WO2005075404A1 - 共沸蒸留方法 - Google Patents

共沸蒸留方法 Download PDF

Info

Publication number
WO2005075404A1
WO2005075404A1 PCT/JP2005/001682 JP2005001682W WO2005075404A1 WO 2005075404 A1 WO2005075404 A1 WO 2005075404A1 JP 2005001682 W JP2005001682 W JP 2005001682W WO 2005075404 A1 WO2005075404 A1 WO 2005075404A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl acetate
azeotropic
acetic acid
water
distilled
Prior art date
Application number
PCT/JP2005/001682
Other languages
English (en)
French (fr)
Inventor
Motoki Numata
Takayuki Isogai
Takafumi Watanabe
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Publication of WO2005075404A1 publication Critical patent/WO2005075404A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • C07C51/46Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation

Definitions

  • the present invention relates to a method for azeotropically distilling a mixture to be distilled containing water, acetic acid and methyl acetate using an azeotropic agent having azeotropic properties with water.
  • Patent Literature 2 discloses methods of recovering energy by generating low-pressure steam using the heat of condensation of distillate vapor generated by distillation.
  • the azeotropic distillation method is disadvantageous in generating low-pressure steam when the distillation steam temperature is lower than that of a general distillation method that does not use an azeotropic agent.
  • Patent Literature 3 discloses a method for increasing the distillation steam temperature.
  • Patent Document 3 At least a part of the circulating azeotropic agent is distilled to remove methyl acetate accumulated in the circulating azeotropic agent.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-326001
  • Patent Document 2 JP-A-5-213816
  • Patent Document 3 U.S. Patent Publication No. 2003-0150706
  • the present invention provides a new method for recovering methyl acetate, which can simplify the equipment and reduce energy consumption in azeotropic distillation of a mixture to be distilled containing water, acetic acid and methyl acetate under pressure. It proposes a method.
  • the present invention has solved the above-mentioned problems by employing an azeotropic distillation method of azeotropically distilling each component of water, acetic acid and methyl acetate through the following steps (1) to (4). It is. That is, the gist of the present invention resides in the following 118.
  • the mixture to be distilled containing water, acetic acid and methyl acetate is A mixture containing water, acetic acid and methyl acetate produced in a terephthalic acid production process for producing terephthalic acid by oxidizing xylene, wherein the recovered methyl acetate is returned to the oxidizing reaction step.
  • the azeotropic distillation method according to any one of the above.
  • azeotropic distillation method according to any one of the above items 15 to 15, wherein the azeotropic agent for the azeotropic distillation is at least one selected from n-propyl acetate, i-propyl acetate, n-butyl acetate and i-butyl acetate. .
  • a new method for recovering methyl acetate that can simplify the equipment and reduce energy consumption in azeotropic distillation of a mixture to be distilled containing acetic acid and methyl acetate under pressure.
  • FIG. 1 is a schematic diagram showing an example of a flow used in the azeotropic distillation method according to the present invention.
  • FIG. 2 is a schematic diagram showing an example of a flow used in a conventional azeotropic distillation method (comparative example)
  • the azeotropic distillation method according to the present invention is a method of azeotropically distilling a mixture to be distilled containing water, acetic acid and methyl acetate using an azeotropic agent having azeotropic properties with water.
  • the above-mentioned mixture to be distilled containing water, acetic acid and methyl acetate is, for example, a terephthalic acid production process in which para-xylene is converted to terephthalic acid in an acetic acid solvent.
  • reaction liquor and condensate generated by the reaction and the mother liquor and the vapor obtained by solid-liquid separation of the reaction product slurry can be mentioned.
  • these mixtures contain water generated by the oxidation reaction, acetic acid as a solvent, and methyl acetate generated by a heterogeneous reaction of acetic acid.
  • the components to be distilled are azeotropically distilled through the following process (1).
  • the azeotropic agent is a compound capable of forming an azeotropic mixture with water.
  • azeotropic agent By using the azeotropic agent, azeotropic distillation of water and acetic acid can be performed more easily.
  • the azeotropic agent to be used include a heterogeneous azeotropic agent, and specific examples thereof include those having 5 or 6 carbon atoms such as n-propyl acetate, i-propyl acetate, n-butyl acetate, and i-butyl acetate. Acetate is mentioned. Of these, n-butyl acetate is particularly preferred. At least one kind of the above azeotropic agent may be used, but it is more preferable to use only one kind.
  • the minimum azeotropic point with water under atmospheric pressure is n-propyl acetate: 85 ° C, i-acetic acid i Pill: 77 ° C, n-butyl acetate: 91 ° C, i-butyl acetate: 88 ° C.
  • n-butyl acetate is compared with other azeotropic agents. To reach the required temperature at low pressure levels.
  • the term "under a pressure higher than the atmospheric pressure" in the above-mentioned step (1) means that the pressure at the top of the distillation column used in the above-mentioned step (1) exceeds the atmospheric pressure.
  • the pressure at which the steam temperature is 95 ° C or more and 130 ° C or less, preferably the pressure at which the steam temperature at the top of the tower is 95 ° C or more and 110 ° C or less.
  • the boiling point of the azeotropic yarn can be substantially higher than the boiling point under atmospheric pressure, and the pressure grade of low-pressure steam that generates heat of condensation of distillate steam can be increased.
  • water vapor (90 ° C) at 0.07MPa (absolute pressure) can be recovered and energy can be recovered efficiently with a steam turbine.
  • an azeotropic composition comprising water and an azeotropic agent and methyl acetate are distilled off, and the acetic acid is recovered at the bottom.
  • the main component is acetic acid with a water content of less than 10% by weight, while the water content of the mixture supplied to the distillation column is lower than that of the mixture supplied, for example, 20-30% by weight of water in the feed mixture.
  • the mixture is collected as bottoms.
  • the mixture to be distilled is a mother liquor obtained by solid-liquid separation of a reaction vapor or a condensate thereof, a reaction product slurry, etc.
  • the recovered acetic acid can be returned to the terephthalic acid production process and used again as a solvent or cleaning solution.
  • the vapor distilled at the top of the column distilled from the distillation column contains water, methyl acetate and an azeotropic agent as main components (usually 50% or more, preferably 70% of water, methyl acetate and an azeotropic agent). Containing a small amount of acetic acid of 1% by weight or less. Note that methyl acetate is a product generated by a heterogeneous reaction of acetic acid.
  • the “upper column” refers to the top of the distillation column and 1Z of the entire column from the top.
  • the distillate vapor is usually extracted from the top of the tower, but more than 1Z3 or more of the whole tower, preferably the top force and the partial force of 1Z10 or more of the whole tower, are extracted from the top of the tower.
  • step (2) As a method for treating the overhead vapor, the following step (2), step (5) can be used.
  • the step (2) is a step of condensing the vapor distilled at the top of the tower at a temperature of 95 to 130 ° C.
  • step (3) the methyl acetate is evaporated by releasing the condensate, so that in step (2), a pressure above atmospheric pressure (substantially the same as the operating pressure of the distillation column) is maintained. I prefer that.
  • the step (2) is a step of condensing the vapor discharged from the top of the column, and this condensation is usually performed in a condenser.
  • the condenser uses, for example, a kettle-type heat exchanger or a thin-film evaporator to utilize low-pressure water vapor, for example, 0.07 atm. (Absolute pressure) Can generate steam (90 ° C). In this case, the heat of condensation can be effectively used, and this is preferable in terms of energy efficiency.
  • the low-pressure steam refers to low-pressure steam obtained by heating water by heat exchange in the condenser.
  • the temperature at the top of the distillation column is usually 95 to 130 ° C as described above. For this reason, many Although there is a small heat loss, it is possible to generate low-pressure steam of 0.05 to 0.2 MPa as a pressure drop within the temperature range of 80 to 120 ° C using the heat of condensation. It is preferable that the temperature of the steam generated in the condenser be within the above-mentioned range, for example, since the range of utilization is increased, for example, the energy can be supplied to the steam turbine to effectively recover the energy. The higher the pressure grade of the steam, the greater the recovery energy per unit mass, so it is preferred.
  • the condensate in a pressure state higher than the atmospheric pressure can be separated into gas and liquid by flash-evaporating the condensed liquid at a reduced pressure.
  • the condensate obtained in the above step (2) is supplied to a pressure relief tank set at a predetermined pressure to perform gas-liquid separation.
  • the predetermined pressure is preferably atmospheric pressure, but may be set to a pressure lower than atmospheric pressure by an ejector or the like.
  • methyl acetate which is a light boiling component, can be vaporized and recovered.
  • the condensation temperature in the condensation step (2) is important.
  • the condensing temperature should be kept at a minimum to “a temperature exceeding the boiling point of methyl acetate at atmospheric pressure of 56 ° C”.
  • the concentration of methyl acetate in the liquid remaining in step (3) is reduced, and the content of methyl acetate in the oil phase is also reduced in the oil-water separation step in step (4).
  • accumulation of methyl acetate in the distillation system can be suppressed.
  • acetic acid dehydration efficiency is improved, and the load on the distillation column can be reduced. From the above viewpoint, the methyl acetate concentration in the oil phase is maintained (suppressed) at 20% by weight or less, preferably at 15% by weight or less.
  • the condensate whose pressure has been reduced by the pressure release in the step (3) is mainly composed of an azeotropic agent and hydraulic power, and is thus separated into oil and water in the step (4).
  • the condensate obtained in step (3) may be cooled if necessary. This is only to improve the oil-water separation property.
  • Methyl acetate in the condensate is separated to the aqueous phase and circulated in the oil-water separation as the temperature becomes lower than it is. This is because the accumulation of methyl acetate in the azeotropic agent can be further suppressed.
  • the oil phase contains the above azeotropic agent as a main component, and the separated oil phase is circulated as an azeotropic agent to the azeotropic distillation column in the above step (1) (the above step (5)).
  • the water phase contains mostly water, but contains a small amount of methyl acetate and an azeotropic agent. Therefore, it is preferable to distill and collect methyl acetate and the azeotropic agent by distillation.
  • the evaporated matter vaporized in the above step (3) it is more preferable to introduce the evaporated matter vaporized in the above step (3) to a distillation step for distilling a part or all of the aqueous phase obtained in the above step (4).
  • the separation and recovery of methyl acetate and the azeotropic agent in the evaporate obtained in the above step (3) can be performed separately from the separation and recovery of the methyl acetate and the azeotropic agent in the aqueous phase separated from the oil and water in the above step (4). Can be done simultaneously.
  • a reaction vapor, a condensate, a reaction slurry and the like generated in a terephthalic acid production process for producing terephthalic acid by oxidizing para-xylene in an acetic acid solvent are solid-liquid.
  • the recovered methyl acetate may be converted to another compound by hydrolysis or the like, for example, methanol for effective use. It is preferable to return to the reaction step.
  • the generation of methyl acetate due to the heterogeneous reaction of acetic acid used as the solvent can be suppressed, so that the loss of acetic acid can be reduced.
  • the mixture A to be distilled in the terephthalic acid production process of oxidizing para-xylene in an acetic acid solvent to generate terephthalic acid,
  • the mixture A to be distilled will be specifically described using the flow shown in FIG.
  • water is generated by the above-mentioned acidification, and methyl acetate is generated by the heterogeneous reaction of acetic acid.
  • the azeotropic agent is n-butyl acetate.
  • the mixture A to be distilled mainly contains water, acetic acid and methyl acetate.
  • the above-mentioned mixture A for distillation and the azeotropic agent (n-butyl acetate) are introduced into the distillation column 1, and water and acetic acid are separated by azeotropic distillation. Then, acetic acid is recovered from the bottom of the distillation column 1 as a bottom recovery product B.
  • the overhead distillate C which is distilled and distilled, is distilled from the top of the distillation column 1.
  • the above-mentioned overhead vapor C is mainly composed of water, n-butyl acetate and methyl acetate. Contains low concentrations of acetic acid and inert gases such as nitrogen.
  • the uncondensed gas mainly composed of an inert gas such as nitrogen is controlled by the valve of the gas line I discharged from the top so that the temperature at the top is in the range of 95 to 130 ° C. And control the pressure.
  • the condensate D and the uncondensed gas condensed in the condenser 2 are stored in the tank 3, and sent to the pressure relief tank 4 after gas-liquid separation.
  • the pressure relief tank 4 is a tank in which the pressure is set lower than the pressure of the condensate D, and the pressure decreases and a part of the condensate D evaporates. There is no particular problem if the pressure in the pressure release tank 4 at this time is lower than the vapor pressure of methyl acetate at the temperature of the condensate D !, however, atmospheric pressure or a pressure lower than atmospheric pressure is preferable.
  • the above-mentioned vaporized evaporate E also includes an azeotropic composition of water and n-butyl acetate, which is mainly methyl acetate. These evaporates E are sent to the second distillation column 5 and subjected to azeotropic distillation.
  • the liquid component F remaining in the pressure relief tank 5 is further cooled by a cooler 6, if necessary, and then sent to an oil / water separator 7, where it is converted into an oil phase G and an aqueous phase H.
  • the oil phase G is mainly composed of n-butyl acetate
  • the aqueous phase H is mainly composed of water. Then, the methyl acetate remaining in the liquid component F is partially contained in the water phase H, part of the force contained in the oil phase G.
  • the oil phase G is circulated to the distillation column 1 as an azeotropic agent, and the aqueous phase H is sent to the second distillation column 5 and subjected to azeotropic distillation.
  • the recovered n-butyl acetate can be used again as an azeotropic agent. Further, it is preferable that the recovered methyl acetate is returned to the above-mentioned oxidation reaction step. As a result, progress of the acetic acid to methyl acetate due to the heterogeneous reaction in the oxidation reaction can be suppressed, and loss of the acetic acid solvent can be reduced.
  • An acetic acid solution containing p-xylene, a catalyst (cobalt acetate, an acetic acid solution of manganese acetate and hydrogen bromide), a separated mother liquor recycled from a subsequent solid-liquid separation step, and air are continuously supplied to a stirring tank.
  • the oxidation reaction was performed at an operating temperature of 190 ° C and an operating pressure of 1.23 MPa (absolute pressure) while adjusting the liquid level so that the residence time was 1 hour.
  • the distilled steam was finally cooled down to 40 ° C by a multi-stage condenser, and the operation was performed with the oxygen concentration in the exhaust gas adjusted to 2.5 vol%.
  • the condensate obtained from each condenser was integrated and refluxed to the oxidation reactor, and a part of the condensate was withdrawn so that the concentration of water in the mother liquor of the slurry withdrawn was 10% by weight.
  • the slurry concentration of the slurry from which the reactor power was also extracted was 35% by weight, and the concentration of cobalt Z manganese Z bromine in the reaction mother liquor was 300Z300Z1000ppm by weight.
  • the slurry from which the power of the Siridani reactor was also withdrawn was continuously supplied to a stirring tank together with air, and at an operating temperature of 181 ° C, an operating pressure of 1.15 MPa (absolute pressure), and a residence time of 15 minutes.
  • the low-temperature re-oxidation reaction was performed while adjusting the liquid level so as to be as follows.
  • the distilled steam was finally cooled down to 40 ° C by a multi-stage condenser, and the operation was performed with the oxygen concentration in the exhaust gas adjusted to 6 vol%.
  • the condensed liquid obtained from each condenser was integrated and refluxed to the low-temperature re-oxidation reactor.
  • the slurry from which the power of the low-temperature refining reactor was extracted was crystallized to 90 ° C, and the slurry obtained by the crystallization was supplied to a rotary vacuum filter to perform solid-liquid separation and washing. I got it.
  • the operating pressure was atmospheric pressure.
  • the separated crude terephthalic acid cake was dried with a steam rotary dryer to obtain crude terephthalic acid crystals.
  • a water mixture containing acetic acid was carried out by a continuous distillation method according to the process shown in FIG. 1, using n-butyl acetate as an azeotropic agent.
  • azeotropic distillation column 1 for performing azeotropic distillation a distillation column having 70 trays was used.
  • the supplied mixture to be distilled was 88% by weight of acetic acid and 12% by weight of water per unit time 38.2 parts by weight of mixture 1, 19% by weight of acetic acid, 3% by weight of methyl acetate, 78% by weight of water 5.7 parts by weight of a mixture 2, consisting of 70.9 parts by weight of a mixture 2, 64.8% by weight of acetic acid, 0.1% by weight of methyl acetate and 35.1% by weight of water Yes, mixture 1 is the 70th stage from the top (bottom), mixture 2 is the 60th stage from the top, and mixture 3 is the top It was supplied to the 40th stage.
  • the above-mentioned condensed product at the top of the azeotropic distillation column 1 was controlled by a valve installed in a gas-liquid separated uncondensed gas so that the operation pressure at the top of the column was 0.16 MPa. At this time, the vapor temperature at the top of the tower was 98 ° C.
  • 101.0 parts by weight of recovered acetic acid B containing 8% by weight of water was withdrawn from the bottom of the column per unit time. The recovered acetic acid was sent to an acetic acid tank and reused as acetic acid used in various terephthalic acid production processes such as an oxidation reaction solution, a washing solution, and an absorbing solution.
  • distillate vapor containing water having an azeotropic composition, n-butyl acetate, methyl acetate and a small amount of acetic acid is obtained.
  • Condensation treatment was performed in the condenser 2 while maintaining the top operation pressure.
  • water was used as the refrigerant, and steam was obtained using the heat of condensation to recover energy. This steam was saturated steam at a temperature of 90 ° C. and a pressure of 0.07 MPa, and the amount of steam was 30.0 parts by weight per unit time.
  • the mixture condensed here was sent to tank 3 and subjected to gas-liquid separation.
  • the uncondensed matter was further cooled (not shown) to obtain a gas mainly composed of an inert gas.
  • a control valve was installed in the gas line I that discharges this inert gas out of the system, and the pressure at the top of the distillation column was controlled to 0.16 MPa (absolute pressure). For this reason, the above condensation treatment was carried out at substantially the same pressure as the top of the tower.
  • the condensate obtained in tank 3 was flash evaporated to atmospheric pressure in pressure relief tank 4.
  • the operating temperature of the pressure relief tank at this time was 85 ° C. Flash evaporation yielded 4.0 parts by weight of evaporate containing 37% by weight of methyl acetate per unit time. This evaporate was supplied to the second distillation column 5 for distillation.
  • the liquid obtained in the pressure release tank 4 was cooled to 50 ° C by a cooler before being separated into an oil phase and an aqueous phase by the oil / water separator 7.
  • Oil-water separation was performed by the oil-water separator 7, and the oil phase mainly composed of n-butyl acetate was circulated and used at the top of the azeotropic distillation column 1 (65 parts by weight per unit time). Further, the aqueous phase is supplied to the second distillation tower 5, where it is subjected to a distillation treatment together with the evaporant obtained from the pressure relief tank 4, and vinegar is fed from the top of the tower.
  • the obtained distillate (methyl acetate) was sent to the “acetic acid solution containing a catalyst” in the oxidation reaction step in the process for producing terephthalic acid crystals, and the side cut solution was sent to the oil-water separator 7. Also, an amount equivalent to 41% by weight of the bottoms was refluxed to the top of the azeotropic distillation column 1 as reflux water (water reflux ratio 0.7). Then, distilled water equivalent to 59% by weight of the bottoms was obtained.
  • the condensate obtained in the tank 3 is sent directly to the cooler 6 without being sent to the pressure relief tank 4, and oil-water separation is performed by the oil-water separator 7, and 30% of the oil phase G mainly composed of n-butyl acetate Supply a considerable amount to the third distillation column 8 and distill and collect the oil phase J-capra methyl acetate so that the methyl acetate in the circulating azeotropic agent supplied to the azeotropic distillation column 1 is 13% by weight.
  • the bottoms K were mixed with the oil phase G and circulated to the azeotropic distillation column 1. Otherwise, the procedure was the same as in Example 1.
  • Example 1 the relative values of the energy consumption required for the reboiler to recover methyl acetate were as shown in Table 1.
  • adoption of the technology of the present invention This eliminates the need for the third distillation column and its auxiliary equipment, and also greatly reduces the energy consumption required to recover the internal pressure of the distillation system for methyl acetate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

 水、酢酸及び酢酸メチルを含有する蒸留対象混合物を、水と共沸性を有する共沸剤を用いて共沸蒸留する方法を提供する。  水、酢酸及び酢酸メチルを、下記(1)乃至(5)の工程を経て、各成分を蒸留分離する共沸蒸留方法。 (1)水、酢酸及び酢酸メチルを含有する蒸留対象混合物を、共沸剤を用いて、塔頂部が大気圧を上回る圧力下で蒸留させ、酢酸を含有する塔底回収物と、水、酢酸メチル及び共沸剤を含有する塔上部留出蒸気とに分離する工程。 (2)上記(1)の工程で得られた塔上部留出蒸気を凝縮させる工程。 (3)上記(2)の工程で得られた凝縮液を放圧することにより酢酸メチルを蒸発させ、酢酸メチルを回収する工程。 (4)上記(3)の工程の残液を水相と油相とに液々分離する工程。 (5)上記(4)の工程で得られた油相を、共沸剤として上記(1)の工程に供給する工程。

Description

明 細 書
共沸蒸留方法
技術分野
[0001] この発明は、水、酢酸及び酢酸メチルを含有する蒸留対象混合物を、水と共沸性 を有する共沸剤を用いて共沸蒸留する方法に関する。
背景技術
[0002] 酢酸溶媒中でパラキシレンを酸ィ匕するテレフタル酸の製造プロセスにお 、て生じる 反応蒸気やその凝縮液、反応生成スラリー等を固液分離して得られる母液やその蒸 気等には、水、酢酸、酢酸の不均一化反応によって生じる酢酸メチル等が含まれる。 これらの混合物力 酢酸溶媒を回収するために、脱水蒸留する方法が一般的に行わ れている。この蒸留に際して、水と酢酸の比揮発度が 1に近く分離性が悪いことから、 水と共沸性を有する共沸剤を用いる共沸蒸留方法が用いられる。この共沸蒸留にお いて、上記混合物に含有する酢酸メチルが、循環使用される共沸剤中に蓄積してし まうと、分離性能が悪ィ匕する問題があるため、これを解決する方法が特許文献 1に開 示されている。
[0003] また、蒸留により発生する留出蒸気の凝縮熱を用いて低圧水蒸気を発生させて、 エネルギーを回収する方法が特許文献 2、特許文献 3等に開示されている。特に、共 沸蒸留方法では、共沸剤を用いない一般の蒸留方法より、留出蒸気温度が低くなる と、低圧水蒸気の発生には不利となるので、共沸蒸留の塔頂部を加圧にして、留出 蒸気温度を高める方法が、特許文献 3に開示されている。
[0004] 上記特許文献 3においては、循環使用される共沸剤中に蓄積される酢酸メチルを 除去するために、循環使用される共沸剤の少なくとも一部を蒸留処理していた。
[0005] 特許文献 1:特開 2002-326001号公報
特許文献 2 :特開平 5—213816号公報
特許文献 3 :米国公開特許 2003-0150706号公報
発明の開示
発明が解決しょうとする課題 [0006] しかしながら、共沸蒸留において、循環使用される共沸剤を蒸留処理して酢酸メチ ルを除去するにはエネルギーを要し、効率的ではな力つた。また、設備的にも処理に 必要な蒸留塔やその付帯設備が必要であった。
[0007] そこで、本発明は、水、酢酸及び酢酸メチルを含有する蒸留対象混合物を加圧下 で共沸蒸留するにあたり、設備を簡略ィ匕でき、エネルギー消費も低減できる新たな酢 酸メチルの回収方法を提案するものである。
課題を解決するための手段
[0008] 本発明は、水、酢酸及び酢酸メチルを、下記(1)乃至 (4)の工程を経て、各成分を 共沸蒸留する共沸蒸留方法を採用することにより、上記課題を解決したのである。即 ち、本発明の要旨は、下記 1一 8に存する。
1.水、酢酸及び酢酸メチルを、下記(1)乃至(5)の工程を経て、各成分を蒸留分離 する共沸蒸留方法。
(1)水、酢酸及び酢酸メチルを含有する蒸留対象混合物を、共沸剤を用いて、塔頂 部が大気圧を上回る圧力下で蒸留させ、酢酸を含有する塔底回収物と、水、酢酸メ チル及び共沸剤を含有する塔上部留出蒸気とに分離する工程。
(2)上記(1)の工程で得られた塔上部留出蒸気を凝縮させる工程。
(3)上記 (2)の工程で得られた凝縮液を放圧することにより酢酸メチルを蒸発させ、酢 酸メチルを回収する工程。
(4)上記(3)の工程の残液を水相と油相とに液々分離する工程。
(5)上記 (4)の工程で得られた油相を、共沸剤として上記(1)の工程に供給するェ 程。
2.上記塔頂留出蒸気の温度が、 95— 130°Cである上記 1に記載の共沸蒸留方法。
3.上記(3)の工程で得られた蒸発物を蒸留して、上記蒸発物に含有される酢酸メチ ルを回収する、上記 1又は 2に記載の共沸蒸留方法。
4.上記 (3)の工程で得られた蒸発物を、上記 (4)の工程で得られた水相と共に蒸留 して、上記蒸発物及び上記水相に含有する上記酢酸メチルを回収する、上記 1又は 2に記載の共沸蒸留方法。
5.上記水、酢酸及び酢酸メチルを含有する蒸留対象混合物が、酢酸溶媒中、パラ キシレンを酸ィ匕してテレフタル酸を生成するテレフタル酸製造プロセスにおいて生じ る水、酢酸及び酢酸メチルを含む混合物であり、上記の回収した酢酸メチルを上記 酸ィ匕反応工程に戻す上記 1一 4のいずれかに記載の共沸蒸留方法。
6.上記共沸蒸留の共沸剤が、炭素数 5又は 6の酢酸エステルである上記 1一 5のい ずれかに記載の共沸蒸留方法。
7.上記共沸蒸留の共沸剤が、酢酸 n -プロピル、酢酸 i プロピル、酢酸 n -ブチル及 び酢酸 iーブチルカ 選ばれる少なくとも一種である上記 1一 5のいずれかに記載の共 沸蒸留方法。
8.上記(2)の工程で発生した凝縮熱を用いて熱交換することにより、水蒸気を発生 させる上記 1一 7の ヽずれかに記載の共沸蒸留方法。
発明の効果
[0009] 本発明によれば、酢酸及び酢酸メチルを含有する蒸留対象混合物を加圧下で共 沸蒸留するにあたり、設備の簡略ィ匕が可能で、エネルギー消費も低減できる新たな 酢酸メチルの回収方法が提供される。
図面の簡単な説明
[0010] [図 1]この発明にかかる共沸蒸留方法で用いるフローの例を示す模式図
[図 2]従来の共沸蒸留方法 (比較例)で用いるフローの例を示す模式図
符号の説明
[0011] 1 共沸蒸留塔
2 凝縮器
3 凝縮液タンク
4 放圧槽
5 第 2蒸留塔
6 冷却器
7 油水分離器
A 蒸留対象混合物
B 塔底回収物
C 塔頂留出蒸気 D 凝縮液
D 水
1
D 水蒸気
2
E 蒸発物
F 液体成分
G 油相
H 水相
I ガスライン
発明を実施するための最良の形態
[0012] この発明にカゝかる共沸蒸留方法は、水、酢酸及び酢酸メチルを含有する蒸留対象 混合物を、水と共沸性を有する共沸剤を用いて共沸蒸留する方法である。
[0013] 上記の水、酢酸及び酢酸メチルを含有する蒸留対象混合物としては、例えば、酢 酸溶媒中、パラキシレンをテレフタル酸に酸ィ匕するテレフタル酸の製造プロセスにお
Vヽて生じる反応蒸気やその凝縮液、反応生成スラリーを固液分離して得られる母液 やその蒸気等をあげることができる。この場合、これらの混合物には、酸化反応により 生成する水や、溶媒である酢酸、酢酸の不均一化反応によって生じる酢酸メチルが 含有される。
[0014] 上記の蒸留対象混合物は、下記(1)の工程を経て、各成分が共沸蒸留される。
(1)上記の水、酢酸及び酢酸メチルを含有する蒸留対象混合物を、共沸剤を用いて 、塔頂部が大気圧を上回る圧力下で蒸留させ、酢酸を含有する塔底回収物と、水、 酢酸メチル及び共沸剤を主成分とする塔上部留出蒸気とに分離する工程。
[0015] 上記共沸剤とは、水と共沸混合物を形成することのできる化合物であり、これを用い ることにより、水と酢酸との共沸蒸留をより容易に行うことができる。使用される共沸剤 としては、不均一系共沸剤が挙げられ、具体的には、酢酸 n プロピル、酢酸 i プロ ピル、酢酸 n—ブチル、酢酸 i ブチル等の炭素数が 5又は 6の酢酸エステルがあげら れる。これらの中でも、特に酢酸 n ブチルが好ましい。上記共沸剤は、少なくとも一 種を用いればょ 、が、一種のみを用いるのがより好まし 、。
[0016] 大気圧(latm)下での水との最小共沸点は、酢酸 n プロピル: 85°C、酢酸 i プロ ピル: 77°C、酢酸 n -ブチル:91°C、酢酸 i -ブチル:88°Cであり、加圧化により最小共 沸点を上げる場合に、酢酸 n—ブチルは他の共沸剤と比べて低 ヽ圧力レベルで所定 の温度に到達できる。圧力レベルが高いほど蒸留塔内の蒸気容量負荷力 、さくなり 、塔のコンパクト化には有利である力 圧力が高すぎると、塔底部の酢酸回収部では 共沸剤の種類に関係なく圧力レベルが高いほど高温となり、腐食上、高級材質化等 の対策が必要となり、好ましくない。
[0017] 上記(1)工程における「大気圧を上回る圧力下」とは、上記(1)工程で使用される 蒸留塔の塔頂部の圧力が大気圧を超え、具体的には、塔上部留出蒸気温度が 95 °C以上 130°C以下となる圧力、好ましくは、塔上部頂留出蒸気温度が 95°C以上 110 °C以下となる圧力をいう。このようにすることにより、蒸留操作圧力を高めると、塔内蒸 気負荷が低減されるので、蒸留塔の小型化が可能になる。特に、化学プラントの生 産能力が高まる中、その効果が大きい。また、共沸糸且成物の沸点が実質的に大気圧 下での沸点よりも高くなり、留出蒸気の凝縮熱を発生する低圧水蒸気の圧力グレード を高めることもできる。例えば、 0. 07MPa (絶対圧)の水蒸気(90°C)を回収して効 率よくスチームタービンにてエネルギー回収できる。
[0018] 上記圧力が低すぎると上記効果 (低圧水蒸気の圧力グレードを高めること)を十分 に発揮できない傾向がある。一方、上記圧力が高すぎると、蒸留塔塔底部において、 酢酸による腐食環境の面力 厳しい温度域となり、さらに、高圧機器となるため、機器 コストが高くなる傾向となる。
[0019] 上記(1)工程の蒸留により、水と共沸剤とからなる共沸組成物、及び酢酸メチルが 留出され、上記酢酸は、塔底力 回収される。このため、蒸留塔へ供給される混合物 より水分量の少ない、例えば供給混合物中の水分濃度が 20— 30重量%であるのに 対して、水分濃度が 10重量%以下の酢酸を主成分とする混合物が缶出物として回 収される。そして、上記蒸留対象混合物が、酢酸溶媒中、ノ キシレンをテレフタル 酸に酸ィヒするテレフタル酸の製造プロセスにおいて生じる反応蒸気やその凝縮液、 反応生成スラリー等を固液分離して得られる母液やその蒸気である場合、回収され た酢酸は、このテレフタル酸の製造プロセスに戻し、再び溶媒や洗浄液として使用す ることがでさる。 [0020] また、上記蒸留塔の留出される塔上部留出蒸気は、水、酢酸メチル及び共沸剤を 主成分 (通常水、酢酸メチル及び共沸剤を 50%以上、好ましくは 70%以上含有)と し、これに 1重量%以下の少量の酢酸を含有する。なお、酢酸メチルは、酢酸の不均 一反応により、生じる生成物である。
[0021] なお、本発明において「塔上部」とは、蒸留塔の塔頂部及び塔頂から塔全体の 1Z
3以上の部分を指し、通常、留出蒸気は頭頂部から抜き出されるが、塔頂から塔全体 の 1Z3以上の部分、好ましくは塔頂力も塔全体の 1Z10以上の部分力も抜き出して ちょい。
[0022] 上記塔頂留出蒸気の処理方法としては、下記の(2)工程一 (5)工程を用いることが できる。
(2)上記(1)の工程で得られた塔上部留出蒸気を凝縮させる工程。
(3)上記 (2)の工程で得られた凝縮液を放圧することにより酢酸メチルを蒸発させ、酢 酸メチルを回収する工程。
(4)上記(3)の工程の残液を水相と油相とに液々分離する工程。
(5)上記 (4)の工程で得られた油相を、共沸剤として上記(1)の工程に供給するェ 程。
[0023] 上記(2)の工程は、 95— 130°Cにある上記塔上部留出蒸気を凝縮する工程である 。(3)工程において凝縮液を放圧することにより酢酸メチルを蒸発させることから、 (2 )の工程においては大気圧を上回る圧力(実質的に蒸留塔の操作圧力と同一の圧力 )状態を維持することが好まし 、。
[0024] 上記(2)の工程は、上記塔頂留出蒸気を凝縮する工程であるが、この凝縮は、通 常、凝縮器で行われる。この凝縮器には、例えば、ケトル型熱交換器や薄膜蒸発器 等を用いて、上記塔頂留出蒸気を凝縮する際に発生する凝縮熱を利用して、低圧水 蒸気、例えば 0. 07atm (絶対圧)水蒸気(90°C)を発生させることができる。このよう にすると、凝縮熱を有効利用することができ、エネルギー効率的にも好ましい。なお、 上記低圧水蒸気とは、上記凝縮器で冷媒として働く水が、この凝縮器において熱交 換により加熱されて得られる低圧の水蒸気を ヽぅ。
[0025] 上記蒸留塔の塔頂部の温度は、前述の通り、通常 95— 130°Cとなる。このため、多 少の熱損失はあるものの、凝縮熱を利用して、 80— 120°Cの温度範囲内、圧力ダレ ードとして 0. 05-0. 20MPaの低圧水蒸気を発生することができる。上記凝縮器で 発生される蒸気の温度を上記範囲内とすると、例えば、スチームタービンに供給して 有効にエネルギー回収することができる等、利用範囲が増大して好ましい。水蒸気の 圧力グレードが高 、程、単位質量当たりの回収エネルギーは大き 、ので好まし!/、。
[0026] 上記(3)工程においては、大気圧を上回る圧力状態にある上記凝縮液を、圧力を 低下させてフラッシュ蒸発させることにより、気液分離させることができる。具体的には 、上記(2)工程で得られた凝縮液を所定の圧力に設定された放圧槽に供給して気液 分離する。所定圧力は大気圧が好ましいが、ェジェクタ一等により大気圧未満の圧 力に設定してもよい。この場合、軽沸成分である酢酸メチルが気化され回収すること ができる。ここで、放圧蒸留により酢酸メチルを気化させるには、上記(2)の凝縮工程 での凝縮温度が重要となる。放圧時の設定圧力が大気圧であれば凝縮温度は最低 限「大気圧における酢酸メチルの沸点である 56°Cを上回る温度」までにとどめておく 。このフラッシュ蒸発の結果、上記(3)工程で残留する液体分中の酢酸メチル濃度が 低減され、上記 (4)工程の油水分離工程において、油相中の酢酸メチル含有量も減 少することから、蒸留系内での酢酸メチルの蓄積を抑えることができる。油相(共沸剤 )中への酢酸メチルの蓄積を抑制することにより酢酸脱水効率が向上し、さらに、蒸 留塔の負荷も軽減することができる。上記の観点から、油相中の酢酸メチル濃度は 2 0重量%以下、好ましくは 15重量%以下に維持 (抑制)しておく。
[0027] この場合、上記(3)工程で得られた蒸発物には、酢酸メチルだけでなぐ水と共沸 剤からなる共沸組成物も一部同伴しているので、この蒸発物を蒸留して、上記酢酸メ チルを留出、回収することが好ましい。例えば、大気圧下で酢酸メチル (b. p. = 56 °C)と水、酢酸ブチル共沸体 (b. p. = 91°C)を蒸留分離するためには、棚段塔ゃ充 填塔等を用 、た一般の蒸留方法を用 V、ればよ 、。
[0028] 上記(3)工程の放圧により圧力の低下した凝縮液は、主に共沸剤と水力ゝらなるので 、上記 (4)工程で油水分離される。油水分離に先立って(3)工程で得られた凝縮液 を必要に応じて冷却してもよい。これは油水分離性を高めるためだけでなぐ低温に するほど油水分離において凝縮液中の酢酸メチルが水相側へ分離され、循環される 共沸剤中の酢酸メチルの蓄積を更に抑制することができるからである。油相側は、上 記共沸剤を主成分として含有し、分離された油相は、共沸剤として上記(1)工程の共 沸蒸留塔に循環する(上記(5)工程)。また、水相側は、水が大半であるが、少量の 酢酸メチル及び共沸剤を含むので、蒸留処理により、酢酸メチル及び共沸剤を留出 •回収することが好ましい。
[0029] このとき、上記(3)工程で気化した蒸発物を、上記 (4)工程で得られる水相の一部 又は全部を蒸留する蒸留工程に導入することがさらに好ましい。これにより、上記(3) 工程で得られる蒸発物中の酢酸メチル及び共沸剤の分離回収が、上記 (4)工程で 油水分離された水相中の酢酸メチル及び共沸剤の分離回収と同時に行うことができ る。
[0030] 上記蒸留対象混合物として、酢酸溶媒中、パラキシレンを酸ィ匕してテレフタル酸を 生成するテレフタル酸の製造プロセスにお ヽて生じる反応蒸気やその凝縮液、反応 生成スラリー等を固液分離して得られる母液やその蒸気等を用いる場合、回収した 酢酸メチルは、加水分解等により他の化合物、例えば、メタノールに変換して有効利 用してもよいが、直接、上記酸ィ匕反応工程に戻すことが好ましい。上記酸化反応ェ 程に戻すと、この酸化反応工程において、使用する溶媒である酢酸の不均一化反応 による酢酸メチルの生成を抑制することができるので、酢酸の損失を低減することが できる。
[0031] 次に、この発明にかかる共沸蒸留方法の 1例について、酢酸溶媒中、パラキシレン を酸化してテレフタル酸を生成するテレフタル酸の製造プロセスにお 、て、プロセス 内で発生する上記蒸留対象混合物 Aにつ 、て、図 1に示すフローを用いて具体的に 説明する。なお、上記酸ィ匕により水が生成され、また、酢酸の不均一化反応で酢酸メ チルが生じる。共沸剤は酢酸 n-ブチルである。そして、上記蒸留対象物混合物 Aは 、水、酢酸及び酢酸メチルを主成分とする。
[0032] 上記蒸留対象物混合物 A及び共沸剤 (酢酸 n—プチル)を蒸留塔 1に導入し、共沸 蒸留により水と酢酸の分離を行う。そして、塔底回収物 Bとして、酢酸を蒸留塔 1の底 部より回収する。一方、蒸留留出される塔頂留出蒸気 Cを蒸留塔 1の塔頂部より留出 させる。上記塔頂留出蒸気 Cとしては、水、酢酸 n—プチル、酢酸メチルを主成分とし 、これに低濃度の酢酸と窒素等の不活性ガスを含有する。このとき、例えば窒素等の 不活性ガスを主成分とする未凝縮ガスが、塔頂部から排出されるガスライン Iのバル ブによって塔頂部の温度が 95— 130°Cの範囲内となるように、圧力コントロールをす る。
[0033] 次いで、上記塔頂留出蒸気 Cは、凝縮器 2に送られ、凝縮される。このとき、水 Dが
1 上記塔頂留出蒸気 C力 の凝縮熱を受け取り、水蒸気 Dが発生する。
2
[0034] 上記凝縮器 2で凝縮された凝縮液 D及び未凝縮ガスは、ー且、タンク 3に保管され 、気液分離後に、放圧槽 4に送られる。この放圧槽 4は、凝縮液 Dの圧力より圧力設 定を低くした槽であり、圧力が低下すると共に、凝縮液 Dの一部が気化する。このとき の放圧槽 4での圧力は、凝縮液 Dの温度における酢酸メチルの蒸気圧より低ければ 特に問題はな!、が、大気圧又は大気圧未満の圧力が好ま 、。
[0035] 上記の気化する蒸発物 Eは、酢酸メチルが主である力 水と酢酸 n ブチルの共沸 組成物も含まれる。これらの蒸発物 Eは、第 2蒸留塔 5に送られ、共沸蒸留にかけら れる。
[0036] また、上記放圧槽 5に残留する液体成分 Fは、必要に応じて、冷却器 6でさらに冷 却された後、油水分離器 7に送られ、油相 Gと水相 Hに分けられる。油相 Gは、酢酸 n ブチルが主成分であり、水相 Hは水が主成分である。そして、液体成分 F中に残存 する酢酸メチルは、油相 Gに含まれる力 その一部は、水相 Hにも含まれる。
[0037] 上記油相 Gは、共沸剤として蒸留塔 1に循環され、上記水相 Hは、上記第 2蒸留塔 5に送られ、共沸蒸留にかけられる。
[0038] 第 2蒸留塔 5においては、上記の蒸発物 E及び水相 Hが蒸留され、塔頂から酢酸メ チルが、塔中カゝら酢酸 n プチルカ 塔底力ゝら水力 それぞれ分離回収される。
[0039] 回収された酢酸 n ブチルは、共沸剤として再び使用することができる。また、回収 された酢酸メチルは、上記酸ィ匕反応工程に戻すことが好ましい。これにより、この酸化 反応における酢酸の不均一化反応による酢酸メチルへの進行を抑制し、酢酸溶媒の 損失を低減することができる。
実施例
[0040] 次に、実施例によりこの発明をさらに詳しく説明する。但し、この発明は、その要旨 を超えない限り、以下の実施例により限定されるものではない。
[0041] 実施例 1
p -キシレン、触媒 (酢酸コバルト、酢酸マンガンの酢酸溶液および臭化水素)を含 む酢酸溶液、後段の固液分離工程からリサイクルされる分離母液及び、空気を撹拌 槽に連続的に供給し、操作温度 190°C、操作圧力 1. 23MPa (絶対圧)で、滞留時 間 1時間になるように液面を調整しながら酸ィ匕反応を行った。また、溜出蒸気は多段 の凝縮器により最終的に 40°Cまで冷却させ、排ガス中の酸素濃度が 2. 5vol%に調 整して運転を実施した。また各凝縮器カゝら得られる凝縮液は統合して酸ィ匕反応器に 還流し、その一部は反応抜き出しスラリーの母液中水分濃度が 10重量%となるように 抜き出した。酸ィ匕反応器力も抜き出されるスラリーのスラリー濃度は 35重量%、反応 母液中のコバルト Zマンガン Z臭素濃度が 300Z300Z1000重量 ppmであった。
[0042] 酸ィ匕反応器力も抜き出されたスラリーは、空気と共に撹拌槽に連続的に供給し、操 作温度 181°C、操作圧力 1. 15MPa (絶対圧)で、滞留時間 15分になるように液面 調整しながら低温追酸化反応を行った。また、溜出蒸気は多段の凝縮器により最終 的に 40°Cまで冷却させ、排ガス中の酸素濃度が 6vol%に調整して運転を実施した。 また各凝縮器カゝら得られる凝縮液は統合して低温追酸ィ匕反応器に還流した。
[0043] 低温追酸ィ匕反応器力も抜き出されたスラリーは、 90°Cまで晶析した後に、この晶析 で得られたスラリーをロータリーバキュームフィルターに供給して固液分離と洗浄を行 つた。ここで操作圧力は大気圧であった。分離された粗テレフタル酸ケーキはスチー ムロータリードライヤーで乾燥させて粗テレフタル酸結晶を得た。
[0044] 蒸留対象混合物として、酢酸を含有する水混合物を、共沸剤として酢酸 n—ブチル を使用して、図 1に示すプロセスに従い、連続蒸留法により実施した。共沸蒸留を行 う共沸蒸留塔 1として、棚段を 70段有する蒸留塔を使用した。
[0045] 供給した蒸留対象混合物は、酢酸 88重量%、水 12重量%からなる単位時間当た り 38. 2重量部の混合物 1、酢酸 19重量%、酢酸メチル 3重量%、水 78重量%から なる単位時間当たり 70. 9重量部の混合物 2、酢酸 64. 8重量%、酢酸メチル 0. 1重 量%、水 35. 1重量%からなる単位時間当たり 5. 7重量部の混合物 3であり、混合物 1は上部より 70段目(最下部段)、混合物 2は上部より 60段目、混合物 3は、上部より 40段目に供給した。
[0046] 共沸蒸留塔 1の塔頂部操作圧が 0. 16MPaとなるように、塔頂溜出上記の凝縮処 理物を気液分離した未凝縮ガスに設置したバルブでコントロールした。このときの塔 頂溜出蒸気温度は 98°Cであった。共沸蒸留塔 1では、塔底より缶出液として水分 8 重量%を含有する回収酢酸 Bを単位時間当たり、 101. 0重量部抜き出した。この回 収酢酸は、酢酸タンクへ送り、酸化反応溶液、洗浄液、吸収液などの各種テレフタル 酸製造プロセスで使用する酢酸として再利用した。
[0047] 共沸蒸留塔 1の塔頂部からは共沸組成の水と酢酸 n—ブチルと、酢酸メチル及び微 量の酢酸を含む溜出蒸気が得られ、これを共沸蒸留塔 1の塔頂部操作圧を維持した 状態で、凝縮器 2で凝縮処理した。ここで、冷媒には水が用いられ、凝縮熱を用いて 水蒸気を得て、エネルギー回収を行った。この水蒸気は、温度 90°C、圧力 0. 07MP aの飽和水蒸気であり、発蒸量は、単位時間当たり 30. 0重量部であった。
[0048] ここで凝縮処理された混合物は、タンク 3に送られ、気液分離処理した。未凝縮物 は、さらに冷却処理(図示せず)することにより、イナートガスを主成分とするガスを得 た。このイナートガスを系外に放出するガスライン Iにコントロールバルブを設置し、蒸 留塔塔頂部の圧力が 0. 16MPa (絶対圧)になるようにコントロールした。このため上 記凝縮処理は実質的に塔頂部と同圧で実施した。
[0049] タンク 3で得られた凝縮液を放圧槽 4で大気圧までフラッシュ蒸発処理した。このと きの放圧槽の操作温度は 85°Cであった。フラッシュ蒸発により酢酸メチル 37重量% を含む蒸発物が、単位時間当たり 4. 0重量部得られた。この蒸発物を第 2蒸留塔 5 に供給して蒸留処理をした。一方、放圧槽 4で得られた液体は、油水分離器 7で油相 と水相に液々分離するに先立って、冷却器で 50°Cまで冷却された。これは油水分離 性を高めるためだけでなぐ低温にするほど油水分離において凝縮液中の酢酸メチ ルが水相側へ分離され、循環される共沸剤中の酢酸メチルの蓄積を更に抑制するこ とができるカゝらである。
[0050] 油水分離器 7で油水分離を行い、酢酸 n—ブチルを主成分とする油相は、共沸蒸留 塔 1の塔頂部に循環使用された (単位時間当たり 65重量部)。また、水相は、第 2蒸 留塔 5に供給され、放圧槽 4から得られた蒸発物と共に蒸留処理され、塔頂部より酢 酸メチル 90重量%を含む溜出液 (単位時間当たり 2. 1重量部)、中間部より酢酸 n— ブチル 24重量%を含むサイドカット液 (単位時間当たり 4. 2重量部)、塔底部より缶 出液として微量の酢酸を含む水(単位時間当たり 20. 4重量部)を得た。
[0051] 得られた溜出液 (酢酸メチル)はテレフタル酸結晶を製造するプロセスにおける酸 化反応工程の「触媒を含む酢酸溶液」に送り、サイドカット液を油水分離器 7に送った 。また、缶出液の 41重量%相当量を環流水として共沸蒸留塔 1の塔頂部に還流した (水還流比 0. 7)。そして、缶出液の 59重量%に相当する蒸留処理水を得た。
[0052] このように、塔頂部を加圧する共沸蒸留方法において、圧力を有する凝縮液をフラ ッシュ蒸発させることによって、凝縮液に含有する酢酸メチルの一部を油水分離器を 通さずに第 2蒸留塔 5に導くことができる。このため、冷却器 4や第 2蒸留塔 5リボイラ 一のエネルギー消費量の低減が可能となるだけでなぐ油水分離器において、油相 側に同伴される酢酸メチルの量を低減できる。この結果、油相液カゝら酢酸メチルを除 去するために蒸留塔やその付帯設備、蒸留に必要なエネルギーの消費も必要なぐ 共沸蒸留の分離性能を悪化させない範囲の循環共沸剤中の酢酸メチル濃度(13重 量%)を維持した状態で 7ヶ月以上安定して運転できた。
[0053] 比較例 1
タンク 3で得られた凝縮液を放圧槽 4に送らず直接、冷却器 6に送り、油水分離器 7 で油水分離を行 、、酢酸 n—ブチルを主成分とする油相 Gの 30%相当量を第 3蒸留 塔 8へ供給し、共沸蒸留塔 1へ供給する循環共沸剤中の酢酸メチルが 13重量%とな るように油相 Jカゝら酢酸メチルを溜出して回収し、缶出液 Kは油相 Gと混合して共沸蒸 留塔 1に循環した。それ以外は実施例 1と同様な方法で行った。
[0054] [表 1]
Figure imgf000014_0001
[0055] この結果、実施例 1と比較例 1では、酢酸メチルを回収するためにリボイラーに要し たエネルギー消費量の相対値は表 1の通りであった。このように本発明技術の採用 により第 3蒸留塔及びその付帯設備の必要がなくなり、さらに酢酸メチルを蒸留系内 力も回収するために必要なエネルギー消費量も大きく低減できる。
上記実施例の結果より、循環使用される共沸剤から酢酸メチルを除去するための 蒸留設備及び該蒸留に必要なエネルギー (熱量)を消費することなく安定して酢酸と 水の共沸蒸留を運転できた。 なお、本出願の優先権主張の基礎となる日本特許願 2004— 029483号(2004年 2月 5日に日本特許庁に出願)の全明細書の内容をここに引用し、本発明の明細書 の開示として、取り入れるものである。

Claims

請求の範囲 [1] 水、酢酸及び酢酸メチルを、下記(1)乃至(5)の工程を経て、各成分を蒸留分離す る共沸蒸留方法。
(1)水、酢酸及び酢酸メチルを含有する蒸留対象混合物を、共沸剤を用いて、塔頂 部が大気圧を上回る圧力下で蒸留させ、酢酸を含有する塔底回収物と、水、酢酸メ チル及び共沸剤を含有する塔上部留出蒸気とに分離する工程。
(2)上記(1)の工程で得られた塔上部留出蒸気を凝縮させる工程。
(3)上記 (2)の工程で得られた凝縮液を放圧することにより酢酸メチルを蒸発させ、酢 酸メチルを回収する工程。
(4)上記(3)の工程の残液を水相と油相とに液々分離する工程。
(5)上記 (4)の工程で得られた油相を、共沸剤として上記(1)の工程に供給するェ 程。
[2] 上記塔頂留出蒸気の温度が、 95— 130°Cである請求項 1に記載の共沸蒸留方法
[3] 上記(3)の工程で得られた蒸発物を蒸留して、上記蒸発物に含有される酢酸メチ ルを回収する、請求項 1又は 2に記載の共沸蒸留方法。
[4] 上記 (3)の工程で得られた蒸発物を、上記 (4)の工程で得られた水相と共に蒸留し て、上記蒸発物及び上記水相に含有する上記酢酸メチルを回収する、請求項 1又は
2に記載の共沸蒸留方法。
[5] 上記水、酢酸及び酢酸メチルを含有する蒸留対象混合物が、酢酸溶媒中、パラキ シレンを酸ィ匕してテレフタル酸を生成するテレフタル酸製造プロセスにおいて生じる 水、酢酸及び酢酸メチルを含む混合物であり、上記の回収した酢酸メチルを上記酸 化反応工程に戻す請求項 1一 4のいずれかに記載の共沸蒸留方法。
[6] 上記共沸蒸留の共沸剤が、炭素数 5又は 6の酢酸エステルである請求項 1一 5のい ずれかに記載の共沸蒸留方法。
[7] 上記共沸蒸留の共沸剤が、酢酸 n -プロピル、酢酸 i プロピル、酢酸 n -ブチル及 び酢酸 iーブチルカ 選ばれる少なくとも一種である請求項 1一 5のいずれかに記載の 共沸蒸留方法。 上記(2)の工程で発生した凝縮熱を用いて熱交換することにより、 せる請求項 1一 7のいずれかに記載の共沸蒸留方法。
PCT/JP2005/001682 2004-02-05 2005-02-04 共沸蒸留方法 WO2005075404A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004029483 2004-02-05
JP2004-029483 2004-02-05

Publications (1)

Publication Number Publication Date
WO2005075404A1 true WO2005075404A1 (ja) 2005-08-18

Family

ID=34835952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001682 WO2005075404A1 (ja) 2004-02-05 2005-02-04 共沸蒸留方法

Country Status (2)

Country Link
CN (1) CN100425587C (ja)
WO (1) WO2005075404A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118940A (ja) * 2006-11-14 2008-05-29 Clean Mechanical Kk 柑橘類飲料製造方法及び装置
US7468456B2 (en) * 2005-08-01 2008-12-23 Ant Corporation Azeotropic distillation process for separating acetic acid, methylacetate and water in the production of an aromatic carboxylic acid
CN118290292A (zh) * 2024-04-02 2024-07-05 江苏新视界先进功能纤维创新中心有限公司 一种用于芳纶生产废液中dmac溶剂和氯化锂的回收方法
CN118290293A (zh) * 2024-04-02 2024-07-05 江苏新视界先进功能纤维创新中心有限公司 一种芳纶生产废液中有机溶剂和碱土金属氯盐的回收方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101274147B (zh) * 2007-12-24 2010-06-16 天津大学 连续真空挥发分离共沸物的方法和装置
CN102875354A (zh) * 2012-10-31 2013-01-16 南京工业大学 一种回收粗对苯二甲酸滤饼中醋酸的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045239A1 (en) * 1997-04-09 1998-10-15 E.I. Du Pont De Nemours And Company Water separation process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7048835B2 (en) * 2002-02-12 2006-05-23 Amt International, Inc. System and method for acetic acid recovery during terephthalic acid production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998045239A1 (en) * 1997-04-09 1998-10-15 E.I. Du Pont De Nemours And Company Water separation process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7468456B2 (en) * 2005-08-01 2008-12-23 Ant Corporation Azeotropic distillation process for separating acetic acid, methylacetate and water in the production of an aromatic carboxylic acid
JP2008118940A (ja) * 2006-11-14 2008-05-29 Clean Mechanical Kk 柑橘類飲料製造方法及び装置
JP4569893B2 (ja) * 2006-11-14 2010-10-27 クリーンメカニカル株式会社 柑橘類飲料製造方法及び装置
CN118290292A (zh) * 2024-04-02 2024-07-05 江苏新视界先进功能纤维创新中心有限公司 一种用于芳纶生产废液中dmac溶剂和氯化锂的回收方法
CN118290293A (zh) * 2024-04-02 2024-07-05 江苏新视界先进功能纤维创新中心有限公司 一种芳纶生产废液中有机溶剂和碱土金属氯盐的回收方法

Also Published As

Publication number Publication date
CN1914146A (zh) 2007-02-14
CN100425587C (zh) 2008-10-15

Similar Documents

Publication Publication Date Title
TWI421121B (zh) 用以脫水含水乙醇的低能量萃取蒸餾製程
US20070213557A1 (en) Separator, reactor, and method for producing aromatic carboxylic acids
RU2396242C2 (ru) Способ рекуперации метанола
JP7136258B2 (ja) 有機カルボン酸水溶液の製造方法および装置
JP6716597B2 (ja) (メタ)アクリル酸の改良された製造方法
KR20080063349A (ko) 아세트산 탈수 시스템 및 방법
CN1914145B (zh) 芳香族羧酸的制造方法
JP5411288B2 (ja) 酢酸ビニルの製造方法
JP2011105776A (ja) (メタ)アクリル酸の製造法
EP1888194A1 (en) New stripper configuration for the production of ethylene oxide
WO2005075404A1 (ja) 共沸蒸留方法
CN1907943A (zh) 分离乙酸乙烯酯的方法
EP0973717A1 (en) Water separation process
KR20170018853A (ko) 아세트산 제조 유닛에서 오프가스를 처리하기 위한 방법 및 장치
KR20060109306A (ko) 테레프탈산 제조공정에서 초산의 회수방법
KR101435569B1 (ko) 방향족 카르복시산 제조시 초산 회수 방법
WO2006109999A1 (en) Recovering method of acetic acid from effluent of terephthalic acid production process
WO2011146242A2 (en) Production of aromatic carboxylic acids
JP2003137833A (ja) テレフタル酸の製造方法
JP2005247835A (ja) 共沸蒸留方法
CN100473636C (zh) 通过氧化气体基质得到(甲基)丙烯酸的纯化方法
US5959140A (en) Process for producing aromatic carboxylic acid
EP4132672A1 (en) Process and facility for recovering methoxypropanols from an aqueous stream
JP4091766B2 (ja) メタクロレインの製造方法
CN215049779U (zh) 甲基苯甲酸的生产系统

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580003772.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 4472/DELNP/2006

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase