WO2005078345A1 - バイオマス燃料焚き流動層燃焼方法及びその装置 - Google Patents

バイオマス燃料焚き流動層燃焼方法及びその装置 Download PDF

Info

Publication number
WO2005078345A1
WO2005078345A1 PCT/JP2005/002054 JP2005002054W WO2005078345A1 WO 2005078345 A1 WO2005078345 A1 WO 2005078345A1 JP 2005002054 W JP2005002054 W JP 2005002054W WO 2005078345 A1 WO2005078345 A1 WO 2005078345A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
combustion
biomass fuel
fluidized
fired
Prior art date
Application number
PCT/JP2005/002054
Other languages
English (en)
French (fr)
Inventor
Tatsuo Ino
Yoshitaka Oomura
Kouji Taniguchi
Toshinori Muraoka
Kiyoto Ikeda
Original Assignee
Kawasaki Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo Kabushiki Kaisha filed Critical Kawasaki Jukogyo Kabushiki Kaisha
Publication of WO2005078345A1 publication Critical patent/WO2005078345A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/00001Exhaust gas recirculation

Definitions

  • the present invention relates to a fluid that burns biomass, which is an organic resource derived from animals and plants, excluding fossil resources, particularly biomass having a particularly high alkali component among woody, agricultural, and industrial biomass, as waste fuel.
  • biomass which is an organic resource derived from animals and plants, excluding fossil resources, particularly biomass having a particularly high alkali component among woody, agricultural, and industrial biomass, as waste fuel.
  • the present invention relates to a stratified combustion method and an apparatus therefor.
  • waste fuel containing a high alkali component has a low ash melting point as described above, it is difficult to operate a fluidized bed combustion device at a fluidized bed temperature of 800 ° C or more.
  • an exhaust gas recirculation system and a water cooling pipe in the bed are installed in the fluidized bed combustion system.
  • the conventional method of operating the exhaust gas recirculation system is to mix the exhaust gas with the combustion air and to control the oxygen partial pressure.
  • the aim is to reduce the NOx in the exhaust gas by reducing the temperature of the fluidized bed.
  • the fluidized bed temperature cannot be extremely low and cannot be reduced to a value, and this is not a countermeasure against agglomeration of the fluidized medium.
  • the water cooling pipe in the bed had problems such as abrasion by the fluid medium and corrosion by the exhaust gas.
  • Patent Document 1 JP-A-54-16731
  • Patent Document 2 JP-A-6-323510
  • the problem to be solved is that in fluidized bed combustion of biomass waste fuel, smooth and stable operation can be performed by preventing the fluidized medium from agglomerating and causing poor flow. It is to make it look.
  • One of the biomass fuel-fired fluidized bed combustion methods of the present invention for solving the above-mentioned problems is to reduce the air ratio in the fluidized bed in the range of 0.2 to 0.9 in burning the noomas fuel in the fluidized bed.
  • the ratio of the exhaust gas recirculation flow rate to the total air flow rate is set in the range of 20-80%, and the ratio of the superficial velocity in the fluidized bed to the fluidization start velocity is set to 2-6.
  • the fluidized bed temperature is controlled at 600-750 ° C. Controlling the temperature of the fluidized bed to 600 to 750 ° C is characterized in that the ratio of the superficial velocity in the fluidized bed to the fluidization start velocity is maintained at 2 to 6.
  • the air ratio in the fluidized bed is set to 0.
  • the reason for setting the value in the range of 2-0.9 is that the lower limit of the air ratio in the fluidized bed of 0.2, which is the limit at which unburned matter does not accumulate in the fluidized bed, The reason is that the operation is performed with the upper limit of the air ratio in the fluidized bed of 0.9, which is the limit for maintaining low. Further, in the biomass fuel-fired fluidized bed combustion method of the present invention, the reason for setting the ratio of the exhaust gas recirculation flow rate to the total air flow rate in the range of 20 to 80% by performing exhaust gas recirculation is that the fluidized bed is used.
  • the air ratio in the fluidized bed where the air flow rate is low is 0.2
  • the upper limit of the fluidized bed temperature is 750 ° C and the lower limit is 20%
  • the air ratio in the fluidized bed is 0.2.
  • the exhaust gas recirculation flow rate is increased with the setting, the superficial velocity in the fluidized bed increases, and the operation is performed with the upper limit of 80%, which is the upper limit ratio of the superficial velocity in the fluidized bed to the fluidization start speed of 6 To do that.
  • the reason for setting the ratio of the superficial velocity in the fluidized bed to the fluidization start velocity as 2-6 is that the fluidity in the fluidized bed is reduced by reducing the air supplied to the fluidized bed or the recirculated exhaust gas.
  • the operation is performed with the upper limit of 6, which is the limit for forming a fluidized bed due to an increase in recirculated exhaust gas.
  • the reason for controlling the fluidized bed temperature to 600-750 ° C is that the lower limit temperature at which stable combustion of biomass fuel is possible is 600 ° C, the combustion ash does not melt, and the fluid medium agglomerates (agglomeration).
  • the maximum temperature is 750 ° C.
  • Another one of the biomass fuel-fired fluidized bed combustion methods of the present invention is the fluidized bed combustion method. If the particle size of the fluidized medium increases due to the long-term operation of the method, 5 to 10% of the fluidized medium is discharged at the bottom of the fluidized bed at a time, and the particle size is selected. 1. It is characterized by discarding more than 6 times and refilling less than 6 times into the fluidized bed.
  • the reason why 5-10% of the fluid medium is discharged at one time is that the fluid medium is not discharged in large quantities at one time and does not affect the temperature of the fluidized bed during operation. Discarding more than 1.6 times of the average inner particle size and putting less than 1.6 times into the fluidized bed is because the fluidized medium has a particle size distribution and the maximum particle size of the fluidized medium Is 1.6 times the average particle size, so particles with a particle size of 1.6 times or more the average particle size are judged to be flocculated (agglomerated) fluid media and discarded, resulting in poor flow. This is because the fluidized bed temperature is maintained without generating any trouble and without stopping the operation.
  • Still another one of the biomass-fuel-burning fluidized-bed combustion methods of the present invention is to perform the fluidized-bed combustion of the biomass fuel while maintaining the air ratio in the fluidized bed in the range of 0.2 to 0.9.
  • the ratio of the exhaust gas recirculation flow rate is changed to the range of 20 to 80% during the rated operation and the force of 40 to 80%, and the superficial velocity and flow in the fluidized bed are changed. It is characterized in that the fluidized bed temperature is controlled at 600-750 ° C while the ratio of the starting speed is kept at 2-6.
  • biomass fuel-fired fluidized bed combustion methods of the present invention is that the biomass fuel to be burned stores and adjusts a part of the fuel in response to seasonal fluctuations in yield, so that the fuel actually used is
  • the air ratio in the fluidized bed is set in the range of 0.2 to 0.8, and the ratio of exhaust gas recirculation flow rate is 35 to 75%.
  • the fluidized bed temperature is controlled to 600-750 ° C while maintaining the ratio of the superficial velocity in the fluidized bed to the fluidization start velocity at 2-6 by varying the fluidized bed temperature. .
  • the air ratio in the fluidized bed is set in the range of 0.2-0.8, and the ratio of the exhaust gas recirculation flow rate is varied in the range of 35-75%.
  • the reason is that when the calorific value is 3500 kcalZkg, the fluidized bed temperature, the ratio of the superficial velocity in the fluidized bed and the ratio of the fluidization start speed are both the smallest, and when the air ratio in the fluidized bed is 0.2, the fluidized
  • the upper limit of the bed temperature is 750 ° C and the lower limit is 35%, and the upper limit of the superficial velocity in the fluidized bed and the upper limit ratio of the fluidization start speed is 6% or less and the upper limit is 75%.
  • the fluidized bed combustion apparatus for performing each of the biomass fuel-fired fluidized bed combustion methods includes a fluidized bed portion, a freeboard portion above the fluidized bed portion, and a fluidized bed wind box below the fluidized bed portion. , A dust collector, an exhaust gas line in which the dust collector is provided, and a dust collector provided in the fluidized bed wind box from a downstream side of the dust collector. A flue gas recirculation line, a fluidized media particle size selector, a fluidized media inlet provided on a side wall of the fluidized bed portion of the combustion furnace, and a fluidized media inlet provided at a lower portion of the fluidized bed portion of the combustion furnace.
  • the sectional area of the fluidized bed portion of the combustion furnace is set smaller than the sectional area of Preferably, the sectional area of the fluidized bed portion of the combustion furnace is smaller than the sectional area of the freeboard portion, and
  • the reason for setting it to 1Z2 or more is to reduce the volume of the fluidized bed and maintain sufficient fluidity while maintaining the boiler scale. If the cross-sectional area of the fluidized bed portion of the combustion furnace is smaller than 1Z2 of the cross-sectional area of the freeboard portion, the strength becomes unstable, which is not preferable.
  • the biomass fuel-fired fluidized bed combustion method of the present invention is suitable for fluidized bed combustion of biomass fuel, which is liable to cause ash adhesion trouble in a boiler where the alkali component in combustion ash is high.
  • the lower limit is the air ratio of 0.2 in the fluidized bed, which is the limit at which unburned fuel does not accumulate in the fluidized bed, and the flow is the limit for maintaining the fluidized bed temperature below 750 ° C.
  • the air ratio is 0.2
  • the lower limit is 20%, which is the upper limit of the fluidized bed temperature of 750 ° C
  • the upper limit is 80%, which is the upper limit ratio of the superficial velocity in the fluidized bed to the fluidization start speed of 6.
  • Another one of the biomass fuel-fired fluidized bed combustion methods of the present invention is that, when the particle size of the fluidized medium is increased by long-term operation of the above-mentioned fluidized bed combustion method, the total amount of the fluidized medium is five times. Discharge 10% of the fluid medium from the lower part of the fluidized bed, sort out the particle size, discard 1.6% or more of the original average particle size, and re-enter the smaller one into the fluidized bed. As a result, it is possible to avoid the occurrence of poor flow without causing ash to adhere to the fluid medium and agglomeration (agglomeration) of the particles and increase the particle size. It can be maintained at C and can be operated continuously for a long time.
  • Still another one of the biomass-fuel-fired fluidized-bed combustion methods of the present invention is that when the boiler is operated at a low load while maintaining the air ratio in the fluidized bed at 0.2-0.9, the fuel supply amount is reduced. As a result, the air volume and the exhaust gas recirculation flow rate also decrease, thereby preventing the fluidized bed temperature and the superficial velocity in the fluidized bed from decreasing, and preventing the ratio of the fluidization start speed from being maintained at 2 or more. Therefore, the ratio of the exhaust gas recirculation flow rate was changed to the range of 20-80% power and 40-80% at rated operation.
  • the fluidized bed temperature is controlled at 600-750 ° C while maintaining the ratio of the superficial velocity in the fluidized bed to the fluidization start velocity at 2-6, so that the fluidized bed combustion of biomass fuel does not hinder any problem.
  • the agglomeration of the fluid medium does not occur, and no ash deposits in the boiler.
  • biomass-fuel-burning fluidized-bed combustion methods of the present invention is that the biomass fuel to be burned stores and adjusts a part of the fuel in response to seasonal fluctuations in the yield, so that the fuel actually used is reduced.
  • the air ratio in the fluidized bed is set in the range of 0.2 to 0.8, and the ratio of exhaust gas recirculation flow rate is 35 to 75%.
  • the fluidized bed temperature is controlled at 600-750 ° C while maintaining the ratio between the superficial velocity in the fluidized bed and the fluidization start velocity at 2-6 by varying the fluidized medium. No agglomeration occurs, no ash adheres to the boiler, and the calorific value of the fuel actually used varies from 2500 to 3500 kcalZkg depending on the season. it can.
  • the sectional area of the fluidized bed portion of the combustion furnace is set smaller than the sectional area of the freeboard portion, the volume of the fluidized bed is maintained while maintaining the boiler scale. And the fluidity in the fluidized bed is sufficiently ensured.
  • the exhaust gas recirculation line is installed in the fluidized bed wind box of the combustion furnace after the dust collector in the exhaust gas line, the ratio of the exhaust gas recirculation flow rate to the total air amount is determined by the air ratio in the fluidized bed.
  • the lower limit is 20%, which ensures that the ratio of the superficial velocity in the fluidized bed to the fluidization start velocity is 2 or more, and the upper limit is 80%, at which the fluidized bed temperature becomes 600 ° C or more.
  • FIG. 1 is a system diagram of a biomass fuel-fired fluidized bed combustion apparatus of the present invention.
  • the cross-sectional area of the fluidized bed section of the combustion furnace is set smaller than the cross-sectional area of the free board section to 1Z2 or more, and an exhaust gas recirculation line is provided from the downstream of the dust collector of the exhaust gas line to the fluidized bed wind box of the combustion furnace.
  • a fluid medium discharge port is provided at the lower portion of the fluidized bed portion, and this is connected to a fluidized media particle size selector.
  • the fluidized media inlet port provided at the upper side wall of the fluidized bed portion is connected to the particle size selector, and a waste port is provided.
  • Noomas fuel is fluidized-bed combusted using a fluidized-bed combustor equipped with a fuel cell.
  • the ratio of the superficial velocity in the fluidized bed to the fluidization start speed is set to 2-6, preferably 4, and the air ratio in the fluidized bed is 0.2-0.9, good suitable [this ⁇ Also, 0. 4-0. 6 and range [this setting controls the fluidized bed temperature to 600 one 750 o G, preferably [this ⁇ or 6 50- 700 ° C, further exhaust gas
  • this setting controls the fluidized bed temperature to 600 one 750 o G, preferably [this ⁇ or 6 50- 700 ° C, further exhaust gas
  • FIG. 1 is a combustion furnace
  • 2 is a fluidized bed section of the combustion furnace
  • 3 is a freeboard section on the upper part thereof, and a fluidized bed section.
  • the cross-sectional area of 2 is set to 1Z2 of the cross-sectional area of the free board section 3.
  • Reference numeral 4 denotes a wind box in the fluidized bed 2
  • reference numeral 5 denotes a fuel supply device for the combustion furnace 1.
  • the exhaust gas line 6 from the freeboard section 3 is provided with a cyclone 7, a dust collector 8, and an air blower 9 in the middle, and is connected to an exhaust gas chimney 10.
  • 11 is a primary air blower to the wind box 4, and 12 is a secondary air blower to the freeboard section 3.
  • Reference numeral 13 denotes an exhaust gas recirculation line provided with the wake force of the dust collector 8 of the exhaust gas line 6 also on the wind box 4.
  • the exhaust gas recirculation line 13 is provided with an exhaust gas blower 14.
  • Reference numeral 15 denotes a fluid medium outlet provided at a lower portion of the fluidized bed portion 2, and the fluid medium outlet 15 is connected to a fluid medium particle size selector 16.
  • a fluid medium inlet 17 provided on the upper side wall of the fluidized bed portion 2 is connected to the bottom of the fluid medium particle size selector 16 and a waste port 18 for discharging the fluid medium having a large particle size is provided.
  • a net-like sheet is provided at the bottom of the fluidized bed 2, that is, at the boundary between the fluidized bed 2 and the wind box 4, a net-like sheet is provided. Have been killed. A fluidized medium such as sand is placed in the fluidized bed portion 2 having a net-like sheet at the bottom.
  • the fluid medium outlet 15 provided at the lower portion of the fluidized bed 2 is not limited to being provided at the lower side wall of the fluidized bed 2 as shown in FIG. 1, but may be provided at the bottom of the fluidized bed 2. In this case, the nove may be guided to the fluidized medium particle size selector 16 through the bottom surface of the spout box 4 at the center of the mesh sheet.
  • the air ratio in the bed within the range of 0.9, which is the limit for maintaining the temperature in the bed 2 (fluidized bed temperature) lower than 750 ° C, and reduce the air input into the bed 2
  • the superficial velocity (U ) And fluidization start rate (Umf) ratio UZUmf is set to 2-6, fluidized bed temperature is controlled to 600-750 ° C, Waste (palm oil pomace) fuel burning fluidized bed.
  • the exhaust gas is pushed into the wind box 4 by the exhaust gas blower 14 through the exhaust gas recirculation line 13 and recirculated.
  • the lower limit of the ratio of the exhaust gas recirculation flow rate to the total air flow rate is, for example, 25% when the fluidized bed temperature becomes 750 ° C or less when the air ratio in the bed is 0.4, and U / Umf ⁇ Secure 6 Set the GR ratio within the upper limit of 70%.
  • the air ratio in the bed is 0.6
  • the UZUmf is 6 or less and the fluidized bed temperature is 750 ° C or less by setting the GR ratio in the range of 30-60%.
  • the operating ranges of GR ratio, fluidized bed temperature, and U ZUmf for each air ratio in the bed in this fluidized bed combustion method are as shown in Table 1 below.
  • the fluidized medium does not generate agglomeration (agglomeration), and ash deposits in the boiler are generated. Disappears. Therefore, the flow of the fluid medium is good, and smooth and stable operation can be performed.
  • a smaller amount of the fluid medium is introduced into the fluidized bed part 2 in the combustion furnace 1 from the fluid medium inlet 17.
  • ash adheres to the fluidized medium and agglomeration (agglomeration) of the particles does not increase the particle size.
  • the temperature in the fluidized bed section 2 can be maintained at 600-750 ° C, and can be operated for a long time.
  • the air ratio in the fluidized bed section 2 is maintained at 0.4, and the ratio of the exhaust gas recirculation flow rate (GR flow rate) is changed from the range of 25-70% during rated operation to the range of 25-85%.
  • GR flow rate ratio of the exhaust gas recirculation flow rate
  • biomass fuel to be burned in a fluidized bed is an agricultural biomass fuel in which the calorific value of the fuel actually used varies from 2500 to 3500 kcalZkg by storing and adjusting part of the fuel in response to seasonal changes in yield,
  • the temperature in the fluidized bed section 2 (fluidized bed temperature) and the superficial velocity (U) in the fluidized bed section 2 differ for each calorific value.
  • the temperature in the fluidized bed section 2 (fluidized bed temperature) is controlled at 600-750 ° C. Fluid bed combustion of agricultural biomass waste fuel with an actual calorific value of 2500 to 3500 kcalZkg, and in this case 3500 kcalZkg, is performed without any problem, depending on the season. ) Does not occur and there is no ash adhesion trouble in the boiler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Incineration Of Waste (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

明 細 書
バイオマス燃料焚き流動層燃焼方法及びその装置
技術分野
[0001] 本発明は、化石資源を除く動植物に由来する有機性資源であるバイオマス、とりわ け木質系、農業系、産業系バイオマスの中でも特にアルカリ成分の高いバイオマスを 廃棄物燃料として燃焼させる流動層燃焼方法及びその装置に関する。
背景技術
[0002] 従来、バイオマスを燃焼させる燃焼装置として、珪砂を流動媒体とした流動層燃焼 装置が多く作られてきた。この流動層燃焼装置では、燃焼灰中アルカリ成分が高ぐ ボイラ内への灰付着トラブルを起こし易 、バイオマス廃棄物 (パームオイルしぼりかす 、ォリーブオイルしぼりかす、わら、合板等)燃料を燃焼すると、 800°C未満で燃焼灰 が溶融し、流動媒体が凝集 (アグロメレーシヨン)し、流動不良が発生し、運転が困難 となることがあった。
[0003] このように高アルカリ成分を含む廃棄物燃料は、灰融点が低!、ため流動層燃焼装 置を 800°C以上の流動層温度で運転することが困難であることから、流動層温度を 制御する手段として、排ガス再循環系や層内水冷管を流動層燃焼装置に設置して いるが、これまでの排ガス再循環系の運用方法は、燃焼空気に排ガスを混ぜて酸素 分圧を減らすことにより、排ガス中の NOxを低減させることを目的としており、流動層 温度を極めて低 、値にまで下げることはできず、流動媒体の凝集 (アグロメレーシヨン )対策ではない。また、層内水冷管は流動媒体による摩耗、排ガスによる腐食等の問 題があった。
特許文献 1 :特開昭 54-16731号公報
特許文献 2 :特開平 6- 323510号公報
発明の開示
発明が解決しょうとする課題
[0004] 解決しょうとする課題は、バイオマス廃棄物燃料の流動層燃焼において、流動媒体 を凝集させず、流動不良を発生させないようにして、円滑且つ安定した運転を可能な らしめることにある。
課題を解決するための手段
[0005] 上記課題を解決するための本発明のバイオマス燃料焚き流動層燃焼方法の 1つは 、ノィォマス燃料を流動層燃焼するにおいて、流動層内の空気比を 0. 2-0. 9の範 囲に設定し、排ガス再循環を行って総空気流量に対する排ガス再循環流量の比率 を 20— 80%の範囲に設定し、流動層内の空塔速度と流動化開始速度の比を 2— 6 に確保し、流動層温度を 600— 750°Cに制御することを特徴とする。また、流動層温 度を 600— 750°Cに制御することは、流動層内の空塔速度と流動化開始速度の比を 2— 6に確保しながら行われることを特徴とする。
[0006] 本発明のバイオマス燃料焚き流動層燃焼方法において、流動層内の空気比を 0.
2-0. 9の範囲に設定する理由は、流動層内に未燃分が蓄積しない限界である、流 動層内の空気比 0. 2を下限とし、流動層温度を 750°Cよりも低く維持するための限 界である流動層内の空気比 0. 9を上限として運転するためである。また、本発明のバ ィォマス燃料焚き流動層燃焼方法にぉ ヽて、排ガス再循環を行って総空気流量に 対する排ガス再循環流量の比率を 20— 80%の範囲に設定する理由は、流動層内 の空気流量が少ない状態である流動層内の空気比が 0. 2の時、流動層温度の上限 750°Cとなる 20%を下限値とし、流動層内の空気比を 0. 2に設定したまま、排ガス再 循環流量を増加させると、流動層内の空塔速度は増加し、流動層内の空塔速度と流 動化開始速度の上限比率 6となる 80%を上限値として運転するためである。さらに流 動層内の空塔速度と流動化開始速度の比を 2— 6と設定する理由は、流動層内へ供 給する空気または再循環排ガスが減少することにより、層内の流動性が不安定となり 、流動媒体の凝集 (アグロメレーシヨン)が発生するのを回避すベぐ層内の流動性を 十分に確保するための限界である 2を下限値とし、流動層内へ供給する空気または 再循環排ガスが増加することにより、流動層を形成する限界である 6を上限値として、 運転するためである。さらにまた、流動層温度を 600— 750°Cに制御する理由は、バ ィォマス燃料の安定燃焼が可能な下限温度が 600°Cであり、燃焼灰が溶融せず流 動媒体が凝集(アグロメレーシヨン)しな 、上限温度が 750°Cである力もである。
[0007] 本発明のバイオマス燃料焚き流動層燃焼方法の他の 1つは、前記流動層燃焼方 法の長期間運転により流動媒体の粒径が大きくなつた場合、 1回につき全体の 5— 1 0%の流動媒体を流動層下部力 排出して粒径を選別し、元の平均粒径の 1. 6倍以 上のものを廃棄し、それ以下のものを再び流動層内に投入することを繰り返すことを 特徴とするものである。
[0008] このバイオマス燃料焚き流動層燃焼方法において、 1回につき全体の 5— 10%の 流動媒体を流動層下部力 排出して粒径を選別し、元の平均粒径の 1. 6倍以上の ものを廃棄し、それ以下のものを再び流動層内に投入する理由は、流動層内の空塔 速度と流動化開始速度の比 2— 6に設定し、流動層温度を 600— 750°Cに制御して も長期間運転すると、流動媒体に灰が付着して粒子同士が凝集 (アグロメレーシヨン) して粒径が大きくなり、これを放置しておくと粒径がさらに大きくなり流動不良を引き起 こすことになるのを回避するためである。 1回につき全体の 5— 10%の流動媒体を排 出するのは、流動媒体を 1度につき大量に排出せず運転中に流動層温度に影響を 与えないためであり、排出した流動媒体の内元の平均粒径の 1. 6倍以上のものを廃 棄し、それ以下のものを流動層内に投入するのは、流動媒体は粒度分布を持ってお り、流動媒体の最大粒径は平均粒径の 1. 6倍であるため、平均粒径の 1. 6倍以上 の粒径のものは凝集 (アグロメレーシヨン)した流動媒体と判断してこれを廃棄すること で、流動不良を発生させず且つ運転停止することなく流動層温度を維持するためで ある。
[0009] 本発明のバイオマス燃料焚き流動層燃焼方法のさらに他の 1つは、バイオマス燃料 を流動層燃焼するにおいて、流動層内の空気比を 0. 2-0. 9の範囲に維持したまま ボイラ (燃焼炉)を低負荷運転する場合、排ガス再循環流量の比率を定格運転時の 2 0— 80%の範囲力 40— 80%の範囲に変化させ、流動層内の空塔速度と流動化 開始速度の比を 2— 6に確保しながら、流動層温度を 600— 750°Cに制御することを 特徴とするものである。
[0010] このバイオマス燃料焚き流動層燃焼方法において、流動層内の空気比を 0. 2-0 . 9の範囲に維持したままボイラ低負荷運転する場合、排ガス再循環流量の比率を 定格運転時の 20— 80%から 40— 80%の範囲に変化させる理由は、低負荷運転で は流動層温度と流動層内の空塔速度が低下するため、流動層内の空気流量が最も 少ない状態である流動層内の空気比 0. 2の時、流動層内の空塔速度と流動化開始 速度の下限比率 2以上となる 40%を下限値とし、流動層温度の下限値を 600°C以上 となる 80%を上限値として運転するためである。
[0011] 本発明のバイオマス燃料焚き流動層燃焼方法の別の 1つは、燃焼するバイオマス 燃料が季節による収穫量変動に対し燃料の一部を貯蔵、調整することにより、実際に 使用する燃料の発熱量が 2500— 3500kcal/kgに変動する農業系バイオマス燃料 である場合、流動層内の空気比を 0. 2-0. 8の範囲に設定し、排ガス再循環流量の 比率を 35— 75%の範囲で変動させることにより、流動層内の空塔速度と流動化開始 速度の比を 2— 6に確保しながら、流動層温度 600— 750°Cに制御することを特徴と するものである。
[0012] このバイオマス燃料焚き流動層燃焼方法において、流動層内の空気比を 0. 2-0 . 8の範囲に設定し、排ガス再循環流量の比率を 35— 75%の範囲で変動させる理 由は、発熱量が 3500kcalZkgである場合、流動層温度、流動層内の空塔速度と流 動化開始速度の比がともに最も小さくなる流動層内の空気比 0. 2の運転時において 、流動層温度の上限値 750°Cとなる 35%を下限値とし、流動層内の空塔速度と流動 化開始速度の上限比率 6以下となる 75%を上限値として運転するためである。
[0013] この各バイオマス燃料焚き流動層燃焼方法を実施するための流動層燃焼装置は、 流動層部と前記流動層部の上方のフリーボード部と前記流動層部の下方の流動層 風箱とを有する燃焼炉と、集塵器と、前記集塵器が配設された排ガスラインと、前記 集塵器の後流側カゝら前記流動層風箱にカゝけて設けられた集塵器排ガス再循環ライ ンと、流動媒体粒径選別器と、前記燃焼炉の前記流動層部の側壁に設けられた流 動媒体投入口と、前記燃焼炉の前記流動層部の下部に設けられた流動媒体排出口 と、前記流動媒体投入口と前記流動媒体排出口とに接続された流動媒体粒径選別 器と、を備え、前記燃焼炉の前記流動層部の断面面積は前記フリーボード部の断面 面積より小さいことを特徴とする。また、前記燃焼炉の前記流動層部の断面面積は前 記フリーボード部の断面面積より小さく前記フリーボード部の断面面積の 1Z2以上 であることを特徴とする。
ここで、燃焼炉の流動層部の断面面積をフリーボード部の断面面積より小さくし、好 ましくは、燃焼炉の流動層部の断面面積をフリーボード部の断面面積より小さくかつ
1Z2以上に設定する理由は、ボイラ規模を維持したまま、流動層の容積を小さくし、 流動性を十分に確保するためである。燃焼炉の流動層部の断面面積がフリーボード 部の断面面積の 1Z2より小さい場合には、強度的に不安定になって好ましくない。
[0014] 以上の説明で判るように本発明のバイオマス燃料焚き流動層燃焼方法は、燃焼灰 中アルカリ成分が高ぐボイラ内への灰付着トラブルを起こし易いバイオマス燃料を流 動層燃焼するにお 、て、流動層内に燃料の未燃分が蓄積しない限界である流動層 内の空気比 0. 2を下限とし、流動層温度を 750°Cよりも低く維持するための限界であ る流動層内の空気比 0. 9を上限として設定すると共に、排ガス再循環を行って総空 気流量に対する排ガス再循環流量の比率を、流動層内の空気流量が少な!、状態で ある流動層内の空気比が 0. 2の時、流動層温度の上限 750°Cとなる 20%を下限値 とし、流動層内の空塔速度と流動化開始速度の上限比率 6となる 80%を上限値とし て運転することで、流動層内の空塔速度と流動化開始速度の比を 2— 6に維持して、 流動層内の流動性を十分に確保しながら流動層温度を 600— 750°Cに制御して、 ノィォマス燃料を流動層燃焼するので、流動媒体が凝集 (アグロメレーシヨン)せず、 ボイラ内への灰付着も発生しなくなり、円滑且つ安定した運転が実現する。
[0015] 本発明のバイオマス燃料焚き流動層燃焼方法の他の 1つは、前記の流動層燃焼方 法の長期間運転により流動媒体の粒径が大きくなつた場合、 1回につき全体の 5— 1 0%の流動媒体を流動層下部力 排出して粒径を選別し、元の平均粒径の 1. 6倍以 上のものを廃棄し、それ以下のものを再び流動層内に投入するので、流動媒体に灰 が付着して粒子同士が凝集 (アグロメレーシヨン)して粒径が大きくなるようなことはな ぐ流動不良の発生を回避でき、運転中流動層温度を 600— 750°Cに維持できて、 長時間連続運転できる。
[0016] 本発明のバイオマス燃料焚き流動層燃焼方法のさらに他の 1つは、流動層内の空 気比を 0. 2-0. 9に維持したままボイラ低負荷運転する場合、燃料供給量の減少に 伴い空気量、排ガス再循環流量も減少し、それにより流動層温度と流動層内の空塔 速度が低下し、流動化開始速度との比を 2以上に維持できなくなるのを防止するため に、排ガス再循環流量の比率を定格運転時の 20— 80%力 40— 80%の範囲に変 化させ、流動層内の空塔速度と流動化開始速度の比を 2— 6に確保しながら、流動 層温度を 600— 750°Cに制御するので、バイオマス燃料の流動層燃焼は何ら支障な く行われ、流動媒体の凝集 (アグロメレーシヨン)は発生せず、ボイラ内への灰付着も 発生しない。
[0017] 本発明のバイオマス燃料焚き流動層燃焼方法の別の 1つは、燃焼するバイオマス 燃料が季節による収穫量変動に対し燃料の一部を貯蔵、調整することにより、実際に 使用する燃料の発熱量が 2500— 3500kcal/kgに変動する農業系バイオマス燃料 である場合、流動層内の空気比を 0. 2-0. 8の範囲に設定し、排ガス再循環流量の 比率を 35— 75%の範囲で変動させることにより、流動層内の空塔速度と流動化開始 速度との比を 2— 6に確保しながら、流動層温度を 600— 750°Cに制御するので、流 動媒体の凝集 (アグロメレーシヨン)は発生せず、ボイラ内への灰付着も発生せず、季 節により実際に使用する燃料の発熱量が 2500— 3500kcalZkgと変動する農業系 ノィォマス燃料を容易且つ確実に燃焼できる。
[0018] 本発明のバイオマス燃料焚き流動層燃焼装置は、燃焼炉の流動層部の断面面積 をフリーボード部の断面面積より小さく設定しているので、ボイラ規模を維持したまま 、流動層の容積は小さくなり、流動層内の流動性は十分に確保される。また、排ガス ラインの集塵器後流力 燃焼炉の流動層風箱に力 4ナ排ガス再循環ラインを設けてい るので、総空気量に対する排ガス再循環流量の比率を、流動層内の空気比 0. 2の 時流動層内の空塔速度と流動化開始速度の比を 2以上に確保する 20%を下限値と し、流動層温度が 600°C以上となる 80%を上限値として、その範囲内で排ガス再循 環比率を設定して運転することにより、上記バイオマス燃料焚き流動層燃焼方法を容 易且つ確実に実施できる。また流動層部の下部に流動媒体排出口を設け、この流動 媒体排出口に流動媒体粒径選別器に接続し、この流動媒体選別器に流動層部の上 部側壁に設けた流動媒体投入口を接続すると共に廃棄口を設けて!/ヽるので、流動 層内から流動媒体を流動媒体粒径選別器に取り出し、粒径を選別して、不要のもの を廃棄し、必要なものを流動層内に投入することができる。従って、流動不良を発生 させず且つ流動層温度を維持することができて、運転停止することがな!、。
図面の簡単な説明 [0019] [図 1]本発明のバイオマス燃料焚き流動層燃焼装置の系統図である。
発明を実施するための最良の形態
[0020] 燃焼炉の流動層部の断面面積をフリーボード部の断面面積より小さく 1Z2以上に 設定すると共に排ガスラインの集塵器後流から燃焼炉の流動層風箱にかけ排ガス再 循環ラインを設け、さらに流動層部下部に流動媒体排出口を設け、これを流動媒体 粒径選別器に接続し、この粒径選別器に流動層部上部側壁に設けた流動媒体投入 口を接続すると共に廃棄口を設けた流動層燃焼装置を利用して、ノ^オマス燃料を 流動層燃焼する。この流動層燃焼において、流動層内の空塔速度と流動化開始速 度の比を 2— 6、好適には 4に設定すると共に、流動層内の空気比を 0. 2-0. 9、好 適【こ ίま、 0. 4-0. 6の範囲【こ設定して、流動層内温度を 600一 750oG、好適【こ ίま 6 50— 700°Cに制御し、さらに排ガス循環を行つて総空気流量に対する排ガス再循環 流量の比率を 20— 80%、好適には 30— 60%の範囲に設定することにより、流動媒 体の凝集 (アグロメレーシヨン)を無くし、ボイラ内への灰付着も無くした。
実施例 1
[0021] 本発明のバイオマス燃料焚き流動層燃焼方法及びその装置の実施例について説 明する。先ず、バイオマス燃料焚き流動層燃焼装置を図 1の系統図によって説明す ると、 1は燃焼炉、 2はこの燃焼炉 1の流動層部、 3はその上部のフリーボード部で、 流動層部 2の断面面積はフリーボード部 3の断面面積の 1Z2に設定してある。 4は流 動層部 2の風箱、 5は燃焼炉 1への燃料供給機である。フリーボード部 3からの排ガス ライン 6は途中にサイクロン 7、集塵器 8、誘引排風機 9が順次設けられて、排ガス放 散煙突 10に接続されている。 11は風箱 4への 1次空気送風機、 12はフリーボード部 3への 2次空気送風機である。 13は排ガスライン 6の集塵器 8の後流力も風箱 4にか けて設けられた排ガス再循環ラインで、この排ガス再循環ライン 13に排ガス送風機 1 4が設けられている。 15は流動層部 2の下部に設けられた流動媒体排出口で、この 流動媒体排出口 15が流動媒体粒径選別器 16に接続されている。この流動媒体粒 径選別器 16の底には流動層部 2の上部側壁に設けた流動媒体投入口 17が接続さ れると共に粒径の大き 、流動媒体を放出する廃棄口 18が設けられて 、る。
流動層部 2の底部、すなわち流動層部 2と風箱 4との境界部には綱目状シートが設 けられている。底部に綱目状シートを有する流動層部 2内には、砂等の流動媒体が 載置されている。なお、流動層部 2の下部に設けられた流動媒体排出口 15は、図 1 に示すように流動層部 2の下部側壁に設けられる場合に限らず、流動層部 2の底部 を設けてもよぐこの場合、綱目状シートの中心部にノイブを継ぎ風箱 4の底面を通 つて流動媒体粒径選別器 16に導けばよい。
[0022] 次に上記のように構成された流動層燃焼装置を用いるバイオマス燃料焚き流動層 燃焼方法の 1つについて説明する。図 1に示す燃焼炉 1内の流動層 2に燃料供給機 5により燃焼灰中アルカリ成分が高ぐ燃焼炉内への灰付着トラブルを起こし易いバイ ォマス廃棄物、本例の場合パームオイルしぼりかすを燃料として供給し、流動層燃焼 するにおいて、流動層部 2内の空気比 (層内空気比)を流動層部 2内に未燃分が蓄 積しない層内空気比 0. 2から流動層部 2内の温度 (流動層温度)を 750°Cよりも低く 維持するための限界である層内空気比 0. 9の範囲内に設定すると共に、流動層部 2 内への投入空気が減少し、層内の流動性が不安定となって流動媒体の凝集 (ァグロ メレーシヨン)が発生するのを回避し、層内の流動性を確保するため、流動層部 2内 の空塔速度 (U)と流動化開始速度 (Umf)の比 UZUmfを 2— 6に設定して、流動層 温度を 600— 750°Cに制御し、上記バイオマス廃棄物 (パームオイルしぼりかす)燃 料を流動層燃焼する。この流動層燃焼において、排ガス再循環ライン 13を通して排 ガス送風機 14により風箱 4に排ガスを押し込んで再循環する。この時の総空気流量 に対する排ガス再循環流量の比率 (GR比率)は、例えば層内空気比 0. 4の時流動 層温度が 750°C以下となる 25%を下限値とし、 U/Umf< 6を確保する 70%を上限 値として、その範囲内で GR比率を設定する。同様に層内空気比 0. 6の時、 GR比率 を 30— 60%の範囲に設定することで、 UZUmfは 6以下、流動層温度は 750°C以 下となる。この流動層燃焼方法における層内空気比ごとの GR比率と流動層温度、 U ZUmfの運転範囲は下記の表 1に示す通りである。
[0023] [表 1] 層内空気比 0 . 4 0 . 6
G R比率 % 2 5〜 7 0 3 0〜6 0
U/Um f 〜 6 〜6 流動層温度 で 〜 7 5 0 ~ 7 5 0
[0024] 上記のようにしてバイオマス廃棄物 (パームオイルしぼりかす)燃料を流動層燃焼す ることにより、流動媒体は凝集 (アグロメレーシヨン)が発生せず、ボイラ内の灰付着ト ラブルが生じなくなる。従って、流動媒体の流動は良好で、円滑且つ安定した運転が できる。
実施例 2
[0025] バイオマス燃料焚き流動層燃焼方法の他の 1つについて説明する。上記の流動層 燃焼方法も長期間運転すると、流動層部 2内の流動媒体に灰が付着して粒径が大き くなり、これを放置しておくとさらに粒径が大きくなつて流動不良を引き起こすことにな る。これを防ぐため長時間運転した場合、 1回につき流動層部 2内の流動媒体全体の 5— 10% (流動層温度に影響しない程度)の量の流動媒体を、流動媒体排出口 15よ り排出して流動媒体粒径選別器 16に導入し、ここで粒径を選別して、元の平均粒径 の 1. 6倍以上の流動媒体を廃棄口 18より放出して外部に廃棄し、それ以下の流動 媒体を流動媒体投入口 17より燃焼炉 1内の流動層部 2に投入する。カゝくして長期間 の流動層燃焼において、流動媒体に灰が付着して粒子同士が凝集 (アグロメレーシ ヨン)して粒径が大きくなるようなことはなぐ流動不良の発生を回避でき、運転中流動 層部 2内の温度を 600— 750°Cに維持できて、長期間運転できる。
実施例 3
[0026] ノィォマス燃料焚き流動層燃焼方法のさらに他の 1つについて説明する。バイオマ ス廃棄物 (パームオイルしぼりかす)燃料を流動層燃焼するにおいて、流動層部 2内 の空気比を 0. 2-0. 9の範囲に維持したままボイラ低負荷運転する場合、例えば定 格運転から負荷 50%の低負荷運転に変更した場合、燃料供給量の減少に伴い空 気量、 GR量も減少する。そのため流動層部 2内の空塔速度 (U)も減少し、流動化開 始速度 (Umf)との比 UZUmf= 2— 6を維持できなくなる。そこで、本発明では流動 層部 2内の空気比 0. 4を維持し、排ガス再循環流量 (GR流量)の比率を定格運転時 の 25— 70%の範囲から 25— 85%の範囲に変化させることで UZUmf = 2— 6を確 保しながら、流動層部 2内の温度 (流動層温度)を 600— 750°Cに制御して運転する 。力べしてバイオマス廃棄物 (パームオイルしぼりかす)燃料の流動層燃焼は、何ら支 障なく行われ、流動媒体の凝集 (アグロメレーシヨン)は発生せず、ボイラ内の灰付着 トラブルが生じることがない。
実施例 4
[0027] バイオマス燃料焚き流動層燃焼方法の別の 1つについて説明する。流動層燃焼す るバイオマス燃料が季節による収穫量変動に対し燃料の一部を貯蔵、調整すること により、実際に使用する燃料の発熱量が 2500— 3500kcalZkgと変動する農業系 バイオマス燃料である場合、流動層部 2内の温度 (流動層温度)、流動層部 2内の空 塔速度 (U)は発熱量ごとに異なる。そこで、本発明では発熱量 3500kcalZkgの場 合、流動層部 2内の空気比を 0. 2-0. 8に、本例の場合 0. 4に設定し、排ガス再循 環流量の比率(GR比率)を 45— 65%の範囲で運転し、 U/Umf= 2— 6を確保しな 力 流動層部 2内の温度 (流動層温度)を 600— 750°Cに制御して運転する。力べし て季節により実際に使用する燃料の発熱量が 2500— 3500kcalZkg、本例の場合 3500kcalZkgの農業系バイオマス廃棄物燃料の流動層燃焼は、何ら支障なく行わ れ、流動媒体の凝集 (アグロメレーシヨン)は発生せず、ボイラ内の灰付着トラブルも 生じることがない。
産業上の利用可能性
[0028] 産業廃棄物である紙やプラスチック等の流動層燃焼にも利用でき、またバイオマス 発電の実用化に貢献でき、さらに燃焼灰は良質な肥料、土壌改良材などにも利用で きる。

Claims

請求の範囲
[1] バイオマス燃料を流動層燃焼するにおいて、
流動層内の空気比を 0. 2-0. 9の範囲に設定し、
排ガス再循環を行って総空気流量に対する排ガス再循環流量の比率を 20— 80% の範囲に設定し、
流動層内の空塔速度と流動化開始速度の比を 2— 6に確保し、
流動層温度を 600— 750°Cに制御する
ことを特徴とするバイオマス燃料焚き流動層燃焼方法。
[2] 請求項 1記載のバイオマス燃料焚き流動層燃焼方法にお!、て、
流動層温度を 600— 750°Cに制御することは、流動層内の空塔速度と流動化開始 速度の比を 2— 6に確保しながら行われる
ことを特徴とするバイオマス燃料焚き流動層燃焼方法。
[3] 請求項 1記載のバイオマス燃料焚き流動層燃焼方法にお!、て、
燃焼炉の長期間運転により流動媒体の粒径が大きくなつた場合、 1回につき全体の 5— 10%の流動媒体を流動層下部力も排出して粒径を選別し、元の平均粒径の 1. 6倍以上のものを廃棄し、それ以下のものを再び流動層内に投入することを繰り返す ことを特徴とするバイオマス燃料焚き流動層燃焼方法。
[4] 請求項 1記載のバイオマス燃料焚き流動層燃焼方法にお!、て、
流動層内の空気比を 0. 2-0. 9の範囲に維持したまま燃焼炉を低負荷運転する 場合、排ガス再循環流量の比率を定格運転時の 20— 80%の範囲から 40— 80%の 範囲に変化させる
ことを特徴とするバイオマス燃料焚き流動層燃焼方法。
[5] 請求項 1記載のバイオマス燃料焚き流動層燃焼方法にお!、て、
ノィォマス燃料が季節による収穫量変動に対し燃料の一部を貯蔵、調整すること により、実際に使用する燃料の発熱量が 2500— 3500kcalZkgに変動する農業系 ノィォマス燃料である場合、排ガス再循環流量の比率を 35— 75%の範囲で変動さ せる
ことを特徴とするバイオマス燃料焚き流動層燃焼方法。
[6] ノィォマス燃料焚き流動層燃焼装置であって、
流動層部と前記流動層部の上方のフリーボード部と前記流動層部の下方の流動層 風箱とを有する燃焼炉と、
集塵器と、
前記集塵器が配設された排ガスラインと、
前記集塵器の後流側カゝら前記流動層風箱にカゝけて設けられた集塵器排ガス再循 環ラインと、
流動媒体粒径選別器と、
前記燃焼炉の前記流動層部の側壁に設けられた流動媒体投入口と、
前記燃焼炉の前記流動層部の下部に設けられた流動媒体排出口と、
前記流動媒体投入口と前記流動媒体排出口とに接続された流動媒体粒径選別器 と、
を備え、
前記燃焼炉の前記流動層部の断面面積は前記フリーボード部の断面面積より小さ い
ことを特徴とするバイオマス燃料焚き流動層燃焼装置。
[7] 請求項 6記載のバイオマス燃料焚き流動層燃焼装置にお 、て、
前記燃焼炉の前記流動層部の断面面積は前記フリーボード部の断面面積より小さ く前記フリーボード部の断面面積の 1Z2以上である
ことを特徴とするバイオマス燃料焚き流動層燃焼装置。
[8] 請求項 7記載のバイオマス燃料焚き流動層燃焼装置にお 、て、
前記燃焼炉の前記流動層部の断面面積は前記フリーボード部の断面面積の 1Z2 である
ことを特徴とするバイオマス燃料焚き流動層燃焼装置。
[9] 請求項 6記載のバイオマス燃料焚き流動層燃焼装置にお 、て、
前記流動媒体投入口は前記燃焼炉の前記流動層部の上部側壁に設けられており 前記流動媒体排出口は前記燃焼炉の前記流動層部の下部側壁に設けられている ことを特徴とするバイオマス燃料焚き流動層燃焼装置。
[10] 請求項 6記載のバイオマス燃料焚き流動層燃焼装置にぉ 、て、
前記流動媒体投入口は前記燃焼炉の前記流動層部の上部側壁に設けられており 前記流動媒体排出口は前記燃焼炉の前記流動層部の底部に設けられている ことを特徴とするバイオマス燃料焚き流動層燃焼装置。
[11] 請求項 6記載のバイオマス燃料焚き流動層燃焼装置において、
前記流動媒体粒径選別器に取り付けられた廃棄口を備える
ことを特徴とするバイオマス燃料焚き流動層燃焼装置。
PCT/JP2005/002054 2004-02-13 2005-02-10 バイオマス燃料焚き流動層燃焼方法及びその装置 WO2005078345A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004036490A JP2005226930A (ja) 2004-02-13 2004-02-13 バイオマス燃料焚き流動層燃焼方法及びその装置
JP2004-036490 2004-02-13

Publications (1)

Publication Number Publication Date
WO2005078345A1 true WO2005078345A1 (ja) 2005-08-25

Family

ID=34857720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002054 WO2005078345A1 (ja) 2004-02-13 2005-02-10 バイオマス燃料焚き流動層燃焼方法及びその装置

Country Status (2)

Country Link
JP (1) JP2005226930A (ja)
WO (1) WO2005078345A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY162205A (en) * 2009-07-13 2017-05-31 Sumitomo Heavy Industries Combustion method for fluidized bed boiler, and fluidized bed boiler
CN103225818B (zh) * 2013-04-09 2015-04-29 湖南省湘电试研技术有限公司 一种电站燃煤w火焰锅炉的二次风箱结构
CN104557313B (zh) * 2015-01-19 2017-02-22 合肥德博生物能源科技有限公司 一种生物质炭基复合肥的生产设备及其生产工艺
JP6654127B2 (ja) 2016-10-24 2020-02-26 住友重機械工業株式会社 凝集抑制方法、凝集抑制材、化合物調整方法、流動床ボイラ、及び流動物
JP7251978B2 (ja) * 2018-12-28 2023-04-04 川崎重工業株式会社 流動床炉
KR20230164666A (ko) 2021-03-29 2023-12-04 스미도모쥬기가이고교 가부시키가이샤 유동매체재생장치, 연소시스템 및 유동층식 연소로의 연소방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226511A (ja) * 1986-10-08 1988-09-21 Babcock Hitachi Kk 流動層燃焼装置の運転制御装置
JPS63226510A (ja) * 1987-03-13 1988-09-21 Babcock Hitachi Kk 流動層燃焼炉の流動媒体の制御方法及び装置
JPH08193706A (ja) * 1995-01-18 1996-07-30 Mitsubishi Heavy Ind Ltd 循環流動層燃焼炉
JPH10169944A (ja) * 1996-12-03 1998-06-26 Kobe Steel Ltd 廃棄物熱分解炉における流動層制御方法
JP2000266306A (ja) * 1999-03-15 2000-09-29 Babcock Hitachi Kk 加圧流動層ボイラ
JP2002168411A (ja) * 2000-12-06 2002-06-14 Hitachi Zosen Corp 廃棄物燃焼方法
JP2002333107A (ja) * 2001-05-11 2002-11-22 Takuma Co Ltd 凝集成分を含む廃棄物の燃焼方法及びその装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226511A (ja) * 1986-10-08 1988-09-21 Babcock Hitachi Kk 流動層燃焼装置の運転制御装置
JPS63226510A (ja) * 1987-03-13 1988-09-21 Babcock Hitachi Kk 流動層燃焼炉の流動媒体の制御方法及び装置
JPH08193706A (ja) * 1995-01-18 1996-07-30 Mitsubishi Heavy Ind Ltd 循環流動層燃焼炉
JPH10169944A (ja) * 1996-12-03 1998-06-26 Kobe Steel Ltd 廃棄物熱分解炉における流動層制御方法
JP2000266306A (ja) * 1999-03-15 2000-09-29 Babcock Hitachi Kk 加圧流動層ボイラ
JP2002168411A (ja) * 2000-12-06 2002-06-14 Hitachi Zosen Corp 廃棄物燃焼方法
JP2002333107A (ja) * 2001-05-11 2002-11-22 Takuma Co Ltd 凝集成分を含む廃棄物の燃焼方法及びその装置

Also Published As

Publication number Publication date
JP2005226930A (ja) 2005-08-25

Similar Documents

Publication Publication Date Title
TW419574B (en) Operating method of flow-level incinerator and the incinerator
US4332206A (en) Afterburner for combustion of starved-air combustor fuel gas containing suspended solid fuel and fly ash
WO2005078345A1 (ja) バイオマス燃料焚き流動層燃焼方法及びその装置
US9163830B2 (en) Sealpot and method for controlling a solids flow rate therethrough
CN207514894U (zh) 复杂混合燃料的气化燃烧系统
CN107002989A (zh) 用于鼓泡流化床燃烧的床料
CN109539246A (zh) 一种煤粉中温循环床锅炉
CN102353042A (zh) 循环灰量的调节方法、分离器和燃烧系统
CN211502751U (zh) 燃烧设备
CN1206469C (zh) 带有多功能旋风分离器的流化床锅炉
CN212132410U (zh) 一种免造粒轻质物料气化燃烧装置
CN107178785A (zh) 一种循环流化床垃圾焚烧炉
JP3906174B2 (ja) 循環流動層ボイラにおける対流伝熱部の高温腐食対策及びクリーニングシステム
CN211260778U (zh) 循环流化床锅炉炉膛分段式燃烧系统
CN112251260A (zh) 一种顶置给料的tfb气化炉
KR101283569B1 (ko) 바이오 매스 및 폐기물 연료를 이용하는 연소기의 선회 유동 연소 장치
CN2610226Y (zh) 调节循环流化床锅炉炉膛温度的冷灰器
CN204704820U (zh) 固体燃料气化焚烧锅炉
CN204693395U (zh) 一种防堵料流化床锅炉
JP3906175B2 (ja) 循環流動層ボイラにおける対流伝熱部のクリーニングシステム
JP3030016B2 (ja) 流動層焼却炉の運転方法とその焼却炉
JP7103781B2 (ja) 流動床炉
JP2941785B1 (ja) 流動層焼却炉の運転方法とその焼却炉
JP2005121342A (ja) 循環流動層炉の運転方法
JP2002195534A (ja) 廃棄物焼却炉の燃焼制御方法とその装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase