が 20 mの導電性粒子を 25容量部添加して混合 した。  25 parts by volume of conductive particles with an average particle size of 20 m are added to 100 parts by volume of a mixture of two liquid type addition type liquid silicone rubbers A and B mixed in equal proportions. And mixed.
[0323] その後、減圧による脱泡処理を行うことにより、導電性エラストマ一用材料を調製し た。導電性粒子としては、ニッケル粒子を芯粒子とし、この芯粒子に無電解金メッキ が施されたもの(平均被覆量:芯粒子の重量の 5重量%となる量)を用いた。  [0323] Thereafter, a defoaming treatment by reduced pressure was performed to prepare a conductive elastomer material. As the conductive particles, nickel particles were used as core particles, and the core particles were subjected to electroless gold plating (average coating amount: an amount corresponding to 5% by weight of the weight of the core particles).
表面が光沢面 (表面粗さが 0. 04 /z m)で、裏面が非光沢面である、厚みが 0. lm mのポリエステル榭脂シート (東レネ土製,品名「マットルミラー S 10」)を 2枚用意した。 そして、一方のポリエステル榭脂シートの表面上に、 120mm X 200mmの矩形の開 口を有する、厚みが 100 μ mの枠状のスぺーサーを配置した。  A polyester resin sheet (product name: “Mattle Mirror S 10”, manufactured by Torayen Earth) with a glossy surface (surface roughness of 0.04 / zm) and a backside of non-glossy surface and a thickness of 0.1 mm. Two sheets were prepared. A frame-shaped spacer having a thickness of 100 μm and having a rectangular opening of 120 mm × 200 mm was disposed on the surface of one polyester resin sheet.
[0324] このスぺーサ一の開口内に、調製した導電性エラストマ一用材料を塗布し、この導 電性エラストマ一用材料上に、他方のポリエステル榭脂シートを、その表面が導電性 エラストマ一用材料に接するよう配置した。  [0324] The prepared conductive elastomer material is applied into the opening of the spacer, and the other polyester resin sheet is applied to the conductive elastomer material on the surface thereof. The material was placed in contact with the material for use.
その後、加圧ロールと支持ロールとからなる加圧ロール装置を用い、 2枚のポリエス テル榭脂シートによって導電性エラストマ一用材料を挟圧することにより、厚みが 100 μ mの導電性エラストマ一用材料層を形成した。  After that, by using a pressure roll device consisting of a pressure roll and a support roll, the conductive elastomer material is sandwiched between two polyester resin sheets, and the thickness of the conductive elastomer is 100 μm. A material layer was formed.
[0325] 次 、で、 2枚のポリエステル榭脂シートの各々の裏面に電磁石を配置し、導電性ェ ラストマー材料層に対して、その厚み方向に 0. 3Tの平行磁場を作用させながら、 12 0°C、 30分間の条件で、成形材料層の硬化処理を行うことにより、厚みが 100 mの 矩形の導電性エラストマ一シートを製造した。得られた導電性エラストマ一シートにお ける導電性粒子の割合は、体積分率で 12%であった。 [0325] Next, an electromagnet was placed on the back of each of the two polyester resin sheets, and a 0.3 T parallel magnetic field was applied to the conductive elastomer material layer in the thickness direction. A rectangular conductive elastomer sheet having a thickness of 100 m was manufactured by curing the molding material layer at 0 ° C. for 30 minutes. In the obtained conductive elastomer sheet The ratio of conductive particles in the volume fraction was 12%.
[0326] この導電性エラストマ一シートを、 110mm X 110mmに切断し、比較例 2に使用さ れる分散型異方導電性エラストマ一シートとした。 [0326] This conductive elastomer sheet was cut into 110 mm x 110 mm to obtain a dispersed anisotropic conductive elastomer sheet used in Comparative Example 2.
また、上記において、スぺーサ一の厚みを 40 /zmに変更し、同様の方法にて、比 較例 3に使用される厚み 40 μ mの分散型異方導電性エラストマ一シートを得た。  Also, in the above, the thickness of the spacer was changed to 40 / zm, and a dispersion type anisotropic conductive elastomer sheet having a thickness of 40 μm used in Comparative Example 3 was obtained in the same manner. .
[0327] [表 5] [0327] [Table 5]
Figure imgf000097_0001
Figure imgf000097_0001
[0328] [表 6] [0328] [Table 6]
Figure imgf000097_0002
Figure imgf000097_0002
[0329] [表 7] 絶縁性合格点割合 (%) 絶緣性評価 レス圧力 100 110 130 150 180 210 [0329] [Table 7] Insulation pass grade ratio (%) Insulation evaluation Less pressure 100 110 130 150 180 210
(kg0 (k g 0
実施例 2 99.9< 99.9< 99.9< 99.9ぐ 99.9< 99.9 < 絶縁性良好 比較例 4 <93 <93 く 93 ぐ 93 <93 <93 測定不能 比較例 5 98.5 98.2 97.6 96.3 96,1 95.4 信頼性低い  Example 2 99.9 <99.9 <99.9 <99.9 + 99.9 <99.9 <Good insulation Comparative example 4 <93 <93 <93 <93 <93 Measurement impossible Comparative example 5 98.5 98.2 97.6 96.3 96,1 95.4 Low reliability

Claims

請求の範囲  The scope of the claims
一対の第 1の検査治具と第 2の検査治具によって、両検査治具の間で検査対象で ある被検査回路基板の両面を挟圧して電気検査を行う回路基板の検査装置であつ て、  A circuit board inspection apparatus for performing an electrical inspection by sandwiching both surfaces of a circuit board to be inspected between a pair of first inspection jig and a second inspection jig. ,
前記第 1の検査治具と第 2の検査治具がそれぞれ、  The first inspection jig and the second inspection jig are respectively
基板の一面側と他面側との間で電極ピッチを変換するピッチ変換用基板と、 前記ピッチ変換用基板の被検査回路基板側に配置される第 1の異方導電性シート と、  A pitch converting substrate for converting an electrode pitch between one surface side and the other surface side of the substrate; a first anisotropic conductive sheet disposed on the circuit board to be inspected side of the pitch converting substrate;
前記ピッチ変換用基板の被検査回路基板とは逆側に配置される第 2の異方導電性 シートと、  A second anisotropic conductive sheet disposed on the opposite side to the circuit board to be inspected of the pitch conversion board;
を備えた回路基板側コネクタと、 A circuit board-side connector with
所定のピッチで配置された複数の導電ピンと、  A plurality of conductive pins arranged at a predetermined pitch;
前記導電ピンを軸方向へ移動可能に支持する、一対の離間した第 1の絶縁板と第 2の絶縁板と、  A pair of spaced apart first and second insulating plates that support the conductive pins movably in the axial direction;
を備えた中 «Iピンユニットと、 «I-pin unit with
テスターと前記中継ピンユニットとを電気的に接続するコネクタ基板と、  A connector board for electrically connecting the tester and the relay pin unit;
前記コネクタ基板の中継ピンユニット側に配置される第 3の異方導電性シートと、 前記コネクタ基板の中継ピンユニットとは逆側に配置されるベース板と、 を備えたテスター佃 jコネクタと、を備え、  A third anisotropic conductive sheet arranged on the relay pin unit side of the connector board; and a base plate arranged on the opposite side of the connector board on the relay pin unit; With
前記中継ピンユニットは、  The relay pin unit is
前記第 1の絶縁板と第 2の絶縁板との間に配置された中間保持板と、  An intermediate holding plate disposed between the first insulating plate and the second insulating plate;
前記第 1の絶縁板と中間保持板との間に配置された第 1の支持ピンと、  A first support pin disposed between the first insulating plate and the intermediate holding plate;
前記第 2の絶縁板と中間保持板との間に配置された第 2の支持ピンと、  A second support pin disposed between the second insulating plate and the intermediate holding plate;
を備えるとともに、 With
前記第 1の支持ピンの中間保持板に対する第 1の当接支持位置と、前記第 2の支 持ピンの中間保持板に対する第 2の当接支持位置とが、中間保持板の厚さ方向に投 影した中間保持板投影面において異なる位置に配置されており、  The first abutting support position of the first support pin with respect to the intermediate holding plate and the second abutting support position of the second support pin with respect to the intermediate holding plate are in the thickness direction of the intermediate holding plate. It is placed at different positions on the projected intermediate holding plate projection surface,
前記第 1の異方導電性シートは、厚み方向に延びる複数の導電路形成部と、これら の導電路形成部を互いに絶縁する絶縁部とからなり、導電性粒子が導電路形成部 中にのみ含有され、これにより該導電性粒子は面方向に不均一に分散されるとともに 、シート片面側に導電路形成部が突出しており、 The first anisotropic conductive sheet includes a plurality of conductive path forming portions extending in a thickness direction, and these The conductive path forming part is insulated from each other, and the conductive particles are contained only in the conductive path forming part, whereby the conductive particles are unevenly dispersed in the surface direction, and the sheet one side The conductive path forming part protrudes into
前記第 1の異方導電性シートは、前記ピッチ変換用基板と共に、該第 1の異方導電 性シートとピッチ変換用基板とが一体化されたピッチ変換用アダプタ一体を構成して いることを特徴とする回路基板の検査装置。  The first anisotropic conductive sheet constitutes a pitch conversion adapter integrated with the pitch conversion substrate and the first anisotropic conductive sheet and the pitch conversion substrate. A circuit board inspection device.
