WO2021159524A1 - 一种确定路径损耗的方法、装置及系统 - Google Patents

一种确定路径损耗的方法、装置及系统 Download PDF

Info

Publication number
WO2021159524A1
WO2021159524A1 PCT/CN2020/075418 CN2020075418W WO2021159524A1 WO 2021159524 A1 WO2021159524 A1 WO 2021159524A1 CN 2020075418 W CN2020075418 W CN 2020075418W WO 2021159524 A1 WO2021159524 A1 WO 2021159524A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
terminal device
reference signal
filter
path loss
Prior art date
Application number
PCT/CN2020/075418
Other languages
English (en)
French (fr)
Inventor
陈二凯
郭文婷
苏宏家
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080095741.6A priority Critical patent/CN115053578A/zh
Priority to PCT/CN2020/075418 priority patent/WO2021159524A1/zh
Publication of WO2021159524A1 publication Critical patent/WO2021159524A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters

Definitions

  • This application relates to the field of wireless communication technologies, and in particular, to a method, device, and system for determining path loss.
  • terminal devices can communicate with network devices (such as base stations) via uplink (UL) or downlink (DL)
  • network devices such as base stations
  • UL uplink
  • DL downlink
  • SL sidelink
  • the terminal device In the uplink communication scenario, the terminal device usually controls the uplink transmission power of the terminal device based on the downlink path loss to avoid excessive uplink transmission power, which affects the network device to receive the uplink signal of other terminal devices, and can also avoid the uplink transmission power. If it is too small, the quality of the uplink signal received from the terminal device by the network device is reduced.
  • the reference signal receiving power RSRP
  • the reference signal power can be obtained by measuring the reference signal from the network device. According to the RSRP and the reference signal power (reference signal power) configured by the network device, you can Determine the downstream path loss.
  • the sending device when the sending device sends the side-line signal to the receiving device, if the side-line transmit power is too large, it will affect the receiving device to receive the downlink signal from the network device or the side-line signal from other terminal devices; If the side-line transmit power is too small, the quality of the side-line signal received by the receiving device from the transmitting device will be reduced.
  • the sending device may control the lateral transmission power of the sending device. With reference to the method of controlling the uplink transmit power, if you want to control the lateral transmit power, you need to determine the lateral path loss. Currently, there is no feasible way to determine the side travel path loss.
  • the embodiments of the present application provide a method, device, and system for determining path loss, which are used to determine the path loss between two terminal devices.
  • an embodiment of the present application provides a method for determining path loss, including: a first terminal device first sends a first reference signal to a second terminal device; the first terminal device obtains the first reference signal according to the transmit power of the first reference signal. Filtered power; the first terminal device receives the first indication information from the second terminal device, the first indication information is used to indicate the second filtered power, the second filtered power is the power determined according to the first reference signal; then the first The terminal device determines the path loss between the first terminal device and the second terminal device according to the first filtered power and the second filtered power.
  • the terminal device may be a vehicle or a vehicle-mounted module or vehicle-mounted module built in the vehicle, or may be a smart phone, a smart watch, and the like.
  • the first terminal device determines the first filter power according to the transmit power of the first reference signal, and combined with the second filter power indicated by the second terminal device, the first terminal device and the second terminal device can be determined Path loss between. Since the first filter power is determined by the first terminal device according to the actual transmit power of the first reference signal, the path loss between the two terminal devices can be determined more accurately based on the first filter power, so that the path loss can be compared subsequently.
  • the transmission power of the first terminal device is controlled, thereby reducing interference to other terminal devices or network devices while ensuring communication quality, and improving communication reliability.
  • the first filter power is obtained according to at least one of the first filter coefficient, the transmit power of the first reference signal, or the third filter power, where the third filter power is obtained by the first terminal device according to The transmission power of the second reference signal is obtained or the transmission power of the first reference signal, and the second reference signal is a reference signal sent by the first terminal device to the second terminal device before sending the first reference signal.
  • the first filter power used to determine the path loss can be obtained according to at least one of the first filter coefficient, the transmit power of the first reference signal, or the third filter power, so as to achieve the path loss between the two terminal devices. Of ok.
  • the first filter coefficient may be configured by the network device, or may be obtained from the configuration information of the resource pool, or may be configured by the first terminal device, or may be the first initial filter.
  • the first initial filter coefficient is a parameter configured at the factory.
  • the first terminal device may determine the path loss between the two terminal devices according to the first filter coefficient configured by the network device; or, the first terminal device may obtain the first filter coefficient from the configuration information of the resource pool , And then determine the path loss based on the first filter coefficient.
  • the first terminal device does not need to interact with the network device to obtain the first filter coefficient, which can save network resources and reduce communication complexity; or, first The filter coefficient is configured by the first terminal device itself.
  • the first terminal device can configure the first filter coefficient by itself in a scenario where there is no network device configuration or no resource pool configuration, which has strong adaptability and high flexibility; or ,
  • the first filter coefficient is the first initial filter coefficient configured at the factory.
  • the first filter coefficient can be obtained directly from the factory-configured parameters. Pool interactive acquisition can simplify the implementation process and is easy to implement.
  • the method when the first filter coefficient is configured by the first terminal device, the method further includes: the first terminal device sends second indication information to the second terminal device, and the second indication information is used to indicate the first terminal device. Two filter coefficients, the second filter coefficient is used to determine the second filter power.
  • the first terminal device when the first filter coefficient is configured by the first terminal device, the first terminal device also needs to configure a second filter coefficient for determining the second filter power for the second terminal device, and indicate the second filter coefficient to The second terminal device can make the second terminal device more accurately determine the second filter power.
  • the first terminal device obtaining the first filtered power according to the transmit power of the first reference signal includes: the first terminal device filters the transmit power of the first reference signal to obtain the first filtered power.
  • the first terminal device obtains the first filtered power used to determine the path loss by filtering, so as to improve the accuracy of the path loss.
  • the first filtered power satisfies the following formula:
  • P n represents the first filter power
  • P n-1 represents the third filter power
  • L n represents the transmission power of the first reference signal
  • b represents the weighting coefficient
  • the value of b is related to the first filter coefficient
  • n represents the first filter coefficient.
  • a reference signal is the nth transmission, and n is an integer greater than or equal to 1.
  • the first filter power is determined by the instantaneous value of the transmit power of the first reference signal (that is, the transmit power of the first reference signal) and the filter power obtained last time, so as to avoid the sudden increase of the instantaneous value of the transmit power. Or it may become smaller and cause the error of the calculated path loss to be too large, so that the path loss between the two terminal devices can be determined more accurately.
  • the third filter power is the transmit power of the first reference signal.
  • the third filter power is the transmission power of the first reference signal to determine the path loss between the two terminal devices.
  • the path loss between the first terminal device and the second terminal device includes the difference between the first filter power and the second filter power, or the ratio of the first filter power to the second filter power .
  • the first terminal device can calculate the path loss between the two terminal devices based on a simple difference calculation or a simple ratio calculation, which has a small amount of calculation and is easy to implement.
  • the method further includes: the first terminal device determines the transmit power of the first reference signal according to the high-level configuration parameters.
  • the first terminal device may determine the transmit power of the first reference signal through high-level configuration parameters to determine the path loss between the two terminal devices.
  • an embodiment of the present application provides a method for determining path loss, including: a first terminal device first sends a first reference signal to a second terminal device; the first terminal device receives first indication information from the second terminal device , The first indication information is used to indicate the second filter power, and the second filter power is the power determined according to the first reference signal; then the first terminal device determines the first terminal according to the transmit power of the first reference signal and the second filter power The path loss between the device and the second terminal device.
  • the terminal device may be a vehicle or a vehicle-mounted module or vehicle-mounted module built in the vehicle, or may be a smart phone, a smart watch, and the like.
  • the first terminal device can determine the path loss between the first terminal device and the second terminal device according to the transmit power of the first reference signal and the second filter power indicated by the second terminal device. Since the actual transmit power of the first reference signal does not need to be calculated, the path loss can be determined based on the transmit power of the first reference signal and the second filtered power, and the amount of operation can be reduced, which is easy to implement, and can be determined based on the subsequent determination.
  • the path loss of the first terminal device controls the transmission power of the first terminal device, thereby reducing interference to other terminal devices or network devices while ensuring communication quality, and improving communication reliability.
  • the first terminal device sends second indication information to the second terminal device, the second indication information is used to indicate the second filter coefficient, and the second filter coefficient is used to determine the second filter power.
  • the first terminal device also needs to configure the second terminal device with a second filter coefficient for determining the second filter power, and indicate the second filter coefficient to the second terminal device, so that the second terminal device is more accurate To determine the second filtered power.
  • the method further includes: the first terminal device determines the transmit power of the first reference signal according to the high-level configuration parameters.
  • the first terminal device may determine the transmit power of the first reference signal through high-level configuration parameters to determine the path loss between the two terminal devices.
  • the path loss between the first terminal device and the second terminal device includes the difference between the transmit power of the first reference signal and the second filter power, or the transmit power of the first reference signal and the second filter power.
  • the ratio of the filtered power In the above design, the first terminal device can calculate the path loss between the two terminal devices based on a simple difference calculation or a simple ratio calculation, which has a small amount of calculation and is easy to implement.
  • an embodiment of the present application provides a method for determining path loss.
  • the method includes: the second terminal device first receives the first reference signal from the first terminal device; the second terminal device receives power according to the first reference signal. Obtain the second filtered power, which is used to determine the path loss between the first terminal device and the second terminal device; then the second terminal device sends the first indication information to the first terminal device, and the first indication information is used for Indicates the second filter power.
  • the terminal device may be a vehicle or a vehicle-mounted module or vehicle-mounted module built in the vehicle, or may be a smart phone, a smart watch, and the like.
  • the second terminal device determines the second filter power according to the received power of the first reference signal, and then indicates the second filter power to the first terminal device, so that the first terminal device determines that the first terminal device and the Path loss between second terminal devices. Since the second filter power is determined by the second terminal device according to the actual received power of the first reference signal, the path loss between the two terminal devices can be determined more accurately based on the second filter power, so that the subsequent first terminal device can The transmission power of the first terminal device is controlled based on the determined path loss, so as to reduce interference to other terminal devices or network devices while ensuring communication quality, and improve communication reliability.
  • the second filter power is obtained according to at least one of the second filter coefficient, the received power of the first reference signal, or the fourth filter power, where the fourth filter power is obtained by the second terminal device according to The received power of the second reference signal is obtained or the received power of the first reference signal, and the second reference signal is a reference signal received by the second terminal device before receiving the first reference signal.
  • the second filter power used to determine the path loss can be obtained according to at least one of the second filter coefficient, the received power of the first reference signal, or the fourth filter power, so as to achieve the path loss between the two terminal devices. Of ok.
  • the second filter coefficient is configured by the network device, or obtained from the configuration information of the resource pool, or configured by the first terminal device, or is the second initial filter power.
  • the initial filter power is the parameter configured at the factory.
  • the second terminal device can determine the path loss between the two terminal devices based on the second filter power configured by the network device according to the second filter coefficient; or, the second terminal device can use the The second filter coefficient is obtained from the configuration information of the resource pool, and the path loss is determined based on the second filter coefficient.
  • the second terminal device does not need to interact with the network device to obtain the second filter coefficient, which can save the network Resources and reduce communication complexity; or, the second filter coefficient is configured by the first terminal device.
  • the first terminal device can be the second terminal device by itself in the scenario of no network device configuration or no resource pool configuration Configure the second filter coefficient, which has strong adaptability and high flexibility; or, the second filter coefficient can be directly obtained from the factory-configured parameters, without the first terminal device configuration, nor through interaction with network devices or resource pools Obtaining can simplify the implementation process and is easy to implement.
  • the method further includes: the second terminal device receives second indication information from the first terminal device, and the second indication information is used to indicate the first terminal device.
  • the second terminal device receives second indication information from the first terminal device, and the second indication information is used to indicate the first terminal device.
  • Two filter coefficients when the second filter coefficient is configured by the first terminal device, the second terminal device will also receive the second filter coefficient configured by the first terminal device for the second terminal device, which can make the second terminal device more accurate Determine the second filtered power.
  • the second terminal device obtaining the second filtered power according to the received power of the first reference signal includes: the second terminal device filters the received power of the first reference signal to obtain the second filtered power.
  • the second terminal device obtains the second filtered power used to determine the path loss by filtering, so as to improve the accuracy of the path loss.
  • the second filter power satisfies the following formula:
  • F n represents the second filter power
  • F n-1 represents the fourth filter power
  • M n represents the received power of the first reference signal
  • a represents the weighting coefficient
  • the value of a is related to the second filter coefficient
  • n represents the second filter coefficient.
  • a reference signal is the nth transmission, and n is an integer greater than or equal to 1.
  • the second filtered power is determined by the received power instantaneous value of the first reference signal (that is, the received power of the first reference signal) and the filter power obtained last time, so as to avoid the sudden increase of the received power instantaneous value. Or it may become smaller and cause the error of the calculated path loss to be too large, so that the path loss between the two terminal devices can be determined more accurately.
  • the fourth filtered power is the received power of the first reference signal.
  • the fourth filtered power is the received power of the first reference signal to determine the path loss between the two terminal devices.
  • the method further includes: the second terminal device measures the first reference signal to obtain the received power of the first reference signal.
  • the second terminal device may obtain the received power of the first reference signal by measuring the first reference signal to determine the path loss between the two terminal devices.
  • an embodiment of the present application provides a device for determining path loss.
  • the device may be a terminal device, or a chip or chipset in the terminal device.
  • the terminal device may be a first terminal device or a second terminal. Any of the devices.
  • the device may include a transceiver module and a processing module.
  • the processing module may be a processor, and the transceiver module may be a transceiver; the device may also include a storage module, and the storage module may be a memory; the storage module is used to store instructions, and the processing module Execute the instructions stored in the storage module to make the first terminal device execute the corresponding function in the first aspect, or the processing module executes the instructions stored in the storage module to make the first terminal device execute the second aspect. Or, the processing module executes the instructions stored in the storage module, so that the second terminal device executes the corresponding function in the third aspect.
  • the processing module may be a processor, and the transceiver module may be an input/output interface, a pin or a circuit, etc.; the processing module executes the instructions stored in the storage module to Make the first terminal device execute the corresponding function in the first aspect, or the processing module executes the instructions stored in the storage module, so that the first terminal device executes the corresponding function in the second aspect, or the processing module executes The instructions stored in the storage module are used to enable the second terminal device to perform the corresponding functions in the above-mentioned third aspect.
  • the storage module may be a storage module (for example, register, cache, etc.) in the chip or chipset, or a storage module (for example, read-only memory, random access memory, etc.) located outside the chip or chipset in the terminal device. Fetch memory, etc.).
  • an embodiment of the present application provides an apparatus for determining path loss, including: a processor, and may also include a communication interface and/or a memory.
  • the communication interface is used to transmit information, and/or messages, and/or data between the device and other devices.
  • the memory is used to store computer-executable instructions.
  • the processor executes the computer-executable instructions stored in the memory, so that the device executes any design or second aspect of the first aspect or the first aspect described above. Or the method of determining path loss in any design in the second aspect, the third aspect or any design in the third aspect.
  • the embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium is used to store computer instructions.
  • the computer instructions run on the computer, the computer executes the first aspect or the first aspect described above.
  • the present application also provides a computer program product including instructions.
  • the computer program product is used to store computer instructions.
  • the computer instructions run on a computer, the computer executes the first aspect or any one of the first aspects. Possible design, any one of the second aspect or the second aspect, and any one of the third aspect or the method for determining the path loss.
  • the present application also provides a system for determining path loss.
  • the system includes a first terminal device and a second terminal device, wherein the first terminal device can perform the corresponding function in the first aspect or the second aspect described above, The second terminal device can perform the corresponding function in the third aspect described above.
  • a chip provided by an embodiment of the present application.
  • the chip includes at least one processor and a communication interface.
  • the processor is coupled to the memory and is used to read a computer program stored in the memory to execute the first aspect or A method for determining path loss in any design of the first aspect, any design of the second aspect or the second aspect, or the third aspect or any design of the third aspect.
  • an embodiment of the present application provides a chip including a communication interface and at least one processor, and the at least one processor runs to execute the first aspect or any one of the possible designs in the first aspect of the embodiments of the present application, A method for determining the path loss of any one of the possible designs in the second aspect or the second aspect, and the third or any possible design in the third aspect.
  • FIG. 1 is a schematic diagram of a V2X scenario to which an embodiment of the application is applicable;
  • FIG. 2 is a schematic diagram of another V2X scenario applicable to the embodiments of this application.
  • FIG. 3 is a schematic diagram of another V2X scenario to which the embodiments of this application are applicable;
  • FIG. 4 is a schematic diagram of an NR V2X scenario to which an embodiment of the application is applicable;
  • FIG. 5 is a schematic flowchart of a method for determining downlink path loss applicable to an embodiment of this application
  • FIG. 6 is a schematic flowchart of a method for determining path loss according to an embodiment of this application.
  • FIG. 7 is a schematic diagram of the structure of a physical resource block applicable to an embodiment of this application.
  • FIG. 8 is a schematic flowchart of another method for determining path loss according to an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a device for determining path loss according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of another device for determining path loss according to an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of another device for determining path loss according to an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of another device for determining path loss according to an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of another device for determining path loss according to an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of another device for determining path loss provided by an embodiment of the application.
  • Terminal devices including devices that provide users with voice and/or data connectivity.
  • the terminal device may include a device that provides voice to the user, or includes a device that provides data connectivity to the user, or includes a device that provides voice and data connectivity to the user.
  • it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal device may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, V2X terminal equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) and so on.
  • IoT Internet of things
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device or the like.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design everyday wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment.
  • vehicle-mounted terminal equipment is, for example, also called on-board unit (OBU). ); If it is located on a roadside terminal device (for example, placed in a roadside unit or installed in a roadside unit), it can be regarded as a roadside terminal device.
  • the roadside terminal device is also called a roadside unit (roadside unit, RSU).
  • the terminal device of the present application may also be an in-vehicle module, an in-vehicle module, an in-vehicle component, an in-vehicle chip, or an in-vehicle unit that is built into a vehicle as one or more components or units.
  • An on-board component, on-board chip, or on-board unit can implement the method of the present application.
  • the device used to implement the function of the terminal device may be a terminal device, or a device capable of supporting the terminal device to implement the function, such as a chip system, which may be installed in the terminal device.
  • the chip system may be composed of one or more chips, and may also include chips and other discrete devices.
  • the device used to implement the functions of the terminal is an example to describe the technical solutions provided in the embodiments of the present application.
  • Network devices such as access network (AN) equipment, such as base stations (eg, access points), may refer to devices that communicate with wireless terminal devices through one or more cells over the air interface in the access network
  • AN access network
  • RSU a network device in V2X technology
  • the network device can be used to convert received air frames and IP packets into each other, and act as a router between the terminal device and the rest of the access network, where the rest of the access network can include an IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network device can also coordinate the attribute management of the air interface.
  • the network device may include a long term evolution (LTE) system or an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution-advanced (LTE-A) system, Or it can also include the next generation node B (gNB) in the new radio (NR) system (also referred to as the NR system) in the 5th generation (5G) mobile communication technology (the 5th generation, 5G), or it can also Including a centralized unit (CU) and a distributed unit (DU) in a cloud radio access network (cloud radio access network, Cloud RAN) system, which is not limited in the embodiment of the present application.
  • LTE long term evolution
  • LTE-A long term evolution-advanced
  • gNB next generation node B
  • NR new radio
  • 5G 5th generation
  • 5G 5th generation
  • CU centralized unit
  • DU distributed
  • the network device may also include core network equipment.
  • the core network equipment includes, for example, access and mobility management function (AMF), security anchor function (SEAF), and authentication server function (authentication server function, AUSF). , Core network function (core network function, CN function) or unified data management (unified data management, UDM), etc.
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system.
  • the device can be installed in a network device.
  • the technical solutions provided by the embodiments of the present application are mainly described by taking the device for realizing the functions of the network device as an example of the network device.
  • “Multiple” refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application. "At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C are included. In the same way, the understanding of "at least one" and other descriptions is similar.
  • Filtering refers to filtering the transmission power of the reference signal on the transmitting device side based on filter coefficients to obtain the filtering power on the transmitting device side; or refers to filtering the RSRP on the receiving device side based on the filter coefficients to obtain the receiving device Filter power on the side.
  • the filtering may be a high-level filtering, and the high-level filtering refers to filtering at a high-level (such as a radio resource control (Radio Resource Control, RRC) layer).
  • RRC Radio Resource Control
  • the filter coefficient is a parameter used for filtering, and the filter coefficient on the transmitting device side and the filter coefficient on the receiving device side may be the same parameter or different parameters.
  • the filtering power on the transmitting device side may be the reference signal power used to determine the path loss
  • the filtering power on the receiving device side may be a higher layer filtered RSRP (higher layer filtered RSRP) used to determine the path loss.
  • the sending device and the receiving device are both terminal devices.
  • Wireless communication technology has experienced rapid development. It has successively experienced the first generation of wireless communication systems based on analog communication systems, and the second generation of wireless communication systems represented by the global system for mobile communication (GSM) system.
  • GSM global system for mobile communication
  • the business supported by the wireless communication system has evolved from the initial voice and short message to the current support for wireless high-speed data communication.
  • the Internet of Things is a network that extends and expands on the basis of the Internet provided by the communication system. It realizes things and things through various devices and technologies such as various information sensors, radio frequency identification technology, global positioning system, infrared sensors, and laser scanners. , The connection between things and people.
  • the application field of the Internet of Things involves all aspects, such as the application in intelligent transportation. With the development of transportation informatization and intelligent transportation, the concept of Internet of Vehicles has been proposed.
  • the Internet of Vehicles mainly refers to the vehicle-mounted equipment on the vehicle through wireless communication technology to effectively route the dynamic information of all vehicles in the information network platform, and provide different functional services during vehicle operation, aiming to improve vehicle safety, automated driving, and Improve traffic efficiency.
  • the realization of the Internet of Vehicles mainly relies on V2X technology.
  • the core of V2X technology is to realize the interconnection of vehicles and everything.
  • V2X can specifically include vehicle-to-vehicle (V2V) (shown in Figure 1), vehicle-to-pedestrian (V2P) (shown in Figure 2), Vehicle-to-infrastructure (V2I) and vehicle-to-network (V2N) four application scenarios (as shown in Figure 3).
  • V2V refers to the communication between vehicles
  • V2P refers to the communication between vehicles and people (such as pedestrians, cyclists, drivers, or passengers)
  • V2I refers to the communication between vehicles and roadside units
  • V2N refers to the communication between vehicles and roadside units. It is the communication between the vehicle and the base station/network.
  • the vehicle can obtain information about the surrounding road conditions in real time, so as to better assist the vehicle driving and even realize automatic driving.
  • V2X communication includes high-speed mobile devices represented by vehicles
  • typical application scenarios include smart cars, autonomous driving, remote driving, intelligent transportation systems, etc.
  • these application scenarios have an impact on communication delay and communication reliability.
  • the requirements are very high.
  • the 3rd generation partnership project (3GPP) proposed LTE V2X.
  • LTE V2X can initially support basic V2X communication requirements.
  • future application scenarios such as fully intelligent driving and autonomous driving, LTE V2X at this stage cannot yet provide sufficient support.
  • NR V2X will also be further developed.
  • NR V2X will also be further developed.
  • NR V2X proposes to support lower transmission time. Delay (such as as low as 20ms), more reliable communication transmission (such as up to 99.999%), and higher throughput (such as up to 1Gbps), etc., to meet the needs of a wider range of application scenarios.
  • the terminal device can control the uplink transmission power to avoid interference with the network device receiving the uplink information of other terminal devices due to excessive uplink transmission power, and can also avoid the reduction of the uplink transmission power due to too small
  • the network device receives the quality of the uplink signal from the terminal device, thereby reducing transmission delay and improving communication reliability. Under normal circumstances, the terminal device should control the uplink transmission power of the terminal device based on the uplink path loss.
  • the uplink path loss and the downlink path loss can be considered to be approximately equal, and used to calculate the downlink
  • the reference signal power of the path loss is configured by the network device, reducing the amount of calculation means that the downlink path loss is easier to obtain compared to the uplink path loss. Therefore, the terminal device usually performs the uplink transmission power of the terminal device based on the downlink path loss. controlling.
  • a terminal device can not only communicate with a network device through an uplink or a downlink, but also communicate with other terminal devices through a side link.
  • Figure 4 is a schematic diagram of the NR V2X system.
  • the NR V2X system 400 includes a network device 1 (such as a base station) and multiple terminal devices (FIG. 4 includes a terminal device 2 and a terminal device 3, and the terminal device is a vehicle as an example).
  • the terminal device 2 can communicate with the network device 1 via the uplink or the downlink, and the terminal device 2 can also communicate with other terminal devices via the side link. That is, the NR V2X system includes not only uplink or downlink communication scenarios, but also side-line communication scenarios.
  • the terminal device 2 when the terminal device 2 sends the side-line signal to the terminal device 3, if the side-line transmit power is too large, it will affect the terminal device 3 to receive the downlink signal from the network device 1 or the side-line signal from other terminal devices. If the side-line transmit power is too small, it will reduce the quality of the terminal device 3 receiving the side-line signal from the terminal device 2.
  • the transmitting device when two terminal devices communicate through the side link, the transmitting device (such as terminal device 2) supports the following four power control methods: 1) Power control based on the downlink path loss 2) Perform power control based on the side travel path loss; 3) Perform power control based on the downlink path loss and side travel path loss; 4) The transmitting device transmits the signal with its maximum allowable transmit power.
  • One or more communication channels may be included in a transmission time slot of a communication link.
  • PSSCH physical sidelink share channel
  • the transmission power of the PSSCH can satisfy the following formula:
  • P PSSCH (i) min(P CMAX ,P MAX,CBR ,min(P PSSCH,D (i),P PSSCH,SL (i))) (1)
  • P PSSCH (i) represents the transmission power of PSSCH
  • P CMAX represents the maximum transmission power allowed by the transmitting device
  • P MAX, CBR represents the maximum transmission power allowed by the side link where the transmitting device is located
  • P PSSCH, D (i) Represents the power obtained after power control according to the downlink path loss
  • P PSSCH,SL (i) represents the power obtained after power control according to the side travel path loss
  • i represents the i-th transmission
  • i is an integer greater than or equal to 1.
  • the power obtained after power control according to the downlink path loss may satisfy the following formula:
  • P PSSCH,D (i) represents the power obtained after power control according to the downlink path loss
  • P 0,D represents the received power expected by the receiving device (such as a network device)
  • PL D represents the downlink path loss
  • ⁇ D represents the downlink Path loss compensation parameter
  • P 0, D and ⁇ D can be obtained from high-level configuration parameters.
  • the power obtained after power control according to the side travel path loss can satisfy the following formula:
  • P PSSCH, SL (i) represents the power obtained after power control according to the side travel path loss
  • P 0, SL P 0, D represents the expected received power of the receiving device (such as the terminal device 3)
  • PL SL represents the side travel Path loss
  • ⁇ SL represents the side travel path loss compensation parameter
  • P 0, SL, and ⁇ SL can be obtained from high-level configuration parameters.
  • the transmitting device If the transmitting device is configured with P 0, D and ⁇ D but not configured with P 0, SL and ⁇ SL , it means that the transmitting device supports power control according to the downlink path loss; if the transmitting device is configured with P 0, SL and ⁇ SL , But if P 0,D and ⁇ D are not configured, it means that the transmitting device supports power control based on the side travel path loss; if the transmitting device is configured with P 0,D , ⁇ D , P 0,SL and ⁇ SL , it means that the transmitting device Support power control based on downlink path loss and side travel path loss; if the transmitting device is not configured with P 0,D , ⁇ D , P 0,SL or ⁇ SL , it means that the transmitting device transmits signals with its maximum allowable transmission power.
  • the network device first sends a reference signal to the terminal device, and the terminal device receives the reference signal from the network device.
  • the reference signal can usually be sent to the terminal device along with control signaling or data.
  • the terminal device measures the reference signal to obtain RSRP.
  • the network device sends the reference signal power on the network device side to the terminal device, and the terminal device receives the reference signal power from the network device.
  • the reference signal power can be obtained through high-level configuration parameters.
  • the terminal device determines the downlink path loss between the network device and the terminal device according to the RSRP and the power of the reference signal.
  • S2 can be executed first, then S3, or S3 can be executed first, then S2, or S2 and S3 can be executed simultaneously. That is to say, after receiving the reference signal, the terminal device can measure the reference signal to obtain RSRP, and then obtain the reference signal power indicated by the network device; or after obtaining the reference signal power indicated by the network device, The reference signal is measured to obtain the RSRP; when the reference signal is measured to obtain the RSRP, the reference signal power indicated by the network device can be obtained synchronously.
  • the downlink path loss between the network device and the terminal device may satisfy the following formula:
  • PL D denotes a downlink path between the network device and the terminal device loss
  • P RSP_1 denotes a reference signal power network device side
  • P HRSRP represents high filtering RSRP terminal apparatus side.
  • P RSP_1 is configured by the network device, and P HRSRP is obtained according to RSRP.
  • the lateral path loss can satisfy the following formula:
  • PL SL represents the lateral path loss between the sending device and the receiving device
  • P RSP_2 represents the reference signal power on the sending device side
  • P HRSRP represents the high-level filtering RSRP on the receiving device side.
  • the side-line communication scenario is a direct communication between two terminal devices.
  • the method of configuring the reference signal power by the network device to obtain the path loss is no longer applicable to this method. Scenes. Currently, there is no feasible way to determine the side travel path loss.
  • an embodiment of the present application proposes a method and device for determining the path loss, which are used to determine the lateral path loss between two terminal devices, so that the lateral path loss can be paired based on the lateral path loss.
  • the transmission power of the terminal device is controlled to improve the communication performance.
  • FIG. 6 is a flowchart of a method for determining path loss according to an embodiment of this application.
  • This method can be applied to D2D side-line communication scenarios, which can be NR D2D side-line communication scenarios or LTE D2D side-line communication scenarios, etc.; or, it can also be applied to V2X side-line communication scenarios, which can be NR V2X
  • the side-line communication scenario of LTE may also be the side-line communication scenario of LTE V2X, etc. Or it can also be applied to other scenarios or other communication systems, and the specific application is not limited to the V2X system.
  • this method can be applied to the side-line communication scenario of the NR V2X system 400 shown in FIG. 4.
  • the following uses the NR V2X system 400 as an example to describe the method for determining the path loss provided in the embodiments of the present application.
  • the first terminal device in the following may be the terminal device 2 in FIG. 4, and the second terminal device may be The terminal device 3 in FIG. 4.
  • the first terminal device sends a first reference signal to the second terminal device.
  • the first terminal device sends a first reference signal to the second terminal device, and the first reference signal may be sent along with control signaling or data.
  • sending the first reference signal along with the control information means that the first reference signal is sent through the physical sidelink control channel (PSCCH); sending the first reference signal along with the data means that the first reference signal is sent along with the data.
  • a reference signal is sent through a physical sidelink share channel (PSSCH).
  • FIG. 7 is a schematic structural diagram of a physical resource block (PRB).
  • an RPB includes 14 orthogonal frequency division multiplexing (OFDM) symbols, the first OFDM symbol is usually used for automatic gain control (AGC), and the last OFDM symbol It is a gap (GAP), usually does not send any data, can be used to switch between the device to send and receive.
  • the PSCCH and PSSCH channels are bundled and sent together.
  • PSSCH includes two parts: demodulation reference signal (DMRS) and data. If the first reference signal is sent along with the data, the DMRS in the PSSCH can be the first reference signal, which means that the DMRS can be used for RSRP measurement. Among them, the PSSCH can be scheduled periodically, semi-persistent scheduling (SPS) or aperiodic scheduling, which is not limited in the embodiment of the present application.
  • SPS semi-persistent scheduling
  • aperiodic scheduling which is not limited in the embodiment of the present application.
  • the first terminal device obtains the first filtered power according to the transmit power of the first reference signal.
  • the first terminal device After the first terminal device sends the first reference signal to the second terminal device, it can obtain the value used to calculate the path loss according to one or more of the first filter coefficient, the transmit power of the first reference signal, or the third filter power.
  • the first filter power wherein, the third filtered power is obtained by the first terminal device according to the transmission power of the second reference signal, or is the transmission power of the first reference signal.
  • the first terminal device may The first filter coefficient and the transmission power of the first reference signal determine the first filter power; if the first reference signal is not the first reference signal sent by the first terminal device to the second terminal device for the first time, in this case, the third filter power For the filter power obtained by the first terminal device according to the transmit power of the second reference signal, the first terminal device may determine the first filter power according to the first filter coefficient, the transmit power of the first reference signal, and the third filter power.
  • the second reference signal is the last reference signal sent by the first terminal device to the second terminal device before sending the first reference signal.
  • the reference signal sent by the first terminal device to the second terminal device for the first time may be understood as the reference signal sent by the first terminal device to the second terminal device for the first time after meeting the trigger condition for data transmission.
  • the trigger condition for data transmission may be that the network device 1 instructs the first terminal device to send information to the second terminal device through downlink control information (DCI); or it may be that the first terminal device actively sends information to the second terminal device. Send data, etc.
  • DCI downlink control information
  • the first terminal device may determine the transmit power of the first reference signal according to a high-level configuration parameter, and the high-level configuration parameter may be a configuration parameter of the RRC layer.
  • the first filter coefficient is a parameter used to determine the reference signal power on the transmitting device (such as the first terminal device) side (for example, the reference signal power on the first terminal device side is recorded as the first filtered power), in other words, the The first filter coefficient is a parameter used to determine P RSP_2 in formula (5).
  • the first filter coefficient may be configured by the network device 1, or obtained from the configuration information of the resource pool, or configured by the first terminal device.
  • Manner 1 The first filter coefficient is configured by the network device 1.
  • the network device 1 (such as a base station) can configure the first filter coefficient for the first terminal device through high-level signaling, so that the first terminal device can determine the first filter power according to the high-level signaling.
  • the high-level signaling is, for example, media access control (MAC) control element (CE) or RRC signaling.
  • the first terminal device may determine the first filter power according to the first filter coefficient configured by the network device 1, so that the determination of the lateral path loss may be achieved.
  • Manner 2 The first filter coefficient is obtained from the configuration information of the resource pool.
  • the resource pool is, for example, a side link resource pool.
  • the first filter coefficient can be pre-configured in the side link resource pool.
  • the second terminal device can obtain the first filter coefficient from the configuration information of the side link resource pool, and then based on the first filter coefficient.
  • the coefficient determines the first filter power. In this process, the first terminal device does not need to interact with the network device 1, thereby saving network resources and reducing communication complexity.
  • the side-link resource pool may include time-frequency resources used for side-link communication.
  • the configuration information of the side link resource pool may include some common configuration parameters, such as the size of the sub-channel, or the interval of the sub-carriers.
  • One terminal device can be configured with multiple side link resource pools, and the same side link resource pool can also correspond to multiple side links, only when two terminal devices are configured with the same side link resource pool , These two terminal devices can establish a side link.
  • the first filter coefficient is obtained from the configuration information of the resource pool, and the first terminal device can determine the first filter power according to the first filter coefficient, so as to realize the determination of the lateral path loss, and
  • the implementation process is simple and easy to implement.
  • a side link resource pool is configured with a first filter coefficient, and all UEs using the side link resource pool can use the first filter coefficient to determine the path loss, and there is no need for the network device 1 or the UE to configure the first filter coefficient.
  • a filter coefficient reduces the interaction process (for example, the network device sends the configured first filter coefficient to the first terminal device), and the implementation process is simple and easy to implement.
  • Manner 3 The first filter coefficient is configured by the first terminal device.
  • the first terminal device may configure the first filter coefficient by itself, so as to realize the determination of the path loss of the side row chain.
  • Manner 3 can be applied to a scenario where the network device 1 does not exist, and can also be applied to a scenario where the first filter coefficient is not configured in the resource pool. This means that when the first terminal device as a sending device needs to determine the side travel path loss, it does not need to use a third party (such as the network device 1 or a resource pool) to obtain the first filter coefficient, and the first filter coefficient can be configured by itself to achieve the opposite side
  • the line path loss is determined, and the adaptability is strong, and the flexibility is high.
  • the first terminal device stores a first initial filter coefficient, and the first initial filter coefficient is used to determine the reference signal power (that is, P RSP_2 ) in formula (5).
  • the first initial filter coefficient may be a parameter pre-configured in the first terminal device at the factory.
  • the first filter coefficient is configured by the network device 1. It can be understood that the network device 1 directly configures the first filter coefficient for the first terminal device, or it can be understood that the network device 1 sends parameters to the first terminal device.
  • the first terminal device determines the first filter coefficient according to the first initial filter coefficient and/or parameter information; similarly, the first filter coefficient is obtained from the resource pool, It can be understood that the first terminal device obtains the first filter coefficient from the resource pool, or it can be understood that the first terminal device obtains parameter information from the resource pool, and then determines the first filter coefficient according to the parameter information and/or the first initial filter coefficient.
  • Filter coefficient the first filter coefficient is configured by the first terminal device, which can be understood as the first terminal device configuring the first filter coefficient by itself, or it can be understood as the first terminal device configuring the parameter information by itself, and then according to the parameter information and /Or the first initial filter coefficient determines the first filter coefficient.
  • the first filter coefficient may be the first initial filter coefficient. This means that the first terminal device can determine the first filter power according to the first initial filter coefficient, without the configuration of the network device 1 or the configuration of the first terminal device, nor obtaining it from the resource pool, which simplifies the implementation process and is easy to implement.
  • the first terminal device may filter the transmit power of the first reference signal according to the first filter coefficient, such as high-level filtering, to obtain the first filtered power.
  • high-level filtering refers to filtering at a high-level (such as the RRC layer).
  • the first terminal device performs high-level filtering on the transmit power of the first reference signal, and the obtained first filtered power may satisfy the following formula:
  • P n represents the first filter power.
  • P n-1 represents the third filter power.
  • L n represents the transmission power of the first reference signal.
  • n indicates that the first reference signal is the nth transmission, and n is an integer greater than or equal to 1.
  • the first terminal device uses the high-level filtering method to calculate the first filter power.
  • the first filter power is the instantaneous value of the transmit power of the most recent reference signal (i.e., L n ) and the filter power obtained from the previous high-level filtering calculation (ie P n-1 ) are determined together, so as to avoid the large or small error of the calculated path loss due to the sudden excessive or small instantaneous value of the transmit power at a certain moment Therefore, the path loss between two terminal devices can be estimated more accurately.
  • first filter power is only an exemplary naming, and may be named other in specific implementations, such as power, high-level filter power, or reference signal power. Etc., the name itself does not constitute a limitation on technical features.
  • the second terminal device receives the first terminal device to obtain the second filtered power according to the received power of the first reference signal.
  • the second terminal device After the second terminal device receives the first reference signal from the first terminal device, it can obtain the path for calculating the path according to one or more of the second filter coefficient, the received power of the first reference signal, or the fourth filter power. Lost second filtered power.
  • the fourth filtered power is obtained by the second terminal device according to the received power of the second reference signal, or is the received power of the first reference signal.
  • the fourth filter power is initialized to the received power of the first reference signal, and the second terminal device can be based on The second filter coefficient and the received power of the first reference signal determine the second filter power; if the first reference signal is not the first time the second terminal device receives the reference signal from the first terminal device, in this case, the fourth filter power For the filter power obtained by the second terminal device according to the received power of the second reference signal, the second terminal device may determine the second filter power according to the second filter coefficient, the received power of the first reference signal, and the fourth filter power.
  • the second reference signal is the reference signal from the first terminal device that the second terminal device recently received before receiving the first reference signal.
  • the second terminal device may measure the received first reference signal to obtain the received power of the first reference signal.
  • the first reference signal is a DMRS
  • the second terminal device can calculate the received power of the resource unit of the DMRS carried on the PSSCH, and then perform a linear average operation on the received power of all the resource units of the DMRS to obtain the first The received power of a reference signal.
  • the second filter coefficient is a parameter used to determine the high-level filter RSRP (for example, the second filter power) on the receiving device (such as the second terminal device) side.
  • the second filter coefficient is used to determine the formula ( 5) P HRSRP parameters.
  • the second filter coefficient may be configured by the network device 1, or may be obtained from the configuration information of the resource pool, or may be configured by the first terminal device.
  • Manner 1 The second filter coefficient is configured by the network device 1.
  • the network device 1 (such as a base station) can configure the second filter coefficient for the second terminal device through high-level signaling.
  • the second terminal device can determine the second filter power according to the second filter coefficient configured by the network device 1.
  • the high-level signaling includes CE or RRC signaling of the MAC layer, etc.
  • the second terminal device can determine the second filter power according to the second filter coefficient configured by the network device 1, which can realize the determination of the lateral path loss.
  • Manner 2 The second filter coefficient is obtained from the configuration information of the resource pool.
  • the resource pool is, for example, a side link resource pool.
  • the second filter coefficient can be pre-configured in the side link resource pool. In this way, the second terminal device can obtain the second filter coefficient from the configuration information of the side link resource pool, and then based on the second filter coefficient. The coefficient determines the second filter power. In this process, the second terminal device does not need to interact with the network device 1, thereby saving network resources and reducing communication complexity.
  • Manner 3 The second filter coefficient is configured by the first terminal device.
  • the first terminal device may configure the second filter coefficient for the second terminal device to realize the determination of the path loss of the side row link.
  • Manner 3 can be applied to a scenario where the network device 1 does not exist, and can also be applied to a scenario where the second filter coefficient is not configured in the resource pool. This means that there is no need to use a third party (such as the network device 1 or resource pool) to obtain the second wave coefficient, and the determination of the lateral path loss can be achieved according to the second filter coefficient configured by the first terminal device, which is highly adaptable, and High flexibility.
  • the second terminal device receives second indication information from the first terminal device, where the second indication information is used to indicate the second filter coefficient.
  • the second terminal device stores a second initial filter coefficient
  • the second initial filter coefficient is used to determine the reference signal power (that is, P HRSRP ) in formula (5).
  • the second initial filter coefficient may be a parameter pre-configured in the second terminal device at the factory.
  • the second filter coefficient is configured by the network device 1. It can be understood that the network device 1 directly configures the second filter coefficient for the second terminal device, or it can be understood that the network device 1 sends parameters to the second terminal device.
  • the second terminal device determines the second filter coefficient according to the second initial filter coefficient and/or parameter information; similarly, the second filter coefficient is obtained from the resource pool, It can be understood that the second terminal device obtains the second filter coefficient from the resource pool. It can also be understood that the second terminal device obtains the parameter information from the resource pool, and then determines the second filter coefficient according to the parameter information and/or the second initial filter coefficient.
  • the second terminal device obtains the parameter information from the resource pool, and then determines the second filter coefficient according to the parameter information and/or the second initial filter coefficient.
  • the second filter coefficient is configured by the second terminal device, which can be understood as the first terminal device configuring the second filter coefficient for the second terminal device, or it can be understood as the first terminal device configuring the parameters for the second terminal device Information, and then the second terminal device determines the second filter coefficient according to the parameter information and/or the second initial filter coefficient.
  • the second filter coefficient may be a second initial filter coefficient. This means that the second terminal device can determine the second filter power according to the second initial filter coefficient, without the configuration of the network device 1 or the configuration of the first terminal device, nor obtaining it from the resource pool, which simplifies the implementation process and is easy to implement.
  • the second filter coefficient is also configured by the network device 1; or, if the first filter coefficient is from the configuration information of the resource pool If obtained, the second filter coefficient is also obtained from the configuration information of the resource pool; or, if the first filter coefficient is configured by the first terminal device, the second filter coefficient is also configured by the first terminal device; or If the first filter coefficient is the first initial filter coefficient, the second filter coefficient is the second initial filter coefficient.
  • the second terminal device may filter the received power of the first reference signal according to the second filter coefficient, such as high-level filtering, to obtain the second filtered power.
  • high-level filtering refers to filtering at a high-level (such as the RRC layer).
  • the second terminal device performs high-level filtering on the received power of the first reference signal, and the obtained first filtered power may satisfy the following formula:
  • F n represents the second filtering power.
  • F n-1 represents the fourth filter power.
  • M n represents the received power of the first reference signal.
  • n indicates that the first reference signal is the nth transmission, and n is an integer greater than or equal to 1.
  • the second terminal device uses the high-level filtering method to calculate the second filtered power
  • the second filtered power is the instantaneous value of the received power of the latest reference signal received ( That is, M n ) and the filter power calculated by the previous high-level filtering (ie F n-1 ) are determined together, so as to avoid the sudden increase or too small of the instantaneous value of the received power at a certain moment, resulting in a relatively large error in the calculated path loss.
  • M n the filter power calculated by the previous high-level filtering
  • the "second filtering power" is only an exemplary naming, and it may be named other in specific implementation, such as power, high-level filtering power, or high-level filtering RSRP. Wait.
  • the second terminal device sends first indication information to the first terminal device, where the first indication information is used to indicate the second filtering power.
  • the second terminal device After obtaining the second filtered power according to the received power of the first reference signal, the second terminal device sends first indication information for indicating the second filtered power to the first terminal device.
  • the first indication information may be high-level signaling , Such as CE or RRC signaling at the MAC layer.
  • the second terminal device may periodically send the first indication information to the first terminal device, or may satisfy certain conditions (for example, determining the second filter power, and for example, receiving the user information from the first terminal device). Sending the first indication information to the first terminal device after requesting a request message for obtaining the second filtering power, etc.).
  • the second terminal device may quantize the second filter power according to Table 1 to obtain a quantized value, and send the quantized value to the first terminal device through high-level signaling.
  • the first terminal device can determine the second filtering power corresponding to the quantized value according to Table 1. For example, when the second filter power is less than -156 decibel milliwatts (dBm), the quantized value obtained by quantizing the second filter power is RSRP_0. For another example, when the second filter power is less than -155 dBm and greater than or equal to -156 dBm, the quantized value obtained by quantizing the second filter power is RSRP_1.
  • the specific mapping relationship can be listed in Table 1, which will not be listed here.
  • RSRP_4 corresponds to -153 ⁇ PSSCH-RSRP ⁇ -152, then RSRP_5 and -152 ⁇ PSSCH-RSRP ⁇ -153; Similarly, it can be deduced that RSRP_123 and -34 ⁇ PSSCH-RSRP ⁇ -33, then RSRP_122 and -35 ⁇ PSSCH-RSRP ⁇ -34.
  • Table 1 The mapping relationship between the quantized value and the second filter power
  • Second filter power (dBm) RSRP_0 PSSCH-RSRP ⁇ -156 RSRP_1 -156 ⁇ PSSCH-RSRP ⁇ -155 RSRP_2 -155 ⁇ PSSCH-RSRP ⁇ -154 RSRP_3 -154 ⁇ PSSCH-RSRP ⁇ -153 RSRP_4 -153 ⁇ PSSCH-RSRP ⁇ -152 ... ... RSRP_123 -34 ⁇ PSSCH-RSRP ⁇ -33 RSRP_124 -33 ⁇ PSSCH-RSRP ⁇ -32 RSRP_125 -32 ⁇ PSSCH-RSRP ⁇ -31 RSRP_126 -31 ⁇ PSSCH-RSRP ⁇ -30 RSRP_127 -30 ⁇ PSSCH-RSRP
  • the second terminal device quantizes the second filtered power, and then indicates the quantized quantized value to the first terminal device, which can reduce the amount of data transmission and save network resources.
  • the first terminal device After receiving the first indication information, the first terminal device determines the path loss between the first terminal device and the second terminal device according to the first filter power and the second filter power.
  • the path loss between the first terminal device and the second terminal device can be determined.
  • the path loss between the first terminal device and the second terminal device is the difference between the first filtered power and the second filtered power, for example, formula (8) may be satisfied.
  • the path loss between the first terminal device and the second terminal device is counted in decibels (dB).
  • PL SL represents the path loss between the first terminal device and the second terminal device
  • P n represents the first filter power
  • F n represents the second filter power
  • n represents the first reference signal is the nth transmission
  • n is An integer greater than or equal to 1.
  • the path loss between the first terminal device and the second terminal device is the ratio between the first filtered power and the second filtered power, for example, formula (9) may be satisfied.
  • PL SL represents the path loss between the first terminal device and the second terminal device
  • P n represents the first filter power
  • F n represents the second filter power
  • n represents the first reference signal is the nth transmission
  • n is An integer greater than or equal to 1.
  • S602 may be executed first, and then S603; or, S603 may be executed first, and then S602; or, S602 and S603 may be executed synchronously. That is, the second terminal device may determine the second filter power after the first terminal device determines the first filter power; or, the second terminal device may determine the second filter power before the first terminal device determines the first filter power. Filter power; or, the first terminal device and the second terminal device synchronously determine the first filter power and the second filter power, respectively; this is not limited in the embodiment of the present application.
  • the first terminal device obtains the first filtered power according to the transmit power of the first reference signal
  • the second terminal device obtains the second filtered power according to the received power of the first reference signal, and filters the obtained second filter power.
  • the power is indicated to the first terminal device, and then the first terminal device can determine the lateral path loss between the first terminal device and the second terminal device according to the first filtered power and the second filtered power. Since the first filter power is not configured by the network device, but is calculated by the first terminal device according to the actual transmission power of the reference signal sent by itself, the path loss between the two terminal devices can be estimated more accurately.
  • Fig. 8 is a flowchart of another method for determining path loss provided by this embodiment of the present application.
  • This method can be applied to D2D side-line communication scenarios, which can be either NR D2D side-line communication scenarios or LTE D2D. Or, it can also be applied to the side-line communication scenario of V2X, which can be the side-line communication scenario of NR V2X or the side-line communication scenario of LTE V2X. Or it can also be applied to other scenarios or other communication systems, and the specific application is not limited to the V2X system. For example, this method can be applied to the side-line communication scenario of the NR V2X system 400 shown in FIG. 4.
  • the following uses the NR V2X system 400 as an example to describe the method for determining the path loss provided in the embodiments of the present application.
  • the first terminal device in the following may be the terminal device 2 in FIG. 4, and the second terminal device may be The terminal device 3 in FIG. 4.
  • the first terminal device sends a first reference signal to the second terminal device.
  • the second terminal device After receiving the first reference signal sent by the first terminal device, the second terminal device obtains the second filtered power according to the received power of the first reference signal.
  • the second terminal device After the second terminal device receives the first reference signal from the first terminal device, it can obtain the value used to calculate the path loss according to at least one of the second filter coefficient, the received power of the first reference signal, or the fourth filter power.
  • the second filter power wherein, the fourth filtered power is obtained by the second terminal device according to the received power of the second reference signal, or is the received power of the first reference signal.
  • the third filtered power may be the received power of the first reference signal; when the first reference signal is not the second terminal device When receiving the reference signal from the first terminal device for the first time, the third filtered power may be the filtered power obtained by the second terminal device according to the received power of the second reference signal.
  • the second reference signal is a reference signal from the first terminal device that the second terminal device receives before receiving the first reference signal.
  • the second terminal device may measure the received first reference signal to obtain the received power of the first reference signal.
  • the first reference signal is a DMRS
  • the second terminal device can calculate the received power of the resource unit of the DMRS carried on the PSSCH, and then perform a linear average operation on the received power of all the resource units of the DMRS to obtain the first The received power of a reference signal.
  • the second filter coefficient is used to determine the reference signal power (denoted as the second filter power) on the side of the receiving device (such as the second terminal device).
  • the second filter coefficient may be a high-level filter coefficient or a weighting coefficient, which is not limited in the embodiment of the present application.
  • the second filter coefficient may be configured by the network device 1, or obtained from the configuration information of the resource pool, or configured by the first terminal device. These three methods are described in detail below.
  • Manner 1 The second filter coefficient is configured by the network device 1.
  • the network device 1 (such as a base station) can configure the second filter coefficient for the second terminal device through high-level signaling.
  • the second terminal device can determine the second filter power according to the second filter coefficient configured by the network device 1.
  • the high-level signaling includes CE or RRC signaling of the MAC layer, etc.
  • Manner 2 The second filter coefficient is obtained from the configuration information of the resource pool.
  • the resource pool is, for example, a side link resource pool.
  • the second filter coefficient can be pre-configured in the side link resource pool. In this way, the second terminal device can obtain the second filter coefficient from the configuration information of the side link resource pool, and then based on the second filter coefficient. The coefficient determines the second filter power. In this process, the second terminal device does not need to interact with the network device 1, thereby saving network resources and reducing communication complexity.
  • Manner 3 The second filter coefficient is configured by the first terminal device.
  • the first terminal device may configure the second filter coefficient for the second terminal device, so as to realize the determination of the path loss of the side row link.
  • Manner 3 can be applied to a scenario where the network device 1 does not exist, and can also be applied to a scenario where the second filter coefficient is not configured in the resource pool. This means that there is no need to use a third party (such as the network device 1 or resource pool) to obtain the second filter coefficient, and the determination of the lateral path loss can be achieved according to the second filter coefficient configured by the first terminal device, with strong adaptability, and High flexibility.
  • the second terminal device receives second indication information from the first terminal device, where the second indication information is used to indicate the second filter coefficient.
  • the second terminal device stores a second initial filter coefficient
  • the second initial filter coefficient is used to determine the reference signal power (that is, P HRSRP ) in formula (5).
  • the second initial filter coefficient may be a parameter pre-configured in the second terminal device at the factory.
  • the second filter coefficient is configured by the network device 1. It can be understood that the network device 1 directly configures the second filter coefficient for the second terminal device, or it can be understood that the network device 1 sends parameters to the second terminal device.
  • the second terminal device determines the second filter coefficient according to the second initial filter coefficient and/or parameter information; similarly, the second filter coefficient is obtained from the resource pool, It can be understood that the second terminal device obtains the second filter coefficient from the resource pool. It can also be understood that the second terminal device obtains the parameter information from the resource pool, and then determines the second filter coefficient according to the parameter information and/or the second initial filter coefficient.
  • the second terminal device obtains the parameter information from the resource pool, and then determines the second filter coefficient according to the parameter information and/or the second initial filter coefficient.
  • the second filter coefficient is configured by the second terminal device, which can be understood as the first terminal device configuring the second filter coefficient for the second terminal device, or it can be understood as the first terminal device configuring the parameters for the second terminal device Information, and then the second terminal device determines the second filter coefficient according to the parameter information and/or the second initial filter coefficient.
  • the second filter coefficient may be a second initial filter coefficient. This means that the second terminal device can determine the second filter power according to the second initial filter coefficient, without the configuration of the network device 1 or the configuration of the first terminal device, nor obtaining it from the resource pool, which simplifies the implementation process and is easy to implement.
  • the second terminal device may filter the received power of the first reference signal according to the second filter coefficient, such as high-level filtering, to obtain the second filtered power.
  • high-level filtering refers to filtering at a high-level (such as the RRC layer).
  • the second terminal device performs high-level filtering on the received power of the first reference signal, and the obtained first filtered power may satisfy formula (7).
  • the second terminal device uses high-level filtering to calculate the second filtered power
  • the second filtered power is calculated from the instantaneous value of the received power of the last received reference signal and the filter calculated from the previous high-level filtering.
  • the power is jointly determined, which can avoid the problem of a large error in the calculated path loss caused by the instantaneous value of the received power at a certain moment that is suddenly too large or too small, so the path loss between two terminal devices can be estimated more accurately.
  • the second terminal device sends first indication information to the first terminal device, where the first indication information is used to indicate the second filtering power.
  • the second terminal device After obtaining the second filtered power according to the received power of the first reference signal, the second terminal device sends first indication information for indicating the second filtered power to the first terminal device.
  • the first indication information may be high-level signaling , Such as CE or RRC signaling at the MAC layer.
  • the specific implementation manner of S803 is the same as the implementation manner of S604 in FIG.
  • the first terminal device After receiving the first indication information, the first terminal device determines the path loss between the first terminal device and the second terminal device according to the transmit power of the first reference signal and the second filter power.
  • the first terminal device may determine the transmit power of the first reference signal according to high-level configuration parameters.
  • the path loss between the first terminal device and the second terminal device is the difference between the transmit power of the first reference signal and the second filtered power, for example, formula (8) may be satisfied.
  • the path loss between the first terminal device and the second terminal device is counted in dB.
  • the path loss between the first terminal device and the second terminal device is the ratio between the transmit power of the first reference signal and the second filtered power, for example, formula (9) may be satisfied.
  • the second terminal device obtains the second filtered power according to the received power of the first reference signal, and indicates the obtained second filtered power to the first terminal device, and then the first terminal device can obtain the second filtered power according to the first reference signal.
  • the transmission power of the signal and the second filtering power determine the lateral path loss between the first terminal device and the second terminal device. Since the transmit power of the first reference signal can be determined from the high-level configuration parameters, there is no need to configure the first filter coefficient, and no additional overhead is required, so that the path loss between the two terminal devices can be estimated while the overhead is reduced. ,
  • the implementation is simple and easy to implement.
  • the embodiment of the present application provides an apparatus for determining path loss.
  • the structure of the device may be as shown in FIG. 9, including a transceiver module 901 and a processing module 902.
  • the device 900 for determining path loss may be specifically used to implement the method executed by the first terminal device in the embodiment of FIG. 6.
  • the device 900 may be a vehicle in the NR V2X system 400 (such as the terminal device 2), or may be an in-vehicle module, an in-vehicle module, an in-vehicle component, an in-vehicle chip, or an in-vehicle unit built in the vehicle.
  • the vehicle shown in FIG. 4 is only an example, and the device 900 may also be an RSU, a smart phone, a smart watch, or a tablet computer, etc., which is not limited in the embodiment of the present application.
  • the transceiver module 901 is configured to send the first reference signal to the second terminal device; the processing module 902 is configured to obtain the first filtered power according to the transmission power of the first reference signal; the transceiver module 902 is also configured to receive the The first indication information of the terminal device, the first indication information is used to indicate the second filter power, and the second filter power is the power determined according to the first reference signal; the processing module 902 is also used to indicate the second filter power according to the first filter power and the second filter power. Filter the power to determine the path loss between the first terminal device and the second terminal device.
  • the first filter power is obtained according to at least one of the first filter coefficient, the transmission power of the first reference signal, or the third filter power, where the third filter power is the first filter power.
  • the terminal device obtains according to the transmission power of the second reference signal, or is the transmission power of the first reference signal, and the second reference signal is a reference signal sent by the first terminal device to the second terminal device before sending the first reference signal.
  • the first filter coefficient is configured by the network device, or obtained from configuration information of the resource pool, or configured by the first terminal device, or is the first initial filter coefficient
  • the first initial filter coefficient is a parameter configured at the factory.
  • the transceiver module 901 is further configured to send second indication information to the second terminal device, where the second indication information is used to indicate the first terminal device. Two filter coefficients, the second filter coefficient is used to determine the second filter power.
  • the processing module 902 is specifically configured to filter the transmit power of the first reference signal to obtain the first filtered power.
  • the first filtered power may satisfy formula (6).
  • the third filter power is the transmit power of the first reference signal.
  • the path loss between the first terminal device and the second terminal device includes the difference between the first filter power and the second filter power, or the first filter power and the second filter power Ratio.
  • the processing module 902 is further configured to determine the transmit power of the first reference signal according to high-level configuration parameters.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It can be understood that the function or implementation of each module in the embodiment of the present application may further refer to the related description of the method embodiment.
  • the device 1000 for determining the path loss may be as shown in FIG. 10, and the device 1000 may be a first terminal device, such as an RSU, a smart phone, a vehicle, a vehicle-mounted module built in the vehicle, and a vehicle-mounted module. , On-board components, on-board chips or on-board units, etc.
  • the device 1000 may include a processor 1001, a transceiver 1002, and a memory 1003.
  • the transceiver module 901 may be a transceiver 1002, the transceiver 1002 may be a transmitter when sending information, the transceiver 1002 may be a receiver when receiving information, and the processing module 902 may be a processor 1001.
  • the processor 1001 may be a CPU or a digital processing unit.
  • the transceiver 1002 may be a communication interface, an interface circuit such as a transceiver circuit, etc., or a transceiver chip.
  • the device 1000 further includes: a memory 1003, configured to store a program executed by the processor 1001.
  • the memory 1003 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory (volatile memory), such as random access memory (random access memory). -access memory, RAM).
  • the memory 1003 is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the processor 1001 is configured to execute the program code stored in the memory 1003, and is specifically configured to execute the actions of the aforementioned processing module 902, which will not be repeated in this application.
  • the transceiver 1002 is specifically configured to perform the actions of the above-mentioned transceiver module 901, which will not be repeated here in this application.
  • the embodiment of the present application does not limit the specific connection medium between the transceiver 1002, the processor 1001, and the memory 1003.
  • the memory 1003, the processor 1001, and the transceiver 1002 are connected by a bus 1004.
  • the bus is represented by a thick line in FIG. 10, and the connection modes between other components are merely illustrative , Is not limited.
  • the bus 1004 can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used to represent in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application provides an apparatus for determining path loss.
  • the structure of the device may be as shown in FIG. 11, including a transceiver module 1101 and a processing module 1102.
  • the device 1100 for determining path loss may be specifically used to implement the method executed by the first terminal device in the embodiment of FIG. 8.
  • the device 1100 may be a vehicle in the NR V2X system 400 (such as the terminal device 2), or may be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip, or a vehicle-mounted unit built in the vehicle.
  • the vehicle shown in FIG. 4 is only an example, and the device 1100 may also be an RSU, a smart phone, a smart watch, or a tablet computer, etc., which is not limited in the embodiment of the present application.
  • the transceiver module 1101 is configured to send a first reference signal to a second terminal device; to receive first indication information from the second terminal device, the first indication information is used to indicate the second filter power, and the second filter power is based on The power determined by the first reference signal; a processing module 1102, configured to determine the path loss between the first terminal device and the second terminal device according to the transmit power of the first reference signal and the second filtered power.
  • the transceiver module 1101 is further configured to send second indication information to the second terminal device, the second indication information is used to indicate the second filter coefficient, and the second filter coefficient is used to determine the second filter coefficient. power.
  • the processing module 1102 is further configured to determine the transmit power of the first reference signal according to high-level configuration parameters.
  • the path loss between the first terminal device and the second terminal device includes the difference between the transmit power of the first reference signal and the second filter power, or the transmit power of the first reference signal and the The ratio of the second filtered power.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It can be understood that the function or implementation of each module in the embodiment of the present application may further refer to the related description of the method embodiment.
  • the device 1200 for determining the path loss may be as shown in FIG. 12, and the device 1200 may be a first terminal device, such as an RSU, a smart phone, a vehicle, a vehicle-mounted module built in the vehicle, and a vehicle-mounted module. , On-board components, on-board chips or on-board units, etc.
  • the apparatus 1200 may include a processor 1201, a transceiver 1202, and a memory 1203.
  • the transceiver module 1101 may be a transceiver 1202, the transceiver 1202 may be a transmitter when sending information, the transceiver 1202 may be a receiver when receiving information, and the processing module 1102 may be a processor 1201.
  • the processor 1201 may be a CPU or a digital processing unit.
  • the transceiver 1202 may be a communication interface, an interface circuit such as a transceiver circuit, etc., or a transceiver chip.
  • the device 1200 further includes: a memory 1203 for storing programs executed by the processor 1201.
  • the memory 1203 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory (volatile memory), such as random access memory (random access memory). -access memory, RAM).
  • the memory 1203 is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the processor 1201 is configured to execute the program code stored in the memory 1203, and is specifically configured to execute the actions of the aforementioned processing module 1102, which will not be repeated in this application.
  • the transceiver 1202 is specifically configured to perform the actions of the above-mentioned transceiver module 1101, which will not be repeated in this application.
  • the embodiment of the present application does not limit the specific connection medium between the transceiver 1202, the processor 1201, and the memory 1203.
  • the memory 1203, the processor 1201, and the transceiver 1202 are connected by a bus 1204.
  • the bus is represented by a thick line in FIG. , Is not limited.
  • the bus 1204 can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used in FIG. 12 to represent it, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application provides an apparatus for determining path loss.
  • the structure of the device may be as shown in FIG. 13, including a transceiver module 1301 and a processing module 1302.
  • the device 1300 for determining path loss may be specifically used to implement the method executed by the second terminal device in the embodiments of FIG. 6 and FIG. 8.
  • the device 1300 may be a vehicle in the NR V2X system 400 (such as the terminal device 3), or may be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip, or a vehicle-mounted unit built in the vehicle.
  • the vehicle shown in FIG. 4 is only an example, and the device 1300 may also be an RSU, a smart phone, a smart watch, or a tablet computer, etc., which is not limited in the embodiment of the present application.
  • the transceiver module 1301 is used to receive the first reference signal from the first terminal device; the processing module 1302 is used to obtain the second filter power according to the received power of the first reference signal, and the second filter power is used to determine the first reference signal.
  • the second filter power is obtained according to at least one of the second filter coefficient, the received power of the first reference signal, or the fourth filter power, where the fourth filter power is the second filter power.
  • the terminal device obtains according to the received power of the second reference signal, or the received power of the first reference signal, and the second reference signal is the reference signal received by the second terminal device before receiving the first reference signal.
  • the second filter coefficient is configured by the network device, or obtained from the configuration information of the resource pool, or configured by the first terminal device, or is the second initial filter coefficient
  • the second initial filter coefficient is a parameter configured at the factory.
  • the transceiver module 1301 is further configured to receive second indication information from the first terminal device, where the second indication information is used to indicate The second filter coefficient.
  • the processing module 1302 is specifically configured to filter the received power of the first reference signal to obtain the second filtered power.
  • the second filtered power may satisfy formula (7).
  • the fourth filtered power is the received power of the first reference signal.
  • the processing module 1302 is further configured to measure the first reference signal to obtain the received power of the first reference signal.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It can be understood that the function or implementation of each module in the embodiment of the present application may further refer to the related description of the method embodiment.
  • the device 1400 for determining the path loss may be as shown in FIG. 14.
  • the device 1400 may be a second terminal device, such as an RSU, a smart phone, a vehicle, a vehicle-mounted module built in the vehicle, and a vehicle-mounted module. , On-board components, on-board chips or on-board units, etc.
  • the device 1400 may include a processor 1401, a transceiver 1402, and a memory 1403.
  • the transceiver module 1301 may be a transceiver 1402, the transceiver 1402 may be a transmitter when sending information, the transceiver 1402 may be a receiver when receiving information, and the processing module 1302 may be a processor 1401.
  • the processor 1401 may be a CPU or a digital processing unit.
  • the transceiver 1402 may be a communication interface, an interface circuit such as a transceiver circuit, etc., or a transceiver chip.
  • the device 1400 further includes: a memory 1403, configured to store a program executed by the processor 1401.
  • the memory 1403 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory, such as random access memory (random access memory). -access memory, RAM).
  • the memory 1403 is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the processor 1401 is configured to execute the program code stored in the memory 1403, and is specifically configured to execute the actions of the above-mentioned processing module 1302, which will not be repeated in this application.
  • the transceiver 1402 is specifically configured to perform the actions of the above-mentioned transceiver module 1301, which will not be repeated in this application.
  • the embodiment of the present application does not limit the specific connection medium between the transceiver 1402, the processor 1401, and the memory 1403.
  • the memory 1403, the processor 1401, and the transceiver 1402 are connected by a bus 1404.
  • the bus is represented by a thick line in FIG. , Is not limited.
  • the bus 1404 can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 14, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer software instructions required to execute the above-mentioned processor, which contains a program required to execute the above-mentioned processor.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种确定路径损耗的方法、装置及系统,适用于车联网、智能驾驶、智能网联车、V2X等领域,用以确定两个终端装置之间的侧行路径损耗。该方法包括:第一终端装置先向第二终端装置发送第一参考信号,第一终端装置根据第一参考信号的发射功率得到第一滤波功率,再结合第二终端装置指示的第二滤波功率,可以确定出第一终端装置和第二终端装置之间的路径损耗。由于第一滤波功率是第一终端装置根据第一参考信号的实际发射功率确定,能够较为准确地确定出两个终端装置之间的路径损耗,从而后续可以基于该路径损耗对第一终端装置的发射功率进行控制,进而在保证通信质量的同时,可以降低对其他终端装置或网络装置的干扰,提高通信可靠度。

Description

一种确定路径损耗的方法、装置及系统 技术领域
本申请涉及无线通信技术领域,尤其涉及一种确定路径损耗的方法、装置及系统。
背景技术
在新空口(new radio,NR)车到一切(vehicle to everything,V2X)系统中,终端装置可以通过上行链路(uplink,UL)或下行链路(downlink,DL)与网络装置(如基站)进行通信,也可以通过侧行链路(sidelink,SL)与其他终端装置进行通信。
在上行通信场景中,终端装置通常基于下行路径损耗对终端装置的上行发射功率进行控制,以避免因上行发射功率过大,影响网络装置接收其他终端装置的上行信号,也可以避免因上行发射功率过小,降低网络装置接收来自该终端装置的上行信号的质量。对于一个终端装置来说,可以对来自网络装置的参考信号进行测量得到参考信号接收功率(reference signal receiving power,RSRP),根据该RSRP以及网络装置配置的参考信号功率(reference signal power),就可以确定下行路径损耗。
在侧行通信场景中,发送装置将侧行信号发送给接收装置时,如果侧行发射功率过大,会影响接收装置接收来自网络装置的下行信号或来自其他终端装置的侧行信号;而如果侧行发射功率过小,又会降低接收装置接收来自该发送装置的侧行信号的质量。为了避免上述问题,发送装置可以对该发送装置的侧行发射功率进行控制。参考对上行发射功率进行控制的方式,如果要对侧行发射功率进行控制,就需要确定侧行路径损耗。目前对于侧行路径损耗,尚无可行的确定方式。
发明内容
本申请实施例提供一种确定路径损耗的方法、装置及系统,用于确定两个终端装置之间的路径损耗。
第一方面,本申请实施例提供一种确定路径损耗的方法,包括:第一终端装置先向第二终端装置发送第一参考信号;第一终端装置根据第一参考信号的发射功率得到第一滤波功率;第一终端装置接收来自第二终端装置的第一指示信息,该第一指示信息用于指示第二滤波功率,该第二滤波功率为根据第一参考信号确定的功率;然后第一终端装置根据第一滤波功率和第二滤波功率,确定第一终端装置与第二终端装置之间的路径损耗。
在一种可能的设计中,该终端装置可以是车辆或内置于车辆的车载模块、车载模组等,还可以是智能手机、智能手表等。
本申请实施例中,第一终端装置根据第一参考信号的发射功率确定第一滤波功率,再结合第二终端装置指示的第二滤波功率,可以确定出第一终端装置和第二终端装置之间的路径损耗。由于第一滤波功率是第一终端装置根据第一参考信号的实际发射功率确定,基于该第一滤波功率能够较为准确地确定出两个终端装置之间的路径损耗,从而后续可以该路径损耗对第一终端装置的发射功率进行控制,进而在保证通信质量的同时,降低对其他终端装置或网络装置的干扰,提高通信可靠度。
在一种可能的设计中,第一滤波功率是根据第一滤波系数、第一参考信号的发射功率或第三滤波功率中的至少一个得到的,其中,第三滤波功率是第一终端装置根据第二参考信号的发射功率得到的、或者是第一参考信号的发射功率,第二参考信号为第一终端装置在发送第一参考信号之前,向第二终端装置发送的参考信号。上述设计中,可以根据第一滤波系数、第一参考信号的发射功率或者第三滤波功率中的至少一个得到用于确定路径损耗的第一滤波功率,以实现对两个终端装置间的路径损耗的确定。
在一种可能的设计中,第一滤波系数可以是网络装置配置的,或者可以是从资源池的配置信息中获取的,或者可以是由第一终端装置配置的,或者可以是第一初始滤波系数,该第一初始滤波系数为出厂时配置的参数。
上述设计中,第一终端装置可以根据网络装置配置的第一滤波系数,以确定两个终端装置之间的路径损耗;或者,第一终端装置可以从资源池的配置信息中获取第一滤波系数,进而基于该第一滤波系数确定路径损耗,在此设计中,第一终端装置不需要与网络装置进行交互就可以得到第一滤波系数,可以节约网络资源和降低通信复杂度;或者,第一滤波系数由第一终端装置自行配置,在此设计中,第一终端装置可以在无网络装置配置、或无资源池配置的场景下自行配置第一滤波系数,适应性强,灵活度高;或者,第一滤波系数是出厂时配置的第一初始滤波系数,在此设计中,第一滤波系数可以直接由出厂配置的参数获取得到,不需要进行自行配置,也不需要通过与网络装置或资源池交互获取,能够简化实施过程,易于实现。
在一种可能的设计中,在第一滤波系数由第一终端装置配置时,该方法还包括:第一终端装置向第二终端装置发送第二指示信息,该第二指示信息用于指示第二滤波系数,第二滤波系数用于确定第二滤波功率。上述设计中,在第一滤波系数由第一终端装置配置时,第一终端装置还需要为第二终端装置配置用于确定第二滤波功率的第二滤波系数,并将第二滤波系数指示给第二终端装置,可以使得第二终端装置较为准确地确定出第二滤波功率。
在一种可能的设计中,第一终端装置根据第一参考信号的发射功率得到第一滤波功率,包括:第一终端装置对第一参考信号的发射功率进行滤波,得到第一滤波功率。上述设计中,第一终端装置通过滤波的方式获取用于确定路径损耗的第一滤波功率,以提高路径损耗的准确性。
在一种可能的设计中,第一滤波功率满足如下公式:
P n=(1-b)×P n-1+b×L n
其中,P n表示第一滤波功率,P n-1表示第三滤波功率,L n表示第一参考信号的发射功率,b表示加权系数,b的取值与第一滤波系数有关,n表示第一参考信号为第n次传输,n为大于或等于1的整数。
上述设计中,通过发送第一参考信号的发射功率瞬时值(即第一参考信号的发射功率)和上一次获得的滤波功率共同确定第一滤波功率,这样可以避免因发射功率瞬时值突然变大或变小导致计算出的路径损耗的误差过大的问题,从而能较为精确地确定出两个终端装置之间的路径损耗。
在一种可能的设计中,在n等于1时,第三滤波功率为第一参考信号的发射功率。上述设计中,第一参考信号为第1次发送时,第三滤波功率为第一参考信号的发射功率,以确定两个终端装置之间的路径损耗。
在一种可能的设计中,第一终端装置与第二终端装置之间的路径损耗包括第一滤波功 率和第二滤波功率之间的差值,或者第一滤波功率与第二滤波功率的比值。上述设计中,第一终端装置可以根据简单的差值运算或简单的比值运算,就可以计算出两个终端装置之间的路径损耗,计算量小,易于实现。
在一种可能的设计中,该方法还包括:第一终端装置根据高层配置参数确定第一参考信号的发射功率。上述设计中,第一终端装置可以通过高层配置参数确定出第一参考信号的发射功率,以确定两个终端装置之间的路径损耗。
第二方面,本申请实施例提供一种确定路径损耗的方法,包括:第一终端装置先向第二终端装置发送第一参考信号;第一终端装置接收来自第二终端装置的第一指示信息,第一指示信息用于指示第二滤波功率,第二滤波功率为根据第一参考信号确定的功率;然后第一终端装置根据第一参考信号的发射功率和第二滤波功率,确定第一终端装置与第二终端装置之间的路径损耗。
在一种可能的设计中,该终端装置可以是车辆或内置于车辆的车载模块、车载模组等,还可以是智能手机、智能手表等。
本申请实施例中,第一终端装置根据第一参考信号的发射功率以及第二终端装置指示的第二滤波功率,可以确定出第一终端装置和第二终端装置之间的路径损耗。由于第一参考信号的实际发射功率无需计算得到,因此在基于该第一参考信号的发射功率和第二滤波功率确定出路径损耗的同时,可以减少运行量,易于实现,且后续可以基于确定出的路径损耗对第一终端装置的发射功率进行控制,从而在保证通信质量的同时,降低对其他终端装置或网络装置的干扰,提高通信可靠度。
在一种可能的设计中,第一终端装置向第二终端装置发送第二指示信息,第二指示信息用于指示第二滤波系数,第二滤波系数用于确定第二滤波功率。上述设计中,第一终端装置还需要为第二终端装置配置用于确定第二滤波功率的第二滤波系数,并将第二滤波系数指示给第二终端装置,以使第二终端装置较为准确地确定出第二滤波功率。
在一种可能的设计中,该方法还包括:第一终端装置根据高层配置参数确定第一参考信号的发射功率。上述设计中,第一终端装置可以通过高层配置参数确定出第一参考信号的发射功率,以确定两个终端装置之间的路径损耗。
在一种可能的设计中,第一终端装置与第二终端装置之间的路径损耗包括第一参考信号的发射功率和第二滤波功率的差值,或者第一参考信号的发射功率与第二滤波功率的比值。上述设计中,第一终端装置可以根据简单的差值运算或简单的比值运算,就可以计算出两个终端装置之间的路径损耗,计算量小,易于实现。
第三方面,本申请实施例提供一种确定路径损耗的方法,该方法包括:第二终端装置先接收来自第一终端装置的第一参考信号;第二终端装置根据第一参考信号的接收功率得到第二滤波功率,第二滤波功率用于确定第一终端装置与第二终端装置之间的路径损耗;然后第二终端装置向第一终端装置发送第一指示信息,第一指示信息用于指示第二滤波功率。
在一种可能的设计中,该终端装置可以是车辆或内置于车辆的车载模块、车载模组等,还可以是智能手机、智能手表等。
本申请实施例中,第二终端装置根据第一参考信号的接收功率确定第二滤波功率,再将第二滤波功率指示给第一终端装置,以使得第一终端装置确定出第一终端装置和第二终端装置之间的路径损耗。由于第二滤波功率是第二终端装置根据第一参考信号的实际接收 功率确定,基于该第二滤波功率能够较为准确地确定出两个终端装置之间的路径损耗,从而后续第一终端装置可以基于确定出的路径损耗对第一终端装置的发射功率进行控制,进而在保证通信质量的同时,降低对其他终端装置或网络装置的干扰,提高通信可靠度。
在一种可能的设计中,第二滤波功率是根据第二滤波系数、第一参考信号的接收功率或第四滤波功率中的至少一个得到的,其中,第四滤波功率是第二终端装置根据第二参考信号的接收功率得到的、或者是第一参考信号的接收功率,第二参考信号为第二终端装置在接收第一参考信号之前接收到的参考信号。上述设计中,可以根据第二滤波系数、第一参考信号的接收功率或者第四滤波功率中的至少一个得到用于确定路径损耗的第二滤波功率,以实现对两个终端装置间的路径损耗的确定。
在一种可能的设计中,第二滤波系数是网络装置配置的,或者是从资源池的配置信息中获取的,或者是由第一终端装置配置的,或者是第二初始滤波功率,该第二初始滤波功率为出厂时配置的参数。
上述设计中,第二终端装置可以根据网络装置配置的第二滤波系数,以使得第一终端装置基于该第二滤波功率确定两个终端装置之间的路径损耗;或者,第二终端装置可以从资源池的配置信息中获取第二滤波系数,进而基于该第二滤波系数确定路径损耗,在此设计中,第二终端装置不需要与网络装置进行交互就可以得到第二滤波系数,可以节约网络资源和降低通信复杂度;或者,第二滤波系数由第一终端装置配置,在此设计中,第一终端装置可以在无网络装置配置、或无资源池配置的场景下自行为第二终端装置配置第二滤波系数,适应性强,灵活度高;或者,第二滤波系数可以直接由出厂配置的参数获取得到,不需要进行第一终端装置配置,也不需要通过与网络装置或资源池交互获取,能够简化实施过程,易于实现。
在一种可能的设计中,在第二滤波系数由第一终端装置配置时,该方法还包括:第二终端装置接收来自第一终端装置的第二指示信息,第二指示信息用于指示第二滤波系数。上述设计中,在第二滤波系数由第一终端装置配置时,第二终端装置还会接收到第一终端装置为第二终端装置配置的第二滤波系数,可以使得第二终端装置较为准确地确定出第二滤波功率。
在一种可能的设计中,第二终端装置根据第一参考信号的接收功率得到第二滤波功率,包括:第二终端装置对第一参考信号的接收功率进行滤波,得到第二滤波功率。上述设计中,第二终端装置通过滤波的方式获取用于确定路径损耗的第二滤波功率,以提高路径损耗的准确性。
在一种可能的设计中,第二滤波功率满足如下公式:
F n=(1-a)×F n-1+a×M n
其中,F n表示第二滤波功率,F n-1表示第四滤波功率,M n表示第一参考信号的接收功率,a表示加权系数,a的取值与第二滤波系数有关,n表示第一参考信号为第n次传输,n为大于或等于1的整数。
上述设计中,通过接收第一参考信号的接收功率瞬时值(即第一参考信号的接收功率)和上一次获得的滤波功率共同确定第二滤波功率,这样可以避免因接收功率瞬时值突然变大或变小导致计算出的路径损耗的误差过大的问题,从而能较为精确地确定出两个终端装置之间的路径损耗。
在一种可能的设计中,在n等于1时,第四滤波功率为第一参考信号的接收功率。上 述设计中,第一参考信号为第1次发送时,第四滤波功率为第一参考信号的接收功率,以确定两个终端装置之间的路径损耗。
在一种可能的设计中,该方法还包括:第二终端装置对第一参考信号进行测量,得到第一参考信号的接收功率。上述设计中,第二终端装置可以通过对第一参考信号进行测量,得到第一参考信号的接收功率,以确定两个终端装置之间的路径损耗。
第四方面,本申请实施例提供一种确定路径损耗的装置,该装置可以是终端装置,也可以是终端装置内的芯片或芯片组,其中,终端装置可以为第一终端装置或第二终端装置中的任一个。该装置可以包括收发模块和处理模块。当该装置是终端装置时,该处理模块可以是处理器,该收发模块可以是收发器;该装置还可以包括存储模块,该存储模块可以是存储器;该存储模块用于存储指令,该处理模块执行该存储模块所存储的指令,以使第一终端装置执行上述第一方面中相应的功能,或者,该处理模块执行该存储模块所存储的指令,以使第一终端装置执行上述第二方面中相应的功能,或者,该处理模块执行该存储模块所存储的指令,以使第二终端装置执行上述第三方面中相应的功能。当该装置是通信设备内的芯片或芯片组时,该处理模块可以是处理器,该收发模块可以是输入/输出接口、管脚或电路等;该处理模块执行存储模块所存储的指令,以使第一终端装置执行上述第一方面中相应的功能,或者,该处理模块执行存储模块所存储的指令,以使第一终端装置执行上述第二方面中相应的功能,或者,该处理模块执行存储模块所存储的指令,以使第二终端装置执行上述第三方面中相应的功能。该存储模块可以是该芯片或芯片组内的存储模块(例如,寄存器、缓存等),也可以是该终端装置内的位于该芯片或芯片组外部的存储模块(例如,只读存储器、随机存取存储器等)。
第五方面,本申请实施例提供一种确定路径损耗的装置,包括:处理器,还可以包括通信接口和/或存储器。通信接口用于该装置与其他装置之间传输信息、和/或消息、和/或数据。该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该装置执行如上述第一方面或第一方面中任一设计、第二方面或第二方面中任一设计、第三方面或第三方面中任一设计的确定路径损耗的方法。
第六方面,本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质用于存储计算机指令,当计算机指令在计算机上运行时,使得计算机执行上述第一方面或第一方面中任意一种可能的设计、第二方面或第二方面中任意一种可能的设计、第三方面或第三方面中任意一种可能的设计的确定路径损耗的方法。
第七方面,本申请还提供一种包括指令的计算机程序产品,计算机程序产品用于存储计算机指令,当计算机指令在计算机上运行时,使得计算机执行上述第一方面或第一方面中任意一种可能的设计、第二方面或第二方面中任意一种可能的设计、第三方面或第三方面中任意一种可能的设计的确定路径损耗的方法。
第八方面,本申请还提供一种确定路径损耗的系统,该系统包括第一终端装置和第二终端装置,其中,第一终端装置可以执行上述第一方面或第二方面中相应的功能,第二终端装置可以执行上述第三方面中相应的功能。
第九方面,本申请实施例提供的一种芯片,芯片包括至少一个处理器和通信接口,处理器与存储器耦合,用于读取存储器中存储的计算机程序以执行本申请实施例第一方面或第一方面中任一设计、第二方面或第二方面中任一设计、第三方面或第三方面中任一设计的确定路径损耗的方法。
第十方面,本申请实施例提供一种芯片,包括通信接口和至少一个处理器,所述至少一个处理器运行以执行本申请实施例第一方面或第一方面中任意一种可能的设计、第二方面或第二方面中任意一种可能的设计、第三方面或第三方面中任意一种可能的设计的确定路径损耗的方法。
附图说明
图1为本申请实施例适用的一种V2X的场景示意图;
图2为本申请实施例适用的另一种V2X的场景示意图;
图3为本申请实施例适用的另一种V2X的场景示意图;
图4为本申请实施例适用的一种NR V2X的场景示意图;
图5为本申请实施例适用的确定下行路径损耗的方法流程示意图;
图6为本申请实施例提供的一种确定路径损耗的方法流程示意图;
图7为本申请实施例适用的物理资源块的结构示意图;
图8为本申请实施例提供的另一种确定路径损耗的方法流程示意图;
图9为本申请实施例提供的一种确定路径损耗的装置的结构示意图;
图10为本申请实施例提供的另一种确定路径损耗的装置的结构示意图;
图11为本申请实施例提供的另一种确定路径损耗的装置的结构示意图;
图12为本申请实施例提供的另一种确定路径损耗的装置的结构示意图;
图13为本申请实施例提供的另一种确定路径损耗的装置的结构示意图;
图14为本申请实施例提供的另一种确定路径损耗的装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端装置,包括向用户提供语音和/或数据连通性的装置。终端装置可以包括向用户提供语音的装置,或包括向用户提供数据连通性的装置,或包括向用户提供语音和数据连通性的装置。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端装置可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端装置可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、V2X终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service, PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端装置还可以是可穿戴设备等。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端装置,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU);如果位于路侧终端设备上(例如放置在路侧单元内或安装在路侧单元内),都可以认为是路侧终端设备,路侧终端设备也称为路侧单元(road side unit,RSU)。本申请的终端装置还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
本申请实施例中,用于实现终端装置的功能的装置可以是终端设备,也可以是能够支持终端装置实现该功能的装置,例如芯片系统,该装置可以被安装在终端装置中。本申请实施例中,芯片系统可以由一个或多个芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端装置为例,描述本申请实施例提供的技术方案。
2)网络装置,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端装置通信的装置,或者例如,一种V2X技术中的网络装置为RSU。网络装置可用于将收到的空中帧与IP分组进行相互转换,作为终端装置与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络装置还可协调对空口的属性管理。例如,网络装置可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)新空口(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络装置还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)、安全锚功能(security anchor function,SEAF)、认证服务器功能(authentication server function,AUSF)、核心网功能(core network function, CN function)或统一数据管理(unified data management,UDM)等。
本申请实施例中,用于实现网络装置的功能的装置可以是网络装置,也可以是能够支持网络装置实现该功能的装置,例如芯片系统等。该装置可以被安装在网络装置中。在后文中,主要以用于实现网络装置的功能的装置是网络装置为例来描述本申请实施例提供的技术方案。
3)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
4)滤波,是指基于滤波系数对发送装置侧的参考信号的发射功率进行滤波,以得到发送装置侧的滤波功率;或者是指基于滤波系数对接收装置侧的RSRP进行滤波,以得到接收装置侧的滤波功率。进一步地,该滤波可以是高层滤波,高层滤波是指在高层(如无线资源控制(radio resource control,RRC)层)进行滤波。其中,滤波系数是用于滤波的参数,在发送装置侧的滤波系数与在接收装置侧的滤波系数可以为同一参数,也可以为不同参数。发送装置侧的滤波功率可以是用于确定路径损耗的参考信号功率,接收装置侧的滤波功率可以是用于确定路径损耗的高层滤波RSRP(higher layer filtered RSRP)。另外,在不作特殊说明的情况下,发送装置和接收装置皆为终端装置。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度,并且“第一”、“第二”的描述也并不限定对象一定不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面对本申请实施例的相关技术进行说明。
无线通信技术经历了飞速的发展,先后经历了基于模拟通信系统的第一代无线通信系统,以全球移动通信(global system for mobile communication,GSM)系统为代表的第二代无线通信系统,以宽带码分多址(wideband code division multiple access,WCDMA)系统为代表的第三代无线通信系统,再到目前已经在全世界广泛商用并且取得巨大成功的以LTE系统为代表的第四代无线通信系统。无线通信系统支持的业务也从最初的语音、短信,发展到目前支持无线高速数据通信。同时,无线连接数量正在持续高速增长,各种新的无线业务类型也大量涌现,例如物联网、自动驾驶等,这些对未来无线通信系统(例如5G无线通信系统)提出了更高的要求。
物联网是在通信系统提供的互联网的基础上延伸和扩展的网络,通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实现物与物、物与人之间的连接。物联网的应用领域涉及到方方面面,比如在智能交通中的应用等。而随着交通信息化和智能交通的行业发展,车联网的概念被提出。车联网主要指车辆上的车载设备通过无线通信技术,对信息网络平台中的所有车辆的动态信息进行有效路由,在车 辆运行中提供不同的功能服务,旨在提升汽车安全性、自动化驾驶,并提升交通效率。车联网的实现主要依赖于V2X技术,V2X技术核心在于实现车辆与万事万物的互连。
请参见图1~图3,V2X具体可以包括车与车(vehicle to vehicle,V2V)(如图1所示)、车与行人(vehicle-to-pedestrian,V2P)(如图2所示)、车与基础设施(vehicle-to-infrastructure,V2I)、车与网络(vehicle-to-network,V2N)四种应用场景(如图3所示)。其中,V2V指的是车辆间的通信;V2P指的是车辆与人(如行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与路侧单元的通信,V2N指的是车辆与基站/网络的通信。车辆通过与其他车辆、行人以及与网络设施之间的通信,可以实时地获取周围的路况信息,从而更好地辅助车辆驾驶甚至实现自动驾驶。
由于V2X通信中包括以车辆为代表的高速移动设备,典型的应用场景包括智能汽车、自动驾驶、远程驾驶、智能交通运输系统等,出于安全考虑,这些应用场景对通信时延以及通信可靠性的要求非常高。在LTE网络基础上,第三代合作伙伴计划(the 3rd generation partnership project,3GPP)提出了LTE V2X。LTE V2X可以初步支持基本的V2X通信需求。然而,对于未来的完全智能驾驶、自动驾驶等应用场景而言,现阶段的LTE V2X还无法提供充足的支持。随着NR技术在3GPP标准组织中的开发,NR V2X也将进一步发展,如为了支持更高级的业务场景(如编队行驶,协同感知,远程驾驶等),NR V2X提出了支持更低的传输时延(如低至20ms),更可靠的通信传输(如高达99.999%),以及更高的吞吐量(如高达1Gbps)等,以满足更加广泛的应用场景需求。
在LTE系统和NR系统中,终端装置可以通过对上行发射功率进行控制,可以避免因上行发射功率过大,干扰网络装置接收其他终端装置的上行信息,也可以避免因上行发射功率过小,降低网络装置接收来自该终端装置的上行信号的质量,从而能降低传输时延和提高通信可靠性。通常情况下,终端装置应基于上行路径损耗对终端装置的上行发射功率进行控制,但考虑到上下行链路具有互易性,上行路径损耗与下行路径损耗可认为近似相等,且用于计算下行路径损耗的参考信号功率是由网络装置配置的,减少运算量,意味着相较于上行路径损耗,下行路径损耗更容易获取,因此终端装置通常是基于下行路径损耗对终端装置的上行发射功率进行控制的。
在NR V2X系统中,终端装置不仅可以通过上行链路或下行链路与网络装置进行通信,还也可以通过侧行链路与其他终端装置进行通信。请参见图4,为NR V2X系统的一种示意图。如图4所示,NR V2X系统400包括网络装置1(如基站)和多个终端装置(图4包括终端装置2和终端装置3,且以终端装置是车辆为例)。终端装置2可以通过上行链路或下行链路与网络装置1进行通信,终端装置2还可以通过侧行链路与其他终端装置进行通信。也就是,NR V2X系统中不仅包括上行或下行通信场景,还包括侧行通信场景。在侧行通信场景中,终端装置2将侧行信号发送给终端装置3时,如果侧行发射功率过大,会影响终端装置3接收来自网络装置1的下行信号或来自其他终端装置的侧行信号;而如果侧行发射功率过小,又会降低终端装置3接收来自终端装置2的侧行信号的质量。
为了避免上述问题,在NR V2X系统中,当两个终端装置通过侧行链路进行通信时,发送装置(如终端装置2)支持以下四种功率控制方式:1)根据下行路径损耗进行功率控制;2)根据侧行路径损耗进行功率控制;3)根据下行路径损耗和侧行路径损耗进行功率控制;4)发射装置以其允许的最大发射功率发送信号。
一个通信链路的传输时隙内可以包括一个或多个通信信道。当有多个传输信道在一个 时隙内传输时,为了满足传输需求,需要对各个信道分别进行功率控制。下面以控制物理侧行链路共享信道(physical sidelink share channel,PSSCH)的传输功率为例,对NR V2X功率控制进行介绍。
在发送装置支持根据下行路径损耗和侧行路径损耗进行功率控制时,PSSCH的传输功率可以满足以下公式:
P PSSCH(i)=min(P CMAX,P MAX,CBR,min(P PSSCH,D(i),P PSSCH,SL(i)))     (1)
其中,P PSSCH(i)表示PSSCH的传输功率,P CMAX表示发送装置允许的最大发射功率;P MAX,CBR表示发送装置所在的侧行链路允许的最大发射功率;P PSSCH,D(i)表示根据下行路径损耗进行功率控制后得到的功率,P PSSCH,SL(i)表示根据侧行路径损耗进行功率控制后得到的功率;i表示第i次传输,i为大于或等于1的整数。
示例地,根据下行路径损耗进行功率控制后得到的功率可以满足以下公式:
Figure PCTCN2020075418-appb-000001
其中,P PSSCH,D(i)表示根据下行路径损耗进行功率控制后得到的功率,P 0,D表示接收装置(如网络装置)期望的接收功率,PL D表示下行路径损耗,α D表示下行路径损耗补偿参数,μ的取值与PSSCH传输所用的子载波间隔Δf有关,例如Δf=2 μ·15kHz;
Figure PCTCN2020075418-appb-000002
表示PSSCH传输所分配的资源块数目。P 0,D和α D可以由高层配置参数得到。
类似地,根据侧行路径损耗进行功率控制后得到的功率可以满足以下公式:
Figure PCTCN2020075418-appb-000003
其中,P PSSCH,SL(i)表示根据侧行路径损耗进行功率控制后得到的功率,P 0,SL P 0,D表示接收装置(如终端装置3)期望的接收功率,PL SL表示侧行路径损耗,α SL表示侧行路径损耗补偿参数,μ的取值与PSSCH传输所用的子载波间隔Δf有关,例如Δf=2 μ·15kHz;
Figure PCTCN2020075418-appb-000004
表示PSSCH传输所分配的资源块数目。P 0,SL和α SL可以由高层配置参数得到。
如果发送装置配置有P 0,D和α D,但没有配置P 0,SL和α SL,则表示发送装置支持根据下行路径损耗进行功率控制;如果发送装置配置有P 0,SL和α SL,但没有配置P 0,D和α D,则表示发送装置支持根据侧行路径损耗进行功率控制;如果发送装置配置有P 0,D、α D、P 0,SL和α SL,则表示发送装置支持根据下行路径损耗和侧行路径损耗进行功率控制;如果发送装置没有配置P 0,D、α D、P 0,SL或α SL,则表示发送装置以其允许的最大发射功率发送信号。
由(1)~公式(3)可以看出,在对NR V2X系统中的发送装置的发射功率进行控制时,需要确定出下行路径损耗(即PL D)、和/或侧行路径损耗(即PL SL)。下面先对下行路径损耗的确定方式进行介绍。请参见图5,为确定下行路径损耗的方法流程图。
S1、网络装置先向终端装置发送参考信号,终端装置接收来自网络装置的参考信号。
其中,该参考信号通常可以随着控制信令或者数据一起发送给终端装置。
S2、终端装置对该参考信号进行测量,得到RSRP。
S3、网络装置向终端装置发送网络装置侧的参考信号功率,终端装置接收来自网络装置的参考信号功率。
其中,该参考信号功率可以通过高层配置参数得到。
S4、终端装置根据RSRP和参考信号功率,确定网络装置与终端装置之间的下行路径损耗。
需要说明的是,在图5所示的流程中,可以先执行S2、再执行S3,也可以先执行S3、再执行S2,还可以同步执行S2和S3。也就是说,终端装置可以接收到参考信号后,就对该参考信号进行测量以得到RSRP,再获取网络装置所指示的参考信号功率;也可以在获取网络装置所指示的参考信号功率后,对参考信号进行测量以得到RSRP;还可以在对该参考信号进行测量以得到RSRP时,同步获取网络装置所指示的参考信号功率。
作为一个示例,网络装置与终端装置之间的下行路径损耗可以满足以下公式:
PL D=P RSP_1-P HRSRP      (4)
其中,PL D表示网络装置与终端装置之间的下行路径损耗,P RSP_1表示网络装置侧的参考信号功率,P HRSRP表示终端装置侧的高层滤波RSRP。其中,P RSP_1是由网络装置配置的,P HRSRP是根据RSRP获取的。
参考前述对下行路径损耗的确定方式,侧行路径损耗可以满足以下公式:
PL SL=P RSP_2-P HRSRP        (5)
其中,PL SL表示发送装置与接收装置之间的侧行路径损耗,P RSP_2表示发送装置侧的参考信号功率,P HRSRP表示接收装置侧的高层滤波RSRP。
然而,不同于基于下行路径损耗对发射功率进行控制的方式,侧行通信场景中是两个终端装置之间的直接通信,由网络装置配置参考信号功率以获取路径损耗的方式不再适用于该场景。目前,对于侧行路径损耗,尚未可行的确定方法。
鉴于此,为了能够确定侧行路径损耗,本申请实施例提出一种确定路径损耗的方法及装置,用于确定两个终端装置之间的侧行路径损耗,从而能够基于该侧行路径损耗对终端装置的发射功率进行控制,以提高通信性能。
请参见图6,为本申请实施例提供的一种确定路径损耗的方法的流程图。该方法可以应用于D2D的侧行通信场景,可以是NR D2D的侧行通信场景也可以是LTE D2D的侧行通信场景等;或者,还可以应用于V2X的侧行通信场景,可以是NR V2X的侧行通信场景也可以是LTE V2X的侧行通信场景等。或者还可以应用于其他的场景或其他的通信系统,具体的不做限制应用于V2X系统。例如,该方法可以应用于图4所示的NR V2X系统400的侧行通信场景。下面以应用于NR V2X系统400为例,对本申请实施例提供的确定路径损耗的方法进行说明,其中,下文中的第一终端装置可以是图4中的终端装置2,第二终端装置可以是图4中的终端装置3。
S601:第一终端装置向第二终端装置发送第一参考信号。
第一终端装置向第二终端装置发送第一参考信号,该第一参考信号可以随着控制信令或数据一起发送。其中,第一参考信号随着控制信息一起发送是指,第一参考信号通过物理侧行链路控制信道(physical sidelink control channel,PSCCH)发送;第一参考信号随着数据一起发送是指,第一参考信号通过物理侧行链路共享信道(physical sidelink share channel,PSSCH)发送。
举例而言,请参见图7,为一个物理资源块(physical resource block,PRB)的结构示意图。如图7所示,一个RPB包括14个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,第一个OFDM符号通常用于自动增益控制(automatic gain control,AGC),最后一个OFDM符号为间隔(GAP),通常不发送任何数据,可以用于设备收发间的切换。PSCCH和PSSCH通道是绑定一起发送的,第二个OFDM符号至第四个OFDM符号上一部分子载波用于承载PSCCH,第五个OFDM符号至第十三个OFDM符号上的 子载波、以及第二个OFDM符号至第四个OFDM上除用于承载PSCCH的子载波之外的子载波用于承载PSSCH。PSSCH包括解调参考信号(demodulation reference signal,DMRS)和数据两部分。如果第一参考信号是随着数据一起发送的,则PSSCH中的DMRS可以是第一参考信号,意味着,DMRS可以用于RSRP的测量。其中,PSSCH可以周期性调度、半持续性调度(semi-persistent scheduling,SPS)或非周期调度,本申请实施例对此不作限定。
S602:第一终端装置根据第一参考信号的发射功率得到第一滤波功率。
第一终端装置在向第二终端装置发送第一参考信号后,可以根据第一滤波系数、第一参考信号的发射功率或第三滤波功率中的一个或多个,得到用于计算路径损耗的第一滤波功率。其中,第三滤波功率是第一终端装置根据第二参考信号的发射功率得到的,或者是第一参考信号的发射功率。例如,如果第一参考信号是第一终端装置第一次向第二终端装置发送的参考信号,在此情况下,第三滤波功率初始化为第一参考信号的发射功率,第一终端装置可以根据第一滤波系数和第一参考信号的发射功率确定第一滤波功率;如果第一参考信号不是第一终端装置第一次向第二终端装置发送的参考信号,在此情况下,第三滤波功率为第一终端装置根据第二参考信号的发射功率得到的滤波功率,第一终端装置可以根据第一滤波系数、第一参考信号的发射功率和第三滤波功率确定第一滤波功率。该第二参考信号为第一终端装置在发送第一参考信号之前,最近一次向第二终端装置发送的参考信号。
其中,第一终端装置第一次向第二终端装置发送的参考信号,可以理解为满足数据发送的触发条件后第一终端装置第一次向第二终端装置第一次发送的参考信号。数据发送的触发条件,例如可以是网络装置1通过下行控制信令(downlink control information,DCI)指示第一终端装置向第二终端装置发送信息;或者可以是第一终端装置主动向第二终端装置发送数据等。
在一种可能的实施方式中,第一终端装置可以根据高层配置参数确定第一参考信号的发射功率,该高层配置参数可以是RRC层的配置参数。
第一滤波系数为用于确定发送装置(如第一终端装置)侧的参考信号功率(例如,第一终端装置侧的参考信号功率记为第一滤波功率)的参数,换而言之,该第一滤波系数是用于确定公式(5)中的P RSP_2的参数。该第一滤波系数可以是网络装置1配置的,或者是从资源池的配置信息中获取的,或者是由第一终端装置配置的。下面对这三种方式进行介绍。
方式1:第一滤波系数是由网络装置1配置的。
例如,网络装置1(如基站)可以通过高层信令为第一终端装置配置第一滤波系数,这样,第一终端装置就可以根据高层信令确定第一滤波功率。其中,高层信令例如为媒体访问控制(media access control,MAC)控制元素(control element,CE)或者RRC信令等。在上述方式1中,第一终端装置可以根据网络装置1配置的第一滤波系数确定第一滤波功率,从而可以实现对侧行路径损耗的确定。
方式2:第一滤波系数是从资源池的配置信息中获取的。
该资源池例如为侧行链路资源池。例如,可以将第一滤波系数预配置在侧行链路资源池中,这样,第二终端装置可以从侧行链路资源池的配置信息中获取该第一滤波系数,再基于该第一滤波系数确定第一滤波功率。在此过程中,第一终端装置无需与网络装置1进行交互,从而可以节约网络资源和降低通信复杂度。
其中,侧行链路资源池可以包括用于侧行链路通信的时频资源。该侧行链路资源池的配置信息中可以包括一些公共配置参数,如子信道的大小,或子载波间隔等。一个终端装 置可以配置有多个侧行链路资源池,同一个侧行链路资源池也可以对应多条侧行链路,只有当两个终端装置配置有同一个侧行链路资源池时,这两个终端装置才能建立侧行链路。
在上述方式2中,第一滤波系数是从资源池的配置信息中获取的,第一终端装置可以根据该第一滤波系数确定第一滤波功率,从而可以实现对侧行路径损耗的确定,且实施过程简单,易于实现。例如,一个侧行链路资源池配置一个第一滤波系数,所有使用该侧行链路资源池的UE都可以使用该第一滤波系数来确定路径损耗,不需要网络装置1或UE自己配置第一滤波系数,减少了交互过程(例如网络装置将配置的第一滤波系数发送给第一终端装置),实施过程简单,易于实现。
方式3:第一滤波系数是由第一终端装置配置的。
第一终端装置可以自行配置第一滤波系数,以实现对侧行链路径损耗的确定。方式3可以适用于不存在网络装置1的场景,也可以适用于资源池中未配置第一滤波系数的场景。意味着,第一终端装置作为发送装置需要确定侧行路径损耗时,不需要借助第三方(例如网络装置1或资源池)获取第一滤波系数,可以自行配置第一滤波系数,以实现对侧行路径损耗的确定,且适应性强,灵活性高。
在一种可能的实施方式中,第一终端装置存储有第一初始滤波系数,该第一初始滤波系数用于确定公式(5)中参考信号功率(即P RSP_2)。例如,第一初始滤波系数可以是在出厂时预先配置在第一终端装置中的参数。在此情况下,第一滤波系数是由网络装置1配置的,可以理解为网络装置1直接为第一终端装置配置该第一滤波系数,也可以理解为网络装置1向第一终端装置发送参数信息(例如,倍数值或加数值等),以使得第一终端装置根据第一初始滤波系数和/或参数信息确定第一滤波系数;类似地,第一滤波系数是从资源池中获得的,可以理解为第一终端装置从资源池中获取该第一滤波系数,也可以理解为第一终端装置从资源池中获取参数信息,然后根据该参数信息和/或第一初始滤波系数确定第一滤波系数;第一滤波系数是由第一终端装置配置的,可以理解为第一终端装置自行配置该第一滤波系数,也可以理解为第一终端装置自行配置参数信息,然后根据该参数信息和/或第一初始滤波系数确定第一滤波系数。
在另一种可能的实施方式中,第一滤波系数可以是第一初始滤波系数。意味着,第一终端装置可以根据该第一初始滤波系数确定第一滤波功率,不需要网络装置1配置或第一终端装置配置,也不要从资源池中获取,能够简化实施过程,易于实现。
在一种可能的实施方式中,第一终端装置可以根据第一滤波系数对第一参考信号的发射功率进行滤波,例如高层滤波,得到第一滤波功率。其中,高层滤波是指在高层(如RRC层)进行滤波。
作为一个示例,第一终端装置对第一参考信号的发射功率进行高层滤波,得到的第一滤波功率可以满足如下公式:
P n=(1-b)×P n-1+b×L n     (6)
其中,P n表示第一滤波功率。P n-1表示第三滤波功率。L n表示第一参考信号的发射功率。b表示加权系数,b的取值与第一滤波系数有关,例如,第一滤波系数记为q,则b=1/2 (q4)。n表示第一参考信号为第n次传输,n为大于或等于1的整数。
在公式(6)中,当第一参考信号为第一终端装置第一次向第二终端装置发送的参考信号(即n等于1)时,第三滤波功率为第一参考信号的发射功率,即P 0=L 1。在此情况下,可以看出第一滤波功率为第一参考信号的发射功率,即P 1=L 1
在上述实施例中,第一终端装置采用高层滤波的方式来计算得到第一滤波功率,从公 式(6)可以看出,第一滤波功率是由最近一次发送参考信号的发射功率瞬时值(即L n)和上一次高层滤波计算得到的滤波功率(即P n-1)共同确定的,这样可以避免因某一时刻发射功率瞬时值突然过大或过小导致计算出的路径损耗误差较大的问题,因此可以较为精确地估计出两个终端装置之间的路径损耗。
需要说明的是,本申请实施例中,“第一滤波功率”仅是一种示例性命名,在具体实施中也可以命名为其他,如也可以称为功率、高层滤波功率、或参考信号功率等,名称本身并不构成对技术特征的限定。
S603:第二终端装置接收到第一终端装置根据第一参考信号的接收功率得到第二滤波功率。
第二终端装置在接收到来自第一终端装置的第一参考信号后,可以根据第二滤波系数、第一参考信号的接收功率或第四滤波功率中的一个或多个,得到用于计算路径损耗的第二滤波功率。其中,第四滤波功率是第二终端装置根据第二参考信号的接收功率得到的,或者是第一参考信号的接收功率。例如,如果第一参考信号是第二终端装置第一次接收来自第一终端装置的参考信号,在此情况下,第四滤波功率初始化为第一参考信号的接收功率,第二终端装置可以根据第二滤波系数和第一参考信号的接收功率确定第二滤波功率;如果第一参考信号不是第二终端装置第一次接收来自第一终端装置的参考信号,在此情况下,第四滤波功率为第二终端装置根据第二参考信号的接收功率得到的滤波功率,第二终端装置可以根据第二滤波系数、第一参考信号的接收功率和第四滤波功率确定第二滤波功率。该第二参考信号为第二终端装置在接收第一参考信号之前,最近一次接收到的来自第一终端装置的参考信号。
在一种可能的实施方式中,第二终端装置可以对接收到第一参考信号进行测量,得到第一参考信号的接收功率。以图7为例,第一参考信号为DMRS,第二终端装置可以计算PSSCH上承载的DMRS的资源单元的接收功率,然后对所有DMRS的资源单元的接收功率进行线性平均值运算,从而得到第一参考信号的接收功率。
第二滤波系数为用于确定接收装置(如第二终端装置)侧的高层滤波RSRP(例如,记为第二滤波功率)的参数,换而言之,第二滤波系数是用于确定公式(5)中的P HRSRP的参数。该第二滤波系数可以是网络装置1配置的,或者可以是从资源池的配置信息中获取的,或者可以是由第一终端装置配置的。下面对这三种方式进行详细介绍。
方式1:第二滤波系数是由网络装置1配置的。
例如,网络装置1(如基站)可以通过高层信令为第二终端装置配置第二滤波系数,这样,第二终端装置就可以根据网络装置1配置的第二滤波系数确定第二滤波功率。其中,高层信令包括MAC层的CE或者RRC信令等。在上述方式1中,第二终端装置可以根据网络装置1配置的第二滤波系数确定第二滤波功率,可以实现对侧行路径损耗的确定。
方式2:第二滤波系数是从资源池的配置信息中获取的。
该资源池例如为侧行链路资源池。例如,可以将第二滤波系数预配置在侧行链路资源池中,这样,第二终端装置可以从侧行链路资源池的配置信息中获取该第二滤波系数,再基于该第二滤波系数确定第二滤波功率。在此过程中第二终端装置无需与网络装置1进行交互,从而可以节约网络资源和降低通信复杂度。
方式3:第二滤波系数是由第一终端装置配置的。
第一终端装置可以为第二终端装置配置第二滤波系数,以实现对侧行链路径损耗的确 定。方式3可以适用于不存在网络装置1的场景,也可以适用于资源池中未配置第二滤波系数的场景。意味着,不需要借助第三方(例如网络装置1或资源池)获取第二波系数,可以根据第一终端装置配置的第二滤波系数,实现对侧行路径损耗的确定,适应性强,且灵活性高。
在第二滤波系数由第一终端装置配置时,在S603之前,第二终端装置接收来自第一终端装置的第二指示信息,该第二指示信息用于指示第二滤波系数。
在一种可能的实施方式中,第二终端装置存储有第二初始滤波系数,该第二初始滤波系数用于确定公式(5)中参考信号功率(即P HRSRP)。例如,第二初始滤波系数可以是在出厂时预先配置在第二终端装置中的参数。在此情况下,第二滤波系数是由网络装置1配置的,可以理解为网络装置1直接为第二终端装置配置该第二滤波系数,也可以理解为网络装置1向第二终端装置发送参数信息(例如,倍数值或加数值等),以使得第二终端装置根据第二初始滤波系数和/或参数信息确定第二滤波系数;类似地,第二滤波系数是从资源池中获得的,可以理解为第二终端装置从资源池中获取该第二滤波系数,也可以理解为第二终端装置从资源池中获取参数信息,然后根据该参数信息和/或第二初始滤波系数确定第二滤波系数;第二滤波系数是由第二终端装置配置的,可以理解为第一终端装置为第二终端装置配置该第二滤波系数,也可以理解为第一终端装置为第二终端装置配置参数信息,然后第二终端装置根据该参数信息和/或第二初始滤波系数确定第二滤波系数。
在另一种可能的实施方式中,第二滤波系数可以是第二初始滤波系数。意味着,第二终端装置可以根据该第二初始滤波系数确定第二滤波功率,不需要网络装置1配置或第一终端装置配置,也不要从资源池中获取,能够简化实施过程,易于实现。
在一种可能的实施方式中,如果第一滤波系数是由网络装置1配置的,则第二滤波系数也是由网络装置1配置的;或者,如果第一滤波系数是从资源池的配置信息中获取的,则第二滤波系数也是从资源池的配置信息中获取的;或者,如果第一滤波系数是由第一终端装置配置的,则第二滤波系数也是由第一终端装置配置的;或者如果第一滤波系数是第一初始滤波系数,则第二滤波系数是第二初始滤波系数。
在一种可能的实施方式中,第二终端装置可以根据第二滤波系数对第一参考信号的接收功率进行滤波,例如高层滤波,得到第二滤波功率。其中,高层滤波是指在高层(如RRC层)进行滤波。
作为一个示例,第二终端装置对第一参考信号的接收功率进行高层滤波,得到的第一滤波功率可以满足如下公式:
F n=(1-a)×F n-1+a×M n       (7)
其中,F n表示第二滤波功率。F n-1表示第四滤波功率。M n表示第一参考信号的接收功率。a表示加权系数,a的取值与第二滤波系数有关,例如,第一滤波系数记为k,则b=1/2 (k/4)。n表示第一参考信号为第n次传输,n为大于或等于1的整数。
在公式(7)中,当第一参考信号为第二终端装置第一次接收来自第一终端装置的参考信号(即n等于1)时,第四滤波功率为第一参考信号的接收功率,即F 0=M 1。在此情况下,可以看出第二滤波功率为第一参考信号的接收功率,即F 1=M 1
在一种可能的实施方式中,如果没有为发送装置(如第一终端装置)配置用于确定第一滤波功率的第一滤波系数,则可以默认第一滤波系数与第二滤波系数相等,即q=k。
在上述实施例中,第二终端装置采用高层滤波的方式来计算得到第二滤波功率时,从公式(7)可以看出,第二滤波功率是由最近一次接收参考信号的接收功率瞬时值(即M n) 和上一次高层滤波计算得到的滤波功率(即F n-1)共同确定的,这样可以避免因某一时刻接收功率瞬时值突然过大或过小导致计算出的路径损耗误差较大的问题,因此可以较为精确地估计出两个终端装置之间的路径损耗。
需要说明的是,本申请实施例中,“第二滤波功率”仅是一种示例性命名,在具体实施中也可以命名为其他,如也可以称为功率、高层滤波功率、或者高层滤波RSRP等。
S604:第二终端装置向第一终端装置发送第一指示信息,其中,第一指示信息用于指示第二滤波功率。
第二终端装置在根据第一参考信号的接收功率,得到第二滤波功率后,向第一终端装置发送用于指示第二滤波功率的第一指示信息,该第一指示信息可以是高层信令,如MAC层的CE或者RRC信令等。
需要说明的是,第二终端装置可以周期性地向第一终端装置发送第一指示信息,也可以满足某些条件(例如确定出第二滤波功率,再例如接收到来自第一终端装置的用于请求获取第二滤波功率的请求消息等)后向第一终端装置发送第一指示信息。
示例性地,第二终端装置可以根据表1对第二滤波功率进行量化得到量化值,并通过高层信令将量化值发送给第一终端装置。第一终端装置接收到量化值后,可以根据表1确定出该量化值对应的第二滤波功率。例如,第二滤波功率小于-156分贝毫瓦(dBm)时,对第二滤波功率进行量化得到的量化值为RSRP_0。再例如,第二滤波功率小于-155dBm,且大于或等于-156dBm时,对第二滤波功率进行量化得到的量化值为RSRP_1。具体映射关系可以参加表1,在此不再一一列举。需要说明的是,表1中的“…”表示随着量化值序号的递增,第二滤波功率也相应递增;例如,RSRP_4与-153≤PSSCH-RSRP<-152对应,则RSRP_5与-152≤PSSCH-RSRP<-153;同理可以推出,RSRP_123与-34≤PSSCH-RSRP<-33,则RSRP_122与-35≤PSSCH-RSRP<-34。
表1:量化值与第二滤波功率之间的映射关系
量化值 第二滤波功率(dBm)
RSRP_0 PSSCH-RSRP<-156
RSRP_1 -156≤PSSCH-RSRP<-155
RSRP_2 -155≤PSSCH-RSRP<-154
RSRP_3 -154≤PSSCH-RSRP<-153
RSRP_4 -153≤PSSCH-RSRP<-152
RSRP_123 -34≤PSSCH-RSRP<-33
RSRP_124 -33≤PSSCH-RSRP<-32
RSRP_125 -32≤PSSCH-RSRP<-31
RSRP_126 -31≤PSSCH-RSRP<-30
RSRP_127 -30≤PSSCH-RSRP
第二终端装置通过对第二滤波功率进行量化,然后将量化后的量化值指示给第一终端装置,可以减少数据传输量,节约网络资源。
S605:第一终端装置接收到第一指示信息后,根据第一滤波功率和第二滤波功率,确定第一终端装置与第二终端装置之间的路径损耗。
第一终端装置在得到第一滤波功率和第二滤波功率,可以确定第一终端装置与第二终 端装置之间的路径损耗。
作为一个示例,第一终端装置与第二终端装置之间的路径损耗为第一滤波功率和第二滤波功率之间的差值,例如,可以满足公式(8)。在此情况下,第一终端装置与第二终端装置之间的路径损耗以分贝(dB)为计数单位。
PL SL=P n-F n       (8)
其中,PL SL表示第一终端装置与第二终端装置之间的路径损耗,P n表示第一滤波功率,F n表示第二滤波功率,n表示第一参考信号为第n次传输,n为大于或等于1的整数。
作为另一个示例,第一终端装置与第二终端装置之间的路径损耗为第一滤波功率和第二滤波功率之间的比值,例如,可以满足公式(9)。
PL SL=P n/F n      (9)
其中,PL SL表示第一终端装置与第二终端装置之间的路径损耗,P n表示第一滤波功率,F n表示第二滤波功率,n表示第一参考信号为第n次传输,n为大于或等于1的整数。
需要说明的是,在图6所示的方法流程中,可以先执行S602,再执行S603;或者,先执行S603,再执行S602;或者,同步执行S602和S603。也就是说,第二终端装置可以在第一终端装置确定出第一滤波功率后,确定第二滤波功率;或者,第二终端装置可以在第一终端装置确定第一滤波功率前,确定第二滤波功率;或者,第一终端装置和第二终端装置分别同步确定第一滤波功率和第二滤波功率;本申请实施例对此不作限定。
本申请上述实施例中,第一终端装置根据第一参考信号的发射功率得到第一滤波功率,第二终端装置根据第一参考信号的接收功率得到第二滤波功率,并将得到的第二滤波功率指示给第一终端装置,然后第一终端装置可以根据第一滤波功率和第二滤波功率,确定出第一终端装置与第二终端装置之间的侧行路径损耗。由于第一滤波功率不是通过网络装置配置的,而是第一终端装置根据自身发送参考信号的实际发射功率计算得到的,可以较为准确地估计出两个终端装置之间的路径损耗。
请参见图8,为本申请实施例提供的另一种确定路径损耗的方法的流程图,该方法可以应用于D2D的侧行通信场景,可以是NR D2D的侧行通信场景也可以是LTE D2D的侧行通信场景等;或者,还可以应用于V2X的侧行通信场景,可以是NR V2X的侧行通信场景也可以是LTE V2X的侧行通信场景等。或者还可以应用于其他的场景或其他的通信系统,具体的不做限制应用于V2X系统。例如,该方法可以应用于图4所示的NR V2X系统400的侧行通信场景。下面以应用于NR V2X系统400为例,对本申请实施例提供的确定路径损耗的方法进行说明,其中,下文中的第一终端装置可以是图4中的终端装置2,第二终端装置可以是图4中的终端装置3。
S801:第一终端装置向第二终端装置发送第一参考信号。
S802:第二终端装置接收到第一终端装置发送的第一参考信号后,根据第一参考信号的接收功率得到第二滤波功率。
第二终端装置在接收到来自第一终端装置的第一参考信号后,可以根据第二滤波系数、第一参考信号的接收功率或第四滤波功率中的至少一个,得到用于计算路径损耗的第二滤波功率。其中,第四滤波功率是第二终端装置根据第二参考信号的接收功率得到的,或者是第一参考信号的接收功率。例如,在第一参考信号是第二终端装置第一次接收来自第一终端装置的参考信号时,第三滤波功率可以是第一参考信号的接收功率;在第一参考信号不是第二终端装置第一次接收来自第一终端装置的参考信号时,第三滤波功率可以是第二 终端装置根据第二参考信号的接收功率得到的滤波功率。该第二参考信号为第二终端装置在接收第一参考信号之前,接收到的来自第一终端装置的参考信号。
在一种可能的实施方式中,第二终端装置可以对接收到第一参考信号进行测量,得到第一参考信号的接收功率。以图7为例,第一参考信号为DMRS,第二终端装置可以计算PSSCH上承载的DMRS的资源单元的接收功率,然后对所有DMRS的资源单元的接收功率进行线性平均值运算,从而得到第一参考信号的接收功率。
第二滤波系数用于确定接收装置(如第二终端装置)侧的参考信号功率(记为第二滤波功率)。该第二滤波系数可以是高层滤波系数,也可以是加权系数,本申请实施例对此不作限定。该第二滤波系数可以是网络装置1配置的,或者是从资源池的配置信息中获取的,或者是由第一终端装置配置的。下面对这三种方式进行详细说明。
方式1:第二滤波系数是由网络装置1配置的。
例如,网络装置1(如基站)可以通过高层信令为第二终端装置配置第二滤波系数,这样,第二终端装置就可以根据网络装置1配置的第二滤波系数确定第二滤波功率。其中,高层信令包括MAC层的CE或者RRC信令等。
方式2:第二滤波系数是从资源池的配置信息中获取的。
该资源池例如为侧行链路资源池。例如,可以将第二滤波系数预配置在侧行链路资源池中,这样,第二终端装置可以从侧行链路资源池的配置信息中获取该第二滤波系数,再基于该第二滤波系数确定第二滤波功率。在此过程中第二终端装置无需与网络装置1进行交互,从而可以节约网络资源和降低通信复杂度。
方式3:第二滤波系数是由第一终端装置配置的。
第一终端装置可以为第二终端装置配置第二滤波系数,以实现对侧行链路径损耗的确定。方式3可以适用于不存在网络装置1的场景,也可以适用于资源池中未配置第二滤波系数的场景。意味着,不需要借助第三方(例如网络装置1或资源池)获取第二滤波系数,可以根据第一终端装置配置的第二滤波系数,实现对侧行路径损耗的确定,适应性强,且灵活性高。
在第二滤波系数由第一终端装置配置时,在S803之前,第二终端装置接收来自第一终端装置的第二指示信息,该第二指示信息用于指示第二滤波系数。
在一种可能的实施方式中,第二终端装置存储有第二初始滤波系数,该第二初始滤波系数用于确定公式(5)中参考信号功率(即P HRSRP)。例如,第二初始滤波系数可以是在出厂时预先配置在第二终端装置中的参数。在此情况下,第二滤波系数是由网络装置1配置的,可以理解为网络装置1直接为第二终端装置配置该第二滤波系数,也可以理解为网络装置1向第二终端装置发送参数信息(例如,倍数值或加数值等),以使得第二终端装置根据第二初始滤波系数和/或参数信息确定第二滤波系数;类似地,第二滤波系数是从资源池中获得的,可以理解为第二终端装置从资源池中获取该第二滤波系数,也可以理解为第二终端装置从资源池中获取参数信息,然后根据该参数信息和/或第二初始滤波系数确定第二滤波系数;第二滤波系数是由第二终端装置配置的,可以理解为第一终端装置为第二终端装置配置该第二滤波系数,也可以理解为第一终端装置为第二终端装置配置参数信息,然后第二终端装置根据该参数信息和/或第二初始滤波系数确定第二滤波系数。
在另一种可能的实施方式中,第二滤波系数可以是第二初始滤波系数。意味着,第二终端装置可以根据该第二初始滤波系数确定第二滤波功率,不需要网络装置1配置或第一终端装置配置,也不要从资源池中获取,能够简化实施过程,易于实现。
在一种可能的实施方式中,第二终端装置可以根据第二滤波系数对第一参考信号的接收功率进行滤波,例如高层滤波,得到第二滤波功率。其中,高层滤波是指在高层(如RRC层)进行滤波。
作为一个示例,第二终端装置对第一参考信号的接收功率进行高层滤波,得到的第一滤波功率可以满足公式(7)。
在公式(7)中,当第一参考信号的为第1次传输(即n等于1)时,第四滤波功率为第一参考信号的接收功率,即F 0=M 1。在此情况下,可以看出第二滤波功率为第一参考信号的接收功率,即F 1=M 1
在上述实施例中,第二终端装置采用高层滤波的方式来计算得到第二滤波功率时,由于第二滤波功率是由最近一次接收参考信号的接收功率瞬时值和上一次高层滤波计算得到的滤波功率共同确定的,可以避免因某一时刻接收功率瞬时值突然过大或过小导致计算出的路径损耗误差较大的问题,因此可以较为精确地估计出两个终端装置之间的路径损耗。
S803:第二终端装置向第一终端装置发送第一指示信息,第一指示信息用于指示第二滤波功率。
第二终端装置在根据第一参考信号的接收功率,得到第二滤波功率后,向第一终端装置发送用于指示第二滤波功率的第一指示信息,该第一指示信息可以是高层信令,如MAC层的CE或者RRC信令等。S803的具体实施方式与前述图6中S604的实施方式相同,可参考S604所述的实施方式,在此不再赘述。
S804:第一终端装置接收到第一指示信息后,根据第一参考信号的发射功率和第二滤波功率,确定第一终端装置与第二终端装置之间的路径损耗。
在一种可能的实施方式中,第一终端装置可以根据高层配置参数确定第一参考信号的发射功率。
作为一个示例,第一终端装置与第二终端装置之间的路径损耗为第一参考信号的发射功率和第二滤波功率之间的差值,例如,可以满足公式(8)。在此情况下,第一终端装置与第二终端装置之间的路径损耗以dB为计数单位。
作为另一个示例,第一终端装置与第二终端装置之间的路径损耗为第一参考信号的发射功率和第二滤波功率之间的比值,例如,可以满足公式(9)。
本申请上述实施例中,第二终端装置根据第一参考信号的接收功率得到第二滤波功率,并将得到的第二滤波功率指示给第一终端装置,然后第一终端装置可以根据第一参考信号的发射功率和第二滤波功率,确定出第一终端装置与第二终端装置之间的侧行路径损耗。由于第一参考信号的发射功率可以从高层配置参数中确定,因此不需要配置第一滤波系数,也不要增加额外开销,从而在能够估计出两个终端装置之间的路径损耗的同时,减少开销,实施方式简单,易于实现。
基于与方法实施例的同一技术构思,本申请实施例提供一种确定路径损耗的装置。该装置的结构可以如图9所示,包括收发模块901以及处理模块902。
确定路径损耗的装置900具体可以用于实现图6的实施例中第一终端装置执行的方法。例如,该装置900可以是NR V2X系统400中的车辆(如终端装置2),也可以是内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元等。应理解的是,图4所示车辆仅为示例,该装置900还可以是RSU、智能手机,智能手表或平板电脑等,本申请实施例对此不作限定。其中,收发模块901,用于向第二终端装置发送第一参考信号; 处理模块902,用于根据第一参考信号的发射功率得到第一滤波功率;收发模块902,还用于接收来自第二终端装置的第一指示信息,该第一指示信息用于指示第二滤波功率,第二滤波功率为根据第一参考信号确定的功率;处理模块902,还用于根据第一滤波功率和第二滤波功率,确定第一终端装置与第二终端装置之间的路径损耗。
在另一种可能的实施方式中,第一滤波功率是根据第一滤波系数、第一参考信号的发射功率或第三滤波功率中的至少一个得到的,其中,该第三滤波功率是第一终端装置根据第二参考信号的发射功率得到的、或者是第一参考信号的发射功率,第二参考信号为第一终端装置在发送第一参考信号之前,向第二终端装置发送的参考信号。
在另一种可能的实施方式中,第一滤波系数是网络装置配置的,或者是从资源池的配置信息中获取的,或者是由第一终端装置配置的,或者是第一初始滤波系数,该第一初始滤波系数为出厂时配置的参数。
在另一种可能的实施方式中,在第一滤波系数由第一终端装置配置时,收发模块901,进一步用于向第二终端装置发送第二指示信息,该第二指示信息用于指示第二滤波系数,该第二滤波系数用于确定第二滤波功率。
在另一种可能的实施方式中,该处理模块902,具体用于对第一参考信号的发射功率进行滤波,得到第一滤波功率。
在另一种可能的实施方式中,第一滤波功率可以满足公式(6)。
在另一种可能的实施方式中,在n等于1时,第三滤波功率为第一参考信号的发射功率。
在另一种可能的实施方式中,第一终端装置与第二终端装置之间的路径损耗包括第一滤波功率和第二滤波功率之间的差值,或者第一滤波功率与第二滤波功率的比值。
在另一种可能的实施方式中,处理模块902,进一步用于根据高层配置参数确定第一参考信号的发射功率。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
在一种可能的实施方式中,确定路径损耗的装置1000可以如图10所示,该装置1000可以是第一终端装置,例如RSU、智能手机、车辆、内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元等。该装置1000可以包括处理器1001,还可以包括收发器1002,存储器1003。其中,收发模块901可以为收发器1002,收发器1002在发送信息时可以为发射器,收发器1002在接收信息时可以为接收器,处理模块902可以为处理器1001。
处理器1001,可以是一个CPU,或者为数字处理单元等。收发器1002可以是通信接口、也可以为接口电路如收发电路等、也可以为收发芯片等。该装置1000还包括:存储器1003,用于存储处理器1001执行的程序。存储器1003可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器1003是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取 的任何其他介质,但不限于此。
处理器1001用于执行存储器1003存储的程序代码,具体用于执行上述处理模块902的动作,本申请在此不再赘述。收发器1002具体用于执行上述收发模块901的动作,本申请在此不再赘述。
本申请实施例中不限定上述收发器1002、处理器1001以及存储器1003之间的具体连接介质。本申请实施例在图10中以存储器1003、处理器1001以及收发器1002之间通过总线1004连接,总线在图10中以粗线表示,其他部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线1004可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
基于与方法实施例的同一技术构思,本申请实施例提供一种确定路径损耗的装置。该装置的结构可以如图11所示,包括收发模块1101以及处理模块1102。
确定路径损耗的装置1100具体可以用于实现图8的实施例中第一终端装置执行的方法。例如,该装置1100可以是NR V2X系统400中的车辆(如终端装置2),也可以是内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元等。应理解的是,图4所示车辆仅为示例,该装置1100还可以是RSU、智能手机,智能手表或平板电脑等,本申请实施例对此不作限定。其中,收发模块1101,用于向第二终端装置发送第一参考信号;接收来自第二终端装置的第一指示信息,该第一指示信息用于指示第二滤波功率,第二滤波功率为根据第一参考信号确定的功率;处理模块1102,用于根据第一参考信号的发射功率和第二滤波功率,确定第一终端装置与第二终端装置之间的路径损耗。
在另一种可能的实施方式中,收发模块1101,进一步用于向第二终端装置发送第二指示信息,第二指示信息用于指示第二滤波系数,第二滤波系数用于确定第二滤波功率。
在另一种可能的实施方式中,处理模块1102,进一步用于根据高层配置参数确定第一参考信号的发射功率。
在另一种可能的实施方式中,第一终端装置与第二终端装置之间的路径损耗包括第一参考信号的发射功率和第二滤波功率的差值,或者第一参考信号的发射功率与第二滤波功率的比值。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
在一种可能的实施方式中,确定路径损耗的装置1200可以如图12所示,该装置1200可以是第一终端装置,例如RSU、智能手机、车辆、内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元等。该装置1200可以包括处理器1201,还可以包括收发器1202,存储器1203。其中,收发模块1101可以为收发器1202,收发器1202在发送信息时可以为发射器,收发器1202在接收信息时可以为接收器,处理模块1102可以为处理器1201。
处理器1201,可以是一个CPU,或者为数字处理单元等。收发器1202可以是通信接口、也可以为接口电路如收发电路等、也可以为收发芯片等。该装置1200还包括:存储 器1203,用于存储处理器1201执行的程序。存储器1203可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器1203是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器1201用于执行存储器1203存储的程序代码,具体用于执行上述处理模块1102的动作,本申请在此不再赘述。收发器1202具体用于执行上述收发模块1101的动作,本申请在此不再赘述。
本申请实施例中不限定上述收发器1202、处理器1201以及存储器1203之间的具体连接介质。本申请实施例在图12中以存储器1203、处理器1201以及收发器1202之间通过总线1204连接,总线在图12中以粗线表示,其他部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线1204可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
基于与方法实施例的同一技术构思,本申请实施例提供一种确定路径损耗的装置。该装置的结构可以如图13所示,包括收发模块1301以及处理模块1302。
确定路径损耗的装置1300具体可以用于实现图6和图8的实施例中第二终端装置执行的方法。例如,该装置1300可以是NR V2X系统400中的车辆(如终端装置3),也可以是内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元等。应理解的是,图4所示车辆仅为示例,该装置1300还可以是RSU、智能手机,智能手表或平板电脑等,本申请实施例对此不作限定。其中,收发模块1301,用于接收来自第一终端装置的第一参考信号;处理模块1302,用于根据第一参考信号的接收功率得到第二滤波功率,该第二滤波功率用于确定第一终端装置与第二终端装置之间的路径损耗;收发模块1301,还用于向第一终端装置发送第一指示信息,第一指示信息用于指示第二滤波功率。
在另一种可能的实施方式中,第二滤波功率是根据第二滤波系数、第一参考信号的接收功率或第四滤波功率中的至少一个得到的,其中,该第四滤波功率是第二终端装置根据第二参考信号的接收功率得到的、或者是第一参考信号的接收功率,第二参考信号为第二终端装置在接收第一参考信号之前接收到的参考信号。
在另一种可能的实施方式中,第二滤波系数是网络装置配置的,或者是从资源池的配置信息中获取的,或者是由第一终端装置配置的,或者是第二初始滤波系数,该第二初始滤波系数为出厂时配置的参数。
在另一种可能的实施方式中,在第二滤波系数由第一终端装置配置时,收发模块1301,进一步用于接收来自第一终端装置的第二指示信息,该第二指示信息用于指示第二滤波系数。
在另一种可能的实施方式中,处理模块1302,具体用于对第一参考信号的接收功率进行滤波,得到第二滤波功率。
在另一种可能的实施方式中,第二滤波功率可以满足公式(7)。
在另一种可能的实施方式中,在n等于1时,第四滤波功率为第一参考信号的接收功率。
在另一种可能的实施方式中,处理模块1302,进一步用于对第一参考信号进行测量, 得到第一参考信号的接收功率。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可以理解的是,本申请实施例中各个模块的功能或者实现可以进一步参考方法实施例的相关描述。
在一种可能的实施方式中,确定路径损耗的装置1400可以如图14所示,该装置1400可以是第二终端装置,例如RSU、智能手机、车辆、内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元等。该装置1400可以包括处理器1401,还可以包括收发器1402,存储器1403。其中,收发模块1301可以为收发器1402,收发器1402在发送信息时可以为发射器,收发器1402在接收信息时可以为接收器,处理模块1302可以为处理器1401。
处理器1401,可以是一个CPU,或者为数字处理单元等。收发器1402可以是通信接口、也可以为接口电路如收发电路等、也可以为收发芯片等。该装置1400还包括:存储器1403,用于存储处理器1401执行的程序。存储器1403可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器1403是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
处理器1401用于执行存储器1403存储的程序代码,具体用于执行上述处理模块1302的动作,本申请在此不再赘述。收发器1402具体用于执行上述收发模块1301的动作,本申请在此不再赘述。
本申请实施例中不限定上述收发器1402、处理器1401以及存储器1403之间的具体连接介质。本申请实施例在图14中以存储器1403、处理器1401以及收发器1402之间通过总线1404连接,总线在图14中以粗线表示,其他部件之间的连接方式,仅是进行示意性说明,并不引以为限。总线1404可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现 在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的保护范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (45)

  1. 一种确定路径损耗的方法,其特征在于,所述方法包括:
    第一终端装置向第二终端装置发送第一参考信号;
    所述第一终端装置根据所述第一参考信号的发射功率得到第一滤波功率;
    所述第一终端装置接收来自所述第二终端装置的第一指示信息,所述第一指示信息用于指示第二滤波功率,所述第二滤波功率为根据所述第一参考信号确定的功率;
    所述第一终端装置根据所述第一滤波功率和所述第二滤波功率,确定所述第一终端装置与所述第二终端装置之间的路径损耗。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一滤波功率是根据第一滤波系数、所述第一参考信号的发射功率或第三滤波功率中的至少一个得到的,其中,所述第三滤波功率是所述第一终端装置根据第二参考信号的发射功率得到的、或者是所述第一参考信号的发射功率,所述第二参考信号为所述第一终端装置在发送所述第一参考信号之前,向所述第二终端装置发送的参考信号。
  3. 根据权利要求2中所述的方法,其特征在于,
    所述第一滤波系数是网络装置配置的,或者是从资源池的配置信息中获取的,或者是由所述第一终端装置配置的,或者是第一初始滤波系数,所述第一初始滤波系数为出厂时配置的参数。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置向所述第二终端装置发送第二指示信息,所述第二指示信息用于指示第二滤波系数,所述第二滤波系数用于确定所述第二滤波功率。
  5. 根据权利要求1~4中任意一项所述的方法,其特征在于,所述第一终端装置根据所述第一参考信号的发射功率得到第一滤波功率,包括:
    所述第一终端装置对所述第一参考信号的发射功率进行滤波,得到所述第一滤波功率。
  6. 根据权利要求5所述的方法,其特征在于,所述第一滤波功率满足如下公式:
    P n=(1-b)×P n-1+b×L n
    其中,P n表示所述第一滤波功率,P n-1表示所述第三滤波功率,L n表示所述第一参考信号的发射功率,b表示加权系数,所述b的取值与所述第一滤波系数有关,n表示所述第一参考信号为第n次传输,所述n为大于或等于1的整数。
  7. 根据权利要求6所述的方法,其特征在于,在所述n等于1时,所述第三滤波功率为所述第一参考信号的发射功率。
  8. 根据权利要求1~7中任一项所述的方法,其特征在于,所述第一终端装置与所述第二终端装置之间的路径损耗包括所述第一滤波功率和所述第二滤波功率之间的差值,或者所述第一滤波功率与所述第二滤波功率的比值。
  9. 根据权利要求1~8中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置根据高层配置参数确定所述第一参考信号的发射功率。
  10. 一种确定路径损耗的方法,其特征在于,所述方法包括:
    第一终端装置向第二终端装置发送第一参考信号;
    所述第一终端装置接收来自所述第二终端装置的第一指示信息,所述第一指示信息用于指示第二滤波功率,所述第二滤波功率为根据所述第一参考信号确定的功率;
    所述第一终端装置根据所述第一参考信号的发射功率和所述第二滤波功率,确定所述第一终端装置与所述第二终端装置之间的路径损耗。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置向所述第二终端装置发送第二指示信息,所述第二指示信息用于指示第二滤波系数,所述第二滤波系数用于确定所述第二滤波功率。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    所述第一终端装置根据高层配置参数确定所述第一参考信号的发射功率。
  13. 根据权利要求10~12中任一项所述的方法,其特征在于,所述第一终端装置与所述第二终端装置之间的路径损耗包括所述第一参考信号的发射功率和所述第二滤波功率的差值,或者所述第一参考信号的发射功率与所述第二滤波功率的比值。
  14. 一种确定路径损耗的方法,其特征在于,所述方法包括:
    第二终端装置接收来自第一终端装置的第一参考信号;
    所述第二终端装置根据所述第一参考信号的接收功率得到第二滤波功率,所述第二滤波功率用于确定所述第一终端装置与所述第二终端装置之间的路径损耗;
    所述第二终端装置向所述第一终端装置发送第一指示信息,所述第一指示信息用于指示所述第二滤波功率。
  15. 根据权利要求14所述的方法,其特征在于,
    所述第二滤波功率是根据第二滤波系数、所述第一参考信号的接收功率或第四滤波功率中的至少一个得到的,其中,所述第四滤波功率是所述第二终端装置根据第二参考信号的接收功率得到的、或者是所述第一参考信号的接收功率,所述第二参考信号为所述第二终端装置在接收所述第一参考信号之前接收到的参考信号。
  16. 根据权利要求15所述的方法,其特征在于,
    所述第二滤波系数是网络装置配置的,或者是从资源池的配置信息中获取的,或者是由所述第一终端装置配置的,或者是第二初始滤波系数,所述第二初始滤波系数为出厂时配置的参数。
  17. 根据权利要求16所述的方法,其特征在于,在所述第二滤波系数由所述第一终端装置配置时,所述方法还包括:
    所述第二终端装置接收来自所述第一终端装置的第二指示信息,所述第二指示信息用于指示所述第二滤波系数。
  18. 根据权利要求14~17中任意一项所述的方法,其特征在于,所述第二终端装置根据所述第一参考信号的接收功率得到第二滤波功率,包括:
    所述第二终端装置对所述第一参考信号的接收功率进行滤波,得到所述第二滤波功率。
  19. 根据权利要求18所述的方法,其特征在于,所述第二滤波功率满足如下公式:
    F n=(1-a)×F n-1+a×M n
    其中,F n表示所述第二滤波功率,F n-1表示所述第四滤波功率,M n表示所述第一参考信号的接收功率,a表示加权系数,所述a的取值与所述第二滤波系数有关,n表示所述第一参考信号为第n次传输,所述n为大于或等于1的整数。
  20. 根据权利要求19所述的方法,其特征在于,在所述n等于1时,所述第四滤波功率为所述第一参考信号的接收功率。
  21. 根据权利要求14~20中任意一项所述的方法,其特征在于,所述方法还包括:
    所述第二终端装置对所述第一参考信号进行测量,得到所述第一参考信号的接收功率。
  22. 一种确定路径损耗的装置,其特征在于,包括:
    收发模块,用于向第二终端装置发送第一参考信号;
    处理模块,用于根据所述第一参考信号的发射功率得到第一滤波功率;
    所述收发模块,还用于接收来自所述第二终端装置的第一指示信息,所述第一指示信息用于指示第二滤波功率,所述第二滤波功率为根据所述第一参考信号确定的功率;
    所述处理模块,还用于根据所述第一滤波功率和所述第二滤波功率,确定第一终端装置与所述第二终端装置之间的路径损耗。
  23. 根据权利要求22所述的装置,其特征在于,
    所述第一滤波功率是根据第一滤波系数、所述第一参考信号的发射功率或第三滤波功率中的至少一个得到的,其中,所述第三滤波功率是所述第一终端装置根据第二参考信号的发射功率得到的、或者是所述第一参考信号的发射功率,所述第二参考信号为所述第一终端装置在发送所述第一参考信号之前,向所述第二终端装置发送的参考信号。
  24. 根据权利要求23中所述的装置,其特征在于,
    所述第一滤波系数是网络装置配置的,或者是从资源池的配置信息中获取的,或者是由所述第一终端装置配置的,或者是第一初始滤波系数,所述第一初始滤波系数为出厂时配置的参数。
  25. 根据权利要求24所述的装置,其特征在于,所述收发模块,进一步用于:
    向所述第二终端装置发送第二指示信息,所述第二指示信息用于指示第二滤波系数,所述第二滤波系数用于确定所述第二滤波功率。
  26. 根据权利要求22~25中任意一项所述的装置,其特征在于,所述处理模块,具体用于:
    对所述第一参考信号的发射功率进行滤波,得到所述第一滤波功率。
  27. 根据权利要求26所述的装置,其特征在于,所述第一滤波功率满足如下公式:
    P n=(1-b)×P n-1+b×L n
    其中,P n表示所述第一滤波功率,P n-1表示所述第三滤波功率,L n表示所述第一参考信号的发射功率,b表示加权系数,所述b的取值与所述第一滤波系数有关,n表示所述第一参考信号为第n次传输,所述n为大于或等于1的整数。
  28. 根据权利要求27所述的装置,其特征在于,在所述n等于1时,所述第三滤波功率为所述第一参考信号的发射功率。
  29. 根据权利要求22~28中任一项所述的装置,其特征在于,所述第一终端装置与所述第二终端装置之间的路径损耗包括所述第一滤波功率和所述第二滤波功率之间的差值,或者所述第一滤波功率与所述第二滤波功率的比值。
  30. 根据权利要求22~29中任一项所述的装置,其特征在于,所述处理模块,进一步用于:
    根据高层配置参数确定所述第一参考信号的发射功率。
  31. 一种确定路径损耗的装置,其特征在于,包括:
    收发模块,用于向第二终端装置发送第一参考信号;接收来自所述第二终端装置的第一指示信息,所述第一指示信息用于指示第二滤波功率,所述第二滤波功率为根据所述第一参考信号确定的功率;
    处理模块,用于根据所述第一参考信号的发射功率和所述第二滤波功率,确定所述第一终端装置与所述第二终端装置之间的路径损耗。
  32. 根据权利要求31所述的装置,其特征在于,所述收发模块,进一步用于:
    向所述第二终端装置发送第二指示信息,所述第二指示信息用于指示第二滤波系数,所述第二滤波系数用于确定所述第二滤波功率。
  33. 根据权利要求31或32所述的装置,其特征在于,所述处理模块,进一步用于:
    根据高层配置参数确定所述第一参考信号的发射功率。
  34. 根据权利要求31~33中任一项所述的装置,其特征在于,所述第一终端装置与所述第二终端装置之间的路径损耗包括所述第一参考信号的发射功率和所述第二滤波功率的差值,或者所述第一参考信号的发射功率与所述第二滤波功率的比值。
  35. 一种确定路径损耗的装置,其特征在于,包括:
    收发模块,用于接收来自第一终端装置的第一参考信号;
    处理模块,用于根据所述第一参考信号的接收功率得到第二滤波功率,所述第二滤波功率用于确定所述第一终端装置与所述第二终端装置之间的路径损耗;
    所述收发模块,还用于向所述第一终端装置发送第一指示信息,所述第一指示信息用于指示所述第二滤波功率。
  36. 根据权利要求35所述的装置,其特征在于,
    所述第二滤波功率是根据第二滤波系数、所述第一参考信号的接收功率或第四滤波功率中的至少一个得到的,其中,所述第四滤波功率是所述第二终端装置根据第二参考信号的接收功率得到的、或者是所述第一参考信号的接收功率,所述第二参考信号为所述第二终端装置在接收所述第一参考信号之前接收到的参考信号。
  37. 根据权利要求36所述的装置,其特征在于,
    所述第二滤波系数是网络装置配置的,或者是从资源池的配置信息中获取的,或者是由所述第一终端装置配置的,或者是第二初始滤波系数,所述第二初始滤波系数为出厂时配置的参数。
  38. 根据权利要求37所述的装置,其特征在于,在所述第二滤波系数由所述第一终端装置配置时,所述收发模块,进一步用于:
    接收来自所述第一终端装置的第二指示信息,所述第二指示信息用于指示所述第二滤波系数。
  39. 根据权利要求35~38中任意一项所述的装置,其特征在于,所述处理模块,具体用于:
    对所述第一参考信号的接收功率进行滤波,得到所述第二滤波功率。
  40. 根据权利要求39所述的装置,其特征在于,所述第二滤波功率满足如下公式:
    F n=(1-a)×F n-1+a×M n
    其中,F n表示所述第二滤波功率,F n-1表示所述第四滤波功率,M n表示所述第一参考信号的接收功率,a表示加权系数,所述a的取值与所述第二滤波系数有关,n表示所述 第一参考信号为第n次传输,所述n为大于或等于1的整数。
  41. 根据权利要求40所述的装置,其特征在于,在所述n等于1时,所述第四滤波功率为所述第一参考信号的接收功率。
  42. 根据权利要求35~41中任意一项所述的装置,其特征在于,所述处理模块,进一步用于:
    对所述第一参考信号进行测量,得到所述第一参考信号的接收功率。
  43. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,使得所述通信装置执行如权利要求1至9中任意一项所述的方法,或者使得所述通信装置执行如权利要求10至13中任意一项所述的方法,或者使得所述通信装置执行如权利要求14至21中任意一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至9中任意一项所述的方法,或者使得所述计算机执行如权利要求10至13中任意一项所述的方法,或者使得所述计算机执行如权利要求14至21中任意一项所述的方法。
  45. 一种确定路径损耗的系统,其特征在于,包括第一终端装置和第二终端装置;
    其中,所述第一终端装置用于执行如权利要求1至9中任意一项所述的方法,或者所述第一终端装置用于执行如权利要求10至13中任意一项所述的方法;
    所述第二终端装置用于执行如权利要求14至21中任意一项所述的方法。
PCT/CN2020/075418 2020-02-14 2020-02-14 一种确定路径损耗的方法、装置及系统 WO2021159524A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080095741.6A CN115053578A (zh) 2020-02-14 2020-02-14 一种确定路径损耗的方法、装置及系统
PCT/CN2020/075418 WO2021159524A1 (zh) 2020-02-14 2020-02-14 一种确定路径损耗的方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075418 WO2021159524A1 (zh) 2020-02-14 2020-02-14 一种确定路径损耗的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2021159524A1 true WO2021159524A1 (zh) 2021-08-19

Family

ID=77291674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075418 WO2021159524A1 (zh) 2020-02-14 2020-02-14 一种确定路径损耗的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN115053578A (zh)
WO (1) WO2021159524A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110463234A (zh) * 2019-07-05 2019-11-15 北京小米移动软件有限公司 直连通信的发送功率控制方法、装置、设备及存储介质
CN110547000A (zh) * 2019-07-11 2019-12-06 北京小米移动软件有限公司 直连通信的功率控制方法、装置、终端及存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110463234A (zh) * 2019-07-05 2019-11-15 北京小米移动软件有限公司 直连通信的发送功率控制方法、装置、设备及存储介质
CN110547000A (zh) * 2019-07-11 2019-12-06 北京小米移动软件有限公司 直连通信的功率控制方法、装置、终端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: ""Sildelink measurements"", 3GPP TSG RAN WG1 METTING #96BIS, R1-1904692, XI'AN, CHINA, APRIL 8-12, 2019, 2 April 2019 (2019-04-02), XP051707285 *

Also Published As

Publication number Publication date
CN115053578A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
JP7020525B2 (ja) 基地局、User Equipment、及びこれらの方法
US11399361B2 (en) V2X sidelink communication
US20210329431A1 (en) Feedback Channel Sending Method And Apparatus, And Feedback Channel Receiving Method And Apparatus
CN113261320B (zh) 通信方法、装置及系统
JP7259066B2 (ja) 電力制御方法および電力制御装置
CN112312589B (zh) 一种节能信号的传输方法、基站及终端设备
EP3982677B1 (en) Data transmission method and device
CN113543299A (zh) 一种时间同步方法及装置
WO2020168472A1 (zh) 参考信号接收与发送方法、设备及系统
WO2021159524A1 (zh) 一种确定路径损耗的方法、装置及系统
EP4042775A1 (en) Apparatus, method, and computer program
US20220225394A1 (en) Communication method and communications apparatus
WO2021213136A1 (zh) 一种通信方法和终端设备
CN116897578A (zh) 一种通信方法、终端装置及系统
WO2019185065A1 (zh) 一种确定资源的方法及装置
WO2023030208A1 (zh) 一种资源确定的方法和装置
CN112399538B (zh) 一种功率控制方法和装置
US20230076257A1 (en) Communication Method and Apparatus, and Storage Medium
WO2023241288A1 (zh) 一种唤醒信号传输方法及通信系统
WO2023035991A1 (zh) 一种资源配置方法及装置
US20220400439A1 (en) Side channel mechanism for controlling data flows
WO2022041224A1 (zh) 一种通信方法及相关设备
TWI511497B (zh) 處理傳輸組態之方法及其通訊裝置
WO2023197311A1 (en) Wireless communication of positioning through sidelink
WO2020220351A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918848

Country of ref document: EP

Kind code of ref document: A1