WO2021238199A1 - 数据传输方法、电子设备及计算机可读存储介质 - Google Patents

数据传输方法、电子设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2021238199A1
WO2021238199A1 PCT/CN2020/140734 CN2020140734W WO2021238199A1 WO 2021238199 A1 WO2021238199 A1 WO 2021238199A1 CN 2020140734 W CN2020140734 W CN 2020140734W WO 2021238199 A1 WO2021238199 A1 WO 2021238199A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
power
data
transmission power
target
Prior art date
Application number
PCT/CN2020/140734
Other languages
English (en)
French (fr)
Inventor
黄宏章
Original Assignee
广东小天才科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东小天才科技有限公司 filed Critical 广东小天才科技有限公司
Publication of WO2021238199A1 publication Critical patent/WO2021238199A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • G06K17/0022Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device
    • G06K17/0029Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device the arrangement being specially adapted for wireless interrogation of grouped or bundled articles tagged with wireless record carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method, electronic equipment, and computer-readable storage medium.
  • the radio frequency (RF) module can be used to realize the conversion between wired electrical signals and radio signals, thereby realizing data transmission.
  • the radio frequency module When the radio frequency module is performing data transmission, it usually uses the default maximum transmission power to send the data to be transmitted to the base station, resulting in high power consumption.
  • the embodiments of the present application disclose a data transmission method, electronic equipment, and computer-readable storage medium, which can reduce the power consumption of a radio frequency module during data transmission.
  • An embodiment of the present application discloses a data transmission method, including: obtaining a target transmission power of a radio frequency module, where the target transmission power is obtained according to respective corresponding currents when the radio frequency module uses a plurality of different transmission powers for data transmission, The target transmission power is less than the preset maximum transmission power of the radio frequency module; the target transmission power is used as the maximum transmission power for data transmission.
  • An embodiment of the present application discloses an electronic device including a memory and a processor.
  • the memory stores a computer program, and when the computer program is executed by the processor, the processor executes:
  • the target transmission power of the radio frequency module is obtained according to the respective currents when the radio frequency module uses a plurality of different transmission powers for data transmission, and the target transmission power is less than the preset maximum value of the radio frequency module Transmission power; use the target transmission power as the maximum transmission power for data transmission.
  • the embodiment of the present application discloses a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the processor executes:
  • the target transmission power of the radio frequency module is obtained according to the respective currents when the radio frequency module uses a plurality of different transmission powers for data transmission, and the target transmission power is less than the preset maximum value of the radio frequency module Transmission power; use the target transmission power as the maximum transmission power for data transmission.
  • the data transmission method, electronic equipment, and computer-readable storage medium disclosed in the embodiments of the present application obtain the target transmission power of the radio frequency module, and the target transmission power is obtained according to the corresponding current when the radio frequency module uses multiple different transmission powers for data transmission Yes, the target transmission power is less than the preset maximum transmission power of the radio frequency module, and then use the acquired target transmission power as the maximum transmission power for data transmission.
  • the radio frequency module can transmit data with a reasonable transmission power, which reduces the current during data transmission. Thereby reducing the power consumption of the radio frequency module during data transmission.
  • Figure 1 is an application scenario diagram of a data transmission method in an embodiment
  • Figure 2 is a flowchart of a data transmission method in an embodiment
  • Figure 3 is a flowchart of a data transmission method in another embodiment
  • Figure 4 is a block diagram of a data transmission device in an embodiment
  • Fig. 5 is a structural block diagram of a terminal device in an embodiment.
  • first, second, etc. used in this application can be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish the first element from another element.
  • first transmission power may be referred to as the second transmission power
  • second transmission power may be referred to as the first transmission power. Both the first transmission power and the second transmission power are transmission powers, but they are not the same transmission power.
  • Fig. 1 is an application scenario diagram of a data transmission method in an embodiment.
  • a communication connection is established between the terminal device 10 and the network device 20.
  • the terminal device 10 and the network device 20 can pass through the fourth generation (4th generation, 4G) and fifth generation (5th generation, 5G).
  • 4G fourth generation
  • 5th generation 5th generation
  • the communication connection mode is not limited in the embodiment of the present application.
  • the terminal device 10 may be referred to as user equipment (UE).
  • the terminal device can be a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, and a personal digital assistant (personal digital assistant).
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device can also be a mobile phone, mobile station (MS), mobile terminal (mobile terminal), and notebook computer.
  • the terminal device 10 can be accessed via a radio access network. , RAN) to communicate with one or more core networks.
  • the terminal device 10 may be a mobile phone (or called a "cellular" phone) or a computer with a mobile terminal, etc., for example, the terminal device 10 may also be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device. , They exchange voice and/or data with the wireless access network.
  • the terminal device 10 may also be a handheld device with wireless communication function, a computing device, or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in a future evolving network, etc.
  • the implementation of this application is not limited.
  • the network device 20 may be a long-term evolution (LTE) system, an NR communication system, or an authorized auxiliary access long-term evolution (LAA-LTE) system.
  • Base station evolutional node B, abbreviated as eNB or e-NodeB
  • eNB enhanced base station
  • micro base station also known as "small base station”
  • pico base station access point (AP), transmission point (transmission point, TP)
  • gNodeB new generation Node B
  • the above-mentioned network device 20 may also be other types of network devices in the future evolution network, which is not limited in the implementation of this application.
  • the terminal device 10 may include a radio frequency module, and transmits data to the network device 20 through the radio frequency module.
  • the radio frequency module of the terminal device 10 When the radio frequency module of the terminal device 10 performs data transmission, it can obtain the target transmission power of the radio frequency module, and use the target transmission power as the maximum transmission power for data transmission.
  • the target transmission power may be obtained according to respective currents when the radio frequency module uses a plurality of different transmission powers for data transmission.
  • the radio frequency module of the terminal device 10 usually uses a preset maximum transmission power for data transmission, which results in a large instantaneous current during data transmission and increases the power consumption of data transmission.
  • the target transmission power is obtained according to the respective corresponding currents when the radio frequency module uses multiple different transmission powers for data transmission.
  • the target transmission power is less than the preset maximum transmission power of the radio frequency module, and the radio frequency module can be reasonably
  • the transmit power is used for data transmission, which reduces the current during data transmission, thereby reducing the power consumption of the radio frequency module during data transmission.
  • a data transmission method is provided, which can be applied to the above-mentioned terminal device, and the data transmission method may include the following steps:
  • Step 210 Obtain the target transmit power of the radio frequency module.
  • the target transmission power may be obtained according to the respective corresponding currents when the radio frequency module uses a plurality of different transmission powers for data transmission.
  • the corresponding currents may refer to the current consumed when different transmission powers are used for data transmission.
  • the current corresponding to each transmission power may be the instantaneous current corresponding to each transmission power during data transmission (that is, the current when transmitting data), or the total transmission current corresponding to each transmission power during data transmission.
  • the instantaneous current refers to the current consumed per unit time during data transmission
  • the total transmission current can refer to the total amount of current consumed to transmit one frame of data.
  • the radio frequency module uses different transmission powers for data transmission, it can correspond to different currents respectively.
  • the radio frequency module when it performs data transmission, it can test the corresponding current of the radio frequency module when multiple different transmission powers are used for data transmission, and can establish a correspondence between the current and the transmission power according to the test result.
  • the foregoing multiple different transmission powers may include a preset maximum transmission power, and the preset maximum transmission power is the default maximum transmission power of the radio frequency module, which may be preset according to actual requirements.
  • the radio frequency module usually uses the preset maximum transmission power as the maximum transmission power for data transmission. Part or all of multiple transmission powers can be selected for testing within the preset maximum transmission power and minimum transmission power range.
  • the preset maximum transmit power of the radio frequency module is 23dBm (decibel relative to one milliwatt, decibel milliwatt)
  • the current corresponding to data transmission at 17dBm, 18dBm, 20dBm, 21dBm, 23dBm can also be tested when the radio frequency module uses each transmission power contained in 0 ⁇ 23dBm for data transmission. For example, at 1dBm, 2dBm, ..., the current corresponding to 23dBm for data transmission, etc.
  • the corresponding relationship between the transmission power and current used by the radio frequency module for data transmission can be as shown in Table 1, where the current is the instantaneous current during data transmission.
  • RF module transmit power Current 17dBm 300mA (mA) 18dBm 330mA 19dBm 350mA 20dBm 400mA 21dBm 460mA 22dBm 560mA 23dBm 580mA
  • the terminal device can select a target transmission power from a plurality of different transmission powers according to the currents corresponding to the multiple different transmission powers, and the target transmission power can be less than the preset maximum transmission power, so that the radio frequency module reduces the power during data transmission.
  • the target transmission power may be any transmission power that is less than the preset maximum transmission power among the total transmission currents corresponding to each of the multiple different transmission powers.
  • the target transmission power may be the transmission power with the smallest total transmission current among the corresponding total transmission currents of multiple different transmission powers, which can ensure that the power consumption of the radio frequency module during data transmission is minimized.
  • the target transmission power may be obtained according to the respective currents when the radio frequency module uses multiple different transmission powers for data transmission, and the respective transmission durations of a frame of data using multiple different transmission powers.
  • the sending duration may refer to the total time required to send one frame of data.
  • the transmission duration can be related to factors such as the transmission power of the radio frequency module, the signal strength of the mobile terminal, and the data volume of one frame of data.
  • the data volume of one frame of data can be determined according to the actual data sent.
  • the data amount of each frame of data may be different. For example, when different types of data such as image data, text data, and video data are transmitted, the data amount of each frame of data may be different.
  • the transmission duration and the transmission power of the radio frequency module may be in a negative correlation
  • the transmission duration and the signal strength of the mobile terminal may be in a negative correlation
  • the transmission duration and the data volume of a frame of data may be in a positive correlation.
  • the multiple different transmission powers used by the radio frequency module may include the first transmission power, and the first transmission power may be any transmission power among the multiple different transmission powers.
  • the first transmission duration corresponding to the first transmission power may be obtained according to the first transmission power, the network signal strength during data transmission, and the data volume of one frame of data.
  • the terminal equipment can detect the network signal strength, and test the corresponding transmission time length of the radio frequency module using multiple different transmission powers to send a frame of data under the network signal strength, and can establish the corresponding relationship between the transmission time length and the transmission power according to the test results .
  • multiple different transmission powers of the test transmission duration may be the same as multiple different transmission powers of the test current.
  • the correspondence between the transmission power used by the radio frequency module for data transmission and the transmission duration can be As shown in table 2.
  • RF module transmit power Sending time of one frame of data 17dBm 23ms (milliseconds) 18dBm 18ms 19dBm 15ms 20dBm 13ms 21dBm 12ms 22dBm 10ms 23dBm 10ms
  • the target transmission power may be the transmission power with the smallest total transmission current among the total transmission currents corresponding to each of the multiple different transmission powers, wherein the total transmission current corresponding to each transmission power may transmit a transmission power at each transmission power.
  • the detection is performed directly when the frame data is transmitted, and it can also be obtained according to the current corresponding to each transmission power for data transmission and the transmission time length of one frame of data.
  • the target transmission power may be the smallest transmission power among the differences between the corresponding currents and the corresponding average currents when the radio frequency module uses multiple different transmission powers for data transmission, wherein the average current corresponding to each transmission power It can refer to the current consumed per unit of time when the radio frequency module uses the preset maximum transmission power for data transmission, within the transmission duration corresponding to one frame of data transmitted at each transmission power.
  • the average current corresponding to the first transmission power may refer to the average current when the radio frequency module uses the preset maximum transmission power for data transmission. The current consumed.
  • the terminal device can first calculate the maximum total transmission current corresponding to the data transmission using the preset maximum transmission power.
  • the difference between the corresponding current and the corresponding average current of each transmission power for data transmission can be calculated, and the transmission power with the smallest difference can be selected as the target transmission power.
  • the difference corresponding to the first transmission power may be the difference between the first current corresponding to the first transmission power during data transmission minus the corresponding first average current.
  • the difference between the corresponding current and the corresponding average current when each transmission power performs data transmission can be as shown in Table 4.
  • the current corresponding to the target transmission power for data transmission needs to be less than the average current corresponding to the target transmission power. Therefore, the current corresponding to the data transmission and the corresponding average current can be selected from multiple transmission powers to select the current corresponding to the data transmission Transmission power that is less than the corresponding average current, and then determine that the corresponding current during data transmission is less than the corresponding average current transmission power, and the absolute value of the difference between the corresponding current and the corresponding average current during data transmission is the largest.
  • the power is the target transmission power. For example, taking the data in Table 4 as an example, among the multiple different transmission powers in Table 4, the transmission power at which the corresponding current is less than the corresponding average current during data transmission includes 19dBm, 20dBm, 21dBm, and 22dBm.
  • the absolute value of the difference between the corresponding current and the corresponding average current during data transmission is 20dBm, which is 46mA. Then 20dBm can be determined as the target transmission power.
  • the difference -46mA corresponding to the transmission power of 20dBm is also in Table 4. The smallest difference.
  • Step 220 Perform data transmission with the target transmission power as the maximum transmission power.
  • the target transmit power that can be obtained by the radio frequency module of the terminal equipment is the maximum transmit power to send data to the network device.
  • the maximum transmit power of the radio frequency module can be adjusted to the target transmit power.
  • the transmit power of the radio frequency module can be less than or equal to this Target transmission power, which can reduce the power consumption of the radio frequency module during data transmission.
  • the target transmission power of the radio frequency module is obtained.
  • the target transmission power is obtained according to the corresponding currents when the radio frequency module uses multiple different transmission powers for data transmission.
  • the target transmission power is less than the preset maximum value of the radio frequency module. Transmission power, and then use the obtained target transmission power as the maximum transmission power for data transmission.
  • the radio frequency module can transmit data with a reasonable transmission power, which reduces the current during data transmission, thereby reducing the power consumption of the radio frequency module during data transmission.
  • the data transmission method may include the following steps:
  • Step 302 When the terminal device enters a video call, statistics the corresponding transmission power when the radio frequency module transmits data at each transmission time.
  • the data transmission method provided in the embodiments of the present application may be applicable to the data transmission process during a video call.
  • the terminal device When the terminal device detects that it enters a video call, it can start to count the corresponding transmission power when the radio frequency module sends data at each transmission time.
  • the transmission time can be determined according to the transmission frame rate during data transmission by the radio frequency module.
  • the transmission frame rate can refer to the transmission speed during data transmission.
  • the transmission frame rate can be 10 frames/s (seconds). ), 30 frames/s, 45 frames/s, etc.
  • the transmission time interval corresponding to different transmission frame rates can be different.
  • the transmission time interval can refer to the time interval between the transmission of two frames of data.
  • the transmission frame rate is 10 frames/s
  • the corresponding transmission time interval is 100 ms.
  • the radio frequency module will send a frame of data to the network device every 100ms, the transmission frame rate is 20 frames/s, and the corresponding transmission time interval is 50ms, that is, the radio frequency module will send a frame of data to the network device every 50ms.
  • the sending moment is the moment when the radio frequency module sends data to the network device each time. After entering the video call, you can obtain the corresponding transmit power when the radio frequency module sends data at each sending moment.
  • Step 304 In the case that the target proportion is greater than the proportion threshold, obtain the target transmit power of the radio frequency module.
  • the target proportion is that when the radio frequency module is in a video call state, the transmit power at different transmit moments within a preset time period is greater than the power threshold % Of.
  • the target proportion may refer to the proportion of transmission power at different transmission moments greater than the power threshold within a preset time period.
  • the corresponding transmission power of the radio frequency module when sending data at different sending moments within a preset time period can be obtained.
  • the preset time period can be set according to requirements, for example, it can be 1 second, 2 seconds, 5 seconds, etc., are not limited here. It is possible to calculate the proportion of the transmission power that is greater than the power threshold among the transmission powers corresponding to the respective transmission powers at different transmission moments in the preset time period.
  • the target proportion may be the ratio between the number of transmission powers corresponding to the transmission moment greater than the power threshold and the number of all transmission moments within a preset time period.
  • the preset time period is 1 second and the transmission frame rate when the radio module transmits data is 10 frames per second, there are 10 transmission moments in 1 second, and the corresponding transmission power of one transmission moment is greater than the power threshold of 20 dBm.
  • the target accounted for 10%.
  • the target proportion When the target proportion is greater than the ratio threshold, it can indicate that the radio frequency module has a higher probability of using a larger transmission power for data transmission.
  • the target transmission power of the radio frequency module can be obtained, and the maximum transmission power of the radio frequency module can be adjusted to a reasonable target transmission power.
  • the ratio threshold can be set according to actual needs, such as 5%, 8%, etc., which is not limited here.
  • the target proportion is less than or equal to the proportion threshold, it can be judged whether the video call is over. If the video call is not over, it can continue to obtain the corresponding transmission power when the RF module sends data at each transmission time, and judge the preset time Whether the proportion of the transmit power at different transmission moments in the segment that is greater than the power threshold (that is, the target proportion) is greater than the proportion threshold.
  • the target transmit power of the radio frequency module can be obtained.
  • the network signal strength of the terminal device is not within the preset signal strength range, it may indicate that the current network signal of the terminal device is poor. If the maximum transmission power of the radio frequency module is adjusted, a large delay will occur, which will cause the video call to freeze. Case. Therefore, when the network signal strength of the terminal device is within the preset signal strength range, obtaining the target transmission power of the radio frequency module can reduce power consumption while ensuring the quality of the video call.
  • the target transmission power may be the corresponding current when the radio frequency module uses multiple different transmission powers for data transmission, the transmission duration corresponding to one frame of data using multiple different transmission powers, and the transmission frame rate.
  • the transmission frame rate of the radio frequency module for data transmission has nothing to do with the used transmission power, but may be related to the data quality required for data transmission.
  • the transmission frame rate when the radio frequency module performs data transmission may be related to the video definition and fluency required during the video call. The higher the video definition, the larger the corresponding transmission frame rate.
  • the transmission time corresponding to the radio frequency module using the target transmission power to send one frame of data needs to be less than the transmission time interval corresponding to the transmission frame rate.
  • the terminal equipment calculates the transmission time corresponding to each transmission power and transmits one frame of data according to the transmission power of the radio frequency module, the network signal strength during data transmission, and the data volume of one frame of data, it can determine the corresponding transmission power one by one. Whether the transmission time length of is less than the transmission time interval corresponding to the transmission frame rate, and the transmission power for sending a frame of data less than the transmission time interval corresponding to the transmission frame rate is used as the preselected transmission power, and then from one or more pre-transmission powers Select the target transmit power.
  • the manner of selecting the target transmit power can refer to the various manners described in step 210 in the foregoing embodiment, which will not be repeated here.
  • the transmission time corresponding to one frame of data transmitted by the target transmission power is less than the transmission time interval corresponding to the transmission frame rate, which can ensure the quality of the video call during the video call and can effectively reduce the power consumption.
  • the transmission frame rate of the radio frequency module when transmitting data is 50 frames/s
  • the transmission time interval corresponding to the transmission frame rate is 20ms
  • the radio frequency module sends to the network device every 20ms One time data.
  • After testing the duration of sending a frame of data using multiple different transmission powers by the radio frequency module it can be judged whether the transmission duration corresponding to each transmission power is less than 20ms.
  • the 6 transmission powers of 18dBm ⁇ 23dBm are respectively If the corresponding transmission duration is less than 20ms, 6 transmission powers of 18dBm ⁇ 23dBm can be used as the preselected transmission power, and then the target transmission power can be selected from the preselected transmission power.
  • Step 306 Perform data transmission with the target transmission power as the maximum transmission power.
  • the terminal device can adjust the maximum transmit power of the radio frequency module to the target transmit power.
  • the transmit power of the radio frequency module can be less than or equal to the acquired target transmit power, and the target transmit power is used as the maximum transmit power for data transmission.
  • step 304 may be performed to re-obtain the target transmission power, and the re-acquired target transmission power may be based on the changed network signal strength And after changing the transmission frame rate, it can be more optimized to reduce the power consumption during the video call.
  • the maximum transmit power of the radio frequency module is the preset maximum transmit power.
  • the maximum transmit power of the radio frequency module adjusted to the target transmit power can be restored to the preset maximum transmit power.
  • the preset maximum transmit power can be used directly for data transmission without being restricted by the target transmit power.
  • the data transmission method provided in the embodiment of the present application is not limited to being applied to a video call process, but is also applicable to other data transmission scenarios, which is not limited here.
  • the radio frequency module can transmit data with reasonable transmission power, which reduces the current during data transmission, reduces the power consumption of the radio frequency module during data transmission, and ensures the video call during the video call. quality.
  • a data transmission device 400 which includes a target power acquisition module 410 and a transmission module 420.
  • the target power obtaining module 410 is used to obtain the target transmission power of the radio frequency module.
  • the target transmission power is obtained according to the corresponding currents when the radio frequency module uses multiple different transmission powers for data transmission.
  • the target transmission power is less than the preset maximum value of the radio frequency module. Transmission power.
  • the target transmission power is obtained according to the respective currents when the radio frequency module uses multiple different transmission powers for data transmission, and the respective transmission durations corresponding to one frame of data transmitted using multiple different transmission powers.
  • the target transmission power is the smallest transmission power among the differences between the respective corresponding currents and the corresponding average currents when a plurality of different transmission powers are used for data transmission.
  • the first average current corresponding to the first transmission power is the ratio of the maximum total transmission current to the first transmission duration corresponding to the first transmission power
  • the maximum total transmission current is the current corresponding to the data transmission using the preset maximum transmission power.
  • the product of the transmission duration corresponding to the transmission of one frame of data with the preset maximum transmission power, and the multiple different transmission powers include the first transmission power.
  • the target transmission power is the transmission power with the smallest total transmission current among multiple total transmission currents respectively corresponding to when multiple different transmission powers are used for data transmission.
  • the first total transmission current corresponding to the first transmission power is obtained according to the first current and the first transmission duration when the first transmission power is used for data transmission, and the multiple different transmission powers include the first transmission power.
  • the first transmission duration corresponding to the first transmission power is obtained based on the first transmission power, the network signal strength during data transmission, and the data volume of one frame of data, and the multiple different transmission powers include the first transmission power.
  • the transmission module 420 is configured to perform data transmission with the target transmission power as the maximum transmission power.
  • the target transmission power of the radio frequency module is obtained.
  • the target transmission power is obtained according to the corresponding currents when the radio frequency module uses multiple different transmission powers for data transmission.
  • the target transmission power is less than the preset maximum value of the radio frequency module. Transmission power, and then use the obtained target transmission power as the maximum transmission power for data transmission.
  • the radio frequency module can transmit data with a reasonable transmission power, which reduces the current during data transmission, thereby reducing the power consumption of the radio frequency module during data transmission.
  • the target power obtaining module 410 is also used to obtain the target transmit power of the radio frequency module when the target proportion is greater than the proportion threshold. It is assumed that the proportion of the transmission power at different transmission moments in the time period is greater than the power threshold.
  • the target transmission power is obtained according to the current corresponding to the radio frequency module using multiple different transmission powers for data transmission, the transmission duration corresponding to a frame of data using multiple different transmission powers, and the transmission frame rate. ;
  • the transmission duration corresponding to the target transmission power is less than the transmission time interval corresponding to the transmission frame rate.
  • the radio frequency module can transmit data with reasonable transmission power, which reduces the current during data transmission, reduces the power consumption of the radio frequency module during data transmission, and ensures the video call during the video call. quality.
  • Fig. 5 is a structural block diagram of a terminal device in an embodiment.
  • the terminal device may include: a radio frequency module 510, a memory 520, an input unit 530, a display unit 540, a sensor 550, an audio circuit 560, a wireless fidelity (WiFi) module 570, a processor 580, and Power 590 and other components.
  • a radio frequency module 510 may include: a radio frequency module 510, a memory 520, an input unit 530, a display unit 540, a sensor 550, an audio circuit 560, a wireless fidelity (WiFi) module 570, a processor 580, and Power 590 and other components.
  • WiFi wireless fidelity
  • the terminal device may include more or less components than shown in the figure, or a combination of certain components, or different components Layout.
  • the radio frequency module 510 can be used for receiving and sending signals during information transmission or communication. In particular, after receiving the downlink information of the base station, it is processed by the processor 580; in addition, the designed uplink data is sent to the base station.
  • the radio frequency module 510 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the radio frequency module 510 can also communicate with the network and other devices through wireless communication.
  • the above-mentioned wireless communication can use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (GPRS), code division multiple access (code division multiple access) multiple access, CDMA), wideband code division multiple access (WCDMA), long-term evolution, email, short messaging service (short messaging service, SMS), etc.
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • long-term evolution email, short messaging service (short messaging service, SMS), etc.
  • the memory 520 may be used to store software programs and modules.
  • the processor 580 executes various functional applications and data processing of the terminal device by running the software programs and modules stored in the memory 520.
  • the memory 520 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.;
  • the data (such as audio data, phone book, etc.) created by the use of the terminal device, etc.
  • the memory 520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the input unit 530 may be used to receive inputted number or character information, and generate key signal input related to user settings and function control of the terminal device.
  • the input unit 530 may include a touch panel 532 and other input devices 534.
  • the touch panel 532 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 532 or near the touch panel 532. Operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 532 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 580, and can receive and execute the commands sent by the processor 580.
  • the touch panel 532 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the input unit 530 may also include other input devices 534.
  • the other input device 534 may include, but is not limited to, one or more of a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, joystick, and the like.
  • the display unit 540 may be used to display information input by the user or information provided to the user and various menus of the terminal device.
  • the display unit 540 may include a display panel 542.
  • the display panel 542 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • the touch panel 532 can cover the display panel 542. When the touch panel 532 detects a touch operation on or near it, it transmits it to the processor 580 to determine the type of the touch event, and then the processor 580 responds to the touch event. The type provides corresponding visual output on the display panel 542.
  • the touch panel 532 and the display panel 542 are used as two independent components to implement the input and input functions of the terminal device, in some embodiments, the touch panel 532 and the display panel 542 may be integrated And realize the input and output functions of terminal equipment.