[2] 前記ピッチ変換用アダプタ一体を構成する第 1の異方導電性シートは、  [2] The first anisotropic conductive sheet constituting the pitch conversion adapter is as follows:
離型性支持板上に支持され、磁性を示す導電性粒子が厚み方向に配向した状態 で弾性高分子物質中に分散された導電性エラストマ一層を、レーザー加工すること により、離型性支持板上に所定のパターンに従って配置された導電路形成部を形成 し、  The releasable support plate is obtained by laser processing a conductive elastomer layer supported on a releasable support plate and dispersed in an elastic polymer material in a state where conductive particles exhibiting magnetism are oriented in the thickness direction. Forming a conductive path forming portion arranged in accordance with a predetermined pattern on the top;
これらの導電路形成部の間に、硬化されて弾性高分子物質となる材料からなる絶 縁部用材料層を形成し、次 、で硬化処理することにより絶縁部を形成して得られたも のであることを特徴とする請求項 1に記載の回路基板の検査装置。  An insulating material layer formed of a material that is cured to become an elastic polymer substance is formed between these conductive path forming portions, and then an insulating portion is formed by curing with The circuit board inspection device according to claim 1, wherein
[3] 前記ピッチ変換用アダプタ一体は、 [3] The integrated adapter for pitch conversion is
離型性支持板上に支持され、磁性を示す導電性粒子が厚み方向に配向した状態 で弾性高分子物質中に分散された導電性エラストマ一層を、レーザー加工すること により、離型性支持板上に所定のパターンに従って配置された導電路形成部を形成 し、  The releasable support plate is obtained by laser processing a conductive elastomer layer supported on a releasable support plate and dispersed in an elastic polymer material in a state where conductive particles exhibiting magnetism are oriented in the thickness direction. Forming a conductive path forming portion arranged in accordance with a predetermined pattern on the top;
この導電路形成部が形成された離型性支持板を、硬化されて弾性高分子物質とな る材料からなる未硬化状態の絶縁部用材料層が接続用電極側の面に形成されたピ ツチ変換用基板上に重ね合わせ、  The releasable support plate on which the conductive path forming portion is formed is a pin having an uncured insulating portion material layer made of a material that is cured to become an elastic polymer substance on the surface on the connection electrode side. Overlaid on the substrate for the touch conversion,
これにより、ピッチ変換用基板におけるそれぞれの接続用電極と、これに対応する 導電路形成部とを対接させ、  As a result, each connection electrode on the pitch conversion substrate is brought into contact with the corresponding conductive path forming portion,
この状態で、絶縁部用材料層を硬化処理することにより絶縁部を形成した後、離型 性支持板を除去することにより得られたものであることを特徴とする請求項 1に記載の 回路基板の検査装置。  2. The circuit according to claim 1, wherein the circuit is obtained by removing the releasable support plate after forming the insulating portion by curing the material layer for the insulating portion in this state. Board inspection equipment.
[4] 前記導電性エラストマ一層は、 離型性支持板上に、硬化されて弾性高分子物質となる液状のエラストマ一用材料 中に磁性を示す導電性粒子が含有された導電性エラストマ一用材料層を形成し、 該導電性エラストマ一用材料層の表面に、形成すべき導電路形成部のパターンに 従って、磁性を示す金属からなる金属マスクを形成し、 [4] The conductive elastomer layer A conductive elastomer material layer containing conductive particles exhibiting magnetism in a liquid elastomer material that is cured to become an elastic polymer substance is formed on a releasable support plate, and the conductive elastomer A metal mask made of a metal showing magnetism is formed on the surface of the material layer according to the pattern of the conductive path forming portion to be formed,
前記導電性エラストマ一用材料層に対してその厚み方向に磁場を作用させることに より、導電性粒子を厚み方向に配向させ、次いで、磁場を作用させた状態で、または 磁場を停止した状態で前記導電性エラストマ一用材料層を硬化処理することにより 得られたものであることを特徴とする請求項 2または 3に記載の回路基板の検査装置  By applying a magnetic field in the thickness direction to the conductive elastomer material layer, the conductive particles are oriented in the thickness direction, and then the magnetic field is applied or the magnetic field is stopped. 4. The circuit board inspection device according to claim 2, wherein the circuit board inspection device is obtained by curing the material layer for conductive elastomer.
