WO2017202184A1 - 射频信号发送方法、装置及终端、计算机存储介质 - Google Patents

射频信号发送方法、装置及终端、计算机存储介质 Download PDF

Info

Publication number
WO2017202184A1
WO2017202184A1 PCT/CN2017/082928 CN2017082928W WO2017202184A1 WO 2017202184 A1 WO2017202184 A1 WO 2017202184A1 CN 2017082928 W CN2017082928 W CN 2017082928W WO 2017202184 A1 WO2017202184 A1 WO 2017202184A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
radio frequency
value
transceiver
frequency signal
Prior art date
Application number
PCT/CN2017/082928
Other languages
English (en)
French (fr)
Inventor
刘卓曦
Original Assignee
努比亚技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 努比亚技术有限公司 filed Critical 努比亚技术有限公司
Publication of WO2017202184A1 publication Critical patent/WO2017202184A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0287Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level changing the clock frequency of a controller in the equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of mobile terminal technologies, and in particular, to a radio frequency signal transmitting method, device, terminal, and computer storage medium.
  • the technician can determine that a large part of the power consumption of the mobile phone is consumed under the launch operation. If you can reduce the power consumption of the mobile phone in the transmitting mode, you can extend the working time of the mobile phone, thereby improving the user experience.
  • the mobile terminal includes a power management IC (PMIC) 101, a radio transceiver (Transceiver) 102, and a power amplifier power management chip (PAPM). 103.
  • PMIC power management IC
  • PAPM power amplifier power management chip
  • ASM Antenna Switch Module
  • the RF transceiver 102 responsible for the analog baseband signal to the RF signal upconversion operation and the RF signal to the analog baseband signal down conversion work will convert the analog signal into a radio frequency signal and output it to the power amplifier. 104.
  • the RF signal output by the RF transceiver 102 is power amplified by the power amplifier 104 such that the power of the RF signal to be transmitted reaches the emission requirement of the antenna 106.
  • the power amplifier 104 then outputs the amplified signal to the antenna switch unit 105.
  • the antenna switch unit 105 selects a specific frequency band for the radio frequency signal to be transmitted, and then passes it to the antenna 106, and the RF signal to be transmitted is transmitted by the antenna 106 to Actual space.
  • the power management chip 101 is responsible for converting the power supply voltage into a voltage for use by other devices, and the RF power amplifier power management chip 103 is specifically responsible for managing the power supply of the power amplifier 104, which converts the voltage output from the power management chip 101 into a power amplifier. 104 used voltage.
  • the power management chip 101 maintains power to the RF transceiver 102, the RF power amplifier power management chip 103, and the antenna switch unit 105, while the RF power amplifier power management chip 103 maintains power to the power amplifier 104.
  • the RF power amplifier power management chip 103 and the power amplifier 104 are always in operation during the entire radio frequency transmission. From the lowest power transmission to the maximum power transmission, the current consumed by the RF power amplifier power management chip 103 and the power amplifier 104 ranges from tens of milliamps to hundreds of milliamps, and in terms of long-term frequent transmission, this is actually for the mobile terminal. It is a power that cannot be ignored.
  • the embodiment of the present invention is to provide a method, a device, a terminal, and a computer storage medium for transmitting a radio frequency signal, which are intended to solve the problem that the terminal needs to perform power amplification on all radio signals to be transmitted in the prior art.
  • the radio frequency of the terminal is high, the working time is short, and the user experience is poor.
  • an embodiment of the present invention provides a method for transmitting a radio frequency signal, where the method includes:
  • the power control information includes a current requirement of the base station to transmit power of the terminal
  • the radio frequency transceiver When the parsed information includes a given power value and is less than or equal to the maximum output power of the radio frequency transceiver, or the parsed information is a power adjustment command and the transmit power of the antenna end is less than or equal to the switching value, the radio frequency transceiver outputs The radio frequency signal is directly sent; the switching value is determined based on a requirement of the base station to transmit power of the terminal and a range of output power of the radio frequency transceiver;
  • the parsed information includes a given power value and is greater than the maximum output power of the radio frequency transceiver, or the parsed information is a power adjustment command and the transmit power of the antenna end is greater than the handover value
  • the radio frequency signal output by the radio frequency transceiver is After the power amplifier is amplified, it is transmitted.
  • the handover value is any one of a first dynamic range and a second dynamic range, where the first dynamic range is a range of transmit power required by the base station, and the second dynamic range is The range of RF transceiver output power.
  • the method further includes:
  • Control shuts off the power supply path to the power amplifier.
  • the method further includes the following processing steps of determining the switching value:
  • the switching value of the judgment is a switching value at which the value is small as the transmission power of the antenna end gradually decreases.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the method described in the foregoing embodiments.
  • the embodiment of the invention further provides a method for transmitting a radio frequency signal, the method comprising:
  • the radio frequency signal output by the radio frequency transceiver is directly transmitted;
  • the radio frequency signal output by the radio frequency transceiver is amplified by the power amplifier and transmitted.
  • the method further includes:
  • the method when controlling to turn off the power supply path of the power amplifier, the method further includes:
  • the power amplifier management chip that controls the power consumption of the power amplifier is turned off.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the method described in the foregoing embodiments.
  • the embodiment of the invention further provides a method for transmitting a radio frequency signal, the method comprising:
  • a power adjustment command is parsed from the power control information, where the power control information includes a current requirement of the base station to transmit power of the terminal;
  • the RF signal output by the radio transceiver The number is sent directly;
  • the RF signal output by the RF transceiver is amplified by the power amplifier and then transmitted;
  • the handover value is determined based on a requirement of the base station to transmit power of the terminal and a range of output power of the radio frequency transceiver.
  • the processing steps of acquiring the transmit power of the antenna end include:
  • the obtained radio frequency signal that is in the transmitting state is processed, and the transmitting power of the radio frequency signal is calculated as the transmitting power of the current antenna end.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the method described in the foregoing embodiments.
  • An embodiment of the present invention further provides a radio frequency signal sending apparatus, where the apparatus includes:
  • the information parsing module is configured to parse the received power control information, where the power control information includes a current requirement of the base station to transmit power of the terminal;
  • a direct sending module configured to: when the parsed information includes a given power value and is less than or equal to a maximum output power of the radio frequency transceiver, or the parsed information is a power adjustment command and the transmit power of the antenna end is less than or equal to the switching value, The radio frequency signal output by the radio frequency transceiver is directly sent; the switching value is determined based on a requirement of the base station to transmit power of the terminal and a range of output power of the radio frequency transceiver;
  • a power amplification module configured to: when the parsed information includes a given power value and is greater than a maximum output power of the radio frequency transceiver, or the parsed information is a power adjustment command and the transmit power of the antenna end is greater than a handover value, the radio frequency is The RF signal output by the transceiver is amplified by the power amplifier and transmitted.
  • the switching value is an intersection of the first dynamic range and the second dynamic range. Any one of the values, the first dynamic range is a range of transmit power required by the base station to the terminal antenna end, and the second dynamic range is a range of RF transceiver output power.
  • the device further includes:
  • the power supply control module is configured to control to turn off the power supply path of the power amplifier when the radio frequency signal output by the radio frequency transceiver is directly transmitted.
  • the apparatus further includes any one of the following handover value determining modules, where the handover value determining module is configured to determine the switching value;
  • the manner in which the handover value determination module determines the handover value includes any one of the following:
  • An embodiment of the present invention further provides a radio frequency signal sending apparatus, where the apparatus includes:
  • An information parsing module configured to obtain a given power value from a base station
  • the direct sending module is configured to directly send the radio frequency signal output by the radio frequency transceiver when the given power value is less than or equal to the maximum output power of the radio frequency transceiver;
  • the power amplification module is configured to: when the given power value is greater than the maximum output power of the radio frequency transceiver, the radio frequency signal output by the radio frequency transceiver is amplified by the power amplifier and then transmitted.
  • the device further includes:
  • the power supply control module is configured to control to turn off the power supply path of the power amplifier when the RF signal output by the RF transceiver is directly transmitted.
  • the power supply control module is further configured to control a power amplifier power management chip that specifically manages power consumption of the power amplifier to be in a closed state.
  • An embodiment of the present invention further provides a radio frequency signal sending apparatus, where the apparatus includes:
  • the information parsing module is configured to parse the power adjustment command from the power control information, where the power control information includes a current requirement of the base station to transmit power of the terminal;
  • the direct sending module is configured to directly transmit the radio frequency signal output by the radio transceiver when the transmit power of the antenna end is less than or equal to the switching value;
  • the power amplifying module is configured to: when the transmitting power of the antenna end is greater than the switching value, the RF signal output by the radio frequency transceiver is amplified by the power amplifier and then sent;
  • the handover value determining module is configured to determine the handover value based on a requirement of the base station to transmit power of the terminal and a range of output power of the radio frequency transceiver.
  • the information parsing module is further configured to acquire a radio frequency signal that is currently in a transmitting state of the antenna end, process the obtained radio frequency signal that is in a transmitting state, and calculate a transmit power of the radio frequency signal as The transmit power of the current antenna end.
  • the embodiment of the present invention further provides a terminal, where the terminal includes a radio frequency transceiver and a power amplifier, wherein the terminal further includes: a switch unit, a control unit, an antenna switch unit, and a coupler;
  • the control unit receives the power control information from the base station and parses the power control information, where the power control information includes a current base station request for the terminal transmit power;
  • the parsed information includes a given power value, determining whether the given power value is less than or equal to a maximum output power of the radio frequency transceiver; if yes, outputting the first strobe signal to the switch unit, the switch unit Transmitting a radio frequency signal output by the radio frequency transceiver into the antenna switch unit; otherwise, outputting a second strobe signal to a switch unit, the switch unit transmitting a radio frequency signal output by the radio frequency transceiver to the power In the amplifier;
  • the parsed information includes a power adjustment command, determining, according to the transmit signal fed back by the coupler, the transmit power of the antenna end, and determining whether it is less than or equal to the switch value; if yes, outputting the first strobe signal to the switch unit, The switching unit outputs the radio frequency of the radio frequency transceiver Transmitting a signal to the antenna switch unit; otherwise, outputting a second strobe signal to a switch unit, the switch unit transmitting a radio frequency signal output by the radio frequency transceiver to the power amplifier; The base station determines the transmit power requirement of the terminal and the range of the RF transceiver output power.
  • control unit when the second strobe signal is output, the control unit is further configured to control to turn off a power supply path of the power amplifier.
  • control unit is further configured to select, as the handover value, a value that satisfies the base station's transmit power requirement and the radio frequency transceiver output power range;
  • control unit is disposed in the radio frequency transceiver, or the control unit is separately disposed from the radio frequency transceiver.
  • the method and device for transmitting radio frequency signals and the terminal and the computer storage medium are provided in the embodiment of the present invention, and the received power control information is parsed, and the parsed information is a given power value and is less than or equal to the maximum output power of the radio frequency transceiver.
  • the parsed information is a power adjustment command and the transmit power of the antenna end is less than or equal to the switch value
  • the radio transceiver and the antenna switch unit are directly connected, so that the antenna switch unit directly selects a frequency band for the radio frequency signal to be transmitted output by the radio frequency transceiver.
  • the power amplification can be selectively performed, and the power amplifier is not required to be in a working state at all times, thereby saving power consumed in the power amplification process in some scenarios, reducing power consumption during signal transmission, and prolonging the working time of the terminal. , Improve the user experience.
  • FIG. 1 is a frame diagram of a mobile terminal in the prior art
  • FIG. 2 is a schematic diagram of a terminal according to Embodiment 1 of the present invention.
  • FIG. 3 is another frame diagram of a terminal according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a range of requirements for a base station to transmit power of a terminal and a range of output power of a radio frequency transceiver according to Embodiment 1 of the present invention
  • FIG. 5 is a flowchart of acquiring a transmit power of an antenna end in a method for transmitting a radio frequency signal according to Embodiment 3 of the present invention
  • FIG. 6 is a schematic structural diagram of a radio frequency signal transmitting apparatus according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural diagram of a radio frequency signal transmitting apparatus according to Embodiment 7 of the present invention.
  • FIG. 8 is another schematic structural diagram of a radio frequency signal transmitting apparatus according to Embodiment 7 of the present invention.
  • the terminal can be implemented in various forms.
  • the terminal described in the present invention may include, for example, a mobile phone, a smart phone, a notebook computer, a digital broadcast receiver, a personal digital assistant (PDA, Personal Digital Assistant), a tablet (PAD, Portable Android Device), a portable multimedia player. (PMP, Portable Media Player), a mobile terminal of a navigation device, and the like, and a fixed terminal such as a digital television (TV), a desktop computer, or the like.
  • PDA Personal Digital Assistant
  • PAD Portable Android Device
  • PMP Portable Media Player
  • TV digital television
  • desktop computer or the like
  • TV digital television
  • TV digital television
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 Please refer to FIG. 2:
  • the terminal also includes the radio frequency transceiver 102, the power amplifier 104, the antenna switch unit 105, and the antenna 106 shown in FIG. 1.
  • the mobile terminal provided in this embodiment further adds a coupler 107 and a switch unit 108.
  • the radio frequency transceiver 102 is different from the existing radio frequency transceiver, and includes not only a conversion module responsible for the up-conversion and down-conversion operations of the analog baseband signal to the radio frequency signal, but also includes A control unit.
  • a control signal output end of the control unit and a radio frequency signal output end of the conversion module are respectively connected to the control signal input end of the switch unit 108 and the radio frequency signal input end, and the other control signal output end of the control unit is connected to the control signal of the conversion module.
  • Input terminals; two outputs of the switch unit 108 are connected to the power amplifier 104 and the antenna switch unit 105, respectively.
  • the control unit parses the power control information acquired from the base station, and the power control information is used by the base station to indicate its current request for the terminal transmit power.
  • the power control information has two types: the first type of power control information includes one Given a power value, this means that the base station expects the terminal to signal according to the given power value. In some cases, the base station does not directly inform the terminal whether the radio frequency signal should be transmitted with a large transmission power, but only indicates whether the current transmission power of the terminal is too large or too small, so the power adjustment is included in the second type of power control information. Instructed, at this time, the terminal needs to determine, according to the current transmit power, how to send information to the base station.
  • the control unit When the power control information is parsed to include a given power value, the control unit directly compares the given power value with the maximum output power of the radio frequency transceiver 102.
  • the output power range of the existing RF transceiver is about -77dBm to 5dBm. That is, the RF transceiver 102 can adjust the power of the RF signal it outputs to any value between -77 dBm and 5 dBm.
  • the maximum output power value of the radio frequency transceiver 102 is 5 dBm. So in this embodiment, we compare the given power value to 5dBm:
  • the control unit When the given power value is less than or equal to the maximum output power of the radio frequency transceiver 102 by 5 dBm, the control unit outputs a first strobe signal, and the control switch unit 108 gates the signal path between the radio frequency transceiver 102 and the antenna switch unit 105.
  • the RF signal output by the RF transceiver 102 does not undergo a power amplification process, and can be directly transmitted by the antenna switch unit 105 for selecting a specific frequency band. It should be understood by those skilled in the art that the radio frequency transceiver 102 should be adjusted at this time so that the power value of the radio frequency signal output by the radio frequency transceiver 102 is a given power value.
  • the control unit When the given power value is greater than 5 dBm, the control unit outputs a second strobe signal, and the control switch unit 108 strobes the power amplifier 104 because the base station's request for the terminal transmit power has exceeded the signal power that the radio frequency transceiver 102 can output.
  • the range of the RF transceiver 102 is unlikely to output a signal that satisfies the requirements of the base station. Therefore, the RF signal outputted by the RF transceiver 102 may be subjected to the power amplification of the power amplifier 104 to meet the requirements of the base station.
  • the terminal acquires a signal from the antenna end through the coupler 107, and feeds the obtained signal to the control unit in the radio frequency transceiver 102, and the control unit processes the signals. Calculate and get its transmit power value, which is the current transmit power of the terminal. The control unit then compares the magnitude between the transmit power of the antenna and the switch value. The switch value is determined according to the base station's requirements for the transmit power of the terminal and the range of the RF transceiver output power.
  • the dynamic range of the terminal transmit power is generally -49dBm ⁇ Between 24 dBm, that is, the base station requires a terminal to transmit power of -49 dBm to 24 dBm.
  • RF transceivers produced by various manufacturers can usually output RF signals with a power of -77dBm to 5dBm.
  • first dynamic range the range in which the base station transmits power requirements to the terminal
  • second dynamic range the rated power range of the RF transceiver output RF signal
  • the switching value should be at least -49 dBm to 5 dBm.
  • the switching value may be any value greater than or equal to -49 dBm and less than or equal to 5 dBm.
  • the control unit 109 controls the radio frequency transceiver 102 to be adjusted, so that the radio frequency transceiver 102 directly outputs the radio frequency signal that meets the requirements of the base station, and the control unit 109 also outputs the first strobe signal, and the control switch
  • the unit 108 gates the signal path between the RF transceiver 102 and the antenna switch unit 105, so that the RF signal outputted by the RF transceiver 102 does not undergo a power amplification process, and the antenna switch unit 105 can directly select a specific frequency band for transmission. .
  • the control unit 109 When the transmit power of the antenna end is greater than the switching value, the control unit 109 outputs a second strobe signal, and the control switch unit 108 strobes the power amplifier 104, so that the radio frequency signal output by the radio frequency transceiver 102 is subjected to power amplification of the power amplifier 104 and then enters the antenna switch.
  • the unit 105 selects a specific frequency band for the antenna switch unit 105 and transmits it from the antenna 106 to the real space.
  • control unit is disposed in the radio frequency transceiver 102, but it is undoubted that the control unit can also be disposed separately from the radio frequency transceiver 102.
  • the control unit 109 is disposed in the radio frequency transceiver 102. In addition, it can receive the signals of the antenna end fed back by the coupler 107, process the signals, obtain the transmission power of the antenna end, and then compare the transmission power of the antenna end with the switching value, if the transmission power at the antenna 106 is less than or equal to the switching value.
  • the control unit 109 controls the RF transceiver 102 to output a direct output RF signal that satisfies the requirements of the base station.
  • control unit 109 also outputs a first strobe signal, and the control switch unit 108 is strobed.
  • the control unit 109 outputs a second strobe signal, and the control switch unit 108 strobes the power amplifier 104, so that the radio frequency signal output by the radio frequency transceiver 102 is subjected to power amplification of the power amplifier 104 and then enters the antenna switch.
  • the unit 105 selects a specific frequency band for the antenna switch unit 105 and transmits it from the antenna 106 to the real space.
  • the handover value here can also be a given power value obtained from the base station.
  • the radio frequency signal outputted by the radio frequency transceiver 102 is subjected to power amplification before being transmitted.
  • the terminal in this embodiment performs selective power amplification according to actual conditions: when the base station gives When the given power value is less than or equal to the maximum output power of the radio frequency transceiver 102, or the transmit power of the antenna end is less than or equal to the switching value, the radio frequency signal output by the radio frequency transceiver 102 can be directly transmitted without undergoing amplification by the power amplifier 104. Thereby, the power consumption during the power amplification process can be avoided, thereby reducing the power consumption under the RF signal transmission operation, so as to extend the working time of the terminal.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the selected handover value satisfies the requirements of the base station for transmitting power of the terminal and the output power range of the radio transceiver, that is, in the intersection of the first dynamic range and the second dynamic range, which may be this Any value within the intersection, this way of determining the switching value is simple and convenient to operate.
  • the second embodiment of the terminal of the present invention another way of determining the switching value is proposed:
  • two different values are selected within the intersection of the first dynamic range and the second dynamic range, respectively being a first switching value and a second switching value, the first switching value being smaller than the second switching value.
  • the control unit only compares one of the switching values with the transmission power of the antenna end each time. Therefore, how to select the switching value is also involved here.
  • the control unit selects the second switch value to compare with the transmit power of the antenna end; otherwise, when the transmit power of the antenna end gradually decreases, the control unit The first switching value is selected as the current switching value. That is to say, in the second embodiment, when the switching value is selected, the tendency of the transmission power of the antenna end is considered.
  • the first switching value and the second switching value together determine a critical region.
  • the critical region determined by the first switching value and the second switching value is not large, and the second switching value is generally 1 dBm to 3 dBm higher than the first switching value, and the critical region is located at the maximum output power of the RF transceiver 102. nearby.
  • the maximum output power of the radio frequency transceiver 102 is 5 dBm
  • the critical region is 3.5 dBm to 4.5 dBm
  • the intermediate value of the critical region is 4 dBm.
  • the first switching value is selected as the switching value, that is, 3.5 dBm is selected; when the transmitting power of the antenna end gradually rises and approaches the intermediate value of 4 dBm, 4.5 dBm is selected as the switching value.
  • the significance of setting two switching values is to prevent the ping-pong effect from occurring when the transmitting power of the antenna end jumps left and right in the critical area, and always uses a value as the switching value to cause the terminal to work continuously.
  • the terminal further includes a power supply control module, and the power supply control module is configured to cut off the power supply path of the power amplifier 104 when the control unit outputs the second strobe signal, because the direct output power of the RF transmitter 102 can be satisfied at this time.
  • the RF signal required by the base station does not require the power amplifier 104 to participate in the RF transmission operation.
  • the power supply control module can also stop supplying power to the RF power amplifier power management chip 103.
  • control unit is disposed in the radio frequency transceiver, which can save space occupied by the internal radio frequency front end circuit of the terminal and reduce the volume of the terminal. It can be understood that when the space is not limited, the control unit can be separately set from the RF transceiver, and the control unit can participate in the transmission of the RF signal as a separate device.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the embodiment provides a radio frequency signal transmission method, and the method is applicable to the radio frequency signal transmission of the terminal provided by the foregoing Embodiment 1 and Embodiment 2:
  • the received power control information is parsed.
  • the power control information includes a current requirement of the base station for transmitting power of the terminal, and the power control information is used by the base station to instruct the terminal to adjust its transmit power, which includes two types: one type of power control information, including a given power Value, which means that the base station expects the terminal to signal according to the given power value.
  • the base station does not directly inform the terminal of how much the transmission power should transmit the radio frequency signal, but only indicates whether the current transmission power of the terminal is too large or too small, so it is included in the second type of power control information.
  • the power adjustment command at which time the terminal needs to determine, according to the current transmit power, the manner in which the information is sent to the base station.
  • the given power value is directly compared with the maximum output power of the radio transceiver, and if the given power value is less than or equal to the maximum output power of the radio transceiver, the radio transceiver is output.
  • the RF signal is directly transmitted.
  • the RF signal outputted by the RF transceiver is directly input into the antenna switch unit, and the antenna switch unit selects a specific frequency band for transmission.
  • the maximum output power of the RF transceiver is generally 5 dBm. Now, assuming that the given power value sent by the base station to the terminal is -13 dBm, it indicates that the base station expects the terminal to transmit a radio frequency signal with a power of -13 dBm. -13dBm is smaller than the maximum output power of the RF transceiver. Therefore, the RF transceiver can output the RF signal of -13dBm directly and directly connect the signal transmission path between the RF transceiver and the antenna switch unit.
  • the signal transmission path between the RF transceiver and the power amplifier needs to be connected, so that the RF signal output by the RF transceiver enters the power amplifier for power. After being amplified, it is transmitted through the antenna switch unit and the antenna. At this time, the RF transceiver can output the RF signal with an arbitrary power value.
  • the transmit power and the switch value of the antenna end are compared.
  • the RF signal output by the RF transceiver needs to be power amplified before being sent.
  • the RF signal output by the RF transceiver can be directly transmitted without undergoing the process of power amplification.
  • the process can usually be implemented by a coupler, such as placing the coupler behind the antenna switch unit and before the antenna, and letting the coupler obtain the RF signal transmitted by the antenna switch unit to the antenna.
  • S502 Process the acquired radio frequency signal that is in a transmitting state, and calculate a transmit power thereof as a transmit power of the current antenna end.
  • the processing of calculating the power of the RF signal can be performed by the RF transceiver. Because the RF transceiver has the processing and calculation capability, the coupler obtains the RF signal currently in the transmitting state. It can be fed back to the RF transceiver, and the transmit power of the antenna end is obtained by the RF transceiver. Calculating the transmit power of the RF signal directly from the RF transceiver not only saves cost, but also reduces the device and saves the internal space of the terminal.
  • the handover value should be set in advance as the switching point of the two working modes of the terminal.
  • the handover value is determined based on the requirements of the base station for the terminal transmit power and the range of the RF transceiver output power.
  • the dynamic range of the transmit power of the terminal antenna is generally between -49 dBm and 24 dBm.
  • the RF transceivers produced by various manufacturers can usually output RF signals with a power of -77dBm to 5dBm, that is, the rated power range of the RF signals output by the existing RF transceivers is -77dBm to 5dBm.
  • the range in which the base station transmits the power requirement to the terminal is referred to as a “first dynamic range”, and the rated power range at which the radio frequency transceiver outputs the radio frequency signal is referred to as a “second dynamic range”.
  • the switching value should be at least between -49 dBm and 5 dBm. In this reality In the embodiment, the switching value may be any value greater than or equal to -49 dBm and less than or equal to 5 dBm.
  • the switching value only one value is determined in advance as the switching value, because in the actual comparison process, only the transmitting power of the antenna end is compared with one switching value each time, but another switching value is determined.
  • two values are determined in advance, that is, the first switching value and the second switching value, and the first switching value is smaller than the second switching value.
  • the two switching values are in the intersection of the first dynamic range and the second dynamic range, and both satisfy the requirements of the base station for the terminal transmit power and the output power range of the radio frequency transceiver.
  • the second switch value is selected to be compared with the transmit power of the antenna end; conversely, when the transmit power of the antenna end gradually decreases, the first switch value is selected as the current switch value. That is to say, when selecting the switching value, it is necessary to consider the changing trend of the transmitting power of the antenna end.
  • the first switching value and the second switching value together determine a critical region.
  • the critical region determined by the first switching value and the second switching value is not large.
  • the second switching value is 1 dBm to 3 dBm higher than the first switching value, and the critical region is located at the maximum output power of the RF transceiver. Near.
  • the maximum output power of the radio frequency transceiver 102 is 5 dBm
  • the critical region is 3.5 dBm to 4.5 dBm
  • the intermediate value of the critical region is 4 dBm.
  • the first switching value is selected as the switching value, that is, 3.5 dBm is selected; when the transmitting power of the antenna end gradually rises and approaches the intermediate value of 4 dBm, 4.5 dBm is selected as the switching value.
  • the significance of setting two switching values is to prevent the ping-pong effect from occurring when the transmitting power of the antenna end jumps left and right in the critical area, and always uses the same value as the switching value to cause the terminal to work continuously.
  • the power supply path of the power amplifier can be cut off, because the RF transmitter can directly output at this time.
  • the power meets the RF signal required by the base station, and does not require the power amplifier to participate in the RF transmission operation.
  • the RF signal transmission method provided in this embodiment, only part of the RF signal output by the RF transceiver is power amplified, that is, in this embodiment, the RF signal is transmitted.
  • Amplification is selective, the amplification process and for all RF signals, the power amplifier naturally does not need to be in operation at all times, which can save power during RF transmission and reduce terminal power consumption.
  • Embodiments of the present invention also describe a computer storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement the following steps:
  • the power control information includes a current requirement of the base station to transmit power of the terminal
  • the radio frequency transceiver When the parsed information includes a given power value and is less than or equal to the maximum output power of the radio frequency transceiver, or the parsed information is a power adjustment command and the transmit power of the antenna end is less than or equal to the switching value, the radio frequency transceiver outputs The radio frequency signal is directly sent; the switching value is determined based on a requirement of the base station to transmit power of the terminal and a range of output power of the radio frequency transceiver;
  • the parsed information includes a given power value and is greater than the maximum output power of the radio frequency transceiver, or the parsed information is a power adjustment command and the transmit power of the antenna end is greater than the handover value
  • the radio frequency signal output by the radio frequency transceiver is After the power amplifier is amplified, it is transmitted.
  • the one or more programs when performing the step of directly transmitting the radio frequency signal output by the radio frequency transceiver, the one or more programs may be executed by the one or more processors to implement the following steps:
  • Controlling the power supply path of the power amplifier is turned off.
  • the one or more programs may also be executed by the one or more processors to implement the following steps:
  • processing steps of determining the switching value may be selected by any one of the following:
  • the one or more programs may also be executed by the one or more processors to implement the following steps:
  • the processing steps of obtaining the transmit power of the antenna end include:
  • the obtained radio frequency signal that is in the transmitting state is processed, and the transmitting power of the radio frequency signal is calculated as the transmitting power of the current antenna end.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment provides a method for transmitting a radio frequency signal, which is mainly for a situation in which a base station informs a terminal of a request for a transmit power by using a given power value:
  • the radio frequency signal output by the radio frequency transceiver After obtaining the power value given by the base station, comparing whether the given power value of the base station is less than or equal to the maximum output power value of the radio frequency transceiver, if not, the radio frequency signal output by the radio frequency transceiver needs to be amplified by power and then sent.
  • the radio frequency signal output by the radio frequency transceiver is directly transmitted, but those skilled in the art should understand that the radio frequency transceiver may need to be adjusted and outputted at this time. Meet the base station Required RF signal.
  • the switch unit can directly strobe the signal transmission path between the RF transceiver and the antenna switch unit, so that the RF signal output by the RF transceiver is directly transmitted without undergoing power amplification.
  • the RF signal output from the RF transceiver needs to be input into the power amplifier for power amplification, and then the antenna switch unit selects a specific frequency band for transmission.
  • the key to determining whether or not to use the power amplifier for amplification is that the given power value is related to the maximum output power of the RF transceiver.
  • the given power value is lower than the maximum output power of the RF transceiver, no power amplification is required, and the power supply path of the power amplifier can be turned off. Further, since the power amplifier does not need to work, the power amplifier is specifically managed. The power amplifier power management chip can also be turned off.
  • Comparing the given power value with the maximum output power value of the RF transceiver can be done by the RF transceiver, because the RF transceiver itself has a certain processing capability, in which case the device participating in the RF signal transmission operation can be reduced. From the point of view of actual production, this is advantageous in reducing the size of the terminal.
  • Embodiments of the present invention also describe a computer storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement the following steps:
  • the radio frequency signal output by the radio frequency transceiver is directly transmitted;
  • the radio frequency signal output by the radio frequency transceiver is amplified by the power amplifier and transmitted.
  • the one or more programs may be executed by the one or more processors to implement the following steps:
  • Controlling the power supply path of the power amplifier is turned off.
  • the one or more programs when performing control to turn off the power supply path of the power amplifier, the one or more programs may be executed by the one or more processors to implement the following steps:
  • the power amplifier management chip that controls the power consumption of the power amplifier is turned off.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the embodiment provides a radio frequency signal transmission method different from the fourth embodiment, which is mainly for the case that the base station informs the terminal of the transmission power requirement by using the power adjustment instruction:
  • the base station When the power adjustment command is parsed from the power control information, it indicates that the base station does not explicitly inform the terminal of the maximum transmit power to transmit the radio frequency signal, but informs the terminal whether the current transmit power is too large or too small, and the subsequent transmission is performed. In the process, it is necessary to reduce the transmission power or increase the transmission power. Therefore, in this case, the object of comparison is no longer the base station given power value and the maximum output power of the radio frequency transceiver, but the transmit power and switching value of the antenna end.
  • the transmit signal transmitted by the antenna switch unit to the antenna is acquired by the coupler, and then fed back to a device or device having processing capability, such as a radio frequency transceiver, to perform processing calculation to obtain the transmit power of the antenna end.
  • a device or device having processing capability such as a radio frequency transceiver
  • the handover value is determined according to at least the base station's requirements for the terminal's transmit power and the range of the radio frequency transceiver output power.
  • the base station's request for the terminal's transmit power is derived from the 3GPP protocol, in which the base station requires the terminal antenna.
  • the transmit power range of the terminal is -49dBm ⁇ Between 24dBm, the range is the first dynamic range.
  • the RF transceiver output power typically ranges from -77dBm to 5dBm, which is the second dynamic range.
  • the manner of determining the switching value is not unique:
  • the switching value may be any one of the first dynamic range and the second dynamic range intersection.
  • first, a first switching value and a second switching value are respectively determined in the intersection of the first dynamic range and the second dynamic range, and the second switching value is greater than the first switching value.
  • the second switch value is selected to be compared with the transmit power of the antenna end; conversely, when the transmit power of the antenna end gradually decreases, the first switch value is selected as the current switch value. That is to say, in the second mode, when the switching value is selected, the trend of the transmission power of the antenna end is considered.
  • the first switching value and the second switching value together determine a critical region.
  • the critical region determined by the first switching value and the second switching value is not large.
  • the second switching value is 1 dBm to 3 dBm higher than the first switching value, and the critical region is located at the maximum output power of the RF transceiver. Near.
  • the critical region is 3.5 dBm to 4.5 dBm, and the intermediate value of the critical region is 4 dBm.
  • the first switching value is selected as the switching value, that is, 3.5 dBm is selected; when the transmitting power of the antenna end gradually increases and approaches the intermediate value of 4 dBm, the second switching value is selected to be 4.5 dBm.
  • the significance of setting two switching values is to prevent the ping-pong effect from occurring when the transmitting power of the antenna end jumps left and right in the critical area, and always uses the same value as the switching value to cause the terminal to work continuously.
  • Embodiments of the present invention also describe a computer storage medium storing one or more programs, the one or more programs being executable by one or more processors to implement the following steps:
  • a power adjustment command is parsed from the power control information, where the power control information includes a current requirement of the base station to transmit power of the terminal;
  • the radio frequency signal output by the radio frequency transceiver is directly sent;
  • the RF signal output by the RF transceiver is amplified by the power amplifier and then transmitted;
  • the handover value is determined based on a requirement of the base station to transmit power of the terminal and a range of output power of the radio frequency transceiver.
  • the one or more programs may also be executed by the one or more processors to implement the following steps:
  • the processing steps of obtaining the transmit power of the antenna end include:
  • the obtained radio frequency signal that is in the transmitting state is processed, and the transmitting power of the radio frequency signal is calculated as the transmitting power of the current antenna end.
  • This embodiment provides a radio frequency signal transmitting apparatus.
  • the radio frequency signal transmitting apparatus will be described in detail below with reference to FIG. 6:
  • the radio frequency signal transmitting apparatus 60 includes an information parsing module 601, a direct transmitting module 602, and a power amplifying module 603.
  • the RF signal transmitting device 60 can be applied to the radio frequency signal transmission of the terminal, wherein the function of the signal parsing module 601 can be implemented by the radio frequency transceiver in the terminal, that is, the radio frequency transceiver 102 in FIG. 2 or the radio frequency transceiver in FIG.
  • the function of the direct transmission module 602 can be performed by the antenna switch unit 105 and the antenna 106 in FIG. 2 or FIG.
  • the power amplifier module 603 may include the power amplifier 104, the antenna switch unit 105, and the antenna 106 in FIG. 2 or FIG.
  • both the direct transmitting module 602 and the power amplifying module 603 include the antenna switching unit 105 and the antenna 106, it is preferable that the direct transmitting module 602 and the power amplifying module 603 share the two devices, so that the production cost can be saved. Reducing the terminal size also reduces power consumption.
  • the information parsing module 601 is configured to parse the received power control information, where the power control information includes a current requirement of the base station to transmit power of the terminal, and is used by the base station to instruct the terminal to adjust its transmit power, and the power control information has two types. Type: In a type of power control information, a given power value is included, which means that the base station expects the terminal to signal according to the given power value. In another power control information, a power adjustment command is included, because at some time, the base station does not directly inform the terminal whether the radio frequency signal should be transmitted with a large transmission power, but merely indicates whether the current transmission power of the terminal is too large or too small. The terminal needs to determine, according to the current transmit power, which power to transmit information to the base station in the subsequent transmission process.
  • the information parsing module 601 such as the information parsed by the radio frequency transceiver, is a given power value, directly compares the given power value with the maximum output power of the radio frequency transceiver: when the given power value is less than or equal to the radio frequency transceiver The maximum output power, the direct sending module 602 directly transmits the radio frequency signal output by the radio frequency transceiver; for example, the radio frequency signal output by the radio frequency transceiver is directly input into the antenna switching unit, and the antenna switching unit selects a specific frequency band and Transmitted by the antenna.
  • the RF transceiver parses the power control information and obtains the power adjustment command, the transmit power and the switch value of the antenna end are compared.
  • the RF transceiver When the transmit power of the antenna end is less than or equal to the switch value, the RF transceiver directly inputs the RF signal into the antenna switch. In the unit, a specific frequency band selected by the antenna switch unit position is sent by the antenna. When the given power value is greater than the maximum output power of the radio frequency transceiver, or when the transmit power of the antenna end is greater than the switching value, the radio frequency signal output by the radio frequency transceiver is input into the power amplifying module 603. In this embodiment, The RF transceiver can input the RF signal into the power amplifier, and then power amplification by the power amplifier. The subsequent transmission process is performed by the antenna switch unit and the antenna.
  • the given power value is also a fixed value, assuming that the given power value is -13 dBm, and the -13 dBm is less than the radio frequency.
  • the transceiver's maximum output power is 5dBm, so the signal transmission path between the RF transceiver and the antenna switch unit can be directly connected at this time.
  • the signal transmission path between the RF transceiver and the power amplifier needs to be connected, so that the RF signal output by the RF transceiver enters the power amplifier for power. After amplification, it is transmitted through the antenna switch unit and the antenna.
  • the comparison is the transmission power of the antenna end and the size of the handover value.
  • the power amplification module 603 needs to The radio frequency signal outputted by the radio frequency transceiver is sent to the base station after being amplified by power, and when the transmission power of the antenna end is less than or equal to the switching value, the radio frequency signal output by the radio frequency transceiver does not need to undergo the process of power amplification, and the direct transmission module can be used. 602 sends directly.
  • Obtaining the transmit power of the antenna end can usually be achieved by a coupler, for example, after the coupler is placed behind the antenna switch unit, and before the antenna, the coupler obtains the RF signal transmitted by the antenna switch unit to the antenna.
  • the obtained signal is then fed back to the RF transceiver by the coupler, so that the RF transceiver processes the acquired RF signal that is in the transmitting state, and calculates the transmission power as the transmission power of the current antenna end.
  • the processing of calculating the power of the RF signal can be performed by the RF transceiver. Because the RF transceiver has the processing and calculation capability, the coupler obtains the RF signal currently in the transmitting state. It can be fed back to the RF transceiver, and the transmit power of the antenna end is obtained by the RF transceiver.
  • the solution for directly calculating the transmit power of the RF signal by the RF transceiver can not only save cost, but also reduce the device and save the terminal. Internal space.
  • the radio frequency signal transmitting apparatus 60 includes the information parsing module 601 and the direct sending module 602 in the sixth embodiment.
  • a handover value determination module 604 is further included.
  • the handover value determination module 604 determines the handover value based on the base station's requirements for the terminal transmit power and the range of the radio frequency transceiver output power. According to the requirements of the 3GPP for the transmission power of the terminal, the dynamic range of the transmission power of the terminal antenna is generally between -49 dBm and 24 dBm.
  • the RF transceivers produced by various manufacturers can usually output RF signals with a power of -77dBm to 5dBm, that is, the rated power range of the RF signals output by the existing RF transceivers is -77dBm to 5dBm.
  • the range in which the base station transmits the power requirement to the terminal is referred to as a “first dynamic range”
  • the rated power range at which the radio frequency transceiver outputs the radio frequency signal is referred to as a “second dynamic range”. From the above description, those skilled in the art should know that there is a certain intersection between the first dynamic range and the second dynamic range. Therefore, in this embodiment, the switching value determined by the switching value determining module 604 should be located at -49 dBm to 5 dBm. between.
  • the actual implementation manners of the information parsing module 601, the direct sending module 602, and the power amplifying module 603 may be referred to the embodiment 6, for the switching value determining module 604, in practical application.
  • the implementation may be implemented by the radio frequency transceiver 102 of FIG. 2 or by the control unit 109 of FIG.
  • the control unit 109 can select the switching value in any of the following two ways:
  • control unit 109 selects a power value whose size is in the intersection of the first dynamic range and the second dynamic range as the switching value.
  • the control unit 109 predetermines two different values, namely the first switching value and the second cutting
  • the two switching values are located in the intersection of the first dynamic range and the second dynamic range, and the first switching value is smaller than the second switching value.
  • the control unit 109 selects the second switching value to compare with the transmission power of the antenna end; conversely, when the transmission power of the antenna end gradually decreases, the control unit 109 selects the first switching value as the current switching value.
  • the control unit 109 selects the handover value according to the second manner, it is necessary to consider the trend of the transmission power of the antenna end.
  • the switching value determining module 604 may have the capability of selecting the switching value by the above two methods, or may only have one of them.
  • the first switching value and the second switching value together determine a critical region.
  • the transmitting power is gradually decreased, and the second switching value is applied to the antenna end. Elevated situation.
  • the critical region determined by the first switching value and the second switching value is not large.
  • the second switching value is 1 dBm to 3 dBm higher than the first switching value, and the critical region is located at the maximum output power of the RF transceiver. Near.
  • the maximum output power value of the radio frequency transceiver is 5 dBm
  • the critical region is 3.5 dBm to 4.5 dBm.
  • the median value of the critical region is 4 dBm.
  • the first switching value is selected as the switching value, that is, 3.5 dBm is selected as the switching value; when the transmitting power of the antenna end gradually rises and approaches the middle
  • the second switching value is selected.
  • the significance of setting two switching values is to prevent the ping-pong from being caused by the same value as the switching value when the transmitting power of the antenna end is hopping around 3.5dBm ⁇ 4.5dBm in the critical area. effect.
  • the radio frequency signal transmitting apparatus 60 includes the information parsing module 601, the direct sending module 602, the power amplifying module 603, and the switching value determining module 604 in FIG.
  • the power supply control module 605 further includes: when the base station reference power value is less than or equal to the maximum output power of the radio frequency transceiver or the transmit power of the antenna end is less than or equal to the switching value, the direct sending module 602 directly inputs the radio frequency signal output by the radio frequency transceiver into the antenna.
  • the switching unit performs transmission, and the power supply control module 605 can also cut off the power amplifier. Electrical pathway.
  • the functions provided by the power supply control module 605 can be implemented by the control unit 109 in FIG.
  • the control unit 109 can also turn off the power supply path for supplying power to the RF power amplifier power management chip 103 of FIG. 3 in order to further reduce power consumption while turning off the power supply path of the power amplifier. Because the RF transmitter 102 can directly output the RF signal that meets the requirements of the base station, the power amplifier 104 does not need to participate in the RF transmission operation. Of course, the RF power amplifier power management chip 103 does not need to manage the power supply of the power amplifier 104.
  • the radio frequency signal transmitting apparatus in this embodiment determines two switching values by using the switching value determining module. Compared with the switching value determining module in the sixth embodiment, only one switching value is set, which can prevent the transmitting power of the antenna end from being in the critical area. When the inner left and right jumps, the same value is always used as the switching value, which causes the working mode of the terminal to continuously switch, and thus the ping-pong effect problem occurs.
  • the radio frequency signal transmitting apparatus in this embodiment can use the control unit as the power supply control module to control the power supply of the power amplifier, and when the power amplifier does not need to be in the working state, the power amplifier and the radio frequency power amplifier power supply are controlled by the control unit.
  • the power supply path of the management chip is turned off, which can reduce the power consumption of the terminal, extend the usage time of the terminal, and improve the user experience.
  • the radio frequency signal transmission mode provided by the technical solution of the embodiment of the present invention selectively excites the radio frequency signal, and does not require the power amplifier to be in a working state at all times, thereby saving power consumed in the power amplification process and reducing in some scenarios.
  • the power consumption of the signal transmission extends the working time of the terminal and improves the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)

Abstract

本发明实施例公开了一种射频信号发送方法、装置及终端、计算机存储介质,其中,该方法包括:对接收到的功率控制信息进行解析,当解析到的信息为给定功率值且其小于等于射频收发器的最大输出功率,或当解析到的信息为功率调整指令且天线端的发射功率小于等于切换值时,直接连通射频收发器与天线开关单元,使天线开关单元直接为射频收发器输出的待发送射频信号选择频段并发送,不进行功率放大。

Description

射频信号发送方法、装置及终端、计算机存储介质 技术领域
本申请涉及移动终端技术领域,尤其涉及一种射频信号发送方法、装置及终端、计算机存储介质。
背景技术
随着信息技术的发展,人们的生活节奏趋于快速化,快节奏的生活驱使人们快速地获得外界信息、快速地对获取的信息进行处理、快速地向外界传递信息。手机因为具有体积小、便于携带的优点,所以,相对其他信息传递工具,人们更加偏爱这种能够让自己随时随地获取信息的通信工具。而且相对其他信息媒介,手机不仅普及面更大,而且更新换代的速度也更快,这满足了很多人的需求。
但纵观手机的发展史,不得不发现手机待机时间一直是一个困扰着开发者和使用者的问题。为了解决这个问题,备用电池与“充电宝”应运而生,这二者之间具有一个共同点,那就是都是通过增加供电电源来延长手机的工作时间,而非减小手机功耗。因此这些解决方案并没有从根本上解决问题,而且备用电池与“充电宝”携带时并不方便,这增加了用户使用手机时的负担,降低了用户体验。
通过检测,技术人员可以确定,手机很大一部分功耗都消耗在发射操作下。如果能降低手机在发射操作模式下的功耗,就能延长手机的工作时间,进而提升用户体验。
图1是当前技术中移动终端的框架图,移动终端包括电源管理芯片(PMIC,Power Management IC)101、射频收发器(Transceiver)102、射频功率放大器电源管理芯片(PAPM,Power Amplifier Power Management) 103、功率放大器(PA,Power Amplifier)104以及天线开关单元(ASM,Antenna Switch Module)105和天线106。
当移动终端需要发射射频信号时,负责模拟基带信号到射频信号的上变频工作和射频信号到模拟基带信号的下变频工作的射频收发器102会将模拟信号变频为射频信号,并输出给功率放大器104。由功率放大器104对射频收发器102输出的射频信号进行功率放大,使待发射的射频信号的功率达到天线106的发射要求。然后功率放大器104将放大后的信号输出给天线开关单元105,由天线开关单元105为待发送的射频信号选定一个特定的频段后交由天线106,由天线106将待发射的射频信号传输到实际空间。
电源管理芯片101负责将电源电压转化成供其他器件使用的电压,而射频功率放大器电源管理芯片103则专门负责对功率放大器104供电进行管理,其将电源管理芯片101输出的电压转化成供功率放大器104使用的电压。在发射操作期间,电源管理芯片101要维持对射频收发器102、射频功率放大器电源管理芯片103以及天线开关单元105的供电,而射频功率放大器电源管理芯片103要维持对功率放大器104的供电。
在当前的终端10中,整个射频发射期间,射频功率放大器电源管理芯片103与功率放大器104一直都处于工作状态。从最低功率发射到最大功率发射,射频功率放大器电源管理芯片103与功率放大器104所消耗的电流从几十毫安到几百毫安不等,就长期频繁的发射而言,这对于移动终端其实是一种不可忽视的功耗。
发明内容
为解决当前存在的技术问题,本发明实施例期望提供一种射频信号发送方法、装置及终端、计算机存储介质,旨在解决当前技术中终端因需要对所有待发送射频信号进行功率放大,而导致终端射频发送功耗大、工作时间短、用户体验差的技术问题。
本发明实施例的技术方案如下:
为实现上述目的,本发明实施例提供一种射频信号发送方法,所述方法包括:
对接收到的功率控制信息进行解析,所述功率控制信息中包括基站当前对终端发射功率的要求;
当解析到的信息包括给定功率值且其小于等于射频收发器的最大输出功率,或解析到的信息为功率调整指令且天线端的发射功率小于等于切换值时,将所述射频收发器输出的射频信号直接进行发送;所述切换值基于所述基站对所述终端发射功率的要求和所述射频收发器输出功率的范围确定;
当解析到的信息包括给定功率值且其大于射频收发器的最大输出功率,或解析到的信息为功率调整指令且天线端的发射功率大于切换值时,将所述射频收发器输出的射频信号经过功率放大器放大后进行发送。
作为一种实施方式,所述切换值是第一动态范围与第二动态范围交集中的任意一个值,所述第一动态范围是基站要求终端天线端的发射功率范围,所述第二动态范围是射频收发器输出功率的范围。
作为一种实施方式,当将所述射频收发器输出的射频信号直接进行发送时所述方法还包括:
控制关闭对所述功率放大器的供电通路。
作为一种实施方式,所述方法还包括以下任意一种确定所述切换值的处理步骤:
选择一个同时满足基站对所述终端发射功率要求和射频收发器输出功率范围的值作为所述切换值;
选择两个不同的、且都满足所述基站对所述终端发射功率要求和射频收发器输出功率范围的值,值大的作为天线端的发射功率逐渐升高时进行 判断的切换值,值小的作为天线端的发射功率逐渐降低时进行判断的切换值。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述实施例所述的方法。
本发明实施例还提供一种射频信号发送方法,所述方法包括:
从基站处获取给定功率值;
当所述给定功率值小于等于射频收发器的最大输出功率时,将射频收发器输出的射频信号直接进行发送;
当所述给定功率值大于射频收发器的最大输出功率时,将射频收发器输出的射频信号经过功率放大器放大后进行发送。
作为一种实施方式,当将射频收发器输出的射频信号直接进行发送时,所述方法还包括:
控制关断所述功率放大器的供电通路。
作为一种实施方式,当控制关断所述功率放大器的供电通路时,所述方法还包括:
控制专门管理功率放大器用电的功率放大器供电管理芯片处于关闭状态。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述实施例所述的方法。
本发明实施例还提供一种射频信号发送方法,所述方法包括:
从功率控制信息中解析出功率调整指令,所述功率控制信息中包括基站当前对终端发射功率的要求;
当天线端的发射功率小于等于切换值时,将射频收发器输出的射频信 号直接进行发送;
当天线端的发射功率大于切换值时,将射频收发器输出的射频信号经过功率放大器放大后进行发送;
所述切换值基于所述基站对所述终端发射功率的要求和所述射频收发器输出功率的范围确定。
作为一种实施方式,获取天线端的发射功率的处理步骤包括:
获取天线端当前正处于发射状态的射频信号;
对获取的正处于发射状态的射频信号进行处理,并计算得到所述射频信号的发射功率作为当前天线端的发射功率。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述实施例所述的方法。
本发明实施例还提供一种射频信号发送装置,所述装置包括:
信息解析模块,配置为对接收到的功率控制信息进行解析,所述功率控制信息中包括基站当前对终端发射功率的要求;
直接发送模块,配置为当解析到的信息包括给定功率值且其小于等于射频收发器的最大输出功率,或解析到的信息为功率调整指令且天线端的发射功率小于等于切换值时,将所述射频收发器输出的射频信号直接进行发送;所述切换值基于所述基站对所述终端发射功率的要求和所述射频收发器输出功率的范围确定;
功率放大模块,配置为当解析到的信息包括给定功率值且其大于射频收发器的最大输出功率,或解析到的信息为功率调整指令且天线端的发射功率大于切换值时,将所述射频收发器输出的射频信号经过功率放大器放大后进行发送。
作为一种实施方式,所述切换值是第一动态范围与第二动态范围交集 中的任意一个值,所述第一动态范围是基站要求终端天线端的发射功率范围,所述第二动态范围是射频收发器输出功率的范围。
作为一种实施方式,所述装置还包括:
供电控制模块,配置为当将所述射频收发器输出的射频信号直接进行发送时,控制关闭所述功率放大器的供电通路。
作为一种实施方式,所述装置还包括以下任意一种切换值确定模块,所述切换值确定模块配置为确定所述切换值;
所述切换值确定模块确定所述切换值的方式包括以下任意一种:
选择一个同时满足基站对所述终端发射功率要求和射频收发器输出功率范围的值作为所述切换值;
选择两个不同的、且都满足所述基站对所述终端发射功率要求和射频收发器输出功率范围的值,值大的作为天线端的发射功率逐渐升高时进行判断的切换值,值小的作为天线端的发射功率逐渐降低时进行判断的切换值。
本发明实施例还提供一种射频信号发送装置,所述装置包括:
信息解析模块,配置为从基站处获取给定功率值;
直接发送模块,配置为当所述给定功率值小于等于射频收发器的最大输出功率时,将射频收发器输出的射频信号直接进行发送;
功率放大模块,配置为当所述给定功率值大于射频收发器的最大输出功率时,将射频收发器输出的射频信号经过功率放大器放大后进行发送。
作为一种实施方式,所述装置还包括:
供电控制模块,配置为当将射频收发器输出的射频信号直接进行发送时,控制关断所述功率放大器的供电通路。
作为一种实施方式,所述供电控制模块,还配置为控制专门管理功率放大器用电的功率放大器供电管理芯片处于关闭状态。
本发明实施例还提供一种射频信号发送装置,所述装置包括:
信息解析模块,配置从功率控制信息中解析出功率调整指令,所述功率控制信息中包括基站当前对终端发射功率的要求;
直接发送模块,配置当天线端的发射功率小于等于切换值时,将射频收发器输出的射频信号直接进行发送;
功率放大模块,配置为当天线端的发射功率大于切换值时,将射频收发器输出的射频信号经过功率放大器放大后进行发送;
切换值确定模块,配置为基于所述基站对所述终端发射功率的要求和所述射频收发器输出功率的范围确定所述切换值。
作为一种实施方式,所述信息解析模块,还配置获取天线端当前正处于发射状态的射频信号;对获取的正处于发射状态的射频信号进行处理,并计算得到所述射频信号的发射功率作为当前天线端的发射功率。
本发明实施例还提供一种终端,所述终端包括射频收发器、功率放大器,其中,所述终端还包括:开关单元、控制单元、天线开关单元和耦合器;
控制单元从基站处接收功率控制信息,并对其进行解析,所述功率控制信息中包括基站当前对终端发射功率的要求;
当解析到的信息包括给定功率值时,则判断所述给定功率值是否小于等于所述射频收发器的最大输出功率;如果是,输出第一选通信号到开关单元,所述开关单元将所述射频收发器输出的射频信号输送到所述天线开关单元中;否则,输出第二选通信号到开关单元,所述开关单元将所述射频收发器输出的射频信号输送到所述功率放大器中;
当解析到的信息包括功率调整指令时,则根据所述耦合器反馈的发射信号确定天线端的发射功率,并判断其是否小于等于切换值;如果是,输出第一选通信号到开关单元,所述开关单元将所述射频收发器输出的射频 信号输送到所述天线开关单元中;否则,输出第二选通信号到开关单元,所述开关单元将所述射频收发器输出的射频信号输送到所述功率放大器中;所述切换值基于所述基站对所述终端发射功率的要求和所述射频收发器输出功率的范围确定。
作为一种实施方式,当输出所述第二选通信号时,所述控制单元还配置为控制关闭所述功率放大器的供电通路。
作为一种实施方式,所述控制单元还配置为选择一个同时满足基站对所述终端发射功率要求和射频收发器输出功率范围的值作为所述切换值;
或,
选择两个不同的、且都满足所述基站对所述终端发射功率要求和射频收发器输出功率范围的值,值大的作为天线端的发射功率逐渐升高时进行判断的切换值,值小的作为天线端的发射功率逐渐降低时进行判断的切换值。
作为一种实施方式,所述控制单元设置在所述射频收发器内,或者,所述控制单元与所述射频收发器分开设置。
本发明实施例提出的射频信号发送方法、装置及终端、计算机存储介质,对接收到的功率控制信息进行解析,当解析到的信息为给定功率值且其小于等于射频收发器的最大输出功率时,或者当解析到的信息为功率调整指令且天线端的发射功率小于等于切换值时,直接连通射频收发器与天线开关单元,使天线开关单元直接为射频收发器输出的待发送射频信号选择频段并进行发送,不对射频收发器输出的待发送射频信号进行功率放大,相较于当前技术中无论在何种情况下都需要功率放大器工作的情况下,本发明实施例提供的射频信号发送方式,能够有选择的进行功率放大,不需要功率放大器时刻都处于工作状态,从而在一些情景下节约了功率放大过程中消耗的电能,减小了信号发射过程中的功耗,延长了终端的工作时间, 提高了用户体验。
附图说明
图1为当前技术中移动终端的框架图;
图2为本发明实施例一提供的终端的一种框架图;
图3为本发明实施例一提供的终端的另一种框架图;
图4为本发明实施例一提供的基站对终端发射功率的要求范围与射频收发器输出功率范围的示意图;
图5为本发明实施例三提供的射频信号发送方法中获取天线端发射功率的一种流程图;
图6为本发明实施例六提供的射频信号发送装置的一种结构示意图;
图7为本发明实施例七提供的射频信号发送装置的一种结构示意图;
图8为本发明实施例七提供的射频信号发送装置的另一种结构示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
现在将参考附图描述实现本发明各个实施例的终端。在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身并没有特定的意义。因此,“模块”与“部件”可以混合地使用。
终端可以以各种形式来实施。例如,本发明中描述的终端可以包括诸如移动电话、智能电话、笔记本电脑、数字广播接收器、个人数字助理(PDA,Personal Digital Assistant)、平板电脑(PAD,Portable Android Device)、便携式多媒体播放器(PMP,Portable Media Player)、导航装置等等的移动终端以及诸如数字电视(TV,Television)、台式计算机等等的固定终端。 下面,假设终端是移动终端。然而,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本发明的实施方式的构造也能够应用于固定类型的终端。
实施例一:
本实施例提供一种终端,为了使本领域技术人员明白该终端的优点和细节,这里将结合实际应用来进行说明,请参考图2:
该终端也包含图1中所示的射频收发器102、功率放大器104、天线开关单元105、天线106,除此之外,本实施例提供的移动终端还增加了耦合器107和开关单元108。
值的注意的是,在本实施例中,射频收发器102与现有的射频收发器有所不同,其不仅包括负责模拟基带信号到射频信号的上变频与下变频工作的转换模块,还包括一个控制单元。控制单元的一个控制信号输出端和转换模块的射频信号输出端分别被连接至开关单元108的控制信号输入端、射频信号输入端,控制单元的另一个控制信号输出端连接至转换模块的控制信号输入端;开关单元108的两个输出端分别与功率放大器104和天线开关单元105连接。
控制单元解析从基站处获取到的功率控制信息,功率控制信息用于基站指示其当前对终端发射功率的要求,功率控制信息有两种类型:在第一种类型的功率控制信息中,包含一个给定功率值,这表示基站期望终端按照该给定的功率值进行信号发送。在某些时候,基站不会直接告知终端应当以多大的发射功率发送射频信号,而仅仅指示终端当前的发射功率是偏大还是偏小,因此在第二种类型的功率控制信息中包含功率调整指令,这时候终端需要根据当前的发射功率确定该以何种方式向基站发送信息。
当解析出功率控制信息中包括给定功率值时,控制单元直接将该给定功率值与射频收发器102的最大输出功率进行比较,当前技术中,由于生 产上存在一定的误差,可能各厂家生产的射频收发器输出的待发送射频信号的额定功率范围存在差异,但总体来说,现有射频收发器的输出功率范围约为-77dBm~5dBm,也就是说,射频收发器102可以将其输出的射频信号的功率调整为-77dBm~5dBm之间的任意一个值。在通常情况下,射频收发器102的最大输出功率值为5dBm。所以在本实施例中,我们将给定功率值与5dBm进行比较:
当给定功率值小于或等于射频收发器102的最大输出功率5dBm时,控制单元输出第一选通信号,控制开关单元108选通射频收发器102与天线开关单元105之间的信号通路,使射频收发器102输出的射频信号不经历功率放大流程,就能直接由天线开关单元105为其选择一个特定频段进行发送。本领域技术人员应该明白的是,此时应当对射频收发器102进行调整,使射频收发器102输出的射频信号的功率值为给定功率值。
当给定功率值大于5dBm时,控制单元输出第二选通信号,控制开关单元108选通功率放大器104,因为此时基站对终端发射功率的要求已经超出了射频收发器102能够输出的信号功率的范围,射频收发器102不可能输出满足基站要求的信号了,所以此时其输出的射频信号都要经历功率放大器104的功率放大后才可能满足基站的要求。
当解析出功率控制信息中包括功率调整指令时,终端通过耦合器107从天线端耦合获取信号,并将获取到的信号反馈给射频收发器102中的控制单元,由控制单元对这些信号进行处理计算,得到其发射功率值,这便是终端当前的发射功率。然后控制单元比较天线端的发射功率与切换值之间的大小,切换值是依据基站对终端发射功率的要求和射频收发器输出功率的范围来确定的。
根据3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)中基站对终端发射功率的要求,终端发射功率的动态范围一般在-49dBm~ 24dBm之间,也即,基站对终端发射功率的要求一般为-49dBm~24dBm。在实际生产当中,各个厂家生产的射频收发器通常可以输出功率为-77dBm~5dBm的射频信号。为了便于表述,在以下记载中,我们将基站对终端发射功率要求的范围称为“第一动态范围”,将射频收发器输出射频信号的额定功率范围称为“第二动态范围”。根据上述介绍,本领域技术人员应该知道,第一动态范围与第二动态范围之间存在一定的交集,如图4所示,在本实施例中,切换值至少应当介于-49dBm~5dBm之间,切换值可以为大于等于-49dBm,且小于等于5dBm的任意一个值。
当天线端的发射功率小于等于切换值时,控制单元109控制调整射频收发器102,使射频收发器102直接输出满足基站要求的射频信号,同时,控制单元109还输出第一选通信号,控制开关单元108选通射频收发器102与天线开关单元105之间的信号通路,使射频收发器102输出的射频信号不经历功率放大流程,就能直接由天线开关单元105为其选择一个特定频段进行发送。
当天线端的发射功率大于切换值时,控制单元109输出第二选通信号,控制开关单元108选通功率放大器104,使射频收发器102输出的射频信号经历功率放大器104的功率放大后进入天线开关单元105,由天线开关单元105为其选择特定的频段,并从天线106发送至实际空间。
在本实施例中,控制单元设置在射频收发器102内,但是毫无疑义的是,控制单元也可以和射频收发器102分开设置,如图3所示,控制单元109设置在射频收发器102以外,其可以接收耦合器107反馈的天线端的信号,并对这些信号进行处理,得到天线端的发射功率,然后将天线端的发射功率和切换值进行比较,如果天线106处的发射功率小于等于切换值,则控制单元109控制射频收发器102输出直接输出满足基站要求的射频信号,同时,控制单元109还输出第一选通信号,控制开关单元108选通射 频收发器102与天线开关单元105之间的信号通路。当天线端的发射功率大于切换值时,控制单元109输出第二选通信号,控制开关单元108选通功率放大器104,使射频收发器102输出的射频信号经历功率放大器104的功率放大后进入天线开关单元105,由天线开关单元105为其选择特定的频段,并从天线106发送至实际空间。当然,这里的切换值也还可以是从基站处获取到的给定功率值。
相对当前技术中无论在什么情况下都要对射频收发器102输出的射频信号进行功率放大后才进行发送的做法,本实施例中的终端根据实际情况进行有选择的功率放大:当基站给出的给定功率值小于等于射频收发器102的最大输出功率,或者天线端的发射功率小于等于切换值时,可以将射频收发器102输出的射频信号直接进行发送,不需要经历功率放大器104的放大,从而可以避免功率放大过程中的功耗,从而减小射频信号发送操作下的耗电,以便以延长终端的工作时间。
实施例二:
在上述实施例一中,选择的切换值同时满足基站对所述终端发射功率的要求和射频收发器的输出功率范围,即在第一动态范围与第二动态范围的交集内,其可以是这个交集内的任意一个值,这种确定切换值的方式简单,方便操作。但在本发明终端的第二实施例中,提出另外一种确定切换值的方式:
首先,在第一动态范围与第二动态范围的交集内选择两个不同的值,分别为第一切换值和第二切换值,第一切换值小于第二切换值。
控制单元在实际的比较判断过程中,每次都只会将其中一个切换值与天线端的发射功率与进行比较,因此,这里还涉及到如何选择切换值。通常,当天线端的发射功率逐渐上升时,控制单元选择第二切换值与天线端的发射功率进行比较;反之,当天线端的发射功率逐渐下降时,控制单元 选择第一切换值作为当前的切换值。也就是说,第二实施例中,在选择切换值时,考虑了天线端发射功率的变化趋势。
第一切换值与第二切换值一起确定了一个临界区域,第一切换值作用于天线端发射功率逐渐降低时,第二切换值作用于天线端发射功率逐渐升高的情况。在实际应用中,第一切换值与第二切换值确定的临界区域不会很大,第二切换值一般比第一切换值高1dBm~3dBm,而且临界区域位于射频收发器102最大输出功率的附近。例如在本实施中,射频收发器102最大输出功率为5dBm,临界区域为3.5dBm~4.5dBm,该临界区域的中间值为4dBm。当天线端的发射功率逐渐降低并逼近中间值4dBm时,选择第一切换值作为切换值,即选择3.5dBm;当天线端的发射功率逐渐升高并逼近中间值4dBm时,选择4.5dBm作为切换值。设置两个切换值的意义在于防止因为天线端的发射功率在临界区域内左右跳变时,总是以一个值作为切换值会引起终端工作方式的不停切换,从而出现乒乓效应。
在本实施例中,终端还包括供电控制模块,供电控制模块配置为在控制单元输出第二选通信号时,切断功率放大器104的供电通路,因为此时可以由射频发射器102直接输出功率满足基站要求的射频信号,不需要功率放大器104参与射频发射操作。同时,为了更进一步的降低功耗,供电控制模块还可以停止对射频功率放大器电源管理芯片103的供电。
在本实施例中,控制单元被设置在射频收发器内,这样做能够节省终端内部射频前端电路所占用的空间,减小终端的体积。可以理解的是,在空间不受限制的时候,也可以将控制单元与射频收发器分开设置,控制单元可以作为一个单独的器件参与射频信号的发送工作。
实施例三:
本实施例提供一种射频信号发送方法,该方法适用于上述实施例一和实施例二所提供的终端的射频信号发送:
首先,对接收到的功率控制信息进行解析。功率控制信息中包括基站当前对终端发射功率的要求,功率控制信息用于基站指示终端对其发射功率进行调整,其包括两种类型:在一种类型的功率控制信息中,包含一个给定功率值,这表示基站期望终端按照该给定的功率值进行信号发送。但在在某些时候,基站不会直接告知终端应当以多大的发射功率发送射频信号,而仅仅指示终端当前的发射功率是偏大还是偏小,因此在第二种类型的功率控制信息中包含功率调整指令,这时候终端需要根据当前的发射功率确定该以何种方式向基站发送信息。
当解析到的信息为给定功率值时,直接将给定功率值与射频收发器的最大输出功率进行比较,如果给定功率值小于等于射频收发器的最大输出功率,则将射频收发器输出的射频信号直接进行发送,如直接将射频收发器输出的射频信号输入天线开关单元中,由天线开关单元为其选择一个特定的频段进行发送。
射频收发器的最大输出功率一般为5dBm,现在假定基站发送给终端的给定功率值为-13dBm,则表示基站期望终端向其发送功率为-13dBm的射频信号。-13dBm小于射频收发器的最大输出功率,因此,此时可以直接调整射频收发器输出-13dBm的射频信号,并直接连通射频收发器与天线开关单元之间的信号传输通路。若是基站发送给终端的给定功率值大于5dBm,如为8dBm,则此时需要连通射频收发器与功率放大器之间的信号传输通路,使射频收发器输出的射频信号进入功率放大器之中进行功率放大后经由天线开关单元与天线传输出去,此时射频收发器可以以任意的功率值输出射频信号。
当解析功率控制信息后获得的是功率调整指令时,比较天线端的发射功率与切换值的大小,当天线端的发射功率大于切换值时,需要将射频收发器输出的射频信号进行功率放大之后才发送给基站,而当天线端的发射 功率小于等于切换值时,射频收发器输出的射频信号不需要经历功率放大的过程就可以直接进行发送。
获取天线端发射功率的流程可以参考图5:
S501、获取天线端当前正处于发射状态的射频信号。
作为一种实施方式,该过程通常可以通过耦合器来实现,如将耦合器设置在天线开关单元之后、天线之前,让耦合器获取天线开关单元传输给天线的射频信号。
S502、对获取的正处于发射状态的射频信号进行处理,并计算得到其发射功率作为当前天线端的发射功率。
基于现有终端中的射频前端电路框架,处理计算射频信号功率的工作可以由射频收发器完成,因为射频收发器具有处理、计算的能力,所以耦合器获取到当前正处于发射状态的射频信号后,可以反馈给射频收发器,由射频收发器获取到天线端的发射功率。直接由射频收发器来计算得到射频信号的发射功率不仅可以节约成本,还可以减少器件,节约终端内部空间。
切换值应该被预先设置好,作为终端两种工作模式的切换点,切换值基于基站对终端发射功率的要求和射频收发器输出功率的范围确定。根据3GPP中,基站对终端发射功率的要求,终端天线端的发射功率的动态范围一般在-49dBm~24dBm之间。在实际生产当中,各个厂家生产的射频收发器通常可以输出功率为-77dBm~5dBm的射频信号,也即,现有射频收发器输出射频信号的额定功范围为-77dBm~5dBm。为了便于表述,在以下记载中,将基站对终端发射功率要求的范围称为“第一动态范围”,将射频收发器输出射频信号的额定功率范围称为“第二动态范围”。从上述介绍中,本领域技术人员应该知道,第一动态范围与第二动态范围之间存在一定的交集,在本实施例中,切换值至少应当位于-49dBm~5dBm之间。在本实 施例中,切换值可以为大于等于-49dBm,且小于等于5dBm的任意一个值。
上述确定切换值的方式当中,只是预先确定一个值作为切换值,因为在实际的比较过程中,每次都只会将天线端的发射功率与一个切换值进行比较,但在另外一种确定切换值的方式当中,会预先确定两个值,即,第一切换值与第二切换值,第一切换值小于第二切换值。这两个切换值处于第一动态范围与第二动态范围的交集内,都满足基站对终端发射功率的要求和射频收发器的输出功率范围。当天线端的发射功率逐渐上升时,选择第二切换值与天线端的发射功率进行比较;反之,当天线端的发射功率逐渐下降时,选择第一切换值作为当前的切换值。也就是说在选择切换值时,需要考虑天线端发射功率的变化趋势。
第一切换值与第二切换值一起确定了一个临界区域,第一切换值作用于天线端发射功率逐渐降低时,第二切换值作用于天线端发射功率逐渐升高的情况。在实际应用中,第一切换值与第二切换值确定的临界区域不会很大,通常,第二切换值比第一切换值高1dBm~3dBm,而且临界区域位于射频收发器的最大输出功率的附近。例如在本实施中,射频收发器102最大输出功率为5dBm,临界区域为3.5dBm~4.5dBm,该临界区域的中间值为4dBm。当天线端的发射功率逐渐降低并逼近中间值4dBm时,选择第一切换值作为切换值,即选择3.5dBm;当天线端的发射功率逐渐升高并逼近中间值4dBm时,选择4.5dBm作为切换值。设置两个切换值的意义在于防止因为天线端的发射功率在临界区域内左右跳变时,总是以同一个值作为切换值会引起终端的工作方式不停切换,从而出现乒乓效应。
在本实施例中,当基站给定功率值小于等于射频收发器的最大输出功率或天线端的发射功率小于等于切换值时,可以切断功率放大器的供电通路,因为此时可以由射频发射器直接输出功率满足基站要求的射频信号,不需要功率放大器参与射频发射操作。同时,为了更进一步的降低功耗, 还可以停止对功率放大器电源管理芯片的供电。
和现有的而射频信号发送方法相比,本实施例提供的射频信号发送方法中,仅对射频收发器输出的部分射频信号进行功率放大,也就是说,在本实施例当中,对射频信号进行放大是有选择性的,放大过程并针对所有的射频信号,功率放大器自然也就不需要时时处于工作状态,这能够节省射频发送过程中的用电,降低终端功耗。
本发明实施例还记载了一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现以下步骤:
对接收到的功率控制信息进行解析,所述功率控制信息中包括基站当前对终端发射功率的要求;
当解析到的信息包括给定功率值且其小于等于射频收发器的最大输出功率,或解析到的信息为功率调整指令且天线端的发射功率小于等于切换值时,将所述射频收发器输出的射频信号直接进行发送;所述切换值基于所述基站对所述终端发射功率的要求和所述射频收发器输出功率的范围确定;
当解析到的信息包括给定功率值且其大于射频收发器的最大输出功率,或解析到的信息为功率调整指令且天线端的发射功率大于切换值时,将所述射频收发器输出的射频信号经过功率放大器放大后进行发送。
作为一种实施方式,执行将所述射频收发器输出的射频信号直接进行发送的步骤时,所述一个或者多个程序还可被所述一个或者多个处理器执行,以实现以下步骤:
控制关闭所述功率放大器的供电通路。
作为一种实施方式,所述一个或者多个程序还可被所述一个或者多个处理器执行,以实现以下步骤:
确定所述切换值;
其中,可选择以下任意一种确定所述切换值的处理步骤:
选择一个同时满足基站对所述终端发射功率要求和射频收发器输出功率范围的值作为所述切换值;
选择两个不同的、且都满足所述基站对所述终端发射功率要求和射频收发器输出功率范围的值,值大的作为天线端的发射功率逐渐升高时进行判断的切换值,值小的作为天线端的发射功率逐渐降低时进行判断的切换值。
作为一种实施方式,所述一个或者多个程序还可被所述一个或者多个处理器执行,以实现以下步骤:
获取天线端的发射功率;
其中,获取天线端的发射功率的处理步骤包括:
获取天线端当前正处于发射状态的射频信号;
对获取的正处于发射状态的射频信号进行处理,并计算得到所述射频信号的发射功率作为当前天线端的发射功率。
本领域技术人员应当理解,本实施例的计算机存储介质中各程序的功能,可参照前述射频信号发送方法的相关描述而理解。
实施例四:
本实施例提供一种射频信号发送方法,该方法主要针对基站通过给定功率值的形式告知终端其对发射功率的要求的情况:
在获取到基站给定的功率值后,比较基站给定功率值是否小于等于射频收发器的最大输出功率值,当否时,需要将射频收发器输出的射频信号进行功率放大后再进行发送,当给定功率值小于等于射频收发器的最大输出功率值时,将射频收发器输出的射频信号直接进行发送,不过本领域技术人员应当明白的是,此时可能需要调整射频收发器,使之输出满足基站 要求的射频信号。
假设从基站处获取到的给定功率值为-17dBm,而本实施例中,射频收发器的最大输出功率为5dBm,-17dBm小于5dBm,所以,按照本实施例提供的射频信号发送方法,此时可以直接让开关单元选通射频收发器与天线开关单元之间的信号传输通路,使射频收发器输出的射频信号不经历功率放大就直接进行发送。当给定功率值为6dBm时,则需要将射频收发器输出的射频信号输入功率放大器中进行功率放大后再由天线开关单元为其选定一个特定的频段进行发送。在上述两种射频信号的发送途径中,判断是否需要使用功率放大器进行放大的关键在于给定功率值与射频收发器的最大输出功率有关。当给定功率值低于射频收发器的最大输出功率时,一律不需要进行功率放大,可以关断功率放大器的供电通路,进一步的,因为功率放大器不需要工作,那么专门管理功率放大器用电的功率放大器供电管理芯片也可以处于关闭状态。
比较给定功率值与射频收发器最大输出功率值的工作可以由射频收发器来完成,因为射频收发器本身具有一定的处理能力,在这种情况下,可以减少参与射频信号发送操作的器件,从实际生产的角度来说,这样有利于减小终端尺寸。
本发明实施例还记载了一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现以下步骤:
从基站处获取给定功率值;
当所述给定功率值小于等于射频收发器的最大输出功率时,将射频收发器输出的射频信号直接进行发送;
当所述给定功率值大于射频收发器的最大输出功率时,将射频收发器输出的射频信号经过功率放大器放大后进行发送。
作为一种实施方式,执行将射频收发器输出的射频信号直接进行发送的步骤时,所述一个或者多个程序还可被所述一个或者多个处理器执行,以实现以下步骤:
控制关闭所述功率放大器的供电通路。
作为一种实施方式,执行控制关闭所述功率放大器的供电通路时,所述一个或者多个程序还可被所述一个或者多个处理器执行,以实现以下步骤:
控制专门管理功率放大器用电的功率放大器供电管理芯片处于关闭状态。
本领域技术人员应当理解,本实施例的计算机存储介质中各程序的功能,可参照实施例四所述的射频信号发送方法的相关描述而理解。
实施例五:
本实施例提供一种与实施例四不同的射频信号发送方法,主要针对基站以功率调整指令告知终端发射功率要求的情况:
当从功率控制信息解析出功率调整指令,说明基站当前并未明确地告知终端应当以多大的发射功率进行射频信号发送,而是告知终端当前的发射功率是偏大还是偏小,在后续的发射过程中,是需要将发射功率调小还是调大。因此,在这种情况下,比较的对象不再是基站给定功率值与射频收发器的最大输出功率,而是天线端的发射功率与切换值。
通过耦合器采集获取天线开关单元传输给天线的发射信号,然后反馈给具有处理计算能力的装置或者器件,例如射频收发器,进行处理计算后可以得到天线端的发射功率。
在本实施例中,切换值至少要依据基站对终端发射功率的要求和射频收发器输出功率的范围来确定,基站对终端发射功率的要求来源于3GPP协议,在该协议当中,基站要求终端天线端的发射功率范围在-49dBm~ 24dBm之间,该范围为第一动态范围。射频收发器输出功率的范围通常为-77dBm~5dBm,这是第二动态范围。在本实施例中,切换值的确定方式并不唯一:
在一种确定方式中,切换值可以是第一动态范围与第二动态范围交集中的任意一个值。
在另一种确定切换值的方式中,可以先在第一动态范围与第二动态范围的交集中先分别确定一个第一切换值和一个第二切换值,第二切换值大于第一切换值。当天线端的发射功率逐渐上升时,选择第二切换值与天线端的发射功率进行比较;反之,当天线端的发射功率逐渐下降时,选择第一切换值作为当前的切换值。也就是说,在第二种方式中,选择切换值时,考虑了天线端发射功率的变化趋势。
第一切换值与第二切换值一起确定了一个临界区域,第一切换值作用于天线端发射功率逐渐降低时,第二切换值作用于天线端发射功率逐渐升高的情况。在实际应用中,第一切换值与第二切换值确定的临界区域不会很大,通常,第二切换值比第一切换值高1dBm~3dBm,而且临界区域位于射频收发器的最大输出功率的附近。例如在本实施一个较佳的示例当中,临界区域为3.5dBm~4.5dBm,该临界区域的中间值为4dBm。当天线端的发射功率逐渐降低并逼近中间值4dBm时,选择第一切换值作为切换值,即选择3.5dBm;当天线端的发射功率逐渐升高并逼近中间值4dBm时,选择第二切换值4.5dBm。设置两个切换值的意义在于防止因为天线端的发射功率在临界区域内左右跳变时,总是以同一个值作为切换值会引起终端的工作方式不停切换,从而出现乒乓效应。
本发明实施例还记载了一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现以下步骤:
从功率控制信息中解析出功率调整指令,所述功率控制信息中包括基站当前对终端发射功率的要求;
当天线端的发射功率小于等于切换值时,将射频收发器输出的射频信号直接进行发送;
当天线端的发射功率大于切换值时,将射频收发器输出的射频信号经过功率放大器放大后进行发送;
所述切换值基于所述基站对所述终端发射功率的要求和所述射频收发器输出功率的范围确定。
作为一种实施方式,所述一个或者多个程序还可被所述一个或者多个处理器执行,以实现以下步骤:
获取天线端的发射功率;
其中,获取天线端的发射功率的处理步骤包括:
获取天线端当前正处于发射状态的射频信号;
对获取的正处于发射状态的射频信号进行处理,并计算得到所述射频信号的发射功率作为当前天线端的发射功率。
本领域技术人员应当理解,本实施例的计算机存储介质中各程序的功能,可参照实施例五所述的射频信号发送方法的相关描述而理解。
实施例六:
本实施例提供了一种射频信号发送装置,下面将结合图6对该射频信号发送装置进行详细阐述:
射频信号发送装置60包括信息解析模块601、直接发送模块602和功率放大模块603。该射频信号发送装置60可以被运用于终端的射频信号发射,其中信号解析模块601的功能可以由终端中的射频收发器来实现,即图2中的射频收发器102或图3中的射频收发器102与控制单元109。直接发送模块602的功能可以由图2或图3中的天线开关单元105和天线106 共同组成,而功率放大模块603中则可以包括图2或图3中的功率放大器104、天线开关单元105以及天线106。由于直接发送模块602和功率放大模块603中都包括天线开关单元105和天线106,因此比较好的做法是让直接发送模块602和功率放大模块603共用这两个器件,这样不仅可以节约生产成本,减小终端体积,也能降低功耗。
信息解析模块601,配置为对接收到的功率控制信息进行解析,功率控制信息中包括基站当前对终端发射功率的要求,其用于基站指示终端对其发射功率进行调整,功率控制信息有两种类型:在一种类型的功率控制信息中,包含一个给定功率值,这表示基站期望终端按照该给定的功率值进行信号发送。在另一种功率控制信息中,包括功率调整指令,因为在某些时候,基站不会直接告知终端应当以多大的发射功率发送射频信号,而仅仅指示终端当前的发射功率是偏大还是偏小,终端需要根据当前的发射功率确定后续发射过程中该以何种功率向基站发送信息。
当所述信息解析模块601,如射频收发器解析到的信息为给定功率值,直接将给定功率值与射频收发器的最大输出功率进行比较:当该给定功率值小于等于射频收发器的最大输出功率时,所述直接发送模块602将射频收发器输出的射频信号直接进行发送;例如,射频收发器输出的射频信号直接输入天线开关单元中,由天线开关单元选择一个特定的频段并由天线进行发送。当射频收发器解析功率控制信息后获得的是功率调整指令时,比较天线端的发射功率与切换值的大小,当天线端的发射功率小于等于切换值时,射频收发器也直接将射频信号输入天线开关单元中,由天线开关单元位置选择特定的频段交由天线发送。当该给定功率值大于射频收发器的最大输出功率,或者,当天线端的发射功率大于切换值时,将射频收发器输出的射频信号输入所述功率放大模块603中,在本实施例中,射频收发器可以将射频信号输入功率放大器,由功率放大器进行功率放大之后再 由天线开关单元和天线进行后续的发送过程。
针对从功率控制信息中解析出给定功率值的情况,由于射频收发器的最大输出功率一般为5dBm,给定功率值也是一个固定的值,假定给定功率值为-13dBm,-13dBm小于射频收发器的最大输出功率5dBm,因此,此时可以直接连通射频收发器与天线开关单元之间的信号传输通路。若是基站发送给终端的给定功率值大于5dBm,如为8dBm,则此时需要连通射频收发器与功率放大器之间的信号传输通路,使射频收发器输出的射频信号进入功率放大器之中进行功率放大后经由天线开关单元与天线传输出去。
针对所述信息解析模块601解析功率控制信息后获得功率调整指令的情况,比较的是天线端的发射功率与切换值的大小,当天线端的发射功率大于切换值时,所述功率放大模块603需要将射频收发器输出的射频信号进行功率放大之后才发送给基站,而当天线端的发射功率小于等于切换值时,射频收发器输出的射频信号不需要经历功率放大的过程就可以由所述直接发送模块602直接进行发送。
获取天线端的发射功率通常可以通过耦合器来实现,如,将耦合器设置在天线开关单元之后,天线之前,让耦合器获取天线开关单元传输给天线的射频信号。
然后由耦合器将获取的信号反馈给射频收发器,使射频收发器对获取的正处于发射状态的射频信号进行处理,并计算得到其发射功率作为当前天线端的发射功率。
基于现有终端中的射频前端电路框架,处理计算射频信号功率的工作可以由射频收发器完成,因为射频收发器具有处理、计算的能力,所以耦合器获取到当前正处于发射状态的射频信号后,可以反馈给射频收发器,由射频收发器获取到天线端的发射功率。直接由射频收发器来计算得到射频信号的发射功率的方案不仅可以节约成本,还可以减少器件,节约终端 内部空间。
实施例七:
由于切换值是终端两种工作模式的切换点,在本实施例提供的射频信号发送装置中,如图7,射频信号发送装置60除了包括实施例六中的信息解析模块601、直接发送模块602、功率放大模块603以外,还包括切换值确定模块604,切换值确定模块604基于基站对终端发射功率的要求和射频收发器输出功率的范围确定切换值。根据3GPP对终端发射功率的要求,终端天线端的发射功率的动态范围一般在-49dBm~24dBm之间。在实际生产当中,各个厂家生产的射频收发器通常可以输出功率为-77dBm~5dBm的射频信号,也即,现有射频收发器输出射频信号的额定功范围为-77dBm~5dBm。为了便于表述,在以下记载中,将基站对终端发射功率要求的范围称为“第一动态范围”,将射频收发器输出射频信号的额定功率范围称为“第二动态范围”。从上述介绍中,本领域技术人员应该知道,第一动态范围与第二动态范围之间存在一定的交集,故在本实施例中,切换值确定模块604确定的切换值应当位于-49dBm~5dBm之间。
在本实施例中,所述信息解析模块601、所述直接发送模块602、所述功率放大模块603的实际实现方式可以参照实施例六的阐述,对于所述切换值确定模块604,在实际应用当中,可以通过图2中的射频收发器102实现,也可以通过图3中的控制单元109实现。
在本实施例中,假定图7所示的切换值确定模块604通过图3中的控制单元来实现,那么控制单元109可以通过以下两种方式中的任意一种选择切换值:
第一,控制单元109选择一个大小介于第一动态范围与第二动态范围交集中的功率值作为切换值。
第二,控制单元109预先确定两个不同的值,即第一切换值与第二切 换值,这两个切换值位于第一动态范围与第二动态范围的交集内,第一切换值小于第二切换值。当天线端的发射功率逐渐上升时,控制单元109选择第二切换值与天线端的发射功率进行比较;反之,当天线端的发射功率逐渐下降时,控制单元109选择第一切换值作为当前的切换值。控制单元109按照第二种方式选择切换值时,需要考虑天线端发射功率的变化趋势。
可以理解的是,本实施例提供的切换值确定模块604可以同时具备通过上述两种方式选择切换值的能力,也可以仅具备其中的一种。
第二种切换值确定方式中,第一切换值与第二切换值一起决定了一个临界区域,第一切换值作用于天线端发射功率逐渐降低时,第二切换值作用于天线端发射功率逐渐升高的情况。在实际应用中,第一切换值与第二切换值确定的临界区域不会很大,通常,第二切换值比第一切换值高1dBm~3dBm,而且临界区域位于射频收发器的最大输出功率的附近。例如在本实施中,射频收发器的最大输出功率值为5dBm,而临界区域为3.5dBm~4.5dBm。临界区域的中间值为4dBm,当天线端的发射功率逐渐降低并逼近中间值4dBm时,选择第一切换值作为切换值,即选择3.5dBm作为切换值;当天线端的发射功率逐渐升高并逼近中间值4dBm时,选择第二切换值4.5dBm。设置两个切换值的意义在于防止因为天线端的发射功率在临界区域3.5dBm~4.5dBm内左右跳变时,总是以同一个值作为切换值会引起终端的工作方式不停切换,从而出现乒乓效应。
在本实施例的一种较佳的示例当中,请参考图8,射频信号发送装置60除了包括图7中信息解析模块601、直接发送模块602、功率放大模块603和切换值确定模块604以外,还包括供电控制模块605,当基站给定功率值小于等于射频收发器的最大输出功率或天线端的发射功率小于等于切换值时,所述直接发送模块602直接将射频收发器输出的射频信号输入天线开关单元进行发送,同时供电控制模块605还可以切断功率放大器的供 电通路。在本实施例中,供电控制模块605所具备的功能可以由图3中的控制单元109来实现。控制单元109在关断功率放大器的供电通路的同时,为了更进一步的降低功耗,还可以关闭对图3中射频功率放大器电源管理芯片103供电的供电通路。因为此时可以由射频发射器102直接输出功率满足基站要求的射频信号,不需要功率放大器104参与射频发射操作,当然射频功率放大器电源管理芯片103也不用再对功率放大器104的供电进行管理了。
本实施例中的射频信号发送装置通过切换值确定模块确定了两个切换值,相较于实施例六中切换值确定模块仅设置一个切换值的方案,能够防止因为天线端的发射功率在临界区域内左右跳变时,总是以同一个值作为切换值会引起终端的工作方式不停切换,从而出现乒乓效应的问题。另外,本实施例中的射频信号发送装置能够使用控制单元作为供电控制模块来对功率放大器的供电进行控制,当功率放大器不需要处于工作状态的时候,由控制单元将功率放大器和射频功率放大器电源管理芯片的供电通路关断,可以降低终端的功耗,延长终端的使用时间,提高用户体验。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本 发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
本发明实施例的技术方案提供的射频信号发送方式,对射频信号进行有选择的放大,不需要功率放大器时刻都处于工作状态,从而在部分情景下节约了功率放大过程中消耗的电能,减小了信号发射的功耗,延长了终端的工作时间,提高了用户体验。

Claims (24)

  1. 一种射频信号发送方法,所述方法包括:
    对接收到的功率控制信息进行解析,所述功率控制信息中包括基站当前对终端发射功率的要求;
    当解析到的信息包括给定功率值且其小于等于射频收发器的最大输出功率,或解析到的信息为功率调整指令且天线端的发射功率小于等于切换值时,将所述射频收发器输出的射频信号直接进行发送;所述切换值基于所述基站对所述终端发射功率的要求和所述射频收发器输出功率的范围确定;
    当解析到的信息包括给定功率值且其大于射频收发器的最大输出功率,或解析到的信息为功率调整指令且天线端的发射功率大于切换值时,将所述射频收发器输出的射频信号经过功率放大器放大后进行发送。
  2. 如权利要求1所述的射频信号发送方法,其中,所述切换值是第一动态范围与第二动态范围交集中的任意一个值,所述第一动态范围是基站要求终端天线端的发射功率范围,所述第二动态范围是射频收发器输出功率的范围。
  3. 如权利要求1所述的射频信号发送方法,其中,当将所述射频收发器输出的射频信号直接进行发送时,所述方法还包括:
    控制关闭所述功率放大器的供电通路。
  4. 如权利要求1或3所述的射频信号发送方法,其中,所述方法还包括以下任意一种确定所述切换值的处理步骤:
    选择一个同时满足基站对所述终端发射功率要求和射频收发器输出功率范围的值作为所述切换值;
    选择两个不同的、且都满足所述基站对所述终端发射功率要求和射频收发器输出功率范围的值,值大的作为天线端的发射功率逐渐升高时进行 判断的切换值,值小的作为天线端的发射功率逐渐降低时进行判断的切换值。
  5. 一种射频信号发送方法,所述方法包括:
    从基站处获取给定功率值;
    当所述给定功率值小于等于射频收发器的最大输出功率时,将射频收发器输出的射频信号直接进行发送;
    当所述给定功率值大于射频收发器的最大输出功率时,将射频收发器输出的射频信号经过功率放大器放大后进行发送。
  6. 如权利要求5所述的射频信号发送方法,其中,当将射频收发器输出的射频信号直接进行发送时,所述方法还包括:
    控制关断所述功率放大器的供电通路。
  7. 如权利要求6所述的射频信号发送方法,其中,当控制关断所述功率放大器的供电通路时,所述方法还包括:
    控制专门管理功率放大器用电的功率放大器供电管理芯片处于关闭状态。
  8. 一种射频信号发送方法,所述方法包括:
    从功率控制信息中解析出功率调整指令,所述功率控制信息中包括基站当前对终端发射功率的要求;
    当天线端的发射功率小于等于切换值时,将射频收发器输出的射频信号直接进行发送;
    当天线端的发射功率大于切换值时,将射频收发器输出的射频信号经过功率放大器放大后进行发送;
    所述切换值基于所述基站对所述终端发射功率的要求和所述射频收发器输出功率的范围确定。
  9. 如权利要求8所述的射频信号发送方法,其中,所述方法还包括: 获取天线端的发射功率;
    其中,获取天线端的发射功率的处理步骤包括:
    获取天线端当前正处于发射状态的射频信号;
    对获取的正处于发射状态的射频信号进行处理,并计算得到所述射频信号的发射功率作为当前天线端的发射功率。
  10. 一种射频信号发送装置,所述装置包括:
    信息解析模块,配置为对接收到的功率控制信息进行解析,所述功率控制信息中包括基站当前对终端发射功率的要求;
    直接发送模块,配置为当解析到的信息包括给定功率值且其小于等于射频收发器的最大输出功率,或解析到的信息为功率调整指令且天线端的发射功率小于等于切换值时,将所述射频收发器输出的射频信号直接进行发送;所述切换值基于所述基站对所述终端发射功率的要求和所述射频收发器输出功率的范围确定;
    功率放大模块,配置为当解析到的信息包括给定功率值且其大于射频收发器的最大输出功率,或解析到的信息为功率调整指令且天线端的发射功率大于切换值时,将所述射频收发器输出的射频信号经过功率放大器放大后进行发送。
  11. 如权利要求10所述的射频信号发送装置,其中,所述切换值是第一动态范围与第二动态范围交集中的任意一个值,所述第一动态范围是基站要求终端天线端的发射功率范围,所述第二动态范围是射频收发器输出功率的范围。
  12. 如权利要求10所述的射频信号发送装置,其中,所述装置还包括:
    供电控制模块,配置为当将所述射频收发器输出的射频信号直接进行发送时,控制关闭所述功率放大器的供电通路。
  13. 如权利要求10或12所述的射频信号发送装置,其中,所述装置还 包括切换值确定模块,配置为确定所述切换值;
    所述切换值确定模块确定所述切换值的方式包括以下任意一种:
    选择一个同时满足基站对所述终端发射功率要求和射频收发器输出功率范围的值作为所述切换值;
    选择两个不同的、且都满足所述基站对所述终端发射功率要求和射频收发器输出功率范围的值,值大的作为天线端的发射功率逐渐升高时进行判断的切换值,值小的作为天线端的发射功率逐渐降低时进行判断的切换值。
  14. 一种射频信号发送装置,所述装置包括:
    信息解析模块,配置为从基站处获取给定功率值;
    直接发送模块,配置为当所述给定功率值小于等于射频收发器的最大输出功率时,将射频收发器输出的射频信号直接进行发送;
    功率放大模块,配置为当所述给定功率值大于射频收发器的最大输出功率时,将射频收发器输出的射频信号经过功率放大器放大后进行发送。
  15. 如权利要求14所述的射频信号发送装置,其中,所述装置还包括:
    供电控制模块,配置为当将射频收发器输出的射频信号直接进行发送时,控制关断所述功率放大器的供电通路。
  16. 如权利要求15所述的射频信号发送装置,其中,所述供电控制模块,还配置为控制专门管理功率放大器用电的功率放大器供电管理芯片处于关闭状态。
  17. 一种射频信号发送装置,所述装置包括:
    信息解析模块,配置从功率控制信息中解析出功率调整指令,所述功率控制信息中包括基站当前对终端发射功率的要求;
    直接发送模块,配置当天线端的发射功率小于等于切换值时,将射频收发器输出的射频信号直接进行发送;
    功率放大模块,配置为当天线端的发射功率大于切换值时,将射频收发器输出的射频信号经过功率放大器放大后进行发送;
    切换值确定模块,配置为基于所述基站对所述终端发射功率的要求和所述射频收发器输出功率的范围确定所述切换值。
  18. 如权利要求17所述的射频信号发送装置,其中,所述信息解析模块,还配置获取天线端当前正处于发射状态的射频信号;对获取的正处于发射状态的射频信号进行处理,并计算得到所述射频信号的发射功率作为当前天线端的发射功率。
  19. 一种终端,所述终端包括射频收发器、功率放大器,其中,所述终端还包括:开关单元、控制单元、天线开关单元和耦合器;
    所述控制单元从基站处接收功率控制信息,并对其进行解析,所述功率控制信息中包括基站当前对终端发射功率的要求;
    当解析到的信息包括给定功率值时,则判断所述给定功率值是否小于等于所述射频收发器的最大输出功率;如果是,输出第一选通信号到开关单元,所述开关单元将所述射频收发器输出的射频信号输送到所述天线开关单元中;否则,输出第二选通信号到开关单元,所述开关单元将所述射频收发器输出的射频信号输送到所述功率放大器中;
    当解析到的信息包括功率调整指令时,则根据所述耦合器反馈的发射信号确定天线端的发射功率,并判断其是否小于等于切换值;如果是,输出第一选通信号到开关单元,所述开关单元将所述射频收发器输出的射频信号输送到所述天线开关单元中;否则,输出第二选通信号到开关单元,所述开关单元将所述射频收发器输出的射频信号输送到所述功率放大器中;所述切换值基于所述基站对所述终端发射功率的要求和所述射频收发器输出功率的范围确定。
  20. 如权利要求19所述的终端,其中,当输出所述第二选通信号时, 所述控制单元还配置为控制关闭对所述功率放大器的供电通路。
  21. 如权利要求19所述的终端,其中,所述控制单元设置在所述射频收发器内,或者,所述控制单元与所述射频收发器分开设置。
  22. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至4任一项所述的方法。
  23. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求5至7任一项所述的方法。
  24. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求8或9任一项所述的方法。
PCT/CN2017/082928 2016-05-26 2017-05-03 射频信号发送方法、装置及终端、计算机存储介质 WO2017202184A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610361971.8 2016-05-26
CN201610361971.8A CN105916194A (zh) 2016-05-26 2016-05-26 射频信号发送方法、装置及终端

Publications (1)

Publication Number Publication Date
WO2017202184A1 true WO2017202184A1 (zh) 2017-11-30

Family

ID=56742536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082928 WO2017202184A1 (zh) 2016-05-26 2017-05-03 射频信号发送方法、装置及终端、计算机存储介质

Country Status (2)

Country Link
CN (1) CN105916194A (zh)
WO (1) WO2017202184A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109819450A (zh) * 2019-02-21 2019-05-28 维沃移动通信有限公司 一种信号接收的方法、装置和终端
CN110212877A (zh) * 2019-05-31 2019-09-06 维沃移动通信有限公司 一种电路控制方法、电子设备及射频电路
CN110266357A (zh) * 2019-06-14 2019-09-20 Oppo广东移动通信有限公司 通信控制方法、装置及电子设备
CN112769445A (zh) * 2020-12-31 2021-05-07 维沃移动通信有限公司 射频电路、信号发射方法和电子设备
CN113630146A (zh) * 2021-07-09 2021-11-09 荣耀终端有限公司 一种用于射频传导测试的线路切换系统及方法
CN113922833A (zh) * 2021-09-10 2022-01-11 青岛海信移动通信技术股份有限公司 一种终端、射频前端及天线检测方法
CN114501523A (zh) * 2022-01-04 2022-05-13 南方电网科学研究院有限责任公司 一种wapi切换测试装置及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105916194A (zh) * 2016-05-26 2016-08-31 努比亚技术有限公司 射频信号发送方法、装置及终端
CN108390683B (zh) * 2018-03-22 2020-10-16 广东小天才科技有限公司 一种信号传输方法及信号传输电路
CN110769488A (zh) * 2018-07-25 2020-02-07 西安中兴新软件有限责任公司 一种发射信号的方法、装置及计算机可读存储介质
CN109743120B (zh) * 2019-02-22 2021-06-04 维沃移动通信有限公司 时序控制电路、时序控制方法和终端
CN111294833B (zh) * 2019-06-18 2023-03-31 锐迪科(重庆)微电子科技有限公司 终端及信号处理方法
CN113541755B (zh) * 2020-04-17 2023-06-16 华为技术有限公司 天线选择方法及相关设备
CN114915300B (zh) * 2021-02-09 2023-09-19 北京小米移动软件有限公司 天线模组、终端设备、天线调节方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1747333A (zh) * 2004-09-07 2006-03-15 华为技术有限公司 一种延长工作时间的手持设备及实现方法
US7092686B2 (en) * 2001-03-08 2006-08-15 Siemens Communications, Inc. Automatic transmit power control loop
CN101299614A (zh) * 2004-09-07 2008-11-05 华为技术有限公司 一种延长工作时间的手持设备及实现方法
CN101442794A (zh) * 2008-12-09 2009-05-27 深圳华为通信技术有限公司 一种控制无线终端发射功率的方法及无线终端
CN103906201A (zh) * 2012-12-25 2014-07-02 联芯科技有限公司 移动终端的射频前端的降功耗控制方法和装置
CN105916194A (zh) * 2016-05-26 2016-08-31 努比亚技术有限公司 射频信号发送方法、装置及终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7092686B2 (en) * 2001-03-08 2006-08-15 Siemens Communications, Inc. Automatic transmit power control loop
CN1747333A (zh) * 2004-09-07 2006-03-15 华为技术有限公司 一种延长工作时间的手持设备及实现方法
CN101299614A (zh) * 2004-09-07 2008-11-05 华为技术有限公司 一种延长工作时间的手持设备及实现方法
CN101442794A (zh) * 2008-12-09 2009-05-27 深圳华为通信技术有限公司 一种控制无线终端发射功率的方法及无线终端
CN103906201A (zh) * 2012-12-25 2014-07-02 联芯科技有限公司 移动终端的射频前端的降功耗控制方法和装置
CN105916194A (zh) * 2016-05-26 2016-08-31 努比亚技术有限公司 射频信号发送方法、装置及终端

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109819450A (zh) * 2019-02-21 2019-05-28 维沃移动通信有限公司 一种信号接收的方法、装置和终端
CN110212877A (zh) * 2019-05-31 2019-09-06 维沃移动通信有限公司 一种电路控制方法、电子设备及射频电路
CN110212877B (zh) * 2019-05-31 2024-01-05 维沃移动通信有限公司 一种电路控制方法、电子设备及射频电路
CN110266357A (zh) * 2019-06-14 2019-09-20 Oppo广东移动通信有限公司 通信控制方法、装置及电子设备
CN112769445A (zh) * 2020-12-31 2021-05-07 维沃移动通信有限公司 射频电路、信号发射方法和电子设备
CN113630146A (zh) * 2021-07-09 2021-11-09 荣耀终端有限公司 一种用于射频传导测试的线路切换系统及方法
CN113630146B (zh) * 2021-07-09 2022-06-14 荣耀终端有限公司 一种用于射频传导测试的线路切换系统及方法
CN113922833A (zh) * 2021-09-10 2022-01-11 青岛海信移动通信技术股份有限公司 一种终端、射频前端及天线检测方法
CN113922833B (zh) * 2021-09-10 2023-07-25 青岛海信移动通信技术有限公司 一种终端、射频前端及天线检测方法
CN114501523A (zh) * 2022-01-04 2022-05-13 南方电网科学研究院有限责任公司 一种wapi切换测试装置及方法
CN114501523B (zh) * 2022-01-04 2024-03-26 南方电网科学研究院有限责任公司 一种wapi切换测试装置及方法

Also Published As

Publication number Publication date
CN105916194A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2017202184A1 (zh) 射频信号发送方法、装置及终端、计算机存储介质
US10779215B2 (en) RF power control for dual connectivity
US8958762B2 (en) Apparatus and method for power management
US8965311B2 (en) Method for controlling terminal signal transmission, and terminal
JP5010059B1 (ja) データレートに応じた電力増幅器バイアスを用いる電子機器
US8358615B2 (en) Modulation and coding scheme selection method for a specific absorption rate compliant communication device
JPWO2005076467A1 (ja) 電力増幅装置、通信端末装置及び電力増幅装置の制御方法
CN111093259A (zh) 一种蓝牙功率调整方法、装置、存储介质及终端
US20230309020A1 (en) Communication method, terminal device, and storage medium
US9655047B2 (en) Reducing power consumption of a wireless terminal
WO2021238199A1 (zh) 数据传输方法、电子设备及计算机可读存储介质
WO2018120032A1 (zh) 小区切换方法和终端设备
EP4192054A1 (en) Method for splitting end-to-end qos requirement information, terminal, and network side device
CN101442794B (zh) 一种控制无线终端发射功率的方法及无线终端
CA3066916C (en) Power control method for link and related product
CN114828187B (zh) 电子设备功率调整的方法、电子设备及存储介质
WO2022166942A1 (zh) 发射链路的处理方法、装置及终端
CN108781408B (zh) 发射功率压缩方法和终端设备
CN114252705A (zh) 一种功率检测方法、装置、存储介质及终端
JP2006279275A (ja) 携帯電話機、電圧切替制御方法、プログラム
CN115361742A (zh) Endc注册的方法、装置、终端设备及存储介质
JP2010233247A (ja) 携帯電話機、電圧切替制御方法、プログラム

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802030

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17802030

Country of ref document: EP

Kind code of ref document: A1