CN113541755B - 天线选择方法及相关设备 - Google Patents

天线选择方法及相关设备 Download PDF

Info

Publication number
CN113541755B
CN113541755B CN202010309552.6A CN202010309552A CN113541755B CN 113541755 B CN113541755 B CN 113541755B CN 202010309552 A CN202010309552 A CN 202010309552A CN 113541755 B CN113541755 B CN 113541755B
Authority
CN
China
Prior art keywords
radio frequency
output power
power consumption
antenna
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010309552.6A
Other languages
English (en)
Other versions
CN113541755A (zh
Inventor
何彦召
余涛
张舜卿
陈小静
徐树公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202010309552.6A priority Critical patent/CN113541755B/zh
Priority to PCT/CN2021/087953 priority patent/WO2021209058A1/zh
Publication of CN113541755A publication Critical patent/CN113541755A/zh
Application granted granted Critical
Publication of CN113541755B publication Critical patent/CN113541755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

本申请实施例提供一种天线选择方法及相关设备,其中,所述天线选择方法应用于终端,所述天线选择方法包括:获取所述终端的用户信息,所述用户信息用于指示所述终端的上行业务数据的传输质量需求;确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系;根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。采用本申请实施例,能够在保证无线通信质量的同时,降低通信过程中的能耗。

