WO2016174853A1 - アレイアンテナ装置、受信機および受信信号の処理方法 - Google Patents

アレイアンテナ装置、受信機および受信信号の処理方法 Download PDF

Info

Publication number
WO2016174853A1
WO2016174853A1 PCT/JP2016/002105 JP2016002105W WO2016174853A1 WO 2016174853 A1 WO2016174853 A1 WO 2016174853A1 JP 2016002105 W JP2016002105 W JP 2016002105W WO 2016174853 A1 WO2016174853 A1 WO 2016174853A1
Authority
WO
WIPO (PCT)
Prior art keywords
array antenna
converter
signals
switch
signal
Prior art date
Application number
PCT/JP2016/002105
Other languages
English (en)
French (fr)
Inventor
直樹 大島
生真 安藤
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017515382A priority Critical patent/JP6702315B2/ja
Priority to US15/566,802 priority patent/US10326515B2/en
Publication of WO2016174853A1 publication Critical patent/WO2016174853A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • H04B7/082Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection selecting best antenna path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0828Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with delay elements in antenna paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0079Receiver details
    • H04L7/0087Preprocessing of received signal for synchronisation, e.g. by code conversion, pulse generation or edge detection

Definitions

  • the present invention relates to an array antenna device, and more particularly to signal reception.
  • Beamforming is a technology that gives directivity to radiated radio waves and radiates radio waves only in a specific direction where a communication partner is present. As a result, signal quality can be improved and unnecessary radiation to other wireless devices and systems can be suppressed. In other words, by using beam forming, it is possible to use radio waves by subdividing spatially.
  • a typical method of beam forming is a phased array antenna.
  • a phased array antenna changes the phase of a radio signal fed to a plurality of regularly arranged antenna elements. Thereby, the phased array antenna spatially synthesizes the radio waves radiated from the respective antenna elements, and radiates the synthesized radio waves in a desired direction.
  • the phased array antenna radiates radio waves in a desired direction by adjusting the electrical phase and amplitude. Therefore, the phased array antenna is more durable than mechanically moving a highly directional antenna.
  • As the simplest method for specifying the direction of the communication partner there is a beam former method that scans radio waves radiated by the device itself.
  • MMSE Minimum Mean Square Error
  • MUSIC Multiple Signal Classification
  • the MMSE method is a method of giving a desired directivity to a radiated radio wave by changing the weight of the phase and amplitude of the array antenna using a known signal such as a preamble included in the signal.
  • the MUSIC method is a method for calculating separation and arrival directions of a plurality of signals based on eigenvalues and eigenvectors of correlation values of received signals. Thus, the direction of arrival can be estimated even if the received signal is an unknown signal.
  • the MMSE method does not estimate the direction of arrival, but optimizes the phase and amplitude weighting of each antenna element called an adaptive array.
  • the MMSE method and the MUSIC method require high-precision computation by digital signal processing, signals received by each antenna element are converted into digital signals by an analog-digital (A / D) converter.
  • a / D analog-digital
  • Patent Document 1 can input signals in order to a single circuit using Delay Lines and switches having different delay amounts for each antenna element.
  • a technique for performing a kind of parallel-serial conversion is disclosed.
  • Patent Document 2 discloses a time-division phased array technique that can reduce the number of connected analog circuits by performing time-division multiplexing using only a switch without using a delay line.
  • An object of the present invention is to provide an array antenna device with reduced switch insertion loss.
  • An array antenna apparatus includes a plurality of antennas that receive signals, a plurality of down converters that are connected to each of the plurality of antennas and that down-convert the received signals, and the plurality of down-converted plurality of antennas.
  • a switch that selects at least one of the signals and transmits the selected signal to the A / D converter.
  • the effect of the present invention is that the insertion loss of the switch can be reduced in the array antenna device and the receiver.
  • FIG. 1 is a block diagram showing the configuration of the array antenna apparatus 1 according to the first embodiment of the present invention.
  • FIG. 2 is a graph showing a received waveform input to the switch 14 in the first embodiment of the present invention.
  • FIG. 3 shows arrival direction estimation simulation results using the array antenna apparatus 1 according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing a configuration of the array antenna apparatus 4 according to the second embodiment of the present invention.
  • FIG. 5 is a block diagram showing a configuration of the array antenna apparatus 5 according to the third embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing a configuration of delay devices 561, 562,..., 56N according to the third embodiment of the present invention.
  • FIG. 7 is a circuit diagram showing a configuration of delay elements 561, 562,..., 56N in the third embodiment of the present invention.
  • FIG. 8 is a block diagram showing a configuration of an array antenna apparatus 8 according to the fourth embodiment of the present invention.
  • FIG. 9 is a block diagram showing a configuration of the array antenna apparatus 9 according to the fifth embodiment of the present invention.
  • FIG. 10 is a block diagram showing a configuration of the array antenna apparatus 10 according to the sixth embodiment of the present invention.
  • FIG. 11 is a block diagram showing a configuration of radio communication apparatus 1100 according to the seventh embodiment of the present invention.
  • FIG. 1 is a block diagram showing the configuration of the array antenna apparatus 1 according to the first embodiment of the present invention.
  • an array antenna apparatus 1 includes antennas (antenna elements) 111, 112,..., 11N (N is an integer of 2 or more), down converters 131, 132, ..., 13N, a switch 14, an A / D converter 11, a digital signal processing unit 12, and a control unit 13.
  • the array antenna apparatus 1 can perform advanced arrival direction estimation of received signals by digital signal processing.
  • the array antenna apparatus 1 can suppress power consumption and cost by suppressing the number of A / D converters 11.
  • the configuration before the down converters 131, 132,..., 13N is an RF unit that handles a radio frequency (RF) signal. Called.
  • the configuration after the down converters 131, 132,..., 13N is a baseband (BB) signal after down conversion. It is called the BB section that handles.
  • the configuration before the A / D converter 11 is an analog-BB unit
  • the configuration after the A / D converter 11 is called digital-BB sections.
  • the antennas 111, 112,..., 11N receive signals from other devices.
  • the antennas 111, 112, ..., 11N transmit the received signals to the down converters 131, 132, ..., 13N.
  • the down converters 131, 132,..., 13N down-convert the signals received from the antennas 111, 112,. Down converters 131, 132,..., 13N are driven by LO signals transmitted from a local oscillator (LO) (not shown). Each of the down converters 131, 132,..., 13N transmits the down-converted signal to the A / D converter 41 via the switch.
  • LO local oscillator
  • Switch 14 conducts each of down converters 131, 132,..., 13N and A / D converter 11.
  • the switch 14 receives a signal from each of the down converters 131, 132,..., 13N, selects one signal from the plurality of received signals based on the first control signal transmitted by the control unit 13, The signal is transmitted to the A / D converter 11. That is, the switch 14 switches a signal to be transmitted to the A / D converter 11 based on the first control signal.
  • the switch 14 in the present embodiment is a multi-input one-output switch.
  • the configuration of the switch 14 is not limited to this. For example, a configuration having N switches of 1 input and 1 output may be used.
  • the switch 14 may be a multi-input / multi-output switch. In this case, the switch 14 selects M signals from the plurality of signals and transmits them to the M A / D converters 11 one by one.
  • the A / D converter 11 receives a signal from the switch 14.
  • the A / D converter 11 performs sampling of the received signal and analog-digital conversion (A / D conversion).
  • the A / D converter 11 transmits the converted signal (digital signal) to the digital signal processing unit 12.
  • the number of A / D converters 11 is one. However, a plurality of A / D converters 11 may be provided. When the number of A / D converters 11 is smaller than the number of antennas (number of arrays) N, the array antenna device 4 can reduce power consumption and cost. On the other hand, the A / D converter 11 can set its own sampling frequency as low as the number of the A / D converters 11.
  • the sampling frequency (oversampling) at the time of non-array is F O
  • the number of arrays is N
  • the number of A / D converters 11 is M (M is an integer of 1 ⁇ M ⁇ N)
  • the required sampling frequency F S becomes (N / M) times the original frequency F O.
  • the digital signal processing unit 12 receives a signal (digital signal) from the A / D converter 11 and performs digital signal processing.
  • the digital signal processing unit 12 rearranges the received signals in accordance with the timing at which the switch 14 switches conduction between the down converters 131, 132,..., 13N and the A / D converter 11. Since the digital signal processing unit 12 receives a signal at every sampling timing of the A / D converter 11 (see FIG. 2), the digital signal processing unit 12 requires processing such as separately storing the received signal in N buffers.
  • the digital signal processing unit 12 performs digital signal processing such as MMSE method and MUSIC method. However, since this is not the main content of the present invention, a detailed description is omitted.
  • the control unit 13 controls the operation of the switch 14.
  • the control unit 13 generates a first control signal for causing the switch 14 to select a signal to be transmitted to the A / D converter 11 among the plurality of signals, and transmits the generated first control signal to the switch 14. .
  • the control unit 13 synchronizes the sampling timing of the A / D converter 11 and the timing at which the switch 14 makes the A / D converter 11 conductive with each of the down converters 131, 132,.
  • the first control signal includes information regarding the order in which the switch 14 transmits a plurality of signals to the A / D converter 11.
  • the switch 14 transmits the signals received from the down converters 131, 132,..., 13N to the A / D converter 11 in this order (down converter 131 ⁇ 132 ⁇ ... ⁇ 13N). Is included. Based on this information, the switch 14 sequentially transmits a plurality of signals to the A / D converter 11.
  • the information included in the first control signal is not limited to the above example.
  • the first control signal may include information specifying one signal to be transmitted at each sampling timing instead of the information indicating the transmission order of the plurality of signals to the switch 14 as described above. In this case, the control unit 13 transmits the latest first control signal to the switch 14 at every sampling timing of the A / D converter 11.
  • Graphs 201, 202,..., 20N indicate received waveforms input to the switch 14, respectively.
  • the graphs 201, 202,..., 20N have the same waveform.
  • the switch 14 receives a plurality of signals having different phases as in an actual phased array, the graphs 201, 202,..., 20N have different waveforms.
  • the graph 210 shows the sampling timing of the A / D converter 11.
  • the control unit 13 performs control so that the signal selected by the switch 14 is sequentially transmitted to the A / D converter 11 in accordance with this timing.
  • the sampling frequency of the A / D converter 11 is set to N times or more the signal frequency (reciprocal of the period T in FIG. 2)
  • the sampled signals (sampling signals) 21, 22,. Match the spectrum of the original signal (can be restored to the original signal).
  • the sampling timings of the sampling signals 21, 22,..., 2N are sequentially delayed by one clock. For this reason, when the array antenna apparatus 1 of the present embodiment is used for direction of arrival estimation, it is necessary to set the sampling frequency high to such an extent that the delay amount for each clock does not affect the direction of arrival estimation result.
  • FIG. 3 shows the result of estimating the direction of arrival using the MUSIC method when signals independent from 0 degrees and 25 degrees arrive.
  • a result 301 shows a simulation result using a configuration (not shown) of a conventional array antenna device.
  • the array antenna device 1 according to the first embodiment of the present invention can obtain the same result as the direction of arrival estimation using the conventional array antenna device. I understand.
  • the MUSIC method is used for direction of arrival estimation.
  • the arrival direction estimation using the array antenna apparatus 1 of the present embodiment is not limited to this method, and can be realized by applying other methods.
  • the array antenna apparatus 1 includes a switch 14 in a BB unit that handles a BB signal after down-conversion. Thereby, the array antenna apparatus 1 can reduce the insertion loss generated in the switch 14. Further, even when used at a high frequency, the insertion loss of the switch 14 can be reduced. Since these effects can be obtained in common in the following embodiments, description thereof is omitted.
  • FIG. 4 is a block diagram showing a configuration of the array antenna apparatus 4 according to the second embodiment of the present invention.
  • array antenna apparatus 4 includes receiving units 401, 402,..., 40N (N is an integer of 2 or more), switch 44, and A / D converter. 41, a digital signal processing unit 42, and a control unit 43.
  • the array antenna device 4, the switch 44, the A / D converter 41, and the digital signal processing unit 42 are the array antenna device 1, the switch 14, and the A / D converter 11 in the first embodiment. Since it has the same function as the digital signal processing unit 12, detailed description thereof is omitted.
  • the array antenna device 4 according to the present embodiment is similar to the array antenna device 4 according to the first embodiment in that the low noise amplifiers 421, 422,..., 42N, the filters 441, 442,. , 452,..., 45N.
  • Each of the reception units 401, 402, ..., 40N includes an antenna (antenna element) 411, 412, ..., 41N, a low noise amplifier 421, 422, ..., 42N, a down converter 431, 432, ..., 43N, and a filter. , 44N and variable gain amplifiers 451, 452,..., 45N, respectively.
  • the antennas 411, 412, ..., 41N and the down converters 431, 432, ..., 43N have the same functions as the antennas 111, 112, ..., 11N and the down converters 131, 132, ..., 13N in the first embodiment. Therefore, detailed description is omitted.
  • Each of the receiving units 401, 402,..., 40N receives a signal from another device and transmits the received signal to the A / D converter 41 via the switch 44.
  • the configurations before the down converters 431, 432,..., 43N (antennas 411, 412,..., 41N, low noise amplifiers 421, 422,..., 42N, down converters 431, 432,.
  • This is called an RF unit that handles high-frequency signals.
  • the configuration after the down converters 431, 432,..., 43N (filters 441, 442,..., 44N, variable gain amplifiers 451, 452,..., 45N, switch 44, A / D converter 41,
  • the digital signal processing unit 42) is called a BB unit that handles a BB signal after down-conversion.
  • the configuration before the A / D converter 41 (filters 441, 442,..., 44N, variable gain amplifiers 451, 452,..., 45N, and switch 44) is an analog-BB unit.
  • the configuration subsequent to the A / D converter 41 (the A / D converter 41 and the digital signal processing unit 42) is called a digital-BB unit.
  • the low noise amplifiers 421, 422, ..., 42N amplify the signals received by the antennas 411, 412, ..., 41N, and transmit the amplified signals to the down converters 431, 432, ..., 43N.
  • the antennas 411, 412, ..., 41N, the low noise amplifiers 421, 422, ..., 42N and the down converters 431, 432, ..., 43N are connected in series in a one-to-one relationship in this order.
  • Filters 441, 442,..., 44N pass only predetermined (frequency) bands of signals transmitted by the down converters 431, 432,..., 43N, and transmit the signals to the variable gain amplifiers 451, 452,. To do.
  • the down converters 431, 432, ..., 43N, the filters 441, 442, ..., 44N and the variable gain amplifiers 451, 452, ..., 45N are connected in series in this order, one to one.
  • variable gain amplifiers 451, 452,..., 45N amplify the signals transmitted by the filters 441, 442,.
  • Each of the variable gain amplifiers 451, 452,..., 45N changes its gain based on the second control signal transmitted by the control unit 43.
  • the gains of the variable gain amplifiers 451, 452,..., 45N are always the same value. Therefore, when the variable gain amplifiers 451, 452,..., 45N change the gain, the amount of change in the gain is the same in all the variable gain amplifiers 451, 452,.
  • the variable gain amplifiers 451, 452,..., 45N perform processing for increasing its own gain based on the second control signal.
  • the array antenna apparatus 4 can normally A / D convert each of the received signals. Conversely, when the received signal is large, the variable gain amplifiers 451, 452,..., 45N perform processing for reducing the gain. Thereby, the array antenna apparatus 4 can reduce power consumption.
  • the gains of the variable gain amplifiers 451, 452,..., 45N are variable, but the gains may not be variable. In the present embodiment, the variable gain amplifiers 451, 452,..., 45N may be omitted.
  • the control unit 43 has the following functions in addition to the functions of the control unit 13 of the first embodiment.
  • the control unit 43 generates a second control signal for changing the amplification factors of the variable gain amplifiers 451, 452,..., 45N, and the generated second control signal is used as the variable gain amplifiers 451, 452,. Send to each.
  • the second control signal includes information for changing the amplification factor of the signal in accordance with the magnitude of the signal received by each of the variable gain amplifiers 451, 452,.
  • the control unit 43 does not have to generate the second control signal when the amplification factors of the variable gain amplifiers 451, 452,..., 45N are constant.
  • the first and second control signals are generated in the same control unit 43.
  • the first and second control signals may be generated by different control units (not shown).
  • the array antenna device 4 shows a configuration when the array antenna device 4 functions as a general receiver.
  • the position and the like can be changed as appropriate.
  • the position of the switch 44 can be changed within the BB section.
  • the array antenna apparatus 4 includes low noise amplifiers 421, 422, ..., 42N, filters 441, 442, ..., 44N, and variable gain amplifiers 451, for the receiving units 401, 402, ..., 40N, respectively. 45N,..., 45N.
  • AD conversion can be normally performed even when the received signal is small or when the noise of the received signal is large.
  • FIG. 5 is a block diagram showing a configuration of the array antenna apparatus 5 according to the third embodiment of the present invention.
  • an array antenna apparatus 5 includes receiving units 501, 502,..., 50N (N is an integer of 2 or more), a switch 54, and an A / D converter. 51, a digital signal processing unit 52, and a control unit 53.
  • the array antenna device 5, the switch 54, the A / D converter 51, and the digital signal processing unit 52 are the array antenna device 1, the switch 14, and the A / D converter 11 in the first embodiment. Since it has the same function as the digital signal processing unit 12, detailed description thereof is omitted.
  • the A / D converter 51 of this embodiment does not need to oversample at a higher frequency than in the non-array as in the first and second embodiments.
  • the receiving units 501, 502,..., 50N and the control unit 53 have functions similar to those of the receiving units 401, 402,. .
  • the array antenna device 5 according to the present embodiment is different in that the receiving units 401, 402,..., 40N according to the second embodiment further include delay devices 561, 562,.
  • Each of the receiving units 501, 502,..., 50N includes antennas (antenna elements) 511, 512,..., 51N, low noise amplifiers 521, 522,. , 54N, variable gain amplifiers 551, 552,..., 55N, and delay devices 561, 562,.
  • the antennas 511, 512, ..., 51N and the down converters 531, 532, ..., 53N have the same functions as the antennas 111, 112, ..., 11N and the down converters 131, 132, ..., 13N of the first embodiment. Therefore, detailed description is omitted.
  • 52N, filters 541, 542,..., 54N, and variable gain amplifiers 551, 552,..., 55N are the low noise amplifiers 421, 422,. , 42N, filters 441, 442,..., 44N and variable gain amplifiers 451, 452,.
  • the configuration before the down converters 531, 532,..., 53N (antennas 511, 512,..., 51N, low noise amplifiers 521, 522,..., 52N, and down converters 531, 532,.
  • This is called an RF unit that handles high-frequency signals.
  • 53N filters 541, 542,..., 54N, variable gain amplifiers 551, 552,..., 55N, delay devices 561, 562,. 54, A / D converter 51, and digital signal processing unit 52
  • BB units that handle BB signals after down-conversion.
  • the configuration before the A / D converter 51 (filters 541, 542,..., 54N, variable gain amplifiers 551, 552,..., 55N, delay devices 561, 562,.
  • the switch 54 is called an analog-BB section
  • the configuration after the A / D converter 51 (A / D converter 51 and digital signal processing section 52) is called a digital-BB section.
  • Delay devices 561, 562,..., 56N adjust the time required for the signals transmitted from the variable gain amplifiers 551, 552,.
  • Each of the delay units 561, 562,..., 56N changes the signal delay amount (time for the signal to reach the switch 54) based on the first control signal transmitted by the control unit 53.
  • the delay units 561, 562,..., 56N determine the delay amount of the signals to be transmitted in the order based on the information regarding the order in which the switch 54 included in the first control signal transmits a plurality of signals. The amount of delay is changed so as to increase.
  • the delay amount of the signal having the earliest transmission order to the A / D converter 51 is the smallest, and the transmission order to the A / D converter 51 is Is set to the largest delay amount of the slowest signal.
  • the first control signal includes information that transmission signals of the delay devices 561, 562,..., 56N are transmitted to the A / D converter 51 in this order (delay devices 561 ⁇ 562 ⁇ ... ⁇ 56N).
  • the delay units 561, 562, ..., 56N increase the delay amount of each signal by one sampling time in this order.
  • the delays in the delay units 561, 562,..., 56N and the delay due to the sampling waiting of the A / D converter 51 in the switch 54 are constant for each received signal. That is, the delay units 561, 562,..., 56N sample each received signal even though the switch 54 is transmitting a plurality of received signals to the A / D converter 51 in order (not simultaneously transmitting). Can be made the same timing. Therefore, the A / D converter 51 does not need to set the sampling frequency high.
  • FIG. 6 is a circuit diagram of the delay device 6 showing the delay devices 561, 562,..., 56N in the third embodiment of the present invention.
  • the delay device 6 is an inverter chain in which inverters 601, 602,..., 60L (L is an integer of 1 or more) are connected in series.
  • the delay unit 6 uses a delay when passing through the inverters 601, 602,.
  • the delay device 6 can determine the number of passages of the inverter by conducting any of the MOS switches 61, 62,..., 6L. Thereby, the delay device 6 can change the delay amount. Since it is not preferable that the signal gain varies depending on the delay amount, it is desirable that the inverters 601, 602,.
  • FIG. 7 is a circuit diagram of the delay device 7 showing the delay devices 561, 562,..., 56N according to the third embodiment of the present invention.
  • the delay device 7 is an all-pass filter using an operational amplifier 701.
  • the variable resistors R1, R2, R3 and the variable capacitor C1 are used as the load of the all-pass filter 701, the following equation is obtained.
  • phase ⁇ is expressed by the following equation.
  • tan ⁇ 1 represents an arc tangent.
  • the all-pass filter 701 is a circuit that changes only the phase without affecting the signal amplitude. Therefore, the phase amount, that is, the delay amount can be changed by changing the values of the variable resistor R3 and the variable capacitor C1. Further, from the equation (4), it can be seen that the all-pass filter 701 rotates only up to 180 degrees. However, if 180 degrees or more is necessary, it can be handled by providing multiple stages.
  • the array antenna apparatus 5 in the third embodiment includes one delay unit 561, 562,..., 56N in each of the receiving units 501, 502,. Accordingly, even when the timing at which the switch 54 makes the receiving units 501, 502,... 50N and the A / D converter 51 conductive is different, the sampling timing of each received signal (timing for A / D conversion) is set. Can be the same. That is, the array antenna apparatus 5 can perform A / D converter processing at a sampling rate lower than usual, and can reduce power consumption. Further, in the present embodiment, delay devices 561, 562,..., 56N are arranged in the BB section that handles signals after down-conversion, so that the received signal does not depend on the RF frequency. Therefore, the array antenna device 5 can be used in a wide band.
  • FIG. 8 is a block diagram showing a configuration of an array antenna apparatus 8 according to the fourth embodiment of the present invention.
  • an array antenna apparatus 8 includes receiving units 801, 802,..., 80N (N is an integer of 2 or more), a switch 84, and an A / D converter. 81, a digital signal processing unit 82, and a control unit 83. Since the array antenna device 8, the switch 84, and the digital signal processing unit 82 have the same functions as the array antenna device 1, the switch 14, and the digital signal processing unit 12 in the first embodiment, Description is omitted.
  • the receiving units 801, 802,..., 80N and the control unit 53 have the same functions as the receiving units 401, 402,. .
  • the array antenna apparatus 8 according to the present embodiment is different in that each of the receiving units 401, 402,..., 40N according to the second embodiment further includes sample and hold circuits 861, 862,.
  • the A / D converter 81 has the same function as the A / D converter 11 in the first embodiment except for the sampling function of the received signal (that is, the A / D converter 81 performs signal sampling). Absent). Therefore, detailed description is omitted. However, the sampling frequency F S of the A / D converter 81, the third embodiment as well as the sampling frequency at the time of non-array (oversampling) and F O, the F O. That is, the A / D converter 81 according to the present embodiment does not need to oversample like the first and second embodiments.
  • Receiving units 801, 802,..., 80N include antennas (antenna elements) 811, 812,..., 81N, low noise amplifiers 821, 822, ..., 82N, down converters 831, 832,. 84N, variable gain amplifiers 851, 852,..., 85N, and sample and hold circuits 861, 862,.
  • the antennas 811, 812, ..., 81N and the down converters 831, 832, ..., 83N are the same functions as the antennas 111, 112, ..., 11N and the down converters 131, 132, ..., 13N of the first embodiment. Therefore, detailed description is omitted.
  • the low noise amplifiers 821, 822, ..., 82N, the filters 841, 842, ..., 84N, and the variable gain amplifiers 851, 852, ..., 85N are the low noise amplifiers 421, 422, ... in the second embodiment. , 42N, filters 441, 442,..., 44N and variable gain amplifiers 451, 452,.
  • the configuration before the down converters 831, 832,..., 83N (antennas 811, 812,..., 81N, low noise amplifiers 821, 822,..., 82N, and down converters 831, 832,. This is called an RF unit that handles high-frequency signals.
  • the configuration behind the down converters 831, 832,..., 83N (filters 841, 842,..., 84N, variable gain amplifiers 851, 852,..., 85N, sample and hold circuits 861, 862,. , Switch 84, A / D converter 81, and digital signal processing unit 82) are called BB units that handle BB signals after down-conversion.
  • the configuration before the A / D converter 81 filters 841, 842,..., 84N, variable gain amplifiers 851, 852,..., 85N, sample and hold circuits 861, 862,. 86N and switch 84
  • an analog-BB section the configuration before the A / D converter 81
  • the configuration after the A / D converter 81 is referred to as a digital-BB section.
  • Sample and hold circuits 861, 862, ..., 86N sample the signals received from the variable gain amplifiers 851, 852, ..., 85N, hold the sampled signals, and transmit them to the switch 84.
  • the sample and hold circuits 861, 862,..., 86N synchronize the timing of each sampling based on the third control signal transmitted by the control unit 83. Further, the sample & hold circuits 861, 862,..., 86N hold signals based on the first control signal transmitted by the control unit 83.
  • the sample & hold circuits 861, 862,..., 86N are based on the order and the sample & hold circuit 861 based on information about the order in which the switch 84 included in the first control signal transmits a plurality of signals. , 862,..., 86N change the hold time of each signal so that the order in which the signals are transmitted to the switch 84 is the same. That is, the sample-and-hold circuits 861, 862,..., 86N have the shortest hold time of the signal having the earliest transmission order to the A / D converter 81 among the received signals, and transmit to the A / D converter 81. Set the hold time of the slowest signal in the longest.
  • the first control signal includes information that the signals of the receivers 801, 802,..., 80N are transmitted to the A / D converter 81 in this order (receivers 801 ⁇ 802 ⁇ ... ⁇ 80N).
  • the sample and hold circuits 861, 862,..., 86N increase their hold times in this order.
  • the control unit 83 has the following functions in addition to the functions of the control unit 43 of the second embodiment.
  • the control unit 83 generates a third control signal for synchronizing the sampling timings of the sample and hold circuits 861, 862,..., 86N, and uses the generated third control signal as the sample and hold circuits 861, 862. ,..., 86N are transmitted to each.
  • the third control signal includes information for each of the sample and hold circuits 861, 862,..., 86N to sample the received signal at the same time.
  • the first to third control signals are generated by the same control unit 83.
  • these first to third control signals may be generated by a plurality of control units (not shown).
  • the array antenna apparatus 8 includes one sample-and-hold circuit 861, 862,..., 86N in each of the receiving units 801, 802,. Thereby, the array antenna apparatus 8 can separate the sampling function performed by the A / D converter in the first to third embodiments into the receiving units 801, 802,. The processing and power consumption of the converter 81 can be reduced.
  • FIG. 9 is a block diagram showing a configuration of the array antenna apparatus 9 according to the fifth embodiment of the present invention.
  • an array antenna apparatus 9 includes receiving units 901, 902,..., 90N (N is an integer of 2 or more), a switch 94, and an A / D converter. 91, a digital signal processing unit 92, and a control unit 93. Since the array antenna device 9, the switch 94, and the digital signal processing unit 92 have the same functions as the array antenna device 1, the switch 14, and the digital signal processing unit 12 in the first embodiment, Description is omitted.
  • the receiving units 901, 902,..., 90N have the same functions as the receiving units 401, 402,. Since the A / D converter 91 has the same function as the A / D converter 81 in the fourth embodiment, detailed description thereof is omitted.
  • the array antenna device 9 is provided with the sampling functions of the sample-and-hold circuits 861, 862,..., 86N according to the fourth embodiment in that the down converters 831, 832,. ,..., 84N and variable gain amplifiers 851, 852,..., 85N are different from the fourth embodiment.
  • Each of the receiving units 901, 902,..., 90N includes antennas (antenna elements) 911, 912,..., 91N, low noise amplifiers 921, 922, ..., 92N, sampling mixers 931, 932,.
  • One circuit 941, 942,..., 94N is provided.
  • the antennas 911, 912,..., 91N have the same functions as those of the antennas 111, 112,.
  • the low-noise amplifiers 921, 922,..., 92N have the same functions as the low-noise amplifiers 421, 422,.
  • the configurations before the sampling mixers 931, 932,..., 93N (antennas 911, 912,..., 91N, low noise amplifiers 921, 922,..., 92N, sampling mixers 931, 932,.
  • This is called an RF unit that handles high-frequency signals.
  • the configuration behind the sampling mixers 931, 932,..., 93N (hold circuits 941, 942,..., 94N, switch 94, A / D converter 91, and digital signal processing unit 92) is down-converted. It is called a BB section that handles the later BB signal.
  • the configuration before the A / D converter 91 is the configuration after the analog-BB unit and the A / D converter 91 ( The A / D converter 91 and the digital signal processing unit 92) are called a digital-BB unit.
  • Sampling mixers 931, 932,..., 93N down-convert and sample the signals received from low noise amplifiers 921, 922,..., 92N, and transmit the signals to hold circuits 941, 942,.
  • Sampling mixers 931, 932,..., 93N synchronize their sampling timings based on the third control signal transmitted by control unit 93.
  • the hold circuits 941, 942, ..., 94N hold the signals received from the sampling mixers 931, 932, ..., 93N, respectively, and transmit the signals to the switch 94.
  • the hold circuits 941, 942,..., 94N hold signals based on the first control signal transmitted by the control unit 93.
  • the hold circuits 941, 942,..., 94 N are based on the order and the hold circuits 941, 942,... Based on information about the order in which the switch 94 included in the first control signal transmits a plurality of signals.
  • the hold time of each signal is changed so that the order in which each signal is transmitted to the switch 94 is the same. That is, the hold circuits 941, 942,..., 94N have the shortest hold time of the signal having the earliest transmission order to the A / D converter 91 among the received signals, and the transmission order to the A / D converter 91 is the shortest. Set the longest hold time of the slowest signal.
  • the first control signal includes information that the signals of the receiving units 901, 902,..., 90N are transmitted to the A / D converter 91 in this order (receiving units 901 ⁇ 902 ⁇ ... ⁇ 90N). In this case, the hold circuits 941, 942,..., 94N increase their hold times in this order.
  • sampling mixers 931, 932, ..., 93N and the hold circuits 941, 942, ..., 94N are described as separate components. However, these may be integrated circuits.
  • the array antenna device 9 of the present embodiment may include an RF filter between the low noise amplifiers 921, 922,..., 92N and the sampling mixers 931, 932,. Thereby, a direct RF configuration can be applied.
  • the array antenna apparatus 9 in the fifth embodiment includes one sampling mixer 931, 932,..., 93N in each of the receiving units 901, 902,. Accordingly, the array antenna apparatus 8 performs the sampling function performed by the A / D converter in the first to third embodiments in the same manner as the fourth embodiment, by the receiving units 901, 902,. Therefore, the processing and power consumption of the A / D converter 91 can be reduced.
  • FIG. 10 is a block diagram showing a configuration of the array antenna apparatus 10 according to the sixth embodiment of the present invention.
  • an array antenna apparatus 10 includes receiving units 1001, 1002,..., 100N (N is an integer of 2 or more), a switch 1040, and an A / D converter. 1010, a digital signal processing unit 1020, and a control unit 1030.
  • the array antenna device 10, the switch 1040, the A / D converter 1010, and the digital signal processing unit 1020 are the array antenna device 1, the switch 14, and the A / D converter 11 in the first embodiment. Since it has the same function as the digital signal processing unit 12, detailed description thereof is omitted.
  • the receiving units 1001, 1002,..., 100N and the control unit 1030 have the same functions as the receiving units 401, 402,..., 40N and the control unit 43 in the second embodiment, and thus detailed description thereof is omitted.
  • the array antenna apparatus 10 according to the present embodiment includes variable filters 1041, 1042,..., 104N in place of the filters 441, 442,. It is different in having.
  • Each of the receiving units 1001, 1002,..., 100N is variable with an antenna (antenna element) 1011, 1012,..., 101N, low-noise amplifiers 1021, 1022, ..., 102N, and down converters 1031, 1032,. , 104N and variable gain amplifiers 1051, 1052,..., 105N are provided.
  • the antennas 1011, 1012, ..., 101N and the down converters 1031, 1032, ..., 103N have the same functions as the antennas 111, 112, ..., 11N and the down converters 131, 132, ..., 13N of the first embodiment. Therefore, detailed description is omitted.
  • 102N and variable gain amplifiers 1051, 1052,..., 105N are low noise amplifiers 421, 422,..., 42N and variable gain amplifiers 451, 452 in the second embodiment. ,... Have the same function as 45N, and thus detailed description thereof is omitted.
  • the configuration before the down converters 1031, 1032, ..., 103N (antennas 1011, 1012, ..., 101N, low noise amplifiers 1021, 1022, ..., 102N, and down converters 1031, 1032, ..., 103N)
  • This is called an RF unit that handles high-frequency signals.
  • 103N (variable filters 1041, 1042,..., 104N, variable gain amplifiers 1051, 1052,..., 105N, switch 1040, and A / D converter 1010)
  • the digital signal processing unit 1020) is called a BB unit that handles a BB signal after down-conversion.
  • the configuration before the A / D converter 1010 (variable filters 1041, 1042,..., 104N, variable gain amplifiers 1051, 1052,..., 105N, and switch 1040) is analog-BB.
  • the configuration after the A / D converter 1010 (A / D converter 1010 and digital signal processing unit 1020) is called a digital-BB unit.
  • variable filters 1041, 1042,..., 104N pass only signals in a predetermined (frequency) band among the signals received from the down converters 1031, 1032,... 103N to the variable gain amplifiers 1051, 1052,. (Hereinafter, the frequency band to be passed is called the pass band).
  • the pass band the frequency band to be passed is called the pass band.
  • variable filters 1041, 1042,..., 104N and variable gain amplifiers 1051, 1052,..., 105N are connected in series in this order in a one-to-one relationship.
  • the variable filters 1041, 1042,..., 104N change the passband of the signal based on the fourth control signal transmitted by the control unit 1030.
  • variable filters 1041, 1042,..., 104N perform processing for narrowing the passband based on the fourth control signal.
  • the pass bands of the variable filters 1041, 1042,..., 104N are always the same. Therefore, when the variable filters 1041, 1042,..., 104N change the pass band, the amount of change in the band is the same in all the variable filters 1041, 1042,.
  • the variable filters 1041, 1042,..., 104 N reduce the sampling frequency of the A / D converter 1010 by narrowing the signal pass band, compared to the normal (A / D converters of the first to second embodiments). Can be lowered.
  • the sampling frequency at the time of non-array (oversampling) is FO
  • the bandwidth of the passband is set to 1 / N of the normal bandwidth
  • the sampling frequency F of the A / D converter 1010 S becomes F 2 O (N / N) times F 2 O. That is, the A / D converter 1010 of this embodiment does not need to oversample like the first and second embodiments.
  • the received signal of the variable filters 1041, 1042,..., 104N includes a signal whose band is unknown, for example, the LO signal frequency transmitted to each of the preceding down converters 1031, 1032,. This can be handled by performing the above processing.
  • the control unit 1030 has the following functions in addition to the functions of the control unit 43 of the second embodiment.
  • the control unit 1030 generates a fourth control signal for changing the passband of each signal of the variable filters 1041, 1042,..., 104N, and uses the generated fourth control signal as the variable filters 1041, 1042,. 104N is transmitted to each.
  • the fourth control signal includes information that each of the variable filters 1041, 1042,..., 104N narrows the pass band by the same amount.
  • the first, second, and fourth control signals are generated by the same control unit 93.
  • the first, second, and fourth control signals may be generated by a plurality of control units (not shown).
  • the array antenna apparatus 10 in the sixth embodiment includes one variable filter 1041, 1042,..., 104N in each of the receiving units 1001, 1002,. Accordingly, the variable filters 1041, 1042,..., 104N can narrow the bandwidth of the signal processed by the A / D converter 1010. That is, the array antenna apparatus 10 can perform A / D converter processing at a sampling rate lower than usual, and can reduce power consumption.
  • FIG. 11 is a block diagram schematically illustrating a configuration of a wireless communication device 1100 according to the seventh embodiment.
  • the wireless communication device 1100 includes an antenna 1110, a BB unit 1120, and an RF unit 1130.
  • the antenna 1110 corresponds to the antennas 111, 112,..., 11N in the first embodiment.
  • the BB unit 1120 corresponds to the switch 14, the A / D converter 11, and the digital signal processing unit 12 in the first embodiment.
  • the RF unit 1130 corresponds to the down converters 131, 132,..., 13N in the first embodiment.
  • the BB unit 1120 handles the BB signal S1101 before modulation or the received signal S1102 after demodulation.
  • the RF unit 1130 modulates the BB signal S1101 from the BB unit 1120, and outputs the modulated transmission signal S1102 to the antenna 1110. Further, RF section 1130 demodulates received signal S1103 received by antenna 1110, and outputs demodulated received signal S1104 to BB section 1120.
  • the antenna 1110 radiates a transmission signal S1102 or receives a reception signal S1103 radiated by an external antenna.
  • a wireless communication device capable of wireless communication with the outside can be specifically configured using the array antenna device 1 according to the first embodiment.
  • the tip of the antenna is grounded, unlike the conventional dipole antenna in which the tip is electrically opened, the lightning strike can be released to the ground conductor. Thereby, the transmitter / receiver connected to the input terminal can be protected from a surge voltage caused by lightning.
  • each component in each embodiment of the present invention can be realized by a computer and a program as well as its function in hardware.
  • the program is provided by being recorded on a computer-readable recording medium such as a magnetic disk or a semiconductor memory, and is read by the computer when the computer is started up.
  • the read program causes the computer to function as a component in each of the embodiments described above by controlling the operation of the computer.
  • a receiver for estimating the arrival direction of a signal using the MMSE method or the MUSIC method there is a receiver for estimating the arrival direction of a signal using the MMSE method or the MUSIC method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

RF(Radio Frequency)部にDelay Lineやスイッチを設ける場合、アレイ数(アンテナ数)が増加するほどアンテナの寄生容量が増加し、スイッチの挿入損失が大きくなってしまう。また、今後利用が想定される高周波では、さらに挿入損失が増加する。本発明のアレイアンテナ装置は、信号を受信する複数のアンテナと、前記複数のアンテナ各々に接続され、前記受信した信号をダウンコンバートする複数のダウンコンバータと、前記ダウンコンバートされた複数の信号のうち少なくとも1つの信号を選択し、A/D変換器へ送信するスイッチと、を備える。

Description

アレイアンテナ装置、受信機および受信信号の処理方法
 本発明は、アレイアンテナ装置に関し、特に信号の受信に関する。
 近年、無線通信の急激な普及に伴い、無線通信帯域の不足が問題になっている。周波数の逼迫を解消するためにコグニティブ無線のように時間的・場所的に周波数を共用するシステムが提案されている。しかし、増大する無線通信のトラフィックを考慮すると、このシステムが十分普及しているとは言えない。
 そこで、空間的に電波(周波数)の利用効率を向上させる技術としてビームフォーミングの需要が高まっている。ビームフォーミングは、放射する電波に指向性を与え、通信相手がいる特定の方向にのみ電波を放射する技術である。これにより、信号品質を向上させるとともに、他の無線装置やシステムへの不要な放射を抑えることができる。つまり、ビームフォーミングを用いることで、空間的により細分化して電波を利用することができる。
 ビームフォーミングの代表的な方法として、フェーズドアレイアンテナが挙げられる。フェーズドアレイアンテナは、規則的に配列された複数のアンテナ素子に給電される無線信号の位相を変化させる。これによって、フェーズドアレイアンテナは、各アンテナ素子から放射される電波を空間合成し、合成された電波を所望の方向へ放射する。フェーズドアレイアンテナは、電気的な位相及び振幅を調整することによって電波を所望の方向へ放射する。したがって、フェーズドアレイアンテナは、高指向性のアンテナを機械的に動かすよりも耐久性に優れている。しかしながら、ビームフォーミングの前提条件として、通信相手のいる方向を把握することが必要である。通信相手の方向を特定する最も簡易な方法として、自装置が放射する電波を走査するビームフォーマ法が挙げられる。また、より高精度な到来方向推定手法として、Minimum Mean Square Error(MMSE)法やMultiple Signal Classification(MUSIC)法が挙げられる。MMSE法は、信号に含まれるプリアンブルなどの既知信号を利用してアレイアンテナの位相及び振幅の重みづけを変化させることによって、放射する電波に所望の指向性を持たせる方法である。MUSIC法は、受信信号の相関値の固有値及び固有ベクトルに基づいて複数信号の分離と到来方向とを算出する方法である。これによって、受信信号が未知の信号であっても到来方向を推定することができる。なお、MMSE法は、厳密には到来方向を推定するものではなく、アダプティブアレイと呼ばれる各アンテナ素子の位相及び振幅の重みづけを最適化する方法である。しかし、MMSE法及びMUSIC法は、いずれもデジタル信号処理による高精度な演算を必要とするため、各アンテナ素子で受信した信号をアナログ-デジタル(A/D)変換器にてデジタル信号に変換する必要がある。つまり、アンテナ素子数が増加するほどA/D変換器の数も比例して増加するため、消費電力、コスト共に増加する。
 このようなA/D変換器の増加に対して、特許文献1は、アンテナ素子ごとに遅延量の異なるDelay Lineとスイッチとを用いて、単一の回路に順番に信号を入力することができる、一種のパラレル-シリアル変換を行う技術を開示している。また、特許文献2は、Delay Lineを用いずにスイッチのみを用いて時分割多重を行い、接続されるアナログ回路数を削減することができる時分割フェーズドアレイの技術を開示している。
特開2002-214318号公報 特開2013-143632号公報
 しかしながら、特許文献1及び2に記載の技術を用いてRF(Radio Frequency)部にDelay Lineやスイッチを設ける場合、アレイ数(アンテナ数)が増加するほどスイッチの挿入損失が大きくなるという問題がある。また、今後利用が想定される高周波では、さらに挿入損失が増加する。
 本発明の目的は、スイッチの挿入損失を低減したアレイアンテナ装置を提供することにある。
 本発明の一態様におけるアレイアンテナ装置は、信号を受信する複数のアンテナと、前記複数のアンテナ各々に接続され、前記受信した信号をダウンコンバートする複数のダウンコンバータと、前記ダウンコンバートされた複数の信号のうち少なくとも1つの信号を選択し、A/D変換器へ送信するスイッチと、を備える。
 本発明における効果は、アレイアンテナ装置及び受信機において、スイッチの挿入損失を低減できる点である。
図1は、本発明の第1の実施の形態におけるアレイアンテナ装置1の構成を示すブロック図である。 図2は、本発明の第1の実施の形態におけるスイッチ14に入力される受信波形を示すグラフである。 図3は、本発明の第1の実施の形態におけるアレイアンテナ装置1を用いた到来方向推定シミュレーション結果である。 図4は、本発明の第2の実施の形態におけるアレイアンテナ装置4の構成を示すブロック図である。 図5は、本発明の第3の実施の形態におけるアレイアンテナ装置5の構成を示すブロック図である。 図6は、本発明の第3の実施の形態における遅延器561、562、…、56Nの構成を示す回路図である。 図7は、本発明の第3の実施の形態における遅延器561、562、…、56Nの構成を示す回路図である。 図8は、本発明の第4の実施の形態におけるアレイアンテナ装置8の構成を示すブロック図である。 図9は、本発明の第5の実施の形態におけるアレイアンテナ装置9の構成を示すブロック図である。 図10は、本発明の第6の実施の形態におけるアレイアンテナ装置10の構成を示すブロック図である。 図11は、本発明の第7の実施の形態における無線通信装置1100の構成を示すブロック図である。
 次に、本発明を実施するための形態について図面を参照して詳細に説明する。なお、各図面及び明細書記載の各実施の形態において、同様の機能を備える構成要素には同様の符号が与えられている。
 [第1の実施の形態]
 図1は、本発明の第1の実施の形態におけるアレイアンテナ装置1の構成を示すブロック図である。
 図1を参照すると、本発明の第1の実施の形態におけるアレイアンテナ装置1は、アンテナ(アンテナ素子)111、112、…、11N(Nは2以上の整数)と、ダウンコンバータ131、132、…、13Nと、スイッチ14と、A/D変換器11と、デジタル信号処理部12と、制御部13と、を備える。これによって、アレイアンテナ装置1は、デジタル信号処理による高度な受信信号の到来方向推定を行うことができる。このとき、アレイアンテナ装置1は、A/D変換器11の数を抑えることによって、消費電力及びコストを抑えることができる。
 以下、第1の実施の形態におけるアレイアンテナ装置1が備える各構成要素について説明する。
 ここで、ダウンコンバータ131、132、…、13N以前の構成(アンテナ111、112、…、11Nとダウンコンバータ131、132、…、13Nと)は、高周波(RF:Radio Frequency)信号を扱うRF部と呼ばれる。一方、ダウンコンバータ131、132、…、13Nより後ろの構成(スイッチ14と、A/D変換器11と、デジタル信号処理部12と)は、ダウンコンバート後のベースバンド(BB:Base Band)信号を扱うBB部と呼ばれる。BB部の中で、特に、A/D変換器11より前の構成(スイッチ14)はアナログ-BB部、A/D変換器11以降の構成(A/D変換器11とデジタル信号処理部12と)はデジタル-BB部と呼ばれる。
 アンテナ111、112、…、11Nは、他の機器から信号を受信する。アンテナ111、112、…、11Nは、受信した信号をダウンコンバータ131、132、…、13Nへ送信する。アンテナ111、112、…、11Nとダウンコンバータ131、132、…、13Nとは、それぞれ1対1で直列接続されている。
 ダウンコンバータ131、132、…、13Nは、アンテナ111、112、…、11Nから受信した信号をダウンコンバートする。ダウンコンバータ131、132、…、13Nは、局部発振器(LO:Local Oscillator)(図示しない)が送信するLO信号によって駆動する。ダウンコンバータ131、132、…、13N各々は、ダウンコンバートした信号をスイッチ14を介してA/D変換器41へ送信する。
 スイッチ14は、ダウンコンバータ131、132、…、13N各々とA/D変換器11とを導通する。スイッチ14は、ダウンコンバータ131、132、…、13N各々から信号を受信し、制御部13が送信する第1の制御信号に基づいて、受信した複数の信号のうち1つの信号を選択して、該信号をA/D変換器11へ送信する。すなわち、スイッチ14は、第1の制御信号に基づいてA/D変換器11へ送信する信号を切り替える。ここで、本実施の形態におけるスイッチ14は、多入力1出力のスイッチである。しかし、スイッチ14の構成はこれに限らない。例えば、1入力1出力のスイッチをN個備える構成であってもよい。また、A/D変換器11がM個(Mは2≦M≦Nの整数)ある場合、スイッチ14は、多入力多出力のスイッチとしてもよい。この場合、スイッチ14は、複数の信号のうちM個の信号を選択し、M個のA/D変換器11へ一つずつ送信する。
 A/D変換器11は、スイッチ14から信号を受信する。A/D変換器11は、受信信号のサンプリングとアナログ-デジタル変換(A/D変換)とを行う。A/D変換器11は、変換後の信号(デジタル信号)をデジタル信号処理部12へ送信する。本実施の形態において、A/D変換器11は1つとした。しかし、A/D変換器11は複数備えられてもよい。A/D変換器11の数がアンテナ数(アレイ数)Nより少ない場合、アレイアンテナ装置4は、消費電力やコストを低減することができる。一方、A/D変換器11は、A/D変換器11の個数分だけ自身のサンプリング周波数を低く設定することができる。例えば、非アレイ時のサンプリング周波数(オーバーサンプリング)をF、アレイ数をN、A/D変換器11の個数をM(Mは1≦M≦Nの整数)とすると、必要なサンプリング周波数Fは、元の周波数Fの(N/M)倍となる。
 デジタル信号処理部12は、A/D変換器11から信号(デジタル信号)を受信してデジタル信号処理を行う。デジタル信号処理部12は、スイッチ14がダウンコンバータ131、132、…、13NとA/D変換器11との導通を切り替えるタイミングに合わせて、受信した信号を並べ替える。デジタル信号処理部12は、信号をA/D変換器11のサンプリングのタイミング(図2参照)ごとに受信するため、受信信号をN個のバッファに別々に格納する等の処理を必要とする。本実施の形態のアレイアンテナ装置1を受信機として用いて到来方向推定を行う場合、デジタル信号処理部12は、MMSE法やMUSIC法などのデジタル信号処理を行う。しかし、これは本発明の主たる内容ではないため詳細な説明を省略する。
 制御部13は、スイッチ14の動作を制御する。制御部13は、スイッチ14に複数の信号のうちA/D変換器11へ送信する信号を選択させるための第1の制御信号を生成し、生成した第1の制御信号をスイッチ14へ送信する。また、制御部13は、A/D変換器11のサンプリングのタイミングとスイッチ14がダウンコンバータ131、132、…、13N各々とA/D変換器11とを導通するタイミングとを同期している。ここで、第1の制御信号には、スイッチ14が複数の信号をA/D変換器11へ送信する順番に関する情報が含まれる。例えば、第1の制御信号には、スイッチ14にダウンコンバータ131、132、…、13Nから受信した信号をこの順(ダウンコンバータ131→132→…→13N)にA/D変換器11へ送信すること示す情報が含まれる。この情報に基づいて、スイッチ14は、A/D変換器11へ複数の信号を順に送信する。ただし、第1の制御信号に含まれる情報は上記の例に限らない。例えば、第1の制御信号は、上記のようにスイッチ14に複数の信号の送信順を示す情報ではなく、サンプリングタイミングごとに送信すべき信号を1つ指定する情報を含んでいてもよい。この場合、制御部13は、A/D変換器11のサンプリングタイミングごとにスイッチ14へ最新の第1の制御信号を送信する。
 本実施の形態の動作について、図2を用いて説明する。
 グラフ201、202、…、20Nは、それぞれスイッチ14に入力される受信波形を示している。簡単化のために、グラフ201、202、…、20Nは同一の波形としている。しかし、実際のフェーズドアレイのようにスイッチ14が位相の異なる信号を複数受信する場合、グラフ201、202、…、20Nは互いに異なる波形となる。
 グラフ210は、A/D変換器11のサンプリングのタイミングを示している。制御部13は、このタイミングに合わせてスイッチ14が選択した信号を順にA/D変換器11へ送信するように制御する。標本化定理により、A/D変換器11のサンプリング周波数を信号周波数(図2の周期Tの逆数)のN倍以上にした場合、サンプリングされた信号(サンプリング信号)21、22、…、2Nは、元の信号のスペクトルと一致する(元の信号に復元することができる)。ここで、サンプリング信号21、22、…、2Nは、サンプリングされたタイミングが順番に1クロックずつ遅延する。そのため、本実施の形態のアレイアンテナ装置1を到来方向推定に用いる場合には、1クロックずつの遅延量が到来方向推定結果に影響しない程度にサンプリング周波数を高く設定する必要がある。
 アレイアンテナ装置1を用いた到来方向推定シミュレーション結果について、図3に示す。横軸は信号の到来角度、縦軸は相関値を示している。相関値が高いほど、信号の到来可能性が高いことを示す。図3は、0度及び25度から独立した信号が到来した場合にMUSIC法を用いて到来方向を推定した結果を示している。結果301は、従来のアレイアンテナ装置の構成(図示しない)を用いたシミュレーション結果を示している。結果302は、本実施の形態のアレイアンテナ装置1の構成を用いて、A/D変換器11のサンプリング周波数Fをアレイ数N(本シミュレーションではN=3)×4倍した場合のシミュレーション結果を示している。結果301及び結果302より、サンプリング周波数を高く設定した場合、本発明の第1の実施の形態のアレイアンテナ装置1は、従来のアレイアンテナ装置を用いた到来方向推定と同様の結果を得られることがわかる。なお、本シミュレーションでは、到来方向推定にMUSIC法を用いた。しかし、本実施の形態のアレイアンテナ装置1を用いた到来方向推定は、この方法に限定されることはなく、他の方法を適用しても実現可能である。
 第1の実施の形態におけるアレイアンテナ装置1は、ダウンコンバート後のBB信号を扱うBB部にスイッチ14を備える。これによって、アレイアンテナ装置1は、スイッチ14において生じる挿入損失を低減させることができる。また、高周波で利用した場合においても、スイッチ14の挿入損失を低減させることができる。これらの効果は、以降の実施の形態においても共有に得ることができるため、これ以降の記載を省略する。
 [第2の実施の形態]
 図4は、本発明の第2の実施の形態におけるアレイアンテナ装置4の構成を示すブロック図である。
 図4を参照すると、本発明の第2の実施の形態におけるアレイアンテナ装置4は、受信部401、402、…、40N(Nは2以上の整数)と、スイッチ44と、A/D変換器41と、デジタル信号処理部42と、制御部43と、を備える。アレイアンテナ装置4と、スイッチ44と、A/D変換器41と、デジタル信号処理部42とは、第1の実施の形態におけるアレイアンテナ装置1と、スイッチ14と、A/D変換器11と、デジタル信号処理部12と同様の機能を有するため詳細な説明を省略する。本実施の形態におけるアレイアンテナ装置4は、第1の実施の形態のアレイアンテナ装置4にさらに低雑音増幅器421、422、…、42Nと、フィルタ441、442、…、44Nと、可変利得増幅器451、452、…、45Nと、を有する点で相違する。
 以下、第2の実施の形態におけるアレイアンテナ装置4が備える構成要素について説明する。
 受信部401、402、…、40N各々は、アンテナ(アンテナ素子)411、412、…、41Nと、低雑音増幅器421、422、…、42Nと、ダウンコンバータ431、432、…、43Nと、フィルタ441、442、…、44Nと、可変利得増幅器451、452、…、45Nと、をそれぞれ一つずつ備える。アンテナ411、412、…、41N及びダウンコンバータ431、432、…、43Nは、第1の実施の形態におけるアンテナ111、112、…、11N及びダウンコンバータ131、132、…、13Nと同様の機能を有するため、詳細な説明を省略する。受信部401、402、…、40N各々は、他の機器から信号を受信し、受信信号をスイッチ44を介してA/D変換器41へ送信する。
 ここで、ダウンコンバータ431、432、…、43N以前の構成(アンテナ411、412、…、41Nと、低雑音増幅器421、422、…、42Nと、ダウンコンバータ431、432、…、43Nと)は、高周波信号を扱うRF部と呼ばれる。一方、ダウンコンバータ431、432、…、43Nより後ろの構成(フィルタ441、442、…、44Nと、可変利得増幅器451、452、…、45Nと、スイッチ44と、A/D変換器41と、デジタル信号処理部42と)は、ダウンコンバート後のBB信号を扱うBB部と呼ばれる。BB部の中で、特に、A/D変換器41より前の構成(フィルタ441、442、…、44Nと、可変利得増幅器451、452、…、45Nと、スイッチ44と)はアナログ-BB部、A/D変換器41以降の構成(A/D変換器41とデジタル信号処理部42と)はデジタル-BB部と呼ばれる。
 低雑音増幅器421、422、…、42Nは、アンテナ411、412、…、41Nが受信した信号を増幅して、ダウンコンバータ431、432、…、43Nへ送信する。アンテナ411、412、…、41Nと低雑音増幅器421、422、…、42Nとダウンコンバータ431、432、…、43Nとは、この順にそれぞれ1対1対1で直列接続されている。
 フィルタ441、442、…、44Nは、ダウンコンバータ431、432、…、43Nが送信した信号の所定の(周波数)帯域のみを通過させ、該信号を可変利得増幅器451、452、…、45Nへ送信する。ダウンコンバータ431、432、…、43Nとフィルタ441、442、…、44Nと可変利得増幅器451、452、…、45Nとは、この順にそれぞれ1対1対1で直列接続されている。
 可変利得増幅器451、452、…、45Nは、フィルタ441、442、…、44Nが送信した信号を増幅し、スイッチ44へ送信する。フィルタ441、442、…、44Nと可変利得増幅器451、452、…、45Nとは、この順にそれぞれ1対1で直列接続されている。可変利得増幅器451、452、…、45N各々は、制御部43が送信する第2の制御信号に基づいて自身の利得を変化させる。可変利得増幅器451、452、…、45Nの利得は、互いに常に同じ値である。したがって、可変利得増幅器451、452、…、45Nが利得を変化させる場合、該利得の変化量はすべての可変利得増幅器451、452、…、45Nにおいて同一となる。受信信号が小さい場合、可変利得増幅器451、452、…、45Nは、第2の制御信号に基づいて自身の利得を上げる処理を行う。これによって、アレイアンテナ装置4は、該受信信号各々を正常にA/D変換することができる。逆に、受信信号が大きい場合、可変利得増幅器451、452、…、45Nは、利得を下げる処理を行う。これによって、アレイアンテナ装置4は、消費電力を低減することができる。本実施の形態では、可変利得増幅器451、452、…、45N各々の利得は可変としたが、利得は可変でなくてもよい。また、本実施の形態において、可変利得増幅器451、452、…、45Nは省略されてもよい。
 制御部43は、第1の実施の形態の制御部13が有する機能に加えて以下の機能を有する。制御部43は、可変利得増幅器451、452、…、45Nの増幅率を変化させるための第2の制御信号を生成し、生成した第2の制御信号を可変利得増幅器451、452、…、45N各々へ送信する。第2の制御信号には、可変利得増幅器451、452、…、45N各々が受信する信号の大きさに合わせて信号の増幅率を変化させる情報が含まれている。なお、制御部43は、可変利得増幅器451、452、…、45Nの増幅率が一定である場合には第2の制御信号を生成しなくてよい。
 以上の説明では、第1及び第2の制御信号は、同一の制御部43に生成されるものとした。しかし、これら第1及び第2の制御信号は、それぞれ異なる制御部(図示しない)によって生成されても良い。
 本実施の形態のアレイアンテナ装置4は、アレイアンテナ装置4を一般的な受信機として機能させる場合の構成を示したものであり、受信部401、402、…、40Nの内部構成やスイッチ44の位置などは、適宜変更することができる。ただし、スイッチ44は、BB部内で位置変更が可能である。
 第2の実施の形態におけるアレイアンテナ装置4は、受信部401、402、…、40N各々に低雑音増幅器421、422、…、42N、フィルタ441、442、…、44N、及び可変利得増幅器451、452、…、45Nを一つずつ備えている。これによって、受信信号が小さい場合や受信信号のノイズが大きい場合においても、正常にAD変換を行うことができる。
 [第3の実施の形態]
 図5は、本発明の第3の実施の形態におけるアレイアンテナ装置5の構成を示すブロック図である。
 図5を参照すると、本発明の第3の実施の形態におけるアレイアンテナ装置5は、受信部501、502、…、50N(Nは2以上の整数)と、スイッチ54と、A/D変換器51と、デジタル信号処理部52と、制御部53と、を備える。アレイアンテナ装置5と、スイッチ54と、A/D変換器51と、デジタル信号処理部52とは、第1の実施の形態におけるアレイアンテナ装置1と、スイッチ14と、A/D変換器11と、デジタル信号処理部12と同様の機能を有するため、詳細な説明を省略する。ただし、A/D変換器51のサンプリング周波数Fは、非アレイ時のサンプリング周波数(オーバーサンプリング)をFとすると、Fとなる。つまり、本実施の形態のA/D変換器51は、第1及び第2の実施の形態のように、非アレイ時より高い周波数でオーバーサンプリングしなくてよい。受信部501、502、…、50Nと制御部53とは、第2の実施の形態の受信部401、402、…、40Nと制御部43と同様の機能を有するため、詳細な説明を省略する。本実施の形態におけるアレイアンテナ装置5は、第2の実施の形態の受信部401、402、…、40Nにさらに遅延器561、562、…、56Nを有する点で相違する。
 以下、第3の実施の形態におけるアレイアンテナ装置5が備える構成要素について説明する。
 受信部501、502、…、50N各々は、アンテナ(アンテナ素子)511、512、…、51Nと、低雑音増幅器521、522、…、52Nと、ダウンコンバータ531、532、…、53Nと、フィルタ541、542、…、54Nと、可変利得増幅器551、552、…、55Nと、遅延器561、562、…、56Nと、をそれぞれ一つずつ備える。アンテナ511、512、…、51Nとダウンコンバータ531、532、…、53Nとは、第1の実施の形態のアンテナ111、112、…、11Nとダウンコンバータ131、132、…、13Nと同様の機能を有するため、詳細な説明を省略する。低雑音増幅器521、522、…、52Nと、フィルタ541、542、…、54Nと、可変利得増幅器551、552、…、55Nとは、第2の実施の形態における低雑音増幅器421、422、…、42Nと、フィルタ441、442、…、44Nと、可変利得増幅器451、452、…、45Nと同様の機能を有するため、詳細な説明を省略する。
 ここで、ダウンコンバータ531、532、…、53N以前の構成(アンテナ511、512、…、51Nと、低雑音増幅器521、522、…、52Nと、ダウンコンバータ531、532、…、53Nと)は、高周波信号を扱うRF部と呼ばれる。一方、ダウンコンバータ531、532、…、53Nより後ろの構成(フィルタ541、542、…、54Nと、可変利得増幅器551、552、…、55Nと、遅延器561、562、…、56Nと、スイッチ54と、A/D変換器51と、デジタル信号処理部52と)は、ダウンコンバート後のBB信号を扱うBB部と呼ばれる。BB部の中で、特に、A/D変換器51より前の構成(フィルタ541、542、…、54Nと、可変利得増幅器551、552、…、55Nと、遅延器561、562、…、56Nと、スイッチ54と)はアナログ-BB部、A/D変換器51以降の構成(A/D変換器51とデジタル信号処理部52と)はデジタル-BB部と呼ばれる。
 遅延器561、562、…、56Nは、可変利得増幅器551、552、…、55N各々が送信した信号がスイッチ54へ到達する時間を調整する。可変利得増幅器551、552、…、55Nと遅延器561、562、…、56Nとは、この順にそれぞれ1対1で接続されている。遅延器561、562、…、56N各々は、制御部53が送信する第1の制御信号に基づいて信号の遅延量(信号がスイッチ54へ到達する時間)を変化させる。具体的には、遅延器561、562、…、56Nは、第1の制御信号に含まれるスイッチ54が複数の信号を送信する順番に関する情報に基づいて、送信する信号の遅延量が該順番で増加するように遅延量を変化させる。すなわち、遅延器561、562、…、56N各々が送信する信号のうち、A/D変換器51への送信順が最も早い信号の遅延量を最も小さく、A/D変換器51への送信順が最も遅い信号の遅延量を最も大きく設定する。例えば、第1の制御信号に遅延器561、562、…、56Nの送信信号がこの順(遅延器561→562→…→56N)でA/D変換器51へ送信されるという情報が含まれている場合、遅延器561、562、…、56Nは、各々の信号の遅延量をこの順に1サンプリング時間ずつ増加させる。これよって、遅延器561、562、…、56Nにおける遅延とスイッチ54におけるA/D変換器51のサンプリング待ちによる遅延とは、受信信号ごとに一定となる。つまり、遅延器561、562、…、56Nは、スイッチ54が複数の受信信号を順にA/D変換器51へ送信している(同時に送信していない)にもかかわらず、各受信信号のサンプリングのタイミングを同一にすることができる。したがって、A/D変換器51は、サンプリング周波数を高く設定せずに済む。
 図6は、本発明の第3の実施の形態における遅延器561、562、…、56Nを示す遅延器6の回路図である。
 遅延器6は、インバータ601、602、…、60L(Lは1以上の整数)を直列につないだインバータチェインである。遅延器6は、インバータ601、602、…、60Lを通過する際の遅延を利用している。遅延器6は、MOSスイッチ61、62、…、6Lのいずれかを導通されることでインバータの通過数を決定できる。これによって、遅延器6は、遅延量を変化させることができる。なお、遅延量によって信号利得が変化することは好ましくないため、インバータ601、602、…、60Lは、抵抗帰還構成にすることで利得を1にすることが望ましい。
 図7は、本発明の第3の実施の形態における遅延器561、562、…、56Nを示す遅延器7の回路図である。
 遅延器7は、演算増幅器701を用いたオールパスフィルタである。オールパスフィルタ701の負荷として可変抵抗R1、R2、R3と可変容量C1を用いたとき下式のようになる。
Figure JPOXMLDOC01-appb-M000001
ただしjは複素数を示す。ここで、R1=R2とすると、下式のように整理できる。
Figure JPOXMLDOC01-appb-M000002
これは伝達関数で表記すると下式になる。
Figure JPOXMLDOC01-appb-M000003
上式の大きさは1である。また、位相θは下式になる。
Figure JPOXMLDOC01-appb-M000004
ただし、tan-1は、アークタンジェントを示す。式(2)及び(3)より、オールパスフィルタ701は、信号振幅に影響を与えず、位相のみを変化させる回路であることがわかる。したがって、可変抵抗R3や可変容量C1の値を変えることで、位相量すなわち遅延量を変化させることができる。また、式(4)より、オールパスフィルタ701は、180度までしか回転しないことがわかるが、180度以上が必要である場合、多段にすることで対応できる。
 第3の実施の形態におけるアレイアンテナ装置5は、受信部501、502、…、50N各々に遅延器561、562、…、56Nを一つずつ備えている。これよって、スイッチ54が受信部501、502、…、50N各々とA/D変換器51とを導通させるタイミングが異なっても、各受信信号のサンプリングのタイミング(A/D変換されるタイミング)を同一にすることができる。すなわち、アレイアンテナ装置5は、通常よりも低いサンプリングレートでA/D変換器処理を行うことができ、消費電力を低減できる。また、本実施の形態において、遅延器561、562、…、56Nは、ダウンコンバート後の信号を扱うBB部に配置されているため、受信信号はRF周波数に依存しない。したがって、アレイアンテナ装置5は広帯域で使用することができる。
 [第4の実施の形態]
 図8は、本発明の第4の実施の形態におけるアレイアンテナ装置8の構成を示すブロック図である。
 図8を参照すると、本発明の第4の実施の形態におけるアレイアンテナ装置8は、受信部801、802、…、80N(Nは2以上の整数)と、スイッチ84と、A/D変換器81と、デジタル信号処理部82と、制御部83と、を備える。アレイアンテナ装置8と、スイッチ84と、デジタル信号処理部82とは、第1の実施の形態におけるアレイアンテナ装置1と、スイッチ14と、デジタル信号処理部12と同様の機能を有するため、詳細な説明を省略する。受信部801、802、…、80Nと制御部53とは、第2の実施の形態の受信部401、402、…、40Nと制御部43と同様の機能を有するため、詳細な説明を省略する。本実施の形態におけるアレイアンテナ装置8は、第2の実施の形態の受信部401、402、…、40N各々にさらにサンプル&ホールド回路861、862、…、86Nを有する点で相違する。
 以下、第4の実施の形態におけるアレイアンテナ装置8が備える構成要素について説明する。
 A/D変換器81は、受信信号のサンプリング機能以外、第1の実施の形態におけるA/D変換器11と同様の機能を有する(すなわち、A/D変換器81は、信号のサンプリングを行わない)。したがって、詳細な説明は省略する。ただし、A/D変換器81のサンプリング周波数Fは、第3の実施の形態と同様に非アレイ時のサンプリング周波数(オーバーサンプリング)をFとすると、Fとなる。つまり、本実施の形態のA/D変換器81は、第1及び第2の実施の形態のようにオーバーサンプリングしなくてよい。
 受信部801、802、…、80N各々は、アンテナ(アンテナ素子)811、812、…、81Nと、低雑音増幅器821、822、…、82Nと、ダウンコンバータ831、832、…、83Nと、フィルタ841、842、…、84Nと、可変利得増幅器851、852、…、85Nと、サンプル&ホールド回路861、862、…、86Nと、をそれぞれ一つずつ備える。アンテナ811、812、…、81Nとダウンコンバータ831、832、…、83Nとは、第1の実施の形態のアンテナ111、112、…、11Nとダウンコンバータ131、132、…、13Nと同様の機能を有するため、詳細な説明を省略する。低雑音増幅器821、822、…、82Nと、フィルタ841、842、…、84Nと、可変利得増幅器851、852、…、85Nとは、第2の実施の形態における低雑音増幅器421、422、…、42Nと、フィルタ441、442、…、44Nと、可変利得増幅器451、452、…、45Nと同様の機能を有するため、詳細な説明を省略する。
 ここで、ダウンコンバータ831、832、…、83N以前の構成(アンテナ811、812、…、81Nと、低雑音増幅器821、822、…、82Nと、ダウンコンバータ831、832、…、83Nと)は、高周波信号を扱うRF部と呼ばれる。一方、ダウンコンバータ831、832、…、83Nより後ろの構成(フィルタ841、842、…、84Nと、可変利得増幅器851、852、…、85Nと、サンプル&ホールド回路861、862、…、86Nと、スイッチ84と、A/D変換器81と、デジタル信号処理部82と)は、ダウンコンバート後のBB信号を扱うBB部と呼ばれる。BB部の中で、特に、A/D変換器81より前の構成(フィルタ841、842、…、84Nと、可変利得増幅器851、852、…、85Nと、サンプル&ホールド回路861、862、…、86Nと、スイッチ84と)はアナログ-BB部、A/D変換器81以降の構成(A/D変換器81とデジタル信号処理部82と)はデジタル-BB部と呼ばれる。
 サンプル&ホールド回路861、862、…、86Nは、可変利得増幅器851、852、…、85Nから受信した信号をサンプリングし、サンプリングした信号をホールドしてスイッチ84へ送信する。可変利得増幅器851、852、…、85Nとサンプル&ホールド回路861、862、…、86Nとは、この順にそれぞれ1対1で接続されている。サンプル&ホールド回路861、862、…、86Nは、制御部83が送信する第3の制御信号に基づいて、各々のサンプリングのタイミングを同期する。また、サンプル&ホールド回路861、862、…、86Nは、制御部83が送信する第1の制御信号に基づいて信号をホールドする。具体的には、サンプル&ホールド回路861、862、…、86Nは、第1の制御信号に含まれるスイッチ84が複数の信号を送信する順番に関する情報に基づいて、該順番とサンプル&ホールド回路861、862、…、86N各々がスイッチ84へ信号を送信する順番とが同じになるように、各々の信号のホールド時間を変化させる。すなわち、サンプル&ホールド回路861、862、…、86Nは、受信信号のうち、A/D変換器81への送信順が最も早い信号のホールド時間を最も短く、A/D変換器81への送信順が最も遅い信号のホールド時間を最も長く設定する。例えば、第1の制御信号に受信部801、802、…、80Nの信号をこの順(受信部801→802→…→80N)でA/D変換器81に送信するという情報が含まれている場合、サンプル&ホールド回路861、862、…、86Nは、各々のホールド時間をこの順で増加させる。
 制御部83は、第2の実施の形態の制御部43が有する機能に加えて以下の機能を有する。制御部83は、サンプル&ホールド回路861、862、…、86N各々のサンプリングのタイミングを同期させるための第3の制御信号を生成し、生成した第3の制御信号をサンプル&ホールド回路861、862、…、86N各々へ送信する。第3の制御信号には、サンプル&ホールド回路861、862、…、86N各々が受信信号を同時にサンプリングするための情報が含まれている。
 以上の説明では、第1乃至第3の制御信号は、同一の制御部83によって生成されるものとした。しかし、これら第1乃至第3の制御信号は、複数の制御部(図示しない)によって生成されても良い。
 第4の実施の形態におけるアレイアンテナ装置8は、受信部801、802、…、80N各々にサンプル&ホールド回路861、862、…、86Nを一つずつ備える。これによって、アレイアンテナ装置8は、第1乃至第3の実施の形態においてA/D変換器が行っていたサンプリング機能を受信部801、802、…、80Nに分離させることができ、A/D変換器81の処理及び消費電力を低減することができる。
 [第5の実施の形態]
 図9は、本発明の第5の実施の形態におけるアレイアンテナ装置9の構成を示すブロック図である。
 図9を参照すると、本発明の第5の実施の形態におけるアレイアンテナ装置9は、受信部901、902、…、90N(Nは2以上の整数)と、スイッチ94と、A/D変換器91と、デジタル信号処理部92と、制御部93と、を備える。アレイアンテナ装置9と、スイッチ94と、デジタル信号処理部92とは、第1の実施の形態におけるアレイアンテナ装置1と、スイッチ14と、デジタル信号処理部12と同様の機能を有するため、詳細な説明を省略する。受信部901、902、…、90Nは、第2の実施の形態の受信部401、402、…、40Nと同様の機能を有するため、詳細な説明を省略する。A/D変換器91は、第4の実施の形態におけるA/D変換器81と同様の機能を有するため、詳細な説明を省略する。本実施の形態におけるアレイアンテナ装置9は、第4の実施の形態におけるサンプル&ホールド回路861、862、…、86Nのサンプリング機能をダウンコンバータ831、832、…、83Nが備える点、フィルタ841、842、…、84N及び可変利得増幅器851、852、…、85Nが省略されている点が第4の実施の形態と相違する。
 以下、第5の実施の形態におけるアレイアンテナ装置9が備える構成要素について説明する。
 受信部901、902、…、90N各々は、アンテナ(アンテナ素子)911、912、…、91Nと、低雑音増幅器921、922、…、92Nと、サンプリングミキサ931、932、…、93Nと、ホールド回路941、942、…、94Nと、をそれぞれ一つずつ備える。アンテナ911、912、…、91Nは、第1の実施の形態のアンテナ111、112、…、11Nと同様の機能を有するため、詳細な説明を省略する。低雑音増幅器921、922、…、92Nは、第2の実施の形態における低雑音増幅器421、422、…、42Nと同様の機能を有するため、詳細な説明を省略する。
 ここで、サンプリングミキサ931、932、…、93N以前の構成(アンテナ911、912、…、91Nと、低雑音増幅器921、922、…、92Nと、サンプリングミキサ931、932、…、93Nと)は、高周波信号を扱うRF部と呼ばれる。一方、サンプリングミキサ931、932、…、93Nより後ろの構成(ホールド回路941、942、…、94Nと、スイッチ94と、A/D変換器91と、デジタル信号処理部92と)は、ダウンコンバート後のBB信号を扱うBB部と呼ばれる。BB部の中で、特に、A/D変換器91より前の構成(ホールド回路941、942、…、94Nと、スイッチ94と)はアナログ-BB部、A/D変換器91以降の構成(A/D変換器91とデジタル信号処理部92と)はデジタル-BB部と呼ばれる。
 サンプリングミキサ931、932、…、93Nは、低雑音増幅器921、922、…、92Nから受信した信号をダウンコンバート及びサンプリングしてホールド回路941、942、…、94Nへ送信する。低雑音増幅器921、922、…、92Nとサンプリングミキサ931、932、…、93Nとホールド回路941、942、…、94Nとは、この順にそれぞれ1対1対1で直列に接続されている。サンプリングミキサ931、932、…、93Nは、制御部93が送信する第3の制御信号に基づいて、各々のサンプリングのタイミングを同期する。
 ホールド回路941、942、…、94Nは、サンプリングミキサ931、932、…、93N各々から受信した信号をそれぞれホールドして、スイッチ94へ送信する。サンプリングミキサ931、932、…、93Nとホールド回路941、942、…、94Nとは、この順にそれぞれ1対1で接続されている。ホールド回路941、942、…、94Nは、制御部93が送信する第1の制御信号に基づいて信号をホールドする。具体的には、ホールド回路941、942、…、94Nは、第1の制御信号に含まれるスイッチ94が複数の信号を送信する順番に関する情報に基づいて、該順番とホールド回路941、942、…、94N各々がスイッチ94へ信号を送信する順番とが同じになるように、各々の信号のホールド時間を変化させる。すなわち、ホールド回路941、942、…、94Nは、受信信号のうち、A/D変換器91への送信順が最も早い信号のホールド時間を最も短く、A/D変換器91への送信順が最も遅い信号のホールド時間を最も長く設定する。例えば、第1の制御信号に受信部901、902、…、90Nの信号をこの順(受信部901→902→…→90N)でA/D変換器91に送信するという情報が含まれている場合、ホールド回路941、942、…、94Nは、各々のホールド時間をこの順で増加させる。
 以上の説明において、サンプリングミキサ931、932、…、93Nとホールド回路941、942、…、94Nとは、別々の構成要素として記載した。しかし、これらは一体化した回路であってもよい。
 また、本実施の形態のアレイアンテナ装置9は、低雑音増幅器921、922、…、92Nとサンプリングミキサ931、932、…、93Nとの間にRFフィルタを備えてもよい。これによって、ダイレクトRF構成を適用することができる。
 第5の実施の形態におけるアレイアンテナ装置9は、受信部901、902、…、90N各々にサンプリングミキサ931、932、…、93Nを一つずつ備える。これによって、アレイアンテナ装置8は、第4の実施の形態と同様に、第1乃至第3の実施の形態においてA/D変換器が行っていたサンプリング機能を受信部901、902、…、90Nに分離させることができ、A/D変換器91の処理及び消費電力を低減することができる。
 [第6の実施の形態]
 図10は、本発明の第6の実施の形態におけるアレイアンテナ装置10の構成を示すブロック図である。
 図10を参照すると、本発明の第6の実施の形態におけるアレイアンテナ装置10は、受信部1001、1002、…、100N(Nは2以上の整数)と、スイッチ1040と、A/D変換器1010と、デジタル信号処理部1020と、制御部1030と、を備える。アレイアンテナ装置10と、スイッチ1040と、A/D変換器1010と、デジタル信号処理部1020とは、第1の実施の形態におけるアレイアンテナ装置1と、スイッチ14と、A/D変換器11と、デジタル信号処理部12と同様の機能を有するため、詳細な説明を省略する。受信部1001、1002、…、100Nと制御部1030とは、第2の実施の形態の受信部401、402、…、40Nと制御部43と同様の機能を有するため、詳細な説明を省略する。本実施の形態におけるアレイアンテナ装置10は、第2の実施の形態の受信部401、402、…、40N各々においてフィルタ441、442、…、44Nの代わりに可変フィルタ1041、1042、…、104Nを有する点で相違する。
 以下、第6の実施の形態におけるアレイアンテナ装置10が備える構成要素について説明する。
 受信部1001、1002、…、100N各々は、アンテナ(アンテナ素子)1011、1012、…、101Nと、低雑音増幅器1021、1022、…、102Nと、ダウンコンバータ1031、1032、…、103Nと、可変フィルタ1041、1042、…、104Nと、可変利得増幅器1051、1052、…、105Nと、をそれぞれ一つずつ備える。アンテナ1011、1012、…、101Nとダウンコンバータ1031、1032、…、103Nとは、第1の実施の形態のアンテナ111、112、…、11Nとダウンコンバータ131、132、…、13Nと同様の機能を有するため、詳細な説明を省略する。低雑音増幅器1021、1022、…、102Nと、可変利得増幅器1051、1052、…、105Nとは、第2の実施の形態における低雑音増幅器421、422、…、42Nと、可変利得増幅器451、452、…、45Nと同様の機能を有するため、詳細な説明を省略する。
 ここで、ダウンコンバータ1031、1032、…、103N以前の構成(アンテナ1011、1012、…、101Nと、低雑音増幅器1021、1022、…、102Nと、ダウンコンバータ1031、1032、…、103Nと)は、高周波信号を扱うRF部と呼ばれる。一方、ダウンコンバータ1031、1032、…、103Nより後ろの構成(可変フィルタ1041、1042、…、104Nと、可変利得増幅器1051、1052、…、105Nと、スイッチ1040と、A/D変換器1010と、デジタル信号処理部1020と)は、ダウンコンバート後のBB信号を扱うBB部と呼ばれる。BB部の中で、特に、A/D変換器1010より前の構成(可変フィルタ1041、1042、…、104Nと、可変利得増幅器1051、1052、…、105Nと、スイッチ1040と)はアナログ-BB部、A/D変換器1010以降の構成(A/D変換器1010と、デジタル信号処理部1020と)はデジタル-BB部と呼ばれる。
 可変フィルタ1041、1042、…、104Nは、ダウンコンバータ1031、1032、…、103Nから受信した信号のうち、所定の(周波数)帯域の信号のみを可変利得増幅器1051、1052、…、105Nへ通過させる(以降、通過させる周波数帯域を通過帯域と呼ぶ)。ダウンコンバータ1031、1032、…、103Nと可変フィルタ1041、1042、…、104Nと可変利得増幅器1051、1052、…、105Nとは、この順にそれぞれ1対1対1で直列接続されている。可変フィルタ1041、1042、…、104Nは、制御部1030が送信する第4の制御信号に基づいて信号の通過帯域を変化させる。具体的には、可変フィルタ1041、1042、…、104Nは、第4の制御信号に基づいて該通過帯域を狭める処理を行う。各可変フィルタ1041、1042、…、104Nの通過帯域は、互いに常に同一である。したがって、可変フィルタ1041、1042、…、104Nが該通過帯域を変化させる場合、帯域の変化量はすべての可変フィルタ1041、1042、…、104Nにおいて同一となる。可変フィルタ1041、1042、…、104Nは、信号の通過帯域を狭めることによってA/D変換器1010のサンプリング周波数を通常(第1乃至第第2の実施の形態のA/D変換器)よりも低くすることができる。例えば、アレイ数をN、非アレイ時のサンプリング周波数(オーバーサンプリング)をFとして通過帯域の帯域幅を通常の帯域幅の1/Nに設定した場合、A/D変換器1010のサンプリング周波数Fは、Fの(N/N)倍でFとなる。つまり、本実施の形態のA/D変換器1010は、第1及び第2の実施の形態のようにオーバーサンプリングしなくてよい。
 なお、可変フィルタ1041、1042、…、104Nの受信信号に帯域が未知の信号が含まれる場合、例えば、前段のダウンコンバータ1031、1032、…、103N各々に送信するLO信号周波数をずらして複数回上記の処理を行うことで対応できる。
 制御部1030は、第2の実施の形態の制御部43が有する機能に加えて以下の機能を有する。制御部1030は、可変フィルタ1041、1042、…、104N各々の信号の通過帯域を変化させるための第4の制御信号を生成し、生成した第4の制御信号を可変フィルタ1041、1042、…、104N各々へ送信する。第4の制御信号には、可変フィルタ1041、1042、…、104N各々が該通過帯域を同量だけ狭くする情報が含まれている。
 以上の説明では、第1、第2及び第4の制御信号は、同一の制御部93によって生成されるものとした。しかし、これら第1、第2及び第4の制御信号は、複数の制御部(図示しない)によって生成されても良い。
 第6の実施の形態におけるアレイアンテナ装置10は、受信部1001、1002、…、100N各々に可変フィルタ1041、1042、…、104Nを一つずつ備える。これによって、可変フィルタ1041、1042、…、104Nは、A/D変換器1010が処理する信号の帯域幅を狭めることができる。すなわち、アレイアンテナ装置10は、通常よりも低いサンプリングレートでA/D変換器処理を行うことができ、消費電力を低減できる。
 [第7の実施の形態]
 第7の実施の形態にかかる無線通信装置1100について説明する。図11は、第7の実施の形態にかかる無線通信装置1100の構成を模式的に示すブロック図である。
 無線通信装置1100は、アンテナ1110、BB部1120及びRF部1130を有する。アンテナ1110は、第1の実施の形態におけるアンテナ111、112、…、11Nに相当する。BB部1120は、第1の実施の形態におけるスイッチ14、A/D変換器11及びデジタル信号処理部12に相当する。RF部1130は、第1の実施の形態におけるダウンコンバータ131、132、…、13Nに相当する。
 BB部1120は、変調前のBB信号S1101又は復調後の受信信号S1102を扱う。
 RF部1130は、BB部1120からのBB信号S1101を変調し、変調した送信信号S1102をアンテナ1110へ出力する。また、RF部1130は、アンテナ1110が受信した受信信号S1103を復調し、復調後の受信信号S1104をBB部1120へ出力する。
 アンテナ1110は、送信信号S1102を放射し、又は、外部のアンテナが放射した受信信号S1103を受信する。
 以上、本構成によれば、第1の実施の形態にかかるアレイアンテナ装置1を用いて、外部と無線通信が可能な無線通信装置を具体的に構成できることが理解できる。
 また、本構成によれば、アンテナ先端が接地されているので、先端が電気的に開放された従来のダイポールアンテナと異なり、落雷の電荷を接地導体に逃がすことができる。これにより、入力端子に接続される送受信機を落雷によるサージ電圧から守ることができる。
 以上、各実施の形態および具体例を参照して本発明を説明したが、本発明は上記実施の形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しえる様々な変更をすることができる。
 また、本発明の各実施の形態における各構成要素は、その機能をハードウェア的に実現することはもちろん、コンピュータとプログラムとで実現することができる。プログラムは、磁気ディスクや半導体メモリなどのコンピュータ可読記録媒体に記録されて提供され、コンピュータの立ち上げ時などにコンピュータに読み取られる。この読み取られたプログラムは、そのコンピュータの動作を制御することにより、そのコンピュータを前述した各実施の形態における構成要素として機能させる。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2015年4月27日に出願された日本出願特願2015-90581号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明の活用例として、MMSE法やMUSIC法を用いた信号の到来方向推定を行う受信機などがある。
 1、4、5、8、9、10  アレイアンテナ装置
 11、41、51、81、91、1010  A/D変換器
 12、42、52、82、92、1020  デジタル信号処理部
 13、43、53、83、93、1030  制御部
 14、44、54、84、94、1040  スイッチ
 111~11N、411~41N、511~51N、811~81N、911~91N、1011~101N、1110  アンテナ
 131~13N、431~43N、531~53N、831~83N、1031~103N  ダウンコンバータ
 201、202、…、20N  受信波形
 210  サンプリングタイミング
 21、22、…、2N  サンプリング信号
 301  従来のアレイアンテナ装置のシミュレーション結果
 302  アレイアンテナ装置1のシミュレーション結果
 421~42N、521~52N、821~82N、921~92N、1021~102N  低雑音増幅器
 441~44N、541~54N、841~84N  フィルタ
 451~45N、551~55N、851~85N、1051~105N  可変利得増幅器
 561、562、…、56N、6、7  遅延器
 601、602、…、60L  インバータ
 61、62、…、6L  MOSスイッチ
 701  演算増幅器
 861、862、…、86N  サンプル&ホールド回路
 931、932、…、93N  サンプリングミキサ
 941、942、…、94N  ホールド回路
 1041、1042、…、104N  可変フィルタ
 1100  無線通信装置
 1120  BB部
 1130  RF部

Claims (10)

  1.  信号を受信する複数のアンテナと、
     前記複数のアンテナ各々に接続され、前記受信した信号をダウンコンバートする複数のダウンコンバータと、
     前記ダウンコンバートされた複数の信号のうち少なくとも1つの信号を選択し、A/D変換器へ送信するスイッチと、を備えることを特徴とするアレイアンテナ装置。
  2.  前記ダウンコンバートされた複数の信号を遅延させて前記スイッチへ送信する複数の遅延器をさらに備えることを特徴とする請求項1に記載のアレイアンテナ装置。
  3.  前記遅延器の遅延量を制御するための制御信号を生成する第1の制御手段をさらに備え、
     前記複数の遅延器は、前記制御信号に基づいて各々の遅延量を変化させることを特徴とする請求項2に記載のアレイアンテナ装置。
  4.  前記ダウンコンバートされた複数の信号を同時にサンプリングし、前記サンプリングされた信号をホールドして前記スイッチへ送信する複数のサンプル&ホールド回路をさらに備えることを特徴とする請求項1に記載のアレイアンテナ装置。
  5.  前記サンプル&ホールド回路のホールド時間を制御するための制御信号を生成する第2の制御手段をさらに備え、
     前記複数のサンプル&ホールド回路は、前記制御信号に基づいて各々のホールド時間を変化させることを特徴とする請求項4に記載のアレイアンテナ装置。
  6.  前記複数のダウンコンバータは、前記ダウンコンバートした信号を同時にサンプリングするサンプリングミキサであることを特徴とする請求項1に記載のアレイアンテナ装置。
  7.  前記ダウンコンバートされた複数の信号各々の所定の帯域を前記スイッチへ送信する複数の可変フィルタをさらに備えることを特徴とする請求項1に記載のアレイアンテナ装置。
  8.  前記所定の帯域を制御するための制御信号を生成する第3の制御手段をさらに備え、
     前記複数の可変フィルタは、前記制御信号に基づいて各々の信号通過帯域を変化させることを特徴とする請求項7に記載のアレイアンテナ装置。
  9.  複数のアンテナのそれぞれに接続されたダウンコンバータにて、前記アンテナから受信した信号をそれぞれダウンコンバートし、
     前記ダウンコンバートされた複数の信号を順次選択してA/D変換器へ送信する、受信信号の処理方法。
  10.  信号を受信する複数のアンテナと、
     前記複数のアンテナ各々に接続され、前記受信した信号をダウンコンバートする複数のダウンコンバータと、
     前記ダウンコンバートされた複数の信号のうち少なくとも1つの信号を選択し、A/D変換器へ送信するスイッチと、を備えることを特徴とする受信機。
PCT/JP2016/002105 2015-04-27 2016-04-20 アレイアンテナ装置、受信機および受信信号の処理方法 WO2016174853A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017515382A JP6702315B2 (ja) 2015-04-27 2016-04-20 アレイアンテナ装置、受信機および受信信号の処理方法
US15/566,802 US10326515B2 (en) 2015-04-27 2016-04-20 Array antenna apparatus, receiver, and method of processing received signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-090581 2015-04-27
JP2015090581 2015-04-27

Publications (1)

Publication Number Publication Date
WO2016174853A1 true WO2016174853A1 (ja) 2016-11-03

Family

ID=57199089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002105 WO2016174853A1 (ja) 2015-04-27 2016-04-20 アレイアンテナ装置、受信機および受信信号の処理方法

Country Status (3)

Country Link
US (1) US10326515B2 (ja)
JP (1) JP6702315B2 (ja)
WO (1) WO2016174853A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106911401A (zh) * 2017-02-21 2017-06-30 熊猫电子集团有限公司 一种短波天调插入损耗测试方法和夹具
WO2019220508A1 (ja) * 2018-05-14 2019-11-21 三菱電機株式会社 アクティブフェーズドアレーアンテナ
JP2020534766A (ja) * 2018-01-18 2020-11-26 三菱電機株式会社 送信機、受信機、及びアナログ信号を送信する方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215790A1 (ja) * 2018-05-07 2019-11-14 三菱電機株式会社 到来波数推定装置及び到来波数到来方向推定装置
US10826570B2 (en) 2018-05-31 2020-11-03 Skyworks Solutions, Inc. Apparatus and methods for multi-antenna communications
CN113541755B (zh) * 2020-04-17 2023-06-16 华为技术有限公司 天线选择方法及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000151488A (ja) * 1998-11-10 2000-05-30 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
JP2000252870A (ja) * 1999-03-01 2000-09-14 Toshiba Corp スペクトル拡散信号の符号同期捕捉回路
JP2009124654A (ja) * 2007-11-19 2009-06-04 Panasonic Corp サンプリングミキサ型受信機
US20120044975A1 (en) * 2010-08-19 2012-02-23 Industrial Technology Research Institute Multi-carrier receiver, multi-carrier transmitter and multi-carrier transceiver system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214318A (ja) 2001-01-19 2002-07-31 Futaba Corp 到来波推定方式
US7277679B1 (en) * 2001-09-28 2007-10-02 Arraycomm, Llc Method and apparatus to provide multiple-mode spatial processing to a terminal unit
US7869528B2 (en) * 2003-10-31 2011-01-11 Northrop Grumman Systems Corporation Multi-carrier transceiver assembly
US8681890B2 (en) * 2010-06-07 2014-03-25 Entropic Communications, Inc. Method and apparatus for real time multiplexing with receiver and antenna array elements
JP5623877B2 (ja) * 2010-11-15 2014-11-12 ルネサスエレクトロニクス株式会社 半導体集積回路およびその動作方法
JP5792639B2 (ja) 2012-01-10 2015-10-14 株式会社東海理化電機製作所 アレーアンテナ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000151488A (ja) * 1998-11-10 2000-05-30 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法
JP2000252870A (ja) * 1999-03-01 2000-09-14 Toshiba Corp スペクトル拡散信号の符号同期捕捉回路
JP2009124654A (ja) * 2007-11-19 2009-06-04 Panasonic Corp サンプリングミキサ型受信機
US20120044975A1 (en) * 2010-08-19 2012-02-23 Industrial Technology Research Institute Multi-carrier receiver, multi-carrier transmitter and multi-carrier transceiver system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106911401A (zh) * 2017-02-21 2017-06-30 熊猫电子集团有限公司 一种短波天调插入损耗测试方法和夹具
JP2020534766A (ja) * 2018-01-18 2020-11-26 三菱電機株式会社 送信機、受信機、及びアナログ信号を送信する方法
WO2019220508A1 (ja) * 2018-05-14 2019-11-21 三菱電機株式会社 アクティブフェーズドアレーアンテナ

Also Published As

Publication number Publication date
JPWO2016174853A1 (ja) 2018-03-15
JP6702315B2 (ja) 2020-06-03
US20180083689A1 (en) 2018-03-22
US10326515B2 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2016174853A1 (ja) アレイアンテナ装置、受信機および受信信号の処理方法
EP1252728B1 (en) Linear signal separation using polarization diversity
WO2017135389A1 (ja) 無線通信装置
JPWO2006070644A1 (ja) アダプティブアンテナ装置
US12068763B2 (en) Software-defined communication system and device
JP2018505605A (ja) アンテナアレイからの信号を変換及び合成する方法
US10511380B2 (en) System and method for efficient wideband code division multiplexing in subband domain
KR101498615B1 (ko) 무선 신호의 방향을 추정하는 장치 및 그 방법
CN112305517B (zh) 一种具有柱形全方位覆盖的模数混合多波束接收阵列系统
Haroun et al. Sampled antenna array digital beamforming for LTE-advanced
EP3465952B1 (en) Method and apparatus for antenna array calibration using on-board receiver
US20070249308A1 (en) Method and apparatus for uplink coverage improvement
US10560133B2 (en) Device for radio communication using a plurality of antennas
JP4673869B2 (ja) 送受信装置及びその通信方法
JP6646544B2 (ja) 無線通信装置及び無線通信方法
Dupleich et al. Influence of system aspects in propagation based evaluation of beam-forming at mm-waves
JP4778982B2 (ja) 受信装置及び干渉抑圧方法
Belli et al. Fully-digital millimeter-wave receivers with low-resolution analog-to-digital converters
Dai et al. A new receiver architecture for MIMO beam-forming applications
CN118693521A (zh) 相控阵装置、用于无线通信的方法和无线通信装置
Madanayake et al. Sampling H-& V-polarized antennas using a single ADC for digital antenna arrays by exploiting multi-dimensional signal processing RF circuits
Alarfaj Efficient beamforming techniques for millimeter wave MIMO systems
Thompson Real-Time Narrowband and Wideband Beamforming Techniques for Fully-Digital RF Arrays
WO2012052772A1 (en) Wireless communications devices
Sallam et al. Aperture distribution reconstruction of phased array antenna with single RF channel based on non-uniform spatial sampling of array elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515382

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15566802

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786132

Country of ref document: EP

Kind code of ref document: A1