[5] 前記第 1の異方導電性シートにおける少なくとも一部の導電路形成部において、互 いに隣接する導電路形成部の離間距離が 50 m以下であることを特徴とする請求 項 1〜4のいずれかに記載の回路基板の検査装置。 [5] The at least part of the conductive path forming portions in the first anisotropic conductive sheet has a separation distance of adjacent conductive path forming portions of 50 m or less. 5. The circuit board inspection apparatus according to any one of 4 above.
[6] 前記第 1の異方導電性シートにおける少なくとも一部の導電路形成部において、互 いに隣接する導電路形成部の離間距離が 10〜50 mであることを特徴とする請求 項 5に記載の回路基板の検査装置。 6. In at least some of the conductive path forming portions in the first anisotropic conductive sheet, the distance between adjacent conductive path forming portions is 10 to 50 m. Circuit board inspection device according to claim 1.
[7] 一対の第 1の検査治具と第 2の検査治具によって、両検査治具の間で検査対象で ある被検査回路基板の両面を挟圧して電気検査を行う回路基板の検査装置であつ て、 [7] Circuit board inspection apparatus that performs electrical inspection by sandwiching both surfaces of the circuit board to be inspected between the two inspection jigs by a pair of first inspection jig and second inspection jig Because
前記第 1の検査治具と第 2の検査治具がそれぞれ、  The first inspection jig and the second inspection jig are respectively
基板の一面側と他面側との間で電極ピッチを変換するピッチ変換用基板と、 前記ピッチ変換用基板の被検査回路基板側に配置され、基板に形成された複数 の貫通孔に、弾性高分子物質カゝらなる絶縁部と、導電性粒子を含有する弾性高分 子物質からなり前記絶縁部を厚み方向へ貫通する導電路形成部とが形成された、該 導電路形成部によって前記ピッチ変換用基板と前記被検査回路基板との電気的接 続を中継する中継基板と、  A pitch conversion substrate for converting the electrode pitch between one surface side and the other surface side of the substrate, and a plurality of through holes formed on the substrate, arranged on the circuit board side to be inspected of the pitch conversion substrate. The conductive path forming section includes an insulating section formed of a polymer substance and a conductive path forming section formed of an elastic polymer material containing conductive particles and penetrating the insulating section in the thickness direction. A relay board for relaying the electrical connection between the pitch conversion board and the circuit board to be inspected;
前記ピッチ変換用基板の前記中継基板とは逆側に配置される第 2の異方導電性シ ートと、  A second anisotropic conductive sheet disposed on the opposite side of the pitch conversion substrate from the relay substrate;
を備えた回路基板側コネクタと、 所定のピッチで配置された複数の導電ピンと、 A circuit board-side connector with A plurality of conductive pins arranged at a predetermined pitch;
前記導電ピンを軸方向へ移動可能に支持する、一対の離間した第 1の絶縁板と第 2の絶縁板と、  A pair of spaced apart first and second insulating plates that support the conductive pins movably in the axial direction;
を備えた中 «Iピンユニットと、 «I-pin unit with
テスターと前記中継ピンユニットとを電気的に接続するコネクタ基板と、  A connector board for electrically connecting the tester and the relay pin unit;
前記コネクタ基板の中継ピンユニット側に配置される第 3の異方導電性シートと、 前記コネクタ基板の中継ピンユニットとは逆側に配置されるベース板と、 を備えたテスター佃 jコネクタと、を備え、  A third anisotropic conductive sheet arranged on the relay pin unit side of the connector board; and a base plate arranged on the opposite side of the connector board on the relay pin unit; With
前記中継ピンユニットは、  The relay pin unit is
前記第 1の絶縁板と第 2の絶縁板との間に配置された中間保持板と、  An intermediate holding plate disposed between the first insulating plate and the second insulating plate;
前記第 1の絶縁板と中間保持板との間に配置された第 1の支持ピンと、 前記第 2の絶縁板と中間保持板との間に配置された第 2の支持ピンと、 を備えるとともに、  A first support pin disposed between the first insulating plate and the intermediate holding plate, and a second support pin disposed between the second insulating plate and the intermediate holding plate, and
前記第 1の支持ピンの中間保持板に対する第 1の当接支持位置と、前記第 2の支 持ピンの中間保持板に対する第 2の当接支持位置とが、中間保持板の厚さ方向に投 影した中間保持板投影面にお 、て異なる位置に配置されて 、ることを特徴とする回 路基板の検査装置。  The first abutting support position of the first support pin with respect to the intermediate holding plate and the second abutting support position of the second support pin with respect to the intermediate holding plate are in the thickness direction of the intermediate holding plate. A circuit board inspection apparatus, wherein the circuit board inspection apparatus is arranged at different positions on the projected intermediate holding plate projection surface.
