WO2005076467A1 - 電力増幅装置、通信端末装置及び電力増幅装置の制御方法 - Google Patents

電力増幅装置、通信端末装置及び電力増幅装置の制御方法 Download PDF

Info

Publication number
WO2005076467A1
WO2005076467A1 PCT/JP2004/001305 JP2004001305W WO2005076467A1 WO 2005076467 A1 WO2005076467 A1 WO 2005076467A1 JP 2004001305 W JP2004001305 W JP 2004001305W WO 2005076467 A1 WO2005076467 A1 WO 2005076467A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply voltage
power
value
output
Prior art date
Application number
PCT/JP2004/001305
Other languages
English (en)
French (fr)
Inventor
Makoto Baba
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2005517601A priority Critical patent/JPWO2005076467A1/ja
Priority to EP04708920A priority patent/EP1713176A4/en
Priority to PCT/JP2004/001305 priority patent/WO2005076467A1/ja
Priority to CNA2004800426831A priority patent/CN1938942A/zh
Priority to US10/588,239 priority patent/US20070146076A1/en
Publication of WO2005076467A1 publication Critical patent/WO2005076467A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0244Stepped control
    • H03F1/0255Stepped control by using a signal derived from the output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/004Control by varying the supply voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/504Indexing scheme relating to amplifiers the supply voltage or current being continuously controlled by a controlling signal, e.g. the controlling signal of a transistor implemented as variable resistor in a supply path for, an IC-block showed amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/511Many discrete supply voltages or currents or voltage levels can be chosen by a control signal in an IC-block amplifier circuit

Definitions

  • Power amplification device communication terminal device, and control method for power amplification device
  • the present invention relates to a power amplifying device having a power amplifier and controlling an operation power supply voltage supplied to the power amplifier, a control method therefor, and a communication terminal device using the power amplifying device.
  • the audio signal input from the microphone is amplified by a power (audio) amplifier, superimposed on a carrier wave, and transmitted to the base station. Is done.
  • power has been directly supplied to the power supply voltage terminal of the above-described power amplifier from a rechargeable battery such as a lithium ion battery that is a power supply of a mobile communication terminal.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-290247 (hereinafter abbreviated as “Patent Document 1”) as a power supply voltage control device and a portable communication terminal equipped with the power supply voltage control device There is.
  • the power supply voltage control device disclosed in Patent Document 1 includes: a power supply voltage table in which output power of a power amplifier is associated with an operation power supply voltage value of the power amplifier; and a power amplifier based on the power supply voltage table. And a voltage control means for controlling a power supply voltage supplied to the power supply, and a DC / DC converter is used as the voltage control means.
  • the present invention solves the above-mentioned problems and hinders the operation of a power amplifier. To obtain a power supply voltage control device that can use the power amplifier efficiently.o
  • a power amplifier includes: a power amplifier (1) that operates by receiving an operation power supply voltage using a first power supply voltage as a supply source; and one of the operation power supply voltage and the first power supply voltage An operating power supply voltage detection circuit (13) for detecting a power supply voltage of the power amplifier to obtain a detected power supply voltage value, and a power estimation function of assuming an output power value to be output by the power amplifier as an assumed output power value, An operating power supply voltage supply unit (2, 3, 4, 4, 11, 12) for supplying the operating power supply voltage determined based on the assumed output power value and the detected power supply voltage value to the power amplifier.
  • a power amplifier (1) that operates by receiving an operation power supply voltage using a first power supply voltage as a supply source; and one of the operation power supply voltage and the first power supply voltage
  • An operating power supply voltage detection circuit (13) for detecting a power supply voltage of the power amplifier to obtain a detected power supply voltage value, and a power estimation function of assuming an output power value to be output by the power amplifier as an assumed output power value
  • a communication terminal device includes: a transmitting unit (6) for generating a transmission signal; and an operation power supply voltage supplied from a first power supply voltage output from a battery.
  • a power amplifier (1) for amplifying transmission power; and an operating power supply voltage detection circuit (13) for detecting one of the operating power supply voltage and the first power supply voltage to obtain a detected power supply voltage value.
  • the power amplifier has a power estimation function of assuming an output power value to be output by the power amplifier as an assumed output power value, based on the assumed output power value and the detected power supply voltage value.
  • An operating power supply voltage supply unit (2, 3, 4, 11, 12) for supplying the operating power supply voltage to the power amplifier.
  • a control method of a power amplifying device is a control method of a power amplifying device having a power amplifier (1) that operates by receiving an operation power supply voltage using a first power supply voltage output from a battery as a supply source. (A) detecting one of the power supply voltage for operation and the first power supply voltage to obtain a detected power supply voltage value; and (b) output power to be output from the power amplifier. Assuming a value as an assumed output power value, and determining whether the power amplifier performs a high power output operation or a low power output operation based on the assumed output power value.
  • step (C) The step (b) When the power amplifier determines that the low power output operation is performed, supplying a voltage obtained by stepping down the first power supply voltage as the operation power supply voltage; (in the step (b), the power amplifier High power output If it is determined that the operation is to be performed, one of a voltage obtained by stepping down the first power supply voltage and the first power supply voltage is determined based on the detected power supply voltage value. Supplying as a source voltage.
  • the power amplifying device provides an operation for supplying a power amplifier based on a detected power supply voltage or a detected power supply voltage obtained by detecting a first power supply voltage in addition to an assumed output power value. Since the power supply voltage is controlled, the power amplifier can be used efficiently without affecting the operation of the power amplifier.
  • the operating power supply voltage supply unit in the communication terminal device is a detection power supply obtained by detecting the operating power supply voltage of the power amplifier or the first power supply voltage output from the battery in addition to the assumed output power value. Since the power supply voltage for operation determined based on the voltage value is supplied to the power amplifier, the power amplifier can be used efficiently without hindering the operation of the power amplifier.
  • the control method of the power amplifying device includes the steps of (b) and (c) in addition to the control based on the assumed output power value, and the steps (b) and (d) of:
  • the power supply voltage for operation determined based on the detected power supply voltage value obtained by detecting the first power supply voltage output from the power supply is supplied to the power amplifier, so that the power supply does not interfere with the operation of the power amplifier.
  • the amplifier can be used efficiently.
  • FIG. 1 is a block diagram showing a configuration of a communication terminal device having a power amplification device according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram showing an example of a control power supply voltage / power table stored in RAM of FIG.
  • FIG. 3 is a flowchart showing an operation power supply voltage determination operation in the power amplification device of the communication terminal device according to the first embodiment.
  • FIG. 4 is an explanatory diagram showing the use of the DC / DC converter and the switch depending on the power supply voltage value of the battery at the time of high power output.
  • FIG. 5 is an explanatory diagram showing the recognition change of the control power supply voltage / power table when the temperature and frequency change.
  • FIG. 6 is a block diagram showing a configuration of a communication terminal apparatus having a power amplifying apparatus according to Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart illustrating an operation power supply voltage determining operation performed by the power amplifying device of the communication terminal device according to the second embodiment.
  • FIG. 1 is a block diagram showing a configuration of a communication terminal device such as a mobile phone having a power amplification device according to Embodiment 1 of the present invention.
  • an HPA (High Power Amplifier) 1 as a power amplifier amplifies a high-frequency signal (transmitted signal) received from a transmission unit 6 and converts the amplified high-frequency signal to an isolator 7, a high-frequency switch 8, and an antenna.
  • the isolator 7 is provided to reduce the power reflected from the antenna 10 and operate the HPA 1 stably, and the high-frequency switch 8 determines the signal path from the transmitter 6 to the antenna 10 during transmission. It is provided to determine a signal path from the antenna 10 to the receiving unit 9 during reception.
  • the high-frequency switch 8 also has a duplexer function of blocking a signal circulating from the transmission unit 6 to the reception unit 9.
  • the transmitting section 6 is configured by a multiplier 6a and a variable gain amplifier 6b, and performs frequency conversion processing on the spanned signal by the multiplier 6a to convert the frequency into a high-frequency signal. Then, the high-frequency signal is amplified by the variable gain amplifier 6b to generate a transmission signal.
  • the gain of the variable gain amplifier 6b changes based on a gain control voltage value specified by the control unit 11 configured using, for example, a microcomputer.
  • the receiving unit 9 receives a high-frequency signal via the antenna 10 and the high-frequency switch 8 at the time of reception, and performs a frequency conversion process to convert the high-frequency signal into a baseband signal. Then, the frequency-converted baseband signal is taken into control section 11 as a received signal.
  • the received signal also includes a command that specifies the transmission power and transmission frequency.
  • the HPA 1 has a power supply voltage for operation, a power supply voltage Vdd 2 (second power supply voltage) obtained through a DC / DC converter 2 which is a power supply voltage converter, or a switch 3 (switch).
  • the power supply voltage Vdd3 third power supply voltage obtained via the switch section) is supplied.
  • the activation of the DC / DC converter 2 is controlled by the control unit 1 1, and the power supply voltage Vddl (first power supply voltage) output from the battery 4, which is the power supply voltage supply, drops to the power supply voltage Vdd 2 in the active state. Then, it is supplied as the power supply voltage for operating the HP A1.
  • the DC / DC converter 2 operates so that the power supply voltage Vdd 2 matches the control power supply voltage value TVc specified by the control unit 11.
  • the switch 3 is configured by an FET or the like, and supplies the power supply voltage Vddl of the battery 4 to the HP A 1 as the power supply voltage Vdd3 when in the ON state under the control of the control unit 11.
  • the power supply voltage Vdd3 is almost equal to the power supply voltage Vddl.
  • the switch 3 is configured by FET, the power supply voltage Vdd3 is lower than the power supply voltage Vddl by the threshold voltage of FET o
  • the monitor circuit 5 outputs a monitor power value obtained by measuring the output power of the HPA 1 to the control unit 1.
  • the monitor power value is for confirmation, and has no effect on the control operation of the power supply voltage for operation of the HP A 1 performed under the control of the control unit 11.
  • the monitor circuit 5 is realized by, for example, a circuit that extracts a part of the output power from a part of the current path of the output of the HP A1 and converts the power to a voltage.
  • the temperature sensor 114 is installed at a predetermined location of the portable terminal device, measures the device temperature of the portable terminal device, and outputs the measured temperature to the control unit 11.
  • the operating power supply voltage detection circuit 13 uses, as an operating power supply voltage, a voltage obtained from a node N1 which is an input node of the operating power supply voltage of the HP A1 (an output node of the DC / DC converter 2 and the switch 3). Detects and outputs the detected power supply voltage VM as the detection result to the control unit 11.
  • the RAM 12 stores a control power supply voltage / power table T12 in which the control transmission voltage value of the variable gain amplifier 6b and the control power supply voltage value of the HPA 1 are associated in a table format with the assumed transmission power at the time of adjustment. I have. Note that the assumed transmission power at the time of adjustment means the transmission power adjusted at the time of manufacturing the communication terminal device on the manufacturing line.
  • the control unit 11 comprises the power amplifier 21 together with the HP A 1, the DC / DC converter 2, the switch 3, the battery 4, the transmitting unit 6, the RAMI 2, and the power supply voltage detecting circuit 13 for operation, which will be described later.
  • Various controls such as control of the power supply voltage for operation of the HP A 1 and control of the transmission unit 6 are performed.
  • the configuration excluding the HPA 1, the transmission unit 6, and the power supply voltage detection circuit 13 for operation from the power amplification device 21 functions as a power supply voltage supply unit.
  • the control unit 11 has a power estimation function for estimating an estimated transmission power, which will be described in detail later. Based on the estimated transmission power, the power amplifier performs a low power output operation in a first period or performs a high power output operation. Determine if it is a second period.
  • the control unit 11 activates the DC / DC converter 2 to supply the power supply voltage Vdd2 to the operating power supply voltage during the first period, and supplies the detected power supply voltage value during the second period. Based on the VM, the activation / inactivation of the DC / DC converter 2 and the on / off of the switch 3 are controlled, and one of the power supply voltage Vdd2 and the power supply voltage Vdd3 is supplied as an operation power supply voltage.
  • resistance voltage division resistance voltage division
  • FIG. 2 is an explanatory diagram showing an example of a control power supply voltage / power table.
  • Power supply voltage value TV c (i) is set.
  • the gain control voltage value Vrf has a magnitude relationship of Vrf (i)> Vrf (i + j) (j ⁇ 1)
  • the control power supply voltage value TVc is TVc (i). > T Vc (i + j)
  • the control power supply voltage TV c is the maximum control power supply voltage T Vc (when the estimated transmission power during adjustment is, for example, 22 dBm or more.
  • FIG. 3 is a flowchart showing the operation of supplying the power supply voltage for operation supplied to HPA 1 under the control of control unit 11 in power amplifying device 21 of the communication terminal apparatus according to the first embodiment. It is a chart. Hereinafter, the processing procedure will be described with reference to FIG. Although not shown in FIG. 3, the supply of the power supply voltage Vdd2 by the DC / DC converter 2 is set as an initial setting immediately after the start of the transmission operation. Further, the supply of the power supply voltage V dd3 by the switch 3 may be set as an initial setting.
  • step S1 the control power supply voltage value TVc to be applied to the DC / DC converter 2 which can be changed from time to time is compared with a predetermined reference voltage THVC. 1 is determined as the period during which high (power) output is being performed (second period), and the process proceeds to step S2. Otherwise, HP A 1 is during the period during which low (power) output is being performed (first period). Period), and proceeds to step S3.
  • the control unit 11 determines the control power supply voltage value TVc as follows.
  • the control unit 11 has a power estimation function for assuming an assumed transmission power corresponding to an assumed output power value to be output from the HPA 1 based on the transmission power specified in the command included in the received signal. Therefore, the assumed transmission power value changes every moment when the command for specifying the transmission power is changed.
  • the control unit 11 refers to the control power supply voltage / power table T12 stored in the RAM 12 to control the control power supply voltage value TVc (corresponding to the adjustment-time assumed transmission power that matches the assumed transmission power described above. i) is determined as the control power supply voltage value TVc in step S1. For example, if the assumed output power value is 20 dBm, TVc (2) is determined as the control power supply voltage value TVc used in step S1.
  • the output state of the HPA 1 is in the high-voltage output state or the low-voltage output state.
  • An output state can be accurately recognized.
  • the control unit 11 when assuming the output power value (transmission power) of the HP A 1, the control unit 11 does not use the result of monitoring the output power of the HP A 1 by the monitor circuit 5, and thus confirms the following. There is no need for higher precision (higher dynamic range) in the monitor circuit 5 which is only used.
  • step S3 executed when TVc ⁇ THVC (first period) in step S1, HPA 1 determines that a low power output is being performed, activates DC / DC comparator 2 and activates the switch. By turning 3 off, the DC / DC The power supply voltage Vdd2 is supplied as the operating power supply voltage. At this time, the DC / DC converter 2 is controlled so that the power supply voltage Vdd 2 becomes the control power supply voltage value TVc. After executing step S3, the process returns to step S1 again. Thereafter, the processing of steps S 1 and S 3 is repeated until TV c> T HVC.
  • step S2 executed when TVc> THVC (second period) in step S1, the operation of detecting the operation power supply voltage of the node N1 by the operation power supply voltage detection circuit 13 is started. Obtain the detection power supply voltage value VM. Accordingly, as the detected power supply voltage value VM, the measurement result of the power supply voltage Vdd2 is obtained when the DC / DC converter 2 is in the active state, and the measurement result of the power supply voltage Vdd3 is obtained when the switch 3 is on.
  • step S4 it is checked whether the current power supply voltage is supplied by the DC / DC converter 2 or not. If it is due to the DC / DC converter overnight 2, go to step S5, otherwise (ie, if it is with switch 3) go to step S8.
  • step S5 which is executed when it is determined in step S4 that the current power supply is supplied by the DC / DC converter 2, the detected power supply voltage value VM and the reference voltage TCL (first threshold value) are set.
  • the reference voltage TCL functions as a reference voltage for the power supply voltage Vdd2 by the DC / DC converter 2.
  • the reference voltage TCL for example, the minimum voltage required by HPA1 as a power supply voltage can be considered.
  • step S6 the DC / DC converter 2 is deactivated and the switch 3 is turned on, thereby switching the supply of the power supply voltage Vdd3 via the switch 3. After performing step S6, the process returns to step S1.
  • step S7 the same processing as in step S3 is performed, and the supply of the power supply voltage Vdd2 via the DC / DC converter 2 is maintained. After performing step S7, the process returns to step S1.
  • the reference voltage T CH functions as a reference voltage for the power supply voltage Vdd3 by the switch 3.
  • the reference voltage T CH for example, the initial voltage of the battery 4 (the voltage at the time of charging when the battery 4 is a rechargeable battery) — a (a slight margin such as a voltage drop through the switch 3) and the like are considered.
  • step S9 the same processing as in steps S3 and S7 is executed to switch to the supply of the power supply voltage Vdd2 via the DC / DC comparator 2. After execution of step S9, the process returns to step S1.
  • step S10 the same processing as in step S6 is performed to maintain the supply of the power supply voltage Vdd3 via the switch 3.
  • the process returns to step S1.
  • the power supply voltage Vdd3 is sufficiently high even when the power supply voltage Vdd3 is supplied by the switch 3, and the power supply voltage Vdd2 is used as the power supply voltage for operating the HP A1. If it is judged that the operation of HPA 1 does not hinder the operation, the power supply voltage is immediately switched to the supply of the power supply voltage Vdd2 by the DC / DC converter 2, so that the HPA 1 can operate efficiently. it can.
  • control unit 11 controls the operation power supply voltage of the HPA 1 on the basis of the control power supply voltage value TVc and the detected power supply voltage value VM as described below, so that the operation of the HP A 1 is not hindered.
  • the HPA 1 can operate efficiently.
  • FIG. 4 is an explanatory diagram showing how to use the DC / DC converter 2 and the switch 3 properly at the power supply voltage V dd 4 of the battery 4 at the time of high power output.
  • the battery 4 is a rechargeable battery such as a lithium-ion battery, for example, the power supply voltage Vdd 4 is initially 4.3 V, and is reduced to about 3.1 V due to a temporal change due to use. I have.
  • the DC / DC converter 2 does not interfere with the operation if a power supply voltage for operation of at least 3.5 V is supplied.
  • the power supply voltage Vdd4 when the power supply voltage Vdd4 is 3.7 V or higher, the power supply voltage Vdd2 is supplied from the DC / DC converter 2 as the power supply voltage for operating the HPA 1, and the HPA 1 operates normally more efficiently.
  • the power supply voltage Vdd 4 when the power supply voltage Vdd 4 is less than 3.7 V, the power supply voltage Vdd 3 from the switch 3 is supplied as the power supply voltage for operating the HP A 1, so that the HP A 1 can reliably operate normally.
  • the power supply voltage Vdd 4 of the battery 4 can be changed over time. To supply the appropriate operating supply voltage to HPA 1 o
  • Figure 5 is an explanatory diagram showing the perception change of the control power supply voltage and power table T12 when the temperature and frequency change.
  • control power supply voltage / power table T12 is a relationship in which the gain control voltage value V rf is associated with the assumed transmission power at the time of adjustment at the reference device temperature and the reference transmission frequency. That is, the control power supply voltage 'power table T12' also has the function of the gain control table of the variable gain amplifier 6b.
  • the above relationship also changes. Specifically, there is a negative correlation between the relationship between the device temperature and the transmission power and the relationship between the transmission frequency and the transmission power.
  • the HPA 1 performs a power amplification operation at a fixed predetermined amplification factor, and the transmission power is determined based on the predetermined amplification factor of the HPA 1 and the gain of the variable gain amplifier 6b. Therefore, if the relationship between transmission power and device temperature or transmission frequency changes, It is necessary to change the control gain voltage value of the variable gain amplifier 6b corresponding to the time transmission power.
  • the gain of the variable gain amplifier 6b is determined by the control power value Vrf obtained by directly referring to the control power supply voltage / power table T12 shown in FIG.
  • the figure shows a case in which a 3 dB change occurs in that the transmission power rises by 3 dB when the control is performed.
  • control unit 11 recognizes from the control power supply voltage / power table T12 by replacing the gain control voltage value V rf by 3 dB with the virtual control power supply voltage / power table T 12V. .
  • the power supply voltage for control the gain control voltage value Vrf (5) corresponding to the assumed transmission power of 20 dBm in the power table T12 corresponding to 20 dBm is revised down by 3 dB, and the power supply voltage for virtual control As shown in power table T 12 V, gain control voltage value is changed to Vrf (8) (gain control voltage value corresponding to transmission power of 17 dBm during adjustment).
  • the control power supply voltage value TVc itself does not change and maintains the control power supply voltage value TVc (2).
  • the control unit 11 automatically changes the recognition from the control power supply voltage 'power table T12' to the virtual control power supply voltage / power table T12V based on the device temperature and the transmission frequency.
  • control unit 11 when the control unit 11 refers to the control power supply voltage / power table T12, the control unit 11 recognizes based on the temperature difference between the device temperature and the reference device temperature (virtual control power supply voltage • power table T12V Recognize the gain control voltage value Vrf by using the function shown in the figure below, or recognize the gain control voltage value Vrf based on the recognition content based on the frequency difference between the transmission frequency and the reference transmission frequency.
  • the control unit 11 can recognize the device temperature from the measured temperature obtained by the temperature sensor 14.
  • the transmission frequency is recognized as follows.
  • the control unit 11 receives a command issued from the base station as a reception signal on the path of the antenna 10, the high-frequency switch 8, and the reception unit 9, and transmits the transmission frequency and transmission power specified by the command.
  • the transmission unit 6 is controlled so as to transmit the data. Therefore, the control unit 11 itself can always recognize the transmission frequency.
  • control unit 11 changes the recognition contents of the control power supply voltage / power table T12 based on the difference between the device temperature and the reference device temperature or the difference between the transmission frequency and the reference transmission frequency. Since the gain of the variable gain amplifier 6b of the transmitting section 6 can always be controlled based on the appropriate gain control voltage value V rf, transmission can always be performed with stable transmission power.
  • the control power supply voltage value TV c is not affected. Therefore, even if the device temperature or the transmission frequency changes, the power supply voltage control of the HPA 1 (using the control power supply voltage TV c) by the power amplification device 21 can be performed with high accuracy.
  • the power supply voltage detection circuit 13 for operation measures the voltage at the power supply voltage input terminal No. FN1 of the HPA 1 as the power supply voltage for operation, the DC / DC converter is not used except during transmission. By leaving the switch 2 inactive and the switch 3 off, no extra current is consumed by the operating power supply voltage detection circuit 13.
  • FIG. 6 is a block diagram showing a configuration of a communication terminal device having a power amplification device according to Embodiment 2 of the present invention.
  • an operation power supply voltage detection circuit 15 is newly provided in place of the operation power supply voltage detection circuit 13 of the first embodiment, and the power supply voltage Vdd 1 from the battery 4 obtained from the node N 2 is provided. Supply the detected power supply voltage VM obtained by detecting
  • the power amplifier 22 is composed of the HPA 1, the DC / DC converter 2, the switch 3, the battery 4, the transmitter 6, the controller 11, the RAMI 2, and the power supply voltage detecting circuit 15 for operation. .
  • the configuration excluding the HPA 1, the transmitting unit 6, and the operating power supply voltage detection circuit 15 from the power amplifying device 22 functions as a power supply voltage supply unit.
  • the other configuration is the same as that of the first embodiment shown in FIG.
  • FIG. 7 is a flowchart showing a power supply voltage control operation for supplying power to the HP A 1 performed under the control of the control unit 11 in the power amplification device 22 of the communication terminal device according to the second embodiment.
  • step S11 the control power supply voltage value TVc to be given to the DC / DC converter 2 is compared with a predetermined reference voltage THVC. If this is the case, it is determined that high power output is being performed, and the process proceeds to step S12. Otherwise, it is determined that low power output is being performed, and the process proceeds to step S13.
  • step S13 the power supply voltage Vdd 2 is supplied via the DC / DC converter 2 by activating the DC / DC converter 2 and turning off the switch 3. At this time, the DC / DC comparator 2 is controlled so that the power supply voltage Vdd2 becomes the control power supply voltage TVc. After executing step S13, the process returns to step S11 again. Thereafter, the processes of steps S11 and S13 are repeated until TVc> THVC.
  • step S12 detection of the power supply voltage Vdd 1 by the operation power supply voltage detection circuit 15 is started, and a detected power supply voltage value VM is obtained.
  • step S15 the power supply voltage Vdd 3 is supplied via the switch 3 by turning off the DC / DC converter 2 and turning on the switch 3. After execution of step S15, the process returns to step S11.
  • step S16 the same processing as in step S13 is performed to supply the power supply voltage Vdd2 via the DC / DC converter 2. After executing step S.16, the process returns to step S11.
  • the power amplifying apparatus determines that the power supply voltage Vdd 3 is appropriate as the power supply voltage for the operation of the HP A 1 if the VM (two Vddl) is less than the TCM.
  • the communication terminal device of the second embodiment directly monitors the power supply voltage Vdd1 of the battery 4 so that the power supply voltage Vdd2 via the DC / DC converter 2 is always controlled by one reference voltage TCM.
  • the supply and the supply of the power supply voltage Vdd3 via the switch 3 can be selectively controlled.
  • a switch is provided between the operation power supply voltage detection circuit 15 and the battery 4 that is turned off except during transmission. It is desirable.
  • a mobile communication terminal device has been described as an example, but the present invention can be applied to a wireless LAN system or the like that requires the power amplification devices 21 and 22.
  • the HP AU DC / DC converter 2, the switch 3, and the power supply voltage detection circuit for operation 13 power supply voltage detection circuit 15 for operation
  • the HP AU DC / DC converter 2 the HP AU DC / DC converter 2, the switch 3, and the power supply voltage detection circuit for operation 13 (power supply voltage detection circuit 15 for operation) are used. It is conceivable to make an IC with one chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)

Abstract

本発明は電力用増幅器を有する電力増幅装置に関し、電力増幅器の動作に支障を来すことなく、電力増幅器を効率的に使用することを目的とする。そして、上記目的を達成するために、制御部11は想定出力電力値に基づき電力増幅器が低電力出力動作を行う第1の期間であるか高電力出力動作を行う第2の期間であるかを判断し、上記第1の期間は、DC/DCコンバータ2を活性状態にして電源電圧Vdd2をHPA1の動作用電源電圧として供給し、上記第2の期間は、動作用電源電圧検知回路13より得られる検知電源電圧値VMに基づき、DC/DCコンバータ2の活性/非活性及びスイッチ3のオン/オフを制御し、電源電圧Vdd2及び電源電圧Vdd3のうち一方を動作用電源電圧として供給する。

Description

電力増幅装置、 通信端末装置及び電力増幅装置の制御方法
技術分野
本発明は電力用増幅器を有し、 電力用増幅器に供給する動作用電源電圧を制御 する電力増幅装置及びその制御方法並びに電力増幅装置を用いた通信端末装置に 関する。
背景技術
携帯用の通信端末装置の一つである携帯電話 (携帯通信端末) において、 マイ クロフオンから入力された音声信号は、 電力 (音声) 増幅器によって増幅され、 搬送波に重畳されて基地局側へと送信される。 従来、 上述した電力増幅器の電源 電圧端子には、 携帯通信端末の電源であるリチウムイオン電池等の充電式電池か ら直接電力が供給されていた。
この際、 電力増幅器の動作用電源電圧を送出電力に応じて制御することにより、 電力増幅器の効率を高め、 かつ、 充電池の消耗を抑制することにより、 効率よく 充電池を使用することを可能とした電源電圧制御装置及び電源電圧制御装置を備 えた携帯通信端末として特開 2 0 0 2 - 2 9 0 2 4 7号公報 (以下、 「特許文献 1」 と略する) で開示された装置がある。
特許文献 1に開示された電源電圧制御装置は、 電力増幅器の出力電力と上記電 力増幅器の動作用電源電圧値とが関連づけられている電源電圧テーブルと、 上記 電源電圧テーブルに基づいて、 電力増幅器へ供給する電源電圧を制御する電圧制 御手段とを具備することを特徴とし、 電圧制御手段として DC/DCコンバ一夕を用 いている。
しかしながら、 特許文献 1に開示された電源電圧制御装置において、 DC/DCコ ンバ一夕の抵抗値は比較的大きいことから、 電力増幅器が所定レベルより高い電 力を出力する高出力動作時において、 DC/DCコンバ一夕による電圧降下量が大き くなり、 電力増幅器の動作に十分な電源電圧を供給できないという問題点があつ た。
発明の開示
本発明は、 上記のような問題点を解決し、 電力増幅器の動作に支障を来すこと なく、 電力増幅器を効率的に使用可能な電源電圧制御装置を得ることを目的とす る o
本発明に係る電力増幅装置は、 第 1の電源電圧を供給源とした動作用電源電圧 を受けて動作する電力増幅器 ( 1 ) と、 前記動作用電源電圧及び前記第 1の電源 電圧のうち一方の電源電圧を検知して検知電源電圧値を得る動作用電源電圧検知 回路 ( 13) と、 前記電力増幅器が出力すべき出力電力値を想定出力電力値とし て想定する電力想定機能を有し、 前記想定出力電力値及び前記検知電源電圧値に 基づいて決定される前記動作用電源電圧を前記電力増幅器に供給する動作用電源 電圧供給部 ( 2 , 3 , 4, 1 1, 1 2) とを備えている。
本発明に係る通信端末装置は、 送信信号を発生する送信部 ( 6) と、 電池から 出力される第 1の電源電圧を供給源とした動作用電源電圧を受けて動作し、 前記 送信信号の送信電力を増幅する電力増幅器 ( 1 ) と、 前記動作用電源電圧及び前 記第 1の電源電圧のうち一方の電源電圧を検知して検知電源電圧値を得る動作用 電源電圧検知回路 ( 1 3) と、 前記送信部を制御するとともに、 前記電力増幅器 が出力すべき出力電力値を想定出力電力値として想定する電力想定機能を有し、 前記想定出力電力値及び前記検知電源電圧値に基づいた前記動作用電源電圧を前 記電力増幅器に供給する動作用電源電圧供給部 (2, 3, 4, 1 1 , 1 2) とを 備えている。
本発明に係る電力増幅装置の制御方法は、 電池より出力される第 1の電源電圧 を供給源とした動作用電源電圧を受けて動作する電力増幅器 ( 1 ) を有する電力 増幅装置の制御方法であって、 (a) 前記動作用電源電圧及び前記第 1の電源電圧 のうち一方の電源電圧を検知して検知電源電圧値を得るステップと、 (b) 電力増 幅器の出力すべき出力電力値を想定出力電力値として想定し、 前記想定出力電力 値に基づき前記電力増幅器が高電力出力動作を行うか低電力出力動作を行うかを 判断するステップと、 (c) 前記ステップ (b) で前記電力増幅器が前記低電力出力 動作を行うと判断した場合、 前記第 1の電源電圧を降圧した電圧を前記動作用電 源電圧として供給するステップと、 ( 前記ステップ(b) で前記電力増幅器が前 記高電力出力動作を行うと判断した場合、 前記検知電源電圧値に基づき、 前記第 1の電源電圧を降圧した電圧及び前記第 1の電源電圧のうち一方を前記動作用電 源電圧として供給するステップとを備えている。
本発明に係る電力増幅装置は、 想定出力電力値に加え、 電力増幅器の動作用電 源電圧あるいは第 1の電源電圧を検知して得られる検知電源電圧値に基づいて、 電力増幅器に供給する動作用電源電圧を制御するため、 電力増幅器の動作に支障 を来すことなく、 電力増幅器を効率的に使用することができる。
本発明に係る通信端末装置における動作用電源電圧供給部は、 想定出力電力値 に加え、 電力増幅器の動作用電源電圧あるいは電池から出力される第 1の電源電 圧を検知して得られる検知電源電圧値に基づいて決定される動作用電源電圧を電 力増幅器に供給するため、 電力増幅器の動作に支障を来すことなく、 電力増幅器 を効率的に使用することができる。
本発明に係る電力増幅装置の制御方法は、 ステップ (b ) , ( c ) による想定出力 電力値に基づく制御に加え、 ステップ (b) , ( d) によって電力増幅器の動作用電 源電圧あるいは電池から出力される第 1の電源電圧を検知して得られる検知電源 電圧値に基づいて決定される動作用電源電圧を電力増幅器に供給するため、 電力 増幅器の動作に支障を来すことなく、 電力増幅器を効率的に使用することができ る。
この発明の目的、 特徴、 局面、 および利点は、 以下の詳細な説明と添付図面と によって、 より明白となる。
図面の簡単な説明
図 1はこの発明の実施の形態 1である電力増幅装置を有する通信端末装置の構 成を示すブロック図である。
図 2は図 1の R A Mに格納された制御用電源電圧 ·電力テーブルの例を示す説 明図である。
図 3は実施の形態 1の通信端末装置の電力増幅装置における動作用電源電圧決 定動作を示すフローチャートである。
図 4は高電力出力時における電池の電源電圧値による DC/DCコンバ一夕及びス ィツチの使い分け状況を示す説明図である。
図 5は温度, 周波数変化時における制御用電源電圧 ·電力テーブルの認識変化 を示す説明図である。 図 6はこの発明の'実施の形態 2である電力増幅装置を有する通信端末装置の構 成を示すプロック図である。
図 7は実施の形態 2の通信端末装置の電力増幅装置による動作用電源電圧決定 動作を示すフローチャートである。
発明を実施するための最良の形態
実施の形態 1 .
図 1はこの発明の実施の形態 1である電力増幅装置を有する携帯電話等の通信 端末装置の構成を示すプロック図である。
同図に示すように、 電力増幅器である H P A (High Power Amplifier) 1は送 信部 6より受ける高周波信号 (送信信号) を増幅して得られる増幅高周波信号を アイソレー夕 7、 高周波スィッチ 8及びアンテナ 1 0を介して送信する。 なお、 アイソレー夕 7はアンテナ 1 0から反射される電力を減らし、 H P A 1を安定し て動作させるために設けられ、 高周波スィツチ 8は送信時に送信部 6〜アンテナ 1 0に至る信号経路.を決定し、 受信時にアンテナ 1 0〜受信部 9に至る信号経路 を決定するために設けられている。 また、 高周波スィッチ 8は、 送信部 6から受 信部 9の経路で回り込む信号を遮断するデュプレクサの機能も備えている。
送信部 6は乗算器 6 a及び可変利得増幅器 6 bより構成され、 乗算器 6 aによ りべ一スパンド信号に対し周波数変換処理を実行することにより高周波信号に周 波数変換する。 そして、 可変利得増幅器 6 bにより高周波信号を増幅して送信信 号を発生する。 なお、 可変利得増幅器 6 bは例えばマイクロコンピュー夕を用い て構成される制御部 1 1の指示する利得制御用電圧値に基づきその利得が変化す る。
一方、 受信部 9は受信時にアンテナ 1 0及び高周波スィッチ 8を介して高周波 信号を受信し、 周波数変換処理を実行することにより高周波信号をベースバンド 信号に周波数変換する。 そして、 周波数変換されたベースバンド信号が受信信号 として制御部 1 1に取り込まれる。 受信信号には送信電力及び送信周波数を規定 する命令も含まれる。
H P A 1には動作用電源電圧として、 電源電圧変換部である DC/DCコンパ一夕 2を介して得られる電源電圧 Vdd 2 (第 2の電源電圧) あるいはスイッチ 3 (ス イッチ部) を介して得られる電源電圧 Vdd3 (第 3の電源電圧) が供給される。 DC/DCコンバータ 2は制御部 1 1により活性 非活性が制御され、 活性状態時に 電源電圧供給源である電池 4より出力される電源電圧 Vddl (第 1の電源電圧) を電源電圧 Vdd2に電圧降下させて HP A 1の動作用電源電圧として供給する。 なお、 DC/DCコンパ'一夕 2は、 制御部 1 1の指示する制御用電源電圧値 TV cに 電源電圧 Vdd 2がー致するように動作する。
一方、 スィッチ 3は FET等で構成され、 制御部 1 1の制御下でオン状態時に 電池 4の電源電圧 Vddlを電源電圧 Vdd3として HP A 1に供給する。 電源電圧 Vdd3はほぼ電源電圧 Vddlに等しいが、 例えば、 スイッチ 3が F E Tで構成さ れる場合、 電源電圧 Vdd3は電源電圧 Vddlに比べ F E Tの閾値電圧分は低下す る o
モニタ回路 5は HPA 1の出力電力を測定して得られるモニタ電力値を制御部 1 に出力する。 モニタ電力値は確認用であり、 制御部 1 1の制御下で行う HP A 1の動作用電源電圧の制御動作には何ら関与しない。 モニタ回路 5は、 例えば、 HP A 1の出力の電流経路の一部から出力電力の一部分を取り出して、 その電力 を電圧に変換する等の回路により実現する。
温度センサ一 14は携帯端末装置の所定箇所に設置され、 携帯端末装置の装置 温度を測定して測定温度を制御部 1 1に出力する。
動作用電源電圧検知回路 13は、 HP A 1の動作用電源電圧の入力ノード (DC /DCコンバ一夕 2及びスィツチ 3の出力ノード) となるノード N 1より得られる 電圧を動作用電源電圧として検知し、 検知結果である検知電源電圧値 VMを制御 部 1 1に出力する。
RAM 12は、 調整時想定送信電力に可変利得増幅器 6 bの制御利得用電圧値 と H P A 1の制御用電源電圧値とをテーブル形式で関連づけた制御用電源電圧 · 電力テーブル T 12を格納している。 なお、 調整時想定送信電力とは通信端末装 置の製造ライン上での製造時に調整された送信電力を意味する。
制御部 1 1は HP A 1、 DC/DCコンバ一夕 2、 スイッチ 3、 電池 4、 送信部 6、 RAMI 2、 動作用電源電圧検知回路 13と共に電力増幅装置 2 1を構成し、 後 述する HP A 1の動作用電源電圧の制御、 送信部 6の制御等、 様々な制御を行う。 また、 電力増幅装置 2 1から HPA1、 送信部 6及び動作用電源電圧検知回路 1 3を除いた構成が電源電圧供給部として機能する。
制御部 1 1は後に詳述する想定送信電力を想定する電力想定機能を有し、 この 想定送信電力に基づき電力増幅器が低電力出力動作を行う第 1の期間であるか高 電力出力動作を行う第 2の期間であるかを判断する。
そして、 制御部 1 1は、 上記第 1の期間は、 DC/DCコンバータ 2を活性状態に して電源電圧 Vdd2を動作用電源電圧を供給し、 上記第 2の期間は、 検知電源電 圧値 VMに基づき、 DC/DCコンバ一夕 2の活性/非活性及びスィツチ 3のオン/ オフを制御し、 電源電圧 Vdd 2及び電源電圧 Vdd3のうち一方を動作用電源電圧 として供給する。
なお、 動作用電源電圧検知回路 13としては例えば抵抗分圧 (抵抗分割) によ る回路を用いている。 仮に電源電圧 Vdd4 = 4 V、 抵抗分圧を行っている抵抗値 = 2 OkQと想定すると、 動作用電源電圧検知回路 13で消費する電流 =4/(20,0 00*2)=0.1mAとなる。 一方、 電力増幅装置 2 1により削減できる電流は数十 mAォ ーダ一の為, 動作用電源電圧検知回路 13で消費する電流が電力増幅装置 21に 悪影響を与えることはない。
図 2は制御用電源電圧 ·電力テーブルの例を示す説明図である。 同図に示すよ うに、 調整時想定送信電力に対応して、 可変利得増幅器 6 bの利得制御用の利得 制御用電圧値 Vrf (i) (i = 0, …, 8, …;) 及び制御用電源電圧値 T V c ( i) が設定される。 なお、 利得制御用電圧値 Vr f は Vr f ( i ) >Vr f ( i + j ) ( j≥ 1 ) の大小関係を有しており、 制御用電源電圧値 TV cは TV c ( i) >T Vc ( i + j ) の大小関係を有しており、 調整時想定送信電力が例 えば 22 d B m以上の時に制御用電源電圧値 T V cは最大の制御用電源電圧値 T Vc (0) に設定される。 制御用電源電圧 '電力テ一プル T 12を参照して、 例 えば、 想定送信電力を 20 dBmとする場合、 調整時においては可変利得増幅器 6 bの利得制御用電圧値 Vr f (5) にし、 制御用電源電圧値 TV c (2) に設 定すれば実現できることになる。
図 3は、 実施の形態 1の通信端末装置の電力増幅装置 21において制御部 1 1 の制御下で行う、 HPA 1に供給する動作用電源電圧の供給動作を示すフローチ ャ一トである。 以下、 同図を参照してその処理手順を説明する。 なお、 図 3では 示さないが送信動作開始直後の初期設定として DC/DCコンバ一夕 2よる電源電圧 Vdd2の供給が設定される。 また、 初期設定としてスィッチ 3による電源電圧 V dd3の供給を設定してもよい。
まず、 ステップ S 1において、 時々刻々変化し得る DC/DCコンパ一夕 2に与え るべき制御用電源電圧値 TV cと、 所定の基準電圧 THVCとを比較し、 TVc >THVCであれば HP A 1は高 (電力) 出力を行っている期間 (第 2の期間) と判断しステップ S 2に移行し、 そうでなければ HP A 1は低 (電力) 出力を行 つている期間 (第 1の期間) と判断し、 ステップ S 3に移行する。
なお、 制御部 1 1は制御用電源電圧値 TVcを以下のように決定する。 制御部 1 1は、 受信信号に含まれる命令に規定された送信電力に基づき、 HPA 1から 出力すべき想定出力電力値に相当する想定送信電力を想定する電力想定機能を有 している。 したがって、 想定送信電力値は送信電力を規定する命令が変更される 毎に時々刻々変化する。
制御部 1 1は、 RAM 12に格納された制御用電源電圧 ·電力テーブル T 12 を参照することにより、 上述した想定送信電力に一致する調整時想定送信電力に 対応する制御用電源電圧値 TVc (i) をステップ S 1の制御用電源電圧値 TV cとして決定する。 例えば、 想定出力電力値が 20 dBmであれば、 ステップ S 1で用いる制御用電源電圧値 TVcとして TVc (2) を決定する。
このように、 制御用電源電圧■電力テーブル T 12を参照して、 想定送信電力 に対応する制御用電源電圧値 TVcに基づくことにより、 HPA 1の出力状態が 高電圧出力状態であるか低電圧出力状態であるかを正確に認識することができる。 上述のように、 制御部 1 1は HP A 1の出力電力値 (送信電力) を想定するに 際して、 HP A 1の出力電力のモニタ回路 5によるモニタ結果を利用していない ため、 確認用にすぎないモニタ回路 5に高精度化 (高ダイナミックレンジ化) の 必要性はない。
ステップ S 1で TVc<THVC時 (第 1の期間) に実行されるステップ S 3 において、 HPA 1は低電力出力を行っていると判断し、 DC/DCコンパ一夕 2を 活性状態にし、 スィッチ 3をオフ状態にすることにより、 DC/DCコンパ一夕 2を 介した電源電圧 Vdd2を動作用電源電圧として供給する。 この際、 電源電圧 Vdd 2が制御用電源電圧値 TV cとなるように DC/DCコンバ一夕 2を制御する。 ステ ヅプ S 3の実行後は再びステップ S 1に戻る。 以降、 T V c >T HV Cになるま でステヅプ S 1 , S 3の処理が繰り返されることになる。
ステップ S 1で TVc >THVC時 (第 2の期間) に実行されるステップ S 2 において、 動作用電源電圧検知回路 1 3によるノ一ド N 1の動作用電源電圧の検 知動作を開始し、 検知電源電圧値 VMを得る。 したがって、 検知電源電圧値 VM として、 DC/DCコンバータ 2の活性状態時には電源電圧 Vdd2の測定結果が得ら れ、 スィッチ 3のォン状態時には電源電圧 Vdd 3の測定結果が得られる。
続いて、 ステップ S 4において、 現在の電源電圧の供給が DC/DCコンパ一夕 2 によるか否かがチェヅクされる。 DC/DCコンバ一夕 2による場合はステツプ S 5 に移行し、 そうでない場合 (すなわち、 スィッチ 3による場合) はステップ S 8 に移行する。
ステップ S 4で現在の電源電圧の供給が DC/DCコンバ一夕 2によると判定され た場合に実行されるステップ S 5において、 検知電源電圧値 VMと基準電圧 T C L (第 1の閾値) とを比較し、 VM<T CLであれば HPA 1の動作用電源電圧 として電源電圧 V d d 2では低すぎると判断しステヅプ S 6に移行し、 そうでなけ れば動作用電源電圧は電源電圧 Vdd 2で不足なく行われていると判断しステップ S 7に移行する。 このように、 基準電圧 T C Lは DC/DCコンバータ 2による電源 電圧 Vdd2に対する基準電圧として機能する。 基準電圧 T CLとしては例えば H P A 1が電源電圧として必要とする最低電圧が考えられる。
ステップ S 6において、 DC/DCコンパ一夕 2を非活性状態にし、 スイッチ 3を オン状態にすることにより、 スィッチ 3を介した電源電圧 Vdd3の供給に切り換 える。 ステップ S 6の実行後はステップ S 1に戻る。
一方、 ステップ S 7において、 ステップ S 3と同様の処理を実行し、 DC/DCコ ンバ一夕 2を介した電源電圧 Vdd2の供給を維持する。 ステップ S 7の実行後は ステップ S 1に戻る。
このように、 DC/DCコンパ一夕 2による電源電圧 Vdd2を供給中は、 VM (= Vdd2) ≥VCLであれば、 電源電圧 Vdd2が HPA 1の動作用電源電圧として 十分であると判断し DC/DCコンバ一夕 2による電源電圧 Vdd2の供給を維持し、 VM ( = Vdd2 ) く VC Lであれば、 電源電圧 Vdd 2が H P A 1の動作用電源電 圧として不十分であると判断しスィツチ 3による電源電圧 Vdd 3の供給に切り換 兄る。
したがって、 HPA 1の髙電力出力期間 (第 2の期間) 中においても、 HPA 1の動作に支障ない範囲では常に DC/DCコンバ一夕 2による電源電圧 Vdd2の供 給が維持されるため、 HP A 1を効率的に動作させることができる。
一方、 ステップ S 4で現在の電源電圧の供給がスィツチ 3による電源電圧の供 給であると判定された場合に実行されるステツプ S 8において、 検知電源電圧値 VM ( = Vdd3) と第 2の閾値である基準電圧 T CH (>T CL) とを比較し、 VM>T CHであれば動作用電源電圧として電源電圧 V dd 3は過剰であり無駄が 多いと判断しステップ S 9に移行し、 そうでなければ動作用電源電圧として電源 電圧 Vdd3が適度であると判断しステップ S 1 0に移行する。 このように、 基準 電圧 T CHはスィッチ 3による電源電圧 Vdd3に対する基準電圧として機能する。 基準電圧 T C Hとしては例えば電池 4の初期電圧 (電池 4が充電電池の場合充電 時の電圧) — a (スイッチ 3を介することによる電圧降下等の若干のマ一ジン) 等が考えられる。
なお、 過剰な動作用電源電圧が HP A 1に供給された場合、 過剰分の電圧は H P A 1の発熱要因となる。 小型化、 高密度化が進む携帯電話等の携帯通信端末装 置においては発熱による温度上昇は無視できない問題であり、 この観点からも H PA 1を効率的に動作させることは重要である。 特に、 本携帯通信端末装置の電 池 4の充電中に通話 (送信) を行う際には、 HPA 1の発熱を緩和することがで き、 例えば、 1 0 OmW程度の発熱量を減らすことができる。
ステップ S 9において、 ステップ S 3及び S 7と同様の処理を実行し、 DC/DC コンパ一夕 2を介した電源電圧 Vdd 2の供給に切り換える。 ステップ S 9の実行 後はステツプ S 1に戻る。
ステップ S 1 0において、 ステップ S 6と同様の処理を行い、 スイッチ 3を介 した電源電圧 Vdd3の供給を維持する。 ステップ S 1 0の実行後はステップ S 1 に厌る。 このように、 スィッチ 3による電源電圧 Vdd3を供給中は、 VM ( = Vdd3) V C Hであれば、 電源電圧 Vdd 3が H P A 1の動作用電源電圧として適度であ ると判断しスィッチ 3による電源電圧 Vdd3の供給を維持し、 VM ( = Vdd3) > V C Hであれば、 電源電圧 Vdd 3が H P A 1の動作用電源電圧として過剰であ ると判断し DC/DCコンパ一夕 2による電源電圧 Vdd2の供給に切り換える。
したがって、 HP A 1の高電力出力期間 (第 2の期間) 中において、 スイッチ 3による電源電圧 Vdd 3の供給中でも電源電圧 Vdd3が十分高く、 電源電圧 Vdd 2を HP A 1の動作用電源電圧としても用いても HP A 1の動作に支障がないと 判断すれば、 速やかに DC/DCコンパ一夕 2による電源電圧 Vdd2の供給に切り換 えられるため、 HPA 1を効率的に動作させることができる。
上述したように、 制御部 1 1は制御用電源電圧値 TV c及び検知電源電圧値 V Mに基づき以下のように H P A 1の動作用電源電圧を制御することにより、 HP A 1の動作に支障無く、 H P A 1を効率的に動作させることができる。
(1) TVc≤THVCを満足する時
DC/DCコンパ一夕 2による電源電圧 Vdd2の供給 (HP A 1は低電力出力期間 中であるため電源電圧 Vdd2で十分な動作用電源電圧となるとの判断)
(2) T V c >T H V Cを満足する時
(2-1) VM>T CH … DC/DCコンパ一夕 2による電源電圧 Vdd2の供給 (電源電圧 Vdd3から電源電圧 Vdd2に切り替えても、 十分な動作用電源電圧 となるとの判断)
(2-Z) VMく T C L … スイッチ 3による電源電圧 Vdd3の供給
(電源電圧 Vdd 2では動作用電源電圧として不十分であると判断)
(2-3) T CL≤VM≤T CH … 現状の電源電圧の供給を維持する。
(現在の電源電圧の供給を維持させるのが最善と判断)
このように、 動作用電源電圧自体を検知し、 2つの状況 (動作用電源電圧が電 源電圧 Vdd2あるいは電源電圧 Vdd3の場合) それそれにおいて異なる閾値 (T CL、 T CH) と検知電源電圧値とを比較することにより、 '上記 2つの状況のう ちいずれの状況下においても適切な動作用電源電圧を HP A 1に供給することが できる。 図 4は高電力出力時における電池 4の電源電圧 V dd 4における DC/DCコンバー 夕 2及びスィッチ 3の使い分け状況を示す説明図である。 同図において、 電池 4 が例えばリチウムイオン電池等の充電電池の場合に、 電源電圧 Vdd 4は当初は 4 . 3 Vであり使用による経時変化により 3 . 1 V程度にまで低下するケースを想定 しいる。 また、 DC/DCコンバータ 2は、 少なくとも 3 . 5 Vの動作用電源電圧の 供給があれば動作に支障が生じない場合を想定している。
図 4に示すように、 電源電圧 Vdd4が 3 . 7 V以上では DC/DCコンバータ 2か ら電源電圧 Vdd 2を H P A 1の動作用電源電圧として供給した方が、 H P A 1を 効率的に正常動作させることができ、 上述した発熱による問題も回避できる。 一方、 電源電圧 Vdd 4が 3 . 7 V未満ではスイッチ 3からの電源電圧 Vdd 3を H P A 1の動作用電源電圧として供給することにより、 H P A 1を確実に正常動 作作させることができる。
このように、 高電力出力時において、 検知電源電圧値 V Mに基づき DC/DCコン バ一夕 2及びスィツチ 3のうち一方を選択することにより、 電池 4の電源電圧 V dd 4の経時変化に応じて適切な動作用電源電圧を H P A 1に供給することができ る o
図 5は温度, 周波数変化時における制御用電源電圧 ·電力テ一ブル T 1 2の認 識変化を示す説明図である。
制御用電源電圧 ·電力テーブル T 1 2で示す関係は、 基準装置温度及び基準送 信周波数の時における、 調整時想定送信電力に対応して利得制御用電圧値 V r f を関連づけた関係である。 つまり、 制御用電源電圧 '電力テ一ブル T 1 2は可変 利得増幅器 6 bの利得制御用テ一ブルの機能も備えている。
したがって、 装置温度 (通信端末温度) 及び送信周波数のうち少なくとも一方 が基準 (基準装置温度あるいは基準送信周波数) から変化すると上記関係も変化 する。 具体的には、 装置温度と送信電力との関係及び送信周波数と送信電力の関 係は共に負の相関がある。
一方、 H P A 1は固定された所定の増幅率で電力増幅動作を行い、 送信電力は H P A 1の所定の増幅率と可変利得増幅器 6 bの利得とに基づき決定する。 した がって、 送信電力と装置温度あるいは送信周波数との関係が変化した場合、 想定 時送信電力に対応する可変利得増幅器 6 bの制御用利得電圧値を変化させる必要 がある。
図 5の例では、 装置温度あるいは送信周波数の減少に伴い、 図 2で示す制御用 電源電圧 ·電力テーブル T 12をそのまま参照して取得した制御用電力値 Vr f により可変利得増幅器 6 bの利得を制御すると、 送信電力が 3 dB上昇してしま うという、 3 dBの変化が生じた場合を示している。
この場合、 制御部 1 1は、 制御用電源電圧■電力テーブル T 12から、 利得制 御用電圧値 V r f を 3 dB分下方修正した仮想制御用電源電圧 ·電力テーブル T 12 Vに置き換えて認識する。
図 5の例では、 制御用電源電圧 ·電力テーブル T 12の調整時想定送信電力 2 0 dBmに対応する利得制御用電圧値 Vr f (5) が 3 dB下方修正され、 仮想 制御用電源電圧 ·電力テーブル T 12 Vに示すように、 利得制御用電圧値 Vr f (8) (調整時では送信電力 17 dBmに対応する利得制御用電圧値) に変更さ れる。 なお、 制御用電源電圧値 TVc自体は変化せず、 制御用電源電圧値 TVc (2) を維持する。 制御部 1 1は上述した制御用電源電圧 '電力テーブル T 12 から仮想制御用電源電圧 ·電力テーブル T 12 Vへの認識変更を装置温度及び送 信周波数に基づき自動的に行う。
このように、 制御部 1 1は、 制御用電源電圧 ·電力テーブル T 12を参照する 際、 装置温度と基準装置温度との温度差に基づく認識内容 (仮想制御用電源電圧 •電力テーブル T 12 Vで示す対応で認識する) で利得制御用電圧値 Vr f を認 識したり、 送信周波数と基準送信周波数との周波数差に基づく認識内容で利得制 御用電圧値 Vr f を認識する。
したがって、 送信時に、 携帯端末装置の装置温度、 送信周波数が調整時の基準 装置温度及び送信周波数から変化しても、 常に安定した送信電力で送信すること できる。
なお、 制御部 1 1は温度センサー 14により得られる測定温度から上記装置温 度を認識することができる。 一方、 送信周波数は以下のように認識される。 制御 部 1 1は、 基地局から発された命令をアンテナ 10、 高周波スィツチ 8、 及び受 信部 9の経路で受信信号として受け、 命令で規定された送信周波数及び送信電力 で送信するように送信部 6を制御する。 したがって、 制御部 1 1自体が常に送信 周波数を常に認識することができる。
このように、 制御部 1 1は装置温度と基準装置温度との差あるいは送信周波数 と基準送信周波数との差に基づき制御用電源電圧 ·電力テーブル T 1 2の認識内 容を変更することにより、 常に適切な利得制御用電圧値 V r f に基づき送信部 6 の可変利得増幅器 6 bの利得を制御することができるため、 常に安定した送信電 力で送信することできる。
加えて、 装置温度あるいは送信周波数の変化に対応して可変利得増幅器 6 bの 利得制御用電圧値 V r f を変化させることにより、 制御用電源電圧値 T V cに影 響が生じないようにしているため、 装置温度あるいは送信周波数の変化が生じて も、 電力増幅装置 2 1による H P A 1の電源電圧制御 (制御用電源電圧値 T V c を利用している) を精度良く行うことができる。
なお、 実施の形態 1では動作用電源電圧検知回路 1 3によって H P A 1の電源 電圧入力端子であるノー F N 1における電圧を動作用電源電圧として測定してい るため、 送信時以外は DC/DCコンパ一夕 2を非活性、 スイッチ 3をオフ状態にし ておくことにより、 動作用電源電圧検知回路 1 3に余分な電流が消費されること はない。
実施の形態 2 .
図 6はこの発明の実施の形態 2である電力増幅装置を有する通信端末装置の構 成を示すプロック図である。
同図に示すように、 実施の形態 1の動作用電源電圧検知回路 1 3の代わりに動 作用電源電圧検知回路 1 5を新たに設け、 ノード N 2より得られる電池 4からの 電源電圧 Vdd lを検知して得られる検知電源電圧値 V Mを制御部 1 1に与えてい る o
したがって、 H P A 1、 DC/DCコンパ一夕 2、 スイッチ 3、 電池 4、 送信部 6、 制御部 1 1、 R A M I 2、 及び動作用電源電圧検知回路 1 5によって電力増幅装 置 2 2を構成する。 また、 電力増幅装置 2 2から H P A 1、 送信部 6、 動作用電 源電圧検知回路 1 5を除いた構成が電源電圧供給部として機能する。 なお、 他の 構成は図 1で示した実施の形態 1と同様であるため説明は省略する。 図 7は実施の形態 2の通信端末装置の電力増幅装置 22において制御部 1 1の 制御下で行う、 HP A 1に供給する電源電圧制御動作を示すフローチャートであ る。 以下、 同図を参照してその処理手順を説明する。
まず、 ステップ S 1 1において、 実施の形態 1と同様、 DC/DCコンバータ 2に 与えるべき制御用電源電圧値 TV cと所定の基準電圧 THVCとを比較し、 TV 0 >丁£[ 0でぁれば11卩 1は高電力出力を行っていると判断しステップ S 1 2に移行し、 そうでなければ低電力出力を行っていると判断しステップ S 13に 移行する。
ステップ S 13において、 DC/DCコンパ一夕 2を活性状態にし、 スィッチ 3を オフ状態にすることにより、 DC/DCコンバ一夕 2を介した電源電圧 Vdd 2の供給 を実行する。 この際、 電源電圧 Vdd2が制御用電源電圧値 TVcとなるように DC /DCコンパ一夕 2を制御する。 ステップ S 13実行後は再びステップ S 1 1に戻 る。 以降、 TVc>THVCになるまでステップ S l l, S 13の処理が繰り返 されることになる。
ステップ S 12において、 動作用電源電圧検知回路 15による電源電圧 Vdd 1 の検知を開始し、 検知電源電圧値 VMを得る。
ステップ S 14において、 検知電源電圧値 VM ( = Vddl ) と基準電圧 TCM (T CL<T CM<T CH) とを比較し、 VMく T CMであれば HP A 1への供 給する電源電圧が低すぎると判断しステップ S 15に移行し、 そうでなければ H P A 1への電源電圧供給は十分に行われていると判断しステップ S 16に移行す る o
ステップ S 15において DC/DCコンパ一夕 2を非活性状態にし、 スィヅチ 3を オン状態にすることにより、 スィツチ 3を介した電源電圧 Vdd 3の供給を行う。 ステップ S 15の実行後はステヅプ S 1 1に戻る。
一方、 ステップ S 16において、 ステップ S 13と同様の処理を実行し、 DC/D Cコンバータ 2を介した電源電圧 Vdd2の供給を実行する。 ステップ S.16の実 行後はステップ S 1 1に戻る。
このように、 実施の形態 2の電力増幅装置は、 VM (二 Vddl) く TCMであ れぱ、 電源電圧 Vdd 3が HP A 1の動作用電源電圧として適切であると判断しス イッチ 3による電源電圧 Vdd3の供給を実行し、 VM ( = Vddl ) ≥TCMであ れば、 電源電圧 Vdd 2が HP A 1の動作用電源電圧として適切であると判断し DC /DCコンバ一夕 2による電源電圧 Vdd2の供給を実行する。
したがって、 HP A 1の高電力出力期間 (第 2の期間) 中においても、 HPA 1の動作に支障ない期間 (VM VCMの期間) では常に DC/DCコンパ一夕 2に よる電源電圧 Vdd2の供給が維持されるため、 HPA 1を効率的に動作させるこ とができる。
このように、 実施の形態 2の通信端末装置は電池 4の電源電圧 Vdd 1を直接モ 二夕することにより常に一つの基準電圧 T CMによって DC/DCコンバ一夕 2を介 した電源電圧 Vdd2の供給及びスィツチ 3を介した電源電圧 Vdd3の供給を選択 的に制御することができる。
加えて、 実施の形態 2では、 電池 4の電源電圧 Vddlを直接検知しているため、 図 4で示した電池 4の電源電圧 Vddlに基づく DC/DCコンバ一夕 2及びスィツチ 3の選択を精度良く行うことができる。
ただし、 送信時以外は動作用電源電圧検知回路 15に電流が流れるのを阻止す ベく、 動作用電源電圧検知回路 15と電池 4との間に送信時以外はオフ状態とな るスィツチを設けることが望ましい。
なお、 上述した実施の形態では、 携帯通信端末装置を例に挙げたが、 電力増幅 装置 2 1 , 22を必要とする無線 LANシステム等に適用可能である。
また、 上述した電力増幅装置 2 1 , 22内の構成を I C化する場合、 例えば、 HP A U DC/DCコンバータ 2、 スィツチ 3及び動作用電源電圧検知回路 13 (動作用電源電圧検知回路 15) を 1チップで I C化することが考えられる。

Claims

請求の範囲
1. 第 1の電源電圧を供給源とした動作用電源電圧を受けて動作する電力増幅 器 (1) と、
前記動作用電源電圧及び前記第 1の電源電圧のうち一方の電源電圧を検知して 検知電源電圧値を得る動作用電源電圧検知回路 ( 13) と、
前記電力増幅器が出力すべき出力電力値を想定出力電力値として想定する電力 想定機能を有し、 前記想定出力電力値及び前記検知電源電圧値に基づいて決定さ れる前記動作用電源電圧を前記電力増幅器に供給する動作用電源電圧供給部 ( 2 , 3, 4, 1 1, 12) とを備える、
電力増幅装置。
2. 前記動作用電源電圧供給部は、
前記第 1の電源電圧 (Vddl) を出力する電池 (4) と、
前記電池と前記電力増幅器との間に介挿され、 前記第 1の電源電圧を、 前記第 1の電源電圧より低い第 2の電源電圧 (Vdd2) に変換する電源電圧変換部 (2) と、
前記電池と前記電力増幅器との間に前記電源電圧変換部と並列に介挿され、 前 記第 1の電源電圧を第 3の電源電圧 (Vdd3) として供給するスイッチ部 (3) とを備え、 前記第 3の電源電圧は前記第 2の電源電圧より高く、
前記電源電圧変換部及び前記スィツチ部の動作制御機能を有し、 前記想定出力 電力値に基づき前記電力増幅器が低電力出力動作を行う第 1の期間であるか高電 力出力動作を行う第 2の期間であるかを判断し、 前記第 1の期間は、 前記電源電 圧変換部より得られる前記第 2の電源電圧を前記動作用電源電圧として供給し、 前記第 2の期間は、 前記検知電源電圧値に基づき前記第 2及び第 3の電源電圧の うち一方を前記動作用電源電圧として供給する制御部 ( 1 1) をさらに備える、 請求の範囲 1記載の電力増幅装置。
3. 前記動作用電源電圧検知回路は前記動作用電源電圧を検知する回路を含み、 前記制御部は、 前記 2の期間において、
前記第 2の電源電圧を前記動作用電源電圧として供給中に、 前記検知電源電圧 値が第 1の閾値を下回るとき、 前記第 2の電源電圧に替えて前記第 3の電源電圧 を前記動作用電源電圧として供給し、
前記第 3の電源電圧を前記動作用電源電圧として供給中に、 前記検知電源電圧 値が前記第 1の閾値より高い第 2の閾値を上回るとき、 前記第 3の電源電圧に替 えて前記第 2の電源電圧を前記動作用電源電圧として供給する、
請求の範囲 2記載の電力増幅装置。
4 . 前記動作用電源電圧検知回路は前記第 1の電源電圧を検知する回路を含み、 前記制御部は、 前記 2の期間において、
前記検知電源電圧値が所定の閾値より低いとき、 前記第 3の電源電圧を前記動 作用電源電圧として供給し、 それ以外のとき、 前記第 2の電源電圧を前記動作用 電源電圧として供給する、
請求の範囲 2記載の電力増幅装置。
5 . 前記動作用電源電圧供給部は、
前記電力増幅器の出力電力値と前記電力増幅器の制御用電源電圧値とを関連づ けた制御用電源電圧 ·電力テーブル (T 1 2 ) を格納した記憶部 ( 1 2 ) をさら に備え、
前記制御部は、 前記記憶部の制御用電源電圧 ·電力テーブルを参照して、 前記 想定出力電力値に対応する前記制御用電源電圧値を認識し、 該制御用電源電圧値 と所定の基準電圧との比較結果に基づき、 前記第 1及び第 2の期間を判断する、 請求の範囲 2ないし請求の範囲 4のうち、 いずれかの請求の範囲に記載の電力増 幅装置。
6 . 送信信号を発生する送信部 ( 6 ) と、
電池から出力される第 1の電源電圧を供給源とした動作用電源電圧を受けて動 作し、 前記送信信号の送信電力を増幅する電力増幅器 ( 1 ) と、
前記動作用電源電圧及び前記第 1の電源電圧のうち一方の電源電圧を検知して 検知電源電圧値を得る動作用電源電圧検知回路 ( 1 3 ) と、
前記送信部を制御するとともに、 前記電力増幅器が出力すべき出力電力値を想 定出力電力値として想定する電力想定機能を有し、 前記想定出力電力値及び前記 検知電源電圧値に基づいた前記動作用電源電圧を前記電力増幅器に供給する動作 用電源電圧供給部 ( 2 , 3 , 4, 1 1 , 1 2 ) とを備える、 通信端末装置。
7 . 前記送信部は可変利得増幅器 ( 6 b ) を含み、 前記電力増幅器の前記出力 電力値は前記可変利得増幅器の利得と前記電力増幅器の有する電力増幅率とに基 づき決定され、
前記動作用電源電圧供給部は、 前記電力増幅器の出力電力値と前記可変利得増 幅器の利得制御用電圧値とを関連づけた利得制御用テーブル (T 1 2 ) を格納し た記憶部 ( 1 2 ) を備え、
前記動作用電源電圧供給部は、 前記記憶部の利得制御用テーブルを参照して、 前記想定出力電力値に対応する前記利得制御用電圧値を認識し、 該利得制御用電 圧値に基づき前記可変利得増幅器の利得を制御する利得制御処理を実行する、 請求の範囲 6記載の通信端末装置。
8 . 前記通信端末装置の装置温度を検出する温度センサ一 ( 1 4 ) をさらに備 え、
前記動作用電源電圧供給部は、 前記記憶部の利得制御用テーブルを参照し、 前 記想定出力電力値に対応する前記利得制御用電圧値を、 前記装置温度と所定の基 準装置温度との差に基づき認識する、
請求の範囲 7記載の通信端末装置。
9 . 外部より受信信号を受信する受信部 ( 9 ) をさらに備え、
前記動作用電源電圧供給部は、 前記受信信号中に含まれる送信周波数を規定し た命令に基づき送信周波数を認識可能であり、 前記記憶部の利得制御用テーブル を参照し、 前記想定出力電力値に対応する前記利得制御用電圧値を、 前記送信周 波数と所定の基準送信周波数との差に基づき認識する、
請求の範囲 7記載の通信端末装置。
1 0 . 電池より出力される第 1の電源電圧を供給源とした動作用電源電圧を受 けて動作する電力増幅器 ( 1 ) を有する電力増幅装置の制御方法であって、
(a) 前記動作用電源電圧及び前記第 1の電源電圧のうち一方の電源電圧を検知 して検知電源電圧値を得るステップと、
( b ) 電力増幅器の出力すべき出力電力値を想定出力電力値として想定し、 前記 想定出力電力値に基づき前記電力増幅器が高電力出力動作を行うか低電力出力動 作を行うかを判断するステップと、
( c ) 前記ステップ (b) で前記電力増幅器が前記低電力出力動作を行うと判断し た場合、 前記第 1の電源電圧を降圧した電圧を前記動作用電源電圧として供給す るステツプと、
( d) 前記ステップ (b) で前記電力増幅器が前記高電力出力動作を行うと判断し た場合、 前記検知電源電圧値に基づき、 前記第 1の電源電圧を降圧した電圧及び 前記第 1の電源電圧のうち一方を前記動作用電源電圧として供給するステツプと を備える、
電力増幅装置の制御方法。
PCT/JP2004/001305 2004-02-06 2004-02-06 電力増幅装置、通信端末装置及び電力増幅装置の制御方法 WO2005076467A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005517601A JPWO2005076467A1 (ja) 2004-02-06 2004-02-06 電力増幅装置、通信端末装置及び電力増幅装置の制御方法
EP04708920A EP1713176A4 (en) 2004-02-06 2004-02-06 POWER AMPLIFIER UNIT, COMMUNICATION TERMINAL AND CONTROL METHOD FOR POWER AMPLIFIER UNIT
PCT/JP2004/001305 WO2005076467A1 (ja) 2004-02-06 2004-02-06 電力増幅装置、通信端末装置及び電力増幅装置の制御方法
CNA2004800426831A CN1938942A (zh) 2004-02-06 2004-02-06 功率放大装置、通信终端装置及功率放大装置的控制方法
US10/588,239 US20070146076A1 (en) 2004-02-06 2004-02-06 Power amplifier unit, communication terminal and control method of power amplifier unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/001305 WO2005076467A1 (ja) 2004-02-06 2004-02-06 電力増幅装置、通信端末装置及び電力増幅装置の制御方法

Publications (1)

Publication Number Publication Date
WO2005076467A1 true WO2005076467A1 (ja) 2005-08-18

Family

ID=34835762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001305 WO2005076467A1 (ja) 2004-02-06 2004-02-06 電力増幅装置、通信端末装置及び電力増幅装置の制御方法

Country Status (5)

Country Link
US (1) US20070146076A1 (ja)
EP (1) EP1713176A4 (ja)
JP (1) JPWO2005076467A1 (ja)
CN (1) CN1938942A (ja)
WO (1) WO2005076467A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006246028A (ja) * 2005-03-03 2006-09-14 Matsushita Electric Ind Co Ltd ポーラ変調送信装置及び無線通信機
JP2007318654A (ja) * 2006-05-29 2007-12-06 Kyocera Corp 携帯無線機及びそれに用いるパワーアンプの制御方法
EP1938461A2 (en) * 2005-09-27 2008-07-02 Skyworks Solutions, Inc. Variable gain frequency multiplier
JP2010011062A (ja) * 2008-06-26 2010-01-14 Panasonic Corp 送信装置及び電源電圧設定方法
US8050722B2 (en) 2004-12-10 2011-11-01 Nec Corporation Voltage supply control device and voltage supply control method
JP2011259083A (ja) * 2010-06-07 2011-12-22 Renesas Electronics Corp Rf電力増幅装置およびその動作方法
JP2014045386A (ja) * 2012-08-27 2014-03-13 Sharp Corp 無線通信装置および携帯電子機器

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112452B1 (en) 2009-07-14 2015-08-18 Rf Micro Devices, Inc. High-efficiency power supply for a modulated load
WO2011124116A1 (zh) 2010-04-09 2011-10-13 华为终端有限公司 功率放大器的电压驱动装置、功率放大系统、射频功率放大器的供电设备和通信设备
EP2561611B1 (en) 2010-04-19 2015-01-14 RF Micro Devices, Inc. Pseudo-envelope following power management system
US9099961B2 (en) 2010-04-19 2015-08-04 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
US9431974B2 (en) 2010-04-19 2016-08-30 Qorvo Us, Inc. Pseudo-envelope following feedback delay compensation
US8981848B2 (en) 2010-04-19 2015-03-17 Rf Micro Devices, Inc. Programmable delay circuitry
WO2012047738A1 (en) 2010-09-29 2012-04-12 Rf Micro Devices, Inc. SINGLE μC-BUCKBOOST CONVERTER WITH MULTIPLE REGULATED SUPPLY OUTPUTS
US9075673B2 (en) 2010-11-16 2015-07-07 Rf Micro Devices, Inc. Digital fast dB to gain multiplier for envelope tracking systems
US8942313B2 (en) 2011-02-07 2015-01-27 Rf Micro Devices, Inc. Group delay calibration method for power amplifier envelope tracking
JP5996559B2 (ja) 2011-02-07 2016-09-21 スカイワークス ソリューションズ,インコーポレイテッドSkyworks Solutions,Inc. 包絡線トラッキング較正のための装置および方法
US9379667B2 (en) 2011-05-05 2016-06-28 Rf Micro Devices, Inc. Multiple power supply input parallel amplifier based envelope tracking
US9246460B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power management architecture for modulated and constant supply operation
US9247496B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power loop control based envelope tracking
WO2012166992A1 (en) 2011-05-31 2012-12-06 Rf Micro Devices, Inc. Rugged iq receiver based rf gain measurements
US9019011B2 (en) 2011-06-01 2015-04-28 Rf Micro Devices, Inc. Method of power amplifier calibration for an envelope tracking system
US8760228B2 (en) 2011-06-24 2014-06-24 Rf Micro Devices, Inc. Differential power management and power amplifier architecture
US8952710B2 (en) 2011-07-15 2015-02-10 Rf Micro Devices, Inc. Pulsed behavior modeling with steady state average conditions
WO2013012787A2 (en) 2011-07-15 2013-01-24 Rf Micro Devices, Inc. Modified switching ripple for envelope tracking system
US9263996B2 (en) 2011-07-20 2016-02-16 Rf Micro Devices, Inc. Quasi iso-gain supply voltage function for envelope tracking systems
CN103858338B (zh) 2011-09-02 2016-09-07 射频小型装置公司 用于包络跟踪的分离vcc和共同vcc功率管理架构
US8957728B2 (en) 2011-10-06 2015-02-17 Rf Micro Devices, Inc. Combined filter and transconductance amplifier
WO2013063364A1 (en) 2011-10-26 2013-05-02 Rf Micro Devices, Inc. Average frequency control of switcher for envelope tracking
US8878606B2 (en) 2011-10-26 2014-11-04 Rf Micro Devices, Inc. Inductance based parallel amplifier phase compensation
US9024688B2 (en) 2011-10-26 2015-05-05 Rf Micro Devices, Inc. Dual parallel amplifier based DC-DC converter
US9484797B2 (en) 2011-10-26 2016-11-01 Qorvo Us, Inc. RF switching converter with ripple correction
US9515621B2 (en) 2011-11-30 2016-12-06 Qorvo Us, Inc. Multimode RF amplifier system
US9250643B2 (en) 2011-11-30 2016-02-02 Rf Micro Devices, Inc. Using a switching signal delay to reduce noise from a switching power supply
US8975959B2 (en) 2011-11-30 2015-03-10 Rf Micro Devices, Inc. Monotonic conversion of RF power amplifier calibration data
US9280163B2 (en) 2011-12-01 2016-03-08 Rf Micro Devices, Inc. Average power tracking controller
US9041365B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. Multiple mode RF power converter
US8947161B2 (en) 2011-12-01 2015-02-03 Rf Micro Devices, Inc. Linear amplifier power supply modulation for envelope tracking
US9256234B2 (en) 2011-12-01 2016-02-09 Rf Micro Devices, Inc. Voltage offset loop for a switching controller
US9494962B2 (en) 2011-12-02 2016-11-15 Rf Micro Devices, Inc. Phase reconfigurable switching power supply
US9813036B2 (en) 2011-12-16 2017-11-07 Qorvo Us, Inc. Dynamic loadline power amplifier with baseband linearization
US9298198B2 (en) 2011-12-28 2016-03-29 Rf Micro Devices, Inc. Noise reduction for envelope tracking
US8981839B2 (en) 2012-06-11 2015-03-17 Rf Micro Devices, Inc. Power source multiplexer
WO2014018861A1 (en) * 2012-07-26 2014-01-30 Rf Micro Devices, Inc. Programmable rf notch filter for envelope tracking
US9225231B2 (en) 2012-09-14 2015-12-29 Rf Micro Devices, Inc. Open loop ripple cancellation circuit in a DC-DC converter
US9197256B2 (en) 2012-10-08 2015-11-24 Rf Micro Devices, Inc. Reducing effects of RF mixer-based artifact using pre-distortion of an envelope power supply signal
US9112649B2 (en) 2012-10-11 2015-08-18 Qualcomm Incorporated Method and apparatus for predicting signal characteristics for a nonlinear power amplifier
US9207692B2 (en) 2012-10-18 2015-12-08 Rf Micro Devices, Inc. Transitioning from envelope tracking to average power tracking
US9627975B2 (en) 2012-11-16 2017-04-18 Qorvo Us, Inc. Modulated power supply system and method with automatic transition between buck and boost modes
WO2014116933A2 (en) 2013-01-24 2014-07-31 Rf Micro Devices, Inc Communications based adjustments of an envelope tracking power supply
US9178472B2 (en) 2013-02-08 2015-11-03 Rf Micro Devices, Inc. Bi-directional power supply signal based linear amplifier
WO2014152903A2 (en) 2013-03-14 2014-09-25 Rf Micro Devices, Inc Envelope tracking power supply voltage dynamic range reduction
US9203353B2 (en) 2013-03-14 2015-12-01 Rf Micro Devices, Inc. Noise conversion gain limited RF power amplifier
US9479118B2 (en) 2013-04-16 2016-10-25 Rf Micro Devices, Inc. Dual instantaneous envelope tracking
KR101738730B1 (ko) 2013-04-23 2017-05-22 스카이워크스 솔루션즈, 인코포레이티드 전력 증폭기 시스템에서의 엔벨로프 정형화 장치 및 방법
US9374005B2 (en) 2013-08-13 2016-06-21 Rf Micro Devices, Inc. Expanded range DC-DC converter
US9362868B2 (en) * 2013-12-02 2016-06-07 Futurewei Technologies, Inc. Reduced power amplifier load impact for open loop envelope tracking
US9614476B2 (en) 2014-07-01 2017-04-04 Qorvo Us, Inc. Group delay calibration of RF envelope tracking
US9912297B2 (en) 2015-07-01 2018-03-06 Qorvo Us, Inc. Envelope tracking power converter circuitry
US9941844B2 (en) 2015-07-01 2018-04-10 Qorvo Us, Inc. Dual-mode envelope tracking power converter circuitry
US9973147B2 (en) 2016-05-10 2018-05-15 Qorvo Us, Inc. Envelope tracking power management circuit
US10476437B2 (en) 2018-03-15 2019-11-12 Qorvo Us, Inc. Multimode voltage tracker circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165261A (ja) * 1998-11-20 2000-06-16 Kenwood Corp 無線通信機の送信出力制御回路
JP2001320288A (ja) * 2000-03-03 2001-11-16 Matsushita Electric Ind Co Ltd 電源電圧制御装置及び電源電圧制御方法
JP2002094392A (ja) * 2000-09-14 2002-03-29 Matsushita Electric Ind Co Ltd 送信電力制御方法及び送信電力制御装置並びに移動無線局

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665525B2 (en) * 2001-05-29 2003-12-16 Ericsson Inc. High-level modulation method and apparatus
DE10140285A1 (de) * 2001-08-16 2003-02-27 Klein & Hummel Gmbh Schaltungsanordnung zur Verstärkung eines Audiosignals
US6630903B1 (en) * 2001-09-28 2003-10-07 Itt Manufacturing Enterprises, Inc. Programmable power regulator for medium to high power RF amplifiers with variable frequency applications
US6924698B2 (en) * 2003-07-31 2005-08-02 Agilent Technologies, Inc. Power detector for mismatched load

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165261A (ja) * 1998-11-20 2000-06-16 Kenwood Corp 無線通信機の送信出力制御回路
JP2001320288A (ja) * 2000-03-03 2001-11-16 Matsushita Electric Ind Co Ltd 電源電圧制御装置及び電源電圧制御方法
JP2002094392A (ja) * 2000-09-14 2002-03-29 Matsushita Electric Ind Co Ltd 送信電力制御方法及び送信電力制御装置並びに移動無線局

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050722B2 (en) 2004-12-10 2011-11-01 Nec Corporation Voltage supply control device and voltage supply control method
JP2006246028A (ja) * 2005-03-03 2006-09-14 Matsushita Electric Ind Co Ltd ポーラ変調送信装置及び無線通信機
JP4628142B2 (ja) * 2005-03-03 2011-02-09 パナソニック株式会社 ポーラ変調送信装置、無線通信機及び電源電圧制御方法
EP1938461A2 (en) * 2005-09-27 2008-07-02 Skyworks Solutions, Inc. Variable gain frequency multiplier
EP1938461A4 (en) * 2005-09-27 2013-09-25 Intel Corp FREQUENCY RECYCLER WITH VARIABLE REINFORCEMENT
JP2007318654A (ja) * 2006-05-29 2007-12-06 Kyocera Corp 携帯無線機及びそれに用いるパワーアンプの制御方法
JP2010011062A (ja) * 2008-06-26 2010-01-14 Panasonic Corp 送信装置及び電源電圧設定方法
JP2011259083A (ja) * 2010-06-07 2011-12-22 Renesas Electronics Corp Rf電力増幅装置およびその動作方法
JP2014045386A (ja) * 2012-08-27 2014-03-13 Sharp Corp 無線通信装置および携帯電子機器

Also Published As

Publication number Publication date
US20070146076A1 (en) 2007-06-28
EP1713176A4 (en) 2008-12-24
EP1713176A1 (en) 2006-10-18
JPWO2005076467A1 (ja) 2007-08-23
CN1938942A (zh) 2007-03-28

Similar Documents

Publication Publication Date Title
WO2005076467A1 (ja) 電力増幅装置、通信端末装置及び電力増幅装置の制御方法
US8406824B2 (en) Wireless communication apparatus and power-supply apparatus
US7816812B2 (en) Electronic device, and system for DC voltage conversion
US8958762B2 (en) Apparatus and method for power management
WO2017202184A1 (zh) 射频信号发送方法、装置及终端、计算机存储介质
US8362649B2 (en) Multi-use voltage regulator
US7960949B2 (en) Power converter
JP2001237722A (ja) 送信電力の調整回路装置
JP2008027842A (ja) 燃料電池装置、その制御装置、制御方法及びプログラム
CN112888054B (zh) 降低调谐器功耗的方法、装置、终端设备及存储介质
US5896261A (en) Power down protection circuit for an electronic device
JP2002141814A (ja) 移動端末の送信信号を増幅制御して、移動端末の連続動作能力を高める方法および装置
KR100659818B1 (ko) 하이브리드형 연료 전지의 전원 절환 장치 및 그 방법
US7574182B2 (en) Mobile communications terminal having driving voltage control apparatus and method thereof
JP2002094392A (ja) 送信電力制御方法及び送信電力制御装置並びに移動無線局
JP4182294B2 (ja) 移動体通信機
AU726354B2 (en) Electronic device having an AGC loop
JP2001320288A (ja) 電源電圧制御装置及び電源電圧制御方法
GB2328844A (en) Portable appliance power supply
JP2003189485A (ja) 携帯機器
JPH11187584A (ja) 携帯端末装置
US20090305749A1 (en) Wireless Communication Apparatus Capable of Reducing Power Consumption and Related Apparatus
US7551034B2 (en) Saturation handling
JPH08222963A (ja) 送信電力制御回路
RU2161862C1 (ru) Схема и способ управления мощностью, используемой портативным радиотелефоном

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480042683.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517601

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004708920

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004708920

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007146076

Country of ref document: US

Ref document number: 10588239

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10588239

Country of ref document: US