WO2005083135A1 - Ca還元によるTi又はTi合金の製造方法 - Google Patents

Ca還元によるTi又はTi合金の製造方法 Download PDF

Info

Publication number
WO2005083135A1
WO2005083135A1 PCT/JP2004/015043 JP2004015043W WO2005083135A1 WO 2005083135 A1 WO2005083135 A1 WO 2005083135A1 JP 2004015043 W JP2004015043 W JP 2004015043W WO 2005083135 A1 WO2005083135 A1 WO 2005083135A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
alloy
producing
ticl
reduction
Prior art date
Application number
PCT/JP2004/015043
Other languages
English (en)
French (fr)
Inventor
Tadashi Ogasawara
Makoto Yamaguchi
Masahiko Hori
Toru Uenishi
Kazuo Takemura
Original Assignee
Sumitomo Titanium Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Titanium Corporation filed Critical Sumitomo Titanium Corporation
Priority to EP04792287A priority Critical patent/EP1736557A4/en
Priority to US10/590,863 priority patent/US20070295167A1/en
Publication of WO2005083135A1 publication Critical patent/WO2005083135A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1295Refining, melting, remelting, working up of titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/129Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a metal chloride containing TiCl, which is treated with Ca to reduce metal Ti or a Ti alloy.
  • the present invention relates to a method for producing Ti or a Ti alloy by reducing Ca to be produced.
  • metal Ti is produced through a reduction step and a vacuum separation step.
  • TiCl which is the raw material of Ti, is reduced by Mg in the reaction vessel and sponge-like.
  • Metal Ti is produced.
  • sponge-like unreacted metal T produced in the reaction vessel and MgCl as a by-product are removed.
  • TiCl is reduced by Mg to form particulate metal Ti.
  • Generated metal Ti is successively below
  • the specific gravity of 22 is larger than the specific gravity of molten Mg. Due to this difference in specific gravity, the by-product molten MgCl
  • Unreacted product gases such as 4 4 3 (these are unreacted gases and ⁇ ⁇ ) are discharged out of the reaction vessel. Further, the generation of unreacted gas must be avoided because it involves a sharp rise in the internal pressure of the container. For these reasons, there is a limit to the supply rate of TiCl, which is a Ti raw material.
  • Ti is generated in the form of particles near the liquid surface and settles.
  • the generated Ti powder settles in an agglomerated state, and during settling, sinters due to the temperature of the melt, grows grains, and is collected outside the reaction vessel. It is difficult. For this reason, continuous production is difficult and productivity is hindered. This is exactly why Ti is produced in a reaction vessel as titanium sponge by the notch method.
  • Suitable for 24 agents Particularly, in the method described in US Pat. No. 4,820,339, Ca is used by dissolving it in molten CaCl. Utilizing Ca reduction reaction in molten CaCl
  • the reaction field is widened, the heat generation area is widened, and cooling is easy, the feed rate of Ti C1, which is a raw material of Ti, can be greatly increased, and a significant improvement in productivity can be expected.
  • Still another Ti production method is the Olson method described in US Patent No. 2,845,386. This is an oxide that directly reduces TiO with Ca without passing through TiCl
  • An object of the present invention is to provide a method for economically producing high-purity metal Ti or Ti alloy with high efficiency and without using an expensive reducing agent.
  • Na and NaCl are less reactive and are much easier to handle than Ca and CaCl.
  • CaCl having a melting point of 780 ° C is basically used as a molten salt.
  • CaCl NaCl a ternary molten salt such as CaCl NaCl—KC1, etc.
  • the melting point of the salt is lowered, and the temperature of the molten salt can be lowered.
  • the load on the furnace material is reduced, and the cost of the furnace material can be reduced.
  • the evaporation of Ca and salts from the liquid surface can be suppressed.
  • Fig. 2 shows the mixing ratio of binary mixed molten salt of CaCl and NaCl.
  • the relationship between melting points is shown.
  • the melting point of CaCl alone is about 780 ° C. Meanwhile, NaCl
  • Melting point alone is over 800 ° C. However, mixing them lowers the melting point, Cools down to about 500 ° C. And, when the mixing ratio of NaCl is in the range of about 20-45%, the melting point of the mixed salt will be below 600 ° C.
  • Molten salts are formed, which can cause TiCl by Ca without forming divalent and trivalent chlorides of Ti.
  • the present invention has been developed on the basis of vigorous considerations, and is a method for producing Ti or a Ti alloy using a reduction reaction with Ca, comprising CaCl and a solution maintained at 600 ° C. or lower.
  • a method for producing Ti or a Ti alloy by reducing Ca comprising: a Ti separation step of separating the Ti or Ti alloy generated in the molten salt by the molten salt force.
  • molten CaCl is held in a reaction tank, for example, as a molten salt.
  • the melting point of the molten salt is below 600 ° C
  • a mixed molten salt with NaCl is used (see FIG. 2).
  • Na is added to the molten salt (maintained at a temperature of 600 ° C. or lower)
  • Na is replaced by Ca
  • the Ca is different from Na in a state of being dissolved in the molten salt (CaCl 2).
  • TiCl is added to the molten salt.
  • Ti particles 4 Z or granular metal Ti (hereinafter collectively referred to as Ti particles) is generated, and the generated metal Ti is separated by molten salt force. Reduction takes place. [0027] In this way, metal Ti can be reduced and produced extremely economically and efficiently without replenishment of metal Ca and without handling force or Ca alone.
  • Ca is inferior in wettability (adhesiveness) to Mg, and Ca adhering to precipitated Ti particles is CaC 1
  • the generated Ti can be taken out of the reaction vessel in the form of powder and particles, and a continuous Ti production operation can be performed.
  • Na used for generating Ca can be generated by electrolysis (electrolysis step) of a molten salt containing NaCl.
  • the electrolytic production of Na is an established technology and is economically superior. Therefore, if the molten salt used for the production of Ti (for example, the molten salt separated from the produced Ti) is to be introduced into the electrolysis process, the molten salt (CaCl), a Ca supply source such as Na is circulated, Ti
  • the production of a Ti alloy can be performed more economically.
  • the temperature of the molten salt is maintained at over 600 ° C to generate Na. If the temperature of the molten salt in the electrolysis step is 600 ° C. or less, Ca is generated. Another point to be noted in the electrolysis process is to prevent back reaction from returning to NaCl by combining with Na generated on the cathode side and unreacted mixed Na force C1 generated on the anode side. When the back reaction occurs, the electrolytic current is consumed by it, and the current efficiency is reduced.
  • Na generated on the cathode side combines with C1 generated on the anode side and returns to NaCl.
  • the electrolytic cell is provided with a diaphragm that allows the flow of the molten salt in the cell but prevents the Na generated on the cathode side of the cell from moving to the anode side. It is effective to partition on the cathode side. It is effective to combine this diaphragm with the unidirectional flow of the molten salt from the anode side to the cathode side in the reaction tank.
  • unreacted Ca contained in the molten salt may be mixed into the electrolysis step.
  • unreacted Ca enters the electrolysis process (above 600 ° C)
  • the Ca returns to Na and combines with C1 generated on the anode side to form NaCl.
  • a back reaction occurs.
  • it is effective to raise the temperature outside the electrolytic bath to above 600 ° C. before introducing the molten salt used for the production of Ti into the electrolytic bath.
  • the unreacted molten metal in the molten salt is replaced by Ca, which is soluble in the molten salt, by Na, which is hardly soluble in the molten salt, and the Na can be separated and removed.
  • the molten salt is introduced into the electrolytic cell after the separation and removal of Na, the incorporation of unreacted Na and the back reaction due to this are prevented.
  • TiCl is directly supplied into the molten salt in a gaseous state.
  • TiCl solution can be supplied, and TiCl liquid or gas is supplied to the liquid level of the molten salt.
  • TiCl liquid is supplied to the liquid surface of molten Mg liquid.
  • TiCl gas could be supplied into the molten Mg solution to expand the reaction field.
  • the Ca reduction method of TiCl is used when supplying TiCl gas into the molten salt.
  • Blockage of the supply nozzle hardly occurs. This makes it possible to supply TiCl gas into the molten salt.
  • the handling of Ti particles generated in the molten salt it is possible to separate the Ti particles from the molten salt in the reaction tank, but in that case, the operating power is the S batch method.
  • Ti particles can be easily separated from the molten salt by squeezing by mechanical compression.
  • TiCl is another metal chloride
  • Ti alloy particles can be produced by this method.
  • the average particle size is preferably 0.5 to 50 ⁇ m. This is because Ti or Ti alloy produced at this grain size can be made to flow together with the molten salt, and is easily taken out of the reaction tank. In other words, it is difficult to separate the molten salt from Ti or Ti alloy below 0. It is difficult to remove Ti or Ti alloy from the tank together with the molten salt.
  • the Ca concentration in the molten salt used in the Ti producing step is effective to control the Ca concentration in the molten salt used in the Ti producing step to 0.01% or more. If the Ca concentration is less than 0.01%, divalent and trivalent chlorides of Ti are generated without generating Ti, and Ti generation efficiency is reduced.
  • the upper limit of the Ca concentration is determined by the composition and temperature of the molten salt. A particularly preferred range of the Ca concentration is 0.3% or more. With this concentration, even if a local decrease in the Ca concentration occurs, Ti is stably generated, and the generation of Ti and the trivalent Ti chloride do not cause a reduction in the Ti generation efficiency.
  • FIG. 1 is a configuration diagram of a metal Ti manufacturing apparatus showing one embodiment of the present invention.
  • Fig. 2 is a graph showing the relationship between the mixing ratio and melting point of a mixed molten salt of CaCl and NaCl.
  • FIG. 1 is a configuration diagram of a metal Ti production apparatus showing one embodiment of the present invention.
  • a reaction tank 1 that generates Ti by introducing Na, a separation tank 2 that separates the generated Ti, and an electrolytic tank 3 that generates Na are used.
  • the reaction tank 1 holds a mixed molten salt of CaCl and NaCl as a molten salt.
  • reaction tank 1 The inside of the reaction tank 1 is separated by a partition wall 4 leaving a bottom on the Na introduction side and the raw material introduction side.
  • reaction vessel 1 molten Na is introduced into the Na introduction side of the vessel, and gaseous TiCl as a Ti raw material is dispersed and injected into the molten salt on the raw material introduction side. Temperature of molten salt is 600 ° C or less
  • Equation (2) The Ca dissolves in the molten salt to form CaCl with highly reactive Ca dissolved
  • the Ti particles collected at the bottom on the raw material introduction side in the reaction tank 1 are sequentially extracted from the reaction tank 1 together with the molten salt present at the bottom, and introduced into the separation tank 2.
  • Ti particles extracted together with the molten salt from the reaction tank 1 are separated from the molten salt. Specifically, the Ti particles are compressed to squeeze out the molten salt. The obtained Ti particles are melted to form a Ti ingot.
  • the temperature of the molten salt in the tank is maintained at more than 600 ° C.
  • the molten salt extracted from the reaction tank 1 is used and contains a small amount of unreacted Ca although Ca is consumed.
  • unreacted Ca is replaced by Na which is hardly dissolved in the molten salt, and Na is floated and separated on the molten salt (chemical formula ( 3)).
  • the molten salt from which the Ti particles and Na have been separated is introduced into electrolytic cell 3.
  • the molten salt power is maintained at a temperature higher than 600 ° C. at which Na is generated, whereby Na is electrolytically produced from NaCl in the molten salt. That is, NaCl in the molten salt is electrolyzed between the anode 5 and the cathode 6, C1 gas is generated on the anode 5 side, and Na is generated on the cathode 6 side.
  • the inside of the electrolytic cell 3 is separated by a diaphragm 7 into an anode side and a cathode side.
  • the molten salt from the separation tank 2 is introduced to the anode side in the electrolytic tank 3.
  • the diaphragm 7 prevents the Na generated on the side of the cathode 6 from moving to the side of the anode 5 while allowing the molten salt to flow from the anode side to the cathode side.
  • the unreacted Ca in the molten salt is removed together with the Ti particles in the separation tank 2 in the form of Na to remove the molten salt internal force. Therefore, back reaction due to unreacted Na entering the anode side in the electrolytic cell 3 and a decrease in current efficiency due to the back reaction are prevented.
  • the separation tank 2 here is configured to serve both as a Ti separation step and a Na separation step.
  • the Na separated from the molten salt in the separation tank 2 is returned to the Na introduction side in the reaction tank 1, where it is returned to Ca by controlling the temperature to 600 ° C or less and reused in the reduction reaction.
  • the CI gas generated on the anode side in the electrolytic cell 3 is sent to the salting step 8.
  • step 8 TiO is subjected to salting together with C to produce TiCl, which is a raw material of Ti. Generated
  • TiCl is introduced into the reaction tank 1 and is circulated and used to generate Ti particles by Ca reduction.
  • CO is emitted outside the system.
  • Ti particles are generated in the reaction tank 1 by reduction of dissolved Ca in the molten salt.
  • Ca consumed by the generation of Ti particles is replenished into the reaction tank 1 in the form of Na, which is easy to handle. Therefore, high-quality Ti particles can be continuously and economically produced by reducing Ca without replenishing or removing solid Ca.
  • the Na is produced by electrolyzing a used molten salt in the electrolytic cell 3 and is used in a circulating manner, it does not even require external replenishment of Na. Therefore, economic efficiency is particularly excellent.
  • the temperature of the molten salt is maintained at a low temperature of 600 ° C or less, so that the life of the furnace material is extended and the cost of the furnace material can be reduced.
  • Ca is more reactive than Mg, and when mass-producing Ti or Ti alloy, the development of furnace materials that can withstand Ca for a long time is an important technical issue. As the temperature drops and the load on the furnace material is reduced, significant progress can be expected in resolving this issue.
  • the temperature of the molten salt in the separation tank 2 can be naturally set to 600 ° C or lower, which is the same as that in the reaction tank 1.
  • the upper limit temperature is desirably 800 ° C or less in terms of the thermal efficiency and the durability of the furnace material.
  • the lower limit temperature is the melting point of the salt used, and the melting point + 20 ° C is particularly preferable in consideration of the temperature distribution in the bath.
  • the method for producing Ti or Ti alloy by Ca reduction of the present invention is a method for reducing TiCl.
  • V generates Ca from Na, which is easy to produce, and dissolves it in the molten salt.Therefore, it is not necessary to replenish expensive metal Ca, handle strongly reactive! /, And handle Ca alone. .
  • the method for producing Ti or Ti alloy of the present invention can be effectively used as a means for efficiently and economically producing high-purity metal Ti or Ti alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

 CaCl2及びNaClを含む混合溶融塩を反応槽1内に600°C以下の温度で保持する。反応槽1内にNaを導入すると共に、Ti原料であるTiCl4を導入する。反応槽1内に導入されたNaはCaに置き換わって、Caが溶融塩中に溶解し、溶融塩中に導入されたTiCl4を還元することにより、Ti粒が生成する。生成したTi粒は溶融塩と共に分離槽2へ導入され、Ti粒及びNaが溶融塩から分離される。残った溶融塩は電解槽3へ導入され、600°C超の高温電解によりNaを生成する。生成したNaは反応槽1に戻され、反応槽1で消費されるNaを補充する。反応性の高いCaを直接扱わず、扱い易いNaを循環使用することにより、Ca還元によるTi又はTi合金の製造を経済的に行うことができる。

Description

Ca還元による Ti又は Ti合金の製造方法
技術分野
[0001] 本発明は、 TiClを含む金属塩化物を Caにより還元処理して金属 Ti又は Ti合金を
4
製造する Ca還元による Ti又は Ti合金の製造方法に関する。
背景技術
[0002] 金属 Tiの工業的な製法としては、 TiClを Mgにより還元するクロール法が一般的で
4
ある。このクロール法では、還元工程一真空分離工程を経て金属 Tiが製造される。還 元工程では、反応容器内で Tiの原料である TiClが Mgにより還元され、スポンジ状
4
の金属 Tiが製造される。真空分離工程では、反応容器内に製造されたスポンジ状の 金属 T 未反応の Mg及び副生物である MgClが除去される。
2
[0003] 還元工程について詳しく説明すると、この工程では、反応容器内に溶融 Mgを充填 し、その液面に上方から TiClの液体を供給する。これにより、溶融 Mgの液面近傍で
4
TiClが Mgにより還元され、粒子状の金属 Tiが生成する。生成した金属 Tiは逐次下
4
方へ沈降する。これと同時に、溶融 MgClが液面近傍に副生する力 溶融 MgClの
2 2 比重は溶融 Mgの比重より大きい。この比重差のため、副生した溶融 MgClが下方
2 に沈降し、代わりに溶融 Mgが液面に現れる。この比重差置換により、液面に溶融 M gが供給され続け、反応が継続される。
[0004] クロール法による金属 Tiの製造では、高純度の製品を製造することが可能である。
しかし、ノツチ式であるために製造コストが嵩み、製品価格が非常に高くなる。その上 、 TiClの供給速度を上げることが困難なことも、製造コストが嵩む原因の一つになつ
4
ている。 TiClの供給速度が制限される理由としては次の 3つが考えられる。
4
[0005] クロール法での生産性を高めるには、 Tiの原料である TiClの供給速度、即ち溶融
4
Mgの液面への単位面積'単位時間あたりの供給量を増大させるのが有効である。し かし、供給速度を大きくしすぎると、溶融 Mgの液面で起こる還元反応の奪熱が間に 合わなくなるため、反応によって液面で生成された溶融 MgClの温度が上昇し、そ
2
の比重が小さくなつて Mgの比重に近づく。このこともあって前述した比重差置換の速 度が間に合わなくなり、液面に MgClが残ってこれに TiClが供給されるようになるた
2 4
め、 TiClの利用効率が下がる。その結果、供給原料が未反応の TiClガスや TiCl
4 4 3 などの未反応生成ガス(これらを未反応ガスと ヽぅ)となって反応容器外へ排出される 。また、未反応ガスの発生は容器内圧の急激な上昇を伴うために避ける必要がある。 これらの理由から、 Tiの原料である TiClの供給速度には限界がある。
4
[0006] TiClの供給速度を大きくすると、液面より上方の容器内面における Ti析出量が多
4
くなる。還元反応が進むにつれて溶融 Mgの液面を断続的に上昇させるため、容器 上部内面における析出 Ti力 還元反応の後半では溶融 Mgに漬かり、 Mg液面の有 効面積が減少し、反応速度が低下する。これを抑えるために、 TiClの供給速度を制
4
限し、容器上部内面における Ti析出を抑制することが必要となる。容器上部内面に おける Ti析出を抑制するための別の対策が特開平 8— 295955号公報に提示されて いる力、十分ではない。
[0007] クロール法では又、反応容器内の溶融 Mg液の液面近傍だけで反応が行われるた め、発熱エリアが狭い。そのため、高速で TiCl
4を供給すると、冷却が間に合わなくな る。これも、 TiClの供給速度が制限される大きな理由である。
4
[0008] TiClの供給速度に直接影響する問題ではな 、が、クロール法では、溶融 Mg液の
4
液面近傍で Tiが粒子状に生成され、沈降する。しかし、溶融 Mgの濡れ性 (粘着性) のため、生成された Ti粉が凝集した状態で沈降し、沈降中にも溶融液の温度により 焼結して粒成長し、反応容器外へ回収することが困難である。このため、連続的な製 造が困難であり、生産性が阻害されている。 Tiが反応容器内にスポンジチタンとして ノ ツチ方式で製造されるのはまさにこのためである。
[0009] クロール法以外の Ti製造方法に関しては、 TiClの還元剤として Mg以外に例えば
4
Caの使用が可能なことが米国特許第 2205854号明細書に記載されている。そして 、 Caによる還元反応を用いた Ti製造方法としては、反応容器内に CaClの溶融塩を
2 保持し、その溶融塩中に上方力も金属 Ca粉末を供給して、溶融塩中に Caを溶け込 ませると共に、下方力 TiClガスを供給して、 CaClの溶融塩中で溶解 Caと TiClを
4 2 4 反応させる方法が米国特許第 4820339号明細書に記載されている。
[0010] Caによる還元では、化学式(1)の反応により、 TiClから金属 Tiが生成され、それと 共に CaClが副生する。 Caは Mgより C1との親和力が強ぐ原理的には TiClの還元
2 4 剤に適している。特に、米国特許第 4820339号明細書に記載された方法では、 Ca を溶融 CaCl中に溶解させて使用する。溶融 CaCl中での Ca還元反応を利用すれ
2 2
ば、クロール法のように反応容器内の還元剤の液面に TiClを供給する場合と比べ
4
て反応場が広がり、発熱領域も広がり冷却が容易になることから、 Tiの原料である Ti C1給速度を大幅に増大でき、生産性の大幅な向上を期待できる。
4
[0011] TiCl + 2Ca→Ti+ 2CaCl - - (1)
4 2
[0012] し力しながら、米国特許第 4820339号明細書に記載された方法は、工業的な Ti製 造法としては成立し得ない。なぜなら、 CaClの溶融塩中に Caを溶解させるために、
2
金属 Caの粉末を使用する力 である。即ち、金属 Caの粉末は極めて高価であるた め、製造コストは、 TiClの供給速度が制限されるクロール法よりも高価となるのである
4
。カロえて、反応性が強い Caは取り扱いが非常に難しぐこのことも、 Ca還元による Ti 製造方法の工業ィ匕を阻害する大きな要因になっている。
[0013] 更に別の Ti製造方法としては、米国特許第 2845386号明細書に記載されたオル ソンの方法がある。これは、 TiClを経由せず、 TiOを Caにより直接還元する酸化物
4 2
直接還元法の一種である。酸化物直接還元法は高能率であるが、高純度の Tiを製 造するのには適さない。なぜなら、高価な高純度の TiOを使用しなければならない
2
力 である。
発明の開示
[0014] 本発明は、高純度の金属 Ti又は Ti合金を高能率に、しかも高価な還元剤を使用す ることなく経済的に製造する方法を提供することを目的にしている。
[0015] この目的を達成するために、本発明者らは、 TiClの Ca還元が不可欠であると考え
4
、前掲の米国特許第 4820339号明細書に記載されたような CaClの溶融塩中に溶
2
解する Caの利用を企画した。
[0016] この Ca還元による Tiの製造を行う場合、還元反応容器内では、前記の化学式(1) の反応の進行に伴い、溶融塩中の Caが消費されるが、これを補うために、米国特許 第 4820339号明細書に記載された方法では、金属 Caの粉末を還元反応容器内に 供給し続ける必要がある。 [0017] 本発明者らは、 Ca還元による Ti製造方法を工業的に確立するためには、還元反応 で消費される溶融塩中の Caを経済的に補充する必要があると考え、その補充手段と して、化学式 (2)及び (3)に示す可逆反応に着目した。
[0018] 2Na+CaCl→Ca+ 2NaCl (T≤600°C) · · (2)
2
Ca + 2NaCl→2Na + 2CaCl (T>600°C) · · (3)
2
[0019] 還元による Ti製造方法の一つとして、 TiClを Naにより還元するハンター法がある。
4
Na及び NaClは反応性が低ぐ Ca及び CaClと比べて非常に取り扱いが簡単であり
2
、NaClの電気分解及びこれによる Naの電解製造は既に工業的に確立した技術に なっている。し力し、 Na還元を用いたハンター法では、 Na還元により Tiの 2価、 3価 の塩化物が生成する。この 2価、 3価の Tiの塩化物は Tiの生成効率を下げるだけで なぐ溶融塩中に溶解するため、溶融塩を電解で再使用すると 2価及び 3価の Ti塩 化物の間で酸ィ匕還元反応が起こり、 Naの生成効率 (電流効率)が著しく低下する。こ のため、 Naによる TiClの直接還元は困難であり、多段処理を余儀なくされるために
4
、安価な Tiを製造することは困難である。
[0020] ところが、この金属 Naを CaClに混入すると、化学式(2)及び(3)に示す特徴的な
2
可逆反応が起こることが、本発明者らによる調査で判明した。この現象を利用すると、 2価、 3価の Ti塩ィ匕物を生じさせずに Caによる TiClの直接還元が可能になる。
4
[0021] 詳しく説明すると、 Ca還元による金属 Tiの製造方法においては、溶融塩として基本 的に融点が 780°Cの CaClを用いる。し力し、 CaCl— NaCl、 CaCl KC1等の 2元
2 2 2
系の溶融塩や、 CaCl NaCl— KC1等の 3元系の溶融塩のように、 CaClに対して他
2 2 の塩、例えば NaCl、 KC1、 LiCl及び CaFのうちの少なくとも 1種を混合し、多元系溶
2
融塩とすることにより、塩の融点が下がり、溶融塩の温度低下が可能になる。その結 果、炉材に対する負荷が軽減され、炉材コストの低減が可能になる。更には液面から の Caや塩の蒸発の抑制も可能になる。
[0022] これに加え、多元系の溶融塩のなかでも、 CaClに NaClをカ卩えた混合溶融塩は、
2
とりわけ特徴的である。図 2は CaClと NaClの 2元系混合溶融塩における混合比率と
2
融点の関係を示している。 CaClの融点は単独では約 780°Cである。一方、 NaClの
2
融点は単独では 800°C強である。しかし、これらを混合すると、融点が下がり、最低で 約 500°Cまで下がる。そして、 NaClの混合比率が約 20— 45%の範囲で、混合塩の 融点は 600°C以下となる。
[0023] そして CaCl— NaCl、 CaCl NaCl— KC1のような CaCl及び NaClを含む多元系
2 2 2
の混合溶融塩では、前記の化学式(2)及び(3)に示すように、溶融塩の温度が 600 °C超では飽和した金属が Naとして存在する力 600°C以下では飽和した金属が Ca に置き換わるのである。この現象を利用し、 CaClを含む 600°C以下の溶融塩に Na
2
を投入すると、 Naが Caと置き換わり、その Caが CaClに分散した溶融塩ができ、そ
2
の溶融塩中に TiClを供給すると、これが溶融塩中の溶解 Caにより還元される。
4
[0024] つまり、 600°C以下に保持された CaClを含有する溶融塩に Naを添加するならば、
2
反応性が高い Caを直接的に取り扱わずとも、 Caが CaClに溶解した反応性の高い
2
溶融塩が生成され、これにより Tiの 2価、 3価の塩ィ匕物を生じさせずに Caによる TiCl
4 の直接還元が可能になるのである。
[0025] 本発明は力かる考察を基礎として開発されたものであり、 Caによる還元反応を用い た Ti又は Ti合金の製造方法であって、 CaClを含み且つ 600°C以下に保持した溶
2
融塩中に Naを導入して Caを生成する、 Na導入による Ca生成工程と、 TiClを含む
4 金属塩化物を前記溶融塩中に供給して、前記溶融塩中に生成された Caと反応させ ることにより前記溶融塩中に Ti又は Ti合金を生成する、還元反応による Ti生成工程 と、前記溶融塩中に生成された前記 Ti又は Ti合金を前記溶融塩力 分離する Ti分 離工程とを含む、 Ca還元による Ti又は Ti合金の製造方法を要旨とする。
[0026] 本発明の Ca還元による Ti又は Ti合金の製造方法においては、例えば溶融塩とし て溶融 CaClを反応槽内に保持する。但し、その溶融塩は融点が 600°C以下となる
2
ように例えば NaClとの混合溶融塩とする(図 2参照)。この溶融塩 (600°C以下に保 持)に Naを投入すると、 Naは Caと置き換わり、しかも、その Caは Naと異なって溶融 塩 (CaCl )中に溶解した状態となる。そして、この状態で溶融塩中に例えば TiClを
2 4 供給することにより、その TiClが溶融塩中の溶解 Caにより還元されて、粉状及び
4 Z 又は粒状の金属 Ti (以下、 Ti粒と総称する)が生成し、生成した金属 Tiを溶融塩力 分離することにより、 2価、 3価の Ti塩ィ匕物を生じない Caによる直接還元が行なわれ る。 [0027] このようにして、金属 Caの補給なしに、し力も Caを単独で取り扱うこともなぐ極めて 経済的かつ効率的に金属 Tiが還元製造されることになる。
[0028] 力!]えて、溶融塩中での Ca還元による Ti粒の生成では、還元反応場が広がり、同時 に発熱領域も広がる。更に、 850°Cでの蒸気圧は Mgが 6. 7kPa (50mmHg)である のに対し、 Caは 0. 3kPa (2mmHg)と極めて小さい。この蒸気圧の違いのため、容 器上部内面への Ti析出量は Mgに比べて Caの方が格段に少ない。従って、本発明 の Ca還元による Ti又は Ti合金の製造方法においては、 TiCl供給速度の大幅な増
4
大も可能になる。
[0029] 更に、 Caは Mgより濡れ性 (粘着性)が劣る上に、析出 Ti粒子に付着する Caが CaC 1
2に溶解するので、生成チタン粒子同士の凝集が少なぐ焼結も圧倒的に少ない。こ のため、生成 Tiを粉粒状態で反応容器外へ取り出すことができ、連続的な Ti製造操 作も可能になる。
[0030] 本発明の Ca還元による Ti又は Ti合金の製造方法においては、 Na導入による Ca 生成と、還元反応による Ti生成とを同一反応槽内で行うことができる。これにより、設 備構成が簡単になり、経済性がより一層向上する。
[0031] Caの生成に使用する Naは、 NaClを含む溶融塩の電気分解 (電解工程)により生 成させることができる。 Naの電解製造は既に確立した技術であり、経済性に優れる。 従って、 Tiの生成に使用した後の溶融塩 (例えば生成 Tiから分離した溶融塩)を電 解工程に導入することとすれば、溶融塩 (CaCl )、 Na等の Ca供給源を循環させ、 Ti
2
又は Ti合金の製造をより経済的に行うことができる。
[0032] Naの電解製造 (電解工程)では、化学式 (4)及び (5)に示す反応により Naが生成 する。
[0033] 2Cl—→2e— +C1 (陽極) · ·(4)
2
2Na+ + 2e"→2Na (陰極) . .(5)
[0034] この電解工程で注意すべきことは、溶融塩の温度を 600°C超に保持し、 Naを生成 させることである。電解工程での溶融塩の温度が 600°C以下であると、 Caが生成する 。電解工程でいま一つ注意すべき点は、陰極側に生成した Naや未反応の混入 Na 力 陽極側に生成した C1と結合して NaClに戻るバックリアクションを防ぐことである。 バックリアクションが発生すると、それに電解電流が消費されるため、電流効率が低 下する。
[0035] 陰極側に生成した Naが陽極側に生成した C1と結合して NaClに戻るバックリアクシ
2
ヨンに対しては、電解槽に、槽内の溶融塩の流通を許容するが槽内の陰極側で生成 した Naの陽極側への移動を阻止する隔膜を設けて、槽内を陽極側と陰極側に仕切 るのが有効である。この隔膜は、反応槽内を陽極側から陰極側へ向かう溶融塩の一 方向流と組み合わせるのが有効である。
[0036] また、 Ti生成に使用した後の溶融塩を電解工程へ導入する場合、溶融塩に含まれ る未反応の Caが電解工程へ混入するおそれがある。未反応の Caが電解工程 (600 °C超)へ混入すると、その Caが Naに戻り、陽極側に生成した C1と結合して NaClに
2
戻るバックリアクションが発生する。これに対しては、 Tiの生成に使用した後の溶融塩 を電解槽へ導入する前に、電解槽の外でー且 600°C超に昇温するのが有効である。 そうすると、溶融塩中の未反応溶解金属が、溶融塩に溶解する Caから溶融塩に溶解 し難い Naに置き換わり、 Naの分離除去が可能となる。そして、その Naの分離除去の 後に溶融塩を電解槽へ導入すれば、未反応 Naの混入及びこれによるバックリアクシ ヨンが防止される。
[0037] 電解工程でも溶融塩の温度は 600°C超に保持されるので、 Na分離工程で溶融塩 の温度を 600°C超に加熱しても、経済性が特に悪ィ匕するということはない。
[0038] 溶融塩中への TiClの供給形態としては、 TiClを溶融塩中へガス状態で直接供
4 4
給するのが、溶融塩中の Caに対する TiClの接触効率が高いことから特に好ましい
4
1S TiCl液の供給も可能であり、更には溶融塩の液面に TiCl液体やガスを供給す
4 4
ることち可會である。
[0039] そして更に、 TiClの供給に関して、 TiClの Ca還元法では、 Mg還元によるクロー
4 4
ル法と比べて、次のような興味ある事実も判明した。
[0040] Mg還元を用いるクロール法では、溶融 Mg液の液面に TiClの液体を供給するが
4
、過去には反応場の拡大を狙って溶融 Mg液の液中に TiClのガスを供給することも
4
考えられた。しかし、前述したとおり、 Mgの蒸気圧が大きいため、供給ノズルへ Mg蒸 気が侵入し、 TiClと反応して供給管を閉塞させてしまう。また、溶融塩中に TiClの ガスを供給しても、ノズル閉塞の問題は依然として残る。なぜなら、供給管の閉塞頻 度は低下するが、 TiClのパブリングにより溶融物が攪拌され、供給ノズルに溶融 Mg
4
が到達する場合があるからである。そして何よりも、溶融塩中に TiClを供給しても、
4
その溶融塩中に Mgが溶解しな 、ため、溶融塩中では Ti析出反応が起こりにくい。
[0041] これに対し、 TiClの Ca還元法では、溶融塩中に TiClのガスを供給する場合に供
4 4
給ノズルの閉塞が発生しにくい。このため、溶融塩中への TiClガスの供給が可能と
4
なる。ノズルが閉塞しにくい理由としては、溶融 Caの蒸気圧が小さいことの関与も考 えられる。
[0042] 即ち、 TiClの Ca還元法である本発明の Ti又は Ti合金の製造方法にお!、ては、 Ti
4
C1のガスや液体を溶融塩中へ直接供給するのが好ましぐガス状態での供給が特
4
に好ましいが、実際の操業上もこの供給形態が問題なく可能なのである。また、溶融 塩の液面に TiClの液体やガスを供給することを妨げられないが、これらの供給形態
4
も問題なく可能である。
[0043] 溶融塩中に生成した Ti粒の取り扱いに関しては、反応槽内で溶融塩から分離する ことも可能であるが、その場合は操業力 Sバッチ方式となる。生産性を高めるためには 、生成 Tiが粒子状で得られることを利用して、溶融塩と共に反応容器外へ抜き取り、 容器外で溶融塩力 の Ti粒の分離を行うのがよい。機械的な圧縮による絞り操作な どにより、 Ti粒を溶融塩力 簡単に分離することができる。
[0044] 電気分解で生成した C1の取り扱いについては、これを Cと TiOに反応させて TiCl
2 2
を生成し、これを反応容器内での Tiの生成反応に使用するのが好まし 、。
4
[0045] Tiの原料に関しては、基本的に TiClを使用する力 TiClと他の金属塩化物とを
4 4
混合して使用することで、 Ti合金を製造することも可能である。 TiClも他の金属塩化
4
物も同時に Caにより還元されるため、この方法によって Ti合金粒を製造することがで きる。
[0046] 生成される Ti又は Ti合金のサイズにつ!、ては、平均粒径で 0. 5— 50 μ mが好まし い。なぜなら、この粒サイズで生成した Ti又は Ti合金は、溶融塩と一緒に流動させる ことが可能であり、反応槽からの取り出しが容易であるからである。即ち、 0. 未 満では、溶融塩と Ti又は Ti合金を分離することが困難であり、 50 m超では、反応 槽から Ti又は Ti合金を溶融塩と一緒に取り出すことが困難である。
[0047] このようなサイズの Ti又は Ti合金を生成するためには、 Ti生成工程に使用される溶 融塩中の Ca濃度を 0. 01%以上に管理するのが有効である。この Ca濃度が 0. 01 %未満であると、 Tiが生成されずに Tiの 2価、 3価の塩化物が生成し、 Ti生成効率を 低下させることになる。 Ca濃度の上限については溶融塩の組成及び温度により決ま る。 Ca濃度の特に好ましい範囲は 0. 3%以上である。この濃度であれば局所的な C a濃度の低下が生じても安定して Tiが生成し、 2価、 3価の Ti塩ィ匕物の生成による Ti 生成効率の低下は生じな 、。
図面の簡単な説明
[0048] 図 1は、本発明の一実施形態を示す金属 Ti製造装置の構成図である。
図 2は、 CaClと NaClの混合溶融塩における混合比率と融点の関係を示すグラフ
2
である。
発明を実施するための最良の形態
[0049] 以下に本発明の実施形態を図面に基づいて説明する。図 1は本発明の一実施形 態を示す金属 Ti製造装置の構成図である。
[0050] 本実施形態では、 Naの導入により Tiを生成する反応槽 1と、生成した Tiを分離する 分離槽 2と、 Naを生成する電解槽 3とが使用される。
[0051] 反応槽 1は、溶融塩として CaClと NaClの混合溶融塩を保持しており、より具体的
2
には、融点が 600°C以下になる比率で混合された CaClと NaClの混合溶融塩を、そ
2
の融点以上、且つ 600°C以下の温度で保持している。反応槽 1の内部は、隔壁 4に より Na導入側と原料導入側とに底部を残して分離されている。
[0052] 反応槽 1では、槽内の Na導入側に溶融 Naが導入され、原料導入側の溶融塩中に Tiの原料であるガス状の TiClが分散して注入される。溶融塩の温度が 600°C以下
4
であることにより、導入された Naは溶融塩中の CaClと反応して Caを生成する(化学
2
式(2) )。その Caは溶融塩に溶解し、反応性の高い Caが溶解した CaClを生成する
2
[0053] そして、反応槽 1内の原料導入側では、その溶融塩中に供給される TiCl力 溶融
4 塩中の溶解 Caで還元されることにより、粒子状の金属 Tiが生成する。生成した Ti粒 は比重差により逐次、原料導入側の底に溜まる。
[0054] 反応槽 1内の原料導入側の底に溜まる Ti粒は、その底に存在する溶融塩と共に、 反応槽 1から逐次抜き出され、分離槽 2へ導入される。分離槽 2では、反応槽 1から溶 融塩と共に抜き出された Ti粒が、溶融塩から分離される。具体的には、その Ti粒を圧 縮して溶融塩を絞り取る。得られた Ti粒は溶解され Tiインゴットとされる。
[0055] 分離槽 2では又、槽内の溶融塩の温度が 600°C超に保持される。反応槽 1から抜き 出される溶融塩は使用済みであり、 Caが消費されてはいるものの、若干量の未反応 Caを含んでいる。分離槽 2での溶融塩の温度を 600°C超に保持することにより、未反 応の Caが、溶融塩に溶解し難い Naと置き換わり、 Naは溶融塩上に浮上分離される (化学式 (3) )。
[0056] Ti粒及び Naが分離された溶融塩は電解槽 3に導入される。電解槽 3では、分離槽 2と同様に溶融塩力 Naを生成する 600°C超に保持されており、これにより溶融塩中 の NaClから Naが電解製造される。即ち、溶融塩中の NaClが陽極 5と陰極 6の間で 電気分解され、陽極 5の側で C1ガスが発生し、陰極 6の側で Naが生成する。
2
[0057] 電解槽 3の内部は、隔膜 7により陽極側と陰極側に分離されている。分離槽 2からの 溶融塩は、電解槽 3内の陽極側に導入される。隔膜 7は、溶融塩の陽極側から陰極 側への流動を許容しつつ、陰極 6の側で生成した Naが陽極 5の側に移動するのを阻 止する。
[0058] ここで、電解槽 3内の陽極側に導入される溶融塩中に Naが混入していると、その N aが陽極側で発生する C1ガスと反応してバックリアクションが発生する。しかるに、本
2
実施形態では、分離槽 2で Ti粒と共に溶融塩中の未反応 Caが Naの形で溶融塩中 力も除去されている。よって、未反応の Naが電解槽 3内の陽極側に混入することによ るバックリアクション及びこれによる電流効率の低下が防止される。
[0059] つまり、ここにおける分離槽 2は、 Ti分離工程と Na分離工程を兼ねる構成になって おり、反応槽 1から抜き出した溶融塩を電解槽 3へ導入する前に、溶融塩中の未反応 Caを事前に Naに置き換えて除去することにより、合理的、経済的な操業が可能にな る。分離槽 2で溶融塩から分離された Naは反応槽 1内の Na導入側へ返送され、ここ で 600°C以下に温度管理されることにより Caに戻り、還元反応に再使用される。 [0060] 一方、電解槽 3内の陽極側で発生した CIガスは塩ィ匕工程 8へ送られる。塩化工程
2
8では、 TiOが Cと共に塩ィ匕処理され、 Tiの原料である TiClが生成する。生成した
2 4
TiClは反応槽 1に導入され、 Ca還元による Ti粒の生成に循環使用される。副生す
4
る COは系外へ排出される。
2
[0061] このように、本実施形態では、反応槽 1内で溶融塩中の溶解 Ca還元による Ti粒の 生成が行なわれる。 Ti粒の生成に伴って消費される Caは、取り扱いの容易な Naの 形で反応槽 1内に補充される。このため、固体 Caの補充も取り出しも行うことなぐ Ca 還元による高品質な Ti粒が、連続的かつ経済的に製造される。
[0062] しカゝも、その Naは、使用済みの溶融塩を電解槽 3で電気分解することにより製造さ れ、循環使用されるので、外部からの Naの補充さえも必要としない。従って、経済性 が特に優れる。
[0063] 更に、分離槽 2では、 Ti分離と共に Na分離も行なわれ、電解槽 2への Naの混入が 防止されると共に、電解槽 3内では、陰極側で生成する Naが陽極側へ流入する事態 が回避される。これらのために、電解槽 3でのノックリアクションが効果的に防止され、 高い電流効率が確保される。
[0064] 更に又、反応槽 1では、溶融塩の温度が 600°C以下と低温に保持されているので、 炉材の寿命が延び、炉材コストの低減も可能となる。 Caは Mgと比べて反応性が高く 、 Ti又は Ti合金を量産する場合、 Caに長期間耐える炉材の開発が重要な技術課題 であるが、 600°C以下という低温還元により溶融塩の操業温度が下がり、炉材に対す る負荷が軽減されるので、この課題の解決に向けて大きな進展が期待できるのであ る。
[0065] なお、分離槽 2内の溶融塩の温度を、反応槽 1と同じ 600°C以下にすることも当然 可能である。
[0066] 分離槽 2及び電解槽 3で溶融塩の温度を 600°C超に管理する場合、上限温度とし ては熱効率及び炉材の耐久性の点力も 800°C以下が望ましい。一方、溶融塩の温 度を 600°C以下に管理する場合の下限温度は使用塩の融点であり、槽内での温度 分布が存在することを考慮すると融点 + 20°Cが特に好ま ヽ。
産業上の利用可能性 本発明の Ca還元による Ti又は Ti合金の製造方法は、 TiClを還元する方法である
4
ので、高純度の金属 Ti又は Ti合金を製造できる。その還元剤に Caを使用し、特に、 CaClを含み且つ Caが溶解した溶融塩中の Caに Tiの原料である TiClを含む金属
2 4 塩化物を反応させるので、 TiClの供給速度を増大できる。また、溶融 CaCl液中に
4 2
Ti粒又は Ti合金粒を生成させ得るので、連続的な製法が可能である。更に、取り扱
V、が容易な Naから Caを生成し溶融塩に溶解させるので、高価な金属 Caの補充や、 反応性が強く取り扱!/、が難 、Caの単独での取り扱 、が不要である。
従って、本発明の Ti又は Ti合金の製造方法は、高純度の金属 Ti又は Ti合金を能 率よく経済的に製造する手段として有効に利用することができる。

Claims

請求の範囲
[1] Caによる還元反応を用いた Ti又は Ti合金の製造方法であって、 CaClを含み且つ
2
600°C以下に保持した溶融塩中に Naを導入して Caを生成する、 Na導入による Ca 生成工程と、 TiClを含む金属塩ィ匕物を前記溶融塩中に供給して、前記溶融塩中に
4
生成した Caと反応させることにより、前記溶融塩中に Ti又は Ti合金を生成する、還 元反応による Ti生成工程と、前記溶融塩中に生成した前記 Ti又は Ti合金を前記溶 融塩から分離する Ti分離工程とを含む Ca還元による Ti又は Ti合金の製造方法。
[2] Na導入による Ca生成工程と還元反応による Ti生成工程とを同一反応装置内で行 う請求項 1に記載の Ca還元による Ti又は Ti合金の製造方法。
[3] NaClを含む溶融塩の電気分解により Naを生成する電解工程を含み、該電解工程 で生成した Naを前記溶融塩中に導入する請求項 1に記載の Ca還元による Ti又は Ti 合金の製造方法。
[4] 前記電解工程では、溶融塩を 600°C超に保持する請求項 3に記載の Ca還元によ る Ti又は Ti合金の製造方法。
[5] 前記 Ti又は Ti合金カゝら分離された溶融塩を前記電解工程へ供給する請求項 3〖こ 記載の Ca還元による Ti又は Ti合金の製造方法。
[6] 前記電気分解に伴って副生する C1ガスを TiOに反応させて TiClを生成する塩
2 2 4
化工程を含み、該塩化工程で生成された TiClを前記 Ti又は Ti合金の生成反応に
4
使用する請求項 3に記載の Ca還元による Ti又は Ti合金の製造方法。
[7] 前記 Ti又は Ti合金から分離された溶融塩を前記電解工程へ供給する前に 600°C 超に昇温して Naを生成し、生成した Naを分離除去した後に、前記溶融塩を電解ェ 程へ導入する Na分離工程を含む請求項 5に記載の Ca還元による Ti又は Ti合金の 製造方法。
[8] Na分離工程は、前記 Ti分離工程を兼ねる請求項 7に記載の Ca還元による Ti又は
Ti合金の製造方法。
[9] 前記 CaClを含む溶融塩は、 CaCl及び NaClを融点が 600°C以下となる比率で
2 2
含む混合溶融塩である請求項 1に記載の Ca還元による Ti又は Ti合金の製造方法。
[10] 前記混合溶融塩は、更に KC1、 LiCl及び CaFのうちの少なくとも 1種を融点が 600 °C以下となる比率で含む混合溶融塩である請求項 9に記載の Ca還元による Ti又は Ti合金の製造方法。
[11] 前記 TiClを含む金属塩ィ匕物は、 TiCl及び他の金属塩ィ匕物を含む混合物である
4 4
請求項 1に記載の Ca還元による Ti又は Ti合金の製造方法。
[12] 生成する Ti又は Ti合金は、粒径が平均で 0. 5— 50 μ mの粉粒体である請求項 1 に記載の Ca還元による Ti又は Ti合金の製造方法。
[13] 前記 Ti生成工程に使用される溶融塩中の Ca濃度を 0. 01%以上に管理する請求 項 1に記載の Ca還元による Ti又は Ti合金の製造方法。
PCT/JP2004/015043 2004-03-01 2004-10-13 Ca還元によるTi又はTi合金の製造方法 WO2005083135A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04792287A EP1736557A4 (en) 2004-03-01 2004-10-13 PROCESS FOR PREPARING TI OR TI ALLOYATION BY CA REDUCTION
US10/590,863 US20070295167A1 (en) 2004-03-01 2004-10-13 Method for Producing Ti or Ti Alloy Through Reduction by Ca

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-056245 2004-03-01
JP2004056245A JP4347089B2 (ja) 2004-03-01 2004-03-01 Ca還元によるTi又はTi合金の製造方法

Publications (1)

Publication Number Publication Date
WO2005083135A1 true WO2005083135A1 (ja) 2005-09-09

Family

ID=34908902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015043 WO2005083135A1 (ja) 2004-03-01 2004-10-13 Ca還元によるTi又はTi合金の製造方法

Country Status (4)

Country Link
US (1) US20070295167A1 (ja)
EP (1) EP1736557A4 (ja)
JP (1) JP4347089B2 (ja)
WO (1) WO2005083135A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528004A (zh) * 2012-02-23 2012-07-04 西北工业大学 过冷in718高温合金净化剂及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193984B2 (ja) * 2003-08-28 2008-12-10 株式会社大阪チタニウムテクノロジーズ 金属製造装置
WO2005123986A1 (en) * 2004-06-22 2005-12-29 Bhp Billiton Innovation Pty Ltd Electrochemical reduction of metal oxides
WO2006000025A1 (en) * 2004-06-28 2006-01-05 Bhp Billiton Innovation Pty Ltd Production of titanium
JP2007084847A (ja) * 2005-09-20 2007-04-05 Sumitomo Titanium Corp Tiの製造方法および装置
CN103409774A (zh) * 2013-07-09 2013-11-27 中国船舶重工集团公司第七二五研究所 一种在熔盐中利用脉冲电源制备钛或钛合金的方法
AU2014330007C1 (en) 2013-08-19 2018-05-10 University Of Utah Research Foundation Producing a titanium product
JP6795809B2 (ja) * 2016-07-14 2020-12-02 野村興産株式会社 ナトリウムの製造方法
CN106191929B (zh) * 2016-09-07 2018-06-05 攀钢集团攀枝花钢铁研究院有限公司 从钛电解阴极产物中分离金属钛的方法
CN108546964B (zh) * 2018-05-29 2019-12-24 钢研晟华科技股份有限公司 一种金属钛的制备装置以及制备方法
US10907239B1 (en) 2020-03-16 2021-02-02 University Of Utah Research Foundation Methods of producing a titanium alloy product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487677A (en) * 1983-04-11 1984-12-11 Metals Production Research, Inc. Electrolytic recovery system for obtaining titanium metal from its ore
WO1986007097A1 (en) * 1985-05-27 1986-12-04 The University Of Melbourne Metal halide reduction with molten sodium/potassium alloy
JPS6447823A (en) * 1987-08-17 1989-02-22 Toho Titanium Co Ltd Production of metallic titanium
WO1996004407A1 (en) * 1994-08-01 1996-02-15 Kroftt-Brakston International, Inc. Method of making metals and other elements
JP2001192748A (ja) * 2000-01-07 2001-07-17 Nkk Corp 金属チタンの製造方法および装置
WO2003038156A1 (fr) * 2001-10-17 2003-05-08 Nippon Light Metal Company, Ltd., Procede et appareil de fusion de metal de titane

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205854A (en) * 1937-07-10 1940-06-25 Kroll Wilhelm Method for manufacturing titanium and alloys thereof
US2845386A (en) * 1954-03-16 1958-07-29 Du Pont Production of metals
US2794733A (en) * 1954-05-03 1957-06-04 Metal Hydrides Inc Method for preparing calcium
US2890112A (en) * 1954-10-15 1959-06-09 Du Pont Method of producing titanium metal
FR2582019B1 (fr) * 1985-05-17 1987-06-26 Extramet Sa Procede pour la production de metaux par reduction de sels metalliques, metaux ainsi obtenus et dispositif pour sa mise en oeuvre
US6409797B2 (en) * 1994-08-01 2002-06-25 International Titanium Powder Llc Method of making metals and other elements from the halide vapor of the metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487677A (en) * 1983-04-11 1984-12-11 Metals Production Research, Inc. Electrolytic recovery system for obtaining titanium metal from its ore
WO1986007097A1 (en) * 1985-05-27 1986-12-04 The University Of Melbourne Metal halide reduction with molten sodium/potassium alloy
JPS6447823A (en) * 1987-08-17 1989-02-22 Toho Titanium Co Ltd Production of metallic titanium
WO1996004407A1 (en) * 1994-08-01 1996-02-15 Kroftt-Brakston International, Inc. Method of making metals and other elements
JP2001192748A (ja) * 2000-01-07 2001-07-17 Nkk Corp 金属チタンの製造方法および装置
WO2003038156A1 (fr) * 2001-10-17 2003-05-08 Nippon Light Metal Company, Ltd., Procede et appareil de fusion de metal de titane

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARTINEZ A.M. ET AL.: "A chemical and electrochemical study of titanium ions in the molten equimolar CaCl2+NaCla mixture at 550°C", JOURNAL OF ELECTROANALYTICAL CHEMISTRY, vol. 449, 1998, pages 67 - 80, XP002984225 *
See also references of EP1736557A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102528004A (zh) * 2012-02-23 2012-07-04 西北工业大学 过冷in718高温合金净化剂及其制备方法

Also Published As

Publication number Publication date
JP4347089B2 (ja) 2009-10-21
US20070295167A1 (en) 2007-12-27
JP2005248200A (ja) 2005-09-15
EP1736557A4 (en) 2008-06-25
EP1736557A1 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
WO2005080642A1 (ja) Ca還元によるTi又はTi合金の製造方法
WO2005080643A1 (ja) Ca還元によるTi又はTi合金の製造方法
WO2005083135A1 (ja) Ca還元によるTi又はTi合金の製造方法
EP1816221A1 (en) PROCESS FOR PRODUCING Ti THROUGH Ca REDUCTION AND APPARATUS THEREFOR
JP4395386B2 (ja) Ca源の循環によるTi又はTi合金の製造方法
WO2006098199A1 (ja) 高融点金属の分離回収方法
WO2007026565A1 (ja) 溶融塩電解方法および電解槽並びにその方法を用いたTiの製造方法
WO2005035806A1 (ja) Ca還元によるTi又はTi合金の製造方法
JP3981601B2 (ja) 金属チタンの精錬方法及びその精錬装置
JP2006274340A (ja) Ti又はTi合金の製造方法
JP4249685B2 (ja) Ca還元によるTiの製造方法
JP2005133196A (ja) 溶融塩の循環によるTi又はTi合金の製造方法
JP2005264181A (ja) 溶融Ca合金をCa移送媒体とするTi又はTi合金の製造方法
EP1876248A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY, AND PULL-UP ELECTROLYSIS METHOD APPLICABLE TO SAID PROCESS
JP2009133010A (ja) Ca還元によるTi又はTi合金の製造方法
JP2005068540A (ja) Ca還元による金属製造方法及び装置
JP4227113B2 (ja) 引上げ電解方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10590863

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2004792287

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004792287

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10590863

Country of ref document: US