Description

天线选择方法及相关设备
技术领域
本申请涉及通信技术领域,尤其涉及一种天线选择方法及相关设备。
背景技术
随着终端业务(如视频直播业务、游戏业务等)的不断发展和丰富,使得人们对无线通信的需求也日益增长,由此也导致了通信过程的能耗不断提高。然而,终端的能耗却受到电池容量的限制。
在无线通信过程中,终端的能耗主要由基带信号处理过程的电路损耗以及信号的发送能耗两部分组成。基带信号处理过程的电路损耗可以通过合适的关断休眠策略,减少信号处理链路的数目来降低能耗。而信号的发送能耗在终端的整个能耗中占有极大的比重,同时信号的发送能耗关系到接收信号的信噪比进而影响通信性能,过小则会影响接收性能,过大时则会对其他终端通信造成较大的干扰。因此,如何在保证无线通信质量的同时,尽可能的减小能耗已经成为学术界和工业界的共同关注点。
发明内容
本申请实施例公开了一种天线选择方法及相关设备,能够在保证无线通信质量的同时,降低通信过程中的能耗。
本申请实施例第一方面公开了一种天线选择方法,应用于终端,所述方法包括:获取所述终端的用户信息,所述用户信息用于指示所述终端的上行业务数据的传输质量需求;确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系;根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
可以看出,在本实施方式中,根据指示终端的上行业务数据的传输质量需求的用户信息以及射频总功耗与射频输出功率的特性关系,选择合适的上行天线,从而利用现有终端传输机制,进行简单的升级改造,即可使得终端在满足无线通信质量的情况下,降低通信过程中的能耗。
在一些可能的实施方式中,所述根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线,包括:根据所述用户信息确定目标射频输出功率;根据所述目标射频输出功率和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
可以看出,在本实施方式中,终端可以根据指示其上行业务数据的传输质量需求的用户信息,确定进行上行数据传输的目标射频输出功率,然后再根据目标射频输出功率以及射频总功耗与射频输出功率的特性关系,选择合适的上行天线,从而利用现有终端传输机制,进行简单的升级改造,即可使得终端在满足无线通信质量的情况下,降低通信过程中的能耗。
在一些可能的实施方式中,所述终端包括n个天线,所述n为大于1的整数,所述根据所述目标射频输出功率和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线,包括:根据所述目标射频输出功率和所述n个天线中每个天线对应的射频总功耗与射频输出功率的特性关系确定n个目标射频总功耗,所述n个天线与所述n个目标射频总功耗一一对应;从所述n个天线中,选择最小目标射频总功耗对应的天线作为所述上行天线。
可以看出,在本实施方式中,终端将确定的进行上行数据传输的目标射频输出功率在n个天线对应的射频总功耗与射频输出功率的特性关系中映射,可以在每个天线对应的射频总功耗与射频输出功率的特性关系中确定1个目标射频总功耗,也即可以得到n个目标射频总功耗,在这n个目标射频总功耗中选择最小目标射频总功耗对应的天线作为上行天线,相对其他天线而言,可以节省上行数据传输的功耗,从而在满足无线通信质量的情况下,降低通信过程中的能耗。
在一些可能的实施方式中,所述获取所述终端的用户信息,包括:获取上行信道信息以及获取当前上行业务的服务质量需求。
可以看出,在本实施方式中,终端通过获取上行信道的信息和当前需要进行上行传输的业务的服务质量需求,来综合确定用于指示其上行业务数据的传输质量需求的用户信息,从而可以保证无线通信质量。
在一些可能的实施方式中,所述根据所述用户信息确定目标射频输出功率,包括:根据所述上行信道信息和所述当前上行业务的服务质量需求确定所述目标射频输出功率。
可以看出,在本实施方式中,终端根据所述上行信道信息和所述当前上行业务的服务质量需求,来综合确定进行上行数据传输的目标射频输出功率,从而可以保证无线通信质量。
在一些可能的实施方式中,所述获取上行信道信息,包括:获取下行信道信息,并根据所述下行信道信息预测所述上行信道信息。
可以看出,在本实施方式中,由于下行信道的传输质量可以反映上行道的传输质量,终端通过获取下行信道信息来预测上行信道信息,进一步通过预测得到的上行信道信息来确定进行上行数据传输的目标射频输出功率,从而可以保证无线通信质量。
在一些可能的实施方式中,所述上行信道信息包括上行信道质量参数。
可以看出,在本实施方式中,上行信道信息为上行信道质量参数,由于上行质量参数可以反映上行信道的传输质量,终端进一步根据上行质量参数来确定进行上行数据传输的目标射频输出功率,从而可以保证无线通信质量。
在一些可能的实施方式中,所述获取下行信道信息,并根据所述下行信道信息预测所述上行信道信息,包括:对下行信道进行测量,得到多个下行信道测量结果;对所述多个下行信道测量结果进行数据平滑处理,将所述数据平滑结果作为所述上行信道质量参数。
可以看出,在本实施方式中,终端通过测量得到多个下行信道测量结果,再对多个下行信道测量结果进行数据平滑处理得到的数据平滑结果作为上行信道质量参数,从而可以减少误差,进一步保证无线通信质量。
在一些可能的实施方式中,所述确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系,包括:获取所述n个天线中每个天线对应的射频总功耗数据与射频输出功率数据;根据所述每个天线对应的射频总功耗数据与射频输出功率数据确定所述每个天线对应的射频总功耗与射频输出功率的特性关系。
可以看出,在本实施方式中,由于制作工艺、不同温湿度等客观因素的影响,每个射频功率放大器的射频总功耗与射频输出功率的特性关系曲线存在一定差异,这意味着无线通信总功耗的计算还依赖于不同的射频功率放大器的射频总功耗与射频输出功率的特性关系,终端通过获取其n个天线中每个天线对应的射频总功耗数据与射频输出功率数据,来得到每个天线各自对应的射频功率放大器的射频总功耗与射频输出功率的特性关系,从而可以确定n个天线中能耗最小的天线,选择该能耗最小的天线作为上行天线,节省通信过程中的能耗。
在一些可能的实施方式中,所述终端包括n个射频功率放大器,所述n个天线与所述n个射频功率放大器一一对应,所述获取所述n个天线中每个天线对应的射频总功耗数据与射频输出功率数据,包括:获取所述n个射频功率放大器中每个射频功率放大器在预设时间段内的m个射频总功耗数据,以及获取所述每个射频功率放大器对应的m个射频输出功率数据,所述m个射频总功耗数据与所述m个射频输出功率数据一一对应,所述m为大于1的整数。
可以看出,在本实施方式中,预设时间段内获取n个天线中每个天线在多个时刻对应的射频总功耗数据和射频输出功率数据,得到每个天线对应的m个射频总功耗数据和m个射频输出功率数据,然后根据这些数据组成的点,即可得到每个天线各自对应的射频总功耗与射频输出功率的特性关系图。
在一些可能的实施方式中,所述根据所述每个天线对应的射频总功耗数据与射频输出功率数据确定所述每个天线对应的射频总功耗与射频输出功率的特性关系,包括:根据所述每个射频功率放大器对应的m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系。
可以看出,在本实施方式中,通过将每个射频功率放大器对应的m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,既可以得到该射频功率放大器对应的射频总功耗与射频输出功率真实的特性关系,又能减少误差。
在一些可能的实施方式中,所述根据所述每个射频功率放大器对应的m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系,包括:确定所述每个射频功率放大器对应的偏差功率;根据所述每个射频功率放大器对应的偏差功率、m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系。
可以看出,在本实施方式中,在采用最小二乘法对每个射频功率放大器的m个射频总功耗数据和m个射频输出功率数据进行特性拟合,确定该射频功率放大器对应的射频总功耗与射频输出功率的特性关系过程中,引入每个射频功率放大器对应的偏差功率,可以对特性拟合结果进行校正,从而确保得到的射频总功耗与射频输出功率的特性关系真实可靠。
在一些可能的实施方式中,所述每个射频功率放大器对应的偏差功率通过以下公式确定:
Figure BDA0002455504560000031
公式中,n表示第n个射频功率放大器,t表示时刻,
Figure BDA0002455504560000032
表示第n个射频功率放大器对应的偏差功率,/>
Figure BDA0002455504560000033
表示第n个射频功率放大器在t时刻的射频总功耗数据,/>
Figure BDA0002455504560000034
表示第n个射频功率放大器在t时刻的射频输出功率数据。
可以看出,在本实施方式中,用于在确定射频总功耗与射频输出功率的特性关系时,进行校正的偏差功率,通过在多个时刻获取到的每个射频功率放大器对应的射频总功耗数据和射频输出功率数据来确定,从而提高该偏差功率的校正作用。
本申请实施例第二方面公开了一种天线选择装置,其特征在于,应用于终端,所述天线选择装置包括处理单元,所述处理单元用于:获取所述终端的用户信息,所述用户信息用于指示所述终端的上行业务数据的传输质量需求;以及确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系;以及根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