  • the terminal device may also include at least one sensor 550, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 542 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 542 and the display panel 542 when the terminal device is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when it is stationary.
  • the audio circuit 560, the speaker 562, and the microphone 564 can provide an audio interface between the user and the terminal device.
  • the audio circuit 560 can transmit the electric signal converted from the received audio data to the speaker 562, and the speaker 562 converts it into a sound signal for output; on the other hand, the microphone 564 converts the collected sound signal into an electric signal, and the audio circuit 560 converts the collected sound signal into an electric signal.
  • WiFi is a short-distance wireless transmission technology.
  • terminal devices can help users send and receive emails, browse web pages, and access streaming media. It provides users with wireless broadband Internet access.
  • FIG. 5 shows the WiFi module 570, it is understandable that it is not a necessary component of the terminal device and can be omitted as needed without changing the essence of the technical solution provided by the embodiments of the present application.
  • the processor 580 is the control center of the terminal device. It uses various interfaces and lines to connect the various parts of the entire terminal device, runs or executes software programs and/or modules stored in the memory 520, and calls data stored in the memory 520. , Perform various functions of the terminal equipment and process data, so as to monitor the terminal equipment as a whole.
  • the processor 580 may include one or more processing units; preferably, the processor 580 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc. , The modem processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 580.
  • the terminal device also includes a power source 590 (such as a battery) for supplying power to various components.
  • a power source 590 such as a battery
  • the power source can be logically connected to the processor 580 through a power management system, so that functions such as charging, discharging, and power management are realized through the power management system.
  • the terminal device may also include a camera, a Bluetooth module, etc., which will not be described in detail here.
  • the processor 580 when the computer program stored in the memory 520 is executed by the processor 580, the processor 580 is caused to implement the methods described in the foregoing embodiments.
  • the embodiment of the present application discloses a computer-readable storage medium that stores a computer program, where the computer program is executed by a processor to implement the method described in the above-mentioned embodiment.
  • the embodiments of the present application disclose a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program can be executed by a processor to implement the methods described in the foregoing embodiments.
  • the program can be stored in a non-volatile computer readable storage medium.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), etc.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM), which acts as an external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous Link (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, the appearances of "in one embodiment” or “in an embodiment” in various places throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures, or characteristics can be combined in one or more embodiments in any suitable manner. Those skilled in the art should also know that the embodiments described in the specification are optional embodiments, and the actions and modules involved are not necessarily required by the application.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, and may be located in one place or distributed on multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the aforementioned integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-accessible memory.
  • the essence of the technical solution of this application or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory.
  • a computer device which may be a personal computer, a server, or a network device, etc., specifically a processor in a computer device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法,包括:获取射频模块的目标发送功率,所述目标发送功率为根据所述射频模块使用多个不同发送功率进行数据传输时分别对应的电流得到的,所述目标发送功率小于所述射频模块的预置最大发送功率;以所述目标发送功率为最大发送功率进行数据传输。

Description

数据传输方法、电子设备及计算机可读存储介质 技术领域
本申请涉及通信技术领域,具体涉及一种数据传输方法、电子设备及计算机可读存储介质。
背景技术
射频(Radio Frequency,RF)模块可用于实现有线电信号与无线电信号之间的转换,从而实现数据传输。射频模块在进行数据传输时,通常使用默认的最大的发射功率将所需传输的数据发送到基站,导致功耗较大。
发明内容
本申请实施例公开了一种数据传输方法、电子设备及计算机可读存储介质,能够减少射频模块在数据传输时的功耗。
本申请实施例公开了一种数据传输方法,包括:获取射频模块的目标发送功率,所述目标发送功率为根据所述射频模块使用多个不同发送功率进行数据传输时分别对应的电流得到的,所述目标发送功率小于所述射频模块的预置最大发送功率;以所述目标发送功率为最大发送功率进行数据传输。
本申请实施例公开了一种电子设备,包括存储器及处理器,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行:
获取射频模块的目标发送功率,所述目标发送功率为根据所述射频模块使用多个不同发送功率进行数据传输时分别对应的电流得到的,所述目标发送功率小于所述射频模块的预置最大发送功率;以所述目标发送功率为最大发送功率进行数据传输。
本申请实施例公开了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行:
获取射频模块的目标发送功率,所述目标发送功率为根据所述射频模块使用多个不同发送功率进行数据传输时分别对应的电流得到的,所述目标发送功率小于所述射频模块的预置最大发送功率;以所述目标发送功率为最大发送功率进行数据传输。
本申请实施例公开的数据传输方法、电子设备及计算机可读存储介质,获取射频模块的目标发送功率,该目标发送功率为根据射频模块使用多个不同发送功 率进行数据传输时分别对应的电流得到的,目标发送功率小于射频模块的预置最大发送功率,再以获取的目标发送功率为最大发送功率进行数据传输,射频模块能够以合理的发送功率进行数据传输,降低了数据传输时的电流,从而减少射频模块在数据传输时的功耗。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中数据传输方法的应用场景图;
图2为一个实施例中数据传输方法的流程图;
图3为另一个实施例中数据传输方法的流程图;
图4为一个实施例中数据传输装置的框图;
图5为一个实施例中终端设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请实施例及附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一发送功率称为第二发送功率,且类似地,可将第二发送功率称为第一发送功率。第一发送功率和第二发送功率两者都是发送功率,但其不是同一发送功率。
图1为一个实施例中数据传输方法的应用场景图。如图1所示,终端设备10与网络设备20之间建立通信连接,可选地,终端设备10可与网络设备20通过第四代(4th generation,4G)、第五代(5th generation,5G)等通信技术建立通信连 接,其通信连接方式在本申请实施例中不作限定。
在一些实施例中,终端设备10可以称之为用户设备(user equipment,UE)。该终端设备可以为个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备,该终端设备也可以为手机、移动台(mobile station,MS)、移动终端(mobile terminal)和笔记本电脑等,该终端设备10可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信。例如,终端设备10可以是移动电话(或称为“蜂窝”电话)或具有移动终端的计算机等,例如,终端设备10还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。终端设备10还可以为有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来演进的网络中的终端设备等,本申请实施不作限定。
在一些实施例中,网络设备20可以是长期演进(long term evolution,LTE)系统、NR通信系统或者授权辅助接入长期演进(authorized auxiliary access long-term evolution,LAA-LTE)系统中的演进型基站(evolutional node B,简称可以为eNB或e-NodeB)宏基站、微基站(也称为“小基站”)、微微基站、接入站点(access point,AP)、传输站点(transmission point,TP)或新一代基站(new generation Node B,gNodeB)等。上述网络设备20还可以是未来演进网络中的其他类网络设备,本申请实施不作限定。
在本申请实施例中,终端设备10可包括射频模块,并通过射频模块将数据传输至网络设备20。终端设备10射频模块在进行数据传输时,可获取射频模块的目标发送功率,并以该目标发送功率为最大发送功率进行数据传输。其中,该目标发送功率可为根据射频模块使用多个不同发送功率进行数据传输时分别对应的电流得到的。在传统的方式中,终端设备10的射频模块通常使用预置最大发送功率进行数据传输,导致数据传输时的瞬时电流较大,增加了数据传输的功耗。而在本申请实施例中,根据射频模块使用多个不同发送功率进行数据传输时分别对应的电流得到目标发送功率,该目标发送功率小于射频模块的预置最大发送功率,射频模块能够以合理的发送功率进行数据传输,降低了数据传输时的电流,从而减少射频模块在数据传输时的功耗。
如图2所示,在一个实施例中,提供一种数据传输方法,可应用于上述的终端设备,该数据传输方法可包括以下步骤:
步骤210,获取射频模块的目标发送功率。
目标发送功率可为根据射频模块使用多个不同发送功率进行数据传输时分别对应的电流得到的。在一些实施例中,射频模块使用多个不同发送功率进行数据传输时分别对应的电流可指的是使用不同发送功率进行数据传输时消耗的电 流。各个发送功率对应的电流可以是各个发送功率进行数据传输时对应的瞬时电流(即发送数据时的电流),也可以是各个发送功率进行数据传输时对应的传输总电流。其中,瞬时电流指的是进行数据传输时单位时间消耗的电流,传输总电流可指的是传输一帧数据消耗的电流总量。当射频模块采用不同的发送功率进行数据传输时,可分别对应不同的电流。
在一些实施例中,射频模块在进行数据传输时,可测试射频模块在多个不同发送功率进行数据传输时对应的电流,并可根据测试结果建立电流和发送功率之间的对应关系。可选地,上述多个不同发送功率可包括预置最大发送功率,预置最大发送功率为射频模块的默认最大发送功率,可根据实际需求预先设置。在没有选择合理的目标发送功率时,射频模块通常以预置最大发送功率为最大发送功率进行数据传输。可在预置最大发送功率与最小发送功率的范围内选取部分或全部的多个发送功率进行测试。例如,射频模块的预置最大发送功率为23dBm(decibel relative to one milliwatt,分贝毫瓦),则可测试射频模块使用在0~23dBm中的部分多个不同发送功率进行数据传输时对应的电流,如在17dBm、18dBm、20dBm、21dBm、23dBm进行数据传输时分别对应的电流,也可测试射频模块使用在0~23dBm中包含的各个发送功率进行数据传输时对应的电流,如在1dBm、2dBm,…,23dBm进行数据传输时分别对应的电流等。
举例进行说明,在一个实施例中,射频模块进行数据传输时使用的发送功率与电流之间的对应关系可如表1所示,其中,电流为进行数据传输时的瞬时电流。
表1
射频模块发送功率 电流
17dBm 300mA(毫安)
18dBm 330mA
19dBm 350mA
20dBm 400mA
21dBm 460mA
22dBm 560mA
23dBm 580mA
从表1中可知,射频模块的发送功率越大,对应的电流也越大,若直接以预设最大发送功率进行数据传输,会导致消耗的电流比较大。
终端设备可根据多个不同发送功率分别对应的电流,从多个不同发送功率中选取目标发送功率,该目标发送功率可小于预置最大发送功率,以使得射频模块在进行数据传输时降低功率。可选地,目标发送功率可以是多个不同发送功率中分别对应的传输总电流中,小于预置最大发送功率的传输总电流的任一发送功率。进一步地,目标发送功率可以是多个不同发送功率中分别对应的传输总电流中,传输总电流最小的发送功率,可保证将射频模块进行数据传输时的功耗降到 最低。
在一些实施例中,目标发送功率可为根据射频模块使用多个不同发送功率进行数据传输时分别对应的电流,及使用多个不同发送功率发送一帧数据分别对应的发送时长得到的。其中,发送时长可指的是发送一帧数据所需的总时间。可选地,发送时长可与射频模块的发送功率、移动终端的信号强度及一帧数据的数据量等因素相关,其中,一帧数据的数据量可根据实际发送的数据确定,可选地,不同类型的数据进行传输时的每帧数据的数据量可不同,例如,图像数据、文字数据及视频数据等不同类型的数据进行传输时,每帧数据的数据量可不同。进一步地,发送时长与射频模块的发送功率可呈负相关关系,发送时长与移动终端的信号强度可呈负相关关系,发送时长与一帧数据的数据量可呈正相关关系。当射频模块的发送功率越大,移动终端的信号强度越强,及一帧数据的数据量越少时,发送时长可越短。
在一个实施例中,射频模块使用的多个不同发送功率中可包括第一发送功率,该第一发送功率可以是多个不同发送功率中的任一发送功率。以第一发送功率为例,第一发送功率对应的第一发送时长可为根据该第一发送功率、进行数据传输时的网络信号强度及一帧数据的数据量得到的。终端设备可检测网络信号强度,并在该网络信号强度下测试射频模块使用多个不同发送功率发送一帧数据分别对应的发送时长,并可根据测试结果建立发送时长和发送功率之间的对应关系。可选地,测试发送时长的多个不同发送功率可与测试电流的多个不同发送功率相同。
举例进行说明,在一个实施例中,在终端设备的网络信号强度为-80dB(分贝)~-85dB的条件下,射频模块进行数据传输时使用的发送功率与发时时长之间的对应关系可如表2所示。
表2
射频模块发送功率 发送一帧数据的发送时长
17dBm 23ms(毫秒)
18dBm 18ms
19dBm 15ms
20dBm 13ms
21dBm 12ms
22dBm 10ms
23dBm 10ms
从表2中可知,射频模块的发送功率越大,对应的发送时长越短。在一个实施例中,目标发送功率可以是多个不同发送功率中分别对应的传输总电流中,传输总电流最小的发送功率,其中,各个发送功率对应的传输总电流可在各个发送功率传输一帧数据时直接进行检测,也可根据各个发送功率进行数据传输时对应 的电流及发送一帧数据的发送时长得到。
以多个不同发送功率中包括的第一发送功率为例,第一发送功率对应的第一传输总电流可为根据使用该第一发送功率进行数据传输时对应的第一电流和第一发送时长得到的,进一步地,第一发送功率对应的第一传输总电流为可第一发送功率进行数据传输时对应的第一电流与第一发送时长的乘积。例如,以表1和表2的数据为例,射频模块使用17dBm进行数据传输时的传输总电流为300mA*23ms=6900mA,使用23dBm进行数据传输时的传输总电流为580mA*10ms=5800mA等,在此不一一进行列举。逐一计算各个发送功率对应的传输总电流后,可选取传输总电流最小的发送功率作为目标发送功率。
在一个实施例中,目标发送功率可为射频模块使用多个不同发送功率进行数据传输时分别对应的电流与对应的平均电流的差值中最小的发送功率,其中,各个发送功率对应的平均电流可指的是在射频模块使用预置最大发送功率进行数据传输时,在各个发送功率发送一帧数据对应的发送时长内,单位时间所消耗的电流。以多个不同发送功率中包括的第一发送功率为例,第一发送功率对应的平均电流可指的是射频模块使用预置最大发送功率进行数据传输时,在第一发送时长内单位时间所消耗的电流。
终端设备可先计算使用预置最大发送功率进行数据传输时对应的最大传输总电流,该最大传输总电流可为使用预置最大发送功率进行数据传输时对应的电流,与预置最大发送功率发送一帧数据对应的发送时长的乘积。例如,以表1和表2的数据为例,预置最大发送功率为23dBm,则最大传输总电流为580mA*10ms=5800mA。再计算最大传输总电流与各个发送功率对应的发送时长的比值,得到各个发送功率对应的平均电流。以第一发送功率为例,第一发送功率对应的平均电流可为最大传输电流与使用第一发送功率发送一帧数据对应的第一发送时长的比值。
举例进行说明,以表1和表2的数据为例,其中,预置最大发送功率为23dBm,可得到各个发送功率对应的平均电流如表3所示。
表3
射频模块发送功率 电流 发送时长 平均电流
17dBm 300mA 23ms 580*10/23=252mA/ms
18dBm 330mA 18ms 580*10/18=322mA/ms
19dBm 350mA 15ms 580*10/15=387mA/ms
20dBm 400mA 13ms 580*10/13=446mA/ms
21dBm 460mA 12ms 580*10/12=483mA/ms
22dBm 560mA 10ms 580*10/10=580mA/ms
23dBm 580mA 10ms 580*10/10=580mA/ms
可计算各个发送功率进行数据传输时对应的电流与对应平均电流之间的差 值,并选取差值最小的发送功率作为目标发送功率。以第一发送功率为例,第一发送功率对应的差值可为第一发送功率进行数据传输时对应的第一电流减去对应的第一平均电流的差值。以表3的数据为例,各个发送功率进行数据传输时对应的电流与对应平均电流之间的差值可如表4所示。
表4
Figure PCTCN2020140734-appb-000001
目标发送功率进行数据传输时对应的电流需小于目标发送功率对应的平均电流,因此,可从多个发送功率中进行数据传输时对应的电流与对应平均电流中,选取进行数据传输时对应的电流小于对应的平均电流的发送功率,再确定该进行数据传输时对应的电流小于对应的平均电流的发送功率中,进行数据传输时对应的电流与对应的平均电流的差值的绝对值最大的发送功率为目标发送功率。例如,以表4中的数据为例,在表4中的多个不同发送功率中,进行数据传输时对应的电流小于对应的平均电流的发送功率包括19dBm、20dBm、21dBm、22dBm,其中,进行数据传输时对应的电流与对应平均电流之间的差值的绝对值最大的发送功率为20dBm,即46mA,则可确定20dBm为目标发送功率,发送功率20dBm对应的差值-46mA也为表4中最小的差值。
步骤220,以目标发送功率为最大发送功率进行数据传输。
终端设备的射频模块可以获取的目标发送功率为最大发送功率向网络设备发送数据,可将射频模块的最大发送功率调节为目标发送功率,进行数据传输时,射频模块的发送功率可小于或等于该目标发送功率,从而可减少射频模块在进行数据传输时的功耗。
在本申请实施例中,获取射频模块的目标发送功率,该目标发送功率为根据射频模块使用多个不同发送功率进行数据传输时分别对应的电流得到的,目标发送功率小于射频模块的预置最大发送功率,再以获取的目标发送功率为最大发送功率进行数据传输,射频模块能够以合理的发送功率进行数据传输,降低了数据传输时的电流,从而减少射频模块在数据传输时的功耗。
如图3所示,在一个实施例中,提供另一种数据传输方法,可应用于上述的终端设备。该数据传输方法可包括以下步骤:
步骤302,在终端设备进入视频通话的情况下,统计射频模块在各个发送时刻发送数据时分别对应的发送功率。
本申请实施例中提供的数据传输方法可适用于视频通话时的数据传输过程。
当终端设备检测到进入视频通话时,可开始统计射频模块在各个发送时刻发送数据时分别对应的发送功率。在一个实施例中,发送时刻可根据射频模块进行数据传输时的传输帧率进行确定,传输帧率可指的是数据传输时的传输速度,例如,传输帧率可为10帧/s(秒)、30帧/s、45帧/s等。不同传输帧率对应的传输时间间隔可不同,传输时间间隔可指的是传输两帧数据之间的时间间隔,例如,传输帧率为10帧/s,对应的传输时间间隔为100ms,即每隔100ms射频模块会发送一帧数据到网络设备,传输帧率为20帧/s,对应的传输时间间隔为50ms,即每隔50ms射频模块会发送一帧数据到网络设备。发送时刻即为射频模块每次向网络设备发送数据的时刻。在进入视频通话后,可获取射频模块在每个发送时刻发送数据时所对应的发送功率。
步骤304,在目标占比大于比例阈值的情况下,获取射频模块的目标发送功率,目标占比为射频模块处于视频通话状态时,在预设时间段内的不同发送时刻的发送功率大于功率阈值的占比。
在终端设备处于视频通话状态时,可判断目标占比是否大于比例阈值。其中,目标占比可指的是预设时间段内的不同发送时刻的发送功率大于功率阈值的占比。
在视频通话过程中,可获取射频模块在预设时间段内的各个不同发送时刻发送数据时分别对应的发送功率,其中,预设时间段可根据需求进行设定,例如,可为1秒、2秒、5秒等,在此不作限定。可计算预设时间段内的各个不同发送时刻发送数据时分别对应的发送功率中,发送功率大于功率阈值的占比。目标占比可为预设时间段内,发送时刻对应的发送功率大于功率阈值的数量与所有发送时刻的数量之间的比值。例如,预设时间段为1秒,射频模块传输数据时的传输帧率为10帧/秒,则1秒内包括10个发送时刻,其中有1个发送时刻对应的发送功率大于功率阈值20dBm,则目标占比为10%。
当目标占比大于比例阈值时,可说明射频模块使用较大发送功率进行数据传输的机率较大,可获取射频模块的目标发送功率,将射频模块的最大发送功率调整为合理的目标发送功率,以降低终端设备在视频通话过程中数据传输的功耗。可选地,比例阈值可根据实际需求进行设定,例如5%、8%等,在此不作限定。
若目标占比小于或等于比例阈值,则可判断视频通话是否结束,若在视频通话未结束的情况下,可继续获取射频模块在各个发送时刻发送数据时对应的发送功率,并判断预设时间段内的不同发送时刻的发送功率大于功率阈值的占比(即目标占比)是否大于比例阈值。
在目标占比大于比例阈值的情况下,可获取射频模块的目标发送功率。在一 个实施例中,在获取射频模块的目标发送功率之前,可先判断终端设备的网络信号强度是否处于预设信号强度范围内,若处于预设信号强度范围内,再获取射频模块的目标发送功率。当终端设备的网络信号强度不处于预设信号强度范围内时,可说明终端设备当前的网络信号较差,若调整射频模块的最大发送功率,产生较大的时延,导致视频通话出现卡顿的情况。因此,当终端设备的网络信号强度处于预设信号强度范围内时,获取射频模块的目标发送功率,可以在降低功耗的同时保证视频通话质量。
在一些实施例中,目标发送功率可为根据射频模块使用多个不同发送功率进行数据传输时分别对应的电流、使用多个不同发送功率发送一帧数据分别对应的发送时长,以及传输帧率得到的。其中,射频模块进行数据传输时的传输帧率与使用的发送功率无关,可与数据传输时所需的数据质量相关。例如,射频模块进行数据传输时的传输帧率可与视频通话过程中所要求的视频清晰度、流畅度等相关,视频清晰度越高,对应的传输帧率可越大。
射频模块使用目标发送功率发送一帧数据对应的发送时长需小于传输帧率对应的传输时间间隔。终端设备在根据射频模块使的各个发送功率、进行数据传输时的网络信号强度及一帧数据的数据量计算得到各个发送功率发送一帧数据分别对应的发送时长后,可逐一判断各个发送功率对应的发送时长是否小于传输帧率对应的传输时间间隔,并将发送一帧数据的发送时长小于传输帧率对应的传输时间间隔的发送功率作为预选发送功率,再从一个或多个预先发送功率中选取目标发送功率。可选地,选取目标发送功率的方式可参照上述实施例中步骤210中的描述的各种方式,在此不再一一进行赘述。目标发送功率发送一帧数据对应的发送时长小于传输帧率对应的传输时间间隔,可保证视频通话过程中的视频通话质量,且可以有效减少功耗。
以表2~表4中的数据为例,假设射频模块传输数据时的传输帧率为50帧/s,则该传输帧率对应的传输时间间隔为20ms,射频模块每隔20ms向网络设备发送一次数据。在测试射频模块使用多个不同的发送功率发送一帧数据的时长后,可判断各个发送功率对应的发送时长是否小于20ms,如表2所示的数据中,18dBm~23dBm的6个发送功率分别对应的发送时长均小于20ms,则可将18dBm~23dBm的6个发送功率作为预选发送功率,再从预先发送功率中选取目标发送功率。
步骤306,以目标发送功率为最大发送功率进行数据传输。
终端设备可将射频模块的最大发送功率调节为目标发送功率,进行数据传输时,射频模块的发送功率可小于或等于获取的目标发送功率,以目标发送功率为最大发送功率进行数据传输。
在终端设备处于视频通话的过程中,可能出现终端设备的网络信号强度发生变化、或是数据传输时的传输帧率发生变化等情况。可实时根据终端设备的网络 信号强度、数据传输时的传输帧率等动态调整目标发送功率。在端设备的网络信号强度发生变化或是数据传输时的传输帧率发生变化的情况下,可执行步骤304,重新获取目标发送功率,重新获取的目标发送功率可为根据变化后的网络信号强度及变化后传输帧率等得到的,可以更加优化降低视频通话过程中的功耗。
在终端设备结束视频通话的情况下,射频模块的最大发送功率为预置最大发送功率。可将射频模块被调节为目标发送功率的最大发送功率恢复至预置最大发送功率,当射频模块重新发送数据时,可直接使用预置最大发送功率进行数据传输,不受目标发送功率的限制。
可以理解地,本申请实施例所提供的数据传输方法并不仅限于应用在视频通话过程,也适用于其它数据传输场景,在此不作限定。
在本申请实施例中,射频模块能够以合理的发送功率进行数据传输,降低了数据传输时的电流,在减少射频模块在数据传输时的功耗的同时,保证了视频通话过程中的视频通话质量。
如图4所示,在一个实施例中,提供一种数据传输装置400,包括目标功率获取模块410及传输模块420。
目标功率获取模块410,用于获取射频模块的目标发送功率,目标发送功率为根据射频模块使用多个不同发送功率进行数据传输时分别对应的电流得到的,目标发送功率小于射频模块的预置最大发送功率。
在一个实施例中,目标发送功率为根据射频模块使用多个不同发送功率进行数据传输时分别对应的电流,及使用多个不同发送功率发送一帧数据分别对应的发送时长得到的。
在一个实施例中,目标发送功率为使用多个不同发送功率进行数据传输时分别对应的电流与对应的平均电流的差值中最小的发送功率。
其中,第一发送功率对应的第一平均电流为最大传输总电流与第一发送功率对应的第一发送时长的比值,最大传输总电流为使用预置最大发送功率进行数据传输时对应的电流,与预置最大发送功率发送一帧数据对应的发送时长的乘积,多个不同发送功率包括第一发送功率。
在一个实施例中,目标发送功率为使用多个不同发送功率进行数据传输时分别对应的多个传输总电流中,传输总电流最小的发送功率。
其中,第一发送功率对应的第一传输总电流为根据使用第一发送功率进行数据传输时对应的第一电流和第一发送时长得到的,多个不同发送功率包括所述第一发送功率。
在一个实施例中,第一发送功率对应的第一发送时长为根据第一发送功率、进行数据传输时的网络信号强度及一帧数据的数据量得到的,多个不同发送功率包括第一发送功率。
传输模块420,用于以目标发送功率为最大发送功率进行数据传输。
在本申请实施例中,获取射频模块的目标发送功率,该目标发送功率为根据射频模块使用多个不同发送功率进行数据传输时分别对应的电流得到的,目标发送功率小于射频模块的预置最大发送功率,再以获取的目标发送功率为最大发送功率进行数据传输,射频模块能够以合理的发送功率进行数据传输,降低了数据传输时的电流,从而减少射频模块在数据传输时的功耗。
在一个实施例中,目标功率获取模块410,还用于在目标占比大于比例阈值的情况下,获取射频模块的目标发送功率,目标占比为所述射频模块处于视频通话状态时,在预设时间段内的不同发送时刻的发送功率大于功率阈值的占比。
在一个实施例中,目标发送功率为根据射频模块使用多个不同发送功率进行数据传输时分别对应的电流、使用多个不同发送功率发送一帧数据分别对应的发送时长,以及传输帧率得到的;目标发送功率对应的发送时长小于传输帧率对应的传输时间间隔。
在本申请实施例中,射频模块能够以合理的发送功率进行数据传输,降低了数据传输时的电流,在减少射频模块在数据传输时的功耗的同时,保证了视频通话过程中的视频通话质量。
图5为一个实施例中终端设备的结构框图。如图5所示,终端设备可以包括:射频模块510、存储器520、输入单元530、显示单元540、传感器550、音频电路560、无线保真(wireless fidelity,WiFi)模块570、处理器580、以及电源590等部件。本领域技术人员可以理解,图5中示出的终端设备结构并不构成对终端设备的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
射频模块510可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器580处理;另外,将设计上行的数据发送给基站。通常,射频模块510包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,射频模块510还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进、电子邮件、短消息服务(short messaging service,SMS)等。
存储器520可用于存储软件程序以及模块,处理器580通过运行存储在存储器520的软件程序以及模块,从而执行终端设备的各种功能应用以及数据处理。存储器520可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等; 存储数据区可存储根据终端设备的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
输入单元530可用于接收输入的数字或字符信息,以及产生与终端设备的用户设置以及功能控制有关的键信号输入。具体地,输入单元530可包括触控面板532以及其他输入设备534。触控面板532,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板532上或在触控面板532附近的操作),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板532可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器580,并能接收处理器580发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板532。除了触控面板532,输入单元530还可以包括其他输入设备534。具体地,其他输入设备534可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
显示单元540可用于显示由用户输入的信息或提供给用户的信息以及终端设备的各种菜单。显示单元540可包括显示面板542,可选的,可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-Emitting diode,OLED)等形式来配置显示面板542。进一步的,触控面板532可覆盖显示面板542,当触控面板532检测到在其上或附近的触摸操作后,传送给处理器580以确定触摸事件的类型,随后处理器580根据触摸事件的类型在显示面板542上提供相应的视觉输出。虽然在图5中,触控面板532与显示面板542是作为两个独立的部件来实现终端设备的输入和输入功能,但是在某些实施例中,可以将触控面板532与显示面板542集成而实现终端设备的输入和输出功能。
终端设备还可包括至少一种传感器550,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板542的亮度,接近传感器可在终端设备移动到耳边时,关闭显示面板542和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端设备姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于终端设备还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路560、扬声器562,传声器564可提供用户与终端设备之间的音频接口。音频电路560可将接收到的音频数据转换后的电信号,传输到扬声器562,由 扬声器562转换为声音信号输出;另一方面,传声器564将收集的声音信号转换为电信号,由音频电路560接收后转换为音频数据,再将音频数据输出处理器580处理后,经射频模块510以发送给比如另一终端设备,或者将音频数据输出至存储器520以便进一步处理。
WiFi属于短距离无线传输技术,终端设备通过WiFi模块570可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图5示出了WiFi模块570,但是可以理解的是,其并不属于终端设备的必须构成,完全可以根据需要在不改变本申请实施例提供的技术方案的本质的范围内而省略。
处理器580是终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分,通过运行或执行存储在存储器520内的软件程序和/或模块,以及调用存储在存储器520内的数据,执行终端设备的各种功能和处理数据,从而对终端设备进行整体监控。可选的,处理器580可包括一个或多个处理单元;优选的,处理器580可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器580中。
终端设备还包括给各个部件供电的电源590(比如电池),优选的,电源可以通过电源管理系统与处理器580逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。尽管未示出,终端设备还可以包括摄像头、蓝牙模块等,在此不再赘述。
在一个实施例中,存储器520中存储的计算机程序被处理器580执行时,使得处理器580实现如上述各实施例中描述的方法。
本申请实施例公开一种计算机可读存储介质,其存储计算机程序,其中,该计算机程序被处理器执行时实现如上述实施例描述的方法。
本申请实施例公开一种计算机程序产品,该计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,且该计算机程序可被处理器执行时实现如上述各实施例描述的方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
如此处所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。合适的非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存 储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定特征、结构或特性可以以任意适合的方式结合在一个或多个实施例中。本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在本申请的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的必然先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物单元,即可位于一个地方,或者也可以分布到多个网络单元上。可根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本申请各实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元若以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可获取的存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或者部分,可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干请求用以使得一台计算机设备(可以为个人计算机、服务器或者网络设备等,具体可以是计算机设备中的处理器)执行本申请的各个实施例上述方法的部分或全部步骤。
以上对本申请实施例公开的一种数据传输方法、装置、电子设备及计算机可读存储介质进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (21)

  1. 一种数据传输方法,其特征在于,包括:
    获取射频模块的目标发送功率,所述目标发送功率为根据所述射频模块使用多个不同发送功率进行数据传输时分别对应的电流得到的,所述目标发送功率小于所述射频模块的预置最大发送功率;
    以所述目标发送功率为最大发送功率进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述目标发送功率为根据所述射频模块使用多个不同发送功率进行数据传输时分别对应的电流,及使用所述多个不同发送功率发送一帧数据分别对应的发送时长得到的。
  3. 根据权利要求2所述的方法,其特征在于,所述目标发送功率为根据所述射频模块使用多个不同发送功率进行数据传输时分别对应的电流、使用所述多个不同发送功率发送一帧数据分别对应的发送时长,以及传输帧率得到的;所述目标发送功率对应的发送时长小于所述传输帧率对应的传输时间间隔。
  4. 根据权利要求2或3所述的方法,其特征在于,所述目标发送功率为使用所述多个不同发送功率进行数据传输时分别对应的电流与对应的平均电流的差值中最小的发送功率;
    其中,第一发送功率对应的第一平均电流为最大传输总电流与所述第一发送功率对应的第一发送时长的比值,所述最大传输总电流为使用所述预置最大发送功率进行数据传输时对应的电流,与所述预置最大发送功率发送一帧数据对应的发送时长的乘积,所述多个不同发送功率包括所述第一发送功率。
  5. 根据权利要求2或3所述的方法,其特征在于,所述目标发送功率为使用所述多个不同发送功率进行数据传输时分别对应的多个传输总电流中,传输总电流最小的发送功率;
    其中,第一发送功率对应的第一传输总电流为根据使用所述第一发送功率进行数据传输时对应的第一电流和第一发送时长得到的,所述多个不同发送功率包括所述第一发送功率。
  6. 根据权利要求2至5任一所述的方法,其特征在于,第一发送功率对应的第一发送时长为根据所述第一发送功率、进行数据传输时的网络信号强度及一帧数据的数据量得到的,所述多个不同发送功率包括所述第一发送功率。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述获取射频模块的目标发送功率,包括:
    在目标占比大于比例阈值的情况下,获取射频模块的目标发送功率,所述目 标占比为所述射频模块处于视频通话状态时,在预设时间段内的不同发送时刻的发送功率大于功率阈值的占比。
  8. 一种电子设备,其特征在于,包括存储器及处理器,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行:
    获取射频模块的目标发送功率,所述目标发送功率为根据所述射频模块使用多个不同发送功率进行数据传输时分别对应的电流得到的,所述目标发送功率小于所述射频模块的预置最大发送功率;
    以所述目标发送功率为最大发送功率进行数据传输。
  9. 根据权利要求8所述的电子设备,其特征在于,所述目标发送功率为根据所述射频模块使用多个不同发送功率进行数据传输时分别对应的电流,及使用所述多个不同发送功率发送一帧数据分别对应的发送时长得到的。
  10. 根据权利要求9所述的电子设备,其特征在于,所述目标发送功率为根据所述射频模块使用多个不同发送功率进行数据传输时分别对应的电流、使用所述多个不同发送功率发送一帧数据分别对应的发送时长,以及传输帧率得到的;所述目标发送功率对应的发送时长小于所述传输帧率对应的传输时间间隔。
  11. 根据权利要求9或10所述的电子设备,其特征在于,所述目标发送功率为使用所述多个不同发送功率进行数据传输时分别对应的电流与对应的平均电流的差值中最小的发送功率;
    其中,第一发送功率对应的第一平均电流为最大传输总电流与所述第一发送功率对应的第一发送时长的比值,所述最大传输总电流为使用所述预置最大发送功率进行数据传输时对应的电流,与所述预置最大发送功率发送一帧数据对应的发送时长的乘积,所述多个不同发送功率包括所述第一发送功率。
  12. 根据权利要求9或10所述的电子设备,其特征在于,所述目标发送功率为使用所述多个不同发送功率进行数据传输时分别对应的多个传输总电流中,传输总电流最小的发送功率;
    其中,第一发送功率对应的第一传输总电流为根据使用所述第一发送功率进行数据传输时对应的第一电流和第一发送时长得到的,所述多个不同发送功率包括所述第一发送功率。
  13. 根据权利要求9~12任一所述的电子设备,其特征在于,第一发送功率对应的第一发送时长为根据所述第一发送功率、进行数据传输时的网络信号强度及一帧数据的数据量得到的,所述多个不同发送功率包括所述第一发送功率。
  14. 根据权利要求8~13任一所述的电子设备,其特征在于,所述获取射频模块的目标发送功率,包括:
    在目标占比大于比例阈值的情况下,获取射频模块的目标发送功率,所述目标占比为所述射频模块处于视频通话状态时,在预设时间段内的不同发送时刻的发送功率大于功率阈值的占比。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,使得所述处理器执行:
    获取射频模块的目标发送功率,所述目标发送功率为根据所述射频模块使用多个不同发送功率进行数据传输时分别对应的电流得到的,所述目标发送功率小于所述射频模块的预置最大发送功率;
    以所述目标发送功率为最大发送功率进行数据传输。
  16. 根据权利要求15所述的存储介质,其特征在于,所述目标发送功率为根据所述射频模块使用多个不同发送功率进行数据传输时分别对应的电流,及使用所述多个不同发送功率发送一帧数据分别对应的发送时长得到的。
  17. 根据权利要求16所述的存储介质,其特征在于,所述目标发送功率为根据所述射频模块使用多个不同发送功率进行数据传输时分别对应的电流、使用所述多个不同发送功率发送一帧数据分别对应的发送时长,以及传输帧率得到的;所述目标发送功率对应的发送时长小于所述传输帧率对应的传输时间间隔。
  18. 根据权利要求16或17所述的存储介质,其特征在于,所述目标发送功率为使用所述多个不同发送功率进行数据传输时分别对应的电流与对应的平均电流的差值中最小的发送功率;
    其中,第一发送功率对应的第一平均电流为最大传输总电流与所述第一发送功率对应的第一发送时长的比值,所述最大传输总电流为使用所述预置最大发送功率进行数据传输时对应的电流,与所述预置最大发送功率发送一帧数据对应的发送时长的乘积,所述多个不同发送功率包括所述第一发送功率。
  19. 根据权利要求16或17所述的存储介质,其特征在于,所述目标发送功率为使用所述多个不同发送功率进行数据传输时分别对应的多个传输总电流中,传输总电流最小的发送功率;
    其中,第一发送功率对应的第一传输总电流为根据使用所述第一发送功率进行数据传输时对应的第一电流和第一发送时长得到的,所述多个不同发送功率包括所述第一发送功率。
  20. 根据权利要求16~19任一所述的存储介质,其特征在于,第一发送功率对应的第一发送时长为根据所述第一发送功率、进行数据传输时的网络信号强度及一帧数据的数据量得到的,所述多个不同发送功率包括所述第一发送功率。
  21. 根据权利要求15~20任一所述的存储介质,其特征在于,所述获取射频 模块的目标发送功率,包括:
    在目标占比大于比例阈值的情况下,获取射频模块的目标发送功率,所述目标占比为所述射频模块处于视频通话状态时,在预设时间段内的不同发送时刻的发送功率大于功率阈值的占比。
PCT/CN2020/140734 2020-05-27 2020-12-29 数据传输方法、电子设备及计算机可读存储介质 WO2021238199A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010460573.8 2020-05-27
CN202010460573.8A CN111642000B (zh) 2020-05-27 2020-05-27 数据传输方法、装置、电子设备及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021238199A1 true WO2021238199A1 (zh) 2021-12-02

Family

ID=72331218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140734 WO2021238199A1 (zh) 2020-05-27 2020-12-29 数据传输方法、电子设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111642000B (zh)
WO (1) WO2021238199A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111642000B (zh) * 2020-05-27 2021-11-05 广东小天才科技有限公司 数据传输方法、装置、电子设备及计算机可读存储介质
CN112650378B (zh) * 2020-12-28 2023-04-25 Oppo(重庆)智能科技有限公司 电子设备、电子设备的功耗优化方法以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105611550A (zh) * 2016-01-06 2016-05-25 广东欧珀移动通信有限公司 一种移动终端功耗的确定方法及装置
CN106576305A (zh) * 2015-09-21 2017-04-19 华为技术有限公司 发射功率控制方法及装置
US20180014260A1 (en) * 2015-02-06 2018-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic cell breathing for power saving
CN110446237A (zh) * 2018-05-03 2019-11-12 青岛海信移动通信技术股份有限公司 一种网络频段的智能推荐方法及移动终端
CN111642000A (zh) * 2020-05-27 2020-09-08 广东小天才科技有限公司 数据传输方法、装置、电子设备及计算机可读存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10304200A1 (de) * 2003-01-29 2004-08-19 Siemens Ag Verfahren zur Leistungsregelung für ein mobiles Kommunikationsendgerät
CN102685857A (zh) * 2011-03-17 2012-09-19 国基电子(上海)有限公司 手机及其通信系统间的切换方法
CN102307378A (zh) * 2011-08-26 2012-01-04 中兴通讯股份有限公司 一种移动终端发射功率调整的方法和装置
JP5979087B2 (ja) * 2013-06-18 2016-08-24 株式会社デンソー 車載通信装置
CN107437968B (zh) * 2016-05-26 2021-03-23 中兴通讯股份有限公司 一种射频发射电路和电路匹配方法
CN107477820B (zh) * 2017-07-12 2021-06-22 广东美的制冷设备有限公司 空调控制系统、检测装置、空调器及可读存储介质
CN107979138B (zh) * 2017-12-20 2021-01-15 维沃移动通信有限公司 一种无线充电的控制方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180014260A1 (en) * 2015-02-06 2018-01-11 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic cell breathing for power saving
CN106576305A (zh) * 2015-09-21 2017-04-19 华为技术有限公司 发射功率控制方法及装置
CN105611550A (zh) * 2016-01-06 2016-05-25 广东欧珀移动通信有限公司 一种移动终端功耗的确定方法及装置
CN110446237A (zh) * 2018-05-03 2019-11-12 青岛海信移动通信技术股份有限公司 一种网络频段的智能推荐方法及移动终端
CN111642000A (zh) * 2020-05-27 2020-09-08 广东小天才科技有限公司 数据传输方法、装置、电子设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN111642000A (zh) 2020-09-08
CN111642000B (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2019210754A1 (zh) 搜网控制方法、装置及移动终端
US20220030457A1 (en) Measurement method, measurement configuration method, terminal and network device
RU2757574C1 (ru) Способ контроля сообщения системы поискового вызова, абонентское оборудование мобильной связи и сервер
WO2020253587A1 (zh) Srs功率控制方法、srs功率控制的配置方法及相关设备
CN108471626B (zh) 一种ue能力的上报方法、检测方法、移动终端及服务器
US11375418B2 (en) Condition handover method, related devices and computer-readable storage medium
US11076354B2 (en) Cell handover method and terminal device
WO2021057965A1 (zh) 能力参数确定方法、上行调度方法、终端和网络侧设备
WO2021238199A1 (zh) 数据传输方法、电子设备及计算机可读存储介质
RU2748612C1 (ru) Способ определения возможностей ue, способ передачи информации о возможностях ue, абонентское оборудование мобильной связи и сервер
CN111093259A (zh) 一种蓝牙功率调整方法、装置、存储介质及终端
CN109714488B (zh) 终端设备工作模式调节方法、装置、终端设备和存储介质
CN107517487B (zh) 通话控制方法及移动终端
CN113079536A (zh) 一种定时提前量的更新方法、装置及移动终端
CN110113810B (zh) 一种功率控制方法、相关装置及产品
WO2018227541A1 (zh) 链路的功率控制方法及相关产品
WO2022217552A1 (zh) panel状态的处理方法、通信设备及存储介质
US20210219325A1 (en) Information indicating method, indication receiving method, terminal, and network-side device
WO2021232814A1 (zh) 一种基于频点优化的小区测量方法及终端设备
CN113099542B (zh) 参数上报方法及上行调度方法、设备及介质
WO2020192512A1 (zh) 上行授权变更方法、信息发送方法及通信装置
WO2021128556A1 (zh) 一种降低 sar 值的方法、系统及移动终端
CN117545054B (zh) Uwb通信方法、装置、存储介质及电子设备
CN117527771B (zh) 音频传输方法、装置、存储介质及电子设备
CN112740827B (zh) 网络通信处理方法、计算机可读存储介质和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938019

Country of ref document: EP

Kind code of ref document: A1