WO2005080938A1 - Optischer sensor - Google Patents

Optischer sensor Download PDF

Info

Publication number
WO2005080938A1
WO2005080938A1 PCT/IB2004/000796 IB2004000796W WO2005080938A1 WO 2005080938 A1 WO2005080938 A1 WO 2005080938A1 IB 2004000796 W IB2004000796 W IB 2004000796W WO 2005080938 A1 WO2005080938 A1 WO 2005080938A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
sensor according
lens system
lens
sensor
Prior art date
Application number
PCT/IB2004/000796
Other languages
English (en)
French (fr)
Inventor
Christof Sonderegger
Kurt Vollenweider
Axel Bertholds
Andreas Braunschweiler
Original Assignee
Kistler Holding Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kistler Holding Ag filed Critical Kistler Holding Ag
Priority to EP04705014A priority Critical patent/EP1706719B1/de
Priority to PCT/IB2004/000796 priority patent/WO2005080938A1/de
Priority to AT04705014T priority patent/ATE389870T1/de
Priority to US10/586,276 priority patent/US7872815B2/en
Priority to JP2006550317A priority patent/JP4861833B2/ja
Priority to DE502004006625T priority patent/DE502004006625D1/de
Publication of WO2005080938A1 publication Critical patent/WO2005080938A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0881Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0893Arrangements to attach devices to a pyrometer, i.e. attaching an optical interface; Spatial relative arrangement of optical elements, e.g. folded beam path

Definitions

  • the invention relates to an optical sensor for detecting combustion processes in a combustion chamber and a method for producing such a sensor.
  • Optical sensors are used in combustion engines, for example in gasoline engines or diesel engines, to monitor the combustion.
  • the temporal recording of the brightness in a combustion chamber provides important data as boundary conditions for computer models, since the brightness can be used to infer the temperature.
  • the soot concentration in the combustion chamber can be concluded when determining the brightness. Due to increasingly strict regulations in exhaust gas legislation, great efforts are being made to reduce the formation of soot during combustion in engines. Optical sensors provide valuable data for these developments.
  • a large number of optical sensors are arranged in the cylinder head gasket of an internal combustion engine.
  • the diameter of such sensors may generally not be greater than about 2 mm for this purpose.
  • the detection angle of sensors of this application is 10 to 40 °.
  • a large number of sensors are provided in the combustion chamber for this area of application in order to be able to detect the spatial extent of the combustion. In this case, a correspondingly smaller detection angle is provided.
  • Such sensors are installed, for example, directly in the cylinder head in openings provided for this purpose. Difficulties arise when installing and sealing the resulting openings.
  • Another possibility is to install an optical sensor in a spark plug of a gasoline engine or in a glow plug of a diesel engine. This is done, for example, by means of a thread attached to the sensor. This has the advantage of quick installation and removal and does not require any additional mechanical work on the engine.
  • Optical sensors usually consist of a lens that transmits the light that comes from one side and lets it out on the opposite side. The light then hits a light guide, which forwards the light to a detection device. The light signal is processed into data on this detection device and processed into a form that enables further evaluation of the information.
  • the lens and one end of the light guide are usually surrounded and held together by a sleeve.
  • the difficulty of centering arises especially with very small diameters and depths of the lenses.
  • Fig. 1 shows an embodiment of an optical sensor according to the invention
  • Fig.l shows the tip of an optical sensor.
  • a lens system consisting of two lenses 1, 2 is shown.
  • One lens 1 is a plano-concave lens, the flat surface facing the combustion chamber.
  • the second lens 2 is a double-concave lens and is arranged directly behind the first lens 1.
  • Both lenses are housed in a sleeve 4.
  • One end of a light guide 5 also projects into the sleeve 4.
  • the light guide 5 is also positioned very precisely.
  • the detected light is guided through the light guide 5 and finally reaches a suitable detection device which processes the light into a signal and evaluates it for further purposes.
  • a suitable detection device which processes the light into a signal and evaluates it for further purposes.
  • Such a sensor can be installed in a spark plug or glow plug, for example by means of a thread attached to the sensor.
  • the lens system 1, 2 grants a beam path that has a detection angle of 110 ° to 140 °.
  • lens systems from 130 to 135 ° have proven to be very good for these purposes.
  • the lenses 1, 2 used consist of a material that has a thermal expansion coefficient at 0 to 400 ° C of less than 10.5-10 -6 K -1 , in particular between 0.15-10 "6 K " 1 and 6.7-10 "6 K the circumferential surface has -1. at least the lens 1 must be soldered or be configured solderable, for example, by a metallization. Both lenses 1, 2 are to Lichtwel- len up to 10 ⁇ m, at least in the range 0.2 to 2 ⁇ m. Sapphire and quartz glass, for example, have proven to be suitable.
  • the light guide 5 ends directly at a predefined distance from the lens 2 and is held in the area of the sleeve 4. In the rear area of the sensor, the light guide 6 is poured into the sensor with a suitable mass 6.
  • lens system 1, 2 is the possibility of being able to produce small lenses 1, 2 and thus small sensors. Such sensors should be able to be installed in a spark plug or in a glow plug. It is therefore desirable to manufacture lens systems 1, 2 with a diameter of ⁇ 8 mm, preferably ⁇ 5 mm, in particular ⁇ 2.4 mm. As a result, the outer diameter of the sleeve becomes 4 ⁇ 10 mm, preferably ⁇ 6.5 mm, in particular 2.5 to 3.5 mm.
  • the length of the lens system 1, 2 to be penetrated by the light is generally at most as large as the diameter of the lens system 1, 2, preferably 50 to 75% of the diameter of the lens system 1, 2.
  • the lenses 1, 2 In the recess in the sleeve 4, the lenses 1, 2 must be centered and fastened with high precision.
  • the light guide must be installed at a precisely predefined distance from the lens. The smaller the diameter of the lenses 1, 2, the more necessary the precision. Even a slight deviation in the centered position deteriorates the signal until it becomes unusable.
  • the inventive method specified here enables this required precise centering.
  • the lenses 1, 2 have a clearance of 5 to 10 ⁇ m with respect to the recess in the sleeve 4 in which they are embedded.
  • the sleeve consists of a material which has a thermal expansion coefficient in the range from 0 to 400 ° C. of less than 10.5-10 "6 K " 1 , in particular of less than 7-10 "6 K “ 1 .
  • the material of the sleeve 4 must be solderable and permanent Can withstand temperatures up to 600 ° C and short-term temperatures up to 950 ° C.
  • the sleeve 4 must have a resistance to temperature changes of approximately 50 K / 10 ms.
  • the thermal conductivity of the material of the sleeve 4 should be at least 20 W / mK, preferably at least 50 W / mK.
  • the material of the sleeve 4 must be machinable with an accuracy of + 10 ⁇ m, preferably + 5 ⁇ m.
  • the method of centering the lenses 1, 2 in the recess of the sleeve 4 consists in the gap 3 created by the play 3 between the first lens 1 and the sleeve 4, optionally also the gap between the lens 2 and the sleeve 4 with a Fill solder mass.
  • the solder mass should have an upper melting point of 770 to 1100 ° C and a good wettability.
  • the axial alignment of light conductor 5 and lens system 1, 2 should also be very precise with a deviation of less than 10 ⁇ m, preferably less than 5 ⁇ m. This is achieved by deep drawing the sleeve.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Testing Of Engines (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Glass Compositions (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Gyroscopes (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Die Erfindung betrifft einen Optischer Sensor zum Erfassen von Verbrennungsvorgängen in einem Brennraum, mindestens bestehend aus einem dem Brennraum zugewandten Linsensystem, einer Lichtleiter (5) und einer das Linsensystem und ein Ende des Lichtleiters (5) umgebene Hülse (4) dadurch gekennzeichnet, dass das Linsensystem aus mindestens einer im wesentlichen plankonkaven Linse (1) und einer doppelkonkaven Linse (2) besteht, wobei die plane Seite der plankonkaven Linse (1) dem Brennraum ausgesetzt ist. Die Erfindung betrifft auch ein Verfahren zur Herstellung eines solchen Sensors.

Description

Optischer Sensor
Die Erfindung betrifft einen optischen Sensor zum Erfassen von Verbrennungsvorgängen in einem Brennraum und ein Verfahren zur Herstellung eines solchen Sensors .
Optische Sensoren dienen in Verbrennungsmotoren, beispielsweise in Ottomotoren oder Dieselmotoren, der Beobachtung der Verbrennung. Die zeitliche Aufnahme der Helligkeit in einem Brennraum liefert einerseits wichtige Daten als Randbedingungen für Computermodelle, da auf Grund der Helligkeit auf die Temperatur geschlossen werden kann. Andererseits kann bei der Ermittlung der Helligkeit auf die Russ-Konzentration im Brennraum geschlossen werden. Aufgrund immer schärferer Vorschriften der Abgas Gesetzgebung werden grosse Anstrengungen unternommen, die Russ Bildung bei der Verbrennung in Motoren zu verringern. Optische Sensoren liefern für diese Entwicklungen wertvolle Daten.
So werden beispielsweise, wie in der EP 0593413 beschrieben, eine Vielzahl von optischen Sensoren in der Zylinderkopfdichtung einer Brennkraftmaschine angeordnet. Der Durchmesser solcher Sensoren darf für diesen Zweck in der Regel nicht grösser als etwa 2 mm sein. Der Erfassungswinkel von Sensoren dieser Anwendung liegt bei 10 bis 40°.
Für diesen Anwendungsbereich sind eine Vielzahl von Sensoren im Brennraum vorgesehen, um die räumliche Ausdehnung der Verbrennung erfassen zu können. In diesem Fall wird ein entsprechend kleinerer Erfassungswinkel vorgesehen.
Andere Anwendungsbereiche sehen einen einzigen Sensor vor, der möglicht viel des im Brennraum emittierten Lichtes erfassen soll. Von einem solchen Sensor wird ein grosser Erfassungswinkel gefordert. Dafür verwendete Sensoren weisen einen Erfas- sungswinkel von etwa 110° auf. Der Durchmesser solcher Sensoren liegt bei über 10 mm. Daher lassen sich solche Sensoren nicht in eine Zündkerze oder Glühkerze einbauen.
Solche Sensoren werden beispielsweise direkt in den Zylinderkopf in dafür angebrachte Öffnungen eingebaut. Schwierigkeiten entstehen beim Einbauen und Abdichten der entstandenen Öffnungen.
Eine andere Möglichkeit besteht darin, einen optischen Sensor in eine Zündkerze eines Ottomotors oder in eine Glühkerze eines Dieselmotors einzubauen. Dies geschieht beispielsweise mittels eines am Sensor angebrachten Gewindes. Dies hat den Vorteil eines schnellen Ein- und Ausbaus und bedarf keine zusätzlichen mechanischen Arbeiten am Motor.
Es stellt sich somit die Aufgabe der vorliegenden Erfindung, einen optischen Sensor anzugeben, der einen Erfassungswinkel von mindestens 130° aufweist und dessen Querschnitt nicht grösser als 10 mm, vorzugsweise kleiner als 6.5 mm, insbesondere 2.5 bis 3.5 mm ist.
Optische Sensoren bestehen üblicherweise aus einer Linse, die das Licht, das von einer Seite auftritt, durchlässt und auf der gegenüberliegenden Seite wieder austreten lässt. An- schliessend trifft das Licht auf einen Lichtleiter, der das Licht zu einem Erfassungsgerät weiterleitet. An diesem Erfassungsgerät wird das Lichtsignal zu Daten verarbeitet und in eine Form aufbereitet, die eine weitere Auswertung der Informationen ermöglicht.
Die Linse sowie ein Ende des Lichtleiters werden in der Regel von einer Hülse umgeben und zusammengehalten. Die Schwierigkeit der Zentrierung stellt sich vor allem bei sehr kleinen Durchmessern und Tiefen der Linsen.
Es stellt sich somit die Aufgabe der vorliegenden Erfindung, ein Verfahren anzugeben, mit dem eine Linse eines optischen Sensors mit höchster Präzision zentriert werden kann. Die Aufgabe wird gelöst durch die kennzeichnenden Teile der unabhängigen Patentansprüche
Die Erfindung wird unter Verwendung der folgenden Zeichnung erläutert. Es zeigt
Fig. 1 eine erfindungsgemässe Ausführungsform eines optischen Sensors
Fig.l zeigt die Spitze eine optischen Sensors. In diesem Ausführungsbeispiel wird ein Linsensystem, bestehend aus zwei Linsen 1, 2, dargestellt. Die eine Linse 1 ist eine Plankonkave Linse, wobei die plane Fläche dem Brennraum zugewandt ist. Die zweite Linse 2 ist eine doppelkonkaye Linse und unmittelbar hinter der ersten Linse 1 angeordnet. Beide Linsen sind in einer Hülse 4 untergebracht. Ein Lichtleiter 5 ragt mit einem Ende ebenfalls in die Hülse 4. Der Lichtleiter 5 ist ebenfalls sehr präzise positioniert. Durch den Lichtleiter 5 wird das erfasste Licht geleitet und gelangt schliesslich in eine dafür geeignetes Erfassungsgerät, das das Licht zu einem Signal aufbereitet und für weitere Zwecke auswertet. Ein solcher Sensor lässt sich, beispielsweise mittels eines am Sensor angebrachten Gewindes, in eine Zündkerze oder Glühkerze einbauen.
Das Linsensystem 1, 2 gewährt einen Strahlengang, der einen Erfassungswinkel von 110° bis 140° aufweist. Insbesondere erweisen sich Linsensysteme von 130 bis 135° für diese Zwecke sehr gut.
Die verwendeten Linsen 1, 2 bestehen aus einem Material, das einen thermischen Expansionskoeffizienten bei 0 bis 400 °C von weniger als 10.5-10-6 K-1, insbesondere zwischen 0.15-10"6 K"1 und 6.7-10"6 K-1 aufweist. Die Mantelfläche mindestens der Linse 1 muss lötbar sein oder lötbar ausgestaltet sein, beispielsweise durch eine Metallisierung. Beide Linsen 1, 2 sollen Lichtwel- len bis zu 10 μm, mindestens im Bereich 0.2 bis 2 μm durchlassen. Als geeignet haben sich beispielsweise Saphir und Quarzglas erwiesen. Der Lichtleiter 5 endet unmittelbar in vordefiniertem Abstand zur Linse 2 und ist im Bereich der Hülse 4 ge- fasst. Im hinteren Bereich des Sensors wird der Lichtleiter 6 mit einer geeigneten Masse 6 in den Sensor eingegossen.
Interessant an diesem Linsensystem 1, 2 ist die Möglichkeit, kleine Linsen 1, 2 und somit kleine Sensoren herstellen zu können. Solche Sensoren sollen in eine Zündkerze oder in eine Glühkerze eingebaut werden können. Daher ist es wünschenswert, Linsensysteme 1, 2 von einem Durchmesser von < 8 mm, vorzugsweise < 5 mm, insbesondere < 2.4 mm herzustellen. Dadurch wird der Aussendurchmesser der Hülse 4 < 10 mm, vorzugsweise < 6.5 mm, insbesondere 2.5 bis 3.5 mm.
Die vom Licht zu durchtretene Länge des Linsensystems 1, 2 ist in der Regel höchstens so gross ist wie der Durchmesser des Linsensystems 1, 2, vorzugsweise 50 bis 75 % des Durchmessers des Linsensystems 1, 2.
In die Aussparung der Hülse 4 müssen die Linsen 1, 2 mit hoher Präzision zentriert eingebracht und befestigt sein. Der Lichtleiter muss in genau vordefiniertem Abstand der Linse angebracht sein. Die Präzision ist um so erforderlicher, je kleiner der Durchmesser der Linsen 1, 2 sind. Bereits eine geringe Abweichung der zentrierten Lage verschlechtert das Signal bis zur Unbrauchbarkeit . Das hier angegebene erfinderische Verfahren ermöglicht diese erforderliche präzise Zentrierung.
Die Linsen 1, 2 haben gegenüber der Aussparung der Hülse 4, in der sie eingelagert sind, ein Spiel von 5 bis 10 μm. Die Hülse besteht aus einem Material, das einen thermischen Expansionskoeffizient im Bereich von 0 bis 400 °C von weniger als 10.5-10"6 K"1, insbesondere von weniger als 7-10"6 K"1 aufweist. Zudem muss das Materiel der Hülse 4 lötbar sein und andauernde Temperaturen bis 600 °C und kurzzeitige Temperaturen bis 950 °C aushalten können. Die Hülse 4 muss eine Temperaturwechselfestigkeit von etwa 50 K/10 ms aufweisen. Die Wärmeleitfähigkeit des Materials der Hülse 4 sollte mindestens 20 W/mK, vorzugsweise mindestens 50 W/mK sein. Das Material der Hülse 4 muss mechanisch bearbeitbar sein mit einer Genauigkeit von + 10 μm, vorzugsweise + 5 μm.
Das Verfahren der Zentrierung der Linsen 1, 2 in der Aussparung der Hülse 4 besteht darin, den durch das Spiel 3 entstandene Spalt 3 zwischen der ersten Linse 1 und der Hülse 4, gegebenenfalls auch den Spalt zwischen der Linse 2 und der Hülse 4 mit einer Lötmasse zu füllen. Die Lötmasse soll einen oberen Schmelzpunkt von 770 bis 1100 °C aufweisen und eine gute Benetzbarkeit aufweisen.
Die axiale Ausrichtung von Lichteiter 5 und Linsensystem 1, 2 soll ebenfalls sehr präzise sein mit einer Abweichung kleiner als 10 μm, vorzugsweise kleiner als 5 μm. Dies wird erreicht, indem die Hülse tiefgezogen wird.

Claims

Patentansprüche
1. Optischer Sensor zum Erfassen von Verbrennungsvorgängen in einem Brennraum, mindestens bestehend aus einem dem Brennraum zugewandten Linsensystem (1, 2), einem Lichtleiter (5) und einer das Linsensystem und ein Ende des Lichtleiters umgebene Hülse (4), dadurch gekennzeichnet, dass das Linsensystem (1, 2) aus mindestens einer im wesentlichen plankonkaven Linse (1) und einer doppelkonkaven Linse (2) besteht, wobei die plane Seite der plankonkaven Linse (1) dem Brennraum ausgesetzt ist. 2. Sensor gemäss Anspruch 1, dadurch gekennzeichnet, dass der Erfassungswinkel des Linsensystems (1,
2) mindestens 130°, vorzugsweise mindestens 135° insbesondere bis 140° aufweist .
3. Sensor gemäss Anspruch 1, dadurch gekennzeichnet, dass die Linsen (1, 2) aus Saphir oder Quarzglas bestehen.
4. Sensor gemäss Anspruch 1, dadurch gekennzeichnet, dass mindestens die plankonkave Linse (1) an ihrer Mantelfläche mit einer Metallisierung umgeben ist.
5. Sensor gemäss Anspruch 4, dadurch gekennzeichnet, dass die plankonkave Linse (1) mit einem Lotmaterial an der Hülse (4) befestigt ist.
6. Sensor gemäss Anspruch 1, dadurch gekennzeichnet, dass das Linsensystem (1, 2) einen maximalen Durchmesser von < 8 mm, vorzugsweise von < 5 mm, insbesondere von < 2.4 mm aufweist .
7. Sensor gemäss Anspruch 1, dadurch gekennzeichnet, dass die vom Licht zu durchtretene Länge des Linsensystem (1, 2) höchstens so gross ist wie der Durchmesser, vorzugsweise zwischen 50 und 75 % des Durchmessers des Linsensystem (1, 2) beträgt.
8. Sensor gemäss Anspruch 1, dadurch gekennzeichnet, dass der Aussendurchmesser der Hülse (4) höchstens 10 mm, vorzugsweise höchstens 6.5 mm, insbesondere etwa 3.5 mm aufweist.
9. Sensor gemäss Anspruch 1, dadurch gekennzeichnet, dass der Sensor in eine Zündkerze oder in eine Glühkerze eingebaut werden kann.
10. Sensor gemäss Anspruch 1, dadurch gekennzeichnet, dass das Spiel (3) zwischen dem Aussenradius der Linsen (1, 2) und dem Innenradius der Hülse (4) kleiner als 10 μm, vorzugsweise etwa 5 μm ist.
11. Sensor gemäss Anspruch 3, dadurch gekennzeichnet, dass mindestens die dem Brennraum zugewandte Linse (1) mit einem Lotmaterial an der Hülse (4) im Bereich des Spaltes (3) befestigt ist.
12. Sensor gemäss Anspruch 1, dadurch gekennzeichnet, dass die Hülse (4) aus einem Material besteht, das eine anhaltende Temperaturbelastung von 600 °C und eine kurzzeitige Temperaturbelastung von 950 °C aushält.
13. Sensor gemäss Anspruch 1, dadurch gekennzeichnet, dass die Hülse (4) aus einem Material besteht, das eine thermische Ausdehnung im Bereich von 0 bis 400 °C von weniger als 10.5-10"6 K"1, insbesondere von weniger als 7-10"6 K_1 aufweist.
14. Verfahren zum Zentrieren von einer oder mehreren Linsen (1, 2) und eines Lichtleiters (5) in einer Hülse (4) eines optischen Sensors zum Erfassen von Verbrennungsvorgängen in einem Brennraum, dadurch gekennzeichnet, dass der Spalt (3) zwischen dem Aussenradius der Linsen (1, 2) und dem Innenradius der Hülse (4) kleiner als 10 μm, vorzugsweise etwa 5 μm ist und dass der Spalt (3) mit einer Lötmasse ausgefüllt wird und dass die Abweichung der axialen Ausrichtung von Lichteiter (5) und Linsensystem (1, 2) weniger als 10 μm, vorzugsweise weniger als 5 μm ist.
15. Verfahren gemäss Anspruch 14, dadurch gekennzeichnet, dass eine tiefgezogene Hülse (4) verwendet wird.
16. Verfahren gemäss Anspruch 14 oder 15, dadurch gekennzeichnet, dass der Sensor ein Linsensystem (1, 2) von mindestens zwei Linsen (1, 2) umfasst.
17. Verfahren gemäss Anspruch 14, 15 oder 16, dadurch gekennzeichnet, dass der Sensor Merkmale gemäss einer der Ansprüche 1 bis 13 aufweist.
PCT/IB2004/000796 2004-01-24 2004-01-24 Optischer sensor WO2005080938A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP04705014A EP1706719B1 (de) 2004-01-24 2004-01-24 Optischer sensor
PCT/IB2004/000796 WO2005080938A1 (de) 2004-01-24 2004-01-24 Optischer sensor
AT04705014T ATE389870T1 (de) 2004-01-24 2004-01-24 Optischer sensor
US10/586,276 US7872815B2 (en) 2004-01-24 2004-01-24 Optical sensor
JP2006550317A JP4861833B2 (ja) 2004-01-24 2004-01-24 光学センサ
DE502004006625T DE502004006625D1 (de) 2004-01-24 2004-01-24 Optischer sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2004/000796 WO2005080938A1 (de) 2004-01-24 2004-01-24 Optischer sensor

Publications (1)

Publication Number Publication Date
WO2005080938A1 true WO2005080938A1 (de) 2005-09-01

Family

ID=34878566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2004/000796 WO2005080938A1 (de) 2004-01-24 2004-01-24 Optischer sensor

Country Status (6)

Country Link
US (1) US7872815B2 (de)
EP (1) EP1706719B1 (de)
JP (1) JP4861833B2 (de)
AT (1) ATE389870T1 (de)
DE (1) DE502004006625D1 (de)
WO (1) WO2005080938A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006048760A1 (de) * 2006-10-16 2008-04-24 Lavision Gmbh Absorptionssensor
EP2597439A3 (de) * 2011-09-02 2013-09-18 Mikrowellen-Systeme MWS GmbH Druckbehälter
DE102016112510A1 (de) * 2016-07-07 2018-01-11 Krauss-Maffei Wegmann Gmbh & Co. Kg Verfahren und Vorrichtung zur Temperaturermittlung sowie Verfahren und Vorrichtung zum Fügen von Treibladungsmodulen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1797408B1 (de) * 2004-10-06 2012-06-20 Kistler Holding AG Zündkerze mit optischem sensor
US7987712B2 (en) * 2008-12-10 2011-08-02 Rosemount Aerospace Inc. High temperature seal assembly for optical sensor
JP6469845B2 (ja) 2014-08-26 2019-02-13 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft ガスタービンエンジン内の光センサ用のシーリングシステム
US10078948B2 (en) 2016-01-26 2018-09-18 Honeywell International Inc. Smoke detector with a double optical chamber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4753224A (en) * 1986-05-21 1988-06-28 Olympus Optical Co., Ltd. Endoscope tip
EP0385321A2 (de) * 1989-02-27 1990-09-05 Olympus Optical Co., Ltd. Verfahren und mit einem Endoskop versehene Vorrichtung zur Untersuchung von mit rotierenden und alternativen Kolben ausgerüstete Maschinen, in denen Löcher für Zündkerzen vorgesehen sind
US6320184B1 (en) * 1998-07-09 2001-11-20 Avl List Gmbh Optoelectric measuring device for monitoring combustion processes
US20020027723A1 (en) * 1998-12-18 2002-03-07 Fang Lei Endoscope lens, and an endoscope equipped with such a lens
US20020134138A1 (en) * 2001-03-22 2002-09-26 Harald Philipp Optical sensor or emitter used for monitoring combustion processes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223411A (ja) * 1986-03-25 1987-10-01 Mazda Motor Corp 内燃機関の燃焼促進装置
JPH01179108A (ja) * 1988-01-08 1989-07-17 Toshiba Corp レンズ固定方法
US5335061A (en) * 1989-02-27 1994-08-02 Olympus Optical Co., Ltd. Endoscope holding apparatus for inspecting the interiors of a reciprocating engine and rotary engine having ignition plug holes, endoscope apparatus including the endoscope holding apparatus and inspecting method
JPH032518U (de) * 1989-05-30 1991-01-11
JP2570450Y2 (ja) * 1992-03-30 1998-05-06 株式会社堀場製作所 赤外線分析計の赤外線透過窓接合構造
JP2002336190A (ja) * 2001-03-12 2002-11-26 Olympus Optical Co Ltd 内視鏡
JP2002350334A (ja) * 2001-05-22 2002-12-04 Nissan Motor Co Ltd エンジン燃焼検査装置
JP2003207419A (ja) * 2002-01-16 2003-07-25 Toyota Motor Corp 内燃機関の筒内観察装置
US6713713B1 (en) * 2002-12-18 2004-03-30 Branson Ultrasonics Corporation Lens to adapt laser intensity for uniform welding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4753224A (en) * 1986-05-21 1988-06-28 Olympus Optical Co., Ltd. Endoscope tip
EP0385321A2 (de) * 1989-02-27 1990-09-05 Olympus Optical Co., Ltd. Verfahren und mit einem Endoskop versehene Vorrichtung zur Untersuchung von mit rotierenden und alternativen Kolben ausgerüstete Maschinen, in denen Löcher für Zündkerzen vorgesehen sind
US6320184B1 (en) * 1998-07-09 2001-11-20 Avl List Gmbh Optoelectric measuring device for monitoring combustion processes
US20020027723A1 (en) * 1998-12-18 2002-03-07 Fang Lei Endoscope lens, and an endoscope equipped with such a lens
US20020134138A1 (en) * 2001-03-22 2002-09-26 Harald Philipp Optical sensor or emitter used for monitoring combustion processes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006048760A1 (de) * 2006-10-16 2008-04-24 Lavision Gmbh Absorptionssensor
DE102006048760B4 (de) * 2006-10-16 2008-07-10 Lavision Gmbh Absorptionssensor
DE102006048760B9 (de) * 2006-10-16 2009-01-08 Lavision Gmbh Absorptionssensor
EP2597439A3 (de) * 2011-09-02 2013-09-18 Mikrowellen-Systeme MWS GmbH Druckbehälter
DE102016112510A1 (de) * 2016-07-07 2018-01-11 Krauss-Maffei Wegmann Gmbh & Co. Kg Verfahren und Vorrichtung zur Temperaturermittlung sowie Verfahren und Vorrichtung zum Fügen von Treibladungsmodulen
US10746517B2 (en) 2016-07-07 2020-08-18 Krauss-Maffei Wegmann Gmbh & Co. Kg Method and device for ascertaining a temperature, and method and device for joining propellant charge modules

Also Published As

Publication number Publication date
JP2007520706A (ja) 2007-07-26
EP1706719A1 (de) 2006-10-04
JP4861833B2 (ja) 2012-01-25
US7872815B2 (en) 2011-01-18
EP1706719B1 (de) 2008-03-19
DE502004006625D1 (de) 2008-04-30
US20080239518A1 (en) 2008-10-02
ATE389870T1 (de) 2008-04-15

Similar Documents

Publication Publication Date Title
DE10209752B4 (de) Optischer Sensor zur Erfassung von Verbrennungsvorgängen
DE102013109278B4 (de) Zündkerze für eine mit Gas betriebene Brennkraftmaschine
AT2623U1 (de) Brennkraftmaschine mit fremdzündung
AT3845U1 (de) Optoelektronische messeinrichtung
EP0466851A1 (de) Vorrichtung zum messen der zusammensetzung von fluiden, insbesondere der bestandteile von abgasen von brennkraftmaschinen
EP1706719B1 (de) Optischer sensor
EP1797408B1 (de) Zündkerze mit optischem sensor
DE212010000164U1 (de) Zündkerze
DE4444831C2 (de) Drucksensor
DE102014216960A1 (de) Sonde für die optische Messung mit eingebauter Zündkerze, sowie damit versehene optische Messvorrichtung
CH696085A5 (de) Optischer Sensor.
EP1611436A1 (de) Messfühler
EP0313884B1 (de) Verfahren zum Erkennen und Auswerten klopfender Verbrennung während des Betriebes einer fremdgezündeten Brennkraftmaschine mit innerer Verbrennung
DE3042454C2 (de)
EP3588051A1 (de) Verfahren zur visualisierung eines verbrennungsprozesses eines kraftstoff-luft-gemischs
AT501574B1 (de) Optischer wegsensor
DE19955619B4 (de) Vorrichtung zur Überwachung der Verbrennung in Verbrennungsmotoren
DE3042399A1 (de) Sensoranordnung
DE4230374C2 (de) Zylinderkopfdichtung für eine Verbrennungskraftmaschine
DE9014826U1 (de) Gasmeßfühler, insbesondere zur Bestimmung des Sauerstoffgehaltes in Abgasen von Brennkraftmaschinen
DE19603059C2 (de) Glühstiftkerze
DE3104410A1 (de) Sensoranordnung
DE102013022497B3 (de) Vorkammerzündkerze mit Drucksensor für eine mit Gas betriebene Brennkraftmaschine
DE102009027456B4 (de) Vorrichtung zur Vermessung konischer Oberflächen
AT500902A2 (de) Messeinrichtung zur detektion von anrissen in thermisch kritischen bereichen einer brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004705014

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006550317

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004705014

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2004705014

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10586276

Country of ref document: US