在一些可能的实施方式中,所述处理单元在根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线时,具体用于:根据所述用户信息确定目标射频输出功率;根据所述目标射频输出功率和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
在一些可能的实施方式中,所述终端包括n个天线,所述n为大于1的整数,所述处理单元在根据所述目标射频输出功率和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线时,具体用于:根据所述目标射频输出功率和所述n个天线中每个天线对应的射频总功耗与射频输出功率的特性关系确定n个目标射频总功耗,所述n个天线与所述n个目标射频总功耗一一对应;从所述n个天线中,选择最小目标射频总功耗对应的天线作为所述上行天线。
在一些可能的实施方式中,其特征在于,所述处理单元在获取所述终端的用户信息时,具体用于:获取上行信道信息以及获取当前上行业务的服务质量需求。
在一些可能的实施方式中,所述处理单元在根据所述用户信息确定目标射频输出功率时,具体用于:根据所述上行信道信息和所述当前上行业务的服务质量需求确定所述目标射频输出功率。
在一些可能的实施方式中,所述处理单元在获取上行信道信息时,具体用于:获取下行信道信息,并根据所述下行信道信息预测所述上行信道信息。
在一些可能的实施方式中,所述上行信道信息包括上行信道质量参数。
在一些可能的实施方式中,所述处理单元在获取下行信道信息,并根据所述下行信道信息预测所述上行信道信息时,具体用于:对下行信道进行测量,得到多个下行信道测量结果;对所述多个下行信道测量结果进行数据平滑处理,将所述数据平滑结果作为所述上行信道质量参数。
在一些可能的实施方式中,所述处理单元在确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系时,具体用于:获取所述n个天线中每个天线对应的射频总功耗数据与射频输出功率数据;根据所述每个天线对应的射频总功耗数据与射频输出功率数据确定所述每个天线对应的射频总功耗与射频输出功率的特性关系。
在一些可能的实施方式中,所述终端包括n个射频功率放大器,所述n个天线与所述n个射频功率放大器一一对应,所述处理单元在获取所述n个天线中每个天线对应的射频总功耗数据与射频输出功率数据时,具体用于:获取所述n个射频功率放大器中每个射频功率放大器在预设时间段内的m个射频总功耗数据,以及获取所述每个射频功率放大器对应的m个射频输出功率数据,所述m个射频总功耗数据与所述m个射频输出功率数据一一对应,所述m为大于1的整数。
在一些可能的实施方式中,所述处理单元在根据所述每个天线对应的射频总功耗数据与射频输出功率数据确定所述每个天线对应的射频总功耗与射频输出功率的特性关系时,具体用于:根据所述每个射频功率放大器对应的m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系。
在一些可能的实施方式中,所述处理单元在根据所述每个射频功率放大器对应的m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系时,具体用于:确定所述每个射频功率放大器对应的偏差功率;根据所述每个射频功率放大器对应的偏差功率、m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系。
在一些可能的实施方式中,所述每个射频功率放大器对应的偏差功率通过以下公式确定:
Figure BDA0002455504560000051
公式中,n表示第n个射频功率放大器,t表示时刻,
Figure BDA0002455504560000052
表示第n个射频功率放大器对应的偏差功率,/>
Figure BDA0002455504560000053
表示第n个射频功率放大器在t时刻的射频总功耗数据,/>
Figure BDA0002455504560000054
表示第n个射频功率放大器在t时刻的射频输出功率数据。
本申请实施例第三方面公开了一种终端,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如上述第一方面任一项所述的方法中的步骤的指令。
本申请实施例第四方面公开了一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面中任一项所述的方法。
本申请实施例第五方面公开了一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述第一方面中任一项所述的方法。
本申请实施例第六方面公开了一种计算机程序产品,所述计算机程序产品使得计算机执行如上述第一方面中任一项所述的方法。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的一种上行天线选择装置的结构示意图;
图3是本申请实施例提供的一种上行天线选择方法的流程示意图;
图4是本申请实施例提供的一种射频总功耗与射频输出功率的特性关系示意图;
图5是本申请实施例提供的一种天线选择方法的流程示意图;
图6是本申请实施例提供的一种文件传输场景下的算法对比示意图;
图7是本申请实施例提供的一种游戏业务下的算法对比示意图;
图8是本申请实施例提供的一种浏览网页场景下的算法对比示意图;
图9是本申请实施例提供的一种对外直播场景下的算法对比示意图;
图10是本申请实施例提供的一种天线选择装置的结构示意图;
图11是本申请实施例提供的一种终端的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参阅图1,图1是本申请实施例提供的一种通信系统的结构示意图,本申请实施例的技术方案可以应用于如图1所示的示例通信系统100,该示例通信系统100包括终端110和网络设备120,终端110与网络设备120通信连接。
本申请实施例的技术方案可以应用于长期演进(Long Term Evolution,LTE)架构,还可以应用于通用移动通信系统(Universal Mobile Telecommunications System,UMTS)陆地无线接入网(UMTS Terrestrial Radio Access Network,UTRAN)架构,或者全球移动通信系统(Global System for Mobile Communication,GSM),增强型数据速率GSM演进(Enhanced Data Rate for GSM Evolution,EDGE)系统的无线接入网(GSM EDGE RadioAccess Network,GERAN)架构、新空口NR(New radio,NR)架构,甚至5G之后的架构。
本申请实施例涉及的终端(User Equipment,UE)可以为向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该UE可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。UE可以包括无线终端、移动终端、设备到设备通信(device-to-device,D2D)终端、车到一切(vehicle-to-everything,V2X)终端、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端、物联网(internetof things,IoT)终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(globalpositioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该UE还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种UE,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端,车载终端例如也称为车载单元(on-board unit,OBU),本申请实施例对此不作限定。
本申请实施例还涉及接入网络(Access network,AN)设备。该AN设备可以是指接入网中在空口通过一个或多个小区与无线终端通信的设备,例如基站NodeB(例如,接入点),该NodeB可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为UE与接入网的其余部分之间的路由器,其中,该接入网的其余部分可包括IP网络。例如,该NodeB可以是长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统中的新空口网络设备gNB。该AN设备还可以是一种车到一切(Vehicle to Everything,V2X)技术中的接入网设备为路侧单元(road side unit,RSU)。该RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。另外,AN设备还可以包括云接入网(cloud radio accessnetwork,CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),此时,该AN设备协调对空口的属性管理。本申请实施例对AN设备不作限定。
为了便于理解本申请,首先在此介绍本申请实施例涉及的相关技术知识。
本申请提出一种适用于5G NR终端的节能天线选择方法,终端可以根据UE的用户信息(UE的业务特点、空口信道质量)以及功放模块总功耗与输出功率之间的特性关系,选择合适的上行天线,以在不影响用户体验的情况下实现终端节能。其中,功放模块也可称为射频模块,功放模块总功耗与输出功率之间的特性关系也可称为射频总功耗与射频输出功率之间的特性关系。本申请利用现有终端传输机制,进行简单的升级改造,通过对各个天线的射频数据进行实时采集,并对其特性进行估计,结合上行信道估计,联合信道与射频进行上行天线的选择。从而可以在保证用户通信质量的同时,降低通信过程中的能耗。
请参阅图2,图2是本申请实施例提供的一种上行天线选择装置的结构示意图,该上行天线选择装置包括上行信道信息获取单元、射频信息采集单元、射频信息处理单元和天线选择单元。在终端和基站进行通信时,一方面,由上行信道信息获取单元获得上行信道信息;另一方面,由射频信息采集单元通过直接测量或间接推测等手段获取当前功放模块总功耗数据与输出功率数据并保存,再由射频信息处理单元通过这些数据对射频特性进行拟合;其中,射频特性也可称为功放特性,也即射频总功耗与射频输出功率之间的特性关系。然后将上行信道信息和射频特性输入到天线选择单元中,在满足上行业务要求下,由天线选择单元选择较低射频总功耗的天线作为上行天线。
请一并参阅图3,图3是本申请实施例提供的一种上行天线选择方法的流程示意图,该方法包括但不限于如下步骤:
步骤301:通过上行信道信息获取单元获取当前信道状况。
步骤302:通过射频信息采集单元获取射频信息。
步骤303:根据采集到的射频信息获取各天线的功放特性。
步骤304:根据功放特性以及信道状况,选择所需能耗较小的天线。
具体地,在实际的通信系统中,一方面,由于终端中各天线的位置不同,存在信道差异性;另一方面,各天线的功放(射频功率放大器)由于制作工艺,所处环境的不同,射频总功耗与射频输出功率特性关系存在差异性。因此,选择合适的天线进行上行数据的发送将有助于在保证通信性能的同时,通过功率控制等减少终端的能耗。
其中,射频总功耗与射频输出功率之间存在的为非线性关系,假设终端采用的天线的射频总功耗与射频输出功率之间的非特性关系如图4所示。在图4中,射频总功耗与射频输出功率之间的非特性关系曲线可以表示为f(pin)=pout,纵轴PAin表示射频总功耗,横纵PAout表示射频输出功率(或称为发射功率)。在实际场景中,由于制作工艺,不同温湿度等客观因素的影响,每个功率放大器的功耗-输出功率关系曲线存在一定差异,这意味着总功耗的计算不仅取决于输出功率的大小,还依赖于不同的非线性特性,因此需要对非线性特性进行拟合,从而获得总功耗,并选择总功耗较低的天线作为上行天线。在本申请中,射频信息采集单元负责收集相关的射频信息,而射频信息处理单元则根据收集的射频信息采用最小二乘法对射频总功耗-射频输出功率特性关系进行拟合。
下面结合具体实施方式对本申请提供的技术方案进行详细的介绍。
请参阅图5,图5是本申请实施例提供的一种天线选择方法,该方法包括但不限于如下步骤:
步骤501:获取所述终端的用户信息,所述用户信息用于指示所述终端的上行业务数据的传输质量需求。
具体地,由于终端中各天线的位置不同,存在信道差异性,终端可以获取用于指示所述终端的上行业务数据的传输质量需求的用户信息,从而根据该用户信息获知当前上行业务数据的传输质量需求。例如,该用户信息包括UE的业务特点、空口信道质量等。
步骤502:确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系。
具体地,各天线对应的射频总功耗与射频输出功率的特性关系可以通过采集各天线对应的射频模块的射频总功耗数据和发射功率数据通过拟合来得到,各天线对应的射频总功耗与射频输出功率的特性关系为非线性的特性关系,不同的天线对应不同的射频总功耗与射频输出功率的特性关系。
其中,终端可以通过直接测量的方式采集射频模块的射频总功耗数据,例如采用功率计直接测量该射频模块总功耗数据;或者终端可以通间接推测射频模块的射频总功耗数据,例如通过终端的总功耗数据间接获得该射频模块的总功耗数据。
步骤503:根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
具体地,终端可以根据用户信息确定上行业务数据的传输质量需求,进而可以确定该上行业务数据的传输所需要的射频输出功率或发射功率,然后通过该所需要的射频输出功率在各天线对应的射频总功耗与射频输出功率的特性关系曲线图上映射得到一个射频总功耗,终端可以选择该所需要的射频输出功率映射得到最小的射频总功耗对应的天线作为上行天线,用该最小的射频总功耗对应的天线来发射该上行业务数据。
可以看出,在本实施方式中,根据指示终端的上行业务数据的传输质量需求的用户信息以及射频总功耗与射频输出功率的特性关系,选择合适的上行天线,从而利用现有终端传输机制,进行简单的升级改造,即可使得终端在满足无线通信质量的情况下,降低通信过程中的能耗。
在一些可能的实施方式中,所述根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线,包括:根据所述用户信息确定目标射频输出功率;根据所述目标射频输出功率和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
举例来说,终端根据用于指示所述终端的上行业务数据的传输质量需求的用户信息,确定当前额定空口发送功率也即目标射频输出功率,具体可以为射频功率放大器的输出功率
Figure BDA0002455504560000083
,然后将该当前额定空口发送功率和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
可以看出,在本实施方式中,终端可以根据指示其上行业务数据的传输质量需求的用户信息,确定进行上行数据传输的目标射频输出功率,然后再根据目标射频输出功率以及射频总功耗与射频输出功率的特性关系,选择合适的上行天线,从而利用现有终端传输机制,进行简单的升级改造,即可使得终端在满足无线通信质量的情况下,降低通信过程中的能耗。
在一些可能的实施方式中,所述终端包括n个天线,所述n为大于1的整数,所述根据所述目标射频输出功率和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线,包括:根据所述目标射频输出功率和所述n个天线中每个天线对应的射频总功耗与射频输出功率的特性关系确定n个目标射频总功耗,所述n个天线与所述n个目标射频总功耗一一对应;从所述n个天线中,选择最小目标射频总功耗对应的天线作为所述上行天线。
举例来说,假设终端中存在3个天线,分别为天线1、天线2和天线3,天线1对应射频总功耗与射频输出功率的特性关系1,天线2对应射频总功耗与射频输出功率的特性关系2,天线3对应射频总功耗与射频输出功率的特性关系3,根据目标射频输出功率
Figure BDA0002455504560000081
在特性关系1、特性关系2、特性关系3上映射得到的目标射频总功耗分别为/>
Figure BDA0002455504560000082
其中
Figure BDA0002455504560000091
则终端选择天线1作为当前上行业务数据传输的上行天线。
可以看出,在本实施方式中,终端将确定的进行上行数据传输的目标射频输出功率在n个天线对应的射频总功耗与射频输出功率的特性关系中映射,可以在每个天线对应的射频总功耗与射频输出功率的特性关系中确定1个目标射频总功耗,也即可以得到n个目标射频总功耗,在这n个目标射频总功耗中选择最小目标射频总功耗对应的天线作为上行天线,相对其他天线而言,可以节省上行数据传输的功耗,从而在满足无线通信质量的情况下,降低通信过程中的能耗。
在一些可能的实施方式中,所述获取所述终端的用户信息,包括:获取上行信道信息以及获取当前上行业务的服务质量需求。
举例来说,获取上行信道信息可以通过对上行信道进行估计,从而确定上行信道的质量状况;获取当前上行业务的服务质量需求也即获取当前上行业务的QoS需求,以保证当前上行业务的传输质量。
可以看出,在本实施方式中,终端通过获取上行信道的信息和当前需要进行上行传输的业务的服务质量需求,来综合确定用于指示其上行业务数据的传输质量需求的用户信息,从而可以保证无线通信质量。
在一些可能的实施方式中,所述根据所述用户信息确定目标射频输出功率,包括:根据所述上行信道信息和所述当前上行业务的服务质量需求确定所述目标射频输出功率。
举例来说,终端根据上行信道估计以及当前上行业务的QoS需求,确定当前额定空口发送功率,也即射频功率放大器的输出功率
Figure BDA0002455504560000092
可以看出,在本实施方式中,终端根据所述上行信道信息和所述当前上行业务的服务质量需求,来综合确定进行上行数据传输的目标射频输出功率,从而可以保证无线通信质量。
在一些可能的实施方式中,所述获取上行信道信息,包括:获取下行信道信息,并根据所述下行信道信息预测所述上行信道信息。
本申请仅需要在终端侧进行相应调整,为了获得对上行信道的估计,终端可以通过对下行信道的估计来预测上行信道的估计,从而确定上行信道的传输质量状况。
可以看出,在本实施方式中,由于下行信道的传输质量可以反映上行道的传输质量,终端通过获取下行信道信息来预测上行信道信息,进一步通过预测得到的上行信道信息来确定进行上行数据传输的目标射频输出功率,从而可以保证无线通信质量。
在一些可能的实施方式中,所述上行信道信息包括上行信道质量参数。
其中,上行信道质量参数可以用于表征上行信道的传输质量,以确定终端在该传输质量下需要的多大的发射功率才能满足正常的通信需求。
可以看出,在本实施方式中,上行信道信息为上行信道质量参数,由于上行质量参数可以反映上行信道的传输质量,终端进一步根据上行质量参数来确定进行上行数据传输的目标射频输出功率,从而可以保证无线通信质量。
在一些可能的实施方式中,所述获取下行信道信息,并根据所述下行信道信息预测所述上行信道信息,包括:对下行信道进行测量,得到多个下行信道测量结果;对所述多个下行信道测量结果进行数据平滑处理,将所述数据平滑结果作为所述上行信道质量参数。
其中,所述数据平滑处理可以是简单移动平均线、窗函数(hanning汉宁窗)等数据平滑处理方法。
可以看出,在本实施方式中,终端通过测量得到多个下行信道测量结果,再对多个下行信道测量结果进行数据平滑处理得到的数据平滑结果作为上行信道质量参数,从而可以减少误差,进一步保证无线通信质量。
在一些可能的实施方式中,所述确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系,包括:获取所述n个天线中每个天线对应的射频总功耗数据与射频输出功率数据;根据所述每个天线对应的射频总功耗数据与射频输出功率数据确定所述每个天线对应的射频总功耗与射频输出功率的特性关系。
举例来说,假设终端中存在3个天线,分别为天线1、天线2和天线3,采集天线1的射频总功耗数据与射频输出功率数据形成数据集合1,采集天线2的射频总功耗数据与射频输出功率数据形成数据集合2,采集天线3的射频总功耗数据与射频输出功率数据形成数据集合3;根据数据集合1得到天线1对应射频总功耗与射频输出功率的特性关系1,根据数据集合2得到天线2对应射频总功耗与射频输出功率的特性关系2,根据数据集合3得到天线3对应射频总功耗与射频输出功率的特性关系3。
可以看出,在本实施方式中,由于制作工艺、不同温湿度等客观因素的影响,每个射频功率放大器的射频总功耗与射频输出功率的特性关系曲线存在一定差异,这意味着无线通信总功耗的计算还依赖于不同的射频功率放大器的射频总功耗与射频输出功率的特性关系,终端通过获取其n个天线中每个天线对应的射频总功耗数据与射频输出功率数据,来得到每个天线各自对应的射频功率放大器的射频总功耗与射频输出功率的特性关系,从而可以确定n个天线中能耗最小的天线,选择该能耗最小的天线作为上行天线,节省通信过程中的能耗。
在一些可能的实施方式中,所述终端包括n个射频功率放大器,所述n个天线与所述n个射频功率放大器一一对应,所述获取所述n个天线中每个天线对应的射频总功耗数据与射频输出功率数据,包括:获取所述n个射频功率放大器中每个射频功率放大器在预设时间段内的m个射频总功耗数据,以及获取所述每个射频功率放大器对应的m个射频输出功率数据,所述m个射频总功耗数据与所述m个射频输出功率数据一一对应,所述m为大于1的整数。
举例来说,对于任意时刻t,获得第n个射频功率放大器的总功耗
Figure BDA0002455504560000101
同时记录第n个射频功率放大器的发射功率/>
Figure BDA0002455504560000102
然后保存过去T时间段内的对应关系,也即
Figure BDA0002455504560000103
Figure BDA0002455504560000104
其中,τ-T<t<τ(τ为当前时隙),从而得到第n个射频功率放大器的m个射频总功耗数据与m个射频输出功率数据。
可以看出,在本实施方式中,预设时间段内获取n个天线中每个天线在多个时刻对应的射频总功耗数据和射频输出功率数据,得到每个天线对应的m个射频总功耗数据和m个射频输出功率数据,然后根据这些数据组成的点,即可得到每个天线各自对应的射频总功耗与射频输出功率的特性关系图。
在一些可能的实施方式中,所述根据所述每个天线对应的射频总功耗数据与射频输出功率数据确定所述每个天线对应的射频总功耗与射频输出功率的特性关系,包括:根据所述每个射频功率放大器对应的m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系。
举例来说,由于终端中的功放往往使用同一种类,假设该类功放的遵从如图4所示的函数关系f(pin)=pout,可以对各天线在τ-T<t<τ(τ为当前时隙)时间段内的射频总功耗数据与射频输出功率数据,采用最小二乘法进行拟合,得到各天线对应的射频总功耗与射频输出功率的特性关系。
可以看出,在本实施方式中,通过将每个射频功率放大器对应的m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,既可以得到该射频功率放大器对应的射频总功耗与射频输出功率真实的特性关系,又能减少误差。
在一些可能的实施方式中,所述根据所述每个射频功率放大器对应的m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系,包括:确定所述每个射频功率放大器对应的偏差功率;根据所述每个射频功率放大器对应的偏差功率、m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系。
其中,采用最小二乘法进行拟合的主要做法是,假设整个射频模块在总功耗上存在一定的偏差功率,因此需要找到合适的偏差值,从而使拟合得到的特性关系尽可能的接近用于进行拟合的数据。
具体地,对于任何一个天线n,可以假设
Figure BDA0002455504560000111
是整个射频模块的功耗偏差值。
可以看出,在本实施方式中,在采用最小二乘法对每个射频功率放大器的m个射频总功耗数据和m个射频输出功率数据进行特性拟合,确定该射频功率放大器对应的射频总功耗与射频输出功率的特性关系过程中,引入每个射频功率放大器对应的偏差功率,可以对特性拟合结果进行校正,从而确保得到的射频总功耗与射频输出功率的特性关系真实可靠。
在一些可能的实施方式中,所述每个射频功率放大器对应的偏差功率通过以下公式确定:
Figure BDA0002455504560000112
公式中,n表示第n个射频功率放大器,t表示时刻,
Figure BDA0002455504560000113
表示第n个射频功率放大器对应的偏差功率,/>
Figure BDA0002455504560000114
表示第n个射频功率放大器在t时刻的射频总功耗数据,/>
Figure BDA0002455504560000115
表示第n个射频功率放大器在t时刻的射频输出功率数据。
也即,对于任何一个天线n,通过求解上述公式,可以找到合适的
Figure BDA0002455504560000116
并且,可以定义函数/>
Figure BDA0002455504560000117
作为第n个射频模块的射频总功耗与射频输出功率的特性关系,也即天线n对应的射频总功耗与射频输出功率的特性关系。
因此,在确定各天线对应的射频总功耗与射频输出功率的特性关系
Figure BDA0002455504560000118
之后,可以根据各个天线的射频模块的输入输出关系/>
Figure BDA0002455504560000119
得到该天线的射频模块的总功耗值
Figure BDA00024555045600001110
并选择总功耗值较低的天线作为上行天线。
可以看出,在本实施方式中,用于在确定射频总功耗与射频输出功率的特性关系时,进行校正的偏差功率,通过在多个时刻获取到的每个射频功率放大器对应的射频总功耗数据和射频输出功率数据来确定,从而提高该偏差功率的校正作用。
为进一步说明本申请技术方案的有效性,采用OAI平台业务场景的实测数据对本申请技术方案进行验证,具体实测数据如表1所示。需要说明的是,考虑到随着互联网的发展,近年来各种手游的涌现以及视频直播业务的流行,在终端节能的业务场景测试中,游戏场景和视频直播场景必不可少。
表1
Figure BDA00024555045600001111
由表1可知,在FTP上行业务数据中,FTP的数据包大小均值为158bytes,数据包达到的时间间隔均值为11.6ms。在游戏场景中,根据OAI测试平台10分钟的测试发现,游戏场景的上行数据包均值为70.8bytes,数据包的发包时间间隔均值为25.1ms,值得注意的是,游戏场景对时延约束有较高的要求。在HTTP上行业务数据中,测得上行数据包均值为81.3bytes,数据包达到的时间间隔均值为23.9ms。在视频直播上行业务数据中,上行数据包包长均值在798.6bytes,平均每3.6ms发一次数据包。
文件传输(FTP)场景、游戏(Game)场景、浏览网页(HTTP)场景和视频直播(Live)场景的算法对比结果分别如图6、图7、图8和图9所示。图中,横坐标表示信噪比(SNR),也即放大器的输出信号的功率,本申请可以为射频输出功率;纵坐标表示能耗(PowerConsumption),本申请可以为通信过程中的能耗;Channel-Based曲线表示基于信道的天线选择方案的信噪比与能耗的关系曲线,Channel-RF-Based曲线表示联合信道与射频的天线选择方案的信噪比与能耗的关系曲线。
请参阅图6,在文件传输(FTP)场景,与基于信道的天线选择方案相比,在功放输入差异5%时,联合信道与射频的天线选择方案,所有SNR下平均节能为:上行节能1.49%,上下行总节能0.39%。
请参阅图7,在游戏(Game)场景,与基于信道的天线选择方案相比,在功放输入差异5%时,联合信道与射频的天线选择方案,所有SNR下平均节能为:上行节能0.94%,上下行总节能0.21%。
请参阅图8,在浏览网页(HTTP)场景,与基于信道的天线选择方案相比,在功放输入差异5%时,联合信道与射频的天线选择方案,所有SNR下平均节能为:上行节能0.91%,上下行总节能0.21%。
请参阅图9,在视频直播(Live)场景,与基于信道的天线选择方案相比,在功放输入差异5%时,联合信道与射频的天线选择方案,所有SNR下平均节能为:上行节能2.52%,上下行总节能1.01%。
综上可知,由于本申请提供的天线选择方法是基于用户QoS需求进行判断的,在整个模式切换的过程中,QoS需求都控制在指定要求以上,因此能够严格满足终端业务QoS需求,给用户带来较好的体验;在保证满足终端业务QoS需求下,本申请提供的天线选择方法根据UE的用户信息(信道情况等)、UE的可用射频硬件信息(功放特性等),选择合适的上行天线以实现终端节能,从而降低了通信终端的能量损耗;本申请提供的天线选择方法不需要在基站侧做出改进,节约了基站升级的额外开销,因此系统复杂度低;本申请提供的天线选择方法可应用于目前的数量众多的LTE TDD或者LTE FDD基站或终端系统,适用范围广,具有较大的市场推广潜力。
另外,本申请提供的技术方案不仅适用于5G NR终端的节能天线选择,同样也可以适用于更多射频特性不可忽视的场景中,或者适用于蓝牙、WiFi等上行发射场景中,以及适用于5G或后续演进技术中。
上述主要从方法侧各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图10示出了一种天线选择装置的结构示意图。天线选择装置1000应用于终端,具体包括:处理单元1002和通信单元1003。处理单元1002用于对终端的动作进行控制管理,例如,处理单元1002用于支持终端执行上述方法实施例中的步骤和用于本文所描述的技术的其它过程。通信单元1003用于支持终端与其他设备的通信。终端还可以包括存储单元1001,用于存储终端的程序代码和数据。
其中,处理单元1002可以是处理器或控制器,例如可以是中央处理器(CentralProcessing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元1003可以是通信接口、收发器、收发电路等,存储单元1001可以是存储器。
具体实现时,所述处理单元1002用于执行如上述方法实施例中终端执行的任一步骤,且在执行诸如发送等数据传输时,可选择的调用所述通信单元1003来完成相应操作。下面进行详细说明。
所述处理单元1002用于:获取所述终端的用户信息,所述用户信息用于指示所述终端的上行业务数据的传输质量需求;以及确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系;以及根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
在一些可能的实施方式中,所述处理单元1002在根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线时,具体用于:根据所述用户信息确定目标射频输出功率;根据所述目标射频输出功率和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
在一些可能的实施方式中,所述终端包括n个天线,所述n为大于1的整数,所述处理单元1002在根据所述目标射频输出功率和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线时,具体用于:根据所述目标射频输出功率和所述n个天线中每个天线对应的射频总功耗与射频输出功率的特性关系确定n个目标射频总功耗,所述n个天线与所述n个目标射频总功耗一一对应;从所述n个天线中,选择最小目标射频总功耗对应的天线作为所述上行天线。
在一些可能的实施方式中,其特征在于,所述处理单元1002在获取所述终端的用户信息时,具体用于:获取上行信道信息以及获取当前上行业务的服务质量需求。
在一些可能的实施方式中,所述处理单元1002在根据所述用户信息确定目标射频输出功率时,具体用于:根据所述上行信道信息和所述当前上行业务的服务质量需求确定所述目标射频输出功率。
在一些可能的实施方式中,所述处理单元1002在获取上行信道信息时,具体用于:获取下行信道信息,并根据所述下行信道信息预测所述上行信道信息。
在一些可能的实施方式中,所述上行信道信息包括上行信道质量参数。
在一些可能的实施方式中,所述处理单元1002在获取下行信道信息,并根据所述下行信道信息预测所述上行信道信息时,具体用于:对下行信道进行测量,得到多个下行信道测量结果;对所述多个下行信道测量结果进行数据平滑处理,将所述数据平滑结果作为所述上行信道质量参数。
在一些可能的实施方式中,所述处理单元1002在确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系时,具体用于:获取所述n个天线中每个天线对应的射频总功耗数据与射频输出功率数据;根据所述每个天线对应的射频总功耗数据与射频输出功率数据确定所述每个天线对应的射频总功耗与射频输出功率的特性关系。
在一些可能的实施方式中,所述终端包括n个射频功率放大器,所述n个天线与所述n个射频功率放大器一一对应,所述处理单元1002在获取所述n个天线中每个天线对应的射频总功耗数据与射频输出功率数据时,具体用于:获取所述n个射频功率放大器中每个射频功率放大器在预设时间段内的m个射频总功耗数据,以及获取所述每个射频功率放大器对应的m个射频输出功率数据,所述m个射频总功耗数据与所述m个射频输出功率数据一一对应,所述m为大于1的整数。
在一些可能的实施方式中,所述处理单元1002在根据所述每个天线对应的射频总功耗数据与射频输出功率数据确定所述每个天线对应的射频总功耗与射频输出功率的特性关系时,具体用于:根据所述每个射频功率放大器对应的m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系。
在一些可能的实施方式中,所述处理单元1002在根据所述每个射频功率放大器对应的m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系时,具体用于:确定所述每个射频功率放大器对应的偏差功率;根据所述每个射频功率放大器对应的偏差功率、m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系。
在一些可能的实施方式中,所述每个射频功率放大器对应的偏差功率通过以下公式确定:
Figure BDA0002455504560000141
公式中,n表示第n个射频功率放大器,t表示时刻,
Figure BDA0002455504560000142
表示第n个射频功率放大器对应的偏差功率,/>
Figure BDA0002455504560000143
表示第n个射频功率放大器在t时刻的射频总功耗数据,/>
Figure BDA0002455504560000144
表示第n个射频功率放大器在t时刻的射频输出功率数据。
在图10所描述的天线选择装置1000中,根据指示终端的上行业务数据的传输质量需求的用户信息以及射频总功耗与射频输出功率的特性关系,选择合适的上行天线,从而利用现有终端传输机制,进行简单的升级改造,即可使得终端在满足无线通信质量的情况下,降低通信过程中的能耗。
可以理解的是,由于方法实施例与装置实施例为相同技术构思的不同呈现形式,因此,本申请中方法实施例部分的内容应同步适配于装置实施例部分,此处不再赘述。
请参阅图11,图11是本申请实施例提供的一种终端1110的结构示意图,如图11所示,所述终端1110包括通信接口1111、处理器1112、存储器1113和至少一个用于连接所述通信接口1111、所述处理器1112、所述存储器1113的通信总线1114。
存储器1113包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmableread only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1113用于相关指令及数据。
通信接口1111用于接收和发送数据。
处理器1112可以是一个或多个中央处理器(central processing unit,CPU),在处理器1112是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该终端1110中的处理器1112用于读取所述存储器1113中存储的一个或多个程序代码,执行以下操作:获取所述终端的用户信息,所述用户信息用于指示所述终端的上行业务数据的传输质量需求;以及确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系;以及根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
需要说明的是,各个操作的实现还可以对应参照上述方法实施例中相应的描述。
在图11所描述的终端1110中,根据指示终端的上行业务数据的传输质量需求的用户信息以及射频总功耗与射频输出功率的特性关系,选择合适的上行天线,从而利用现有终端传输机制,进行简单的升级改造,即可使得终端在满足无线通信质量的情况下,降低通信过程中的能耗。
本申请实施例还提供一种芯片,所述芯片包括至少一个处理器,存储器和接口电路,所述存储器、所述收发器和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有计算机程序;所述计算机程序被所述处理器执行时,上述方法实施例中所示的方法流程得以实现。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当其在终端上运行时,上述方法实施例中所示的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在终端上运行时,上述方法实施例中所示的方法流程得以实现。
应理解,本申请实施例中提及的处理器可以是中央处理单元(CentralProcessing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital SignalProcessor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double DataRate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (27)

1.一种天线选择方法,其特征在于,应用于终端,所述方法包括:
获取所述终端的用户信息,所述用户信息用于指示所述终端的上行业务数据的传输质量需求;
确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系,具体包括:根据各个天线对应的射频功率放大器的m个射频总功耗数据和m个射频输出功率数据,确定各个天线对应的射频功率放大器的偏差功率;根据各个天线的射频功率放大器对应的m个偏差功率、m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定各个天线对应的射频总功耗与射频输出功率的特性关系;
根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
2.根据权利要求1所述的方法,其特征在于,所述根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线,包括:
根据所述用户信息确定目标射频输出功率;
根据所述目标射频输出功率和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
3.根据权利要求2所述的方法,其特征在于,所述终端包括n个天线,所述n为大于1的整数,所述根据所述目标射频输出功率和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线,包括:
根据所述目标射频输出功率和所述n个天线中每个天线对应的射频总功耗与射频输出功率的特性关系确定n个目标射频总功耗,所述n个天线与所述n个目标射频总功耗一一对应;
从所述n个天线中,选择最小目标射频总功耗对应的天线作为所述上行天线。
4.根据权利要求2或3所述的方法,其特征在于,所述获取所述终端的用户信息,包括:
获取上行信道信息以及获取当前上行业务的服务质量需求。
5.根据权利要求4所述的方法,其特征在于,所述根据所述用户信息确定目标射频输出功率,包括:
根据所述上行信道信息和所述当前上行业务的服务质量需求确定所述目标射频输出功率。
6.根据权利要求4所述的方法,其特征在于,所述获取上行信道信息,包括:
获取下行信道信息,并根据所述下行信道信息预测所述上行信道信息。
7.根据权利要求6所述的方法,其特征在于,所述上行信道信息包括上行信道质量参数。
8.根据权利要求7所述的方法,其特征在于,所述获取下行信道信息,并根据所述下行信道信息预测所述上行信道信息,包括:
对下行信道进行测量,得到多个下行信道测量结果;
对所述多个下行信道测量结果进行数据平滑处理,将所述数据平滑结果作为所述上行信道质量参数。
9.根据权利要求3所述的方法,其特征在于,所述确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系,包括:
获取所述n个天线中每个天线对应的射频总功耗数据与射频输出功率数据;
根据所述每个天线对应的射频总功耗数据与射频输出功率数据确定所述每个天线对应的射频总功耗与射频输出功率的特性关系。
10.根据权利要求9所述的方法,其特征在于,所述终端包括n个射频功率放大器,所述n个天线与所述n个射频功率放大器一一对应,所述获取所述n个天线中每个天线对应的射频总功耗数据与射频输出功率数据,包括:
获取所述n个射频功率放大器中每个射频功率放大器在预设时间段内的m个射频总功耗数据,以及获取所述每个射频功率放大器对应的m个射频输出功率数据,所述m个射频总功耗数据与所述m个射频输出功率数据一一对应,所述m为大于1的整数。
11.根据权利要求10所述的方法,其特征在于,所述根据所述每个天线对应的射频总功耗数据与射频输出功率数据确定所述每个天线对应的射频总功耗与射频输出功率的特性关系,包括:
根据所述每个射频功率放大器对应的m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系。
12.根据权利要求1所述的方法,其特征在于,每个射频功率放大器对应的偏差功率通过以下公式确定:
Figure QLYQS_1
公式中,n表示第n个射频功率放大器,t表示时刻,
Figure QLYQS_2
表示第n个射频功率放大器对应的偏差功率,/>
Figure QLYQS_3
表示第n个射频功率放大器在t时刻的射频总功耗数据,/>
Figure QLYQS_4
表示第n个射频功率放大器在t时刻的射频输出功率数据,其中,/>
Figure QLYQS_5
13.一种天线选择装置,其特征在于,应用于终端,所述天线选择装置包括处理单元,所述处理单元用于:
获取所述终端的用户信息,所述用户信息用于指示所述终端的上行业务数据的传输质量需求;
以及确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系,具体用于:根据各个天线对应的射频功率放大器的m个射频总功耗数据和m个射频输出功率数据,确定各个天线对应的射频功率放大器的偏差功率;根据各个天线的射频功率放大器对应的m个偏差功率、m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定各个天线对应的射频总功耗与射频输出功率的特性关系;
以及根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
14.根据权利要求13所述的装置,其特征在于,所述处理单元在根据所述用户信息和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线时,具体用于:
根据所述用户信息确定目标射频输出功率;
根据所述目标射频输出功率和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线。
15.根据权利要求14所述的装置,其特征在于,所述终端包括n个天线,所述n为大于1的整数,所述处理单元在根据所述目标射频输出功率和所述各天线对应的射频总功耗与射频输出功率的特性关系选择上行天线时,具体用于:
根据所述目标射频输出功率和所述n个天线中每个天线对应的射频总功耗与射频输出功率的特性关系确定n个目标射频总功耗,所述n个天线与所述n个目标射频总功耗一一对应;
从所述n个天线中,选择最小目标射频总功耗对应的天线作为所述上行天线。
16.根据权利要求14或15所述的装置,其特征在于,所述处理单元在获取所述终端的用户信息时,具体用于:
获取上行信道信息以及获取当前上行业务的服务质量需求。
17.根据权利要求16所述的装置,其特征在于,所述处理单元在根据所述用户信息确定目标射频输出功率时,具体用于:
根据所述上行信道信息和所述当前上行业务的服务质量需求确定所述目标射频输出功率。
18.根据权利要求16所述的装置,其特征在于,所述处理单元在获取上行信道信息时,具体用于:
获取下行信道信息,并根据所述下行信道信息预测所述上行信道信息。
19.根据权利要求18所述的装置,其特征在于,所述上行信道信息包括上行信道质量参数。
20.根据权利要求19所述的装置,其特征在于,所述处理单元在获取下行信道信息,并根据所述下行信道信息预测所述上行信道信息时,具体用于:
对下行信道进行测量,得到多个下行信道测量结果;
对所述多个下行信道测量结果进行数据平滑处理,将所述数据平滑结果作为所述上行信道质量参数。
21.根据权利要求15所述的装置,其特征在于,所述处理单元在确定所述终端的各天线对应的射频总功耗与射频输出功率的特性关系时,具体用于:
获取所述n个天线中每个天线对应的射频总功耗数据与射频输出功率数据;
根据所述每个天线对应的射频总功耗数据与射频输出功率数据确定所述每个天线对应的射频总功耗与射频输出功率的特性关系。
22.根据权利要求21所述的装置,其特征在于,所述终端包括n个射频功率放大器,所述n个天线与所述n个射频功率放大器一一对应,所述处理单元在获取所述n个天线中每个天线对应的射频总功耗数据与射频输出功率数据时,具体用于:
获取所述n个射频功率放大器中每个射频功率放大器在预设时间段内的m个射频总功耗数据,以及获取所述每个射频功率放大器对应的m个射频输出功率数据,所述m个射频总功耗数据与所述m个射频输出功率数据一一对应,所述m为大于1的整数。
23.根据权利要求22所述的装置,其特征在于,所述处理单元在根据所述每个天线对应的射频总功耗数据与射频输出功率数据确定所述每个天线对应的射频总功耗与射频输出功率的特性关系时,具体用于:
根据所述每个射频功率放大器对应的m个射频总功耗数据和m个射频输出功率数据采用最小二乘法进行特性拟合,确定所述每个射频功率放大器对应的射频总功耗与射频输出功率的特性关系。
24.根据权利要求13所述的装置,其特征在于,每个射频功率放大器对应的偏差功率通过以下公式确定:
Figure QLYQS_6
公式中,n表示第n个射频功率放大器,t表示时刻,
Figure QLYQS_7
表示第n个射频功率放大器对应的偏差功率,/>
Figure QLYQS_8
表示第n个射频功率放大器在t时刻的射频总功耗数据,/>
Figure QLYQS_9
表示第n个射频功率放大器在t时刻的射频输出功率数据,其中,/>
Figure QLYQS_10
25.一种终端,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-12任一项所述的方法中的步骤的指令。
26.一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-12中任一项所述的方法。
27.一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-12中任一项所述的方法。
CN202010309552.6A 2020-04-17 2020-04-17 天线选择方法及相关设备 Active CN113541755B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010309552.6A CN113541755B (zh) 2020-04-17 2020-04-17 天线选择方法及相关设备
PCT/CN2021/087953 WO2021209058A1 (zh) 2020-04-17 2021-04-17 天线选择方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010309552.6A CN113541755B (zh) 2020-04-17 2020-04-17 天线选择方法及相关设备

Publications (2)

Publication Number Publication Date
CN113541755A CN113541755A (zh) 2021-10-22
CN113541755B true CN113541755B (zh) 2023-06-16

Family

ID=78083942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010309552.6A Active CN113541755B (zh) 2020-04-17 2020-04-17 天线选择方法及相关设备

Country Status (2)

Country Link
CN (1) CN113541755B (zh)
WO (1) WO2021209058A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116669153B (zh) * 2022-12-09 2023-10-20 荣耀终端有限公司 发射功率回退方法、终端设备和计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081768A2 (en) * 2002-03-21 2003-10-02 Cognio, Inc. Improving the efficiency of power amplifiers in devices using transmit beamforming
CN101340226A (zh) * 2007-07-04 2009-01-07 日本电气株式会社 发射机和发射方法
CN102571173A (zh) * 2010-12-30 2012-07-11 联芯科技有限公司 开环模式下终端选择传输天线的方法、装置和移动终端
CN105916194A (zh) * 2016-05-26 2016-08-31 努比亚技术有限公司 射频信号发送方法、装置及终端
CN109314552A (zh) * 2016-05-13 2019-02-05 瑞典爱立信有限公司 用于控制上行链路波束成形的用户设备过程
WO2019217004A1 (en) * 2018-05-10 2019-11-14 Qualcomm Incorporated Dynamic antenna selection in millimeter wave systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105307291B (zh) * 2014-05-28 2019-10-15 南京中兴软件有限责任公司 移动通讯终端及移动通讯终端的信号发射方法
WO2016174853A1 (ja) * 2015-04-27 2016-11-03 日本電気株式会社 アレイアンテナ装置、受信機および受信信号の処理方法
US9860848B2 (en) * 2016-05-31 2018-01-02 Apple Inc. Baseband power estimation and feedback mechanism
CN110266357B (zh) * 2019-06-14 2022-08-16 Oppo广东移动通信有限公司 通信控制方法、装置及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081768A2 (en) * 2002-03-21 2003-10-02 Cognio, Inc. Improving the efficiency of power amplifiers in devices using transmit beamforming
CN101340226A (zh) * 2007-07-04 2009-01-07 日本电气株式会社 发射机和发射方法
CN102571173A (zh) * 2010-12-30 2012-07-11 联芯科技有限公司 开环模式下终端选择传输天线的方法、装置和移动终端
CN109314552A (zh) * 2016-05-13 2019-02-05 瑞典爱立信有限公司 用于控制上行链路波束成形的用户设备过程
CN105916194A (zh) * 2016-05-26 2016-08-31 努比亚技术有限公司 射频信号发送方法、装置及终端
WO2019217004A1 (en) * 2018-05-10 2019-11-14 Qualcomm Incorporated Dynamic antenna selection in millimeter wave systems

Also Published As

Publication number Publication date
CN113541755A (zh) 2021-10-22
WO2021209058A1 (zh) 2021-10-21

Similar Documents

Publication Publication Date Title
US20230232370A1 (en) Relative positioning method, terminal, and base station
CN110224768B (zh) 在附加载波中使用csi-rs的移动性测量
CN110035444B (zh) 一种资源确定的方法和装置
WO2019019224A1 (zh) 命令接收方法、装置及通信系统
CN108696922B (zh) 非连续接收方法、终端及网络设备
JP2020502862A (ja) ビーム測定方法及び装置
WO2020164151A1 (zh) 无线通信方法、终端设备和网络设备
US20200059825A1 (en) Communication device, communication system, communication method, and non-transitory computer-readable medium
CN114145049B (zh) 一种确定上行发射功率的方法、装置及设备
CN113541755B (zh) 天线选择方法及相关设备
WO2021208888A1 (zh) 一种通信方法和装置
WO2024032260A1 (zh) 一种通信方法、装置、存储介质以及芯片系统
WO2021142700A1 (zh) 一种测量方法及装置、终端设备
CN115885525A (zh) 一种用于定位的方法和装置
US11963103B2 (en) Methods and apparatuses for paging
CN107113863B (zh) 确定数据传输方案的方法和设备
JP7041263B2 (ja) アップリンク電力制御方法および移動通信端末
CN110557762B (zh) 信息上报方法、信息上报的配置方法、终端及网络侧设备
CN112514419A (zh) 终端获取测量信息的方法、装置、通信设备及存储介质
CN112865887B (zh) 重复次数的确定方法、设备及存储介质
CN111294815A (zh) 一种上行受限的确定方法及装置
RU2815087C1 (ru) Способ и устройство для запроса конфигурации опорного сигнала позиционирования (prs), а также устройство связи и носитель данных
WO2022205427A1 (en) Validation of timing advance in wireless communication
WO2021159524A1 (zh) 一种确定路径损耗的方法、装置及系统
CN113382425B (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant