WO2005078806A2 - Systeme d'installation solaire photovoltaique - Google Patents

Systeme d'installation solaire photovoltaique Download PDF

Info

Publication number
WO2005078806A2
WO2005078806A2 PCT/DE2005/000236 DE2005000236W WO2005078806A2 WO 2005078806 A2 WO2005078806 A2 WO 2005078806A2 DE 2005000236 W DE2005000236 W DE 2005000236W WO 2005078806 A2 WO2005078806 A2 WO 2005078806A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar system
electrodes
photovoltaic
coating
layer
Prior art date
Application number
PCT/DE2005/000236
Other languages
German (de)
English (en)
Other versions
WO2005078806A3 (fr
Inventor
Hans Sedlmayer
Barbara Kern
Ralf Kern
Original Assignee
Solar Tube Ag
Ralf Kern
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Tube Ag, Ralf Kern filed Critical Solar Tube Ag
Publication of WO2005078806A2 publication Critical patent/WO2005078806A2/fr
Publication of WO2005078806A3 publication Critical patent/WO2005078806A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the invention comprises a photovoltaic solar system and aims to improve not only the photovoltaic efficiency of the individual solar cells or the photovoltaic material, but also the overall energy efficiency or system efficiency and the manufacturing costs for the economic use of solar energy.
  • the invention consists in a solar system according to claim 1 and in execution according to claims 2 to 4 (Fig. 3 or 4) and in particular also of claim 5.
  • heat-conducting ribs can be provided within the tube.
  • a highly conductive cooling liquid can also serve as counterelectrodes, wherein metallic cooling fins can also be used as electrodes.
  • austenitic steel in particular may be preferred as the material for the tubular electrodes because its coarse structure has an advantageous effect on the epidactic deposition from the Si structure.
  • versions according to the invention are provided with at least one of the features according to the patent claims 6 to 10.
  • the Schottky barrier ie with every transition from a semi-conductor material to a metal conductor and vice versa, up to 0.5 volts loss of voltage or loss of current is avoided
  • Photovortaic solar cells which are coated with ⁇ ac more ac mosquito semiconductor ⁇ ⁇ are suitable for targeting high photovoitaischen efficiencies, and with degrees of inclination up to 50% according to the features according to patent claims 12 and 13.
  • the invention also includes a solar cell made of H-VI oxide Mehrfachlücfeen-HalMeiter Zai. ⁇ M% Ox Te ⁇ _ x with at least one p-doped layer and at least one n-doped layer and at least two electrodes.
  • Such solar cells are known per se in the scientific article from the journal "Physical Review Letters Volume 91, No. 24, page 24603-1".
  • This known solar cell material has an efficiency of over 50%.
  • the known solar cell is a Flat thin-film arrangement with a semi-transparent upper electrode on the surface and a solid lower electrode. With the semi-transparent upper electrode, however, the increased efficiency also results in increased Joolean heat, which increases in a square manner with the generated current strengths. This Jouie heat can, however, occur with the usual two-dimensional flat solar cells are not arbitrary can be reduced since the semi-transparent counterelectrode cannot be made as thin as desired, and not because of the resulting electrical transverse resistance and the contacting.
  • the solar cell consists of at least one p-doped sheath of an electrically conductive tube and at least one n-doped sheath of an electrically conductive tube, the at least one sheath per tube being arranged in such a way that it is in mechanical and thus electrically conductive contact with the stands in each case and the at least two electrically conductive tubes serve as electrodes.
  • Joule heat is also generated in these electrodes.
  • the electrodes can be made electrically conductive as desired, this can be reduced or kept to a negligibly small value, in particular when using tube cooling according to the invention.
  • the solar cell according to the invention an arrangement without Joule losses is available.
  • the arrangement is so well suited for the multi-band gap semiconductors, because the efficiency is so high with them and thus the Joule losses would be much higher than is known.
  • indirect multiple band gaps can result in a depletion of preferably optical phonons within a layer arranged between the doped photovoltaic layers, which slows down the optimal use of the band gap effect in k-space and the resulting improvement in efficiency.
  • the invention also relates to the application of an alternating electrical field and / or a magnetic and electrical oscillating field to the layers, which facilitates the occurrence of the phonons and enables the multiple band gaps in the k-space to be closed (claim 14).
  • the tubular solar electrodes can also be provided in pairs with n- / p-coating and p- / n-coating or other coatings.
  • the invention also favors an energetic combination for hydrogen dissociation directly at the site of solar power production.
  • the electrodes consist of medium-flow tube electrodes (3), which are coated with photovoltaic p- and / or n-doped semiconductor coatings (4/5), the surface (6) of each radially outer semiconductor layers of two tube electrodes (3) arranged next to one another are closely pressed together and are connected to one another in an electrically conductive manner, for example by press contact, welding by laser or by gluing with an electrically conductive adhesive, which in places where
  • electrically conductive, possibly mtrinsic contact layers (7) can also be provided.
  • the solar cell each with two solar elements (22), also referred to as a TWIN SOLAR CELL, is illuminated on both sides by the light, the side that is switched off also achieving at least 60% of the maximum efficiency
  • the light irradiation on both sides from the side of the system opposite to the incidence of light can also be effectively increased by providing a reflecting surface below the solar cells (11), which can also have light transmission slots.
  • the tubular electrodes are located
  • the solar elements (22) can be held together with a highly transparent covering (14) on the light incidence side and at the same time protected against dirt.
  • the counter electrodes (12) can also be arranged in a wire or rod-shaped configuration at those points of the solar elements (22) where they least shade the incidence of light, which can also be an electrically conductive solid material ,
  • the tubular electrodes (3) can also be in the form of a cylindrical or polygenic glass or plastic tube with a cross section, which is provided on its radial outer side with a possibly thinner electrically conductive - possibly vapor-deposited - electrode layer on which the p- and n- Semiconductor layers (4; 5) are applied.
  • the primary electrode can also consist of using an electrically highly conductive liquid as cooling water, which is connected as an electrode via electrical contacts (not shown separately) connected to the inside of the pipe.
  • the counter electrodes can also be connected by wire or rod-shaped metallic conductors (12) instead of via a surface (9) analogously to FIG. 4.
  • FIG. 5 A process diagram for the production of tubular electrodes with a limited outside diameter is shown schematically in FIG. 5.
  • a tubular sleeve is cut in section A in stages Bi, B 2 , B 3 and B 4 by means of reduction rollers
  • a first drawing stage CI the cross-section is reduced to the diameter of the drawing die (d) using a drawing die (g) and a first semiconductor coating is applied to the tube rod by means of powdered silicon with doping additive.
  • the strand processing can also be carried out critically.
  • This coating process takes place with a further reduction of the diameter in several stages one above the other, each with a different, alternating doping, the correspondingly different coating taking place in the hopper drawing roller (h) in the drawing stage.
  • the coating process can be intensified by means of additional spray application (i) of doped silicon dust.
  • the pipe string can either be coiled with a large diameter or cut into suitable lengths and processed further.
  • the semiconductor coatings Due to the cooling by means of the tubular electrodes (3), the semiconductor coatings can also be exposed to extreme climatic conditions, e.g. Use in the desert or high mountain regions, do not heat so that the photovoltaic efficiency can be kept constant at an optimal value.
  • the cooling system can also absorb additional latent heat from the environment in which it is used.
  • the coolant can also contain melting components in colloidal Fomi in order to improve the thermal properties of the melt (latent heat or heat of reaction).
  • the total conversion of sunlight into energy can achieve an additional efficiency of up to 35%, to which the purely photovoltaically generated energy output has to be added.
  • Warm water storage can also be used to balance energy between day and night.

Abstract

L'invention concerne un système d'installation solaire photovoltaïque qui comprend des électrodes tubulaires parcourues par un agent réfrigérant. Ces électrodes tubulaires sont pourvues, sur leur surface d'enveloppe extérieure, d'au moins un revêtement semi-conducteur à effet photovoltaïque, notamment de semi-conducteurs à plusieurs lacunes, et présentent des dispositifs servant à éviter des pertes d'énergie par effet Schottky ainsi qu'un appauvrissement de phonons dans l'espace k. Le système selon l'invention combine le rendement photovoltaïque avec le rendement thermique de la transformation d'énergie solaire ou de chaleur ambiante en énergie à usage industriel.
PCT/DE2005/000236 2004-02-17 2005-02-11 Systeme d'installation solaire photovoltaique WO2005078806A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004007857.2 2004-02-17
DE102004007857A DE102004007857A1 (de) 2004-02-17 2004-02-17 Solarzelle

Publications (2)

Publication Number Publication Date
WO2005078806A2 true WO2005078806A2 (fr) 2005-08-25
WO2005078806A3 WO2005078806A3 (fr) 2006-01-05

Family

ID=34813476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000236 WO2005078806A2 (fr) 2004-02-17 2005-02-11 Systeme d'installation solaire photovoltaique

Country Status (2)

Country Link
DE (1) DE102004007857A1 (fr)
WO (1) WO2005078806A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007003157A2 (fr) * 2005-06-30 2007-01-11 Solartube Ag Ch Dispositif de conversion d'energie solaire en energie electrique
WO2008060539A2 (fr) * 2006-11-15 2008-05-22 Solyndra, Inc. Cadre de panneau solaire renforcé par des fibres
WO2008100637A1 (fr) * 2007-02-16 2008-08-21 Solyndra, Inc. Ensemble photovoltaïque à dispositifs photovoltaïques allongés et réflecteurs à développante intégrée
EP2092612A2 (fr) * 2006-11-15 2009-08-26 Solyndra, Inc. Appareil et procédés pour connecter plusieurs modules photovoltaïques
US8227684B2 (en) 2006-11-14 2012-07-24 Solyndra Llc Solar panel frame
WO2012054495A3 (fr) * 2010-10-18 2013-05-30 Wake Forest University Dispositifs photovoltaïques hybrides et leurs applications
US8530737B2 (en) 2006-11-15 2013-09-10 Solyndra Llc Arrangement for securing elongated solar cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395583A (en) * 1980-04-30 1983-07-26 Communications Satellite Corporation Optimized back contact for solar cells
US4492743A (en) * 1982-10-15 1985-01-08 Standard Oil Company (Indiana) Multilayer photoelectrodes and photovoltaic cells
DE4339547A1 (de) * 1993-11-19 1995-05-24 Twin Solar Technik Entwicklung Verfahren zur photovoltaischen Herstellung von Elektrizität mittels Solarzellen sowie Vorrichtung zu dessen Durchführung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395583A (en) * 1980-04-30 1983-07-26 Communications Satellite Corporation Optimized back contact for solar cells
US4492743A (en) * 1982-10-15 1985-01-08 Standard Oil Company (Indiana) Multilayer photoelectrodes and photovoltaic cells
DE4339547A1 (de) * 1993-11-19 1995-05-24 Twin Solar Technik Entwicklung Verfahren zur photovoltaischen Herstellung von Elektrizität mittels Solarzellen sowie Vorrichtung zu dessen Durchführung

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AROUTIOUNIAN V ET AL: "Quantum dot solar cells" JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, Bd. 89, Nr. 4, 15. Februar 2001 (2001-02-15), Seiten 2268-2271, XP012052965 ISSN: 0021-8979 *
DATABASE INSPEC [Online] THE INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE, GB; 1984, KUECH T F ET AL: "The measurement of silicide Schottky barrier heights by use of photo-voltaic techniques" XP002340521 Database accession no. 2462752 -& THIN FILMS AND INTERFACES II. PROCEEDINGS OF THE SYMPOSIUM 14-18 NOV. 1983 BOSTON, MA, USA, 1984, Seiten 663-668, XP008051064 Thin Films and Interfaces II. Proceedings of the Symposium North-Holland New York, NY, USA ISBN: 0-444-00905-1 *
K. M. YU ET AL: "Synthesis and properties of highly mismatched II-O-VI alloys" IEE Proceedings-Optoelectronics IEE UK, Bd. 151, Nr. 5, 5. Oktober 2004 (2004-10-05), Seiten 452-459, XP002350868 ISSN: 1350-2433 *
RAFFAELLE R P ET AL: "QUANTUM DOT SOLAR CELLS" PROGRESS IN PHOTOVOLTAICS. RESEARCH AND APPLICATIONS, JOHN WILEY AND SONS, CHICHESTER, GB, Bd. 10, Nr. 6, September 2002 (2002-09), Seiten 433-439, XP001166343 ISSN: 1062-7995 *
SHAH A V ET AL: "Thin-film silicon solar cell technology" Progress in Photovoltaics: Research and Applications Wiley UK, Bd. 12, Nr. 2-3, 2004, Seiten 113-142, XP002352085 ISSN: 1062-7995 *
TERRAZZONI-DAUDRIX V ET AL: "Enhanced light trapping in thin film silicon solar cells deposited on PET and glass" PROCEEDINGS OF 3RD WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION 12-16 MAY 2003 OSAKA, JAPAN, Bd. 2, 2003, Seiten 1596-1600 Vol., XP002352088 Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (IEEE Cat. No.03CH37497) Arisumi Printing Inc Japan, Japan ISBN: 4-9901816-0-3 *
YU K M ET AL: "Diluted II-VI oxide semiconductors with multiple band gaps" Physical Review Letters APS USA, Bd. 91, Nr. 24, 12. Dezember 2003 (2003-12-12), Seiten 246403/1-4, XP002352084 ISSN: 0031-9007 in der Anmeldung erw{hnt *
YU K M ET AL: "Diluted ZnMnTe oxide: a multi-band semiconductor for high efficiency solar cells" ELEVENTH INTERNATIONAL CONFERENCE ON II-VI COMPOUNDS (II-VI 2003) 22-26 SEPT. 2003 NIAGARA FALLS, NY, USA, Nr. 4, 12. Februar 2004 (2004-02-12), Seiten 660-663, XP002350869 Physica Status Solidi C Wiley-VCH Germany ISSN: 1610-1634 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007003157A2 (fr) * 2005-06-30 2007-01-11 Solartube Ag Ch Dispositif de conversion d'energie solaire en energie electrique
WO2007003157A3 (fr) * 2005-06-30 2007-03-29 Solartube Ag Ch Dispositif de conversion d'energie solaire en energie electrique
US8227684B2 (en) 2006-11-14 2012-07-24 Solyndra Llc Solar panel frame
WO2008060539A2 (fr) * 2006-11-15 2008-05-22 Solyndra, Inc. Cadre de panneau solaire renforcé par des fibres
WO2008060536A2 (fr) * 2006-11-15 2008-05-22 Solyndra, Inc. Châssis de panneau solaire
WO2008060536A3 (fr) * 2006-11-15 2008-11-13 Solyndra Inc Châssis de panneau solaire
WO2008060539A3 (fr) * 2006-11-15 2008-11-13 Solyndra Inc Cadre de panneau solaire renforcé par des fibres
EP2092612A2 (fr) * 2006-11-15 2009-08-26 Solyndra, Inc. Appareil et procédés pour connecter plusieurs modules photovoltaïques
EP2092612A4 (fr) * 2006-11-15 2011-10-12 Solyndra Llc Appareil et procédés pour connecter plusieurs modules photovoltaïques
US8530737B2 (en) 2006-11-15 2013-09-10 Solyndra Llc Arrangement for securing elongated solar cells
WO2008100637A1 (fr) * 2007-02-16 2008-08-21 Solyndra, Inc. Ensemble photovoltaïque à dispositifs photovoltaïques allongés et réflecteurs à développante intégrée
WO2012054495A3 (fr) * 2010-10-18 2013-05-30 Wake Forest University Dispositifs photovoltaïques hybrides et leurs applications

Also Published As

Publication number Publication date
DE102004007857A1 (de) 2005-09-01
WO2005078806A3 (fr) 2006-01-05

Similar Documents

Publication Publication Date Title
WO2005078806A2 (fr) Systeme d'installation solaire photovoltaique
EP1153439B1 (fr) Structure à diodes, notamment destinée à des cellules solaires à couches minces
CN101578708A (zh) 太阳能电池装置的柱状结构薄膜材料
EP2009709B1 (fr) Elément thermoélectrique
DE2639841B2 (de) Solarzelle und Verfahren zu ihrer Herstellung
EP2758993B1 (fr) Module solaire à couches minces à câblage en série et procédé de câblage en série de cellules solaires à couches minces
DE1021097B (de) Sperrschicht-Photo-Element zur Umwandlung von Sonnenstrahlung in elektrische Energie
DE102009020085A1 (de) Solarzelle und Solarzellenmodul mit derselben
EP0437654A1 (fr) Branche de thermo-élement avec quantification directionnelle de porteurs de charge
DE3614546A1 (de) Amorphe solarzelle
DE2363120A1 (de) Sonnenzellenanordnung
DE112017002470T5 (de) Rolle-zu-rolle-metallisierung von solarzellen
JP6730367B2 (ja) 太陽電池
WO2023030866A1 (fr) Module photovoltaïque-thermique et système solaire
Alkhammash et al. Design and defect study of Cs2AgBiBr6 double perovskite solar cell using suitable charge transport layers
DE112011101267T5 (de) Mehrlagige Photovoltaikzelle mit P/N- und Schottky-Übergang und Verfahren zu deren Herstellung
DE102010017223A1 (de) Dünnschichtsolarmodul und Herstellungsverfahren hierfür
DE102012005802A1 (de) Energiewandeleinrichtung mit selektiven Kontakten
DE19732876A1 (de) Photovoltaische Solarzellenanordnung
WO2018041301A1 (fr) Module photovoltaïque comprenant des cellules solaires empilables connectés en série de façon intégrée et procédé de fabrication de celui-ci
JP2007273491A (ja) 光電変換素子、繊維状構造体、織物、布地および壁紙材料
DE10020784A1 (de) Photovoltaikmodul und Verfahren zu dessen Herstellung
KR101615611B1 (ko) 터널링 다층 양자우물구조체를 이용한 태양전지 및 그 제조방법
DE202010013136U1 (de) Dünnschicht-Photovoltaikmodul
JP6100468B2 (ja) 光電池および光電池の作製方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase