WO2005076363A1 - Halbleiter-struktur - Google Patents

Halbleiter-struktur Download PDF

Info

Publication number
WO2005076363A1
WO2005076363A1 PCT/DE2005/000080 DE2005000080W WO2005076363A1 WO 2005076363 A1 WO2005076363 A1 WO 2005076363A1 DE 2005000080 W DE2005000080 W DE 2005000080W WO 2005076363 A1 WO2005076363 A1 WO 2005076363A1
Authority
WO
WIPO (PCT)
Prior art keywords
material area
semiconductor structure
interface
structure according
fermi
Prior art date
Application number
PCT/DE2005/000080
Other languages
English (en)
French (fr)
Inventor
Michael Indlekofer
Hans LÜTH
Arnold FÖRSTER
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Priority to EP05714886A priority Critical patent/EP1711964A1/de
Priority to US10/588,243 priority patent/US20070267626A1/en
Priority to JP2006551710A priority patent/JP5335194B2/ja
Publication of WO2005076363A1 publication Critical patent/WO2005076363A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/127Quantum box structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/068Nanowires or nanotubes comprising a junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/125Quantum wire structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66469Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with one- or zero-dimensional channel, e.g. quantum wire field-effect transistors, in-plane gate transistors [IPG], single electron transistors [SET], Coulomb blockade transistors, striped channel transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • H01L29/882Resonant tunneling diodes, i.e. RTD, RTBD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction

Definitions

  • the invention relates to a semiconductor structure.
  • Electron mobility transistors achieved with channel lengths ⁇ 1 ⁇ m with mobilities ⁇ e > 10 6 cm 2 / V * s and switching times ⁇ 10 ps.
  • HEMT Electron mobility transistors
  • several well-defined layers made of different semiconductor materials, e.g. B. from GaAs and AlGaAs with thicknesses in
  • Range of nanometers that is down to a few atomic layers, and defined doped with various electrically active foreign atoms. These layers are laterally structured in the plane to fractions of ⁇ m.
  • the principle of modulation doping is used in the HEMT for two-dimensional semiconductor heterostructures.
  • a semiconductor heterostructure which has been grown epitaxially on one side in a planar manner provides a spatial separation of doped semiconductor material and the undoped semiconductor material of the transistor channel in which a controllable two-dimensional charge carrier gas, e.g. B. forms in the form of a conduction band electron gas.
  • a controllable two-dimensional charge carrier gas e.g. B. forms in the form of a conduction band electron gas.
  • the separation of the channel and doping impurities enables a greatly increased mobility of the charge carrier gas.
  • the HEMT there is a high concentration of charge carriers in a layer with a small band gap at the interface to a second layer with a large band gap, which have a high mobility parallel to the interface, while in the third dimension they have a range of e.g. B. 10 nanometers remain restricted at the interface.
  • a quantum well is a structure that for the crystal electrons in a spatial direction as a potential well with an expansion comparable to the de-Broglie
  • Wavelength works. For most semiconductors, this is achieved with dimensions of a few tens of nanometers or less.
  • a so-called, quasi two-dimensional electron gas is formed.
  • the charge carriers remain free to move in the x and y directions, and the natural energy values are quantized along the z axis.
  • hetero-epitaxy e.g. B. in a molecular beam epitaxy system.
  • the structures for forming a two-dimensional electron gas are produced using such processes. If the dimensions of the conductor tracks reach the order of magnitude of the Fermi waves, the possible electron tracks are restricted. Then, because of the wave character of the electrons, quantum mechanics has a significant influence on the stationary states and on the transport of the electrons.
  • the dimension of a two-dimensional electron gas is further restricted by lateral structuring, one-dimensional or even zero-dimensional, that is to say systems limited in every spatial direction, so-called quantum dots, are realized.
  • Such components which are based on one-dimensional or zero-dimensional semiconductor structures, are promising systems for improved transistor and diode components and novel quantum nano components due to quantum mechanical effects.
  • the reduction in dimensions in two or three spatial directions with respect to the mobility of the charge carriers, one- or zero-dimensional structures, is based on the quantization of the restricted degrees of freedom of the free charge carriers.
  • the de Broglie wavelength of the charge carrier that is, the crystal electron or the crystal hole, must be of the order of magnitude of the dimensions of the restricted spatial directions. From Björk et al.
  • whiskers One-dimensional heterostructures in semiconductor nanowhiskers Applied Physics Letters 80, 1058
  • epitaxial and partially self-organized growth of one-dimensional semiconductor heterostructures known as whiskers
  • the object of the invention is to provide a simply constructed semiconductor structure with which a high concentration of free charge carriers can be set and the spatial course of which can be specifically controlled in a zero- or one-dimensional quantum well.
  • the semiconductor structure has at least a first material area and a second material area.
  • the second material area encloses the first material area and is arranged epitaxially on the first material area.
  • fermi-level pinning is present on the non-epitaxial outer surface opposite the interface of the two material areas, as a result of which the first material area forms a quantum well for free charge carriers.
  • the quantum well is advantageously not disturbed by fermi-level pinning.
  • the first material area forms a quantum well for free charge carriers, so that these are quantum mechanically restricted to zero or one dimension in their freedom, or the states for charge carriers are 0-d or 1-d.
  • the whiskers can be formed with further heterostructures, e.g. B. with GaAs / AlGaAs or GaN / AlGaN areas as depleted structures.
  • the energetic minimum of the quantum well of the first material region is either in equilibrium below the Fermi energy or is at a distance of less than or equal to k B T from the Fermi energy. Then it is advantageously ensured that sufficient charge carriers are in the quantum well and can be used for transistors, diodes and so on.
  • the dimension or diameter of the first material area is so small that the mobility of the charge carriers is limited quantum mechanically in at least two spatial directions.
  • the first material area is arranged in relation to the second material area or is surrounded by it in such a way that the undesired fermi-level pinning is shifted from the interface of the two material areas to the non-epitaxial outer surface of the second material area opposite this interface. Fermi-level pinning then occurs on the non-epitaxial outer surface of the second material area, possibly to further material areas. Are white If further epitaxial interfaces are arranged on the second material area, then Fermi-Level-Pinning occurs on the first non-epitaxial outer surface.
  • the shortest distance of the quantum well from the center to the non-epitaxial outer surface on which the Fermi-level pinning is present should not be less than the depletion length d.
  • a definition of the depletion length can be found in Lüth (Lüth H (1996). Surfaces and interfaces of solid materials. 3rd edition, Springer Study Edition, page 458).
  • the depletion length is a doping-dependent material size. This advantageously has the effect that the concentration of free charge carriers and their spatial course in such one-dimensional and zero-dimensional semiconductor structures can be set and controlled with the aid of lateral epitaxial growth, optionally with doping and / or interfacial polarization charges.
  • Charge carriers can get into the first material region from doping atoms of the second material region.
  • One or more optional outer gates can control the charge carrier concentration in the first material region without the undesired fermi-level pinning at the interface between the first and the second material region influencing it.
  • the non-epitaxial interfaces or outer surfaces of the semiconductor structure show fermi-level pinning due to interface states.
  • impoverishment or enrichment free charge carrier in the semiconductor near the interface This fact is used in the context of the invention for the charge carrier concentration in the quantum well.
  • the Fermi-level pinning present at the interface between two material areas according to the prior art is shifted to the first non-epitaxially designed interface of an outer material area due to a suitable choice of materials or the dimensions and / or possibly the doping of the two material areas, and thus has no or at least less influence on the charge carrier concentration and mobility in the quantum well of the first material area. This is used to control the charge carrier concentration in the quantum well by means of electrodes.
  • the concentration of free charge carriers in components made therefrom, in particular with diameters in the order of the depletion length and smaller, is vanishingly small and practically cannot be influenced by external ones Sizes, such as B. electrodes. Doping that is too high cannot be used due to the negative influence on the mobility of the charge carriers and on the control. Such an impoverished structure is unusable for electronic components.
  • the concentration of free charge carriers spatially close to the interface between the first and second material range is practically unchangeable and represents a material size.
  • the free charge carriers provide metal-like properties, in particular electronic transport properties and optical response. You are practically not influenced by doping and / or external variables such.
  • the optionally doped materials and / or the thickness of the two material areas in the semiconductor structure are selected according to the invention to form a first material area specifically supplied with charge carriers in such a way that fermi-level pinning from the interface to that opposite the interface is not epitaxial interface of the second material region is shifted. If necessary, at least one further material region arranged epitaxially or non-epitaxially is arranged on the second material region.
  • this further material region is arranged epitaxially on the second material region, it advantageously forms a permanent termination of the semiconductor structure before further layers, for. B. with gate function.
  • the material of the further material area can be identical to the material of the first material area for the passivation of the semiconductor structure.
  • the semiconductor structure can also comprise a metal as a material for the further material area.
  • the first material area has a dimension or a diameter of less than 100 nanometers, in particular one of 0.5 to 50 nanometers.
  • a semiconductor structure with dimensions of the first material area of this type is particularly susceptible to Fermi-level pinning and can be provided here for the first time with a high charge carrier concentration.
  • GaAs is provided as the material for the first material area and / or AlGaAs as the material for the second material area. Because of the quasi-lattice adaptation, these materials can be connected epitaxially well and are then arranged with virtually no dislocation to one another. Without restricting the invention, however, other semiconductor structures with such lattice-matched material areas can be used.
  • the second material region can have any doping profile that is also inhomogeneous due to doping.
  • the polarization charges are used depending on the crystallographic alignment of the interface areas in relation to the axes of the overall crystal, so that doping in the second material area can also be avoided.
  • the second material area can have a plurality of surfaces arranged in a clamp-like manner and epitaxially to one another.
  • the second material area can e.g. B. starting from the interface to the first material region made of GaAs, consist of a sequence of 20 nanometer thick regions made of Al 0/3 Ga 0 , As, AlAs and Al 0 / 5iGa 0 , 4 9As.
  • a thin, undoped or lightly doped spacer closes off the second material area from the outside. The spacer reduces the scatter of charge carriers within the first material area.
  • the first material area made of GaAs is enclosed by this sequence.
  • the first material area on the other hand, can have heterostructures in the longitudinal direction, ie perpendicular to the second material area.
  • the first and the second material area can thus be interrupted as desired by separate heterostructures.
  • This z. B. resonant tunnel diodes can be produced.
  • the first material area of the semiconductor structure should have a charge carrier concentration of at least 10 10 cm “3 , in particular a charge carrier concentration of at least 10 16 cm “ 3 , with a small lateral extent of, for example, less than 50 nanometers.
  • One or more gates can be arranged to control the charge carrier concentration.
  • the conduction band edge (E) for electrons is shown as a function of the radial position x within a large and therefore only partially depleted structure.
  • the case of the valence band edge for holes is analogous. This band edge is potential for charge carriers.
  • the distance a is large according to the prior art and indicates the dimension of a first material area 1 on which a second material area 3 (not shown), e.g. B. a metal, gas or plastic or other insulator or semiconductor is arranged.
  • the distance d is the depletion length starting from the Fermi level pinning of the interface 2 of the semiconductor under consideration. With a partially depleted structure, d ⁇ a is therefore relatively harmless for the transport of charge carriers in the interface 2 between the two material areas.
  • the depleted areas of the material area 1 only have a small proportion of the overall structure due to d ⁇ a. Fermi-level pinning with an energetic variable according to arrow 5 occurs at the non-epitaxial interface due to interface conditions.
  • the energetic table value of the Fermi-level pinning, according to arrow 5 is a fixed, energetic distance from the conduction band edge at the location of the interface 2 due to interface states.
  • Fig. 2 shows a further conduction band edge E for
  • Electrons in a semiconductor structure as a function of the radial position x are chosen to be very small compared to the semiconductor structure of FIG. 1, and material area 1 is therefore completely depleted.
  • the case of the valence band edge for holes is analogous. This band edge is potential for charge carriers.
  • the distance a again represents the spatial dimensions of material area 1 (e.g. 20 nanometers).
  • the material area 3 (not shown) is not arranged epitaxially on the material area 1.
  • the material area 3 consists, for. B. from a metal or a gas, plastic or other insulator or semiconductor.
  • the distance d in turn represents the depletion length.
  • the depletion length d is greater than the dimensions a of the material region 1.
  • the interface 2 between material area 1 and material area 3 is therefore completely impoverished.
  • the interface 2 has Fermi due to interface states Level pinning (see arrow 5). Arrow 5 shows the energetic level of the Fermi level pinning. It becomes clear that there is a fixed, energetic distance between the conduction band edge at the location of the interface 2 due to interface states.
  • depleted semiconductors such as. B. GaAs, InP and GaN
  • concentration of free charge carriers in components made therefrom in particular with dimensions less than 100 nanometers and in the order of the depletion length and smaller, very small and practically cannot be influenced by external variables, such as e.g. Electrodes.
  • the depletion length is a doping-dependent material size.
  • a usable transistor / tunnel diode cannot be produced due to the strong scattering of impurities then occurring with poor mobility of the charge carriers.
  • the semiconductor structure comprises a first material area 1 with the dimension a, which is epitaxially surrounded by a second material area 3.
  • Material area 1 is an island or a whisker.
  • the material area 3 is arranged epitaxially on the material area 1.
  • the case of the valence band edge for holes is analogous. This band edge is a potential for cargo carriers.
  • the materials of both areas 1, 3 are selected such that the material of the first material area 1 forms the quantum well.
  • the quantum well lies at the level of the Fermi energy 8, the energetic level of which is indicated by the dash-and-dash line.
  • the interface 2 between the first material area 1 and the material area 3 arranged epitaxially for this purpose is lowered compared to the material area 3.
  • the interface 6 of the semiconductor structure has fermi-level pinning due to interface states.
  • the entire semiconductor structure is made of a non-epitaxial material, e.g. B. an insulator 7 or a metal 7 or a non-epitaxial semiconductor 7, surrounded.
  • a gas such as air or plastic.
  • the Fermi-Level-Pinning occurring at the interface 6 is so far from the interface 2 by suitable choice of the materials of layers 1 and 3, the dimensions of these layers and possibly their doping that the depletion length d does not adversely affect the quantum well, so that charges can be specifically introduced into this area.
  • the shortest distance between the quantum well and the non-epitaxial outer surface 6 should not be less than the depletion length d.
  • FIG. 4 shows a section of a radially cut cross section through a whisker that has been overgrown according to FIG. 3.
  • the inner material area 1 is epitaxially completely surrounded by material area 3.
  • cap material 5 can be arranged epitaxially on material area 3, and optionally metallic Schottky gate material 7 can be arranged on the cap material 5.
  • the other reference numerals also correspond to those in FIG. 3.
  • GaAs as material from region 1 and AlGaAs as material from region 3 come into consideration as semiconductor structures according to the invention.
  • a simulation (FIG. 5) of the two semiconductor structures according to FIGS. 3, 4 demonstrates the mode of operation of the lateral epitaxial growth according to the invention and the free charge carrier concentration in the interior of the structure, which is significantly increased compared to the prior art, that is to say in the quantum well of material area 1.
  • the dimensions of the overgrowth and its doping are chosen so that the free charge carriers are maximized to increase the mobility inside, spatially separated from doping and interfaces.
  • a change of the materials and / or material thicknesses and / or doping according to the invention enables a defined variation of the free charge carrier concentration and / or spatial distribution.
  • 5 shows an approximate simulation of a two-dimensional layer package with self-consistent Hartree potential, LDA exchange and quantum mechanical calculation of the electron charges (free charge carriers).
  • An undoped, 5 nm thick material area 5 made of GaAs is arranged on the material area 3 for protection against oxidation of the Al.
  • the material area 5 is arranged on a non-epitaxial metallic outer material 7 (eg Schottky contact).
  • the Fermi energy is again shown in dash-dotted lines.
  • the course of the conduction band edge (potential) is shown as a function of the position (z).
  • the course of the free charge carrier concentration (batch) is as
  • Structure can be used without any limitation of the invention, a semiconductor structure made of the materials mentioned below.
  • InP material area 1 and In x Al ⁇ _ x As, with a value x that enables a lattice adaptation to InP;
  • Si material area 1 or 3 and Si x Ge ⁇ - x (material area 1 or 3), depending on the crystal strain and whether electrons or holes are desired; ZnO (material area 1) and Al x Ga ⁇ _ x N (material area 3);
  • InAs material area 1
  • AlSb material area 3
  • the semiconductor structures can represent both depletion and enrichment structures.
  • 6a, b schematically show in perspective the typical geometry of the considered one- and zero-dimensional structures.
  • the concrete geometrical shape e.g. round, square, hexagonal
  • 6a schematically shows the zero-dimensional case of the regrowth of an island with an inner material area 1 and an outer material area 2.
  • FIG. 6b schematically shows the one-dimensional case of regrowth of a whisker with an inner material area 1 and an outer material area 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

Die Erfindung betrifft eine Halbleiter-Struktur. Die Halbleiter-Struktur weist mindestens einen ersten Materialbereich und einen zweiten Materialbereich auf, wobei der zweite Materialbereich den ersten Materialbereich epitaktisch umschliesst und eine Grenzfläche ausbildet. Die Struktur ist dadurch gekennzeichnet, dass Fermi-Level-Pinning an der, der Grenzfläche beider Materialbereiche gegenüberliegenden, nicht epitaktischen Grenzfläche des zweiten Materialbereichs vorliegt und der erste Materialbereich einen Quantentopf für freie Ladungsträger ausbildet. Dadurch wird vorteilhaft bewirkt, dass eine steuerbare Ladungsträger-Konzentration im quantentopf eingestellt werden kann.

Description

B e s c h r e i b u n g Halbleiter- Struktur
Die Erfindung betrifft eine Halbleiter-Struktur.
In der Halbleiter-Elektronik werden Bauelemente mit immer kürzeren Schaltzeiten und geringerem Leistungsbe- darf gewünscht . Der Weg dahin führt über Mikrostruktu- ren aus Halbleitermaterialien mit möglichst kurzen Wegen für die Elektronen zwischen Injektions- und Extraktionspunkt (Kanallängen) und hohen Beweglichkeiten, das heißt mit guter Response auf äußere elektrische Felder.
Im Labor werden Standardwerte für sogenannte High
Electron Mobility Transistoren (HEMT) bei Kanallängen < 1 μm mit Beweglichkeiten μe > 106cm2 / V*s und Schaltzeiten < 10 ps erreicht. In einem HEMT werden mehrere gut definierte Schichten aus verschiedenen Halbleiter- materialien, z. B. aus GaAs und AlGaAs mit Dicken im
Bereich von Nanometern, das heißt bis hinunter zu einigen Atomlagen, und definiert dotiert mit verschiedenen elektrisch aktiven Fremdatomen hergestellt. Diese Schichten sind in der Ebene lateral auf Bruchteile von μm strukturiert .
Im HEMT ist das Prinzip der Modulationsdotierung für zwei-dimensionale Halbleiterheterostrukturen genutzt. Dabei wird durch eine einseitig planar epitaktisch aufgewachsene Halbleiterheterostruktur eine räumliche Trennung von dotiertem Halbleitermaterial und dem undotierten Halbleitermaterial des Transistorkanals, in dem sich an der Grenzfläche ein steuerbares zweidimensiona- les Ladungsträgergas, z. B. in Form eines Leitungsband- Elektronengases ausbildet, erzielt. Durch die Trennung von Kanal und Dotierstörstellen wird eine stark erhöhte Beweglichkeit des Ladungsträgergases ermöglicht.
Im HEMT stellt sich in einer Schicht mit einer kleinen Bandlücke an der Grenzfläche zu einer zweiten Schicht mit einer großen Bandlücke eine hohe Konzentration von Ladungsträgern ein, die parallel zur Grenzfläche eine hohe Beweglichkeit haben, während sie in der dritten Dimension auf einen Bereich von z. B. 10 Nanometer an der Grenzfläche eingeschränkt bleiben.
Ein Quantentopf ist eine Struktur, die für die Kristallelektronen in eine Raumrichtung als Potentialtopf mit einer Ausdehnung vergleichbar der de-Broglie-
Wellenlänge wirkt. Bei den meisten Halbleitern ist dies bei Abmessungen von einigen 10 Nanometern oder weniger erfüllt. Es bildet sich ein sogenanntes, quasi zweidi- mensionales Elektronengas aus. Die Ladungsträger blei- ben in x- und in y-Richtung frei beweglich, entlang der z-Achse sind die Energieeigenwerte quantisiert.
Die hohen Anforderungen an die Perfektion derartiger Schichten und Bereiche in Nanostrukturen können durch Hetero-Epitaxie, z. B. in einer Molekularstrahl- Epitaxie-Anlage, erfüllt werden. Mit solchen Verfahren werden die Strukturen zur Ausbildung eines zweidimensi- onalen Elektronengases hergestellt. Wenn die Abmessungen der Leiterbahnen in die Größenordnung der Fermiwellen kommen, werden die möglichen Elektronenbahnen eingeschränkt . Dann bekommt die Quantenmechanik wegen des Wellencharakters der Elektronen einen wesentlichen Einfluss auf die stationären Zustände und auf den Transport der Elektronen.
Wird die Dimension eines zweidimensionalen Elektronengases durch laterale Strukturierung weiter eingeschränkt, werden eindimensionale oder sogar null- dimensionale, das heißt in jeder Raumrichtung eingeschränkte Systeme, sogenannte Quantendots, realisiert.
Aus dem Stand der Technik sind Verfahren zur Herstellung von Strukturen bekannt, in denen die freien Elektronen oder Löcher in bestimmten Raumrichtungen auf Na- nometerbereiche eingeschränkt sind.
Derartige Bauelemente, die auf ein- oder nulldimensi- onalen Halbleiterstrukturen basieren, sind aufgrund quantenmechanischer Effekte vielversprechende Systeme für verbesserte Transistor- und Dioden-Bauelemente und neuartige Quanten-Nano-Bauelemente . Die Dimensionsreduktion in zwei bzw. drei Raumrichtungen zu, in Bezug auf die Ladungsträger-Beweglichkeit, ein- bzw. nulldi- mensionalen Strukturen, basiert auf der Quantisierung der eingeschränkten Freiheitsgrade der freien Ladungs- träger. Dazu muss die de-Broglie-Wellenlänge des Ladungsträgers, also des Kristall-Elektrons oder des Kristall-Lochs von der Größenordnung der Abmessungen der eingeschränkten Raumrichtungen sein. Aus Björk et al . (Björk, M.T., Ohlsson, B.J., Sass, T., Persson, A.I., Thelander, C, Magnusson, M.H., Deppert, K. , Wallenberg, L.R., Samuelson, L. (2002), One- dimensional heterostructures in semiconductor nanowhiskers. Applied Physics Letters 80, 1058) ist epitaktisches und teilweise selbstorganisiertes Wachstum von eindimensionalen Halbleiterheterostrukturen, sogenannten Whiskern, bekannt.
Aus Panev et al . (Panev, N. , Persson, A.I., Sköld, N. , L. Samueleson (2003), Sharp exciton emission from Single InAs Quantum dots in GaAs nanowires . Applied Physics Letters 83, 2238) ist bekannt, Ladungsträger aus einem GaAs-Substrat in eine InAs-Insel über einen nano- wire aus GaAs zu transportieren und Lumineszenz zu er- zeugen.
Nachteilig zeigen diese Strukturen eine schlecht steuerbare Ladungsträger-Konzentrationen im Quantendot .
Aufgabe der Erfindung ist es, eine einfach aufgebaute Halbleiter-Struktur bereit zu stellen, mit der eine ho- he Konzentration freier Ladungsträger eingestellt und deren räumlicher Verlauf in einem null- oder eindimensionalen Quantentopf gezielt gesteuert werden kann.
Die Aufgabe wird durch eine Halbleiter-Struktur gemäß Hauptanspruch gelöst. Vorteilhafte Ausgestaltungen er- geben sich aus den darauf rückbezogenen Patentansprüchen. Erfindungsgemäß weist die Halbleiter-Struktur mindestens einen ersten Materialbereich und einen zweiten Materialbereich auf. Der zweite Materialbereich umschließt den ersten MaterialLbereich und ist epitaktisch auf dem ersten Materialbereich angeordnet . In der Halbleiter-Struktur liegt Fermi-Level-Pinning an der, der Grenzfläche beider Materialbereiche gegenüberliegenden, nicht epitaktischen Außenfläche vor, wodurch der erste Materialbereich einen Quantentopf für freie Ladungsträ- ger ausbildet.
Vorteilhaft ist der Quantentopf durch Fermi-Level- Pinning nicht gestört.
Der erste Materialbereich bildet einen Quantentopf für freie Ladungsträger aus, so dass diese quantenmecha- nisch null- oder eindimensional in ihrer Freiheit eingeschränkt sind, bzw. die Zustände für Ladungsträger liegen 0-d oder 1-d vor.
Dadurch wird vorteilhaft bewirkt, dass im Quantentopf des ersten innen angeordneten Materialbereichs eine ho- he Konzentration und Beweglichkeit an Ladungsträgern vorliegt, ohne dass dieser Materialbereich hoch dotiert sein muss. Im Gegensatz zum Stand der Technik ist besonders vorteilhaft eindimensionaler Ladungsträger- Transport im ersten Materialbereich bzw. Quantentopf gezielt einstellbar, was zu-tr Herstellung von Transistoren mit hoher Ladungsträger-Beweglichkeit genutzt werden kann.
Neben eindimensionalen Quantenstrukturen, wie Whiskern und lithographisch hergestellten Mesastrukturen, sind besonders vorteilhaft auch Inseln ohne Fermi-Level- Pinning an der Grenzfläche des Quantentopfes herstellbar. Die Whisker können mit weiteren HeteroStrukturen ausgebildet werden, z. B. mit GaAs / AlGaAs- oder GaN / AlGaN-Bereichen als verarmte Strukturen.
Damit ist vorteilhaft gewährleistet, dass die positiven Eigenschaften dieser Halbleiter-Strukturen auch in räumlich übergeordneten Strukturen bis hin zu Lasern und Transistoren ausgenutzt werden.
Das energetische Minimum des Quantentopfs des ersten Materialbereichs liegt entweder unterhalb der Fermi- Energie im Gleichgewicht oder aber weist einen Abstand kleiner gleich kBT zur Fermi-Energie auf. Dann ist vorteilhaft gewährleistet, dass genügend Ladungsträger im Quantentopf sind und für Transistoren, Dioden und so weiter genutzt werden können.
Die Abmessung bzw. der Durchmesser des ersten Material- bereichs sind so klein, dass die Ladungsträgerbeweglichkeit in mindestens zwei Raumrichtungen quantenme- chanisch eingeschränkt ist.
Der erste Materialbereich ist so zum zweiten Materialbereich angeordnet, bzw. ist von diesem so umwachsen, dass das unerwünschte Fermi-Level-Pinning von der Grenzfläche der beiden Materialbereiche, zu der dieser Grenzfläche gegenüberliegenden, nicht epitaktischen Außenfläche, des zweiten Materialbereichs verschoben ist. Das Fermi-Level-Pinning tritt dann an der nicht epitaktischen Außenfläche des zweiten Materialbereichs zu gegebenenfalls weiteren Materialbereichen auf. Sind wei- tere epitaktische Grenzflächen am zweiten Materialbereich angeordnet, so tritt Fermi-Level-Pinning an der ersten nicht epitaktischen Außenfläche auf.
In der Halbleiter-Struktur soll der kürzeste Abstand des Quantentopfes vom Mittelpunkt aus zur nicht epitaktischen Außenfläche, an der das Fermi-Level-Pinning vorliegt, dabei größenordnungsmäßig die Verarmungslänge d nicht unterschreiten. Eine Definition der Verarmungs- länge kann Lüth (Lüth H (1996) . Surfaces and interfaces of solid materials. 3rd edition, Springer Study Edition, Seite 458) entnommen werden. Die Verarmungslänge ist eine dotierungsabhängige Matexialgröße . Dadurch wird vorteilhaft bewirkt, dass die Konzentration freier Ladungsträger und ihres räumlichen Verlaufes in derartigen ein- und nulldimensionalen Halbleiter- Strukturen mit Hilfe einer lateralen epitaktischen Umwachsung gegebenenfalls mit Dotierung und/oder Grenzflächen-Polarisationsladungen eingestellt und gesteuert werden kann. Aus Dotieratomen des zweiten Materialbe- reichs können Ladungsträger in den ersten Materialbereich gelangen. Ein oder mehrere optionale äußere Gates können die Ladungsträger-Konzentration im ersten Materialbereich steuern, ohne dass das unerwünschte Fermi- Level-Pinning an der Grenzfläche des ersten zum zweiten Materialbereich diese beeinflusst .
Die nicht epitaktischen Grenz- oder Außenflächen der Halbleiter-Struktur zeigen Fermi-Level-Pinning aufgrund von Grenzflächenzuständen. Je nach, energetischer Position des Fermi-Level-Pinnings der Struktur, ergeben sich zwei Fälle: Die Verarmung oder die Anreicherung freier Ladungsträger im Halbleiter nahe der Grenzfläche. Dieser Umstand wird im Rahmen der Erfindung für die Ladungsträger-Konzentration im Quantentopf genutzt. Das gemäß Stand der Technik an der Grenzfläche zwischen zwei Materialbereichen vorhandene Fermi-Level-Pinning wird auf Grund geeigneter Wahl der Materialien oder der Abmessungen und/oder gegebenenfalls der Dotierung der beiden Materialbereiche an die erste nicht epitaktisch ausgebildete Grenzfläche eines äußeren Materialbereichs verschoben und hat somit keinen oder zumindest weniger Einfluss auf die Ladungsträger-Konzentration und Beweglichkeit im Quantentopf des ersten Materialbereichs. Dies wird zur Steuerung der Ladungsträger-Konzentration in dem Quantentopf mittels Elektroden genutzt.
Für die Klasse der grenzflächenverarmten Halbleiter mit GaAs, InP, oder GaN als Materialien für den ersten Materialbereich ist die Konzentration freier Ladungsträger in daraus hergestellten Bauelementen, insbesondere mit Durchmessern in der Größenordnung der Verarmungs- länge und kleiner, verschwindend gering und praktisch nicht beeinflussbar durch externe Größen, wie z. B. Elektroden. Auch zu hohe Dotierungen können auf Grund des negativen Einflusses auf die Ladungsträger-Beweglichkeit und auf die Steuerung nicht verwendet werden. Eine solche verarmte Struktur ist für elektronische Bauelemente unbrauchbar.
Es wurde weiterhin erkannt, dass für die Klasse der grenzflächenangereicherten Halbleiter mit z. B. InAs, InSb, und anderen sogenannten narrow-gap Materialien für den ersten Materialbereich die Konzentration freier Ladungsträger räumlich nahe der Grenz:fläche zwischen erstem und zweiten Materialbereich praktisch unveränderlich ist und eine Materialgröße darstellt. Die freien Ladungsträger liefern metallähnliche Eigenschaften, insbesondere elektronische Transporteigenschaften und optische Response. Sie sind praktisch nicht beeinflussbar durch Dotierung und/oder externe Größen, wie z. B. Elektroden. In Bauelementen aus grenzflächenangereicherten Materialien, insbesondere mit Abmessungen in der Größenordnung der Anreicherungslänge, werden die elektronischen Eigenschaften praktisch durch die freien Ladungsträger nahe der Grenzfläche dominiert und sind somit unveränderbar. Eine solche Struktur ist für elektronische Transistor-Bauelemente mit Steuerelektroden ebenfalls unbrauchbar.
Die gegebenenfalls dotierten Materialien und/oder die Dicke der beiden Materialbereiche in der Halbleiter- Struktur werden erfindungsgemäß zur Ausbildung eines gezielt mit Ladungsträgern versorgten ersten Material- bereichs so ausgewählt, dass das Fermi-Level-Pinning von der Grenzfläche an die der Grenzfläche gegenüberliegenden, nicht epitaktischen Grenzfläche des zweiten Materialbereichs verschoben ist. Gegebenenfalls ist mindestens ein weiterer epitaktisch oder nicht epitaktisch angeordneter Materialbereich auf dem zweiten Ma- terialbereich angeordnet .
In dem Fall, dass dieser weitere Materialbereich epitaktisch auf dem zweiten Materialbereich angeordnet ist, bildet er vorteilhaft einen beständigen Abschluss der Halbleiter-Struktur, bevor weitere Schichten z. B. mit Gate-Funktion angeordnet werden. Das Material des weiteren Materialbereichs kann zwecks Passivierung der Halbleiter-Struktur identisch zum Material des ersten Materialbereichs sein.
Die Halbleiter-Struktur kann auch ein Metall als Mate- rial für den weiteren Materialbereich umfassen.
Der erste Materialbereich weist in einer weiteren Ausgestaltung der Erfindung eine Abmessung bzw. einen Durchmesser von kleiner 100 Nanometern, insbesondere eine von 0,5 bis 50 Nanometern, auf. Eine Halbleiter-Struktur mit derartigen Abmessungen des ersten Materialbereichs ist gemäß Stand der Technik besonders anfällig gegenüber Fermi-Level-Pinning und kann hier erstmalig mit hoher Ladungsträger-Konzentration bereit gestellt werden.
Als eine besonders vorteilhafte Halbleiter-Struktur ist GaAs als Material für den ersten Materialbereich und/oder AlGaAs als Material für den zweiten Material- bereich vorgesehen. Diese Materialien sind wegen der quasi-Gitteranpassung epitaktisch gut miteinander in Verbindung zu bringen und dann praktisch versetzungsfrei zueinander angeordnet. Ohne Einschränkung der Erfindung können aber andere Halbleiter-Strukturen mit derartig gitterangepassten Materialbereichen verwendet werden.
Der zweite Materialbereich kann durch Dotierung ein beliebiges auch inhomogenes Dotierprofil aufweisen. Es ist aber auch möglich Polarisationsladungen an der Grenzfläche zwischen dem ersten und dem zweiten Materialbereich zur Optimierung des Ladungsträgerprofils im Quantentopf zu nutzen. Die Polarisationsladungen werden abhängig von der kristallographischen Ausrichtung der Grenzflächenbereiche in Beziehung zu den Achsen des Gesamtkristalls genutzt, so dass Dotierungen im zweiten Materialbereich auch vermieden werden können.
Der zweite Materialbereich kann mehrere, schellenartig und epitaktisch zueinander angeordnete Flächen aufweisen. Der zweite Materialbereich kann z. B. von der Grenzfläche zum ersten Materialbereich aus GaAs ausge- hend, aus einer Abfolge von 20 Nanometer dicken Bereichen aus Al0/3Ga0,As, AlAs und Al0/5iGa0,49As bestehen. Ein dünner, undotierter oder niedrig dotierter Spacer schließt den zweiten Materialbereich nach außen ab. Der Spacer verringert die Streuung von Ladungsträgern in- nerhalb des ersten Materialbereichs. Der erste Materialbereich aus GaAs wird von dieser Abfolge umschlossen. Der erste Materialbereich kann hingegen in Längsrichtung, also senkrecht zum zweiten Materialbereich Hete- rostrukturen aufweisen.
Der erste und der zweite Materialbereich können somit beliebig durch gesondert abgreifbare HeteroStrukturen unterbrochen sein. Dadurch sind z. B. resonante Tunnel- dioden herstellbar.
Der erste Materialbereich der Halbleiter- Struktur soll bei geringer lateraler Ausdehnung von beispielsweise weniger als 50 Nanometern eine Ladungsträger-Konzentration von mindestens 1010 cm"3, insbesondere eine Ladungsträger-Konzentration von mindestens 1016 cm"3 aufweisen. Es können ein oder mehrere Gates zur Steuerung der Ladungsträger-Konzentration angeordnet sein. Im weiteren wird die Erfindung an Hand von Ausführungsbeispielen und der beigefügten Figuren näher beschrieben.
Fig. 1 zeigt einen Ausschnitt des elektronischen Bän- derschemas für eine Halbleiter-Struktur gemäß Stand der Technik. Die Leitungsbandkante (E) für Elektronen ist als Funktion der radialen Position x innerhalb einer großen und daher nur partiell verarmten Struktur wiedergegeben. Der Fall der Valenzbandkante für Löcher ist analog. Diese Bandkante ist Potential für Ladungsträger.
Der Abstand a sei gemäß Stand der Technik groß und gibt die Abmessung eines ersten Materialbereichs 1 an, auf dem nicht epitaktisch ein zweiter Materialbereich 3 (nicht dargestellt), z. B. ein Metall, Gas oder Kunststoff oder sonstiger Isolator oder Halbleiter angeordnet ist. Der Abstand d ist die Verarmungslänge ausgehend vom Fermi-Level-Pinning der Grenzfläche 2 des betrachteten Halbleiters. Bei partiell verarmter Struktur ist d << a und daher relativ unschädlich für den Ladungsträgertransport in der Grenzfläche 2 zwischen beiden Materialbereichen. Die verarmten Bereiche des Materialbereichs 1 weisen aufgrund d << a nur einen kleinen Anteil an der Gesamtstruktur auf. An der nicht epitak- tischen Grenzfläche tritt aufgrund von Grenzflächenzu- ständen das Fermi-Level-Pinning mit einer energetischen Größe gemäß des Pfeils 5 auf.
Die Fermienergie (=Fermi-Level) im Gleichgewicht ist durch die Punkt-Strich-Linie 4 dargestellt. Der energe- tische Wert des Fermi-Level-Pinnings, ist gemäß Pfeil 5 ein fixierter, energetischer Abstand von der Leitungsbandkante an der Stelle der Grenzfläche 2 aufgrund von Grenzflächenzuständen.
Fig. 2 zeigt eine weitere Leitungsbandkante E für
Elektronen in einer Halbleiter-Struktur als Funktion der radialen Position x. Hier ist die Abmessung von Materialbereich 1 im Vergleich zu der Halbleiter-Struktur der Fig. 1 sehr klein gewählt und Materialbereich 1 ist daher komplett verarmt. Der Fall der Valenzbandkante für Löcher ist analog. Diese Bandkante ist Potential für Ladungsträger.
Der Abstand a stellt erneut die räumlichen Abmessungen von Materialbereich 1 dar (z. B. 20 Nanometer) . Auf Ma- terialbereich 1 ist der Materialbereich 3 (nicht dargestellt) nicht epitaktisch angeordnet. Der Materialbereich 3 besteht z. B. aus einem Metall oder einem Gas, Kunststoff oder sonstigem Isolator oder Halbleiter.
Der Abstand d stellt wiederum die Verarmungslänge dar. In diesem Fall ist die Verarmungslänge d größer als die Abmessungen a des Materialbereichs 1. Das Potentialminimum des ausgebildeten Quantentopfes ist durch Pfeil 6 dargestellt. Das Potentialminimum liegt aufgrund d > a energetisch weit oberhalb zu kBT (T=Temperatur, kBT=Boltzmann-Konstante) der Fermienergie im Gleichgewicht, dargestellt durch die Punkt-Strich-Linie 4. Die Grenzfläche 2 zwischen Materialbereich 1 und Materialbereich 3 ist daher vollständig verarmt. Die Grenzfläche 2 weist aufgrund von Grenzflächenzuständen Fermi- Level-Pinning (siehe Pfeil 5) auf. Pfeil 5 gibt das e- nergetische Niveau des Fermi-Level-Pinnings wieder. Es wird deutlich, dass ein fixierter, energetischer Abstand der Leitungsbandkante an der Stelle der Grenzflä- ehe 2 aufgrund von Grenzflächenzuständen vorliegt.
Aus diesen Ausführungen wird deutlich, dass für die Klasse grenzflächenverarmter Halbleiter gemäß Stand der Technik, wie z. B. GaAs, InP und GaN, frei oder auf einem Substrat, die Konzentration freier Ladungsträger in daraus hergestellten Bauelementen, insbesondere mit Abmessungen kleiner 100 Nanometern und in der Größenordnung der Verarmungslänge und kleiner, sehr gering und praktisch nicht beeinflussbar durch externe Größen, wie z.B. Elektroden ist. Die Verarmungslänge ist zwar eine dotierungsabhängige Materialgröße. Allerdings kann bei derartigen Abmessungen auch mit hoher Dotierung in GaAs als Material für die erste Schicht auf Grund der dann auftretenden starken Störstellenstreuung mit schlechter Beweglichkeit der Ladungsträger kein brauchbarer Tran- sistor / Tunneldiode hergestellt werden.
Simulationen zeigen, dass trotz hoher Dotierung praktisch eine vollständig verarmte Struktur dieses Typs bestehen bleibt. Es tritt immer Fermi-Level-Pinning an der Grenzfläche 2 bei etwa 0,65 eV gegen die Leitungs- bandkante E auf, so dass die Halbleiter-Struktur aus Materialbereich 1 (30 Nanometer GaAs, n-dotiert mit 1018 cm"3) und Materialbereich 3 (Metall, Luft und so weiter) vollständig verarmt ist (T=300K) . Fig. 3 zeigt die Leitungsbandkante (E) als Funktion der radialen Position (x) innerhalb einer erfindungsgemäßen Halbleiter-Struktur. In Fig. 3 ist schematisch die Leitungsbandkante E entlang des Querschnitts einer erfin- dungsgemäßen eindimensionalen Halbleiter-Struktur dargestellt. Ein Querschnitt der Materialbereiche ist schematisch der Fig. 4 entnehmbar.
Die Halbleiter-Struktur umfasst einen ersten Materialbereich 1 mit der Abmessung a, welcher von einem zwei- ten Materialbereich 3 epitaktisch umwachsen ist. Materialbereich 1 ist eine Insel oder ein Whisker. Der Materialbereich 3 ist epitaktisch auf dem Materialbereich 1 angeordnet. Der Fall der Valenzbandkante für Löcher ist analog. Diese Bandkante ist ein Potential für La- dungsträger.
Die Materialien beider Bereiche 1, 3 werden so gewählt, dass das Material des ersten Materialbereichs 1 den Quantentopf ausbildet. Der Quantentopf liegt auf dem Niveau der Fermi-Energie 8, dessen energetisches Niveau durch die Punkt-Strich-Linie angedeutet ist. An der
Grenzfläche 2 zwischen dem ersten Materialbereich 1 und dem epitaktisch hierzu angeordneten Materialbereich 3 ist die Leitungsbandkante E abgesenkt im Vergleich zum Materialbereich 3.
Es tritt ein Potentialsprung an der Heterointerface-
Grenzfläche 2 auf (Band-Diskontinuität) . An der Grenzfläche 2 tritt aber kein Fermi-Level-Pinning auf, wie gemäß Stand der Technik, sondern vielmehr an der ersten nicht epitaktischen Grenzfläche 6 zwischen zweitem Ma- terialbereich 3 und einem optional auf diesem angeordneten, gegebenenfalls Materialbereich 3 umwachsenden weiteren Materialbereich 5, welches als cap-Material der Halbleiter-Struktur fungiert. Der optional angeord- nete Materialbereich 5 dient der Passivierung der dadurch umwachsenen Halbleiter-Struktur. In dem Fall, dass Schicht 5 nicht epitaktisch auf Schicht 3 angeordnet ist, läge das Fermi-Level-Pinning an der Grenzfläche 4.
Die Grenzfläche 6 der Halbleiterstruktur weist Fermi- Level-Pinning aufgrund von Grenzflächenzuständen auf. Die gesamte Halbleiter-Struktur wird von einem nicht epitaktischen Material, z. B. einem Isolator 7 oder einem Metall 7 oder einem nicht epitaktischen Halbleiter 7, umgeben. Als Isolator kann z. B. ein Gas wie Luft oder Kunststoff vorliegen.
Der energetische Wert des Fermi-Level-Pinnings, dargestellt durch Pfeil 9, und damit der Abstand des an der Grenzfläche 6 fixierten energetischen Abstands der Lei- tungsbandkante E vom Fermi-Level 8 im Gleichgewicht ist durch die Pfeile 9 dargestellt.
Wie ersichtlich, ist das an der Grenzfläche 6 auftretende Fermi-Level-Pinning durch geeignete Wahl der Materialien von Schichten 1 und 3, den Abmessungen dieser Schichten und gegebenenfalls deren Dotierungen so weit von der Grenzfläche 2 entfernt, dass die von Grenzfläche 6 ausgehende Verarmungslänge d den Quantentopf nicht negativ beeinflusst, so dass Ladungen gezielt in diesen Bereich eingebracht werden können. In der Halb- leiter-Struktur soll der kürzeste Abstand des Quantentopfes zur nicht epitaktischen Außenfläche 6 (Fermi- Level-Pinning) dabei größenordnungsmäßig die Verarmungslänge d nicht unterschreiten.
Fig. 4 zeigt einen Ausschnitt eines radial geschnittenen Querschnitts durch einen gemäß Fig. 3 umwachsenen Whiskers. Der innere Materialbereich 1, wird epitaktisch vollständig von Materialbereich 3 umwachsen. Es kann optional cap-Material 5 epitaktisch auf Material- bereich 3, und auf dem cap-Material 5 optional metallisches Schottky-Gate-Material 7 angeordnet sein. Auch die übrigen Bezugszeichen entsprechen denen der Fig. 3.
Als erfindungsgemäße Halbleiter-Strukturen kommen insbesondere GaAs als Material von Bereich 1 und AlGaAs als Material von Bereich 3 in Frage.
Eine Simulation (Fig. 5) zu den beiden Halbleiter- Strukturen gemäß der Fig. 3, 4 demonstriert die erfindungsgemäße Wirkungsweise der lateralen epitaktischen Umwachsung und die gegenüber dem Stand der Technik deutlich erhöhte freie Ladungsträger-Konzentration im Inneren der Struktur, das heißt im Quantentopf von Materialbereich 1. Die Abmessung der Umwachsung und deren Dotierung sind so gewählt, dass die freien Ladungsträger zur Erhöhung der Beweglichkeit im Inneren maximiert sind, räumlich getrennt von Dotierung und Grenzflächen. Eine erfindungsgemäße Änderung der Materialien und/oder Materialdicken und/oder Dotierungen ermöglicht eine definierte Variation der freien Ladungsträgerkonzentration und/oder räumlichen Verteilung. In Fig. 5 ist eine näherungsweise Simulation zu einem zweidimensionalen Schichtpaket mit selbstkonsistentem Hartree-Potential, LDA-Austausch und quantenmechanischer Berechnung der Elektronenladungen (freie Ladungs- träger) gezeigt.
Simuliert wurde der Fall eines undotierten, 20 Nanome- ter dicken Materialbereichs 1 aus GaAs, der von einem 15 Nanometer dicken Materialbereich 3 aus Al0;3Ga0 7As vollständig umwachsen war. Materialbereich 3 ist n- dotiert mit 3,0 x 1018 cm"3 und vollständig ionisiert.
Ein undotierter, 5 nm dicker Materialbereich 5 aus GaAs ist zum Schutz gegen Oxidation des AI in Materialbereich 3 auf diesem angeordnet . Der Materialbereich 5 ist an ein nicht epitaktisches metallisches Außenmate- rial 7 (z. B. Schottkykontakt) angeordnet.
Die Fermienergie ist erneut strichpunktiert dargestellt. Im oberen Diagramm a) ist der Verlauf der Leitungsbandkante (Potential) als Funktion der Position (z) dargestellt. Im unteren Diagramm b) ist der Verlauf der freien Ladungsträgerkonzentration (Charge) als
Funktion der Position (z) dargestellt. Es tritt Fermi- Level-Pinning erst an der Grenzfläche 6 bei etwa 0,65 eV gegen Leitungsbandkante E auf (s. Fig. 4) . Es wurde nur der rechte Teil mit Bezugszeichen 1 bis 7 versehen.
Es wird deutlich, dass im Bereich des Materialbereichs 1 eine gezielte Ladungsträger-Konzentration in Höhe von bis zu 2*1017 cm"3 erreicht wird. Dies ist ein Wert, der um etwa 109 höher liegt, als bisher bekannt. Diese An- reicherung von Ladungsträgern im Materialbereich 1 mit Abmessungen von 20 Nanometern und kleiner kann je nach Anwendungsfall für optische Zwecke (null-dimensionale Umwachsung einer Insel) , Transistoren oder resonante Tunneldioden oder Superlattices (ein-dimensionale Umwachsung von Whisker-Strukturen) oder andere Stack- Strukturen innerhalb eines Whiskers mit mehreren Transistoren und Gates und/oder HeteroStrukturen innerhalb des Whiskers genutzt werden.
An Stelle der beschriebenen GaAs-AlGaAs-Halbleiter-
Struktur kann ohne jegliche Einschränkung der Erfindung eine Halbleiter-Struktur aus den nachfolgend genannten Materialien verwendet werden.
- AlyGaι-yAs (Materialbereich 1) und AlxGax_xAs (Materi- albereich 3) , mit x > y zur Ausbildung der Stufe im
Quantentopf (Banddiskontinuität) ;
InP (Materialbereich 1) und InxAlι_xAs, mit einem Wert x, der eine Gitteranpassung an InP ermöglicht;
InxGa;L-xAs (Materialbereich 1) und InP (Materialbe- reich 3) , mit einem Wert x, der eine Gitteranpassung an InP ermöglicht;
- AlyGai-yN (Materialbereich 1) und AlxGaι_xN, mit x > y;
Si (Materialbereich 1 oder 3) und SixGeι-x (Material- bereich 1 oder 3) , je nach Kristallverspannung und ob Elektronen oder Löcher gewünscht sind; ZnO (Materialbereich 1) und AlxGaι_xN (Materialbereich 3) ;
InAs (Materialbereich 1) und AlSb (Materialbereich 3) .
Die Halbleiter-Strukturen können sowohl Verarmungs- als auch Anreicherungsstrukturen darstellen.
Fig. 6a, b zeigen schematisch in Perspektive die typische Geometrie der betrachteten ein- und null.- dimensionalen Strukturen. Die konkrete geometrische Formgebung (z. B. rund, quadratisch, hexagonal) in den Figuren ist nur zur Veranschaulichung gewählt und allgemein nicht eingeschränkt. Fig. 6a zeigt schematisch den nulldimensionalen Fall der Umwachsung einer Insel mit innerem Materialbereich 1 und äußerem Materialbe- reich 2. Fig. 6b zeigt schematisch den eindimensionalen Fall der Umwachsung eines Whiskers mit innerem Materialbereich 1 und äußerem Materialbereich 2.

Claims

P a t e n t a n s p r ü c h e
1. Halbleiter-Struktur aus mindestens einem ersten Materialbereich (1) und einem zweiten Materialbereich
(3), wobei der zweite Materialbereich (3) den ers- ten Materialbereich (1) epitaktisch umschließt und eine Grenzfläche (2) ausbildet, dadurch gekennzeichnet, dass die Materialien des ersten und zweiten Materialbereichs (1, 3) und/oder deren Abmessungen und/oder deren Dotierungen so beschaffen sind, dass ein Fermi-Level-Pinning (9) an der, der Grenzfläche (2) beider Materialbereiche (1, 3) gegenüberliegenden, nicht epitaktischen Grenzfläche (4) des zweiten Materialbereichs (3) vorliegt und der erste Ma- terialbereich (1) einen Quantentopf für freie Ladungsträger ausbildet.
2. Halbleiter-Struktur aus mindestens einem ersten Materialbereich (1) und einem zweiten Materialbereich (3) , wobei der zweite Materialbereich (3) den ers- ten Materialbereich (1) epitaktisch umschließt und eine Grenzfläche (2) ausbildet, dadurch gekennzeichnet, dass ein Fermi-Level-Pinning (9) an der, der Grenzfläche (2) beider Materialbereiche (1, 3) gegenü- berliegenden, nicht epitaktischen Grenzfläche (4) des zweiten Materialbereichs (3) vorliegt und der erste Materialbereich (1) einen Quantentopf für freie Ladungsträger ausbildet .
3. Halbleiter-Struktur nach Anspruch 2, dadurch gekennzeichnet, dass das Fermi-Level-Pinning (9) durch Wahl des Materials und/oder der Abmessung und/oder der Dotie- rung und/oder des Dotierprofils einer oder beider
Materialbereiche (1, 3) bestimmt wird.
4. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet, dass auf dem zweiten Materialbereich (3) ein weiterer Materialbereich (5) epitaktisch angeordnet ist, so dass Fermi-Level-Pinning erst an der, der epitaktischen Grenzfläche (4) zwischen zweitem und weiterem Materialbereich (3, 5) gegenüberliegenden nicht epitaktischen Grenzfläche (6) vorliegt.
5. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Materialbereich (1) eine Abmessung a in x-Position von kleiner 100 Nanometern, insbesondere von 0,5 bis 50 Nanometern, aufweist.
6. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet, dass der kürzeste Abstand des Quantentopfes zur nicht epitaktischen Grenzfläche (4, 6), an der das Fermi-Level-Pinning vorliegt, die Verarmungslänge d nicht unterschreitet.
7. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Material für den weiteren Materialbereich (5) , das identisch ist zu dem Material des ersten Materialbereichs (1) .
8. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Metall als Material für den weitere Materialbereich (5) .
9. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Materialien des ersten und zweiten Materialbereichs (1, 3) quasi-Gitteranpassung zeigen und versetzungsfrei zueinander angeordnet sind.
10. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche , gekennzeichnet durch
AlyGai-yAs und AlxGaι_xAs als Materialien für den ersten bzw. zweiten Materialbereich (1, 3) , mit x > y zur Ausbildung einer Stufe im Quantentopf (Banddiskontinuität) .
11. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche, bei der im ersten Materialbereich (1) eine Konzentration freier Ladungsträger von mindestens 1010 cm" 3, insbesondere von mindestens 1016 cm"3 vorliegt.
12. Halbleiter-Struktur nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass diese zumindest teilweise Metall- (Schottky) - Elektroden (7) mit Gate-Funktion zur Steuerung der
Ladungsträger umfasst.
13. Transistor, Laser, resonante Tunneldiode oder andere HeteroStruktur umfassend eine Halbleiter- Struktur nach einem der vorhergehenden Ansprüche 1 bis 12.
PCT/DE2005/000080 2004-02-03 2005-01-21 Halbleiter-struktur WO2005076363A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05714886A EP1711964A1 (de) 2004-02-03 2005-01-21 Halbleiter-struktur
US10/588,243 US20070267626A1 (en) 2004-02-03 2005-01-21 Semiconductor structure
JP2006551710A JP5335194B2 (ja) 2004-02-03 2005-01-21 半導体構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004005363.4 2004-02-03
DE102004005363A DE102004005363A1 (de) 2004-02-03 2004-02-03 Halbleiter-Struktur

Publications (1)

Publication Number Publication Date
WO2005076363A1 true WO2005076363A1 (de) 2005-08-18

Family

ID=34832504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000080 WO2005076363A1 (de) 2004-02-03 2005-01-21 Halbleiter-struktur

Country Status (5)

Country Link
US (1) US20070267626A1 (de)
EP (1) EP1711964A1 (de)
JP (1) JP5335194B2 (de)
DE (1) DE102004005363A1 (de)
WO (1) WO2005076363A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128777A1 (en) * 2008-04-15 2009-10-22 Qunano Ab Nanowire wrap gate devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7960715B2 (en) * 2008-04-24 2011-06-14 University Of Iowa Research Foundation Semiconductor heterostructure nanowire devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424525A (en) * 1979-12-28 1984-01-03 Fujitsu Limited High electron mobility single heterojunction semiconductor devices
EP0452950A2 (de) * 1990-04-20 1991-10-23 Hitachi, Ltd. Halbleiteranordnung mit Verwendung von Whiskern und Verfahren zu seiner Herstellung
US5608231A (en) * 1993-10-28 1997-03-04 Sony Corporation Field effect transistor having channel with plural quantum boxes arranged in a common plane
US5793055A (en) * 1995-11-30 1998-08-11 Forschungszentrum Julich Gmbh Hybrid electronic devices, particularly Josephson transistors
US20020175408A1 (en) * 2001-03-30 2002-11-28 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US20030010987A1 (en) * 2000-09-14 2003-01-16 Uri Banin Semiconductor nanocrystalline materials and their uses

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088350B2 (ja) * 1985-04-08 1996-01-29 日本電気株式会社 半導体装置
GB2219130A (en) * 1988-05-25 1989-11-29 Philips Electronic Associated A high mobility semiconductor device
JPH02111036A (ja) * 1988-10-20 1990-04-24 Fujitsu Ltd 高移動度トランジスタ
JPH04174560A (ja) * 1990-07-18 1992-06-22 Fujitsu Ltd 半導体装置とその製造方法
KR950012911B1 (ko) * 1991-02-19 1995-10-23 후지쓰 가부시끼가이샤 산소가 보강된 격리 영역이 있는 반도체와 그 제조방법
JP2500453B2 (ja) * 1993-06-28 1996-05-29 日本電気株式会社 電界効果トランジスタ
GB2296373B (en) * 1994-12-14 1997-09-10 Toshiba Cambridge Res Center Semiconductor device
JP2002083931A (ja) * 2000-09-08 2002-03-22 Nec Corp 半導体集積回路装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424525A (en) * 1979-12-28 1984-01-03 Fujitsu Limited High electron mobility single heterojunction semiconductor devices
EP0452950A2 (de) * 1990-04-20 1991-10-23 Hitachi, Ltd. Halbleiteranordnung mit Verwendung von Whiskern und Verfahren zu seiner Herstellung
US5608231A (en) * 1993-10-28 1997-03-04 Sony Corporation Field effect transistor having channel with plural quantum boxes arranged in a common plane
US5793055A (en) * 1995-11-30 1998-08-11 Forschungszentrum Julich Gmbh Hybrid electronic devices, particularly Josephson transistors
US20030010987A1 (en) * 2000-09-14 2003-01-16 Uri Banin Semiconductor nanocrystalline materials and their uses
US20020175408A1 (en) * 2001-03-30 2002-11-28 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BRASLAU N: "CONTACT AND METALLIZATION PROBLEMS IN GAAS INTEGRATED CIRCUITS", JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART A, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 4, no. 6, 1 November 1986 (1986-11-01), pages 3085 - 3090, XP000615746, ISSN: 0734-2101 *
OSAKO S-I ET AL: "QUANTUM ANTI-DOT ARRAYS AND QUANTUM WIRE TRANSISTORS FABRICATED ON INAS/AL0.5GA0.5SB HETEROSTRUCTURES", SEMICONDUCTOR SCIENCE AND TECHNOLOGY, INSTITUTE OF PHYSICS. LONDON, GB, vol. 11, no. 4, 1 April 1996 (1996-04-01), pages 571 - 575, XP000586931, ISSN: 0268-1242 *
TU CHARLES W: "Electronic materials growth: A retrospective and look forward", JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY A. VACUUM, SURFACES AND FILMS, AMERICAN INSTITUTE OF PHYSICS, NEW YORK, NY, US, vol. 21, no. 5, September 2003 (2003-09-01), pages S160 - S166, XP012006554, ISSN: 0734-2101 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128777A1 (en) * 2008-04-15 2009-10-22 Qunano Ab Nanowire wrap gate devices
EP2262723A1 (de) * 2008-04-15 2010-12-22 QuNano AB Gate-vorrichtungen mit gewickelten nanodrähten
EP2262723A4 (de) * 2008-04-15 2014-05-14 Qunano Ab Gate-vorrichtungen mit gewickelten nanodrähten

Also Published As

Publication number Publication date
DE102004005363A1 (de) 2005-09-08
JP2007535137A (ja) 2007-11-29
US20070267626A1 (en) 2007-11-22
EP1711964A1 (de) 2006-10-18
JP5335194B2 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
EP2465142B1 (de) Halbleiterstruktur
DE3786363T2 (de) Halbleiteranordnungen mit hoher Beweglichkeit.
DE60033656T2 (de) Halbleiteranordnung
Samuelson Self-forming nanoscale devices
DE69825939T2 (de) Anordnung mit Quanten-Schachteln
DE69404601T2 (de) Resonantes Tunneln in Silizium
DE112013005629B4 (de) Epitaxialfilm auf Nanostruktur
EP1630915A2 (de) Strahlungsemittierendes optoelektronisches Bauelement mit einer Quantentopfstruktur und Verfahren zu dessen Herstellung
JPH02128435A (ja) 半導体装置及びその製造方法
DE69116076T2 (de) Heterostruktur-Feldeffekttransistor
DE19522351A1 (de) Verfahren zur Herstellung von Quantenstrukturen, insbesondere von Quantenpunkten und Tunnelbarrieren sowie Bauelemente mit solchen Quantenstrukturen
DE102011119497B4 (de) Band zu Band Tunnel-Feldeffekttransistor mit gradierter Halbleiterheterostruktur im Tunnelübergang und Verfahren zu dessen Herstellung
DE102014118834A1 (de) Halbleiterbauelement und Verfahren
EP0752165B1 (de) Quantenschichtstruktur
DE69023994T2 (de) Quantumfilm-Strukturen.
EP0394757A2 (de) Verfahren zur Erzeugung von aktiven Halbleiterstrukturen mittels Ausgangsstrukturen mit einer oberflächenparallelen 2D-Ladungsträgerschicht
DE69109238T2 (de) Feldeffekttransistor.
DE112017007595B4 (de) Verfahren zur herstellung einer halbleitereinheit
DE68911453T2 (de) Verfahren zur Herstellung einer Halbleitervorrichtung mit Wellenleiterstruktur.
JPH027533A (ja) 負の微分伝導性を有する横表面超格子構造体
EP1711964A1 (de) Halbleiter-struktur
EP0956626B1 (de) Kantenemittierendes halbleiterlaser-bauelement
DE19519860A1 (de) Halbleitervorrichtung, ein Herstellungsverfahren für diese, eine Einzelelektronenvorrichtung und ein Herstellungsverfahren für diese
Arora et al. Effect of electric-field-induced mobility degradation on the velocity distribution in a sub-mu m length channel of InGaAs/AlGaAs heterojunction MODFET
EP4287281A1 (de) Widerstandsarmer elektronentransport in festkörpern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005714886

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006551710

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2005714886

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10588243

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10588243

Country of ref document: US