WO2005077668A1 - Fälschungssicheres sicherheitsmerkmal mit farbkippeffekt - Google Patents

Fälschungssicheres sicherheitsmerkmal mit farbkippeffekt Download PDF

Info

Publication number
WO2005077668A1
WO2005077668A1 PCT/EP2005/001385 EP2005001385W WO2005077668A1 WO 2005077668 A1 WO2005077668 A1 WO 2005077668A1 EP 2005001385 W EP2005001385 W EP 2005001385W WO 2005077668 A1 WO2005077668 A1 WO 2005077668A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
security feature
counterfeit
feature according
proof
Prior art date
Application number
PCT/EP2005/001385
Other languages
English (en)
French (fr)
Inventor
Martin Bergsmann
Friedrich Kastner
Jürgen Keplinger
Georg Bauer
Harald Walter
Original Assignee
Hueck Folien Ges.M.B.H.
Identiv Ges.M.B.H.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34842244&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005077668(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hueck Folien Ges.M.B.H., Identiv Ges.M.B.H. filed Critical Hueck Folien Ges.M.B.H.
Priority to EP05715300A priority Critical patent/EP1716007B1/de
Priority to US10/587,074 priority patent/US20070110965A1/en
Priority to CA2555821A priority patent/CA2555821C/en
Priority to AT05715300T priority patent/ATE400449T1/de
Priority to DE502005004629T priority patent/DE502005004629D1/de
Publication of WO2005077668A1 publication Critical patent/WO2005077668A1/de
Priority to US13/195,985 priority patent/US8678442B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/45Associating two or more layers
    • B42D25/465Associating two or more layers using chemicals or adhesives
    • B42D25/47Associating two or more layers using chemicals or adhesives using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/43Marking by removal of material
    • B42D25/435Marking by removal of material using electromagnetic radiation, e.g. laser
    • B42D2033/10
    • B42D2035/24
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the invention relates to tamper-proof security features that have a color shift effect caused by metallic clusters that are separated from a mirror layer by a defined transparent layer.
  • the object of the invention is to provide a security feature with a color shift effect, the security feature should have additional security levels.
  • the invention therefore relates to a tamper-proof security feature, each consisting of at least one layer reflecting electromagnetic waves, a polymeric spacer layer and a layer formed by metallic clusters, characterized in that one or more of the layers perform additional security functions in addition to their function in the color-shift effect setup.
  • Flexible plastic films for example made of PI, PP, MOPP, PE, PPS, PEEK, PEK, PEI, PSU, PAEK, LCP, PEN, PBT, PET, PA, PC, COC, POM, ABS, PVC, are preferably suitable as the carrier substrate ,
  • the carrier films preferably have a thickness of 5 to 700 ⁇ m, preferably 8 to 200 ⁇ m, particularly preferably 12 to 50 ⁇ m.
  • the foils can be clear or matt (especially matt printed). The scatter on matt foils causes a significant change, particularly in the intensity in the color spectrum, so that a different color code is created than with clear foils.
  • metal foils for example Al, Cu, Sn, Ni, Fe or stainless steel foils with a thickness of 5-200 ⁇ m, preferably 10 to 80 ⁇ m, particularly preferably 20-50 ⁇ m, can also serve as the carrier substrate.
  • the films can also be surface-treated, coated or laminated, for example with plastics, or painted.
  • the carrier substrates also cellulose-free or cellulose-containing paper
  • ther ooxidierbares paper or composites with paper for example, composites with plastics with a basis weight of 20 - 500 g / m 2, preferably 40th
  • the carrier substrate can also be provided with a release-capable transfer lacquer layer.
  • An electromagnetic wave reflecting layer is applied to the carrier substrate.
  • This layer can preferably be made of metals such as aluminum, gold, chromium, silver, copper, tin, platinum, nickel or tantalum, semiconductors such as silicon and their alloys such as nickel / chromium, copper / aluminum and the like or one Printing ink with metal pigments exist.
  • the electromagnetic wave-reflecting layer is covered over the entire surface or partially by known processes, such as spraying, vapor deposition, sputtering, or, for example, as a printing ink by known printing processes (gravure, flexographic, screen, digital printing), by painting, roller application processes, slot nozzle (slot) Eye), dip (roll dip coating) or curtain coating (curtain coating) and the like applied.
  • known processes such as spraying, vapor deposition, sputtering, or, for example, as a printing ink by known printing processes (gravure, flexographic, screen, digital printing), by painting, roller application processes, slot nozzle (slot) Eye), dip (roll dip coating) or curtain coating (curtain coating) and the like applied.
  • a method using a soluble paint application for producing the partial metallization is particularly suitable for partial application.
  • a paint application that is soluble in a solvent is applied to the carrier substrate, in a second step this layer optionally by means of an inline plasma, corona or
  • a layer of the metal to be structured or the metal alloy is applied, whereupon in a fourth step the paint application is removed by means of a solvent, optionally combined with a mechanical action.
  • the soluble paint is applied partially, the application of the metal or
  • Metal alloy is made over the entire surface or partially.
  • the partial layer reflecting electromagnetic waves can also be produced by a customary known etching process.
  • the thickness of the layer reflecting electromagnetic waves is preferably approximately 10-50 nm, although higher or lower layer thicknesses are also possible.
  • the carrier substrate itself can already form the layer reflecting electromagnetic waves.
  • the reflection of this layer for electromagnetic waves is preferably 10-100%, in particular depending on the thickness of the layer or the metal foil used.
  • the subsequent polymeric spacer layer or the polymeric spacer layers can also be applied over the entire surface or preferably partially.
  • the polymeric layers consist, for example, of conventional or radiation-curing, in particular UV-curing, dyeing or coating systems based on nitrocellulose, epoxy, polyester, rosin, acrylate, alkyd, melamine, PVA, PVC, isocyanate. , Urethane or PS copolymer systems.
  • This polymeric layer essentially serves as a transparent spacer layer, but depending on the composition it can be absorbent and / or fluorescent or phosphorescent in a certain spectral range. If necessary, this property can also be added by adding suitable chromophore. A suitable spectral range can be selected by selecting different chromophores. As a result, in addition to the tilting effect, the polymer layer can also be made machine-readable. For example, in the blue spectral range (in the range of approximately 400 nm), a yellow AZO dye, for example anilides, rodural, eosin, can be used. The dye also changes the spectrum of the marking in a characteristic manner.
  • a yellow AZO dye for example anilides, rodural, eosin
  • a marking with a color change when illuminated can even be generated if a suitable concentration is selected.
  • the layer structure at the targeted observation angle has a spectrum with high absorption in the wavelength range of the emission of the fluorophore.
  • Such a marking could also be combined well with the UV test lamps already used at checkouts.
  • Another way to create a reversible color change is to use a switchable chromophore such as Bacteriorhodopsin To Use.
  • a switchable chromophore such as Bacteriorhodopsin To Use.
  • a suitable wavelength bacteria between 450 mm and 650 mm
  • Bacteriorhodopsin undergoes a structural transformation, which changes back to its original state after the lighting is switched off and switches the color of the chromophore between purple and yellow.
  • the integration of such chromophores in the layer structure, e.g. the spacer layer changes the absorption spectrum, the switching behavior also occurring.
  • This polymeric layer can, depending on the quality of the adhesion on the carrier web or a layer which may be underneath Dewetting effects show what leads to a characteristic, macroscopic lateral structuring.
  • This structuring can be induced or specifically changed, for example, by modifying the surface energy of the layers, for example by plasma treatment (in particular plasma functionalization), corona treatment, electron or ion beam treatment or by laser modification.
  • plasma treatment in particular plasma functionalization
  • corona treatment corona treatment
  • electron or ion beam treatment or by laser modification.
  • the polymeric spacer layer preferably has regions of different thickness. Through a defined variation in the thickness (gradient, defined steps, defined structures) of the polymeric spacer layer, a combination of different color shift effects is created in a finished security feature (multi-color shift effect).
  • the thickness of the layer can be varied specifically in a wide range, for example in a range from 10 nm to 3 ⁇ m.
  • the layer structure no longer produces a color that is recognizable to the human eye, but, depending on the mirror material, a slightly darker metallic impression compared to the pure mirror. This is due to the fact that the spectrum becomes more complex with increasing layer thickness (multipeak) and can no longer be resolved. For readers, however, the spectrum is still well measurable and even highly characteristic, the maximum spacer layer thickness to be measured depends on the resolution of the respective device. This is one way of creating an inconspicuous but machine-readable marking. Furthermore, when applying the polymeric spacer layer, a specific, defined layer thickness profile can be set, either in one application step or by applying several layers, which in turn can be full or partial depending on the desired layer thickness profile.
  • the course of the layer thickness can also be designed in the form of a step structure, with different thicknesses of another polymer layer being partially applied to a base layer.
  • At least one layer of the polymeric spacer layer can consist of a piezoelectric polymer, electrical properties here being able to be detected either by direct contact or by an electrical field.
  • a characteristic interaction with electrical or electromagnetic fields can therefore be demonstrated by simple optical detection (e.g. with the naked eye, optical photometer and / or spectrometer).
  • At least one layer of the polymeric spacer layer can have optically active structures, for example diffraction gratings, diffraction structures, holograms and the like, which can be embossed into the polymeric spacer layer, preferably before complete curing.
  • optically active structures for example diffraction gratings, diffraction structures, holograms and the like, which can be embossed into the polymeric spacer layer, preferably before complete curing.
  • a corresponding method is known for example from EP -A 1352732 A or from EP -A 1310381.
  • the polymeric spacer layer is preferably applied by means of a printing process, for example by gravure printing.
  • the fine structure in the spacer layer transferred by the printing cylinder or the printing plate then forms an additional forgery-proof feature.
  • this fine structure forms a forensic and / or visible security feature that allows an unambiguous assignment to the manufacturing process (fingerprint).
  • several different layer thicknesses of the polymeric spacer layer can be produced with a single cylinder. Different codes result from the different thicknesses. Another range of thicknesses of the polymeric spacer layer is then produced with another cylinder, it being possible for some codes to overlap.
  • the same code can be produced with two different cylinders, which results in a further forensic and / or visible security feature and allows unambiguous assignment to the manufacturing process (fingerprint).
  • the additional fingerprint is used either as a forensic feature (3rd level feature) or as an additional code substructure.
  • Polymeric spacer layers which show cholesteric behavior are also preferably used.
  • this also show polymers with two intrinsic chiral phases, e.g. Nitrocellulose.
  • an additional characteristic security feature is generated by wavelength-selective polarization.
  • the cholesteric behavior can lead to a characteristic change in the color spectrum, which can be detected by a reading device.
  • a full-surface or partial layer, formed from metallic clusters, is then applied to the polymer layer.
  • the metallic clusters can consist, for example, of aluminum, gold, palladium, platinum, chromium, silver, copper, nickel, tantalum, tin and the like or their alloys, such as Au / Pd, Cu / Ni or Cr / Ni.
  • cluster materials are also applied, for example semiconducting elements of III. to VI.
  • Main or second subgroup whose plasmon excitation can be triggered externally (for example via X-ray or ion radiation or electromagnetic interactions).
  • the cluster layer can also have additional properties, for example electrically conductive, magnetic or fluorescent properties.
  • additional properties for example, electrically conductive, magnetic or fluorescent properties.
  • a cluster layer of Ni, Cr / Ni, Fe or core-shell structures with these materials or mixtures of these materials with the above-mentioned cluster materials has such additional features.
  • Fluorescent clusters can also be produced using core-shell structures, for example, using Quantum Dots ® from Quantum Dot Corp.
  • the cluster layer is applied over the entire area or partially, either exactly or partially congruently or offset to the full-area or partial layer reflecting electromagnetic waves.
  • the adhesion of the metallic cluster layer to the polymeric spacer layer can preferably be set in a defined manner by guiding the application process of the cluster layer, so that if the adhesive strength differs, a proof of manipulation is created by destruction of the color effect.
  • the varnish of the spacer layer can also be adjusted so that it shows good adhesion to the metal (cluster, mirror) but not to the base film. If this lacquer is printed over a partial Cu layer, when the element is detached, the mirror layer is separated in accordance with the structuring of the cluster layer. This creates a previously invisible evidence of manipulation.
  • This cluster layer can be applied by sputtering (for example ion beam or magnetron) or evaporation (electron beam), or from a solution, for example by adsorption.
  • the growth of the clusters and thus their shape and the optical properties can advantageously be influenced by adjusting the surface energy or the roughness of the layer underneath. This changes the spectra in a characteristic way. This can be done, for example, by thermal treatment in the coating process or by preheating the substrate.
  • These parameters can also be changed in a targeted manner, for example by treating the surface with oxidizing liquids, for example with Na hypochlorite or in a PVD or CVD process.
  • the cluster layer can preferably be applied by means of sputtering.
  • the properties of the layer in particular the density and the structure, are adjusted above all by the power density, the amount of gas used and its composition, the temperature of the substrate and the web speed.
  • an inert polymer for example PVA, polymethyl methacrylate, nitrocellulose, polyester or urethane systems
  • PVA polymethyl methacrylate
  • nitrocellulose nitrocellulose
  • polyester or urethane systems small amounts of an inert polymer, for example PVA, polymethyl methacrylate, nitrocellulose, polyester or urethane systems
  • the mixture can then subsequently be applied to the polymer layer by means of a printing process, for example screen, flexographic or preferably gravure printing, by means of a coating process, for example painting, spraying, roller application techniques and the like.
  • the mass thickness of the cluster layer is preferably 2-20 nm, particularly preferably 3-10 nm.
  • a so-called double cluster structure can be applied to the carrier substrate, a cluster layer being present on both sides of the spacer layer.
  • a preferably black layer is applied under the first cluster layer.
  • This black background can be applied either by means of a vacuum technology process, for example as unstoichiometric aluminum oxide or as printing ink by means of a suitable printing process, the printing ink being able to have additional functional features, for example magnetic, electrically conductive features and the like.
  • a correspondingly colored film can also serve as a black or dark background.
  • a black film By placing a black film on a double cluster setup, simple visual verification can be performed on site (simple test equipment).
  • a double cluster feature can be introduced as a viewing window in a bank note or credit card or the like.
  • the optical detection of the presence of the double cluster feature is carried out by placing a black film, for example made of polycarbonate.
  • the clusters on both sides of the spacer layer can be applied to different thicknesses, each structured or full-area and / or consist of different materials in a structure.
  • the metallic clusters are preferably deposited and directed at the steps or at certain points in the course of the layer thickness.
  • This process can be intensified or reduced by suitable process management. For example, different optical effects are produced on microstructured surfaces than on smooth foils. This results in new (sub) codes.
  • an optionally structured spacer layer then a partial cluster layer, then in turn an optionally structured spacer layer, in turn a preferably partial cluster layer, which for example is partially overlapping with the first cluster layer, can be applied to a full-surface reflection layer.
  • Such sequences of spacer layer and cluster layer can expediently be repeated 2 to 3 times.
  • such structures can be applied to a partially applied reflection layer, with different color shift effects being observed here, depending on the design of the partial reflection layer.
  • the layer structure thus produced can then be structured using electromagnetic radiation (e.g. light).
  • electromagnetic radiation e.g. light
  • Lettering, letters, symbols, characters, images, logos, codes, serial numbers and the like can be used e.g. can be introduced by means of laser radiation or engraving.
  • the layer structure is partially destroyed or the thickness of the polymeric spacer layer is changed.
  • the polymeric spacer usually swells in these areas, causing a change in color (peak shift to longer wavelengths).
  • the partial destruction means that the illuminated area either reflects metal (separation of the electromagnetic wave reflecting layer from the spacer layer) or that the material behind the mirror becomes visible. In this way, targeted structuring with colored, reflecting or colorless areas can be achieved.
  • the lighting output can also be selected so that only the color effect is changed, whereby partial areas with defined different colors are created (multi-color tilt effect). The energy that is actually absorbed by the layer structure is essential for the change.
  • a cluster layer directly to a carrier substrate which is at least partially transparent in the visible spectral range; a spacer layer and a further cluster layer are then applied to this cluster layer, as described, a black layer then optionally being applied to this cluster layer , as already described, can be applied.
  • a so-called inverse layer structure is thus obtained.
  • An inverse setup with a single cluster layer (application of the cluster layer to the carrier substrate, subsequent application of the polymeric spacer layer and the electromagnetic wave reflecting layer) can also be produced in an analogous manner, the properties of the individual layers corresponding to the preceding description.
  • the carrier substrate can also already have one or more functional and / or decorative layers.
  • the functional layers can, for example, have certain electrical, magnetic, special chemical, physical and also optical properties.
  • conductivity for example conductivity, graphite, carbon black, conductive organic or inorganic polymers
  • Metal pigments for example copper, aluminum, silver, gold, iron, chromium lead and the like
  • metal alloys such as copper-zinc or Copper-aluminum or its sulfides or oxides, or amorphous or crystalline ceramic pigments such as ITO and the like
  • doped or undoped semiconductors such as silicon, germanium or ion conductors such as amorphous or crystalline metal oxides or metal sulfides can also be used as additives.
  • polar or partially polar compounds such as surfactants or non-polar compounds such as silicone additives or hygroscopic or non-hygroscopic salts can be used or added to adjust the electrical properties of the layer.
  • Paramagnetic, diamagnetic and also ferromagnetic substances such as iron, nickel and cobalt or their compounds or salts (for example oxides or sulfides) can be used to adjust the magnetic properties.
  • the optical properties of the layer can be determined by visible dyes or pigments, luminescent dyes or pigments that fluoresce or phosphoresce in the visible, in the UV range or in the IR range, effect pigments such as liquid crystals, pearlescent, bronzes and / or heat-sensitive Affect colors or pigments. These can be used in all possible combinations.
  • phosphorescent pigments can also be used alone or in combination with other dyes and / or pigments.
  • soluble and non-soluble dyes or pigments can be used especially for coloring magnetic pigments.
  • a brown magnetic paint can be made metallic, for example silvery, by adding metals.
  • Insulator layers can also be applied, for example.
  • insulators are organic substances and their derivatives and compounds, for example dyeing and lacquer systems, for example epoxy, polyester, rosin, acrylate, alkyd, melamine, PVA, PVC, isocyanate, urethane systems, which are radiation-curing can be suitable, for example by heat or UV radiation.
  • forensic features can be introduced into one of the layers, which allow testing in the laboratory or with suitable test equipment on site (possibly with the feature being destroyed), e.g. DNA in NC lacquer, antigens in acrylate lacquer systems.
  • DNA can be adsorbed or bound to the clusters.
  • Isotopes can also be added to the clusters or in the mirror material or be present in the spacer layer (e.g. Elemental Tag from KeyMaster Technologies Inc.).
  • a deuterated polymer e.g. PS-d
  • PS-d can be used as a spacer layer or a low-level radioactive mirror material as a mirror.
  • These layers can be applied by known methods, for example by vapor deposition, sputtering, printing (for example gravure, flexographic, screen, digital printing and the like), spraying, electroplating, roller application methods and the like.
  • the thickness of the functional layer is 0.001 to 50 ⁇ m, preferably 0.1 to 20 ⁇ m.
  • the coated film produced in this way can also be protected by a protective lacquer layer or further refined, for example, by lamination or the like.
  • the product can be applied to the corresponding carrier material using a sealable adhesive, for example a hot or cold seal adhesive, or a self-adhesive coating be, or embedded in the paper for example in the paper production for security papers by conventional methods.
  • a sealable adhesive for example a hot or cold seal adhesive, or a self-adhesive coating be, or embedded in the paper for example in the paper production for security papers by conventional methods.
  • 1 means the optically transparent carrier substrate, 2 the first layer reflecting electromagnetic waves, 3 the polymeric spacer layer, 4 the layer made of metallic clusters, 5 an adhesive or laminating layer, 6 a protective layer 7, a transfer lacquer layer, 8 one black layer, 10 the beam path of the incident and reflected light.
  • Fig. 1 is a schematic cross-sectional view of a first permanently visible marking on a film with a double cluster setup.
  • Fig. 2 is a schematic cross-sectional view of a first permanently visible marking on a film with double cluster setup and beam path of the optical detection means, for example spectrometer, color measuring device, or the like.
  • Fig. 3 shows a direct double cluster setup with a black background
  • Fig. 4 shows an indirect double cluster setup with a black background
  • Fig. 5 shows a setup with partial reflection layer
  • coated carrier materials produced according to the invention can be used as security features in banknotes, data carriers, value documents, labels, labels, seals, in packaging, textiles and the like.
  • a Cr cluster layer with a thickness of 3 nm is applied to a polyester film with a thickness of 23 ⁇ m in a sputtering process.
  • a urethane varnish as a polymeric spacer layer with a thickness of 0.5 ⁇ m is printed using gravure printing using a specially optimized printing cylinder. This is followed again by the deposition of a 3 nm thick Cr cluster layer. Finally, a black-colored film is laminated onto this cluster layer. A color shift effect from violet to gold is observed.
  • the polymer layer is structured like a chessboard in a double cluster setup, the edge length of the chessboard fields being less than 0.1 mm.
  • the blackening of the background foil is structured with analog checkerboard fields. If the structured foils are precisely overlaid, both the expression of the moiré pattern and the tipping color can be observed. In this way, maximum security can be guaranteed by simple on-site testing.
  • Clusters which were produced by chemical synthesis in solution and are present as a dispersion in solution.
  • cluster-containing solutions are printed in very thin layers or adsorbed from the solution. If clusters are used that have additional properties, additional security can be generated.
  • Silver nanopowder from Argonide can be used as powdered cluster materials for printing.
  • Magnetic pigments from Sustech can be used as magnetic cluster materials. Most suitable are ferrofluids or pigments in powder form of the type: FMA (super paramagnetic ferrite) with a hydrophilic coating. FMA mean primary particle size: 10 nm diameter.
  • SSPH Sequential Solution Phase Hydrolysis particles from Nanodynamics or Nanopowders can be used as corshell clusters. For example, Au on SnO 2 or Au on SiO 2 particles with an inner diameter of 20 nm and an outer diameter of 40 nm can be used.
  • the particles from Quantum Dot Corporation can be used as fluorescent particles: as core material CdS and as shell material ZnS. Core diameter: 5nm; Shell diameter: 2.5 nm.
  • a printing cylinder with different cell volumes is produced in different areas over its width.
  • This cylinder is used to print the spacer layer on a film covered with a uniform cluster layer.
  • sharply delimited areas with defined different thicknesses of the spacing layer are obtained over the web width.
  • a uniform aluminum mirror layer is then evaporated.
  • the tapes with different color codes are then separated in a roll cutting process. For example, security elements with several different codes are produced in one production run.
  • a security strip is cut out of a sheet of film produced as described in Example 4 in such a way that a sharp code transition comes to lie exactly in the middle of the strip.
  • the strip produced in this way then contains, as an additional security level, two machine-readable codes which are detected individually or together with the reading device.
  • All of the layer structures described can be structured in a targeted manner using suitable lasers.
  • an inverse layer structure was partially destroyed at the lasered areas using a 1064 nm Powerline laser from Rofin Sinar. The power was set so that the laser detaches the polymeric spacer layer from the aluminum mirror layer, so that the lasered areas no longer appear colored, but show the metallic gloss of the mirror layer. The lasering was carried out selectively. The image shown is thus composed of a dot matrix made of metallic reflecting areas in the colored area. In this way, individualized, forgery-proof markings can be made very quickly ( ⁇ 1sec) e.g. for ID cards.
  • marker substances can be used which are only accessible for forensic detection.
  • a label of 1 per mille solid DNA can be added to the volume of the lacquer in a nitrocellulose lacquer. Under normal conditions (25 ° C, 80% humidity), the DNA adsorbs firmly onto the nitrocellulose and is so firmly anchored in the paint matrix.
  • the DNA can be extracted in the laboratory and detected using molecular biological methods. If suitable DNA sequences are used, these can also be detected on site, for example by means of a suitable hybridization assay.

Landscapes

  • Toxicology (AREA)
  • Finance (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Accounting & Taxation (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Credit Cards Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Materials For Medical Uses (AREA)
  • Road Signs Or Road Markings (AREA)

Abstract

Die Erfindung betrifft ein fälschungssicheres Sicherheitsmerkmal bestehend aus jeweils mindestens einer elektromagnetische Wellen reflektierenden Schicht, einer polymeren Abstandsschicht und einer Schicht gebildet von metallischen Clustern, wobei eine oder mehrere der Schichten zusätzlich zu ihrer Funktion im Farbkippeffekt-Setup weitere Sicherheitsfunktionen erfüllen.

Description

Fälschungssicheres Sicherheitsmerkmal mit Farbkippeffekt
Die Erfindung betrifft fälschungssichere Sicherheitsmerkmale, die einen Farbkippeffekt, bewirkt durch metallische Cluster, die über eine definierte transparente Schicht von einer Spiegelschicht getrennt sind, aufweisen.
Aus WO 02/18155 ist ein Verfahren zur fälschungssicheren Markierung von Gegenständen bekannt, wobei der Gegenstand mit einer Markierung bestehend aus einer elektromagnetische Wellen reflektierenden ersten Schicht auf die eine für elektromagnetische Wellen durchlässige Schicht mit einer definierten Dicke aufgebracht wird, worauf auf diese Schicht eine aus metallischen Clustern gebildete dritte Schicht folgt, versehen wird.
Aufgabe der Erfindung ist es, ein Sicherheitsmerkmal mit einem Farbkippeffekt bereitzustellen, wobei das Sicherheitsmerkmal zusätzliche Sicherheitsstufen aufweisen soll.
Gegenstand der Erfindung ist daher ein fälschungssicheres Sicherheitsmerkmal bestehend aus jeweils mindestens einer elektromagnetische Wellen reflektierenden Schicht, einer polymeren Abstandsschicht und einer Schicht gebildet von metallischen Clustem, dadurch gekennzeichnet, dass eine oder mehrere der Schichten zusätzlich zu ihrer Funktion im Farbkippeffekt-Setup weitere Sicherheitsfunktionen erfüllen.
Als Trägersubstrat kommen vorzugsweise flexible Kunststofffolien, beispielsweise aus Pl, PP, MOPP, PE, PPS, PEEK, PEK, PEI, PSU, PAEK, LCP, PEN, PBT, PET, PA, PC, COC, POM, ABS, PVC in Frage. Die Trägerfolien weisen vorzugsweise eine Dicke von 5 - 700 μm, bevorzugt 8 - 200 μm, besonders bevorzugt 12 - 50 μm auf. Die Folien können dabei klar oder mattiert (insbesondere matt bedruckt) sein. Die Streuung an matten Folien bewirkt eine deutliche Änderung insbesondere der Intensität im Farbspektrum, so dass ein anderer Farbcode als bei klaren Folien entsteht. Ferner können als Trägersubstrat auch Metallfolien, beispielsweise AI-, Cu-, Sn-, Ni-, Fe- oder Edelstahlfolien mit einer Dicke von 5 - 200 μm, vorzugsweise 10 bis 80 μm, besonders bevorzugt 20 - 50 μm dienen. Die Folien können auch oberflächenbehandelt, beschichtet oder kaschiert, beispielsweise mit Kunststoffen, oder lackiert sein.
Ferner können als Trägersubstrate auch zellstofffreies oder zellstoffhaltiges Papier, ther oaktivierbares Papier oder Verbünde mit Papier, beispielsweise Verbünde mit Kunststoffen mit einem Flächengewicht von 20 - 500 g/m2, vorzugsweise 40 - 200 g/m2 verwendet werden.
Das Trägersubstrat kann auch mit einer releasefähigen Transferlackschicht versehen sein.
Auf das Trägersubstrat wird eine elektromagnetische Wellen reflektierende Schicht aufgebracht. Diese Schicht kann vorzugsweise aus Metallen, wie beispielsweise Aluminium, Gold, Chrom, Silber, Kupfer, Zinn, Platin, Nickel oder Tantal, aus Halbleitern, wie beispielsweise Silizium, und deren Legierungen, beispielsweise Nickel/Chrom, Kupfer/Aluminium und dergleichen oder einer Druckfarbe mit Metallpigmenten bestehen.
Die elektromagnetische Wellen reflektierende Schicht wird vollflächig oder partiell durch bekannte Verfahren, wie Sprühen, Bedampfen, Sputtern, oder beispielsweise als Druckfarbe durch bekannte Druckverfahren (Tief-, Flexo-, Sieb-, Digitaldruck), durch Lackieren, Walzenauftragsverfahren, Schlitzdüsen- (Slot-Eye), Tauch- (roll dip coating) oder Vorhangauftragsverfahren (curtain coating) und dergleichen aufgebracht.
Zur partiellen Aufbringung eignet sich besonders ein Verfahren unter Verwendung eines löslichen Farbauftrags zur Herstellung der partiellen Metallisierung. Dabei wird in einem ersten Schritt auf dem Trägersubstrat ein in einem Lösungsmittel löslicher Farbauftrag aufgebracht, in einem zweiten Schritt diese Schicht gegebenenfalls mittels eines Inline-Plasma-, Corona- oder
Flammprozesses behandelt und in einem dritten Schritt eine Schicht des zu strukturierenden Metalls bzw. der Metalllegierung aufgebracht, worauf in einem vierten Schritt der Farbauftrag mittels eines Lösungsmittels, gegebenenfalls kombiniert mit einer mechanischen Einwirkung, entfernt wird.
Der lösliche Farbauftrag erfolgt partiell, die Aufbringung des Metalls bzw. der
Metalllegierung erfolgt vollflächig oder partiell.
Die partielle, elektromagnetische Wellen reflektierende Schicht kann aber auch durch ein übliches bekanntes Ätzverfahren hergestellt werden.
Die Dicke der elektromagnetische Wellen reflektierenden Schicht beträgt vorzugsweise etwa 10 - 50 nm, wobei aber auch höhere bzw. geringere Schichtdicken möglich sind.
Werden Metallfolien als Trägersubstrat verwendet, so kann das Trägersubstrat selbst bereits die elektromagnetische Wellen reflektierende Schicht bilden.
Vorzugsweise beträgt die Reflexion dieser Schicht für elektromagnetische Wellen, insbesondere in Abhängigkeit von der Dicke der Schicht bzw. der verwendeten Metallfolie 10 - 100%.
Die darauf folgende polymere Abstandschicht bzw. die polymeren Abstandsschichten können ebenfalls vollflächig oder vorzugsweise partiell aufgebracht werden.
Die polymeren Schichten bestehen beispielsweise aus konventionell oder Strahlungshärtenden, insbesondere UV-härtenden, Färb- oder Lacksystemen auf Basis von Nitrocellulose, Epoxy-, Polyester-, Kolophonium-, Acrylat-, Alkyd-, Melamin-, PVA-, PVC-, Isocyanat-, Urethan- oder PS-Copolymersystemen .
Diese polymere Schicht dient im Wesentlichen als transparente Abstandsschicht, kann aber je nach Zusammensetzung in einem bestimmten Spektralbereich absorbierend und/oder fluoreszierend bzw. phosphoreszierend sein. Gegebenenfalls kann diese Eigenschaft auch durch Beimengung eines geeigneten Chromophors verstärkt werden. Durch die Auswahl verschiedener Chromophore kann ein geeigneter Spektralbereich ausgewählt werden. Dadurch kann neben dem Kippeffekt auch die polymere Schicht zusätzlich maschinenlesbar gestaltet werden. So kann beispielsweise im blauen Spektralbereich (im Bereich von etwa 400 nm) ein gelber AZO-Farbstoff, beispielsweise Anilide, Rodural, Eosin, eingesetzt werden. Der Farbstoff verändert darüber hinaus das Spektrum der Markierung in charakteristischer Weise.
Bei Einsatz eines Fluorophors mit Anregung außerhalb des sichtbaren Bereichs (z. B. im UV) und Abstrahlung im sichtbaren Bereich, läßt sich bei Wahl einer geeigneten Konzentration sogar eine Markierung mit Farbwechsel bei Beleuchtung generieren. Optimalerweise weist dabei der Schichtaufbau bei dem anvisierten Beobachtungswinkel ein Spektrum mit hoher Absorption im Wellenlängenbereich der Emission des Fluorophors auf. Eine solche Markierung ließe sich ferner gut mit den jetzt schon eingesetzten UV- Testlampen an Kassen kombinieren.
Eine weitere Möglichkeit einen reversiblen Farbwechsel zu erzeugen, besteht darin, einen schaltbaren Chromophor wie z.B. Bacteriorhodopsin Zu verwenden. Bei Beleuchtung mit geeigneter Wellenlänge (Bacteriorhodopsin zw. 450 mm und 650 mm) und genügend hoher Intensität ändern solche Chromphore ihr Absorptionsverhalten. Bei Bacteriorhodopsin tritt eine Strukturumwandlung auf, welche nach Abschalten der Beleuchtung wieder in den Ausgangszustand zurückwechselt und die Farbe des Chromophors zwischen lila und gelb schaltet. Die Integration solcher Chromophore in den Schichtaufbau, z.B., die Abstandsschicht, verändert das Absorptionsspektrum, wobei das Schaltverhalten ebenfalls auftritt.
Diese polymere Schicht kann, in Abhängigkeit von der Qualität der Adhäsion auf der Trägerbahn bzw. einer gegebenenfalls darunter liegenden Schicht Entnetzungseffekte zeigen, was zu einer charakteristischen, makroskopischen lateralen Strukturierung führt.
Diese Strukturierung lässt sich beispielsweise durch Modifikation der Oberflächenenergie der Schichten, beispielsweise durch Plasmabehandlung (insbesondere Plasmafunktionalisierung), Coronabehandlung, Elektronen-, lonenstrahlbehandlung oder durch Lasermodifikation induzieren oder gezielt verändern.
Ferner ist es möglich eine Haftvermittlerschicht mit bereichsweise unterschiedlicher Oberflächenenergie aufzubringen.
Vorzugsweise weist die polymere Abstandsschicht Bereiche unterschiedlicher Dicke auf. Durch definierte Variation der Dicke (Gradient, definierte Stufen, definierte Strukturen) der polymeren Abstandsschicht wird eine Kombination unterschiedlicher Farbkippeffekte in einem fertigen Sicherheitsmerkmal erzeugt (Mehrfarbenkippeffekt).
Die Dicke der Schicht kann dabei in einem weiten Bereich gezielt variiert werden, beispielsweise in einem Bereich von 10 nm bis 3 μm.
Bei einer Abstandsschichtdicke über ca. 3 μm ergibt der Schichtaufbau keine für das menschliche Auge mehr erkennbare Farbe, sondern je nach Spiegelmaterial einen etwas dunkleren metallischen Eindruck im Vergleich zum reinen Spiegel. Das liegt daran, dass das Spektrum mit zunehmender Schichtdicke immer komplexer wird (Multipeak) und nicht mehr aufgelöst werden kann. Für Lesegeräte ist das Spektrum aber weiterhin gut messbar und sogar hoch charakteristisch, wobei die maximal zu vermessende Abstandsschichtdicke vom Auflösungsvermögen des jeweiligen Gerätes abhängt. Dies stellt eine Möglichkeit dar, eine unscheinbare aber maschinenlesbare Markierung zu erzeugen. Femer kann bei der Aufbringung der polymeren Abstandsschicht ein bestimmter definierter Schichtdickenverlauf, entweder in einem Aufbringungsschritt oder durch Aufbringung mehrerer Schichten, die wiederum je nach gewünschtem Schichtdickenverlauf vollflächig bzw. partiell sein kann, eingestellt werden.
Der Schichtdickenverlauf kann auch in Form eines Stufenaufbaus ausgeführt sein, wobei auf eine Basisschicht unterschiedliche Dicken einer weiteren polymeren Schicht partiell aufgebracht werden.
Femer ist es möglich mehrere Schichten aus unterschiedlichen Polymeren, beispielsweise Polymeren mit unterschiedlichen Brechungsindizes aufzubringen.
In einer besonderen Ausführungsform kann zumindest eine Schicht der polymeren Abstandsschicht aus einem piezoelektrischen Polymer bestehen, wobei hier elektrische Eigenschaften entweder durch direktes Kontaktieren oder durch ein elektrisches Feld nachgewiesen werden können. In Abhängigkeit von der Dicke bzw. vom Dickenverlauf oder von der Schichtdickenänderung der Abstandsschicht kann daher auch eine charakteristische Wechselwirkung mit elektrischen oder elektromagnetischen Feldern durch einfachen optischen Nachweis (z.B. mit freiem Auge, optischem Photometer und/oder Spektrometer) nachgewiesen werden.
In einer besonderen Ausführungsform kann mindestens eine Schicht der polymeren Abstandsschicht optisch aktive Strukturen, beispielsweise Beugungsgitter, Beugungsstrukturen, Hologramme und dergleichen aufweisen, die in die polymere Abstandsschicht, vorzugsweise vor der vollständigen Aushärtung geprägt werden können. Ein entsprechendes Verfahren ist beispielsweise aus EP -A 1352732 A oder aus EP -A 1310381 bekannt.
Vorzugsweise wird die polymere Abstandsschicht mittels eines Druckverfahrens, beispielsweise im Tiefdruck aufgebracht. Die vom Druckzylinder oder der Druckplatte übertragene Feinstruktur in der Abstandsschicht bildet dann ein zusätzliches fälschungssicheres Merkmal. Diese Feinstruktur bildet in Abhängigkeit vom verwendeten Druckwerkzeug, der Zusammensetzung des Lacks der polymeren Abstandsschicht und den Herstellparametern ein forensisches und/oder sichtbares Sicherheitsmerkmal, das eine eindeutige Zuordnung zum Herstellprozess (Fingerabdruck) erlaubt. Ferner können beispielsweise mehrere unterschiedliche Schichtdicken der polymeren Abstandsschicht mit einem einzigen Zylinder hergestellt werden. Durch die unterschiedlichen Dicken ergeben sich unterschiedliche Codes. Ein weiterer Dickenbereich der polymeren Abstandsschicht wird dann mit einem anderen Zylinder hergestellt, wobei gegebenenfalls einige Codes überlappen können. Im Überlappungsbereich kann der gleiche Code mit zwei verschiedenen Zylindern hergestellt werden, wodurch sich ein weiteres forensisches und/oder sichtbares Sicherheitsmerkmal ergibt und die eindeutige Zuordnung zum Herstellprozess (Fingerabdruck) erlaubt. Der zusätzliche Fingerabdruck wird entweder als forensisches Merkmal (3rd Level Feature) oder als zusätzliche Code-Substruktur genutzt.
Vorzugsweise werden auch polymere Abstandsschichten verwendet, die cholesterisches Verhalten zeigen. Neben Flüssigkristallpolymeren, bei denen dieses Verhalten erzeugt werden kann, zeigen dieses auch Polymere mit zwei intrinsischen chiralen Phasen wie z.B. Nitrocellulose. Durch gezieltes Anregen der seltenen 2. Phase der Chiralität, beispielsweise durch mechanischen oder elektromagnetischen Energieeintrag (thermisch, Strahlung) oder mittels Katalysator wird durch wellenlängenselektive Polarisation ein zusätzliches charakteristisches Sicherheitsmerkmal erzeugt. Das cholesterische Verhalten kann dabei zu einer charakteristischen Änderung des Farbspektrums führen, was durch ein Lesegerät erfasst werden kann.
Auf die polymere Schicht wird anschließend eine vollflächige oder partielle Schicht, gebildet aus metallischen Clustern, aufgebracht. Die metallischen Cluster können beispielsweise aus Aluminium, Gold, Palladium, Platin, Chrom, Silber, Kupfer, Nickel, Tantal, Zinn und dergleichen oder deren Legierungen, wie beispielsweise Au/Pd, Cu/Ni oder Cr/Ni bestehen. Vorzugsweise können auch Clυstermaterialien aufgebracht werden, beispielsweise halbleitende Elemente der III. bis VI. Haupt- bzw. der II. Nebengruppe, deren Plasmonenanregung extern (z.B. über Röntgen- oder lonenstrahlung oder elektromagnetische Wechselwirkungen) triggerbar ist. Dadurch wird bei Betrachtung mit einem geeigneten Lesegerät eine Änderung im Farbspektrum (z.B. Intensitätsänderung) bzw. ein Blinken des Farbkippeffekts sichtbar. Die Clusterschicht kann auch zusätzliche Eigenschaften, beispielsweise elektrisch leitfähige, magnetische oder fluoreszierende Eigenschaften aufweisen. So weist beispielsweise eine Clusterschicht aus Ni, Cr/Ni, Fe bzw. Core-Shell-Strukturen mit diesen Materialien bzw. Mischungen dieser Materialien mit den oben erwähnten Clustermaterialien derartige zusätzliche Merkmale auf. Unter anderem durch Core-Shell-Strukturen lassen sich auch fluoreszierende Cluster herstellen, z.B. unter Verwendung von Quantum Dots® der Firma Quantum Dot Corp.
Die Clusterschicht wird vollflächig oder partiell, entweder genau oder partiell deckungsgleich oder versetzt zu der vollflächigen oder partiellen elektromagnetischen Wellen reflektierenden Schicht aufgebracht.
Vorzugsweise kann die Haftung der metallischen Clusterschicht zur polymeren Abstandsschicht definiert durch die Führung des Aufbringprozesses der Clusterschicht eingestellt werden, sodass bei unterschiedlicher Haftfestigkeit ein Manipulationsnachweis durch Zerstörung des Farbeffekts entsteht.
Auch kann der Lack der Abstandsschicht so eingestellt werden, dass er gute Haftung zum Metall (Cluster, Spiegel) jedoch nicht zur Basisfolie zeigt. Wird dieser Lack über eine partielle Cu-Schicht gedruckt, wird beim Ablösen des Elements die Spiegelschicht entsprechend der Strukturierung der Clusterschicht getrennt. Dadurch entsteht ein vorher absolut unsichtbarer Manipulationsnachweis. Diese Clusterschicht kann durch Sputtern (beispielsweise lonenstrahl oder Magnetron) oder Verdampfen (Elektronenstrahl), oder aus einer Lösung z.B. durch Adsorption aufgebracht werden.
Bei der Herstellung der Clusterschicht in Vakuumprozessen kann vorteilhafterweise das Wachstum der Cluster und damit deren Form sowie die optischen Eigenschaften durch Einstellung der Oberflächenenergie oder der Rauhigkeit der darunter liegenden Schicht beeinflusst werden. Dies verändert in charakteristischer Weise die Spektren. Dies kann beispielsweise durch thermische Behandlung im Beschichtungsprozess oder durch Vorheizen des Substrats erfolgen.
Femer können diese Parameter beispielsweise durch Behandlung der Oberfläche mit oxidierenden Flüssigkeiten, beispielsweise mit Na-Hypochlorit oder in einem PVD oder CVD-Prozess gezielt verändert werden.
Die Clusterschicht kann vorzugsweise mittels Sputtern aufgebracht werden. Dabei werden die Eigenschaften der Schicht, insbesondere die Dichte und die Struktur, vor allem durch die Leistungsdichte, die verwendete Gasmenge und deren Zusammensetzung, die Temperatur des Substrats und die Bahngeschwindigkeit eingestellt.
Zur Aufbringung mittels drucktechnischer Verfahren werden, nach einem gegebenenfalls nötigen, Aufkonzentrieren der Cluster geringe Mengen eines inerten Polymers, beispielsweise PVA, Polymethylmethacrylat, Nitrocellulose-, Polyester- oder Urethansysteme der Lösung zugemischt. Die Mischung kann dann anschließend mittels eines Druckverfahrens, beispielsweise Sieb-, Flexo- oder vorzugsweise Tiefdruckverfahren, mittels eines Beschichtungsverfahrens, beispielsweise Lackieren, Aufsprühen, Walzenauftragstechniken und dergleichen auf die polymere Schicht aufgebracht werden.
Die Massendicke der Clusterschicht beträgt vorzugsweise 2 - 20 nm, besonders bevorzugt 3 - 10 nm. In einer Ausführungsform kann auf das Trägersubstrat ein sogenannter Doppelclusteraufbau aufgebracht werden, wobei auf beiden Seiten der Abstandsschicht jeweils eine Clusterschicht vorhanden ist. Unter der ersten Clusterschicht wird eine vorzugsweise schwarze Schicht aufgebracht. Dieser schwarze Hintergrund kann entweder mittels eines vakuumtechnischen Verfahrens, beispielsweise als unstöchiometrischem Aluminiumoxid oder auch als Druckfarbe mittels eines geeigneten Druckverfahrens aufgebracht werden, wobei die Druckfarbe zusätzliche funktionelle Merkmale, beispielsweise magnetische, elektrisch leitfähige Merkmale und dergleichen aufweisen kann. Ferner kann als schwarzer bzw. dunkler Hintergrund auch eine entsprechend eingefärbte Folie dienen.
Durch Auflegen einer schwarzen Folie auf einen Doppelcluster-Setup kann vor Ort ein einfacher optischer Nachweis geführt werden (einfaches Prüfmittel). Beispielsweise kann ein Doppelcluster-Merkmal als Sichtfenster in einer Banknote oder Kreditkarte oder dergleichen eingebracht werden. Der optische Nachweis der Anwesenheit des Doppelcluster-Merkmals erfolgt durch Auflegen einer schwarzen Folie, beispielsweise aus Polycarbonat.
Die Cluster auf beiden Seiten der Abstandsschicht können unterschiedlich dick aufgebracht werden, jeweils strukturiert oder vollflächig sein und/oder in einem Aufbau aus unterschiedlichen Materialien bestehen.
Wird beispielsweise eine polymere Abstandsschicht mit einem definierten Schichtdickenverlauf oder einem Stufenaufbau verwendet, werden an den Stufen bzw. an bestimmten Stellen des Schichtdickenverlaufs bevorzugt und gerichtet die metallischen Cluster abgeschieden. Dieser Vorgang kann durch geeignete Verfahrensführung verstärkt oder vermindert werden. Beispielsweise werden auf mikrostrukturierten Oberflächen andere optische Effekte als auf glatten Folien erzeugt. Dadurch ergeben sich neue (Sub)-Codes. Es ist auch möglich mehrere Schichtabfolgen auf ein Trägersubstrat aufzubringen, wobei je Auslegung der Reflexionsschicht (vollflächig oder partiell) und je nach Strukturierung der Abstandsschichten bzw. Auslegung der Clusterschicht (vollflächig oder partiell, passergenau oder überlappend zur Reflexionsschicht) unterschiedliche Farbkippeffekte beobachtet werden können. So können beispielsweise auf eine vollflächig aufgebrachte Reflexionsschicht eine gegebenenfalls strukturierte Abstandsschicht, darauf eine partielle Clusterschicht, darauf wiederum eine gegebenenfalls strukturierte Abstandsschicht, darauf wiederum eine vorzugsweise partielle Clusterschicht, die beispielsweise teilweise überlappend mit der ersten Clusterschicht situiert ist, aufgebracht werden. Derartige Abfolgen von Abstandsschicht und Clusterschicht können zweckmäßigerweise 2 bis 3 Mal wiederholt werden. Analog können auf eine partiell aufgebrachte Reflexionsschicht derartige Aufbauten aufgebracht werden, wobei hier auch in Abhängigkeit von der Auslegung der partiellen Reflexionsschicht wiederum unterschiedliche Farbkippeffekte beobachtet werden.
Der so hergestellte Schichtaufbau kann anschließend mittels elektromagnetischer Strahlung (z.B. Licht) strukturiert werden. Dabei können sowohl Schriftzüge, Buchstaben, Symbole, Zeichen, Bilder, Logos, Codes, Seriennummern und dergleichen z.B. mittels Laserbestrahlung bzw. -gravur eingebracht werden.
Dabei wird durch entsprechende Wahl der Strahlungsleistung entweder der Schichtaufbau teilweise zerstört oder die Dicke der polymeren Abstandsschicht verändert. Die polymere Abstandsschicht quillt in diesen Bereichen für gewöhnlich auf, was eine Änderung der Farbe (Peakshift zu größeren Wellenlängen) erzeugt. Die teilweise Zerstörung bewirkt dagegen, dass die beleuchtete Stelle entweder metallisch spiegelt (Trennung der elektromagnetischen Wellen reflektierenden Schicht von der Abstandschicht) oder dass das hinter dem Spiegel liegende Material sichtbar wird. So kann eine gezielte Strukturierung mit farbigen, spiegelnden oder farblosen Bereichen erreicht werden. Die Beleuchtungsleistung kann aber auch so gewählt werden, dass ausschließlich der Farbeffekt verändert wird, wobei partielle Bereiche mit definierten unterschiedlichen Farben entstehen (Mehrfarbenkippeffekt). Wesentlich für die Veränderung ist die tatsächlich vom Schichtaufbau absorbierte Energie.
In einer besonderen Ausführungsform ist es auch möglich auf ein , zumindest partiell im sichtbaren Spektralbereich transparentes, Trägersubstrat direkt eine Clusterschicht aufzubringen, auf diese Clusterschicht wird anschließend, wie beschrieben, eine Abstandsschicht und eine weitere Clusterschicht aufgebracht, wobei auf diese Clusterschicht dann gegebenenfalls eine schwarze Schicht, wie bereits beschrieben, aufgebracht werden kann. Es wird somit ein sogenannter inverser Schichtaufbau erhalten. (Fig. 4)
In analoger Weise kann auch ein inverser Setup mit einer einzigen Clusterschicht (Aufbringen der Clusterschicht auf das Trägersubstrat, anschließendes Aufbringen der polymeren Abstandsschicht und der elektromagnetische Wellen reflektierenden Schicht) hergestellt werden, wobei die Eigenschaften der einzelnen Schichten der vorangehenden Beschreibung entsprechen.
Das Trägersubstrat kann auch bereits eine oder mehrere funktionelle und/oder dekorative Schichten aufweisen.
Die funktioneilen Schichten können beispielsweise bestimmte elektrische, magnetische, spezielle chemische, physikalische und auch optische Eigenschaften aufweisen.
Zur Einstellung elektrischer Eigenschaften, beispielsweise Leitfähigkeit können beispielsweise Graphit, Ruß, leitfähige organische oder anorganische Polymere. Metallpigmente (beispielsweise Kupfer, Aluminium, Silber, Gold, Eisen, Chrom Blei und dergleichen), Metalllegierungen wie Kupfer-Zink oder Kupfer- Aluminium oder deren Sulfide oder Oxide, oder auch amorphe oder kristalline keramische Pigmente wie ITO und dergleichen zugegeben werden. Weiters können auch dotierte oder nicht dotierte Halbleiter wie beispielsweise Silizium, Germanium oder lonenleiter wie amorphe oder kristalline Metalloxide oder Metallsulfide als Zusatz verwendet werden. Ferner können zur Einstellung der elektrischen Eigenschaften der Schicht polare oder teilweise polare Verbindungen, wie Tenside oder unpolare Verbindungen wie Silikonadditive oder hygroskopische oder nicht hygroskopische Salze verwendet oder zugesetzt werden.
Zur Einstellung der magnetischen Eigenschaften können paramagnetische, diamagnetische und auch ferromagnetische Stoffe, wie Eisen, Nickel und Cobalt oder deren Verbindungen oder Salze (beispielsweise Oxide oder Sulfide) verwendet werden.
Die optischen Eigenschaften der Schicht lassen sich durch sichtbare Farbstoffe bzw. Pigmente, lumineszierende Farbstoffe bzw. Pigmente, die im sichtbaren, im UV-Bereich oder im IR-Bereich fluoreszieren bzw. phosphoreszieren, Effektpigmente, wie Flüssigkristalle, Perlglanz, Bronzen und/oder wärmeempfindliche Farben bzw. Pigmente beeinflussen. Diese sind in allen möglichen Kombinationen einsetzbar. Zusätzlich können auch phosphoreszierende Pigmente allein oder in Kombination mit anderen Farbstoffen und/oder Pigmenten eingesetzt werden.
Es können auch verschiedene Eigenschaften durch Zufügen verschiedener oben genannter Zusätze kombiniert werden. So ist es möglich angefärbte und/oder leitfähige Magnetpigmente zu verwenden. Dabei sind alle genannten leitfähigen Zusätze verwendbar.
Speziell zum Anfärben von Magnetpigmenten lassen sich alle bekannten löslichen und nicht löslichen Farbstoffe bzw. Pigmente verwenden. So kann beispielsweise eine braune Magnetfarbe durch Zugabe von Metallen in ihrem Farbton metallisch, z.B. silbrig eingestellt werden. Ferner können beispielsweise Isolatorschichten aufgebracht werden. Als Isolatoren sind beispielsweise organische Substanzen und deren Derivate und Verbindungen, beispielsweise Färb- und Lacksysteme, z.B. Epoxy-, Polyester-, Kolophonium-, Acrylat-, Alkyd-, Melamin-, PVA-, PVC-, Isocyanat-, Urethansysteme, die strahlungshärtend sein können, beispielsweise durch Wärme- oder UV-Strahlung, geeignet.
Des Weiteren können in eine der Schichten forensische Merkmale eingebracht werden, die eine Prüfung im Labor oder mit geeigneten Prüfmitteln vor Ort (gegebenenfalls unter Zerstörung des Merkmals) erlauben, z.B. DNA in NC- Lack, Antigene in Acrylat-Lacksystemen. Beispielsweise kann DNA adsorbiert oder gebunden sein an die Cluster. Ebenso können Isotopen den Clustem bzw. im Spiegelmaterial beigemengt werden oder in der Abstandschicht vorhanden sein (z.B. Elemental Tag der Fa. KeyMaster Technologies Inc.). So kann als Abstandsschicht beispielsweise ein deuteriertes Polymer (z.B. PS-d) verwendet werden oder als Spiegel ein gering radioaktives Spiegelmaterial.
Diese Schichten können durch bekannte Verfahren, beispielsweise durch Bedampfen, Sputtern, Drucken (beispielsweise Tief-, Flexo-, Sieb-, Digitaldruck und dergleichen), Sprühen, Galvanisieren, Walzenauftragsverfahren und dergleichen aufgebracht werden. Die Dicke der funktionellen Schicht beträgt 0,001 bis 50 μm, vorzugsweise 0,1 bis 20 μm.
Gegebenenfalls kann die so hergestellte beschichtete Folie auch noch durch eine Schutzlackschicht geschützt werden oder beispielsweise durch Kaschieren oder dergleichen weiterveredelt werden.
Gegebenenfalls kann das Produkt mit einem siegelfähigen Kleber, beispielsweise einem Heiß- oder Kaltsiegelkleber, oder einer Selbstklebebeschichtung auf das entsprechende Trägermaterial appliziert werden, oder beispielsweise bei der Papierherstellung für Sicherheitspapiere durch übliche Verfahren in das Papier eingebettet werden.
In den Fig. 1 - 6 sind Beispiele für erfindungsgemäße Sicherheitsmerkmale dargestellt.
Darin bedeuten 1 das optisch transparente Trägersubstrat, 2 die elektromagnetische Wellen reflektierende erste Schicht, 3 die polymere Abstandsschicht, 4 die aus metallischen Clustem aufgebaute Schicht, 5 eine Klebe- bzw. Laminierschicht, 6 eine Schutz(fach)schicht 7 eine Transferlackschicht, 8 eine schwarze Schicht, 10 den Strahlengang des einfallenden und reflektierten Lichts.
In Fig. 7 ist ein durch elektromagnetische Strahlung personalisierter Aufbau dargestellt.
Es zeigen:
Fig. 1 eine schematische Querschnittsansicht einer ersten ständig sichtbaren Markierung auf einer Folie mit Doppelclustersetup.
Fig. 2 eine schematische Querschnittsansicht einer ersten ständig sichtbaren Markierung auf einer Folie mit Doppelclustersetup und Strahlengang des optischen Detektionsmittels, beispielsweise Spektrometer, Farbmessgerät, oder ähnliche.
Fig. 3 einen direkten Doppelclustersetup mit schwarzem Hintergrund
Fig. 4 einen indirekten Doppelclustersetup mit schwarzem Hintergrund
Fig. 5 einen Setup mit partieller Reflexionsschicht
Fig. 6 einen Setup mit einer strukturierten Abstandsschicht unterschiedlicher Dicke Die erfindungsgemäß hergestellten beschichteten Trägermaterialien können als Sicherheitsmerkmale in Geldscheinen, Datenträgern, Wertdokumenten, Labels, Etiketten, Siegeln, in Verpackungen, Textilien und dergleichen verwendet werden.
Beispiele:
Beispiel 1 :
Auf eine Polyesterfolie der Dicke 23 μm wird in einem Sputterprozess eine Cr- Clusterschicht der Dicke 3 nm aufgebracht. Auf diese Clusterschicht wird im Tiefdruck mit einem speziell optimierten Druckzylinder ein Urethanlack als polymere Abstandsschicht in einer Dicke von 0,5 μm aufgedruckt. Darauf folgt erneut die Abscheidung einer Cr-Clusterschicht der Dicke 3 nm. Auf diese Clusterschicht wird abschließend eine schwarz eingefärbte Folie aufkaschiert. Es wird ein Farbkippeffekt von violett nach gold beobachtet.
Beispiel 2:
Bei der Herstellung eines Dünnschichtaufbaus wie in Beispiel 1 werden Teile der Schichten so strukturiert, dass erst bei passgenauem Überlagern von strukturiertem Doppelclustersetup und strukturierter schwarzer Hintergrundfolie, die Kippfarbe mit einem unterlegten Moireemuster sichtbar wird. Dazu wird die Polymerschicht im Doppelclustersetup schachbrettartig strukturiert, wobei die Kantenlänge der Schachbrettfelder kleiner als 0,1 mm groß ausgeprägt wird. Die Schwärzung der Hintergrundfolie wird mit analogen Schachbrettfeldern strukturiert. Bei passgenauer Überlagerung der strukturierten Folien kann sowohl die Ausprägung des Moireemusters als auch die Kippfarbe beobachtet werden. So kann durch einfache Vorort Testung höchste Sicherheit gewährleistet werden.
Beispiel 3:
Bei der Herstellung eines Dünnschichtaufbaus wie in Beispiel 1 werden statt der Aufbringung der zweiten Clusterschicht durch vakuumtechnische Verfahren, Cluster, welche durch chemische Synthese in Lösung hergestellt wurden und als Dispersion in Lösung vorliegen aufgebracht. Dazu werden solche clusterhaltigen Lösungen in sehr dünnen Schichten verdruckt, oder aus der Lösung adsorbiert. Werden Cluster verwendet, die zusätzlich weitere Eigenschaften aufweisen, so kann zusätzliche Sicherheit generiert werden. Als pulverförmige Clustermaterialien zum Verdrucken können Silber Nanopulver der Firma Argonide verwendet werden.
Als magnetische Clustermaterialien können Magnetpigmente der Firma Sustech verwendet werden. Am besten geeignet sind Ferrofluide oder Pigmente in Pulverform des Typs: FMA (super paramagnetisches Ferrit) mit hydrophiler Ummantelung. FMA mittlere Primär Teilchen Größe: 10 nm Durchmesser. Als Corshell Cluster können SSPH (Sequential Solution Phase Hydrolysis)- Partikel der Firma Nanodynamics oder Nanopowders verwendet werden. Es können beispielsweise Au auf Sn02 oder Au auf Si02 Partikeln mit einem Innen- Durchmesser von 20 nm und einem Außendurchmesser von 40 nm verwendet werden. Als fluoreszierende Partikel können die Partikel der Firma Quantum Dot Corporation verwendet werden: Als Core Marterial CdS und als Shell Material ZnS. Core Durchmesser: 5nm; Shell Durchmesser: 2,5 nm.
Beispiel 4:
In einem Ausführungsbeispiel wird ein Druckzylinder mit unterschiedlichen Näpfchenvolumen in verschiedenen Bereichen über seine Breite hergestellt. Auf eine mit einer einheitlichen Clusterschicht belegten Folie wird mit diesem Zylinder die Abstandsschicht gedruckt. Durch die beschriebene Ausführung des Zylinders erhält man über die Bahnbreite scharf abgegrenzte Bereiche mit definiert unterschiedlichen Dicken der Abstandsschicht. Anschließend wird eine einheitliche Spiegelschicht aus Aluminium aufgedampft. Die Bänder mit unterschiedlichen Farbcodes werden dann in einem Rollenschneideprozess getrennt. So werden in einem Produktionslauf Sicherheitselemente mit mehreren unterschiedlichen Codes hergestellt. Beispiel 5:
Aus einer wie in Beispiel 4 beschrieben hergestellten Folienbahn wird ein Sicherheitsstreifen so aus der Bahn herausgeschnitten, dass ein scharfer Code- Übergang genau in der Mitte des Streifens zu liegen kommt. Der so hergestellte Streifen enthält dann als zusätzliche Sicherheitsstufe zwei maschinell auslesbare Codes, die einzeln oder gemeinsam mit dem Lesegerät detektiert werden.
Beispiel 6:
Alle beschriebenen Schichtaufbauten lassen sich mittels geeigneter Laser gezielt strukturieren. In diesem Beispiel wurde mittels eines 1064 nm Powerline- Lasers der Firma Rofin Sinar ein inverser Schichtaufbau an den belaserten Stellen partiell zerstört. Die Leistung wurde so eingestellt, dass der Laser eine Ablösung der polymeren Abstandschicht von der Aluminiumspiegelschicht bewirkt, wodurch die belaserten Stellen nicht mehr farbig erscheinen, sondern den metallischen Glanz der Spiegelschicht zeigen. Die Belaserung erfolgte punktuell. Das dargestellte Bild setzt sich somit aus einer Dot-Matrix aus metallisch spiegelnden Bereichen in der farbigen Fläche zusammen. Auf diese Weise lassen sich sehr schnell (< 1sec) individualisierte, fälschungssichere Markierungen z.B. für Ausweise herstellen.
Beispiel 7:
Zur intrinsischen Markierung von den in den vorhergehenden Beispielen beschriebenen Schichten können Markersubstanzen verwendet werden, die nur einem forensischen Nachweis zugänglich sind. Dazu kann beispielsweise zu einem Nitrocellulose Lack eine Markierung von 1 Promille Festkörper DNA zum Lackvolumen beigemengt werden. Die DNA adsorbiert unter Normal- Bedingungen (25°C, 80% Luftfeuchtigkeit) fest an die Nitrocellulose und ist so stabil in der Lackmatrix verankert. Durch Auflösen der Lackschicht oder durch Extrahieren mit kochendem Wasser kann die DNA im Labor extrahiert und mit molekularbiologischen Methoden nachgewiesen werden. Bei Verwendung von geeigneten DNA Sequenzen können diese auch vor Ort nachgewiesen werden, beispielsweise durch einen geeigneten Hybridisierungsassay.

Claims

Patentansprüche:
1) Fälschungssicheres Sicherheitsmerkmal bestehend aus jeweils mindestens einer elektromagnetische Wellen reflektierenden Schicht, einer polymeren Abstandsschicht und einer Schicht gebildet von metallischen Clustem, dadurch gekennzeichnet, dass eine oder mehrere der Schichten zusätzlich zu ihrer Funktion im Farbkippeffekt- Setup weitere Sicherheitsfunktionen erfüllen.
2) Fälschungssicheres Sicherheitsmerkmal nach Anspruch 1, dadurch gekennzeichnet, dass die elektromagnetische Wellen reflektierende Schicht und/oder die Clusterschicht partielle Schichten sind.
3) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die polymere Abstandsschicht einen definierten Schichtdickenverlauf oder einen Stufenaufbau aufweist.
4) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die polymere Abstandsschicht aus mehreren Schichten besteht, die jeweils unterschiedliche Schichtdicken oder unterschiedliche Schichtdickenverläufe aufweisen können.
5) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die polymere Abstandsschicht aus mehreren partiellen und/oder vollflächigen Schichten mit unterschiedlichen Brechungsindizes besteht.
6) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die polymere Abstandsschicht in Form von Zeichen, Mustern, Linien geometrischen Formen und dergleichen aufgebracht ist. 7) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass wenigstens eine Schicht der polymeren Abstandsschicht oder die Deckschicht aus einem Polymer mit piezoelektrischen Eigenschaften besteht.
8) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass mindestens eine Schicht der polymeren Abstandsschicht eine oder mehrere optisch wirksame Strukturen aufweist.
9) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Trägersubstrat eine Transferlackschicht aufweist.
10) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Schicht aus metallischen Clustem aus unterschiedlichen Metallen besteht.
11) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass zumindest eine der metallischen Clusterschichten zusätzliche funktionelle Merkmale aufweist.
12) Fälschungssicheres Sicherheitsmerkmal nach Anspruch 11, dadurch gekennzeichnet, dass zumindest eine der metallischen Clusterschichten zusätzlich elektrisch leitfähig und/oder magnetisch und/oder fluoreszierend ist.
13) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass der Schichtaufbau durch Einwirkung elektromagnetischer Wellen individualisiert wird. 14) Fälschungssicheres Sicherheitsmerkmal nach Anspruch 13, dadurch gekennzeichnet, dass der Aufbau durch Laserbehandlung individualisiert wird.
15) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass durch Einwirkung elektromagnetischer Wellen eine nachträgliche Strukturierung erfolgt.
16) Fälschungssicheres Sicherheitsmerkmal nach Anspruch 15, dadurch gekennzeichnet, dass durch die Strukturierung Bilder, Logos, Schriftzüge, Codes, Zeichen und dergleichen erzeugt werden.
17) Fälschungssicheres Sicherheitsmerkmal nach Anspruch 16, dadurch gekennzeichnet, dass durch die Strukturierung andersfarbige oder farblose Bereiche erzielt werden.
18) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass in der Abstandsschicht die Feinstruktur des Druckwerkzeugs als eindeutig zuordenbares Merkmal identifizierbar ist.
19) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass das Sicherheitsmerkmal auf ein Substrat appliziert ist, oder in ein Substrat eingebettet ist, wobei das Substrat gegebenenfalls eine Aussparung aufweist, die vom Sicherheitsmerkmal überspannt ist.
20) Fälschungssicheres Sicherheitsmerkmal nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass durch Anordnung mehrerer Abfolgen von ggf. unterschiedlich strukturierten Abstandsschichten und Clusterschichten über einer vollflächigen oder partiellen Reflexionsschicht unterschiedliche Farbkippeffekte entstehen. 21 ) Folienmaterial geeignet zur Herstellung eines fälschungssicheren Identifikationsmerkmals nach einem der Ansprüche 1 bis 20.
22) Folienmaterial nach Anspruch 21, dadurch gekennzeichnet, dass es ein- oder beidseitig vollflächig oder partiell mit einer Schutzlackschicht versehen ist.
23) Folienmaterial nach Anspruch 22, dadurch gekennzeichnet, dass die Schutzlackschicht pigmentiert ist.
24) Folienmaterial nach einem der Ansprüche 21 bis 23, dadurch gekennzeichnet, dass es ein- oder beidseitig, vollflächig oder partiell mit einem siegelfähigen Kleber, beispielsweise einem Heiß- oder Kaltsiegelkleber, oder einer Selbstklebebeschichtung versehen ist.
25) Folienmaterial nach Anspruch 24, dadurch gekennzeichnet, dass die Klebebeschichtung pigmentiert ist.
26) Verfahren zur Herstellung eines Sicherheitsmerkmals nach einem der Ansprüche 1 - 20, dadurch gekennzeichnet, dass auf ein Trägersubstrat eine partielle oder vollflächige elektromagnetische Wellen reflektierende Schicht und anschließend eine oder mehrere partielle und/oder vollflächige polymere Schichten definierter Dicke mittels eines Druckzylinders, der eine unverwechselbare Feinstruktur aufweist, aufgebracht werden, worauf auf die Abstandschicht eine Schicht gebildet aus metallischen Clustem, die mittels eines vakuumtechnischen Verfahrens oder aus lösungsmittelbasierten Systemen gebildet werden, aufgebracht wird.
27) Verfahren nach Anspruch 26, dadurch gekennzeichnet, dass auf ein Trägersubstrat eine Schicht gebildet aus metallischen Clustem, die mittels eines vakuumtechnischen Verfahrens oder aus lösungsmittelbasierten Systemen gebildet werden, anschließend eine oder mehrere partielle und/oder vollflächige polymere Schichten definierter gegebenenfalls variierender Dicke mittels eines Druckzylinders, der eine unverwechselbare Feinstruktur enthält, worauf anschließend eine partielle oder vollflächige elektromagnetische Wellen reflektierende Schicht und darauf eine weitere Clusterschicht aufgebracht werden.
28) Verfahren nach einem der Ansprüche 26 oder 27, dadurch gekennzeichnet, dass zusätzlich eine schwarze Hintergrundschicht aufgebracht wird.
29) Verfahren nach einem der Ansprüche 26 bis 28, dadurch gekennzeichnet, dass die polymere Abstandsschicht und/oder die Hintergrundschicht strukturiert wird.
30) Verfahren nach einem der Ansprüche 26 bis 29, dadurch gekennzeichnet, dass die Strukturierung der polymeren Abstandsschicht oder der Hintergrundschicht durch Laserbehandlung erfolgt.
31) Verwendung der Sicherheitsmerkmale gemäß einem der Ansprüche 1- 20 oder der Folienmaterialien nach einem der Ansprüche 21 bis 25 ggf. nach Konfektionierung in Geldscheinen, Datenträgern, Wertdokumenten, Verpackungen, Labels, Etiketten, Siegeln und dergleichen.
32) Verfahren zur Prüfung eines Sicherheitsmerkmals nach einem der Ansprüche 1 - 20, dadurch gekennzeichnet, dass die unterschiedlichen Identifikationsmerkmale mit geeigneten Auswertegeräten erfasst und identifiziert werden. 33) Verfahren zur Prüfung eines Sicherheitsmerkmals nach einem der Ansprüche 1 - 20 dadurch gekennzeichnet, dass die Identifikationsmerkmale visuell erfasst und identifiziert werden.
34) Verfahren zur Prüfung von Sicherheitsmerkmalen nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die forensischen Merkmale wie DNA, Isotopen oder Feinstruktur mit geeigneten Prüfmitteln im Labor oder vor Ort identifiziert werden.
PCT/EP2005/001385 2004-02-16 2005-02-11 Fälschungssicheres sicherheitsmerkmal mit farbkippeffekt WO2005077668A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP05715300A EP1716007B1 (de) 2004-02-16 2005-02-11 Fälschungssicheres sicherheitsmerkmal mit farbkippeffekt
US10/587,074 US20070110965A1 (en) 2004-02-16 2005-02-11 Tamper-proof, color-shift security feature
CA2555821A CA2555821C (en) 2004-02-16 2005-02-11 Tamper-proof, color-shift security feature
AT05715300T ATE400449T1 (de) 2004-02-16 2005-02-11 Fälschungssicheres sicherheitsmerkmal mit farbkippeffekt
DE502005004629T DE502005004629D1 (de) 2004-02-16 2005-02-11 Fälschungssicheres sicherheitsmerkmal mit farbkippeffekt
US13/195,985 US8678442B2 (en) 2004-02-16 2011-08-02 Forgery-proof security element with color shift effect

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0023604A AT504587A1 (de) 2004-02-16 2004-02-16 Fälschungssicheres sicherheitsmerkmal mit farbkippeffekt
ATA236/2004 2004-02-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/587,074 A-371-Of-International US20070110965A1 (en) 2004-02-16 2005-02-11 Tamper-proof, color-shift security feature
US13/195,985 Division US8678442B2 (en) 2004-02-16 2011-08-02 Forgery-proof security element with color shift effect

Publications (1)

Publication Number Publication Date
WO2005077668A1 true WO2005077668A1 (de) 2005-08-25

Family

ID=34842244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/001385 WO2005077668A1 (de) 2004-02-16 2005-02-11 Fälschungssicheres sicherheitsmerkmal mit farbkippeffekt

Country Status (9)

Country Link
US (2) US20070110965A1 (de)
EP (1) EP1716007B1 (de)
AT (2) AT504587A1 (de)
CA (1) CA2555821C (de)
DE (1) DE502005004629D1 (de)
ES (1) ES2308450T3 (de)
RU (1) RU2377134C2 (de)
UA (1) UA91012C2 (de)
WO (1) WO2005077668A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006079489A1 (de) * 2005-01-27 2006-08-03 Giesecke & Devrient Gmbh Sicherheitselement und verfahren zu seiner herstellung
DE102005053251A1 (de) * 2005-11-08 2007-05-10 Joergen Brosow Flächenhaftes Substrat für ein biometrisches Merkmal und Verfahren zur Herstellung des Substrats
WO2007141040A1 (de) * 2006-06-09 2007-12-13 Identif Gmbh Substrat mit schichtabfolge zur erzeugung eines in abhängigkeit des blickwinkels sich ändernden farbeindrucks
WO2008061636A2 (de) * 2006-11-23 2008-05-29 Giesecke & Devrient Gmbh Sicherheitselement mit metallisierung
DE102007006120A1 (de) * 2007-02-02 2008-08-07 Tesa Scribos Gmbh Speichermedium mit einer optisch veränderbaren Speicherschicht
WO2008095481A2 (de) * 2007-02-08 2008-08-14 Bundesdruckerei Gmbh Sicherheits- und/oder wertdokument mit photonischem kristall
WO2008125334A2 (de) * 2007-04-16 2008-10-23 Hueck Folien Ges. M.B.H. Fälschungssicheres identifikationsmerkmal
EP2014479A1 (de) * 2007-06-18 2009-01-14 Constantia Hueck Folien GmbH & Co. KG Sicherheitselemente mit maschinenlesbaren, visuell nicht erkennbaren Merkmalen
EP2030797A1 (de) 2007-08-25 2009-03-04 Mondi Business Paper Services AG Optisch thermisch beschreibbare Nanobeschichtung
EP2183120A1 (de) * 2007-07-17 2010-05-12 American Express Travel Related Services Co., Inc. Transaktionskarte
WO2012025206A3 (de) * 2010-08-25 2012-11-15 Giesecke & Devrient Gmbh Sicherheitselement mit ausgerichteten magnetpigmenten
EP2851194A1 (de) * 2013-09-20 2015-03-25 Hueck Folien Ges.m.b.H Sicherheitselement, insbesondere Sicherheitsetikett
EP2159071B1 (de) 2008-08-25 2015-12-09 Hueck Folien Ges.m.b.H. Sicherheitselement, das ohne Hilfsmittel verifiziert werden kann

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007117672A2 (en) * 2006-04-07 2007-10-18 Qd Vision, Inc. Methods of depositing nanomaterial & methods of making a device
ATE524307T1 (de) * 2008-05-09 2011-09-15 Giusto Manetti Battiloro S P A Dekorative tafel und herstellungsverfahren dafür
CN102597848B (zh) 2009-10-17 2016-06-01 Qd视光有限公司 光学元件、包括其的产品、以及用于制造其的方法
AT510220B1 (de) 2010-07-19 2013-07-15 Hueck Folien Gmbh Sicherheitselement mit einer optisch variablen schicht
AT510366B1 (de) 2010-08-27 2012-12-15 Hueck Folien Gmbh Wertdokument mit zumindest teilweise eingebettetem sicherheitselement
CN103443806A (zh) * 2011-03-31 2013-12-11 株式会社新克 信息显示系统以及点阵图案印刷物
DE202012010037U1 (de) * 2012-10-19 2014-01-20 Hueck Folien Ges.M.B.H. Beschichtung für Wertpapiere, insbesondere zur Erhöhung der Umlauffähigkeit
RU2509652C1 (ru) * 2012-11-07 2014-03-20 Федеральное Государственное Унитарное Предприятие "Гознак" (Фгуп "Гознак") Защитный элемент для ценного документа в виде многослойной полимерной структуры с магнитным слоем и изделие с защитным элементом
RU2538580C1 (ru) * 2013-07-16 2015-01-10 Закрытое акционерное общество "ТехМаркинг" (ЗАО "ТехМаркинг") Полимерная композиция, способ изготовления метки прямого нанесения с полимерной композицией и метка прямого нанесения
DE102013218754B4 (de) * 2013-09-18 2019-05-09 Bundesdruckerei Gmbh Manipulationsabgesichertes Wert- oder Sicherheitsprodukt und Verfahren zum Verifizieren der Echtheit des manipulationsabgesicherten Wert- oder Sicherheitsproduktes
US10414194B2 (en) 2013-11-08 2019-09-17 Bank Of Canada Optically variable devices, their production and use
DE102014106340B4 (de) 2014-05-07 2021-05-12 Ovd Kinegram Ag Mehrschichtkörper und Verfahren zu dessen Herstellung sowie Sicherheitsdokument
AT515670B1 (de) 2014-06-23 2015-11-15 Hueck Folien Gmbh Sicherheitselement mit modifiziertem Farbkippeffekt
RU2590560C2 (ru) * 2014-09-01 2016-07-10 Закрытое акционерное общество "Научные приборы" Многослойный носитель информации и способ записи информации
WO2016171591A1 (ru) * 2015-04-24 2016-10-27 Федеральное Государственное Унитарное Предприятие "Гознак" (Фгуп "Гознак") Ценный документ, содержащий многослойную полимерную структуру, и способ персонализации ценного документа
AT517320B1 (de) 2015-05-29 2020-04-15 Hueck Folien Gmbh Sicherheitselement mit Farbkippeffekt
US11183085B2 (en) 2015-11-12 2021-11-23 Safestamp Inc. Anti-counterfeiting device and method
JP6402838B2 (ja) * 2016-03-25 2018-10-10 大日本印刷株式会社 電磁波応答性積層体
EP3282042A1 (de) * 2016-08-11 2018-02-14 European Central Bank Funktionalisierter seidenfibroinsicherheitsmarker
FR3057205B1 (fr) * 2016-10-10 2020-10-16 Arjowiggins Security Procede de fabrication d'un element de securite
RU178207U1 (ru) * 2017-02-27 2018-03-26 Алексей Алексеевич Гришаков Этикетка для защиты упаковки товаров от подделки и привлечения внимания покупателя
DE102017007524B3 (de) * 2017-08-10 2019-01-24 Giesecke+Devrient Mobile Security Gmbh Kartenförmiger Datenträger und Verfahren zum Herstellen eines kartenförmigen Datenträgers
US11313810B2 (en) 2019-11-14 2022-04-26 International Business Machines Corporation Secure semiconductor wafer inspection utilizing film thickness
CN116096584A (zh) * 2020-06-25 2023-05-09 Cpi卡片集团科罗拉多公司 回收的塑料卡

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018155A2 (de) 2000-08-29 2002-03-07 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Verfahren zur fälschungssicheren markierung von gegenständen und fälschungssichere markierung
WO2003016073A1 (de) * 2001-08-16 2003-02-27 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Fälschungssichere markierung für gegenstände und verfahren zur identifizierung einer solchen markierung
EP1310381A2 (de) 2001-11-09 2003-05-14 Hueck Folien GmbH Bahnförmige Materialien mit Oberflächenstruktur, Verfahren zu deren Herstellung und deren Verwendung
EP1352732A2 (de) 2002-04-11 2003-10-15 Hueck Folien Gesellschaft m.b.H. Substrate mit vorzugsweise transferierbaren Schichten und/oder Oberflächenstrukturen, Verfahren zu deren Herstellung und deren Verwendung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792667A (en) * 1987-03-27 1988-12-20 Sicpa Holding, S.A. Method and apparatus for authenticating documents utilizing poled polymeric material
US5278590A (en) * 1989-04-26 1994-01-11 Flex Products, Inc. Transparent optically variable device
US7357077B2 (en) * 2000-09-08 2008-04-15 Giesecke & Devrient Gmbh Data carrier, method for the production thereof and gravure printing plate
US6565770B1 (en) * 2000-11-17 2003-05-20 Flex Products, Inc. Color-shifting pigments and foils with luminescent coatings
US7322530B2 (en) * 2001-08-16 2008-01-29 November Aktiengesellschaft Gesellschaft Fur Molekulare Medizin Forgery-proof marking for objects and method for identifying such a marking
DE10226114A1 (de) * 2001-12-21 2003-07-03 Giesecke & Devrient Gmbh Sicherheitselement für Sicherheitspapiere und Wertdokumente
DE10206357A1 (de) * 2002-02-14 2003-08-28 Giesecke & Devrient Gmbh Sicherheitselement und Sicherheitsdokument mit einem solchen Sicherheitselement
DE10207622A1 (de) * 2002-02-22 2003-09-04 Giesecke & Devrient Gmbh Sicherheitsdokument und Sicherheitselement für ein Sicherheitsdokument
CN101164797B (zh) * 2003-07-14 2012-07-18 Jds尤尼费斯公司 防伪线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002018155A2 (de) 2000-08-29 2002-03-07 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Verfahren zur fälschungssicheren markierung von gegenständen und fälschungssichere markierung
WO2003016073A1 (de) * 2001-08-16 2003-02-27 november Aktiengesellschaft Gesellschaft für Molekulare Medizin Fälschungssichere markierung für gegenstände und verfahren zur identifizierung einer solchen markierung
EP1310381A2 (de) 2001-11-09 2003-05-14 Hueck Folien GmbH Bahnförmige Materialien mit Oberflächenstruktur, Verfahren zu deren Herstellung und deren Verwendung
EP1352732A2 (de) 2002-04-11 2003-10-15 Hueck Folien Gesellschaft m.b.H. Substrate mit vorzugsweise transferierbaren Schichten und/oder Oberflächenstrukturen, Verfahren zu deren Herstellung und deren Verwendung

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8931704B2 (en) 1999-09-07 2015-01-13 Iii Holdings 1, Llc Transaction card
US9519851B2 (en) 1999-09-07 2016-12-13 Iii Holdings 1, Llc Transaction card
WO2006079489A1 (de) * 2005-01-27 2006-08-03 Giesecke & Devrient Gmbh Sicherheitselement und verfahren zu seiner herstellung
DE102005053251A1 (de) * 2005-11-08 2007-05-10 Joergen Brosow Flächenhaftes Substrat für ein biometrisches Merkmal und Verfahren zur Herstellung des Substrats
WO2007141040A1 (de) * 2006-06-09 2007-12-13 Identif Gmbh Substrat mit schichtabfolge zur erzeugung eines in abhängigkeit des blickwinkels sich ändernden farbeindrucks
DE102006027263A1 (de) * 2006-06-09 2007-12-13 Identif Gmbh Substrat mit Schichtabfolge zur Erzeugung eines in Abhängigkeit des Blickwinkels sich ändernden Farbeindrucks
WO2008061636A2 (de) * 2006-11-23 2008-05-29 Giesecke & Devrient Gmbh Sicherheitselement mit metallisierung
US8317231B2 (en) 2006-11-23 2012-11-27 Giesecke & Devrient Gmbh Security element with metallization
WO2008061636A3 (de) * 2006-11-23 2008-09-18 Giesecke & Devrient Gmbh Sicherheitselement mit metallisierung
CN101557944A (zh) * 2006-11-23 2009-10-14 德国捷德有限公司 具有镀金属的安全元件
DE102007006120A1 (de) * 2007-02-02 2008-08-07 Tesa Scribos Gmbh Speichermedium mit einer optisch veränderbaren Speicherschicht
AU2016225899B2 (en) * 2007-02-08 2018-02-01 Bundesdruckerei Gmbh Safety and/or valuable document having a photonic crystal
WO2008095481A3 (de) * 2007-02-08 2008-12-11 Bundesdruckerei Gmbh Sicherheits- und/oder wertdokument mit photonischem kristall
WO2008095481A2 (de) * 2007-02-08 2008-08-14 Bundesdruckerei Gmbh Sicherheits- und/oder wertdokument mit photonischem kristall
CN101652800B (zh) * 2007-02-08 2013-02-06 联邦印刷厂有限公司 具有光子晶体的安全和/或有价文件
WO2008125334A3 (de) * 2007-04-16 2009-01-08 Hueck Folien Gmbh Fälschungssicheres identifikationsmerkmal
WO2008125334A2 (de) * 2007-04-16 2008-10-23 Hueck Folien Ges. M.B.H. Fälschungssicheres identifikationsmerkmal
EP2014479A1 (de) * 2007-06-18 2009-01-14 Constantia Hueck Folien GmbH & Co. KG Sicherheitselemente mit maschinenlesbaren, visuell nicht erkennbaren Merkmalen
EP2183120A4 (de) * 2007-07-17 2013-06-19 American Express Travel Relate Transaktionskarte
EP2183120A1 (de) * 2007-07-17 2010-05-12 American Express Travel Related Services Co., Inc. Transaktionskarte
EP2030797A1 (de) 2007-08-25 2009-03-04 Mondi Business Paper Services AG Optisch thermisch beschreibbare Nanobeschichtung
EP2159071B1 (de) 2008-08-25 2015-12-09 Hueck Folien Ges.m.b.H. Sicherheitselement, das ohne Hilfsmittel verifiziert werden kann
EP2159071B2 (de) 2008-08-25 2022-01-12 Hueck Folien Ges.m.b.H. Sicherheitselement, das ohne Hilfsmittel verifiziert werden kann
WO2012025206A3 (de) * 2010-08-25 2012-11-15 Giesecke & Devrient Gmbh Sicherheitselement mit ausgerichteten magnetpigmenten
EP2851194A1 (de) * 2013-09-20 2015-03-25 Hueck Folien Ges.m.b.H Sicherheitselement, insbesondere Sicherheitsetikett
WO2015039711A1 (de) * 2013-09-20 2015-03-26 Hueck Folien Ges.M.B.H. Sicherheitselement, insbesondere sicherheitsetikett
CN105431288A (zh) * 2013-09-20 2016-03-23 许克制膜有限公司 安全元件,特别是安全标签

Also Published As

Publication number Publication date
AT504587A1 (de) 2008-06-15
UA91012C2 (ru) 2010-06-25
RU2006133334A (ru) 2008-04-10
ATE400449T1 (de) 2008-07-15
US20110291401A1 (en) 2011-12-01
EP1716007B1 (de) 2008-07-09
CA2555821A1 (en) 2005-08-25
RU2377134C2 (ru) 2009-12-27
ES2308450T3 (es) 2008-12-01
US8678442B2 (en) 2014-03-25
EP1716007A1 (de) 2006-11-02
DE502005004629D1 (de) 2008-08-21
CA2555821C (en) 2012-11-27
US20070110965A1 (en) 2007-05-17

Similar Documents

Publication Publication Date Title
EP1716007B1 (de) Fälschungssicheres sicherheitsmerkmal mit farbkippeffekt
EP1558449B1 (de) Verfahren zur herstellung von fälschungssicheren identifikationsmerkmalen
EP2049345B1 (de) Verfahren zur herstellung eines mehrschichtkörpers sowie mehrschichtkörper
EP2310211B1 (de) Sicherheitselement sowie verfahren zu seiner herstellung
EP1156934A1 (de) Wertdokument
EP0330733A1 (de) Sicherheitselement in Form eines Fadens oder Bandes zur Einbettung in Sicherheitsdokumente sowie Verfahren zur Herstellung desselben
EP1549501A2 (de) Sicherheitselement
DE10255639A1 (de) Sicherheitselement und Verfahren zur Herstellung desselben
DE102007012042A1 (de) Sicherheitselement
DE102013108666A1 (de) Verfahren zur Herstellung eines Mehrschichtkörpers sowie Mehrschichtkörper
WO2016096086A1 (de) Sicherheitselement mit farbkippeffekt und fluoreszierenden merkmalen, verfahren zu dessen herstellung und dessen verwendung
EP2008251B1 (de) Sicherheitselement
AT501356A1 (de) Sicherheitselemente und sicherheitsmerkmale mit farbeffekten
DE3906695A1 (de) Sicherheitselement in form eines fadens oder bandes zur einbettung in sicherheitsdokumente sowie verfahren zur herstellung desselben
EP2196321B1 (de) Transparentes Sicherheitsmerkmal
EP2960068B1 (de) Sicherheitselement mit modifiziertem farbkippeffekt
EP1580297B1 (de) Folienmaterial insbesondere für Sicherheitselemente
EP2644406A2 (de) Verfahren zum Herstellen eines Datenträgers und daraus erhältlicher Datenträger
EP3486092A1 (de) Verfahren zum herstellen eines sicherheitselementes
AT503712A2 (de) Codierte optisch aktive sicherheitselemente und sicherheitsmerkmale
EP1559540A1 (de) Transferierbares Folienmaterial

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007110965

Country of ref document: US

Ref document number: 10587074

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005715300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2555821

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4703/DELNP/2006

Country of ref document: IN

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006133334

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2005715300

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10587074

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2005715300

Country of ref document: EP