前記中継基板は、  The relay board is
第 1の離型性支持板上に支持され、磁性を示す導電性粒子が厚み方向に配向し た状態で弾性高分子物質中に分散された導電性エラストマ一層を、レーザー加工す ることにより、第 1の離型性支持板上に所定のパターンに従って配置された導電路形 成部を形成し、  By conducting laser processing on the conductive elastomer layer supported on the first releasable support plate and dispersed in the elastic polymer material in a state where the conductive particles exhibiting magnetism are oriented in the thickness direction, Forming a conductive path forming portion arranged according to a predetermined pattern on the first releasable support plate;
第 2の離型性支持板上に支持され、硬化されて弾性高分子物質となる材料からな る未硬化状態の絶縁部用材料層が前記基板における両側表面および貫通孔の内 部に形成された当該基板に対して、導電路形成部が形成された前記第 1の離型性 支持板を、導電路形成部が前記基板の貫通孔に位置するように重ね合わせ、 この状態で、絶縁部用材料層を硬化処理することにより絶縁部を形成した後、第 1 および第 2の離型性支持板を除去することにより得られたものであることを特徴とする 請求項 7に記載の回路基板の検査装置。 An uncured insulating material layer made of a material that is supported on the second releasable support plate and cured to become an elastic polymer substance is formed on both side surfaces of the substrate and inside the through holes. In addition, the first releasable support plate on which the conductive path forming portion is formed is superimposed on the substrate so that the conductive path forming portion is located in the through hole of the substrate. It is obtained by removing the first and second releasable support plates after forming the insulating part by curing the material layer The circuit board inspection apparatus according to claim 7.
[9] 前記導電性エラストマ一層は、 [9] The conductive elastomer layer comprises
離型性支持板上に、硬化されて弾性高分子物質となる液状のエラストマ一用材料 中に磁性を示す導電性粒子が含有された導電性エラストマ一用材料層を形成し、 該導電性エラストマ一用材料層の表面に、形成すべき導電路形成部のパターンに 従って、磁性を示す金属からなる金属マスクを形成し、  A conductive elastomer material layer containing conductive particles exhibiting magnetism in a liquid elastomer material that is cured to become an elastic polymer substance is formed on a releasable support plate, and the conductive elastomer A metal mask made of a metal exhibiting magnetism is formed on the surface of the material layer according to the pattern of the conductive path forming portion to be formed,
前記導電性エラストマ一用材料層に対してその厚み方向に磁場を作用させることに より、導電性粒子を厚み方向に配向させ、次いで、磁場を作用させた状態で、または 磁場を停止した状態で前記導電性エラストマ一用材料層を硬化処理することにより 得られたものであることを特徴とする請求項 8に記載の回路基板の検査装置。  By applying a magnetic field in the thickness direction to the conductive elastomer material layer, the conductive particles are oriented in the thickness direction, and then the magnetic field is applied or the magnetic field is stopped. 9. The circuit board inspection apparatus according to claim 8, wherein the circuit board inspection apparatus is obtained by curing the material layer for conductive elastomer.
[10] 前記中継基板における少なくとも一部の導電路形成部において、互いに隣接する 導電路形成部の離間距離が 50 μ m以下であることを特徴とする請求項 7〜9の ヽず れかに記載の回路基板の検査装置。 [10] The method according to any one of claims 7 to 9, wherein in at least some of the conductive path forming portions of the relay substrate, a distance between adjacent conductive path forming portions is 50 μm or less. The circuit board inspection apparatus as described.
[11] 前記中継基板における少なくとも一部の導電路形成部において、互いに隣接する 導電路形成部の離間距離が 10〜50 μ mであることを特徴とする請求項 10に記載の 回路基板の検査装置。 [11] The circuit board inspection according to [10], wherein in at least a part of the conductive path forming portions of the relay substrate, a distance between adjacent conductive path forming portions is 10 to 50 μm. apparatus.
[12] 前記中継基板の片面側もしくは両面側に、導電性粒子が厚み方向に配列するとと もに面方向に均一に分散された第 1の異方導電性シートが配置されていることを特徴 とする請求項 7〜 11の 、ずれかに記載の回路基板の検査装置。  [12] The first anisotropic conductive sheet in which the conductive particles are arranged in the thickness direction and uniformly dispersed in the plane direction is arranged on one side or both sides of the relay substrate. The circuit board inspection apparatus according to claim 7, wherein the circuit board inspection apparatus is misaligned.
[13] 一対の第 1の検査治具と第 2の検査治具によって、両検査治具の間で検査対象で ある被検査回路基板の両面を挟圧した際に、 [13] When the both sides of the circuit board to be inspected are clamped between the two inspection jigs by the pair of the first inspection jig and the second inspection jig,
前記第 1の支持ピンの中間保持板に対する第 1の当接支持位置を中心として、前 記中間保持板が、前記第 2の絶縁板の方向に橈むとともに、  Centering on the first abutting support position of the first support pin with respect to the intermediate holding plate, the intermediate holding plate is sandwiched in the direction of the second insulating plate, and
前記第 2の支持ピンの中間保持板に対する第 2の当接支持位置を中心として、前 記中間保持板が、前記第 1の絶縁板の方向に橈むことを特徴とする請求項 1〜12の 13. The intermediate holding plate is sandwiched in the direction of the first insulating plate, with the second contact support position of the second support pin with respect to the intermediate holding plate as a center. of
V、ずれかに記載の回路基板の検査装置。 V, inspection device for circuit boards as described in the gap.
[14] 前記第 1の支持ピンの中間保持板に対する第 1の当接支持位置が、前記中間保持 板投影面において格子状に配置され、 前記第 2の支持ピンの中間保持板に対する第 2の当接支持位置が、前記中間保持 板投影面において格子状に配置されており、 [14] The first contact support position of the first support pin with respect to the intermediate holding plate is arranged in a grid pattern on the intermediate holding plate projection surface, Second contact support positions of the second support pins with respect to the intermediate holding plate are arranged in a grid pattern on the intermediate holding plate projection surface,
前記中間保持板投影面において、隣接する 4個の第 1の当接支持位置力もなる単 位格子領域に、 1個の第 2の当接支持位置が配置されるとともに、  On the intermediate holding plate projection surface, one second abutment support position is arranged in a unit lattice region that also has four adjacent first abutment support position forces, and
前記中間保持板投影面において、隣接する 4個の第 2の当接支持位置力もなる単 位格子領域に、 1個の第 1の当接支持位置が配置されていることを特徴とする請求項 1〜 13のいずれかに記載の回路基板の検査装置。  The one first abutment support position is arranged in a unit lattice region having four adjacent second abutment support position forces on the intermediate holding plate projection surface. The circuit board inspection apparatus according to any one of 1 to 13.
[15] 前記中継ピンユニットが、 [15] The relay pin unit is
前記第 1の絶縁板と第 2の絶縁板との間に所定間隔離間して配置された複数個の 中間保持板と、  A plurality of intermediate holding plates disposed at a predetermined distance between the first insulating plate and the second insulating plate;
隣接する中間保持板同士の間に配置された保持板支持ピンと、  Holding plate support pins arranged between adjacent intermediate holding plates;
を備えるとともに、  With
少なくとも 1つの中間保持板において、該中間保持板に対して一面側から当接する 保持板支持ピンの該中間保持板に対する当接支持位置と、該中間保持板に対して 他面側から当接する第 1の支持ピン、第 2の支持ピン、または保持板支持ピンの該中 間保持板に対する当接支持位置とが、該中間保持板の厚さ方向に投影した中間保 持板投影面において異なる位置に配置されていることを特徴とする請求項 1〜12の V、ずれかに記載の回路基板の検査装置。  At least one of the intermediate holding plates is in contact with the intermediate holding plate from one surface side. The holding support position of the holding plate support pin with respect to the intermediate holding plate, and the second contact surface with respect to the intermediate holding plate from the other surface side. Positions at which the support pin 1, the second support pin, or the holding plate support pin abuts on the intermediate holding plate are different on the intermediate holding plate projection surface projected in the thickness direction of the intermediate holding plate. 13. The circuit board inspection device according to claim 1, wherein the circuit board inspection device is disposed in a gap.
[16] 全ての前記中間保持板において、該中間保持板に対して一面側力 当接する保 持板支持ピンの該中間保持板に対する当接支持位置と、該中間保持板に対して他 面側力も当接する第 1の支持ピン、第 2の支持ピン、または保持板支持ピンの該中間 保持板に対する当接支持位置とが、該中間保持板の厚さ方向に投影した中間保持 板投影面において異なる位置に配置されていることを特徴とする請求項 15に記載の 回路基板の検査装置。 [16] In all the intermediate holding plates, the holding plate supporting pins that come into contact with the intermediate holding plate on the one surface side with respect to the intermediate holding plate, and the other surface side with respect to the intermediate holding plate The contact position of the first support pin, the second support pin, or the holding plate support pin with which the force abuts against the intermediate holding plate is projected on the intermediate holding plate projection surface in the thickness direction of the intermediate holding plate. 16. The circuit board inspection apparatus according to claim 15, wherein the circuit board inspection apparatus is arranged at different positions.
[17] 前記第 2の異方導電性シートが、厚み方向に延びる複数の導電路形成部と、これら の導電路形成部を互いに絶縁する絶縁部とからなり、導電性粒子が導電路形成部 中にのみ含有され、これにより該導電性粒子は面方向に不均一に分散されるとともに 、シート片面側に導電路形成部が突出していることを特徴とする請求項 1〜16のい ずれかに記載の回路基板の検査装置。 [17] The second anisotropic conductive sheet includes a plurality of conductive path forming portions extending in a thickness direction and insulating portions that insulate these conductive path forming portions from each other, and the conductive particles are formed as conductive path forming portions. The conductive path forming portion protrudes on one side of the sheet, and the conductive particles are dispersed non-uniformly in the plane direction due to being contained only in the inside. The circuit board inspection device according to any one of the above.
[18] 前記第 3の異方導電性シートが、厚み方向に延びる複数の導電路形成部と、これら の導電路形成部を互いに絶縁する絶縁部とからなり、導電性粒子が導電路形成部 中にのみ含有され、これにより該導電性粒子は面方向に不均一に分散されるとともに 、シート片面側に導電路形成部が突出していることを特徴とする請求項 1〜17のい ずれかに記載の回路基板の検査装置。  [18] The third anisotropic conductive sheet includes a plurality of conductive path forming portions extending in a thickness direction and insulating portions that insulate these conductive path forming portions from each other, and the conductive particles are formed as conductive path forming portions. The conductive path forming portion protrudes on one side of the sheet, and the conductive particles are unevenly dispersed in the surface direction due to being contained only in the inside. Circuit board inspection device according to claim 1.
[19] 前記複数の導電ピンは、前記第 1の絶縁板と第 2の絶縁板との間の間隔よりも短い 棒状の中央部と、該中央部の両端側に形成され該中央部よりも径が小さい一対の端 部とからなり、  [19] The plurality of conductive pins are formed in a bar-shaped central portion that is shorter than the distance between the first insulating plate and the second insulating plate, and on both ends of the central portion, and are formed on the both sides of the central portion. It consists of a pair of ends with a small diameter,
前記一対の端部がそれぞれ、前記第 1の絶縁板と第 2の絶縁板とに形成された前 記中央部よりも径カ 、さく前記一対の端部よりも径が大きい貫通孔に揷通され、これ により前記導電ピンが軸方向へ移動可能に支持されていることを特徴とする請求項 1 〜18のいずれかに記載の回路基板の検査装置。  Each of the pair of end portions passes through a through-hole having a diameter larger than that of the central portion formed in the first insulating plate and the second insulating plate and larger than that of the pair of end portions. 19. The circuit board inspection apparatus according to claim 1, wherein the conductive pin is supported so as to be movable in an axial direction.
[20] 前記第 1の絶縁板と中間保持板との間、前記第 2の絶縁板と中間保持板との間、ま たは中間保持板同士の間に、前記導電ピンが挿通される貫通孔が形成された屈曲 保持板が設けられ、 [20] A through-hole through which the conductive pin is inserted between the first insulating plate and the intermediate holding plate, between the second insulating plate and the intermediate holding plate, or between the intermediate holding plates. A bent holding plate with holes is provided,
前記複数の導電ピンは、前記第 1および第 2の絶縁板に形成された貫通孔と、前記 屈曲保持板に形成された貫通孔とを支点として互いに逆方向に横方向へ押圧され て前記屈曲保持板の貫通孔の位置で屈曲され、これにより前記導電ピンが軸方向へ 移動可能に支持されていることを特徴とする請求項 1〜18のいずれかに記載の回路 基板の検査装置。  The plurality of conductive pins are laterally pressed in opposite directions from each other around a through hole formed in the first and second insulating plates and a through hole formed in the bent holding plate. 19. The circuit board inspection apparatus according to claim 1, wherein the circuit board inspection device is bent at a position of a through hole of the holding plate, whereby the conductive pin is supported so as to be movable in the axial direction.
[21] 請求項 1〜20のいずれかに記載の回路基板の検査装置を用いた回路基板の検査 方法であって、  [21] A circuit board inspection method using the circuit board inspection apparatus according to any one of claims 1 to 20,
一対の第 1の検査治具と第 2の検査治具によって、両検査治具の間で検査対象で ある被検査回路基板の両面を挟圧して電気検査を行うことを特徴とする回路基板の 検査方法。  A circuit board comprising: a pair of a first inspection jig and a second inspection jig, wherein both sides of the circuit board to be inspected are sandwiched between the inspection jigs to perform an electrical inspection. Inspection method.
PCT/JP2005/013139 2004-07-16 2005-07-15 Inspection equipment of circuit board and inspection method of circuit board WO2006009104A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004210608 2004-07-16
JP2004-210608 2004-07-16
JP2004210606 2004-07-16
JP2004-210606 2004-07-16

Publications (1)

Publication Number Publication Date
WO2006009104A1 true WO2006009104A1 (en) 2006-01-26

Family

ID=35785215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013139 WO2006009104A1 (en) 2004-07-16 2005-07-15 Inspection equipment of circuit board and inspection method of circuit board

Country Status (2)

Country Link
TW (1) TW200619647A (en)
WO (1) WO2006009104A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI785567B (en) * 2020-05-27 2022-12-01 日商日本麥克隆尼股份有限公司 Holding structure for optical connector, and connecting apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344521A (en) * 1998-06-01 1999-12-14 Jsr Corp Stacked connector device, and inspection device of circuit substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344521A (en) * 1998-06-01 1999-12-14 Jsr Corp Stacked connector device, and inspection device of circuit substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI785567B (en) * 2020-05-27 2022-12-01 日商日本麥克隆尼股份有限公司 Holding structure for optical connector, and connecting apparatus

Also Published As

Publication number Publication date
TW200619647A (en) 2006-06-16

Similar Documents

Publication Publication Date Title
JP3775509B2 (en) Circuit board inspection apparatus and circuit board inspection method
WO2005083453A1 (en) Circuit substrate inspection device and circuit substrate inspection method
WO2006087877A1 (en) Composite conductive sheet, method for producing the same, anisotropic conductive connector, adapter, and circuit device electric inspection device
WO2005080996A1 (en) Adapter for circuit board examination and device for circuit board examination
JP4631620B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP2005283571A (en) Circuit board inspecting device and circuit board inspection method
JP4725318B2 (en) COMPOSITE CONDUCTIVE SHEET AND METHOD FOR MANUFACTURING THE SAME, ANISOTROPIC CONDUCTIVE CONNECTOR, ADAPTER DEVICE, AND ELECTRIC INSPECTION DEVICE FOR CIRCUIT DEVICE
JP4631621B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP3722228B1 (en) Circuit board inspection apparatus and circuit board inspection method
JP4396429B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP2006053139A (en) Device and method for inspection of circuit board
WO2006009104A1 (en) Inspection equipment of circuit board and inspection method of circuit board
WO2007026877A1 (en) Circuit board inspecting apparatus and circuit board inspecting method
JP2006010682A (en) Inspection device and method for circuit board
WO2006001303A1 (en) Inspection device for circuit board and inspection method for circuit board
WO2005116670A1 (en) Circuit board inspecting apparatus and circuit board inspecting method
JP3707559B1 (en) Circuit board inspection apparatus and circuit board inspection method
JP2006053138A (en) Device and method for inspection of circuit board
JP3722227B1 (en) Circuit board inspection apparatus and circuit board inspection method
JP2007064934A (en) Relay substrate, its manufacturing method, inspection apparatus using relay substrate, and method for inspecting circuit board using the same
JP3700721B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP3705366B1 (en) Circuit board inspection equipment
JP2007064935A (en) Relay substrate, its manufacturing method, inspection apparatus using relay substrate, and method for inspecting circuit board using the same
JP3966357B2 (en) Electrical resistance measuring connector, circuit board electrical resistance measuring device and measuring method
JP2005321280A (en) Circuit board inspection device and circuit board inspection method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP